page_alloc.c revision 0c0e6195896535481173df98935ad8db174f4d45
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44#include <linux/page-isolation.h>
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48#include "internal.h"
49
50/*
51 * Array of node states.
52 */
53nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
54	[N_POSSIBLE] = NODE_MASK_ALL,
55	[N_ONLINE] = { { [0] = 1UL } },
56#ifndef CONFIG_NUMA
57	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
58#ifdef CONFIG_HIGHMEM
59	[N_HIGH_MEMORY] = { { [0] = 1UL } },
60#endif
61	[N_CPU] = { { [0] = 1UL } },
62#endif	/* NUMA */
63};
64EXPORT_SYMBOL(node_states);
65
66unsigned long totalram_pages __read_mostly;
67unsigned long totalreserve_pages __read_mostly;
68long nr_swap_pages;
69int percpu_pagelist_fraction;
70
71#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
72int pageblock_order __read_mostly;
73#endif
74
75static void __free_pages_ok(struct page *page, unsigned int order);
76
77/*
78 * results with 256, 32 in the lowmem_reserve sysctl:
79 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
80 *	1G machine -> (16M dma, 784M normal, 224M high)
81 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
82 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
83 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
84 *
85 * TBD: should special case ZONE_DMA32 machines here - in those we normally
86 * don't need any ZONE_NORMAL reservation
87 */
88int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
89#ifdef CONFIG_ZONE_DMA
90	 256,
91#endif
92#ifdef CONFIG_ZONE_DMA32
93	 256,
94#endif
95#ifdef CONFIG_HIGHMEM
96	 32,
97#endif
98	 32,
99};
100
101EXPORT_SYMBOL(totalram_pages);
102
103static char * const zone_names[MAX_NR_ZONES] = {
104#ifdef CONFIG_ZONE_DMA
105	 "DMA",
106#endif
107#ifdef CONFIG_ZONE_DMA32
108	 "DMA32",
109#endif
110	 "Normal",
111#ifdef CONFIG_HIGHMEM
112	 "HighMem",
113#endif
114	 "Movable",
115};
116
117int min_free_kbytes = 1024;
118
119unsigned long __meminitdata nr_kernel_pages;
120unsigned long __meminitdata nr_all_pages;
121static unsigned long __meminitdata dma_reserve;
122
123#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
124  /*
125   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
126   * ranges of memory (RAM) that may be registered with add_active_range().
127   * Ranges passed to add_active_range() will be merged if possible
128   * so the number of times add_active_range() can be called is
129   * related to the number of nodes and the number of holes
130   */
131  #ifdef CONFIG_MAX_ACTIVE_REGIONS
132    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
133    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
134  #else
135    #if MAX_NUMNODES >= 32
136      /* If there can be many nodes, allow up to 50 holes per node */
137      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
138    #else
139      /* By default, allow up to 256 distinct regions */
140      #define MAX_ACTIVE_REGIONS 256
141    #endif
142  #endif
143
144  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
145  static int __meminitdata nr_nodemap_entries;
146  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
147  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
148#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
149  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
150  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
151#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
152  unsigned long __initdata required_kernelcore;
153  static unsigned long __initdata required_movablecore;
154  unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
155
156  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
157  int movable_zone;
158  EXPORT_SYMBOL(movable_zone);
159#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
160
161#if MAX_NUMNODES > 1
162int nr_node_ids __read_mostly = MAX_NUMNODES;
163EXPORT_SYMBOL(nr_node_ids);
164#endif
165
166int page_group_by_mobility_disabled __read_mostly;
167
168static void set_pageblock_migratetype(struct page *page, int migratetype)
169{
170	set_pageblock_flags_group(page, (unsigned long)migratetype,
171					PB_migrate, PB_migrate_end);
172}
173
174#ifdef CONFIG_DEBUG_VM
175static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
176{
177	int ret = 0;
178	unsigned seq;
179	unsigned long pfn = page_to_pfn(page);
180
181	do {
182		seq = zone_span_seqbegin(zone);
183		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
184			ret = 1;
185		else if (pfn < zone->zone_start_pfn)
186			ret = 1;
187	} while (zone_span_seqretry(zone, seq));
188
189	return ret;
190}
191
192static int page_is_consistent(struct zone *zone, struct page *page)
193{
194	if (!pfn_valid_within(page_to_pfn(page)))
195		return 0;
196	if (zone != page_zone(page))
197		return 0;
198
199	return 1;
200}
201/*
202 * Temporary debugging check for pages not lying within a given zone.
203 */
204static int bad_range(struct zone *zone, struct page *page)
205{
206	if (page_outside_zone_boundaries(zone, page))
207		return 1;
208	if (!page_is_consistent(zone, page))
209		return 1;
210
211	return 0;
212}
213#else
214static inline int bad_range(struct zone *zone, struct page *page)
215{
216	return 0;
217}
218#endif
219
220static void bad_page(struct page *page)
221{
222	printk(KERN_EMERG "Bad page state in process '%s'\n"
223		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
224		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
225		KERN_EMERG "Backtrace:\n",
226		current->comm, page, (int)(2*sizeof(unsigned long)),
227		(unsigned long)page->flags, page->mapping,
228		page_mapcount(page), page_count(page));
229	dump_stack();
230	page->flags &= ~(1 << PG_lru	|
231			1 << PG_private |
232			1 << PG_locked	|
233			1 << PG_active	|
234			1 << PG_dirty	|
235			1 << PG_reclaim |
236			1 << PG_slab    |
237			1 << PG_swapcache |
238			1 << PG_writeback |
239			1 << PG_buddy );
240	set_page_count(page, 0);
241	reset_page_mapcount(page);
242	page->mapping = NULL;
243	add_taint(TAINT_BAD_PAGE);
244}
245
246/*
247 * Higher-order pages are called "compound pages".  They are structured thusly:
248 *
249 * The first PAGE_SIZE page is called the "head page".
250 *
251 * The remaining PAGE_SIZE pages are called "tail pages".
252 *
253 * All pages have PG_compound set.  All pages have their ->private pointing at
254 * the head page (even the head page has this).
255 *
256 * The first tail page's ->lru.next holds the address of the compound page's
257 * put_page() function.  Its ->lru.prev holds the order of allocation.
258 * This usage means that zero-order pages may not be compound.
259 */
260
261static void free_compound_page(struct page *page)
262{
263	__free_pages_ok(page, compound_order(page));
264}
265
266static void prep_compound_page(struct page *page, unsigned long order)
267{
268	int i;
269	int nr_pages = 1 << order;
270
271	set_compound_page_dtor(page, free_compound_page);
272	set_compound_order(page, order);
273	__SetPageHead(page);
274	for (i = 1; i < nr_pages; i++) {
275		struct page *p = page + i;
276
277		__SetPageTail(p);
278		p->first_page = page;
279	}
280}
281
282static void destroy_compound_page(struct page *page, unsigned long order)
283{
284	int i;
285	int nr_pages = 1 << order;
286
287	if (unlikely(compound_order(page) != order))
288		bad_page(page);
289
290	if (unlikely(!PageHead(page)))
291			bad_page(page);
292	__ClearPageHead(page);
293	for (i = 1; i < nr_pages; i++) {
294		struct page *p = page + i;
295
296		if (unlikely(!PageTail(p) |
297				(p->first_page != page)))
298			bad_page(page);
299		__ClearPageTail(p);
300	}
301}
302
303static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
304{
305	int i;
306
307	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
308	/*
309	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311	 */
312	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313	for (i = 0; i < (1 << order); i++)
314		clear_highpage(page + i);
315}
316
317static inline void set_page_order(struct page *page, int order)
318{
319	set_page_private(page, order);
320	__SetPageBuddy(page);
321}
322
323static inline void rmv_page_order(struct page *page)
324{
325	__ClearPageBuddy(page);
326	set_page_private(page, 0);
327}
328
329/*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 *     B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 *     P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346static inline struct page *
347__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348{
349	unsigned long buddy_idx = page_idx ^ (1 << order);
350
351	return page + (buddy_idx - page_idx);
352}
353
354static inline unsigned long
355__find_combined_index(unsigned long page_idx, unsigned int order)
356{
357	return (page_idx & ~(1 << order));
358}
359
360/*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373static inline int page_is_buddy(struct page *page, struct page *buddy,
374								int order)
375{
376	if (!pfn_valid_within(page_to_pfn(buddy)))
377		return 0;
378
379	if (page_zone_id(page) != page_zone_id(buddy))
380		return 0;
381
382	if (PageBuddy(buddy) && page_order(buddy) == order) {
383		BUG_ON(page_count(buddy) != 0);
384		return 1;
385	}
386	return 0;
387}
388
389/*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other.  That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413static inline void __free_one_page(struct page *page,
414		struct zone *zone, unsigned int order)
415{
416	unsigned long page_idx;
417	int order_size = 1 << order;
418	int migratetype = get_pageblock_migratetype(page);
419
420	if (unlikely(PageCompound(page)))
421		destroy_compound_page(page, order);
422
423	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425	VM_BUG_ON(page_idx & (order_size - 1));
426	VM_BUG_ON(bad_range(zone, page));
427
428	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429	while (order < MAX_ORDER-1) {
430		unsigned long combined_idx;
431		struct page *buddy;
432
433		buddy = __page_find_buddy(page, page_idx, order);
434		if (!page_is_buddy(page, buddy, order))
435			break;		/* Move the buddy up one level. */
436
437		list_del(&buddy->lru);
438		zone->free_area[order].nr_free--;
439		rmv_page_order(buddy);
440		combined_idx = __find_combined_index(page_idx, order);
441		page = page + (combined_idx - page_idx);
442		page_idx = combined_idx;
443		order++;
444	}
445	set_page_order(page, order);
446	list_add(&page->lru,
447		&zone->free_area[order].free_list[migratetype]);
448	zone->free_area[order].nr_free++;
449}
450
451static inline int free_pages_check(struct page *page)
452{
453	if (unlikely(page_mapcount(page) |
454		(page->mapping != NULL)  |
455		(page_count(page) != 0)  |
456		(page->flags & (
457			1 << PG_lru	|
458			1 << PG_private |
459			1 << PG_locked	|
460			1 << PG_active	|
461			1 << PG_slab	|
462			1 << PG_swapcache |
463			1 << PG_writeback |
464			1 << PG_reserved |
465			1 << PG_buddy ))))
466		bad_page(page);
467	if (PageDirty(page))
468		__ClearPageDirty(page);
469	/*
470	 * For now, we report if PG_reserved was found set, but do not
471	 * clear it, and do not free the page.  But we shall soon need
472	 * to do more, for when the ZERO_PAGE count wraps negative.
473	 */
474	return PageReserved(page);
475}
476
477/*
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
481 *
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
484 *
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
487 */
488static void free_pages_bulk(struct zone *zone, int count,
489					struct list_head *list, int order)
490{
491	spin_lock(&zone->lock);
492	zone->all_unreclaimable = 0;
493	zone->pages_scanned = 0;
494	while (count--) {
495		struct page *page;
496
497		VM_BUG_ON(list_empty(list));
498		page = list_entry(list->prev, struct page, lru);
499		/* have to delete it as __free_one_page list manipulates */
500		list_del(&page->lru);
501		__free_one_page(page, zone, order);
502	}
503	spin_unlock(&zone->lock);
504}
505
506static void free_one_page(struct zone *zone, struct page *page, int order)
507{
508	spin_lock(&zone->lock);
509	zone->all_unreclaimable = 0;
510	zone->pages_scanned = 0;
511	__free_one_page(page, zone, order);
512	spin_unlock(&zone->lock);
513}
514
515static void __free_pages_ok(struct page *page, unsigned int order)
516{
517	unsigned long flags;
518	int i;
519	int reserved = 0;
520
521	for (i = 0 ; i < (1 << order) ; ++i)
522		reserved += free_pages_check(page + i);
523	if (reserved)
524		return;
525
526	if (!PageHighMem(page))
527		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528	arch_free_page(page, order);
529	kernel_map_pages(page, 1 << order, 0);
530
531	local_irq_save(flags);
532	__count_vm_events(PGFREE, 1 << order);
533	free_one_page(page_zone(page), page, order);
534	local_irq_restore(flags);
535}
536
537/*
538 * permit the bootmem allocator to evade page validation on high-order frees
539 */
540void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
541{
542	if (order == 0) {
543		__ClearPageReserved(page);
544		set_page_count(page, 0);
545		set_page_refcounted(page);
546		__free_page(page);
547	} else {
548		int loop;
549
550		prefetchw(page);
551		for (loop = 0; loop < BITS_PER_LONG; loop++) {
552			struct page *p = &page[loop];
553
554			if (loop + 1 < BITS_PER_LONG)
555				prefetchw(p + 1);
556			__ClearPageReserved(p);
557			set_page_count(p, 0);
558		}
559
560		set_page_refcounted(page);
561		__free_pages(page, order);
562	}
563}
564
565
566/*
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
577 *
578 * -- wli
579 */
580static inline void expand(struct zone *zone, struct page *page,
581	int low, int high, struct free_area *area,
582	int migratetype)
583{
584	unsigned long size = 1 << high;
585
586	while (high > low) {
587		area--;
588		high--;
589		size >>= 1;
590		VM_BUG_ON(bad_range(zone, &page[size]));
591		list_add(&page[size].lru, &area->free_list[migratetype]);
592		area->nr_free++;
593		set_page_order(&page[size], high);
594	}
595}
596
597/*
598 * This page is about to be returned from the page allocator
599 */
600static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
601{
602	if (unlikely(page_mapcount(page) |
603		(page->mapping != NULL)  |
604		(page_count(page) != 0)  |
605		(page->flags & (
606			1 << PG_lru	|
607			1 << PG_private	|
608			1 << PG_locked	|
609			1 << PG_active	|
610			1 << PG_dirty	|
611			1 << PG_slab    |
612			1 << PG_swapcache |
613			1 << PG_writeback |
614			1 << PG_reserved |
615			1 << PG_buddy ))))
616		bad_page(page);
617
618	/*
619	 * For now, we report if PG_reserved was found set, but do not
620	 * clear it, and do not allocate the page: as a safety net.
621	 */
622	if (PageReserved(page))
623		return 1;
624
625	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626			1 << PG_referenced | 1 << PG_arch_1 |
627			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628	set_page_private(page, 0);
629	set_page_refcounted(page);
630
631	arch_alloc_page(page, order);
632	kernel_map_pages(page, 1 << order, 1);
633
634	if (gfp_flags & __GFP_ZERO)
635		prep_zero_page(page, order, gfp_flags);
636
637	if (order && (gfp_flags & __GFP_COMP))
638		prep_compound_page(page, order);
639
640	return 0;
641}
642
643/*
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
646 */
647static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648						int migratetype)
649{
650	unsigned int current_order;
651	struct free_area * area;
652	struct page *page;
653
654	/* Find a page of the appropriate size in the preferred list */
655	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656		area = &(zone->free_area[current_order]);
657		if (list_empty(&area->free_list[migratetype]))
658			continue;
659
660		page = list_entry(area->free_list[migratetype].next,
661							struct page, lru);
662		list_del(&page->lru);
663		rmv_page_order(page);
664		area->nr_free--;
665		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666		expand(zone, page, order, current_order, area, migratetype);
667		return page;
668	}
669
670	return NULL;
671}
672
673
674/*
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
677 */
678static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
680	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
683};
684
685/*
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
689 */
690int move_freepages(struct zone *zone,
691			struct page *start_page, struct page *end_page,
692			int migratetype)
693{
694	struct page *page;
695	unsigned long order;
696	int pages_moved = 0;
697
698#ifndef CONFIG_HOLES_IN_ZONE
699	/*
700	 * page_zone is not safe to call in this context when
701	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702	 * anyway as we check zone boundaries in move_freepages_block().
703	 * Remove at a later date when no bug reports exist related to
704	 * grouping pages by mobility
705	 */
706	BUG_ON(page_zone(start_page) != page_zone(end_page));
707#endif
708
709	for (page = start_page; page <= end_page;) {
710		if (!pfn_valid_within(page_to_pfn(page))) {
711			page++;
712			continue;
713		}
714
715		if (!PageBuddy(page)) {
716			page++;
717			continue;
718		}
719
720		order = page_order(page);
721		list_del(&page->lru);
722		list_add(&page->lru,
723			&zone->free_area[order].free_list[migratetype]);
724		page += 1 << order;
725		pages_moved += 1 << order;
726	}
727
728	return pages_moved;
729}
730
731int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
732{
733	unsigned long start_pfn, end_pfn;
734	struct page *start_page, *end_page;
735
736	start_pfn = page_to_pfn(page);
737	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738	start_page = pfn_to_page(start_pfn);
739	end_page = start_page + pageblock_nr_pages - 1;
740	end_pfn = start_pfn + pageblock_nr_pages - 1;
741
742	/* Do not cross zone boundaries */
743	if (start_pfn < zone->zone_start_pfn)
744		start_page = page;
745	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746		return 0;
747
748	return move_freepages(zone, start_page, end_page, migratetype);
749}
750
751/* Return the page with the lowest PFN in the list */
752static struct page *min_page(struct list_head *list)
753{
754	unsigned long min_pfn = -1UL;
755	struct page *min_page = NULL, *page;;
756
757	list_for_each_entry(page, list, lru) {
758		unsigned long pfn = page_to_pfn(page);
759		if (pfn < min_pfn) {
760			min_pfn = pfn;
761			min_page = page;
762		}
763	}
764
765	return min_page;
766}
767
768/* Remove an element from the buddy allocator from the fallback list */
769static struct page *__rmqueue_fallback(struct zone *zone, int order,
770						int start_migratetype)
771{
772	struct free_area * area;
773	int current_order;
774	struct page *page;
775	int migratetype, i;
776
777	/* Find the largest possible block of pages in the other list */
778	for (current_order = MAX_ORDER-1; current_order >= order;
779						--current_order) {
780		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781			migratetype = fallbacks[start_migratetype][i];
782
783			/* MIGRATE_RESERVE handled later if necessary */
784			if (migratetype == MIGRATE_RESERVE)
785				continue;
786
787			area = &(zone->free_area[current_order]);
788			if (list_empty(&area->free_list[migratetype]))
789				continue;
790
791			/* Bias kernel allocations towards low pfns */
792			page = list_entry(area->free_list[migratetype].next,
793					struct page, lru);
794			if (unlikely(start_migratetype != MIGRATE_MOVABLE))
795				page = min_page(&area->free_list[migratetype]);
796			area->nr_free--;
797
798			/*
799			 * If breaking a large block of pages, move all free
800			 * pages to the preferred allocation list. If falling
801			 * back for a reclaimable kernel allocation, be more
802			 * agressive about taking ownership of free pages
803			 */
804			if (unlikely(current_order >= (pageblock_order >> 1)) ||
805					start_migratetype == MIGRATE_RECLAIMABLE) {
806				unsigned long pages;
807				pages = move_freepages_block(zone, page,
808								start_migratetype);
809
810				/* Claim the whole block if over half of it is free */
811				if (pages >= (1 << (pageblock_order-1)))
812					set_pageblock_migratetype(page,
813								start_migratetype);
814
815				migratetype = start_migratetype;
816			}
817
818			/* Remove the page from the freelists */
819			list_del(&page->lru);
820			rmv_page_order(page);
821			__mod_zone_page_state(zone, NR_FREE_PAGES,
822							-(1UL << order));
823
824			if (current_order == pageblock_order)
825				set_pageblock_migratetype(page,
826							start_migratetype);
827
828			expand(zone, page, order, current_order, area, migratetype);
829			return page;
830		}
831	}
832
833	/* Use MIGRATE_RESERVE rather than fail an allocation */
834	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835}
836
837/*
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
841static struct page *__rmqueue(struct zone *zone, unsigned int order,
842						int migratetype)
843{
844	struct page *page;
845
846	page = __rmqueue_smallest(zone, order, migratetype);
847
848	if (unlikely(!page))
849		page = __rmqueue_fallback(zone, order, migratetype);
850
851	return page;
852}
853
854/*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency.  Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859static int rmqueue_bulk(struct zone *zone, unsigned int order,
860			unsigned long count, struct list_head *list,
861			int migratetype)
862{
863	int i;
864
865	spin_lock(&zone->lock);
866	for (i = 0; i < count; ++i) {
867		struct page *page = __rmqueue(zone, order, migratetype);
868		if (unlikely(page == NULL))
869			break;
870		list_add(&page->lru, list);
871		set_page_private(page, migratetype);
872	}
873	spin_unlock(&zone->lock);
874	return i;
875}
876
877#ifdef CONFIG_NUMA
878/*
879 * Called from the vmstat counter updater to drain pagesets of this
880 * currently executing processor on remote nodes after they have
881 * expired.
882 *
883 * Note that this function must be called with the thread pinned to
884 * a single processor.
885 */
886void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
887{
888	unsigned long flags;
889	int to_drain;
890
891	local_irq_save(flags);
892	if (pcp->count >= pcp->batch)
893		to_drain = pcp->batch;
894	else
895		to_drain = pcp->count;
896	free_pages_bulk(zone, to_drain, &pcp->list, 0);
897	pcp->count -= to_drain;
898	local_irq_restore(flags);
899}
900#endif
901
902static void __drain_pages(unsigned int cpu)
903{
904	unsigned long flags;
905	struct zone *zone;
906	int i;
907
908	for_each_zone(zone) {
909		struct per_cpu_pageset *pset;
910
911		if (!populated_zone(zone))
912			continue;
913
914		pset = zone_pcp(zone, cpu);
915		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
916			struct per_cpu_pages *pcp;
917
918			pcp = &pset->pcp[i];
919			local_irq_save(flags);
920			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
921			pcp->count = 0;
922			local_irq_restore(flags);
923		}
924	}
925}
926
927#ifdef CONFIG_HIBERNATION
928
929void mark_free_pages(struct zone *zone)
930{
931	unsigned long pfn, max_zone_pfn;
932	unsigned long flags;
933	int order, t;
934	struct list_head *curr;
935
936	if (!zone->spanned_pages)
937		return;
938
939	spin_lock_irqsave(&zone->lock, flags);
940
941	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
942	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
943		if (pfn_valid(pfn)) {
944			struct page *page = pfn_to_page(pfn);
945
946			if (!swsusp_page_is_forbidden(page))
947				swsusp_unset_page_free(page);
948		}
949
950	for_each_migratetype_order(order, t) {
951		list_for_each(curr, &zone->free_area[order].free_list[t]) {
952			unsigned long i;
953
954			pfn = page_to_pfn(list_entry(curr, struct page, lru));
955			for (i = 0; i < (1UL << order); i++)
956				swsusp_set_page_free(pfn_to_page(pfn + i));
957		}
958	}
959	spin_unlock_irqrestore(&zone->lock, flags);
960}
961#endif /* CONFIG_PM */
962
963/*
964 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
965 */
966void drain_local_pages(void)
967{
968	unsigned long flags;
969
970	local_irq_save(flags);
971	__drain_pages(smp_processor_id());
972	local_irq_restore(flags);
973}
974
975void smp_drain_local_pages(void *arg)
976{
977	drain_local_pages();
978}
979
980/*
981 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
982 */
983void drain_all_local_pages(void)
984{
985	unsigned long flags;
986
987	local_irq_save(flags);
988	__drain_pages(smp_processor_id());
989	local_irq_restore(flags);
990
991	smp_call_function(smp_drain_local_pages, NULL, 0, 1);
992}
993
994/*
995 * Free a 0-order page
996 */
997static void fastcall free_hot_cold_page(struct page *page, int cold)
998{
999	struct zone *zone = page_zone(page);
1000	struct per_cpu_pages *pcp;
1001	unsigned long flags;
1002
1003	if (PageAnon(page))
1004		page->mapping = NULL;
1005	if (free_pages_check(page))
1006		return;
1007
1008	if (!PageHighMem(page))
1009		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1010	arch_free_page(page, 0);
1011	kernel_map_pages(page, 1, 0);
1012
1013	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1014	local_irq_save(flags);
1015	__count_vm_event(PGFREE);
1016	list_add(&page->lru, &pcp->list);
1017	set_page_private(page, get_pageblock_migratetype(page));
1018	pcp->count++;
1019	if (pcp->count >= pcp->high) {
1020		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1021		pcp->count -= pcp->batch;
1022	}
1023	local_irq_restore(flags);
1024	put_cpu();
1025}
1026
1027void fastcall free_hot_page(struct page *page)
1028{
1029	free_hot_cold_page(page, 0);
1030}
1031
1032void fastcall free_cold_page(struct page *page)
1033{
1034	free_hot_cold_page(page, 1);
1035}
1036
1037/*
1038 * split_page takes a non-compound higher-order page, and splits it into
1039 * n (1<<order) sub-pages: page[0..n]
1040 * Each sub-page must be freed individually.
1041 *
1042 * Note: this is probably too low level an operation for use in drivers.
1043 * Please consult with lkml before using this in your driver.
1044 */
1045void split_page(struct page *page, unsigned int order)
1046{
1047	int i;
1048
1049	VM_BUG_ON(PageCompound(page));
1050	VM_BUG_ON(!page_count(page));
1051	for (i = 1; i < (1 << order); i++)
1052		set_page_refcounted(page + i);
1053}
1054
1055/*
1056 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1057 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1058 * or two.
1059 */
1060static struct page *buffered_rmqueue(struct zonelist *zonelist,
1061			struct zone *zone, int order, gfp_t gfp_flags)
1062{
1063	unsigned long flags;
1064	struct page *page;
1065	int cold = !!(gfp_flags & __GFP_COLD);
1066	int cpu;
1067	int migratetype = allocflags_to_migratetype(gfp_flags);
1068
1069again:
1070	cpu  = get_cpu();
1071	if (likely(order == 0)) {
1072		struct per_cpu_pages *pcp;
1073
1074		pcp = &zone_pcp(zone, cpu)->pcp[cold];
1075		local_irq_save(flags);
1076		if (!pcp->count) {
1077			pcp->count = rmqueue_bulk(zone, 0,
1078					pcp->batch, &pcp->list, migratetype);
1079			if (unlikely(!pcp->count))
1080				goto failed;
1081		}
1082
1083		/* Find a page of the appropriate migrate type */
1084		list_for_each_entry(page, &pcp->list, lru)
1085			if (page_private(page) == migratetype)
1086				break;
1087
1088		/* Allocate more to the pcp list if necessary */
1089		if (unlikely(&page->lru == &pcp->list)) {
1090			pcp->count += rmqueue_bulk(zone, 0,
1091					pcp->batch, &pcp->list, migratetype);
1092			page = list_entry(pcp->list.next, struct page, lru);
1093		}
1094
1095		list_del(&page->lru);
1096		pcp->count--;
1097	} else {
1098		spin_lock_irqsave(&zone->lock, flags);
1099		page = __rmqueue(zone, order, migratetype);
1100		spin_unlock(&zone->lock);
1101		if (!page)
1102			goto failed;
1103	}
1104
1105	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1106	zone_statistics(zonelist, zone);
1107	local_irq_restore(flags);
1108	put_cpu();
1109
1110	VM_BUG_ON(bad_range(zone, page));
1111	if (prep_new_page(page, order, gfp_flags))
1112		goto again;
1113	return page;
1114
1115failed:
1116	local_irq_restore(flags);
1117	put_cpu();
1118	return NULL;
1119}
1120
1121#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1122#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1123#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1124#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1125#define ALLOC_HARDER		0x10 /* try to alloc harder */
1126#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1127#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1128
1129#ifdef CONFIG_FAIL_PAGE_ALLOC
1130
1131static struct fail_page_alloc_attr {
1132	struct fault_attr attr;
1133
1134	u32 ignore_gfp_highmem;
1135	u32 ignore_gfp_wait;
1136	u32 min_order;
1137
1138#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1139
1140	struct dentry *ignore_gfp_highmem_file;
1141	struct dentry *ignore_gfp_wait_file;
1142	struct dentry *min_order_file;
1143
1144#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1145
1146} fail_page_alloc = {
1147	.attr = FAULT_ATTR_INITIALIZER,
1148	.ignore_gfp_wait = 1,
1149	.ignore_gfp_highmem = 1,
1150	.min_order = 1,
1151};
1152
1153static int __init setup_fail_page_alloc(char *str)
1154{
1155	return setup_fault_attr(&fail_page_alloc.attr, str);
1156}
1157__setup("fail_page_alloc=", setup_fail_page_alloc);
1158
1159static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1160{
1161	if (order < fail_page_alloc.min_order)
1162		return 0;
1163	if (gfp_mask & __GFP_NOFAIL)
1164		return 0;
1165	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1166		return 0;
1167	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1168		return 0;
1169
1170	return should_fail(&fail_page_alloc.attr, 1 << order);
1171}
1172
1173#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1174
1175static int __init fail_page_alloc_debugfs(void)
1176{
1177	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1178	struct dentry *dir;
1179	int err;
1180
1181	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1182				       "fail_page_alloc");
1183	if (err)
1184		return err;
1185	dir = fail_page_alloc.attr.dentries.dir;
1186
1187	fail_page_alloc.ignore_gfp_wait_file =
1188		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1189				      &fail_page_alloc.ignore_gfp_wait);
1190
1191	fail_page_alloc.ignore_gfp_highmem_file =
1192		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1193				      &fail_page_alloc.ignore_gfp_highmem);
1194	fail_page_alloc.min_order_file =
1195		debugfs_create_u32("min-order", mode, dir,
1196				   &fail_page_alloc.min_order);
1197
1198	if (!fail_page_alloc.ignore_gfp_wait_file ||
1199            !fail_page_alloc.ignore_gfp_highmem_file ||
1200            !fail_page_alloc.min_order_file) {
1201		err = -ENOMEM;
1202		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1203		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1204		debugfs_remove(fail_page_alloc.min_order_file);
1205		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1206	}
1207
1208	return err;
1209}
1210
1211late_initcall(fail_page_alloc_debugfs);
1212
1213#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214
1215#else /* CONFIG_FAIL_PAGE_ALLOC */
1216
1217static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1218{
1219	return 0;
1220}
1221
1222#endif /* CONFIG_FAIL_PAGE_ALLOC */
1223
1224/*
1225 * Return 1 if free pages are above 'mark'. This takes into account the order
1226 * of the allocation.
1227 */
1228int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1229		      int classzone_idx, int alloc_flags)
1230{
1231	/* free_pages my go negative - that's OK */
1232	long min = mark;
1233	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1234	int o;
1235
1236	if (alloc_flags & ALLOC_HIGH)
1237		min -= min / 2;
1238	if (alloc_flags & ALLOC_HARDER)
1239		min -= min / 4;
1240
1241	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1242		return 0;
1243	for (o = 0; o < order; o++) {
1244		/* At the next order, this order's pages become unavailable */
1245		free_pages -= z->free_area[o].nr_free << o;
1246
1247		/* Require fewer higher order pages to be free */
1248		min >>= 1;
1249
1250		if (free_pages <= min)
1251			return 0;
1252	}
1253	return 1;
1254}
1255
1256#ifdef CONFIG_NUMA
1257/*
1258 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1259 * skip over zones that are not allowed by the cpuset, or that have
1260 * been recently (in last second) found to be nearly full.  See further
1261 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1262 * that have to skip over alot of full or unallowed zones.
1263 *
1264 * If the zonelist cache is present in the passed in zonelist, then
1265 * returns a pointer to the allowed node mask (either the current
1266 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1267 *
1268 * If the zonelist cache is not available for this zonelist, does
1269 * nothing and returns NULL.
1270 *
1271 * If the fullzones BITMAP in the zonelist cache is stale (more than
1272 * a second since last zap'd) then we zap it out (clear its bits.)
1273 *
1274 * We hold off even calling zlc_setup, until after we've checked the
1275 * first zone in the zonelist, on the theory that most allocations will
1276 * be satisfied from that first zone, so best to examine that zone as
1277 * quickly as we can.
1278 */
1279static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1280{
1281	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1282	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1283
1284	zlc = zonelist->zlcache_ptr;
1285	if (!zlc)
1286		return NULL;
1287
1288	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1289		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1290		zlc->last_full_zap = jiffies;
1291	}
1292
1293	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1294					&cpuset_current_mems_allowed :
1295					&node_states[N_HIGH_MEMORY];
1296	return allowednodes;
1297}
1298
1299/*
1300 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1301 * if it is worth looking at further for free memory:
1302 *  1) Check that the zone isn't thought to be full (doesn't have its
1303 *     bit set in the zonelist_cache fullzones BITMAP).
1304 *  2) Check that the zones node (obtained from the zonelist_cache
1305 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1306 * Return true (non-zero) if zone is worth looking at further, or
1307 * else return false (zero) if it is not.
1308 *
1309 * This check -ignores- the distinction between various watermarks,
1310 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1311 * found to be full for any variation of these watermarks, it will
1312 * be considered full for up to one second by all requests, unless
1313 * we are so low on memory on all allowed nodes that we are forced
1314 * into the second scan of the zonelist.
1315 *
1316 * In the second scan we ignore this zonelist cache and exactly
1317 * apply the watermarks to all zones, even it is slower to do so.
1318 * We are low on memory in the second scan, and should leave no stone
1319 * unturned looking for a free page.
1320 */
1321static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1322						nodemask_t *allowednodes)
1323{
1324	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1325	int i;				/* index of *z in zonelist zones */
1326	int n;				/* node that zone *z is on */
1327
1328	zlc = zonelist->zlcache_ptr;
1329	if (!zlc)
1330		return 1;
1331
1332	i = z - zonelist->zones;
1333	n = zlc->z_to_n[i];
1334
1335	/* This zone is worth trying if it is allowed but not full */
1336	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1337}
1338
1339/*
1340 * Given 'z' scanning a zonelist, set the corresponding bit in
1341 * zlc->fullzones, so that subsequent attempts to allocate a page
1342 * from that zone don't waste time re-examining it.
1343 */
1344static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1345{
1346	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1347	int i;				/* index of *z in zonelist zones */
1348
1349	zlc = zonelist->zlcache_ptr;
1350	if (!zlc)
1351		return;
1352
1353	i = z - zonelist->zones;
1354
1355	set_bit(i, zlc->fullzones);
1356}
1357
1358#else	/* CONFIG_NUMA */
1359
1360static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1361{
1362	return NULL;
1363}
1364
1365static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1366				nodemask_t *allowednodes)
1367{
1368	return 1;
1369}
1370
1371static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1372{
1373}
1374#endif	/* CONFIG_NUMA */
1375
1376/*
1377 * get_page_from_freelist goes through the zonelist trying to allocate
1378 * a page.
1379 */
1380static struct page *
1381get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1382		struct zonelist *zonelist, int alloc_flags)
1383{
1384	struct zone **z;
1385	struct page *page = NULL;
1386	int classzone_idx = zone_idx(zonelist->zones[0]);
1387	struct zone *zone;
1388	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1389	int zlc_active = 0;		/* set if using zonelist_cache */
1390	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1391	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1392
1393zonelist_scan:
1394	/*
1395	 * Scan zonelist, looking for a zone with enough free.
1396	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1397	 */
1398	z = zonelist->zones;
1399
1400	do {
1401		/*
1402		 * In NUMA, this could be a policy zonelist which contains
1403		 * zones that may not be allowed by the current gfp_mask.
1404		 * Check the zone is allowed by the current flags
1405		 */
1406		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1407			if (highest_zoneidx == -1)
1408				highest_zoneidx = gfp_zone(gfp_mask);
1409			if (zone_idx(*z) > highest_zoneidx)
1410				continue;
1411		}
1412
1413		if (NUMA_BUILD && zlc_active &&
1414			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1415				continue;
1416		zone = *z;
1417		if ((alloc_flags & ALLOC_CPUSET) &&
1418			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1419				goto try_next_zone;
1420
1421		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422			unsigned long mark;
1423			if (alloc_flags & ALLOC_WMARK_MIN)
1424				mark = zone->pages_min;
1425			else if (alloc_flags & ALLOC_WMARK_LOW)
1426				mark = zone->pages_low;
1427			else
1428				mark = zone->pages_high;
1429			if (!zone_watermark_ok(zone, order, mark,
1430				    classzone_idx, alloc_flags)) {
1431				if (!zone_reclaim_mode ||
1432				    !zone_reclaim(zone, gfp_mask, order))
1433					goto this_zone_full;
1434			}
1435		}
1436
1437		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1438		if (page)
1439			break;
1440this_zone_full:
1441		if (NUMA_BUILD)
1442			zlc_mark_zone_full(zonelist, z);
1443try_next_zone:
1444		if (NUMA_BUILD && !did_zlc_setup) {
1445			/* we do zlc_setup after the first zone is tried */
1446			allowednodes = zlc_setup(zonelist, alloc_flags);
1447			zlc_active = 1;
1448			did_zlc_setup = 1;
1449		}
1450	} while (*(++z) != NULL);
1451
1452	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453		/* Disable zlc cache for second zonelist scan */
1454		zlc_active = 0;
1455		goto zonelist_scan;
1456	}
1457	return page;
1458}
1459
1460/*
1461 * This is the 'heart' of the zoned buddy allocator.
1462 */
1463struct page * fastcall
1464__alloc_pages(gfp_t gfp_mask, unsigned int order,
1465		struct zonelist *zonelist)
1466{
1467	const gfp_t wait = gfp_mask & __GFP_WAIT;
1468	struct zone **z;
1469	struct page *page;
1470	struct reclaim_state reclaim_state;
1471	struct task_struct *p = current;
1472	int do_retry;
1473	int alloc_flags;
1474	int did_some_progress;
1475
1476	might_sleep_if(wait);
1477
1478	if (should_fail_alloc_page(gfp_mask, order))
1479		return NULL;
1480
1481restart:
1482	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1483
1484	if (unlikely(*z == NULL)) {
1485		/*
1486		 * Happens if we have an empty zonelist as a result of
1487		 * GFP_THISNODE being used on a memoryless node
1488		 */
1489		return NULL;
1490	}
1491
1492	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1493				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1494	if (page)
1495		goto got_pg;
1496
1497	/*
1498	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1499	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1500	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1501	 * using a larger set of nodes after it has established that the
1502	 * allowed per node queues are empty and that nodes are
1503	 * over allocated.
1504	 */
1505	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1506		goto nopage;
1507
1508	for (z = zonelist->zones; *z; z++)
1509		wakeup_kswapd(*z, order);
1510
1511	/*
1512	 * OK, we're below the kswapd watermark and have kicked background
1513	 * reclaim. Now things get more complex, so set up alloc_flags according
1514	 * to how we want to proceed.
1515	 *
1516	 * The caller may dip into page reserves a bit more if the caller
1517	 * cannot run direct reclaim, or if the caller has realtime scheduling
1518	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1519	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1520	 */
1521	alloc_flags = ALLOC_WMARK_MIN;
1522	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1523		alloc_flags |= ALLOC_HARDER;
1524	if (gfp_mask & __GFP_HIGH)
1525		alloc_flags |= ALLOC_HIGH;
1526	if (wait)
1527		alloc_flags |= ALLOC_CPUSET;
1528
1529	/*
1530	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1531	 * coming from realtime tasks go deeper into reserves.
1532	 *
1533	 * This is the last chance, in general, before the goto nopage.
1534	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1535	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1536	 */
1537	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1538	if (page)
1539		goto got_pg;
1540
1541	/* This allocation should allow future memory freeing. */
1542
1543rebalance:
1544	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1545			&& !in_interrupt()) {
1546		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1547nofail_alloc:
1548			/* go through the zonelist yet again, ignoring mins */
1549			page = get_page_from_freelist(gfp_mask, order,
1550				zonelist, ALLOC_NO_WATERMARKS);
1551			if (page)
1552				goto got_pg;
1553			if (gfp_mask & __GFP_NOFAIL) {
1554				congestion_wait(WRITE, HZ/50);
1555				goto nofail_alloc;
1556			}
1557		}
1558		goto nopage;
1559	}
1560
1561	/* Atomic allocations - we can't balance anything */
1562	if (!wait)
1563		goto nopage;
1564
1565	cond_resched();
1566
1567	/* We now go into synchronous reclaim */
1568	cpuset_memory_pressure_bump();
1569	p->flags |= PF_MEMALLOC;
1570	reclaim_state.reclaimed_slab = 0;
1571	p->reclaim_state = &reclaim_state;
1572
1573	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1574
1575	p->reclaim_state = NULL;
1576	p->flags &= ~PF_MEMALLOC;
1577
1578	cond_resched();
1579
1580	if (order != 0)
1581		drain_all_local_pages();
1582
1583	if (likely(did_some_progress)) {
1584		page = get_page_from_freelist(gfp_mask, order,
1585						zonelist, alloc_flags);
1586		if (page)
1587			goto got_pg;
1588	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1589		/*
1590		 * Go through the zonelist yet one more time, keep
1591		 * very high watermark here, this is only to catch
1592		 * a parallel oom killing, we must fail if we're still
1593		 * under heavy pressure.
1594		 */
1595		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1596				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1597		if (page)
1598			goto got_pg;
1599
1600		/* The OOM killer will not help higher order allocs so fail */
1601		if (order > PAGE_ALLOC_COSTLY_ORDER)
1602			goto nopage;
1603
1604		out_of_memory(zonelist, gfp_mask, order);
1605		goto restart;
1606	}
1607
1608	/*
1609	 * Don't let big-order allocations loop unless the caller explicitly
1610	 * requests that.  Wait for some write requests to complete then retry.
1611	 *
1612	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1613	 * <= 3, but that may not be true in other implementations.
1614	 */
1615	do_retry = 0;
1616	if (!(gfp_mask & __GFP_NORETRY)) {
1617		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1618						(gfp_mask & __GFP_REPEAT))
1619			do_retry = 1;
1620		if (gfp_mask & __GFP_NOFAIL)
1621			do_retry = 1;
1622	}
1623	if (do_retry) {
1624		congestion_wait(WRITE, HZ/50);
1625		goto rebalance;
1626	}
1627
1628nopage:
1629	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1630		printk(KERN_WARNING "%s: page allocation failure."
1631			" order:%d, mode:0x%x\n",
1632			p->comm, order, gfp_mask);
1633		dump_stack();
1634		show_mem();
1635	}
1636got_pg:
1637	return page;
1638}
1639
1640EXPORT_SYMBOL(__alloc_pages);
1641
1642/*
1643 * Common helper functions.
1644 */
1645fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1646{
1647	struct page * page;
1648	page = alloc_pages(gfp_mask, order);
1649	if (!page)
1650		return 0;
1651	return (unsigned long) page_address(page);
1652}
1653
1654EXPORT_SYMBOL(__get_free_pages);
1655
1656fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1657{
1658	struct page * page;
1659
1660	/*
1661	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1662	 * a highmem page
1663	 */
1664	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1665
1666	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1667	if (page)
1668		return (unsigned long) page_address(page);
1669	return 0;
1670}
1671
1672EXPORT_SYMBOL(get_zeroed_page);
1673
1674void __pagevec_free(struct pagevec *pvec)
1675{
1676	int i = pagevec_count(pvec);
1677
1678	while (--i >= 0)
1679		free_hot_cold_page(pvec->pages[i], pvec->cold);
1680}
1681
1682fastcall void __free_pages(struct page *page, unsigned int order)
1683{
1684	if (put_page_testzero(page)) {
1685		if (order == 0)
1686			free_hot_page(page);
1687		else
1688			__free_pages_ok(page, order);
1689	}
1690}
1691
1692EXPORT_SYMBOL(__free_pages);
1693
1694fastcall void free_pages(unsigned long addr, unsigned int order)
1695{
1696	if (addr != 0) {
1697		VM_BUG_ON(!virt_addr_valid((void *)addr));
1698		__free_pages(virt_to_page((void *)addr), order);
1699	}
1700}
1701
1702EXPORT_SYMBOL(free_pages);
1703
1704static unsigned int nr_free_zone_pages(int offset)
1705{
1706	/* Just pick one node, since fallback list is circular */
1707	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1708	unsigned int sum = 0;
1709
1710	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1711	struct zone **zonep = zonelist->zones;
1712	struct zone *zone;
1713
1714	for (zone = *zonep++; zone; zone = *zonep++) {
1715		unsigned long size = zone->present_pages;
1716		unsigned long high = zone->pages_high;
1717		if (size > high)
1718			sum += size - high;
1719	}
1720
1721	return sum;
1722}
1723
1724/*
1725 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1726 */
1727unsigned int nr_free_buffer_pages(void)
1728{
1729	return nr_free_zone_pages(gfp_zone(GFP_USER));
1730}
1731EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1732
1733/*
1734 * Amount of free RAM allocatable within all zones
1735 */
1736unsigned int nr_free_pagecache_pages(void)
1737{
1738	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1739}
1740
1741static inline void show_node(struct zone *zone)
1742{
1743	if (NUMA_BUILD)
1744		printk("Node %d ", zone_to_nid(zone));
1745}
1746
1747void si_meminfo(struct sysinfo *val)
1748{
1749	val->totalram = totalram_pages;
1750	val->sharedram = 0;
1751	val->freeram = global_page_state(NR_FREE_PAGES);
1752	val->bufferram = nr_blockdev_pages();
1753	val->totalhigh = totalhigh_pages;
1754	val->freehigh = nr_free_highpages();
1755	val->mem_unit = PAGE_SIZE;
1756}
1757
1758EXPORT_SYMBOL(si_meminfo);
1759
1760#ifdef CONFIG_NUMA
1761void si_meminfo_node(struct sysinfo *val, int nid)
1762{
1763	pg_data_t *pgdat = NODE_DATA(nid);
1764
1765	val->totalram = pgdat->node_present_pages;
1766	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1767#ifdef CONFIG_HIGHMEM
1768	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1769	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1770			NR_FREE_PAGES);
1771#else
1772	val->totalhigh = 0;
1773	val->freehigh = 0;
1774#endif
1775	val->mem_unit = PAGE_SIZE;
1776}
1777#endif
1778
1779#define K(x) ((x) << (PAGE_SHIFT-10))
1780
1781/*
1782 * Show free area list (used inside shift_scroll-lock stuff)
1783 * We also calculate the percentage fragmentation. We do this by counting the
1784 * memory on each free list with the exception of the first item on the list.
1785 */
1786void show_free_areas(void)
1787{
1788	int cpu;
1789	struct zone *zone;
1790
1791	for_each_zone(zone) {
1792		if (!populated_zone(zone))
1793			continue;
1794
1795		show_node(zone);
1796		printk("%s per-cpu:\n", zone->name);
1797
1798		for_each_online_cpu(cpu) {
1799			struct per_cpu_pageset *pageset;
1800
1801			pageset = zone_pcp(zone, cpu);
1802
1803			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1804			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1805			       cpu, pageset->pcp[0].high,
1806			       pageset->pcp[0].batch, pageset->pcp[0].count,
1807			       pageset->pcp[1].high, pageset->pcp[1].batch,
1808			       pageset->pcp[1].count);
1809		}
1810	}
1811
1812	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1813		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1814		global_page_state(NR_ACTIVE),
1815		global_page_state(NR_INACTIVE),
1816		global_page_state(NR_FILE_DIRTY),
1817		global_page_state(NR_WRITEBACK),
1818		global_page_state(NR_UNSTABLE_NFS),
1819		global_page_state(NR_FREE_PAGES),
1820		global_page_state(NR_SLAB_RECLAIMABLE) +
1821			global_page_state(NR_SLAB_UNRECLAIMABLE),
1822		global_page_state(NR_FILE_MAPPED),
1823		global_page_state(NR_PAGETABLE),
1824		global_page_state(NR_BOUNCE));
1825
1826	for_each_zone(zone) {
1827		int i;
1828
1829		if (!populated_zone(zone))
1830			continue;
1831
1832		show_node(zone);
1833		printk("%s"
1834			" free:%lukB"
1835			" min:%lukB"
1836			" low:%lukB"
1837			" high:%lukB"
1838			" active:%lukB"
1839			" inactive:%lukB"
1840			" present:%lukB"
1841			" pages_scanned:%lu"
1842			" all_unreclaimable? %s"
1843			"\n",
1844			zone->name,
1845			K(zone_page_state(zone, NR_FREE_PAGES)),
1846			K(zone->pages_min),
1847			K(zone->pages_low),
1848			K(zone->pages_high),
1849			K(zone_page_state(zone, NR_ACTIVE)),
1850			K(zone_page_state(zone, NR_INACTIVE)),
1851			K(zone->present_pages),
1852			zone->pages_scanned,
1853			(zone->all_unreclaimable ? "yes" : "no")
1854			);
1855		printk("lowmem_reserve[]:");
1856		for (i = 0; i < MAX_NR_ZONES; i++)
1857			printk(" %lu", zone->lowmem_reserve[i]);
1858		printk("\n");
1859	}
1860
1861	for_each_zone(zone) {
1862 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1863
1864		if (!populated_zone(zone))
1865			continue;
1866
1867		show_node(zone);
1868		printk("%s: ", zone->name);
1869
1870		spin_lock_irqsave(&zone->lock, flags);
1871		for (order = 0; order < MAX_ORDER; order++) {
1872			nr[order] = zone->free_area[order].nr_free;
1873			total += nr[order] << order;
1874		}
1875		spin_unlock_irqrestore(&zone->lock, flags);
1876		for (order = 0; order < MAX_ORDER; order++)
1877			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1878		printk("= %lukB\n", K(total));
1879	}
1880
1881	show_swap_cache_info();
1882}
1883
1884/*
1885 * Builds allocation fallback zone lists.
1886 *
1887 * Add all populated zones of a node to the zonelist.
1888 */
1889static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1890				int nr_zones, enum zone_type zone_type)
1891{
1892	struct zone *zone;
1893
1894	BUG_ON(zone_type >= MAX_NR_ZONES);
1895	zone_type++;
1896
1897	do {
1898		zone_type--;
1899		zone = pgdat->node_zones + zone_type;
1900		if (populated_zone(zone)) {
1901			zonelist->zones[nr_zones++] = zone;
1902			check_highest_zone(zone_type);
1903		}
1904
1905	} while (zone_type);
1906	return nr_zones;
1907}
1908
1909
1910/*
1911 *  zonelist_order:
1912 *  0 = automatic detection of better ordering.
1913 *  1 = order by ([node] distance, -zonetype)
1914 *  2 = order by (-zonetype, [node] distance)
1915 *
1916 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1917 *  the same zonelist. So only NUMA can configure this param.
1918 */
1919#define ZONELIST_ORDER_DEFAULT  0
1920#define ZONELIST_ORDER_NODE     1
1921#define ZONELIST_ORDER_ZONE     2
1922
1923/* zonelist order in the kernel.
1924 * set_zonelist_order() will set this to NODE or ZONE.
1925 */
1926static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1927static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1928
1929
1930#ifdef CONFIG_NUMA
1931/* The value user specified ....changed by config */
1932static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1933/* string for sysctl */
1934#define NUMA_ZONELIST_ORDER_LEN	16
1935char numa_zonelist_order[16] = "default";
1936
1937/*
1938 * interface for configure zonelist ordering.
1939 * command line option "numa_zonelist_order"
1940 *	= "[dD]efault	- default, automatic configuration.
1941 *	= "[nN]ode 	- order by node locality, then by zone within node
1942 *	= "[zZ]one      - order by zone, then by locality within zone
1943 */
1944
1945static int __parse_numa_zonelist_order(char *s)
1946{
1947	if (*s == 'd' || *s == 'D') {
1948		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1949	} else if (*s == 'n' || *s == 'N') {
1950		user_zonelist_order = ZONELIST_ORDER_NODE;
1951	} else if (*s == 'z' || *s == 'Z') {
1952		user_zonelist_order = ZONELIST_ORDER_ZONE;
1953	} else {
1954		printk(KERN_WARNING
1955			"Ignoring invalid numa_zonelist_order value:  "
1956			"%s\n", s);
1957		return -EINVAL;
1958	}
1959	return 0;
1960}
1961
1962static __init int setup_numa_zonelist_order(char *s)
1963{
1964	if (s)
1965		return __parse_numa_zonelist_order(s);
1966	return 0;
1967}
1968early_param("numa_zonelist_order", setup_numa_zonelist_order);
1969
1970/*
1971 * sysctl handler for numa_zonelist_order
1972 */
1973int numa_zonelist_order_handler(ctl_table *table, int write,
1974		struct file *file, void __user *buffer, size_t *length,
1975		loff_t *ppos)
1976{
1977	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1978	int ret;
1979
1980	if (write)
1981		strncpy(saved_string, (char*)table->data,
1982			NUMA_ZONELIST_ORDER_LEN);
1983	ret = proc_dostring(table, write, file, buffer, length, ppos);
1984	if (ret)
1985		return ret;
1986	if (write) {
1987		int oldval = user_zonelist_order;
1988		if (__parse_numa_zonelist_order((char*)table->data)) {
1989			/*
1990			 * bogus value.  restore saved string
1991			 */
1992			strncpy((char*)table->data, saved_string,
1993				NUMA_ZONELIST_ORDER_LEN);
1994			user_zonelist_order = oldval;
1995		} else if (oldval != user_zonelist_order)
1996			build_all_zonelists();
1997	}
1998	return 0;
1999}
2000
2001
2002#define MAX_NODE_LOAD (num_online_nodes())
2003static int node_load[MAX_NUMNODES];
2004
2005/**
2006 * find_next_best_node - find the next node that should appear in a given node's fallback list
2007 * @node: node whose fallback list we're appending
2008 * @used_node_mask: nodemask_t of already used nodes
2009 *
2010 * We use a number of factors to determine which is the next node that should
2011 * appear on a given node's fallback list.  The node should not have appeared
2012 * already in @node's fallback list, and it should be the next closest node
2013 * according to the distance array (which contains arbitrary distance values
2014 * from each node to each node in the system), and should also prefer nodes
2015 * with no CPUs, since presumably they'll have very little allocation pressure
2016 * on them otherwise.
2017 * It returns -1 if no node is found.
2018 */
2019static int find_next_best_node(int node, nodemask_t *used_node_mask)
2020{
2021	int n, val;
2022	int min_val = INT_MAX;
2023	int best_node = -1;
2024
2025	/* Use the local node if we haven't already */
2026	if (!node_isset(node, *used_node_mask)) {
2027		node_set(node, *used_node_mask);
2028		return node;
2029	}
2030
2031	for_each_node_state(n, N_HIGH_MEMORY) {
2032		cpumask_t tmp;
2033
2034		/* Don't want a node to appear more than once */
2035		if (node_isset(n, *used_node_mask))
2036			continue;
2037
2038		/* Use the distance array to find the distance */
2039		val = node_distance(node, n);
2040
2041		/* Penalize nodes under us ("prefer the next node") */
2042		val += (n < node);
2043
2044		/* Give preference to headless and unused nodes */
2045		tmp = node_to_cpumask(n);
2046		if (!cpus_empty(tmp))
2047			val += PENALTY_FOR_NODE_WITH_CPUS;
2048
2049		/* Slight preference for less loaded node */
2050		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2051		val += node_load[n];
2052
2053		if (val < min_val) {
2054			min_val = val;
2055			best_node = n;
2056		}
2057	}
2058
2059	if (best_node >= 0)
2060		node_set(best_node, *used_node_mask);
2061
2062	return best_node;
2063}
2064
2065
2066/*
2067 * Build zonelists ordered by node and zones within node.
2068 * This results in maximum locality--normal zone overflows into local
2069 * DMA zone, if any--but risks exhausting DMA zone.
2070 */
2071static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2072{
2073	enum zone_type i;
2074	int j;
2075	struct zonelist *zonelist;
2076
2077	for (i = 0; i < MAX_NR_ZONES; i++) {
2078		zonelist = pgdat->node_zonelists + i;
2079		for (j = 0; zonelist->zones[j] != NULL; j++)
2080			;
2081 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2082		zonelist->zones[j] = NULL;
2083	}
2084}
2085
2086/*
2087 * Build gfp_thisnode zonelists
2088 */
2089static void build_thisnode_zonelists(pg_data_t *pgdat)
2090{
2091	enum zone_type i;
2092	int j;
2093	struct zonelist *zonelist;
2094
2095	for (i = 0; i < MAX_NR_ZONES; i++) {
2096		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2097		j = build_zonelists_node(pgdat, zonelist, 0, i);
2098		zonelist->zones[j] = NULL;
2099	}
2100}
2101
2102/*
2103 * Build zonelists ordered by zone and nodes within zones.
2104 * This results in conserving DMA zone[s] until all Normal memory is
2105 * exhausted, but results in overflowing to remote node while memory
2106 * may still exist in local DMA zone.
2107 */
2108static int node_order[MAX_NUMNODES];
2109
2110static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2111{
2112	enum zone_type i;
2113	int pos, j, node;
2114	int zone_type;		/* needs to be signed */
2115	struct zone *z;
2116	struct zonelist *zonelist;
2117
2118	for (i = 0; i < MAX_NR_ZONES; i++) {
2119		zonelist = pgdat->node_zonelists + i;
2120		pos = 0;
2121		for (zone_type = i; zone_type >= 0; zone_type--) {
2122			for (j = 0; j < nr_nodes; j++) {
2123				node = node_order[j];
2124				z = &NODE_DATA(node)->node_zones[zone_type];
2125				if (populated_zone(z)) {
2126					zonelist->zones[pos++] = z;
2127					check_highest_zone(zone_type);
2128				}
2129			}
2130		}
2131		zonelist->zones[pos] = NULL;
2132	}
2133}
2134
2135static int default_zonelist_order(void)
2136{
2137	int nid, zone_type;
2138	unsigned long low_kmem_size,total_size;
2139	struct zone *z;
2140	int average_size;
2141	/*
2142         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2143	 * If they are really small and used heavily, the system can fall
2144	 * into OOM very easily.
2145	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2146	 */
2147	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2148	low_kmem_size = 0;
2149	total_size = 0;
2150	for_each_online_node(nid) {
2151		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2152			z = &NODE_DATA(nid)->node_zones[zone_type];
2153			if (populated_zone(z)) {
2154				if (zone_type < ZONE_NORMAL)
2155					low_kmem_size += z->present_pages;
2156				total_size += z->present_pages;
2157			}
2158		}
2159	}
2160	if (!low_kmem_size ||  /* there are no DMA area. */
2161	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2162		return ZONELIST_ORDER_NODE;
2163	/*
2164	 * look into each node's config.
2165  	 * If there is a node whose DMA/DMA32 memory is very big area on
2166 	 * local memory, NODE_ORDER may be suitable.
2167         */
2168	average_size = total_size /
2169				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2170	for_each_online_node(nid) {
2171		low_kmem_size = 0;
2172		total_size = 0;
2173		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2174			z = &NODE_DATA(nid)->node_zones[zone_type];
2175			if (populated_zone(z)) {
2176				if (zone_type < ZONE_NORMAL)
2177					low_kmem_size += z->present_pages;
2178				total_size += z->present_pages;
2179			}
2180		}
2181		if (low_kmem_size &&
2182		    total_size > average_size && /* ignore small node */
2183		    low_kmem_size > total_size * 70/100)
2184			return ZONELIST_ORDER_NODE;
2185	}
2186	return ZONELIST_ORDER_ZONE;
2187}
2188
2189static void set_zonelist_order(void)
2190{
2191	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2192		current_zonelist_order = default_zonelist_order();
2193	else
2194		current_zonelist_order = user_zonelist_order;
2195}
2196
2197static void build_zonelists(pg_data_t *pgdat)
2198{
2199	int j, node, load;
2200	enum zone_type i;
2201	nodemask_t used_mask;
2202	int local_node, prev_node;
2203	struct zonelist *zonelist;
2204	int order = current_zonelist_order;
2205
2206	/* initialize zonelists */
2207	for (i = 0; i < MAX_ZONELISTS; i++) {
2208		zonelist = pgdat->node_zonelists + i;
2209		zonelist->zones[0] = NULL;
2210	}
2211
2212	/* NUMA-aware ordering of nodes */
2213	local_node = pgdat->node_id;
2214	load = num_online_nodes();
2215	prev_node = local_node;
2216	nodes_clear(used_mask);
2217
2218	memset(node_load, 0, sizeof(node_load));
2219	memset(node_order, 0, sizeof(node_order));
2220	j = 0;
2221
2222	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2223		int distance = node_distance(local_node, node);
2224
2225		/*
2226		 * If another node is sufficiently far away then it is better
2227		 * to reclaim pages in a zone before going off node.
2228		 */
2229		if (distance > RECLAIM_DISTANCE)
2230			zone_reclaim_mode = 1;
2231
2232		/*
2233		 * We don't want to pressure a particular node.
2234		 * So adding penalty to the first node in same
2235		 * distance group to make it round-robin.
2236		 */
2237		if (distance != node_distance(local_node, prev_node))
2238			node_load[node] = load;
2239
2240		prev_node = node;
2241		load--;
2242		if (order == ZONELIST_ORDER_NODE)
2243			build_zonelists_in_node_order(pgdat, node);
2244		else
2245			node_order[j++] = node;	/* remember order */
2246	}
2247
2248	if (order == ZONELIST_ORDER_ZONE) {
2249		/* calculate node order -- i.e., DMA last! */
2250		build_zonelists_in_zone_order(pgdat, j);
2251	}
2252
2253	build_thisnode_zonelists(pgdat);
2254}
2255
2256/* Construct the zonelist performance cache - see further mmzone.h */
2257static void build_zonelist_cache(pg_data_t *pgdat)
2258{
2259	int i;
2260
2261	for (i = 0; i < MAX_NR_ZONES; i++) {
2262		struct zonelist *zonelist;
2263		struct zonelist_cache *zlc;
2264		struct zone **z;
2265
2266		zonelist = pgdat->node_zonelists + i;
2267		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2268		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2269		for (z = zonelist->zones; *z; z++)
2270			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2271	}
2272}
2273
2274
2275#else	/* CONFIG_NUMA */
2276
2277static void set_zonelist_order(void)
2278{
2279	current_zonelist_order = ZONELIST_ORDER_ZONE;
2280}
2281
2282static void build_zonelists(pg_data_t *pgdat)
2283{
2284	int node, local_node;
2285	enum zone_type i,j;
2286
2287	local_node = pgdat->node_id;
2288	for (i = 0; i < MAX_NR_ZONES; i++) {
2289		struct zonelist *zonelist;
2290
2291		zonelist = pgdat->node_zonelists + i;
2292
2293 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2294 		/*
2295 		 * Now we build the zonelist so that it contains the zones
2296 		 * of all the other nodes.
2297 		 * We don't want to pressure a particular node, so when
2298 		 * building the zones for node N, we make sure that the
2299 		 * zones coming right after the local ones are those from
2300 		 * node N+1 (modulo N)
2301 		 */
2302		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2303			if (!node_online(node))
2304				continue;
2305			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2306		}
2307		for (node = 0; node < local_node; node++) {
2308			if (!node_online(node))
2309				continue;
2310			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2311		}
2312
2313		zonelist->zones[j] = NULL;
2314	}
2315}
2316
2317/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2318static void build_zonelist_cache(pg_data_t *pgdat)
2319{
2320	int i;
2321
2322	for (i = 0; i < MAX_NR_ZONES; i++)
2323		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2324}
2325
2326#endif	/* CONFIG_NUMA */
2327
2328/* return values int ....just for stop_machine_run() */
2329static int __build_all_zonelists(void *dummy)
2330{
2331	int nid;
2332
2333	for_each_online_node(nid) {
2334		pg_data_t *pgdat = NODE_DATA(nid);
2335
2336		build_zonelists(pgdat);
2337		build_zonelist_cache(pgdat);
2338	}
2339	return 0;
2340}
2341
2342void build_all_zonelists(void)
2343{
2344	set_zonelist_order();
2345
2346	if (system_state == SYSTEM_BOOTING) {
2347		__build_all_zonelists(NULL);
2348		cpuset_init_current_mems_allowed();
2349	} else {
2350		/* we have to stop all cpus to guaranntee there is no user
2351		   of zonelist */
2352		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2353		/* cpuset refresh routine should be here */
2354	}
2355	vm_total_pages = nr_free_pagecache_pages();
2356	/*
2357	 * Disable grouping by mobility if the number of pages in the
2358	 * system is too low to allow the mechanism to work. It would be
2359	 * more accurate, but expensive to check per-zone. This check is
2360	 * made on memory-hotadd so a system can start with mobility
2361	 * disabled and enable it later
2362	 */
2363	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2364		page_group_by_mobility_disabled = 1;
2365	else
2366		page_group_by_mobility_disabled = 0;
2367
2368	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2369		"Total pages: %ld\n",
2370			num_online_nodes(),
2371			zonelist_order_name[current_zonelist_order],
2372			page_group_by_mobility_disabled ? "off" : "on",
2373			vm_total_pages);
2374#ifdef CONFIG_NUMA
2375	printk("Policy zone: %s\n", zone_names[policy_zone]);
2376#endif
2377}
2378
2379/*
2380 * Helper functions to size the waitqueue hash table.
2381 * Essentially these want to choose hash table sizes sufficiently
2382 * large so that collisions trying to wait on pages are rare.
2383 * But in fact, the number of active page waitqueues on typical
2384 * systems is ridiculously low, less than 200. So this is even
2385 * conservative, even though it seems large.
2386 *
2387 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2388 * waitqueues, i.e. the size of the waitq table given the number of pages.
2389 */
2390#define PAGES_PER_WAITQUEUE	256
2391
2392#ifndef CONFIG_MEMORY_HOTPLUG
2393static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2394{
2395	unsigned long size = 1;
2396
2397	pages /= PAGES_PER_WAITQUEUE;
2398
2399	while (size < pages)
2400		size <<= 1;
2401
2402	/*
2403	 * Once we have dozens or even hundreds of threads sleeping
2404	 * on IO we've got bigger problems than wait queue collision.
2405	 * Limit the size of the wait table to a reasonable size.
2406	 */
2407	size = min(size, 4096UL);
2408
2409	return max(size, 4UL);
2410}
2411#else
2412/*
2413 * A zone's size might be changed by hot-add, so it is not possible to determine
2414 * a suitable size for its wait_table.  So we use the maximum size now.
2415 *
2416 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2417 *
2418 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2419 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2420 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2421 *
2422 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2423 * or more by the traditional way. (See above).  It equals:
2424 *
2425 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2426 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2427 *    powerpc (64K page size)             : =  (32G +16M)byte.
2428 */
2429static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2430{
2431	return 4096UL;
2432}
2433#endif
2434
2435/*
2436 * This is an integer logarithm so that shifts can be used later
2437 * to extract the more random high bits from the multiplicative
2438 * hash function before the remainder is taken.
2439 */
2440static inline unsigned long wait_table_bits(unsigned long size)
2441{
2442	return ffz(~size);
2443}
2444
2445#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2446
2447/*
2448 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2449 * of blocks reserved is based on zone->pages_min. The memory within the
2450 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2451 * higher will lead to a bigger reserve which will get freed as contiguous
2452 * blocks as reclaim kicks in
2453 */
2454static void setup_zone_migrate_reserve(struct zone *zone)
2455{
2456	unsigned long start_pfn, pfn, end_pfn;
2457	struct page *page;
2458	unsigned long reserve, block_migratetype;
2459
2460	/* Get the start pfn, end pfn and the number of blocks to reserve */
2461	start_pfn = zone->zone_start_pfn;
2462	end_pfn = start_pfn + zone->spanned_pages;
2463	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2464							pageblock_order;
2465
2466	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2467		if (!pfn_valid(pfn))
2468			continue;
2469		page = pfn_to_page(pfn);
2470
2471		/* Blocks with reserved pages will never free, skip them. */
2472		if (PageReserved(page))
2473			continue;
2474
2475		block_migratetype = get_pageblock_migratetype(page);
2476
2477		/* If this block is reserved, account for it */
2478		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2479			reserve--;
2480			continue;
2481		}
2482
2483		/* Suitable for reserving if this block is movable */
2484		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2485			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2486			move_freepages_block(zone, page, MIGRATE_RESERVE);
2487			reserve--;
2488			continue;
2489		}
2490
2491		/*
2492		 * If the reserve is met and this is a previous reserved block,
2493		 * take it back
2494		 */
2495		if (block_migratetype == MIGRATE_RESERVE) {
2496			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2497			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2498		}
2499	}
2500}
2501
2502/*
2503 * Initially all pages are reserved - free ones are freed
2504 * up by free_all_bootmem() once the early boot process is
2505 * done. Non-atomic initialization, single-pass.
2506 */
2507void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2508		unsigned long start_pfn, enum memmap_context context)
2509{
2510	struct page *page;
2511	unsigned long end_pfn = start_pfn + size;
2512	unsigned long pfn;
2513
2514	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2515		/*
2516		 * There can be holes in boot-time mem_map[]s
2517		 * handed to this function.  They do not
2518		 * exist on hotplugged memory.
2519		 */
2520		if (context == MEMMAP_EARLY) {
2521			if (!early_pfn_valid(pfn))
2522				continue;
2523			if (!early_pfn_in_nid(pfn, nid))
2524				continue;
2525		}
2526		page = pfn_to_page(pfn);
2527		set_page_links(page, zone, nid, pfn);
2528		init_page_count(page);
2529		reset_page_mapcount(page);
2530		SetPageReserved(page);
2531
2532		/*
2533		 * Mark the block movable so that blocks are reserved for
2534		 * movable at startup. This will force kernel allocations
2535		 * to reserve their blocks rather than leaking throughout
2536		 * the address space during boot when many long-lived
2537		 * kernel allocations are made. Later some blocks near
2538		 * the start are marked MIGRATE_RESERVE by
2539		 * setup_zone_migrate_reserve()
2540		 */
2541		if ((pfn & (pageblock_nr_pages-1)))
2542			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2543
2544		INIT_LIST_HEAD(&page->lru);
2545#ifdef WANT_PAGE_VIRTUAL
2546		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2547		if (!is_highmem_idx(zone))
2548			set_page_address(page, __va(pfn << PAGE_SHIFT));
2549#endif
2550	}
2551}
2552
2553static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2554				struct zone *zone, unsigned long size)
2555{
2556	int order, t;
2557	for_each_migratetype_order(order, t) {
2558		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2559		zone->free_area[order].nr_free = 0;
2560	}
2561}
2562
2563#ifndef __HAVE_ARCH_MEMMAP_INIT
2564#define memmap_init(size, nid, zone, start_pfn) \
2565	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2566#endif
2567
2568static int __devinit zone_batchsize(struct zone *zone)
2569{
2570	int batch;
2571
2572	/*
2573	 * The per-cpu-pages pools are set to around 1000th of the
2574	 * size of the zone.  But no more than 1/2 of a meg.
2575	 *
2576	 * OK, so we don't know how big the cache is.  So guess.
2577	 */
2578	batch = zone->present_pages / 1024;
2579	if (batch * PAGE_SIZE > 512 * 1024)
2580		batch = (512 * 1024) / PAGE_SIZE;
2581	batch /= 4;		/* We effectively *= 4 below */
2582	if (batch < 1)
2583		batch = 1;
2584
2585	/*
2586	 * Clamp the batch to a 2^n - 1 value. Having a power
2587	 * of 2 value was found to be more likely to have
2588	 * suboptimal cache aliasing properties in some cases.
2589	 *
2590	 * For example if 2 tasks are alternately allocating
2591	 * batches of pages, one task can end up with a lot
2592	 * of pages of one half of the possible page colors
2593	 * and the other with pages of the other colors.
2594	 */
2595	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2596
2597	return batch;
2598}
2599
2600inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2601{
2602	struct per_cpu_pages *pcp;
2603
2604	memset(p, 0, sizeof(*p));
2605
2606	pcp = &p->pcp[0];		/* hot */
2607	pcp->count = 0;
2608	pcp->high = 6 * batch;
2609	pcp->batch = max(1UL, 1 * batch);
2610	INIT_LIST_HEAD(&pcp->list);
2611
2612	pcp = &p->pcp[1];		/* cold*/
2613	pcp->count = 0;
2614	pcp->high = 2 * batch;
2615	pcp->batch = max(1UL, batch/2);
2616	INIT_LIST_HEAD(&pcp->list);
2617}
2618
2619/*
2620 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2621 * to the value high for the pageset p.
2622 */
2623
2624static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2625				unsigned long high)
2626{
2627	struct per_cpu_pages *pcp;
2628
2629	pcp = &p->pcp[0]; /* hot list */
2630	pcp->high = high;
2631	pcp->batch = max(1UL, high/4);
2632	if ((high/4) > (PAGE_SHIFT * 8))
2633		pcp->batch = PAGE_SHIFT * 8;
2634}
2635
2636
2637#ifdef CONFIG_NUMA
2638/*
2639 * Boot pageset table. One per cpu which is going to be used for all
2640 * zones and all nodes. The parameters will be set in such a way
2641 * that an item put on a list will immediately be handed over to
2642 * the buddy list. This is safe since pageset manipulation is done
2643 * with interrupts disabled.
2644 *
2645 * Some NUMA counter updates may also be caught by the boot pagesets.
2646 *
2647 * The boot_pagesets must be kept even after bootup is complete for
2648 * unused processors and/or zones. They do play a role for bootstrapping
2649 * hotplugged processors.
2650 *
2651 * zoneinfo_show() and maybe other functions do
2652 * not check if the processor is online before following the pageset pointer.
2653 * Other parts of the kernel may not check if the zone is available.
2654 */
2655static struct per_cpu_pageset boot_pageset[NR_CPUS];
2656
2657/*
2658 * Dynamically allocate memory for the
2659 * per cpu pageset array in struct zone.
2660 */
2661static int __cpuinit process_zones(int cpu)
2662{
2663	struct zone *zone, *dzone;
2664	int node = cpu_to_node(cpu);
2665
2666	node_set_state(node, N_CPU);	/* this node has a cpu */
2667
2668	for_each_zone(zone) {
2669
2670		if (!populated_zone(zone))
2671			continue;
2672
2673		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2674					 GFP_KERNEL, node);
2675		if (!zone_pcp(zone, cpu))
2676			goto bad;
2677
2678		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2679
2680		if (percpu_pagelist_fraction)
2681			setup_pagelist_highmark(zone_pcp(zone, cpu),
2682			 	(zone->present_pages / percpu_pagelist_fraction));
2683	}
2684
2685	return 0;
2686bad:
2687	for_each_zone(dzone) {
2688		if (!populated_zone(dzone))
2689			continue;
2690		if (dzone == zone)
2691			break;
2692		kfree(zone_pcp(dzone, cpu));
2693		zone_pcp(dzone, cpu) = NULL;
2694	}
2695	return -ENOMEM;
2696}
2697
2698static inline void free_zone_pagesets(int cpu)
2699{
2700	struct zone *zone;
2701
2702	for_each_zone(zone) {
2703		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2704
2705		/* Free per_cpu_pageset if it is slab allocated */
2706		if (pset != &boot_pageset[cpu])
2707			kfree(pset);
2708		zone_pcp(zone, cpu) = NULL;
2709	}
2710}
2711
2712static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2713		unsigned long action,
2714		void *hcpu)
2715{
2716	int cpu = (long)hcpu;
2717	int ret = NOTIFY_OK;
2718
2719	switch (action) {
2720	case CPU_UP_PREPARE:
2721	case CPU_UP_PREPARE_FROZEN:
2722		if (process_zones(cpu))
2723			ret = NOTIFY_BAD;
2724		break;
2725	case CPU_UP_CANCELED:
2726	case CPU_UP_CANCELED_FROZEN:
2727	case CPU_DEAD:
2728	case CPU_DEAD_FROZEN:
2729		free_zone_pagesets(cpu);
2730		break;
2731	default:
2732		break;
2733	}
2734	return ret;
2735}
2736
2737static struct notifier_block __cpuinitdata pageset_notifier =
2738	{ &pageset_cpuup_callback, NULL, 0 };
2739
2740void __init setup_per_cpu_pageset(void)
2741{
2742	int err;
2743
2744	/* Initialize per_cpu_pageset for cpu 0.
2745	 * A cpuup callback will do this for every cpu
2746	 * as it comes online
2747	 */
2748	err = process_zones(smp_processor_id());
2749	BUG_ON(err);
2750	register_cpu_notifier(&pageset_notifier);
2751}
2752
2753#endif
2754
2755static noinline __init_refok
2756int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2757{
2758	int i;
2759	struct pglist_data *pgdat = zone->zone_pgdat;
2760	size_t alloc_size;
2761
2762	/*
2763	 * The per-page waitqueue mechanism uses hashed waitqueues
2764	 * per zone.
2765	 */
2766	zone->wait_table_hash_nr_entries =
2767		 wait_table_hash_nr_entries(zone_size_pages);
2768	zone->wait_table_bits =
2769		wait_table_bits(zone->wait_table_hash_nr_entries);
2770	alloc_size = zone->wait_table_hash_nr_entries
2771					* sizeof(wait_queue_head_t);
2772
2773 	if (system_state == SYSTEM_BOOTING) {
2774		zone->wait_table = (wait_queue_head_t *)
2775			alloc_bootmem_node(pgdat, alloc_size);
2776	} else {
2777		/*
2778		 * This case means that a zone whose size was 0 gets new memory
2779		 * via memory hot-add.
2780		 * But it may be the case that a new node was hot-added.  In
2781		 * this case vmalloc() will not be able to use this new node's
2782		 * memory - this wait_table must be initialized to use this new
2783		 * node itself as well.
2784		 * To use this new node's memory, further consideration will be
2785		 * necessary.
2786		 */
2787		zone->wait_table = vmalloc(alloc_size);
2788	}
2789	if (!zone->wait_table)
2790		return -ENOMEM;
2791
2792	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2793		init_waitqueue_head(zone->wait_table + i);
2794
2795	return 0;
2796}
2797
2798static __meminit void zone_pcp_init(struct zone *zone)
2799{
2800	int cpu;
2801	unsigned long batch = zone_batchsize(zone);
2802
2803	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2804#ifdef CONFIG_NUMA
2805		/* Early boot. Slab allocator not functional yet */
2806		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2807		setup_pageset(&boot_pageset[cpu],0);
2808#else
2809		setup_pageset(zone_pcp(zone,cpu), batch);
2810#endif
2811	}
2812	if (zone->present_pages)
2813		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2814			zone->name, zone->present_pages, batch);
2815}
2816
2817__meminit int init_currently_empty_zone(struct zone *zone,
2818					unsigned long zone_start_pfn,
2819					unsigned long size,
2820					enum memmap_context context)
2821{
2822	struct pglist_data *pgdat = zone->zone_pgdat;
2823	int ret;
2824	ret = zone_wait_table_init(zone, size);
2825	if (ret)
2826		return ret;
2827	pgdat->nr_zones = zone_idx(zone) + 1;
2828
2829	zone->zone_start_pfn = zone_start_pfn;
2830
2831	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2832
2833	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2834
2835	return 0;
2836}
2837
2838#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2839/*
2840 * Basic iterator support. Return the first range of PFNs for a node
2841 * Note: nid == MAX_NUMNODES returns first region regardless of node
2842 */
2843static int __meminit first_active_region_index_in_nid(int nid)
2844{
2845	int i;
2846
2847	for (i = 0; i < nr_nodemap_entries; i++)
2848		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2849			return i;
2850
2851	return -1;
2852}
2853
2854/*
2855 * Basic iterator support. Return the next active range of PFNs for a node
2856 * Note: nid == MAX_NUMNODES returns next region regardles of node
2857 */
2858static int __meminit next_active_region_index_in_nid(int index, int nid)
2859{
2860	for (index = index + 1; index < nr_nodemap_entries; index++)
2861		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2862			return index;
2863
2864	return -1;
2865}
2866
2867#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2868/*
2869 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2870 * Architectures may implement their own version but if add_active_range()
2871 * was used and there are no special requirements, this is a convenient
2872 * alternative
2873 */
2874int __meminit early_pfn_to_nid(unsigned long pfn)
2875{
2876	int i;
2877
2878	for (i = 0; i < nr_nodemap_entries; i++) {
2879		unsigned long start_pfn = early_node_map[i].start_pfn;
2880		unsigned long end_pfn = early_node_map[i].end_pfn;
2881
2882		if (start_pfn <= pfn && pfn < end_pfn)
2883			return early_node_map[i].nid;
2884	}
2885
2886	return 0;
2887}
2888#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2889
2890/* Basic iterator support to walk early_node_map[] */
2891#define for_each_active_range_index_in_nid(i, nid) \
2892	for (i = first_active_region_index_in_nid(nid); i != -1; \
2893				i = next_active_region_index_in_nid(i, nid))
2894
2895/**
2896 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2898 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2899 *
2900 * If an architecture guarantees that all ranges registered with
2901 * add_active_ranges() contain no holes and may be freed, this
2902 * this function may be used instead of calling free_bootmem() manually.
2903 */
2904void __init free_bootmem_with_active_regions(int nid,
2905						unsigned long max_low_pfn)
2906{
2907	int i;
2908
2909	for_each_active_range_index_in_nid(i, nid) {
2910		unsigned long size_pages = 0;
2911		unsigned long end_pfn = early_node_map[i].end_pfn;
2912
2913		if (early_node_map[i].start_pfn >= max_low_pfn)
2914			continue;
2915
2916		if (end_pfn > max_low_pfn)
2917			end_pfn = max_low_pfn;
2918
2919		size_pages = end_pfn - early_node_map[i].start_pfn;
2920		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2921				PFN_PHYS(early_node_map[i].start_pfn),
2922				size_pages << PAGE_SHIFT);
2923	}
2924}
2925
2926/**
2927 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2928 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2929 *
2930 * If an architecture guarantees that all ranges registered with
2931 * add_active_ranges() contain no holes and may be freed, this
2932 * function may be used instead of calling memory_present() manually.
2933 */
2934void __init sparse_memory_present_with_active_regions(int nid)
2935{
2936	int i;
2937
2938	for_each_active_range_index_in_nid(i, nid)
2939		memory_present(early_node_map[i].nid,
2940				early_node_map[i].start_pfn,
2941				early_node_map[i].end_pfn);
2942}
2943
2944/**
2945 * push_node_boundaries - Push node boundaries to at least the requested boundary
2946 * @nid: The nid of the node to push the boundary for
2947 * @start_pfn: The start pfn of the node
2948 * @end_pfn: The end pfn of the node
2949 *
2950 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2951 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2952 * be hotplugged even though no physical memory exists. This function allows
2953 * an arch to push out the node boundaries so mem_map is allocated that can
2954 * be used later.
2955 */
2956#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2957void __init push_node_boundaries(unsigned int nid,
2958		unsigned long start_pfn, unsigned long end_pfn)
2959{
2960	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2961			nid, start_pfn, end_pfn);
2962
2963	/* Initialise the boundary for this node if necessary */
2964	if (node_boundary_end_pfn[nid] == 0)
2965		node_boundary_start_pfn[nid] = -1UL;
2966
2967	/* Update the boundaries */
2968	if (node_boundary_start_pfn[nid] > start_pfn)
2969		node_boundary_start_pfn[nid] = start_pfn;
2970	if (node_boundary_end_pfn[nid] < end_pfn)
2971		node_boundary_end_pfn[nid] = end_pfn;
2972}
2973
2974/* If necessary, push the node boundary out for reserve hotadd */
2975static void __meminit account_node_boundary(unsigned int nid,
2976		unsigned long *start_pfn, unsigned long *end_pfn)
2977{
2978	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2979			nid, *start_pfn, *end_pfn);
2980
2981	/* Return if boundary information has not been provided */
2982	if (node_boundary_end_pfn[nid] == 0)
2983		return;
2984
2985	/* Check the boundaries and update if necessary */
2986	if (node_boundary_start_pfn[nid] < *start_pfn)
2987		*start_pfn = node_boundary_start_pfn[nid];
2988	if (node_boundary_end_pfn[nid] > *end_pfn)
2989		*end_pfn = node_boundary_end_pfn[nid];
2990}
2991#else
2992void __init push_node_boundaries(unsigned int nid,
2993		unsigned long start_pfn, unsigned long end_pfn) {}
2994
2995static void __meminit account_node_boundary(unsigned int nid,
2996		unsigned long *start_pfn, unsigned long *end_pfn) {}
2997#endif
2998
2999
3000/**
3001 * get_pfn_range_for_nid - Return the start and end page frames for a node
3002 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3003 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3004 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3005 *
3006 * It returns the start and end page frame of a node based on information
3007 * provided by an arch calling add_active_range(). If called for a node
3008 * with no available memory, a warning is printed and the start and end
3009 * PFNs will be 0.
3010 */
3011void __meminit get_pfn_range_for_nid(unsigned int nid,
3012			unsigned long *start_pfn, unsigned long *end_pfn)
3013{
3014	int i;
3015	*start_pfn = -1UL;
3016	*end_pfn = 0;
3017
3018	for_each_active_range_index_in_nid(i, nid) {
3019		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3020		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3021	}
3022
3023	if (*start_pfn == -1UL)
3024		*start_pfn = 0;
3025
3026	/* Push the node boundaries out if requested */
3027	account_node_boundary(nid, start_pfn, end_pfn);
3028}
3029
3030/*
3031 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3032 * assumption is made that zones within a node are ordered in monotonic
3033 * increasing memory addresses so that the "highest" populated zone is used
3034 */
3035void __init find_usable_zone_for_movable(void)
3036{
3037	int zone_index;
3038	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3039		if (zone_index == ZONE_MOVABLE)
3040			continue;
3041
3042		if (arch_zone_highest_possible_pfn[zone_index] >
3043				arch_zone_lowest_possible_pfn[zone_index])
3044			break;
3045	}
3046
3047	VM_BUG_ON(zone_index == -1);
3048	movable_zone = zone_index;
3049}
3050
3051/*
3052 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3053 * because it is sized independant of architecture. Unlike the other zones,
3054 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3055 * in each node depending on the size of each node and how evenly kernelcore
3056 * is distributed. This helper function adjusts the zone ranges
3057 * provided by the architecture for a given node by using the end of the
3058 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3059 * zones within a node are in order of monotonic increases memory addresses
3060 */
3061void __meminit adjust_zone_range_for_zone_movable(int nid,
3062					unsigned long zone_type,
3063					unsigned long node_start_pfn,
3064					unsigned long node_end_pfn,
3065					unsigned long *zone_start_pfn,
3066					unsigned long *zone_end_pfn)
3067{
3068	/* Only adjust if ZONE_MOVABLE is on this node */
3069	if (zone_movable_pfn[nid]) {
3070		/* Size ZONE_MOVABLE */
3071		if (zone_type == ZONE_MOVABLE) {
3072			*zone_start_pfn = zone_movable_pfn[nid];
3073			*zone_end_pfn = min(node_end_pfn,
3074				arch_zone_highest_possible_pfn[movable_zone]);
3075
3076		/* Adjust for ZONE_MOVABLE starting within this range */
3077		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3078				*zone_end_pfn > zone_movable_pfn[nid]) {
3079			*zone_end_pfn = zone_movable_pfn[nid];
3080
3081		/* Check if this whole range is within ZONE_MOVABLE */
3082		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3083			*zone_start_pfn = *zone_end_pfn;
3084	}
3085}
3086
3087/*
3088 * Return the number of pages a zone spans in a node, including holes
3089 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3090 */
3091static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3092					unsigned long zone_type,
3093					unsigned long *ignored)
3094{
3095	unsigned long node_start_pfn, node_end_pfn;
3096	unsigned long zone_start_pfn, zone_end_pfn;
3097
3098	/* Get the start and end of the node and zone */
3099	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3100	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3101	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3102	adjust_zone_range_for_zone_movable(nid, zone_type,
3103				node_start_pfn, node_end_pfn,
3104				&zone_start_pfn, &zone_end_pfn);
3105
3106	/* Check that this node has pages within the zone's required range */
3107	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3108		return 0;
3109
3110	/* Move the zone boundaries inside the node if necessary */
3111	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3112	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3113
3114	/* Return the spanned pages */
3115	return zone_end_pfn - zone_start_pfn;
3116}
3117
3118/*
3119 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3120 * then all holes in the requested range will be accounted for.
3121 */
3122unsigned long __meminit __absent_pages_in_range(int nid,
3123				unsigned long range_start_pfn,
3124				unsigned long range_end_pfn)
3125{
3126	int i = 0;
3127	unsigned long prev_end_pfn = 0, hole_pages = 0;
3128	unsigned long start_pfn;
3129
3130	/* Find the end_pfn of the first active range of pfns in the node */
3131	i = first_active_region_index_in_nid(nid);
3132	if (i == -1)
3133		return 0;
3134
3135	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3136
3137	/* Account for ranges before physical memory on this node */
3138	if (early_node_map[i].start_pfn > range_start_pfn)
3139		hole_pages = prev_end_pfn - range_start_pfn;
3140
3141	/* Find all holes for the zone within the node */
3142	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3143
3144		/* No need to continue if prev_end_pfn is outside the zone */
3145		if (prev_end_pfn >= range_end_pfn)
3146			break;
3147
3148		/* Make sure the end of the zone is not within the hole */
3149		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3150		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3151
3152		/* Update the hole size cound and move on */
3153		if (start_pfn > range_start_pfn) {
3154			BUG_ON(prev_end_pfn > start_pfn);
3155			hole_pages += start_pfn - prev_end_pfn;
3156		}
3157		prev_end_pfn = early_node_map[i].end_pfn;
3158	}
3159
3160	/* Account for ranges past physical memory on this node */
3161	if (range_end_pfn > prev_end_pfn)
3162		hole_pages += range_end_pfn -
3163				max(range_start_pfn, prev_end_pfn);
3164
3165	return hole_pages;
3166}
3167
3168/**
3169 * absent_pages_in_range - Return number of page frames in holes within a range
3170 * @start_pfn: The start PFN to start searching for holes
3171 * @end_pfn: The end PFN to stop searching for holes
3172 *
3173 * It returns the number of pages frames in memory holes within a range.
3174 */
3175unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3176							unsigned long end_pfn)
3177{
3178	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3179}
3180
3181/* Return the number of page frames in holes in a zone on a node */
3182static unsigned long __meminit zone_absent_pages_in_node(int nid,
3183					unsigned long zone_type,
3184					unsigned long *ignored)
3185{
3186	unsigned long node_start_pfn, node_end_pfn;
3187	unsigned long zone_start_pfn, zone_end_pfn;
3188
3189	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3190	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3191							node_start_pfn);
3192	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3193							node_end_pfn);
3194
3195	adjust_zone_range_for_zone_movable(nid, zone_type,
3196			node_start_pfn, node_end_pfn,
3197			&zone_start_pfn, &zone_end_pfn);
3198	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3199}
3200
3201#else
3202static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3203					unsigned long zone_type,
3204					unsigned long *zones_size)
3205{
3206	return zones_size[zone_type];
3207}
3208
3209static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3210						unsigned long zone_type,
3211						unsigned long *zholes_size)
3212{
3213	if (!zholes_size)
3214		return 0;
3215
3216	return zholes_size[zone_type];
3217}
3218
3219#endif
3220
3221static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3222		unsigned long *zones_size, unsigned long *zholes_size)
3223{
3224	unsigned long realtotalpages, totalpages = 0;
3225	enum zone_type i;
3226
3227	for (i = 0; i < MAX_NR_ZONES; i++)
3228		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3229								zones_size);
3230	pgdat->node_spanned_pages = totalpages;
3231
3232	realtotalpages = totalpages;
3233	for (i = 0; i < MAX_NR_ZONES; i++)
3234		realtotalpages -=
3235			zone_absent_pages_in_node(pgdat->node_id, i,
3236								zholes_size);
3237	pgdat->node_present_pages = realtotalpages;
3238	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3239							realtotalpages);
3240}
3241
3242#ifndef CONFIG_SPARSEMEM
3243/*
3244 * Calculate the size of the zone->blockflags rounded to an unsigned long
3245 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3246 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3247 * round what is now in bits to nearest long in bits, then return it in
3248 * bytes.
3249 */
3250static unsigned long __init usemap_size(unsigned long zonesize)
3251{
3252	unsigned long usemapsize;
3253
3254	usemapsize = roundup(zonesize, pageblock_nr_pages);
3255	usemapsize = usemapsize >> pageblock_order;
3256	usemapsize *= NR_PAGEBLOCK_BITS;
3257	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3258
3259	return usemapsize / 8;
3260}
3261
3262static void __init setup_usemap(struct pglist_data *pgdat,
3263				struct zone *zone, unsigned long zonesize)
3264{
3265	unsigned long usemapsize = usemap_size(zonesize);
3266	zone->pageblock_flags = NULL;
3267	if (usemapsize) {
3268		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3269		memset(zone->pageblock_flags, 0, usemapsize);
3270	}
3271}
3272#else
3273static void inline setup_usemap(struct pglist_data *pgdat,
3274				struct zone *zone, unsigned long zonesize) {}
3275#endif /* CONFIG_SPARSEMEM */
3276
3277#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3278/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3279static inline void __init set_pageblock_order(unsigned int order)
3280{
3281	/* Check that pageblock_nr_pages has not already been setup */
3282	if (pageblock_order)
3283		return;
3284
3285	/*
3286	 * Assume the largest contiguous order of interest is a huge page.
3287	 * This value may be variable depending on boot parameters on IA64
3288	 */
3289	pageblock_order = order;
3290}
3291#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3292
3293/* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3294#define set_pageblock_order(x)	do {} while (0)
3295
3296#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3297
3298/*
3299 * Set up the zone data structures:
3300 *   - mark all pages reserved
3301 *   - mark all memory queues empty
3302 *   - clear the memory bitmaps
3303 */
3304static void __meminit free_area_init_core(struct pglist_data *pgdat,
3305		unsigned long *zones_size, unsigned long *zholes_size)
3306{
3307	enum zone_type j;
3308	int nid = pgdat->node_id;
3309	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3310	int ret;
3311
3312	pgdat_resize_init(pgdat);
3313	pgdat->nr_zones = 0;
3314	init_waitqueue_head(&pgdat->kswapd_wait);
3315	pgdat->kswapd_max_order = 0;
3316
3317	for (j = 0; j < MAX_NR_ZONES; j++) {
3318		struct zone *zone = pgdat->node_zones + j;
3319		unsigned long size, realsize, memmap_pages;
3320
3321		size = zone_spanned_pages_in_node(nid, j, zones_size);
3322		realsize = size - zone_absent_pages_in_node(nid, j,
3323								zholes_size);
3324
3325		/*
3326		 * Adjust realsize so that it accounts for how much memory
3327		 * is used by this zone for memmap. This affects the watermark
3328		 * and per-cpu initialisations
3329		 */
3330		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3331		if (realsize >= memmap_pages) {
3332			realsize -= memmap_pages;
3333			printk(KERN_DEBUG
3334				"  %s zone: %lu pages used for memmap\n",
3335				zone_names[j], memmap_pages);
3336		} else
3337			printk(KERN_WARNING
3338				"  %s zone: %lu pages exceeds realsize %lu\n",
3339				zone_names[j], memmap_pages, realsize);
3340
3341		/* Account for reserved pages */
3342		if (j == 0 && realsize > dma_reserve) {
3343			realsize -= dma_reserve;
3344			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3345					zone_names[0], dma_reserve);
3346		}
3347
3348		if (!is_highmem_idx(j))
3349			nr_kernel_pages += realsize;
3350		nr_all_pages += realsize;
3351
3352		zone->spanned_pages = size;
3353		zone->present_pages = realsize;
3354#ifdef CONFIG_NUMA
3355		zone->node = nid;
3356		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3357						/ 100;
3358		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3359#endif
3360		zone->name = zone_names[j];
3361		spin_lock_init(&zone->lock);
3362		spin_lock_init(&zone->lru_lock);
3363		zone_seqlock_init(zone);
3364		zone->zone_pgdat = pgdat;
3365
3366		zone->prev_priority = DEF_PRIORITY;
3367
3368		zone_pcp_init(zone);
3369		INIT_LIST_HEAD(&zone->active_list);
3370		INIT_LIST_HEAD(&zone->inactive_list);
3371		zone->nr_scan_active = 0;
3372		zone->nr_scan_inactive = 0;
3373		zap_zone_vm_stats(zone);
3374		atomic_set(&zone->reclaim_in_progress, 0);
3375		if (!size)
3376			continue;
3377
3378		set_pageblock_order(HUGETLB_PAGE_ORDER);
3379		setup_usemap(pgdat, zone, size);
3380		ret = init_currently_empty_zone(zone, zone_start_pfn,
3381						size, MEMMAP_EARLY);
3382		BUG_ON(ret);
3383		zone_start_pfn += size;
3384	}
3385}
3386
3387static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3388{
3389	/* Skip empty nodes */
3390	if (!pgdat->node_spanned_pages)
3391		return;
3392
3393#ifdef CONFIG_FLAT_NODE_MEM_MAP
3394	/* ia64 gets its own node_mem_map, before this, without bootmem */
3395	if (!pgdat->node_mem_map) {
3396		unsigned long size, start, end;
3397		struct page *map;
3398
3399		/*
3400		 * The zone's endpoints aren't required to be MAX_ORDER
3401		 * aligned but the node_mem_map endpoints must be in order
3402		 * for the buddy allocator to function correctly.
3403		 */
3404		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3405		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3406		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3407		size =  (end - start) * sizeof(struct page);
3408		map = alloc_remap(pgdat->node_id, size);
3409		if (!map)
3410			map = alloc_bootmem_node(pgdat, size);
3411		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3412	}
3413#ifndef CONFIG_NEED_MULTIPLE_NODES
3414	/*
3415	 * With no DISCONTIG, the global mem_map is just set as node 0's
3416	 */
3417	if (pgdat == NODE_DATA(0)) {
3418		mem_map = NODE_DATA(0)->node_mem_map;
3419#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3420		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3421			mem_map -= pgdat->node_start_pfn;
3422#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3423	}
3424#endif
3425#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3426}
3427
3428void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3429		unsigned long *zones_size, unsigned long node_start_pfn,
3430		unsigned long *zholes_size)
3431{
3432	pgdat->node_id = nid;
3433	pgdat->node_start_pfn = node_start_pfn;
3434	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3435
3436	alloc_node_mem_map(pgdat);
3437
3438	free_area_init_core(pgdat, zones_size, zholes_size);
3439}
3440
3441#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3442
3443#if MAX_NUMNODES > 1
3444/*
3445 * Figure out the number of possible node ids.
3446 */
3447static void __init setup_nr_node_ids(void)
3448{
3449	unsigned int node;
3450	unsigned int highest = 0;
3451
3452	for_each_node_mask(node, node_possible_map)
3453		highest = node;
3454	nr_node_ids = highest + 1;
3455}
3456#else
3457static inline void setup_nr_node_ids(void)
3458{
3459}
3460#endif
3461
3462/**
3463 * add_active_range - Register a range of PFNs backed by physical memory
3464 * @nid: The node ID the range resides on
3465 * @start_pfn: The start PFN of the available physical memory
3466 * @end_pfn: The end PFN of the available physical memory
3467 *
3468 * These ranges are stored in an early_node_map[] and later used by
3469 * free_area_init_nodes() to calculate zone sizes and holes. If the
3470 * range spans a memory hole, it is up to the architecture to ensure
3471 * the memory is not freed by the bootmem allocator. If possible
3472 * the range being registered will be merged with existing ranges.
3473 */
3474void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3475						unsigned long end_pfn)
3476{
3477	int i;
3478
3479	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3480			  "%d entries of %d used\n",
3481			  nid, start_pfn, end_pfn,
3482			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3483
3484	/* Merge with existing active regions if possible */
3485	for (i = 0; i < nr_nodemap_entries; i++) {
3486		if (early_node_map[i].nid != nid)
3487			continue;
3488
3489		/* Skip if an existing region covers this new one */
3490		if (start_pfn >= early_node_map[i].start_pfn &&
3491				end_pfn <= early_node_map[i].end_pfn)
3492			return;
3493
3494		/* Merge forward if suitable */
3495		if (start_pfn <= early_node_map[i].end_pfn &&
3496				end_pfn > early_node_map[i].end_pfn) {
3497			early_node_map[i].end_pfn = end_pfn;
3498			return;
3499		}
3500
3501		/* Merge backward if suitable */
3502		if (start_pfn < early_node_map[i].end_pfn &&
3503				end_pfn >= early_node_map[i].start_pfn) {
3504			early_node_map[i].start_pfn = start_pfn;
3505			return;
3506		}
3507	}
3508
3509	/* Check that early_node_map is large enough */
3510	if (i >= MAX_ACTIVE_REGIONS) {
3511		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3512							MAX_ACTIVE_REGIONS);
3513		return;
3514	}
3515
3516	early_node_map[i].nid = nid;
3517	early_node_map[i].start_pfn = start_pfn;
3518	early_node_map[i].end_pfn = end_pfn;
3519	nr_nodemap_entries = i + 1;
3520}
3521
3522/**
3523 * shrink_active_range - Shrink an existing registered range of PFNs
3524 * @nid: The node id the range is on that should be shrunk
3525 * @old_end_pfn: The old end PFN of the range
3526 * @new_end_pfn: The new PFN of the range
3527 *
3528 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3529 * The map is kept at the end physical page range that has already been
3530 * registered with add_active_range(). This function allows an arch to shrink
3531 * an existing registered range.
3532 */
3533void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3534						unsigned long new_end_pfn)
3535{
3536	int i;
3537
3538	/* Find the old active region end and shrink */
3539	for_each_active_range_index_in_nid(i, nid)
3540		if (early_node_map[i].end_pfn == old_end_pfn) {
3541			early_node_map[i].end_pfn = new_end_pfn;
3542			break;
3543		}
3544}
3545
3546/**
3547 * remove_all_active_ranges - Remove all currently registered regions
3548 *
3549 * During discovery, it may be found that a table like SRAT is invalid
3550 * and an alternative discovery method must be used. This function removes
3551 * all currently registered regions.
3552 */
3553void __init remove_all_active_ranges(void)
3554{
3555	memset(early_node_map, 0, sizeof(early_node_map));
3556	nr_nodemap_entries = 0;
3557#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3558	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3559	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3560#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3561}
3562
3563/* Compare two active node_active_regions */
3564static int __init cmp_node_active_region(const void *a, const void *b)
3565{
3566	struct node_active_region *arange = (struct node_active_region *)a;
3567	struct node_active_region *brange = (struct node_active_region *)b;
3568
3569	/* Done this way to avoid overflows */
3570	if (arange->start_pfn > brange->start_pfn)
3571		return 1;
3572	if (arange->start_pfn < brange->start_pfn)
3573		return -1;
3574
3575	return 0;
3576}
3577
3578/* sort the node_map by start_pfn */
3579static void __init sort_node_map(void)
3580{
3581	sort(early_node_map, (size_t)nr_nodemap_entries,
3582			sizeof(struct node_active_region),
3583			cmp_node_active_region, NULL);
3584}
3585
3586/* Find the lowest pfn for a node */
3587unsigned long __init find_min_pfn_for_node(unsigned long nid)
3588{
3589	int i;
3590	unsigned long min_pfn = ULONG_MAX;
3591
3592	/* Assuming a sorted map, the first range found has the starting pfn */
3593	for_each_active_range_index_in_nid(i, nid)
3594		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3595
3596	if (min_pfn == ULONG_MAX) {
3597		printk(KERN_WARNING
3598			"Could not find start_pfn for node %lu\n", nid);
3599		return 0;
3600	}
3601
3602	return min_pfn;
3603}
3604
3605/**
3606 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3607 *
3608 * It returns the minimum PFN based on information provided via
3609 * add_active_range().
3610 */
3611unsigned long __init find_min_pfn_with_active_regions(void)
3612{
3613	return find_min_pfn_for_node(MAX_NUMNODES);
3614}
3615
3616/**
3617 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3618 *
3619 * It returns the maximum PFN based on information provided via
3620 * add_active_range().
3621 */
3622unsigned long __init find_max_pfn_with_active_regions(void)
3623{
3624	int i;
3625	unsigned long max_pfn = 0;
3626
3627	for (i = 0; i < nr_nodemap_entries; i++)
3628		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3629
3630	return max_pfn;
3631}
3632
3633/*
3634 * early_calculate_totalpages()
3635 * Sum pages in active regions for movable zone.
3636 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3637 */
3638static unsigned long __init early_calculate_totalpages(void)
3639{
3640	int i;
3641	unsigned long totalpages = 0;
3642
3643	for (i = 0; i < nr_nodemap_entries; i++) {
3644		unsigned long pages = early_node_map[i].end_pfn -
3645						early_node_map[i].start_pfn;
3646		totalpages += pages;
3647		if (pages)
3648			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3649	}
3650  	return totalpages;
3651}
3652
3653/*
3654 * Find the PFN the Movable zone begins in each node. Kernel memory
3655 * is spread evenly between nodes as long as the nodes have enough
3656 * memory. When they don't, some nodes will have more kernelcore than
3657 * others
3658 */
3659void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3660{
3661	int i, nid;
3662	unsigned long usable_startpfn;
3663	unsigned long kernelcore_node, kernelcore_remaining;
3664	unsigned long totalpages = early_calculate_totalpages();
3665	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3666
3667	/*
3668	 * If movablecore was specified, calculate what size of
3669	 * kernelcore that corresponds so that memory usable for
3670	 * any allocation type is evenly spread. If both kernelcore
3671	 * and movablecore are specified, then the value of kernelcore
3672	 * will be used for required_kernelcore if it's greater than
3673	 * what movablecore would have allowed.
3674	 */
3675	if (required_movablecore) {
3676		unsigned long corepages;
3677
3678		/*
3679		 * Round-up so that ZONE_MOVABLE is at least as large as what
3680		 * was requested by the user
3681		 */
3682		required_movablecore =
3683			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3684		corepages = totalpages - required_movablecore;
3685
3686		required_kernelcore = max(required_kernelcore, corepages);
3687	}
3688
3689	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3690	if (!required_kernelcore)
3691		return;
3692
3693	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3694	find_usable_zone_for_movable();
3695	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3696
3697restart:
3698	/* Spread kernelcore memory as evenly as possible throughout nodes */
3699	kernelcore_node = required_kernelcore / usable_nodes;
3700	for_each_node_state(nid, N_HIGH_MEMORY) {
3701		/*
3702		 * Recalculate kernelcore_node if the division per node
3703		 * now exceeds what is necessary to satisfy the requested
3704		 * amount of memory for the kernel
3705		 */
3706		if (required_kernelcore < kernelcore_node)
3707			kernelcore_node = required_kernelcore / usable_nodes;
3708
3709		/*
3710		 * As the map is walked, we track how much memory is usable
3711		 * by the kernel using kernelcore_remaining. When it is
3712		 * 0, the rest of the node is usable by ZONE_MOVABLE
3713		 */
3714		kernelcore_remaining = kernelcore_node;
3715
3716		/* Go through each range of PFNs within this node */
3717		for_each_active_range_index_in_nid(i, nid) {
3718			unsigned long start_pfn, end_pfn;
3719			unsigned long size_pages;
3720
3721			start_pfn = max(early_node_map[i].start_pfn,
3722						zone_movable_pfn[nid]);
3723			end_pfn = early_node_map[i].end_pfn;
3724			if (start_pfn >= end_pfn)
3725				continue;
3726
3727			/* Account for what is only usable for kernelcore */
3728			if (start_pfn < usable_startpfn) {
3729				unsigned long kernel_pages;
3730				kernel_pages = min(end_pfn, usable_startpfn)
3731								- start_pfn;
3732
3733				kernelcore_remaining -= min(kernel_pages,
3734							kernelcore_remaining);
3735				required_kernelcore -= min(kernel_pages,
3736							required_kernelcore);
3737
3738				/* Continue if range is now fully accounted */
3739				if (end_pfn <= usable_startpfn) {
3740
3741					/*
3742					 * Push zone_movable_pfn to the end so
3743					 * that if we have to rebalance
3744					 * kernelcore across nodes, we will
3745					 * not double account here
3746					 */
3747					zone_movable_pfn[nid] = end_pfn;
3748					continue;
3749				}
3750				start_pfn = usable_startpfn;
3751			}
3752
3753			/*
3754			 * The usable PFN range for ZONE_MOVABLE is from
3755			 * start_pfn->end_pfn. Calculate size_pages as the
3756			 * number of pages used as kernelcore
3757			 */
3758			size_pages = end_pfn - start_pfn;
3759			if (size_pages > kernelcore_remaining)
3760				size_pages = kernelcore_remaining;
3761			zone_movable_pfn[nid] = start_pfn + size_pages;
3762
3763			/*
3764			 * Some kernelcore has been met, update counts and
3765			 * break if the kernelcore for this node has been
3766			 * satisified
3767			 */
3768			required_kernelcore -= min(required_kernelcore,
3769								size_pages);
3770			kernelcore_remaining -= size_pages;
3771			if (!kernelcore_remaining)
3772				break;
3773		}
3774	}
3775
3776	/*
3777	 * If there is still required_kernelcore, we do another pass with one
3778	 * less node in the count. This will push zone_movable_pfn[nid] further
3779	 * along on the nodes that still have memory until kernelcore is
3780	 * satisified
3781	 */
3782	usable_nodes--;
3783	if (usable_nodes && required_kernelcore > usable_nodes)
3784		goto restart;
3785
3786	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3787	for (nid = 0; nid < MAX_NUMNODES; nid++)
3788		zone_movable_pfn[nid] =
3789			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3790}
3791
3792/* Any regular memory on that node ? */
3793static void check_for_regular_memory(pg_data_t *pgdat)
3794{
3795#ifdef CONFIG_HIGHMEM
3796	enum zone_type zone_type;
3797
3798	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3799		struct zone *zone = &pgdat->node_zones[zone_type];
3800		if (zone->present_pages)
3801			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3802	}
3803#endif
3804}
3805
3806/**
3807 * free_area_init_nodes - Initialise all pg_data_t and zone data
3808 * @max_zone_pfn: an array of max PFNs for each zone
3809 *
3810 * This will call free_area_init_node() for each active node in the system.
3811 * Using the page ranges provided by add_active_range(), the size of each
3812 * zone in each node and their holes is calculated. If the maximum PFN
3813 * between two adjacent zones match, it is assumed that the zone is empty.
3814 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3815 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3816 * starts where the previous one ended. For example, ZONE_DMA32 starts
3817 * at arch_max_dma_pfn.
3818 */
3819void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3820{
3821	unsigned long nid;
3822	enum zone_type i;
3823
3824	/* Sort early_node_map as initialisation assumes it is sorted */
3825	sort_node_map();
3826
3827	/* Record where the zone boundaries are */
3828	memset(arch_zone_lowest_possible_pfn, 0,
3829				sizeof(arch_zone_lowest_possible_pfn));
3830	memset(arch_zone_highest_possible_pfn, 0,
3831				sizeof(arch_zone_highest_possible_pfn));
3832	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3833	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3834	for (i = 1; i < MAX_NR_ZONES; i++) {
3835		if (i == ZONE_MOVABLE)
3836			continue;
3837		arch_zone_lowest_possible_pfn[i] =
3838			arch_zone_highest_possible_pfn[i-1];
3839		arch_zone_highest_possible_pfn[i] =
3840			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3841	}
3842	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3843	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3844
3845	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3846	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3847	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3848
3849	/* Print out the zone ranges */
3850	printk("Zone PFN ranges:\n");
3851	for (i = 0; i < MAX_NR_ZONES; i++) {
3852		if (i == ZONE_MOVABLE)
3853			continue;
3854		printk("  %-8s %8lu -> %8lu\n",
3855				zone_names[i],
3856				arch_zone_lowest_possible_pfn[i],
3857				arch_zone_highest_possible_pfn[i]);
3858	}
3859
3860	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3861	printk("Movable zone start PFN for each node\n");
3862	for (i = 0; i < MAX_NUMNODES; i++) {
3863		if (zone_movable_pfn[i])
3864			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3865	}
3866
3867	/* Print out the early_node_map[] */
3868	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3869	for (i = 0; i < nr_nodemap_entries; i++)
3870		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3871						early_node_map[i].start_pfn,
3872						early_node_map[i].end_pfn);
3873
3874	/* Initialise every node */
3875	setup_nr_node_ids();
3876	for_each_online_node(nid) {
3877		pg_data_t *pgdat = NODE_DATA(nid);
3878		free_area_init_node(nid, pgdat, NULL,
3879				find_min_pfn_for_node(nid), NULL);
3880
3881		/* Any memory on that node */
3882		if (pgdat->node_present_pages)
3883			node_set_state(nid, N_HIGH_MEMORY);
3884		check_for_regular_memory(pgdat);
3885	}
3886}
3887
3888static int __init cmdline_parse_core(char *p, unsigned long *core)
3889{
3890	unsigned long long coremem;
3891	if (!p)
3892		return -EINVAL;
3893
3894	coremem = memparse(p, &p);
3895	*core = coremem >> PAGE_SHIFT;
3896
3897	/* Paranoid check that UL is enough for the coremem value */
3898	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3899
3900	return 0;
3901}
3902
3903/*
3904 * kernelcore=size sets the amount of memory for use for allocations that
3905 * cannot be reclaimed or migrated.
3906 */
3907static int __init cmdline_parse_kernelcore(char *p)
3908{
3909	return cmdline_parse_core(p, &required_kernelcore);
3910}
3911
3912/*
3913 * movablecore=size sets the amount of memory for use for allocations that
3914 * can be reclaimed or migrated.
3915 */
3916static int __init cmdline_parse_movablecore(char *p)
3917{
3918	return cmdline_parse_core(p, &required_movablecore);
3919}
3920
3921early_param("kernelcore", cmdline_parse_kernelcore);
3922early_param("movablecore", cmdline_parse_movablecore);
3923
3924#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3925
3926/**
3927 * set_dma_reserve - set the specified number of pages reserved in the first zone
3928 * @new_dma_reserve: The number of pages to mark reserved
3929 *
3930 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3931 * In the DMA zone, a significant percentage may be consumed by kernel image
3932 * and other unfreeable allocations which can skew the watermarks badly. This
3933 * function may optionally be used to account for unfreeable pages in the
3934 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3935 * smaller per-cpu batchsize.
3936 */
3937void __init set_dma_reserve(unsigned long new_dma_reserve)
3938{
3939	dma_reserve = new_dma_reserve;
3940}
3941
3942#ifndef CONFIG_NEED_MULTIPLE_NODES
3943static bootmem_data_t contig_bootmem_data;
3944struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3945
3946EXPORT_SYMBOL(contig_page_data);
3947#endif
3948
3949void __init free_area_init(unsigned long *zones_size)
3950{
3951	free_area_init_node(0, NODE_DATA(0), zones_size,
3952			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3953}
3954
3955static int page_alloc_cpu_notify(struct notifier_block *self,
3956				 unsigned long action, void *hcpu)
3957{
3958	int cpu = (unsigned long)hcpu;
3959
3960	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3961		local_irq_disable();
3962		__drain_pages(cpu);
3963		vm_events_fold_cpu(cpu);
3964		local_irq_enable();
3965		refresh_cpu_vm_stats(cpu);
3966	}
3967	return NOTIFY_OK;
3968}
3969
3970void __init page_alloc_init(void)
3971{
3972	hotcpu_notifier(page_alloc_cpu_notify, 0);
3973}
3974
3975/*
3976 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3977 *	or min_free_kbytes changes.
3978 */
3979static void calculate_totalreserve_pages(void)
3980{
3981	struct pglist_data *pgdat;
3982	unsigned long reserve_pages = 0;
3983	enum zone_type i, j;
3984
3985	for_each_online_pgdat(pgdat) {
3986		for (i = 0; i < MAX_NR_ZONES; i++) {
3987			struct zone *zone = pgdat->node_zones + i;
3988			unsigned long max = 0;
3989
3990			/* Find valid and maximum lowmem_reserve in the zone */
3991			for (j = i; j < MAX_NR_ZONES; j++) {
3992				if (zone->lowmem_reserve[j] > max)
3993					max = zone->lowmem_reserve[j];
3994			}
3995
3996			/* we treat pages_high as reserved pages. */
3997			max += zone->pages_high;
3998
3999			if (max > zone->present_pages)
4000				max = zone->present_pages;
4001			reserve_pages += max;
4002		}
4003	}
4004	totalreserve_pages = reserve_pages;
4005}
4006
4007/*
4008 * setup_per_zone_lowmem_reserve - called whenever
4009 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4010 *	has a correct pages reserved value, so an adequate number of
4011 *	pages are left in the zone after a successful __alloc_pages().
4012 */
4013static void setup_per_zone_lowmem_reserve(void)
4014{
4015	struct pglist_data *pgdat;
4016	enum zone_type j, idx;
4017
4018	for_each_online_pgdat(pgdat) {
4019		for (j = 0; j < MAX_NR_ZONES; j++) {
4020			struct zone *zone = pgdat->node_zones + j;
4021			unsigned long present_pages = zone->present_pages;
4022
4023			zone->lowmem_reserve[j] = 0;
4024
4025			idx = j;
4026			while (idx) {
4027				struct zone *lower_zone;
4028
4029				idx--;
4030
4031				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4032					sysctl_lowmem_reserve_ratio[idx] = 1;
4033
4034				lower_zone = pgdat->node_zones + idx;
4035				lower_zone->lowmem_reserve[j] = present_pages /
4036					sysctl_lowmem_reserve_ratio[idx];
4037				present_pages += lower_zone->present_pages;
4038			}
4039		}
4040	}
4041
4042	/* update totalreserve_pages */
4043	calculate_totalreserve_pages();
4044}
4045
4046/**
4047 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4048 *
4049 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4050 * with respect to min_free_kbytes.
4051 */
4052void setup_per_zone_pages_min(void)
4053{
4054	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4055	unsigned long lowmem_pages = 0;
4056	struct zone *zone;
4057	unsigned long flags;
4058
4059	/* Calculate total number of !ZONE_HIGHMEM pages */
4060	for_each_zone(zone) {
4061		if (!is_highmem(zone))
4062			lowmem_pages += zone->present_pages;
4063	}
4064
4065	for_each_zone(zone) {
4066		u64 tmp;
4067
4068		spin_lock_irqsave(&zone->lru_lock, flags);
4069		tmp = (u64)pages_min * zone->present_pages;
4070		do_div(tmp, lowmem_pages);
4071		if (is_highmem(zone)) {
4072			/*
4073			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4074			 * need highmem pages, so cap pages_min to a small
4075			 * value here.
4076			 *
4077			 * The (pages_high-pages_low) and (pages_low-pages_min)
4078			 * deltas controls asynch page reclaim, and so should
4079			 * not be capped for highmem.
4080			 */
4081			int min_pages;
4082
4083			min_pages = zone->present_pages / 1024;
4084			if (min_pages < SWAP_CLUSTER_MAX)
4085				min_pages = SWAP_CLUSTER_MAX;
4086			if (min_pages > 128)
4087				min_pages = 128;
4088			zone->pages_min = min_pages;
4089		} else {
4090			/*
4091			 * If it's a lowmem zone, reserve a number of pages
4092			 * proportionate to the zone's size.
4093			 */
4094			zone->pages_min = tmp;
4095		}
4096
4097		zone->pages_low   = zone->pages_min + (tmp >> 2);
4098		zone->pages_high  = zone->pages_min + (tmp >> 1);
4099		setup_zone_migrate_reserve(zone);
4100		spin_unlock_irqrestore(&zone->lru_lock, flags);
4101	}
4102
4103	/* update totalreserve_pages */
4104	calculate_totalreserve_pages();
4105}
4106
4107/*
4108 * Initialise min_free_kbytes.
4109 *
4110 * For small machines we want it small (128k min).  For large machines
4111 * we want it large (64MB max).  But it is not linear, because network
4112 * bandwidth does not increase linearly with machine size.  We use
4113 *
4114 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4115 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4116 *
4117 * which yields
4118 *
4119 * 16MB:	512k
4120 * 32MB:	724k
4121 * 64MB:	1024k
4122 * 128MB:	1448k
4123 * 256MB:	2048k
4124 * 512MB:	2896k
4125 * 1024MB:	4096k
4126 * 2048MB:	5792k
4127 * 4096MB:	8192k
4128 * 8192MB:	11584k
4129 * 16384MB:	16384k
4130 */
4131static int __init init_per_zone_pages_min(void)
4132{
4133	unsigned long lowmem_kbytes;
4134
4135	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4136
4137	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4138	if (min_free_kbytes < 128)
4139		min_free_kbytes = 128;
4140	if (min_free_kbytes > 65536)
4141		min_free_kbytes = 65536;
4142	setup_per_zone_pages_min();
4143	setup_per_zone_lowmem_reserve();
4144	return 0;
4145}
4146module_init(init_per_zone_pages_min)
4147
4148/*
4149 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4150 *	that we can call two helper functions whenever min_free_kbytes
4151 *	changes.
4152 */
4153int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4154	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4155{
4156	proc_dointvec(table, write, file, buffer, length, ppos);
4157	if (write)
4158		setup_per_zone_pages_min();
4159	return 0;
4160}
4161
4162#ifdef CONFIG_NUMA
4163int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4164	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4165{
4166	struct zone *zone;
4167	int rc;
4168
4169	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4170	if (rc)
4171		return rc;
4172
4173	for_each_zone(zone)
4174		zone->min_unmapped_pages = (zone->present_pages *
4175				sysctl_min_unmapped_ratio) / 100;
4176	return 0;
4177}
4178
4179int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4180	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4181{
4182	struct zone *zone;
4183	int rc;
4184
4185	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4186	if (rc)
4187		return rc;
4188
4189	for_each_zone(zone)
4190		zone->min_slab_pages = (zone->present_pages *
4191				sysctl_min_slab_ratio) / 100;
4192	return 0;
4193}
4194#endif
4195
4196/*
4197 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4198 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4199 *	whenever sysctl_lowmem_reserve_ratio changes.
4200 *
4201 * The reserve ratio obviously has absolutely no relation with the
4202 * pages_min watermarks. The lowmem reserve ratio can only make sense
4203 * if in function of the boot time zone sizes.
4204 */
4205int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4206	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4207{
4208	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4209	setup_per_zone_lowmem_reserve();
4210	return 0;
4211}
4212
4213/*
4214 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4215 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4216 * can have before it gets flushed back to buddy allocator.
4217 */
4218
4219int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4220	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4221{
4222	struct zone *zone;
4223	unsigned int cpu;
4224	int ret;
4225
4226	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4227	if (!write || (ret == -EINVAL))
4228		return ret;
4229	for_each_zone(zone) {
4230		for_each_online_cpu(cpu) {
4231			unsigned long  high;
4232			high = zone->present_pages / percpu_pagelist_fraction;
4233			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4234		}
4235	}
4236	return 0;
4237}
4238
4239int hashdist = HASHDIST_DEFAULT;
4240
4241#ifdef CONFIG_NUMA
4242static int __init set_hashdist(char *str)
4243{
4244	if (!str)
4245		return 0;
4246	hashdist = simple_strtoul(str, &str, 0);
4247	return 1;
4248}
4249__setup("hashdist=", set_hashdist);
4250#endif
4251
4252/*
4253 * allocate a large system hash table from bootmem
4254 * - it is assumed that the hash table must contain an exact power-of-2
4255 *   quantity of entries
4256 * - limit is the number of hash buckets, not the total allocation size
4257 */
4258void *__init alloc_large_system_hash(const char *tablename,
4259				     unsigned long bucketsize,
4260				     unsigned long numentries,
4261				     int scale,
4262				     int flags,
4263				     unsigned int *_hash_shift,
4264				     unsigned int *_hash_mask,
4265				     unsigned long limit)
4266{
4267	unsigned long long max = limit;
4268	unsigned long log2qty, size;
4269	void *table = NULL;
4270
4271	/* allow the kernel cmdline to have a say */
4272	if (!numentries) {
4273		/* round applicable memory size up to nearest megabyte */
4274		numentries = nr_kernel_pages;
4275		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4276		numentries >>= 20 - PAGE_SHIFT;
4277		numentries <<= 20 - PAGE_SHIFT;
4278
4279		/* limit to 1 bucket per 2^scale bytes of low memory */
4280		if (scale > PAGE_SHIFT)
4281			numentries >>= (scale - PAGE_SHIFT);
4282		else
4283			numentries <<= (PAGE_SHIFT - scale);
4284
4285		/* Make sure we've got at least a 0-order allocation.. */
4286		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4287			numentries = PAGE_SIZE / bucketsize;
4288	}
4289	numentries = roundup_pow_of_two(numentries);
4290
4291	/* limit allocation size to 1/16 total memory by default */
4292	if (max == 0) {
4293		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4294		do_div(max, bucketsize);
4295	}
4296
4297	if (numentries > max)
4298		numentries = max;
4299
4300	log2qty = ilog2(numentries);
4301
4302	do {
4303		size = bucketsize << log2qty;
4304		if (flags & HASH_EARLY)
4305			table = alloc_bootmem(size);
4306		else if (hashdist)
4307			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4308		else {
4309			unsigned long order;
4310			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4311				;
4312			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4313			/*
4314			 * If bucketsize is not a power-of-two, we may free
4315			 * some pages at the end of hash table.
4316			 */
4317			if (table) {
4318				unsigned long alloc_end = (unsigned long)table +
4319						(PAGE_SIZE << order);
4320				unsigned long used = (unsigned long)table +
4321						PAGE_ALIGN(size);
4322				split_page(virt_to_page(table), order);
4323				while (used < alloc_end) {
4324					free_page(used);
4325					used += PAGE_SIZE;
4326				}
4327			}
4328		}
4329	} while (!table && size > PAGE_SIZE && --log2qty);
4330
4331	if (!table)
4332		panic("Failed to allocate %s hash table\n", tablename);
4333
4334	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4335	       tablename,
4336	       (1U << log2qty),
4337	       ilog2(size) - PAGE_SHIFT,
4338	       size);
4339
4340	if (_hash_shift)
4341		*_hash_shift = log2qty;
4342	if (_hash_mask)
4343		*_hash_mask = (1 << log2qty) - 1;
4344
4345	return table;
4346}
4347
4348#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4349struct page *pfn_to_page(unsigned long pfn)
4350{
4351	return __pfn_to_page(pfn);
4352}
4353unsigned long page_to_pfn(struct page *page)
4354{
4355	return __page_to_pfn(page);
4356}
4357EXPORT_SYMBOL(pfn_to_page);
4358EXPORT_SYMBOL(page_to_pfn);
4359#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4360
4361/* Return a pointer to the bitmap storing bits affecting a block of pages */
4362static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4363							unsigned long pfn)
4364{
4365#ifdef CONFIG_SPARSEMEM
4366	return __pfn_to_section(pfn)->pageblock_flags;
4367#else
4368	return zone->pageblock_flags;
4369#endif /* CONFIG_SPARSEMEM */
4370}
4371
4372static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4373{
4374#ifdef CONFIG_SPARSEMEM
4375	pfn &= (PAGES_PER_SECTION-1);
4376	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4377#else
4378	pfn = pfn - zone->zone_start_pfn;
4379	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4380#endif /* CONFIG_SPARSEMEM */
4381}
4382
4383/**
4384 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4385 * @page: The page within the block of interest
4386 * @start_bitidx: The first bit of interest to retrieve
4387 * @end_bitidx: The last bit of interest
4388 * returns pageblock_bits flags
4389 */
4390unsigned long get_pageblock_flags_group(struct page *page,
4391					int start_bitidx, int end_bitidx)
4392{
4393	struct zone *zone;
4394	unsigned long *bitmap;
4395	unsigned long pfn, bitidx;
4396	unsigned long flags = 0;
4397	unsigned long value = 1;
4398
4399	zone = page_zone(page);
4400	pfn = page_to_pfn(page);
4401	bitmap = get_pageblock_bitmap(zone, pfn);
4402	bitidx = pfn_to_bitidx(zone, pfn);
4403
4404	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4405		if (test_bit(bitidx + start_bitidx, bitmap))
4406			flags |= value;
4407
4408	return flags;
4409}
4410
4411/**
4412 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4413 * @page: The page within the block of interest
4414 * @start_bitidx: The first bit of interest
4415 * @end_bitidx: The last bit of interest
4416 * @flags: The flags to set
4417 */
4418void set_pageblock_flags_group(struct page *page, unsigned long flags,
4419					int start_bitidx, int end_bitidx)
4420{
4421	struct zone *zone;
4422	unsigned long *bitmap;
4423	unsigned long pfn, bitidx;
4424	unsigned long value = 1;
4425
4426	zone = page_zone(page);
4427	pfn = page_to_pfn(page);
4428	bitmap = get_pageblock_bitmap(zone, pfn);
4429	bitidx = pfn_to_bitidx(zone, pfn);
4430
4431	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4432		if (flags & value)
4433			__set_bit(bitidx + start_bitidx, bitmap);
4434		else
4435			__clear_bit(bitidx + start_bitidx, bitmap);
4436}
4437
4438/*
4439 * This is designed as sub function...plz see page_isolation.c also.
4440 * set/clear page block's type to be ISOLATE.
4441 * page allocater never alloc memory from ISOLATE block.
4442 */
4443
4444int set_migratetype_isolate(struct page *page)
4445{
4446	struct zone *zone;
4447	unsigned long flags;
4448	int ret = -EBUSY;
4449
4450	zone = page_zone(page);
4451	spin_lock_irqsave(&zone->lock, flags);
4452	/*
4453	 * In future, more migrate types will be able to be isolation target.
4454	 */
4455	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4456		goto out;
4457	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4458	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4459	ret = 0;
4460out:
4461	spin_unlock_irqrestore(&zone->lock, flags);
4462	if (!ret)
4463		drain_all_local_pages();
4464	return ret;
4465}
4466
4467void unset_migratetype_isolate(struct page *page)
4468{
4469	struct zone *zone;
4470	unsigned long flags;
4471	zone = page_zone(page);
4472	spin_lock_irqsave(&zone->lock, flags);
4473	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4474		goto out;
4475	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4476	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4477out:
4478	spin_unlock_irqrestore(&zone->lock, flags);
4479}
4480
4481#ifdef CONFIG_MEMORY_HOTREMOVE
4482/*
4483 * All pages in the range must be isolated before calling this.
4484 */
4485void
4486__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4487{
4488	struct page *page;
4489	struct zone *zone;
4490	int order, i;
4491	unsigned long pfn;
4492	unsigned long flags;
4493	/* find the first valid pfn */
4494	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4495		if (pfn_valid(pfn))
4496			break;
4497	if (pfn == end_pfn)
4498		return;
4499	zone = page_zone(pfn_to_page(pfn));
4500	spin_lock_irqsave(&zone->lock, flags);
4501	pfn = start_pfn;
4502	while (pfn < end_pfn) {
4503		if (!pfn_valid(pfn)) {
4504			pfn++;
4505			continue;
4506		}
4507		page = pfn_to_page(pfn);
4508		BUG_ON(page_count(page));
4509		BUG_ON(!PageBuddy(page));
4510		order = page_order(page);
4511#ifdef CONFIG_DEBUG_VM
4512		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4513		       pfn, 1 << order, end_pfn);
4514#endif
4515		list_del(&page->lru);
4516		rmv_page_order(page);
4517		zone->free_area[order].nr_free--;
4518		__mod_zone_page_state(zone, NR_FREE_PAGES,
4519				      - (1UL << order));
4520		for (i = 0; i < (1 << order); i++)
4521			SetPageReserved((page+i));
4522		pfn += (1 << order);
4523	}
4524	spin_unlock_irqrestore(&zone->lock, flags);
4525}
4526#endif
4527