page_alloc.c revision 0e0b864e069c52a7b3e4a7da56e29b03a012fd75
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42
43#include <asm/tlbflush.h>
44#include <asm/div64.h>
45#include "internal.h"
46
47/*
48 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
49 * initializer cleaner
50 */
51nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
52EXPORT_SYMBOL(node_online_map);
53nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
54EXPORT_SYMBOL(node_possible_map);
55unsigned long totalram_pages __read_mostly;
56unsigned long totalreserve_pages __read_mostly;
57long nr_swap_pages;
58int percpu_pagelist_fraction;
59
60static void __free_pages_ok(struct page *page, unsigned int order);
61
62/*
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 *	1G machine -> (16M dma, 784M normal, 224M high)
66 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 *
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
72 */
73int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
74	 256,
75#ifdef CONFIG_ZONE_DMA32
76	 256,
77#endif
78#ifdef CONFIG_HIGHMEM
79	 32
80#endif
81};
82
83EXPORT_SYMBOL(totalram_pages);
84
85/*
86 * Used by page_zone() to look up the address of the struct zone whose
87 * id is encoded in the upper bits of page->flags
88 */
89struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
90EXPORT_SYMBOL(zone_table);
91
92static char *zone_names[MAX_NR_ZONES] = {
93	 "DMA",
94#ifdef CONFIG_ZONE_DMA32
95	 "DMA32",
96#endif
97	 "Normal",
98#ifdef CONFIG_HIGHMEM
99	 "HighMem"
100#endif
101};
102
103int min_free_kbytes = 1024;
104
105unsigned long __meminitdata nr_kernel_pages;
106unsigned long __meminitdata nr_all_pages;
107static unsigned long __initdata dma_reserve;
108
109#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110  /*
111   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
112   * ranges of memory (RAM) that may be registered with add_active_range().
113   * Ranges passed to add_active_range() will be merged if possible
114   * so the number of times add_active_range() can be called is
115   * related to the number of nodes and the number of holes
116   */
117  #ifdef CONFIG_MAX_ACTIVE_REGIONS
118    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
119    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
120  #else
121    #if MAX_NUMNODES >= 32
122      /* If there can be many nodes, allow up to 50 holes per node */
123      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
124    #else
125      /* By default, allow up to 256 distinct regions */
126      #define MAX_ACTIVE_REGIONS 256
127    #endif
128  #endif
129
130  struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
131  int __initdata nr_nodemap_entries;
132  unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
133  unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
134#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
135
136#ifdef CONFIG_DEBUG_VM
137static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
138{
139	int ret = 0;
140	unsigned seq;
141	unsigned long pfn = page_to_pfn(page);
142
143	do {
144		seq = zone_span_seqbegin(zone);
145		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
146			ret = 1;
147		else if (pfn < zone->zone_start_pfn)
148			ret = 1;
149	} while (zone_span_seqretry(zone, seq));
150
151	return ret;
152}
153
154static int page_is_consistent(struct zone *zone, struct page *page)
155{
156#ifdef CONFIG_HOLES_IN_ZONE
157	if (!pfn_valid(page_to_pfn(page)))
158		return 0;
159#endif
160	if (zone != page_zone(page))
161		return 0;
162
163	return 1;
164}
165/*
166 * Temporary debugging check for pages not lying within a given zone.
167 */
168static int bad_range(struct zone *zone, struct page *page)
169{
170	if (page_outside_zone_boundaries(zone, page))
171		return 1;
172	if (!page_is_consistent(zone, page))
173		return 1;
174
175	return 0;
176}
177#else
178static inline int bad_range(struct zone *zone, struct page *page)
179{
180	return 0;
181}
182#endif
183
184static void bad_page(struct page *page)
185{
186	printk(KERN_EMERG "Bad page state in process '%s'\n"
187		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
188		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
189		KERN_EMERG "Backtrace:\n",
190		current->comm, page, (int)(2*sizeof(unsigned long)),
191		(unsigned long)page->flags, page->mapping,
192		page_mapcount(page), page_count(page));
193	dump_stack();
194	page->flags &= ~(1 << PG_lru	|
195			1 << PG_private |
196			1 << PG_locked	|
197			1 << PG_active	|
198			1 << PG_dirty	|
199			1 << PG_reclaim |
200			1 << PG_slab    |
201			1 << PG_swapcache |
202			1 << PG_writeback |
203			1 << PG_buddy );
204	set_page_count(page, 0);
205	reset_page_mapcount(page);
206	page->mapping = NULL;
207	add_taint(TAINT_BAD_PAGE);
208}
209
210/*
211 * Higher-order pages are called "compound pages".  They are structured thusly:
212 *
213 * The first PAGE_SIZE page is called the "head page".
214 *
215 * The remaining PAGE_SIZE pages are called "tail pages".
216 *
217 * All pages have PG_compound set.  All pages have their ->private pointing at
218 * the head page (even the head page has this).
219 *
220 * The first tail page's ->lru.next holds the address of the compound page's
221 * put_page() function.  Its ->lru.prev holds the order of allocation.
222 * This usage means that zero-order pages may not be compound.
223 */
224
225static void free_compound_page(struct page *page)
226{
227	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
228}
229
230static void prep_compound_page(struct page *page, unsigned long order)
231{
232	int i;
233	int nr_pages = 1 << order;
234
235	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
236	page[1].lru.prev = (void *)order;
237	for (i = 0; i < nr_pages; i++) {
238		struct page *p = page + i;
239
240		__SetPageCompound(p);
241		set_page_private(p, (unsigned long)page);
242	}
243}
244
245static void destroy_compound_page(struct page *page, unsigned long order)
246{
247	int i;
248	int nr_pages = 1 << order;
249
250	if (unlikely((unsigned long)page[1].lru.prev != order))
251		bad_page(page);
252
253	for (i = 0; i < nr_pages; i++) {
254		struct page *p = page + i;
255
256		if (unlikely(!PageCompound(p) |
257				(page_private(p) != (unsigned long)page)))
258			bad_page(page);
259		__ClearPageCompound(p);
260	}
261}
262
263static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
264{
265	int i;
266
267	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
268	/*
269	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
270	 * and __GFP_HIGHMEM from hard or soft interrupt context.
271	 */
272	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
273	for (i = 0; i < (1 << order); i++)
274		clear_highpage(page + i);
275}
276
277/*
278 * function for dealing with page's order in buddy system.
279 * zone->lock is already acquired when we use these.
280 * So, we don't need atomic page->flags operations here.
281 */
282static inline unsigned long page_order(struct page *page)
283{
284	return page_private(page);
285}
286
287static inline void set_page_order(struct page *page, int order)
288{
289	set_page_private(page, order);
290	__SetPageBuddy(page);
291}
292
293static inline void rmv_page_order(struct page *page)
294{
295	__ClearPageBuddy(page);
296	set_page_private(page, 0);
297}
298
299/*
300 * Locate the struct page for both the matching buddy in our
301 * pair (buddy1) and the combined O(n+1) page they form (page).
302 *
303 * 1) Any buddy B1 will have an order O twin B2 which satisfies
304 * the following equation:
305 *     B2 = B1 ^ (1 << O)
306 * For example, if the starting buddy (buddy2) is #8 its order
307 * 1 buddy is #10:
308 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
309 *
310 * 2) Any buddy B will have an order O+1 parent P which
311 * satisfies the following equation:
312 *     P = B & ~(1 << O)
313 *
314 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
315 */
316static inline struct page *
317__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
318{
319	unsigned long buddy_idx = page_idx ^ (1 << order);
320
321	return page + (buddy_idx - page_idx);
322}
323
324static inline unsigned long
325__find_combined_index(unsigned long page_idx, unsigned int order)
326{
327	return (page_idx & ~(1 << order));
328}
329
330/*
331 * This function checks whether a page is free && is the buddy
332 * we can do coalesce a page and its buddy if
333 * (a) the buddy is not in a hole &&
334 * (b) the buddy is in the buddy system &&
335 * (c) a page and its buddy have the same order &&
336 * (d) a page and its buddy are in the same zone.
337 *
338 * For recording whether a page is in the buddy system, we use PG_buddy.
339 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
340 *
341 * For recording page's order, we use page_private(page).
342 */
343static inline int page_is_buddy(struct page *page, struct page *buddy,
344								int order)
345{
346#ifdef CONFIG_HOLES_IN_ZONE
347	if (!pfn_valid(page_to_pfn(buddy)))
348		return 0;
349#endif
350
351	if (page_zone_id(page) != page_zone_id(buddy))
352		return 0;
353
354	if (PageBuddy(buddy) && page_order(buddy) == order) {
355		BUG_ON(page_count(buddy) != 0);
356		return 1;
357	}
358	return 0;
359}
360
361/*
362 * Freeing function for a buddy system allocator.
363 *
364 * The concept of a buddy system is to maintain direct-mapped table
365 * (containing bit values) for memory blocks of various "orders".
366 * The bottom level table contains the map for the smallest allocatable
367 * units of memory (here, pages), and each level above it describes
368 * pairs of units from the levels below, hence, "buddies".
369 * At a high level, all that happens here is marking the table entry
370 * at the bottom level available, and propagating the changes upward
371 * as necessary, plus some accounting needed to play nicely with other
372 * parts of the VM system.
373 * At each level, we keep a list of pages, which are heads of continuous
374 * free pages of length of (1 << order) and marked with PG_buddy. Page's
375 * order is recorded in page_private(page) field.
376 * So when we are allocating or freeing one, we can derive the state of the
377 * other.  That is, if we allocate a small block, and both were
378 * free, the remainder of the region must be split into blocks.
379 * If a block is freed, and its buddy is also free, then this
380 * triggers coalescing into a block of larger size.
381 *
382 * -- wli
383 */
384
385static inline void __free_one_page(struct page *page,
386		struct zone *zone, unsigned int order)
387{
388	unsigned long page_idx;
389	int order_size = 1 << order;
390
391	if (unlikely(PageCompound(page)))
392		destroy_compound_page(page, order);
393
394	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
395
396	VM_BUG_ON(page_idx & (order_size - 1));
397	VM_BUG_ON(bad_range(zone, page));
398
399	zone->free_pages += order_size;
400	while (order < MAX_ORDER-1) {
401		unsigned long combined_idx;
402		struct free_area *area;
403		struct page *buddy;
404
405		buddy = __page_find_buddy(page, page_idx, order);
406		if (!page_is_buddy(page, buddy, order))
407			break;		/* Move the buddy up one level. */
408
409		list_del(&buddy->lru);
410		area = zone->free_area + order;
411		area->nr_free--;
412		rmv_page_order(buddy);
413		combined_idx = __find_combined_index(page_idx, order);
414		page = page + (combined_idx - page_idx);
415		page_idx = combined_idx;
416		order++;
417	}
418	set_page_order(page, order);
419	list_add(&page->lru, &zone->free_area[order].free_list);
420	zone->free_area[order].nr_free++;
421}
422
423static inline int free_pages_check(struct page *page)
424{
425	if (unlikely(page_mapcount(page) |
426		(page->mapping != NULL)  |
427		(page_count(page) != 0)  |
428		(page->flags & (
429			1 << PG_lru	|
430			1 << PG_private |
431			1 << PG_locked	|
432			1 << PG_active	|
433			1 << PG_reclaim	|
434			1 << PG_slab	|
435			1 << PG_swapcache |
436			1 << PG_writeback |
437			1 << PG_reserved |
438			1 << PG_buddy ))))
439		bad_page(page);
440	if (PageDirty(page))
441		__ClearPageDirty(page);
442	/*
443	 * For now, we report if PG_reserved was found set, but do not
444	 * clear it, and do not free the page.  But we shall soon need
445	 * to do more, for when the ZERO_PAGE count wraps negative.
446	 */
447	return PageReserved(page);
448}
449
450/*
451 * Frees a list of pages.
452 * Assumes all pages on list are in same zone, and of same order.
453 * count is the number of pages to free.
454 *
455 * If the zone was previously in an "all pages pinned" state then look to
456 * see if this freeing clears that state.
457 *
458 * And clear the zone's pages_scanned counter, to hold off the "all pages are
459 * pinned" detection logic.
460 */
461static void free_pages_bulk(struct zone *zone, int count,
462					struct list_head *list, int order)
463{
464	spin_lock(&zone->lock);
465	zone->all_unreclaimable = 0;
466	zone->pages_scanned = 0;
467	while (count--) {
468		struct page *page;
469
470		VM_BUG_ON(list_empty(list));
471		page = list_entry(list->prev, struct page, lru);
472		/* have to delete it as __free_one_page list manipulates */
473		list_del(&page->lru);
474		__free_one_page(page, zone, order);
475	}
476	spin_unlock(&zone->lock);
477}
478
479static void free_one_page(struct zone *zone, struct page *page, int order)
480{
481	spin_lock(&zone->lock);
482	zone->all_unreclaimable = 0;
483	zone->pages_scanned = 0;
484	__free_one_page(page, zone ,order);
485	spin_unlock(&zone->lock);
486}
487
488static void __free_pages_ok(struct page *page, unsigned int order)
489{
490	unsigned long flags;
491	int i;
492	int reserved = 0;
493
494	arch_free_page(page, order);
495	if (!PageHighMem(page))
496		debug_check_no_locks_freed(page_address(page),
497					   PAGE_SIZE<<order);
498
499	for (i = 0 ; i < (1 << order) ; ++i)
500		reserved += free_pages_check(page + i);
501	if (reserved)
502		return;
503
504	kernel_map_pages(page, 1 << order, 0);
505	local_irq_save(flags);
506	__count_vm_events(PGFREE, 1 << order);
507	free_one_page(page_zone(page), page, order);
508	local_irq_restore(flags);
509}
510
511/*
512 * permit the bootmem allocator to evade page validation on high-order frees
513 */
514void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
515{
516	if (order == 0) {
517		__ClearPageReserved(page);
518		set_page_count(page, 0);
519		set_page_refcounted(page);
520		__free_page(page);
521	} else {
522		int loop;
523
524		prefetchw(page);
525		for (loop = 0; loop < BITS_PER_LONG; loop++) {
526			struct page *p = &page[loop];
527
528			if (loop + 1 < BITS_PER_LONG)
529				prefetchw(p + 1);
530			__ClearPageReserved(p);
531			set_page_count(p, 0);
532		}
533
534		set_page_refcounted(page);
535		__free_pages(page, order);
536	}
537}
538
539
540/*
541 * The order of subdivision here is critical for the IO subsystem.
542 * Please do not alter this order without good reasons and regression
543 * testing. Specifically, as large blocks of memory are subdivided,
544 * the order in which smaller blocks are delivered depends on the order
545 * they're subdivided in this function. This is the primary factor
546 * influencing the order in which pages are delivered to the IO
547 * subsystem according to empirical testing, and this is also justified
548 * by considering the behavior of a buddy system containing a single
549 * large block of memory acted on by a series of small allocations.
550 * This behavior is a critical factor in sglist merging's success.
551 *
552 * -- wli
553 */
554static inline void expand(struct zone *zone, struct page *page,
555 	int low, int high, struct free_area *area)
556{
557	unsigned long size = 1 << high;
558
559	while (high > low) {
560		area--;
561		high--;
562		size >>= 1;
563		VM_BUG_ON(bad_range(zone, &page[size]));
564		list_add(&page[size].lru, &area->free_list);
565		area->nr_free++;
566		set_page_order(&page[size], high);
567	}
568}
569
570/*
571 * This page is about to be returned from the page allocator
572 */
573static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
574{
575	if (unlikely(page_mapcount(page) |
576		(page->mapping != NULL)  |
577		(page_count(page) != 0)  |
578		(page->flags & (
579			1 << PG_lru	|
580			1 << PG_private	|
581			1 << PG_locked	|
582			1 << PG_active	|
583			1 << PG_dirty	|
584			1 << PG_reclaim	|
585			1 << PG_slab    |
586			1 << PG_swapcache |
587			1 << PG_writeback |
588			1 << PG_reserved |
589			1 << PG_buddy ))))
590		bad_page(page);
591
592	/*
593	 * For now, we report if PG_reserved was found set, but do not
594	 * clear it, and do not allocate the page: as a safety net.
595	 */
596	if (PageReserved(page))
597		return 1;
598
599	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
600			1 << PG_referenced | 1 << PG_arch_1 |
601			1 << PG_checked | 1 << PG_mappedtodisk);
602	set_page_private(page, 0);
603	set_page_refcounted(page);
604	kernel_map_pages(page, 1 << order, 1);
605
606	if (gfp_flags & __GFP_ZERO)
607		prep_zero_page(page, order, gfp_flags);
608
609	if (order && (gfp_flags & __GFP_COMP))
610		prep_compound_page(page, order);
611
612	return 0;
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621	struct free_area * area;
622	unsigned int current_order;
623	struct page *page;
624
625	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626		area = zone->free_area + current_order;
627		if (list_empty(&area->free_list))
628			continue;
629
630		page = list_entry(area->free_list.next, struct page, lru);
631		list_del(&page->lru);
632		rmv_page_order(page);
633		area->nr_free--;
634		zone->free_pages -= 1UL << order;
635		expand(zone, page, order, current_order, area);
636		return page;
637	}
638
639	return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency.  Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648			unsigned long count, struct list_head *list)
649{
650	int i;
651
652	spin_lock(&zone->lock);
653	for (i = 0; i < count; ++i) {
654		struct page *page = __rmqueue(zone, order);
655		if (unlikely(page == NULL))
656			break;
657		list_add_tail(&page->lru, list);
658	}
659	spin_unlock(&zone->lock);
660	return i;
661}
662
663#ifdef CONFIG_NUMA
664/*
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
669 */
670void drain_node_pages(int nodeid)
671{
672	int i;
673	enum zone_type z;
674	unsigned long flags;
675
676	for (z = 0; z < MAX_NR_ZONES; z++) {
677		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678		struct per_cpu_pageset *pset;
679
680		if (!populated_zone(zone))
681			continue;
682
683		pset = zone_pcp(zone, smp_processor_id());
684		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685			struct per_cpu_pages *pcp;
686
687			pcp = &pset->pcp[i];
688			if (pcp->count) {
689				local_irq_save(flags);
690				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
691				pcp->count = 0;
692				local_irq_restore(flags);
693			}
694		}
695	}
696}
697#endif
698
699#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
700static void __drain_pages(unsigned int cpu)
701{
702	unsigned long flags;
703	struct zone *zone;
704	int i;
705
706	for_each_zone(zone) {
707		struct per_cpu_pageset *pset;
708
709		pset = zone_pcp(zone, cpu);
710		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
711			struct per_cpu_pages *pcp;
712
713			pcp = &pset->pcp[i];
714			local_irq_save(flags);
715			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
716			pcp->count = 0;
717			local_irq_restore(flags);
718		}
719	}
720}
721#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
722
723#ifdef CONFIG_PM
724
725void mark_free_pages(struct zone *zone)
726{
727	unsigned long pfn, max_zone_pfn;
728	unsigned long flags;
729	int order;
730	struct list_head *curr;
731
732	if (!zone->spanned_pages)
733		return;
734
735	spin_lock_irqsave(&zone->lock, flags);
736
737	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
738	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
739		if (pfn_valid(pfn)) {
740			struct page *page = pfn_to_page(pfn);
741
742			if (!PageNosave(page))
743				ClearPageNosaveFree(page);
744		}
745
746	for (order = MAX_ORDER - 1; order >= 0; --order)
747		list_for_each(curr, &zone->free_area[order].free_list) {
748			unsigned long i;
749
750			pfn = page_to_pfn(list_entry(curr, struct page, lru));
751			for (i = 0; i < (1UL << order); i++)
752				SetPageNosaveFree(pfn_to_page(pfn + i));
753		}
754
755	spin_unlock_irqrestore(&zone->lock, flags);
756}
757
758/*
759 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
760 */
761void drain_local_pages(void)
762{
763	unsigned long flags;
764
765	local_irq_save(flags);
766	__drain_pages(smp_processor_id());
767	local_irq_restore(flags);
768}
769#endif /* CONFIG_PM */
770
771/*
772 * Free a 0-order page
773 */
774static void fastcall free_hot_cold_page(struct page *page, int cold)
775{
776	struct zone *zone = page_zone(page);
777	struct per_cpu_pages *pcp;
778	unsigned long flags;
779
780	arch_free_page(page, 0);
781
782	if (PageAnon(page))
783		page->mapping = NULL;
784	if (free_pages_check(page))
785		return;
786
787	kernel_map_pages(page, 1, 0);
788
789	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
790	local_irq_save(flags);
791	__count_vm_event(PGFREE);
792	list_add(&page->lru, &pcp->list);
793	pcp->count++;
794	if (pcp->count >= pcp->high) {
795		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
796		pcp->count -= pcp->batch;
797	}
798	local_irq_restore(flags);
799	put_cpu();
800}
801
802void fastcall free_hot_page(struct page *page)
803{
804	free_hot_cold_page(page, 0);
805}
806
807void fastcall free_cold_page(struct page *page)
808{
809	free_hot_cold_page(page, 1);
810}
811
812/*
813 * split_page takes a non-compound higher-order page, and splits it into
814 * n (1<<order) sub-pages: page[0..n]
815 * Each sub-page must be freed individually.
816 *
817 * Note: this is probably too low level an operation for use in drivers.
818 * Please consult with lkml before using this in your driver.
819 */
820void split_page(struct page *page, unsigned int order)
821{
822	int i;
823
824	VM_BUG_ON(PageCompound(page));
825	VM_BUG_ON(!page_count(page));
826	for (i = 1; i < (1 << order); i++)
827		set_page_refcounted(page + i);
828}
829
830/*
831 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
832 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
833 * or two.
834 */
835static struct page *buffered_rmqueue(struct zonelist *zonelist,
836			struct zone *zone, int order, gfp_t gfp_flags)
837{
838	unsigned long flags;
839	struct page *page;
840	int cold = !!(gfp_flags & __GFP_COLD);
841	int cpu;
842
843again:
844	cpu  = get_cpu();
845	if (likely(order == 0)) {
846		struct per_cpu_pages *pcp;
847
848		pcp = &zone_pcp(zone, cpu)->pcp[cold];
849		local_irq_save(flags);
850		if (!pcp->count) {
851			pcp->count += rmqueue_bulk(zone, 0,
852						pcp->batch, &pcp->list);
853			if (unlikely(!pcp->count))
854				goto failed;
855		}
856		page = list_entry(pcp->list.next, struct page, lru);
857		list_del(&page->lru);
858		pcp->count--;
859	} else {
860		spin_lock_irqsave(&zone->lock, flags);
861		page = __rmqueue(zone, order);
862		spin_unlock(&zone->lock);
863		if (!page)
864			goto failed;
865	}
866
867	__count_zone_vm_events(PGALLOC, zone, 1 << order);
868	zone_statistics(zonelist, zone);
869	local_irq_restore(flags);
870	put_cpu();
871
872	VM_BUG_ON(bad_range(zone, page));
873	if (prep_new_page(page, order, gfp_flags))
874		goto again;
875	return page;
876
877failed:
878	local_irq_restore(flags);
879	put_cpu();
880	return NULL;
881}
882
883#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
884#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
885#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
886#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
887#define ALLOC_HARDER		0x10 /* try to alloc harder */
888#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
889#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
890
891/*
892 * Return 1 if free pages are above 'mark'. This takes into account the order
893 * of the allocation.
894 */
895int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
896		      int classzone_idx, int alloc_flags)
897{
898	/* free_pages my go negative - that's OK */
899	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
900	int o;
901
902	if (alloc_flags & ALLOC_HIGH)
903		min -= min / 2;
904	if (alloc_flags & ALLOC_HARDER)
905		min -= min / 4;
906
907	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
908		return 0;
909	for (o = 0; o < order; o++) {
910		/* At the next order, this order's pages become unavailable */
911		free_pages -= z->free_area[o].nr_free << o;
912
913		/* Require fewer higher order pages to be free */
914		min >>= 1;
915
916		if (free_pages <= min)
917			return 0;
918	}
919	return 1;
920}
921
922/*
923 * get_page_from_freeliest goes through the zonelist trying to allocate
924 * a page.
925 */
926static struct page *
927get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
928		struct zonelist *zonelist, int alloc_flags)
929{
930	struct zone **z = zonelist->zones;
931	struct page *page = NULL;
932	int classzone_idx = zone_idx(*z);
933	struct zone *zone;
934
935	/*
936	 * Go through the zonelist once, looking for a zone with enough free.
937	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
938	 */
939	do {
940		zone = *z;
941		if (unlikely((gfp_mask & __GFP_THISNODE) &&
942			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
943				break;
944		if ((alloc_flags & ALLOC_CPUSET) &&
945				!cpuset_zone_allowed(zone, gfp_mask))
946			continue;
947
948		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
949			unsigned long mark;
950			if (alloc_flags & ALLOC_WMARK_MIN)
951				mark = zone->pages_min;
952			else if (alloc_flags & ALLOC_WMARK_LOW)
953				mark = zone->pages_low;
954			else
955				mark = zone->pages_high;
956			if (!zone_watermark_ok(zone , order, mark,
957				    classzone_idx, alloc_flags))
958				if (!zone_reclaim_mode ||
959				    !zone_reclaim(zone, gfp_mask, order))
960					continue;
961		}
962
963		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
964		if (page) {
965			break;
966		}
967	} while (*(++z) != NULL);
968	return page;
969}
970
971/*
972 * This is the 'heart' of the zoned buddy allocator.
973 */
974struct page * fastcall
975__alloc_pages(gfp_t gfp_mask, unsigned int order,
976		struct zonelist *zonelist)
977{
978	const gfp_t wait = gfp_mask & __GFP_WAIT;
979	struct zone **z;
980	struct page *page;
981	struct reclaim_state reclaim_state;
982	struct task_struct *p = current;
983	int do_retry;
984	int alloc_flags;
985	int did_some_progress;
986
987	might_sleep_if(wait);
988
989restart:
990	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
991
992	if (unlikely(*z == NULL)) {
993		/* Should this ever happen?? */
994		return NULL;
995	}
996
997	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
998				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
999	if (page)
1000		goto got_pg;
1001
1002	do {
1003		wakeup_kswapd(*z, order);
1004	} while (*(++z));
1005
1006	/*
1007	 * OK, we're below the kswapd watermark and have kicked background
1008	 * reclaim. Now things get more complex, so set up alloc_flags according
1009	 * to how we want to proceed.
1010	 *
1011	 * The caller may dip into page reserves a bit more if the caller
1012	 * cannot run direct reclaim, or if the caller has realtime scheduling
1013	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1014	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1015	 */
1016	alloc_flags = ALLOC_WMARK_MIN;
1017	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1018		alloc_flags |= ALLOC_HARDER;
1019	if (gfp_mask & __GFP_HIGH)
1020		alloc_flags |= ALLOC_HIGH;
1021	if (wait)
1022		alloc_flags |= ALLOC_CPUSET;
1023
1024	/*
1025	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1026	 * coming from realtime tasks go deeper into reserves.
1027	 *
1028	 * This is the last chance, in general, before the goto nopage.
1029	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1030	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1031	 */
1032	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1033	if (page)
1034		goto got_pg;
1035
1036	/* This allocation should allow future memory freeing. */
1037
1038	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1039			&& !in_interrupt()) {
1040		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1041nofail_alloc:
1042			/* go through the zonelist yet again, ignoring mins */
1043			page = get_page_from_freelist(gfp_mask, order,
1044				zonelist, ALLOC_NO_WATERMARKS);
1045			if (page)
1046				goto got_pg;
1047			if (gfp_mask & __GFP_NOFAIL) {
1048				blk_congestion_wait(WRITE, HZ/50);
1049				goto nofail_alloc;
1050			}
1051		}
1052		goto nopage;
1053	}
1054
1055	/* Atomic allocations - we can't balance anything */
1056	if (!wait)
1057		goto nopage;
1058
1059rebalance:
1060	cond_resched();
1061
1062	/* We now go into synchronous reclaim */
1063	cpuset_memory_pressure_bump();
1064	p->flags |= PF_MEMALLOC;
1065	reclaim_state.reclaimed_slab = 0;
1066	p->reclaim_state = &reclaim_state;
1067
1068	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1069
1070	p->reclaim_state = NULL;
1071	p->flags &= ~PF_MEMALLOC;
1072
1073	cond_resched();
1074
1075	if (likely(did_some_progress)) {
1076		page = get_page_from_freelist(gfp_mask, order,
1077						zonelist, alloc_flags);
1078		if (page)
1079			goto got_pg;
1080	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1081		/*
1082		 * Go through the zonelist yet one more time, keep
1083		 * very high watermark here, this is only to catch
1084		 * a parallel oom killing, we must fail if we're still
1085		 * under heavy pressure.
1086		 */
1087		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1088				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1089		if (page)
1090			goto got_pg;
1091
1092		out_of_memory(zonelist, gfp_mask, order);
1093		goto restart;
1094	}
1095
1096	/*
1097	 * Don't let big-order allocations loop unless the caller explicitly
1098	 * requests that.  Wait for some write requests to complete then retry.
1099	 *
1100	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1101	 * <= 3, but that may not be true in other implementations.
1102	 */
1103	do_retry = 0;
1104	if (!(gfp_mask & __GFP_NORETRY)) {
1105		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1106			do_retry = 1;
1107		if (gfp_mask & __GFP_NOFAIL)
1108			do_retry = 1;
1109	}
1110	if (do_retry) {
1111		blk_congestion_wait(WRITE, HZ/50);
1112		goto rebalance;
1113	}
1114
1115nopage:
1116	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1117		printk(KERN_WARNING "%s: page allocation failure."
1118			" order:%d, mode:0x%x\n",
1119			p->comm, order, gfp_mask);
1120		dump_stack();
1121		show_mem();
1122	}
1123got_pg:
1124	return page;
1125}
1126
1127EXPORT_SYMBOL(__alloc_pages);
1128
1129/*
1130 * Common helper functions.
1131 */
1132fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1133{
1134	struct page * page;
1135	page = alloc_pages(gfp_mask, order);
1136	if (!page)
1137		return 0;
1138	return (unsigned long) page_address(page);
1139}
1140
1141EXPORT_SYMBOL(__get_free_pages);
1142
1143fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1144{
1145	struct page * page;
1146
1147	/*
1148	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1149	 * a highmem page
1150	 */
1151	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1152
1153	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1154	if (page)
1155		return (unsigned long) page_address(page);
1156	return 0;
1157}
1158
1159EXPORT_SYMBOL(get_zeroed_page);
1160
1161void __pagevec_free(struct pagevec *pvec)
1162{
1163	int i = pagevec_count(pvec);
1164
1165	while (--i >= 0)
1166		free_hot_cold_page(pvec->pages[i], pvec->cold);
1167}
1168
1169fastcall void __free_pages(struct page *page, unsigned int order)
1170{
1171	if (put_page_testzero(page)) {
1172		if (order == 0)
1173			free_hot_page(page);
1174		else
1175			__free_pages_ok(page, order);
1176	}
1177}
1178
1179EXPORT_SYMBOL(__free_pages);
1180
1181fastcall void free_pages(unsigned long addr, unsigned int order)
1182{
1183	if (addr != 0) {
1184		VM_BUG_ON(!virt_addr_valid((void *)addr));
1185		__free_pages(virt_to_page((void *)addr), order);
1186	}
1187}
1188
1189EXPORT_SYMBOL(free_pages);
1190
1191/*
1192 * Total amount of free (allocatable) RAM:
1193 */
1194unsigned int nr_free_pages(void)
1195{
1196	unsigned int sum = 0;
1197	struct zone *zone;
1198
1199	for_each_zone(zone)
1200		sum += zone->free_pages;
1201
1202	return sum;
1203}
1204
1205EXPORT_SYMBOL(nr_free_pages);
1206
1207#ifdef CONFIG_NUMA
1208unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1209{
1210	unsigned int sum = 0;
1211	enum zone_type i;
1212
1213	for (i = 0; i < MAX_NR_ZONES; i++)
1214		sum += pgdat->node_zones[i].free_pages;
1215
1216	return sum;
1217}
1218#endif
1219
1220static unsigned int nr_free_zone_pages(int offset)
1221{
1222	/* Just pick one node, since fallback list is circular */
1223	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1224	unsigned int sum = 0;
1225
1226	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1227	struct zone **zonep = zonelist->zones;
1228	struct zone *zone;
1229
1230	for (zone = *zonep++; zone; zone = *zonep++) {
1231		unsigned long size = zone->present_pages;
1232		unsigned long high = zone->pages_high;
1233		if (size > high)
1234			sum += size - high;
1235	}
1236
1237	return sum;
1238}
1239
1240/*
1241 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1242 */
1243unsigned int nr_free_buffer_pages(void)
1244{
1245	return nr_free_zone_pages(gfp_zone(GFP_USER));
1246}
1247
1248/*
1249 * Amount of free RAM allocatable within all zones
1250 */
1251unsigned int nr_free_pagecache_pages(void)
1252{
1253	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1254}
1255#ifdef CONFIG_NUMA
1256static void show_node(struct zone *zone)
1257{
1258	printk("Node %ld ", zone_to_nid(zone));
1259}
1260#else
1261#define show_node(zone)	do { } while (0)
1262#endif
1263
1264void si_meminfo(struct sysinfo *val)
1265{
1266	val->totalram = totalram_pages;
1267	val->sharedram = 0;
1268	val->freeram = nr_free_pages();
1269	val->bufferram = nr_blockdev_pages();
1270	val->totalhigh = totalhigh_pages;
1271	val->freehigh = nr_free_highpages();
1272	val->mem_unit = PAGE_SIZE;
1273}
1274
1275EXPORT_SYMBOL(si_meminfo);
1276
1277#ifdef CONFIG_NUMA
1278void si_meminfo_node(struct sysinfo *val, int nid)
1279{
1280	pg_data_t *pgdat = NODE_DATA(nid);
1281
1282	val->totalram = pgdat->node_present_pages;
1283	val->freeram = nr_free_pages_pgdat(pgdat);
1284#ifdef CONFIG_HIGHMEM
1285	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1286	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1287#else
1288	val->totalhigh = 0;
1289	val->freehigh = 0;
1290#endif
1291	val->mem_unit = PAGE_SIZE;
1292}
1293#endif
1294
1295#define K(x) ((x) << (PAGE_SHIFT-10))
1296
1297/*
1298 * Show free area list (used inside shift_scroll-lock stuff)
1299 * We also calculate the percentage fragmentation. We do this by counting the
1300 * memory on each free list with the exception of the first item on the list.
1301 */
1302void show_free_areas(void)
1303{
1304	int cpu, temperature;
1305	unsigned long active;
1306	unsigned long inactive;
1307	unsigned long free;
1308	struct zone *zone;
1309
1310	for_each_zone(zone) {
1311		show_node(zone);
1312		printk("%s per-cpu:", zone->name);
1313
1314		if (!populated_zone(zone)) {
1315			printk(" empty\n");
1316			continue;
1317		} else
1318			printk("\n");
1319
1320		for_each_online_cpu(cpu) {
1321			struct per_cpu_pageset *pageset;
1322
1323			pageset = zone_pcp(zone, cpu);
1324
1325			for (temperature = 0; temperature < 2; temperature++)
1326				printk("cpu %d %s: high %d, batch %d used:%d\n",
1327					cpu,
1328					temperature ? "cold" : "hot",
1329					pageset->pcp[temperature].high,
1330					pageset->pcp[temperature].batch,
1331					pageset->pcp[temperature].count);
1332		}
1333	}
1334
1335	get_zone_counts(&active, &inactive, &free);
1336
1337	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1338		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1339		active,
1340		inactive,
1341		global_page_state(NR_FILE_DIRTY),
1342		global_page_state(NR_WRITEBACK),
1343		global_page_state(NR_UNSTABLE_NFS),
1344		nr_free_pages(),
1345		global_page_state(NR_SLAB_RECLAIMABLE) +
1346			global_page_state(NR_SLAB_UNRECLAIMABLE),
1347		global_page_state(NR_FILE_MAPPED),
1348		global_page_state(NR_PAGETABLE));
1349
1350	for_each_zone(zone) {
1351		int i;
1352
1353		show_node(zone);
1354		printk("%s"
1355			" free:%lukB"
1356			" min:%lukB"
1357			" low:%lukB"
1358			" high:%lukB"
1359			" active:%lukB"
1360			" inactive:%lukB"
1361			" present:%lukB"
1362			" pages_scanned:%lu"
1363			" all_unreclaimable? %s"
1364			"\n",
1365			zone->name,
1366			K(zone->free_pages),
1367			K(zone->pages_min),
1368			K(zone->pages_low),
1369			K(zone->pages_high),
1370			K(zone->nr_active),
1371			K(zone->nr_inactive),
1372			K(zone->present_pages),
1373			zone->pages_scanned,
1374			(zone->all_unreclaimable ? "yes" : "no")
1375			);
1376		printk("lowmem_reserve[]:");
1377		for (i = 0; i < MAX_NR_ZONES; i++)
1378			printk(" %lu", zone->lowmem_reserve[i]);
1379		printk("\n");
1380	}
1381
1382	for_each_zone(zone) {
1383 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1384
1385		show_node(zone);
1386		printk("%s: ", zone->name);
1387		if (!populated_zone(zone)) {
1388			printk("empty\n");
1389			continue;
1390		}
1391
1392		spin_lock_irqsave(&zone->lock, flags);
1393		for (order = 0; order < MAX_ORDER; order++) {
1394			nr[order] = zone->free_area[order].nr_free;
1395			total += nr[order] << order;
1396		}
1397		spin_unlock_irqrestore(&zone->lock, flags);
1398		for (order = 0; order < MAX_ORDER; order++)
1399			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1400		printk("= %lukB\n", K(total));
1401	}
1402
1403	show_swap_cache_info();
1404}
1405
1406/*
1407 * Builds allocation fallback zone lists.
1408 *
1409 * Add all populated zones of a node to the zonelist.
1410 */
1411static int __meminit build_zonelists_node(pg_data_t *pgdat,
1412			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1413{
1414	struct zone *zone;
1415
1416	BUG_ON(zone_type >= MAX_NR_ZONES);
1417	zone_type++;
1418
1419	do {
1420		zone_type--;
1421		zone = pgdat->node_zones + zone_type;
1422		if (populated_zone(zone)) {
1423			zonelist->zones[nr_zones++] = zone;
1424			check_highest_zone(zone_type);
1425		}
1426
1427	} while (zone_type);
1428	return nr_zones;
1429}
1430
1431#ifdef CONFIG_NUMA
1432#define MAX_NODE_LOAD (num_online_nodes())
1433static int __meminitdata node_load[MAX_NUMNODES];
1434/**
1435 * find_next_best_node - find the next node that should appear in a given node's fallback list
1436 * @node: node whose fallback list we're appending
1437 * @used_node_mask: nodemask_t of already used nodes
1438 *
1439 * We use a number of factors to determine which is the next node that should
1440 * appear on a given node's fallback list.  The node should not have appeared
1441 * already in @node's fallback list, and it should be the next closest node
1442 * according to the distance array (which contains arbitrary distance values
1443 * from each node to each node in the system), and should also prefer nodes
1444 * with no CPUs, since presumably they'll have very little allocation pressure
1445 * on them otherwise.
1446 * It returns -1 if no node is found.
1447 */
1448static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1449{
1450	int n, val;
1451	int min_val = INT_MAX;
1452	int best_node = -1;
1453
1454	/* Use the local node if we haven't already */
1455	if (!node_isset(node, *used_node_mask)) {
1456		node_set(node, *used_node_mask);
1457		return node;
1458	}
1459
1460	for_each_online_node(n) {
1461		cpumask_t tmp;
1462
1463		/* Don't want a node to appear more than once */
1464		if (node_isset(n, *used_node_mask))
1465			continue;
1466
1467		/* Use the distance array to find the distance */
1468		val = node_distance(node, n);
1469
1470		/* Penalize nodes under us ("prefer the next node") */
1471		val += (n < node);
1472
1473		/* Give preference to headless and unused nodes */
1474		tmp = node_to_cpumask(n);
1475		if (!cpus_empty(tmp))
1476			val += PENALTY_FOR_NODE_WITH_CPUS;
1477
1478		/* Slight preference for less loaded node */
1479		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1480		val += node_load[n];
1481
1482		if (val < min_val) {
1483			min_val = val;
1484			best_node = n;
1485		}
1486	}
1487
1488	if (best_node >= 0)
1489		node_set(best_node, *used_node_mask);
1490
1491	return best_node;
1492}
1493
1494static void __meminit build_zonelists(pg_data_t *pgdat)
1495{
1496	int j, node, local_node;
1497	enum zone_type i;
1498	int prev_node, load;
1499	struct zonelist *zonelist;
1500	nodemask_t used_mask;
1501
1502	/* initialize zonelists */
1503	for (i = 0; i < MAX_NR_ZONES; i++) {
1504		zonelist = pgdat->node_zonelists + i;
1505		zonelist->zones[0] = NULL;
1506	}
1507
1508	/* NUMA-aware ordering of nodes */
1509	local_node = pgdat->node_id;
1510	load = num_online_nodes();
1511	prev_node = local_node;
1512	nodes_clear(used_mask);
1513	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1514		int distance = node_distance(local_node, node);
1515
1516		/*
1517		 * If another node is sufficiently far away then it is better
1518		 * to reclaim pages in a zone before going off node.
1519		 */
1520		if (distance > RECLAIM_DISTANCE)
1521			zone_reclaim_mode = 1;
1522
1523		/*
1524		 * We don't want to pressure a particular node.
1525		 * So adding penalty to the first node in same
1526		 * distance group to make it round-robin.
1527		 */
1528
1529		if (distance != node_distance(local_node, prev_node))
1530			node_load[node] += load;
1531		prev_node = node;
1532		load--;
1533		for (i = 0; i < MAX_NR_ZONES; i++) {
1534			zonelist = pgdat->node_zonelists + i;
1535			for (j = 0; zonelist->zones[j] != NULL; j++);
1536
1537	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1538			zonelist->zones[j] = NULL;
1539		}
1540	}
1541}
1542
1543#else	/* CONFIG_NUMA */
1544
1545static void __meminit build_zonelists(pg_data_t *pgdat)
1546{
1547	int node, local_node;
1548	enum zone_type i,j;
1549
1550	local_node = pgdat->node_id;
1551	for (i = 0; i < MAX_NR_ZONES; i++) {
1552		struct zonelist *zonelist;
1553
1554		zonelist = pgdat->node_zonelists + i;
1555
1556 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1557 		/*
1558 		 * Now we build the zonelist so that it contains the zones
1559 		 * of all the other nodes.
1560 		 * We don't want to pressure a particular node, so when
1561 		 * building the zones for node N, we make sure that the
1562 		 * zones coming right after the local ones are those from
1563 		 * node N+1 (modulo N)
1564 		 */
1565		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1566			if (!node_online(node))
1567				continue;
1568			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1569		}
1570		for (node = 0; node < local_node; node++) {
1571			if (!node_online(node))
1572				continue;
1573			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1574		}
1575
1576		zonelist->zones[j] = NULL;
1577	}
1578}
1579
1580#endif	/* CONFIG_NUMA */
1581
1582/* return values int ....just for stop_machine_run() */
1583static int __meminit __build_all_zonelists(void *dummy)
1584{
1585	int nid;
1586	for_each_online_node(nid)
1587		build_zonelists(NODE_DATA(nid));
1588	return 0;
1589}
1590
1591void __meminit build_all_zonelists(void)
1592{
1593	if (system_state == SYSTEM_BOOTING) {
1594		__build_all_zonelists(0);
1595		cpuset_init_current_mems_allowed();
1596	} else {
1597		/* we have to stop all cpus to guaranntee there is no user
1598		   of zonelist */
1599		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1600		/* cpuset refresh routine should be here */
1601	}
1602	vm_total_pages = nr_free_pagecache_pages();
1603	printk("Built %i zonelists.  Total pages: %ld\n",
1604			num_online_nodes(), vm_total_pages);
1605}
1606
1607/*
1608 * Helper functions to size the waitqueue hash table.
1609 * Essentially these want to choose hash table sizes sufficiently
1610 * large so that collisions trying to wait on pages are rare.
1611 * But in fact, the number of active page waitqueues on typical
1612 * systems is ridiculously low, less than 200. So this is even
1613 * conservative, even though it seems large.
1614 *
1615 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1616 * waitqueues, i.e. the size of the waitq table given the number of pages.
1617 */
1618#define PAGES_PER_WAITQUEUE	256
1619
1620#ifndef CONFIG_MEMORY_HOTPLUG
1621static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1622{
1623	unsigned long size = 1;
1624
1625	pages /= PAGES_PER_WAITQUEUE;
1626
1627	while (size < pages)
1628		size <<= 1;
1629
1630	/*
1631	 * Once we have dozens or even hundreds of threads sleeping
1632	 * on IO we've got bigger problems than wait queue collision.
1633	 * Limit the size of the wait table to a reasonable size.
1634	 */
1635	size = min(size, 4096UL);
1636
1637	return max(size, 4UL);
1638}
1639#else
1640/*
1641 * A zone's size might be changed by hot-add, so it is not possible to determine
1642 * a suitable size for its wait_table.  So we use the maximum size now.
1643 *
1644 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1645 *
1646 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1647 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1648 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1649 *
1650 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1651 * or more by the traditional way. (See above).  It equals:
1652 *
1653 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1654 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1655 *    powerpc (64K page size)             : =  (32G +16M)byte.
1656 */
1657static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1658{
1659	return 4096UL;
1660}
1661#endif
1662
1663/*
1664 * This is an integer logarithm so that shifts can be used later
1665 * to extract the more random high bits from the multiplicative
1666 * hash function before the remainder is taken.
1667 */
1668static inline unsigned long wait_table_bits(unsigned long size)
1669{
1670	return ffz(~size);
1671}
1672
1673#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1674
1675/*
1676 * Initially all pages are reserved - free ones are freed
1677 * up by free_all_bootmem() once the early boot process is
1678 * done. Non-atomic initialization, single-pass.
1679 */
1680void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1681		unsigned long start_pfn)
1682{
1683	struct page *page;
1684	unsigned long end_pfn = start_pfn + size;
1685	unsigned long pfn;
1686
1687	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1688		if (!early_pfn_valid(pfn))
1689			continue;
1690		page = pfn_to_page(pfn);
1691		set_page_links(page, zone, nid, pfn);
1692		init_page_count(page);
1693		reset_page_mapcount(page);
1694		SetPageReserved(page);
1695		INIT_LIST_HEAD(&page->lru);
1696#ifdef WANT_PAGE_VIRTUAL
1697		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1698		if (!is_highmem_idx(zone))
1699			set_page_address(page, __va(pfn << PAGE_SHIFT));
1700#endif
1701	}
1702}
1703
1704void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1705				unsigned long size)
1706{
1707	int order;
1708	for (order = 0; order < MAX_ORDER ; order++) {
1709		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1710		zone->free_area[order].nr_free = 0;
1711	}
1712}
1713
1714#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1715void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1716		unsigned long pfn, unsigned long size)
1717{
1718	unsigned long snum = pfn_to_section_nr(pfn);
1719	unsigned long end = pfn_to_section_nr(pfn + size);
1720
1721	if (FLAGS_HAS_NODE)
1722		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1723	else
1724		for (; snum <= end; snum++)
1725			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1726}
1727
1728#ifndef __HAVE_ARCH_MEMMAP_INIT
1729#define memmap_init(size, nid, zone, start_pfn) \
1730	memmap_init_zone((size), (nid), (zone), (start_pfn))
1731#endif
1732
1733static int __cpuinit zone_batchsize(struct zone *zone)
1734{
1735	int batch;
1736
1737	/*
1738	 * The per-cpu-pages pools are set to around 1000th of the
1739	 * size of the zone.  But no more than 1/2 of a meg.
1740	 *
1741	 * OK, so we don't know how big the cache is.  So guess.
1742	 */
1743	batch = zone->present_pages / 1024;
1744	if (batch * PAGE_SIZE > 512 * 1024)
1745		batch = (512 * 1024) / PAGE_SIZE;
1746	batch /= 4;		/* We effectively *= 4 below */
1747	if (batch < 1)
1748		batch = 1;
1749
1750	/*
1751	 * Clamp the batch to a 2^n - 1 value. Having a power
1752	 * of 2 value was found to be more likely to have
1753	 * suboptimal cache aliasing properties in some cases.
1754	 *
1755	 * For example if 2 tasks are alternately allocating
1756	 * batches of pages, one task can end up with a lot
1757	 * of pages of one half of the possible page colors
1758	 * and the other with pages of the other colors.
1759	 */
1760	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1761
1762	return batch;
1763}
1764
1765inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1766{
1767	struct per_cpu_pages *pcp;
1768
1769	memset(p, 0, sizeof(*p));
1770
1771	pcp = &p->pcp[0];		/* hot */
1772	pcp->count = 0;
1773	pcp->high = 6 * batch;
1774	pcp->batch = max(1UL, 1 * batch);
1775	INIT_LIST_HEAD(&pcp->list);
1776
1777	pcp = &p->pcp[1];		/* cold*/
1778	pcp->count = 0;
1779	pcp->high = 2 * batch;
1780	pcp->batch = max(1UL, batch/2);
1781	INIT_LIST_HEAD(&pcp->list);
1782}
1783
1784/*
1785 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1786 * to the value high for the pageset p.
1787 */
1788
1789static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1790				unsigned long high)
1791{
1792	struct per_cpu_pages *pcp;
1793
1794	pcp = &p->pcp[0]; /* hot list */
1795	pcp->high = high;
1796	pcp->batch = max(1UL, high/4);
1797	if ((high/4) > (PAGE_SHIFT * 8))
1798		pcp->batch = PAGE_SHIFT * 8;
1799}
1800
1801
1802#ifdef CONFIG_NUMA
1803/*
1804 * Boot pageset table. One per cpu which is going to be used for all
1805 * zones and all nodes. The parameters will be set in such a way
1806 * that an item put on a list will immediately be handed over to
1807 * the buddy list. This is safe since pageset manipulation is done
1808 * with interrupts disabled.
1809 *
1810 * Some NUMA counter updates may also be caught by the boot pagesets.
1811 *
1812 * The boot_pagesets must be kept even after bootup is complete for
1813 * unused processors and/or zones. They do play a role for bootstrapping
1814 * hotplugged processors.
1815 *
1816 * zoneinfo_show() and maybe other functions do
1817 * not check if the processor is online before following the pageset pointer.
1818 * Other parts of the kernel may not check if the zone is available.
1819 */
1820static struct per_cpu_pageset boot_pageset[NR_CPUS];
1821
1822/*
1823 * Dynamically allocate memory for the
1824 * per cpu pageset array in struct zone.
1825 */
1826static int __cpuinit process_zones(int cpu)
1827{
1828	struct zone *zone, *dzone;
1829
1830	for_each_zone(zone) {
1831
1832		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1833					 GFP_KERNEL, cpu_to_node(cpu));
1834		if (!zone_pcp(zone, cpu))
1835			goto bad;
1836
1837		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1838
1839		if (percpu_pagelist_fraction)
1840			setup_pagelist_highmark(zone_pcp(zone, cpu),
1841			 	(zone->present_pages / percpu_pagelist_fraction));
1842	}
1843
1844	return 0;
1845bad:
1846	for_each_zone(dzone) {
1847		if (dzone == zone)
1848			break;
1849		kfree(zone_pcp(dzone, cpu));
1850		zone_pcp(dzone, cpu) = NULL;
1851	}
1852	return -ENOMEM;
1853}
1854
1855static inline void free_zone_pagesets(int cpu)
1856{
1857	struct zone *zone;
1858
1859	for_each_zone(zone) {
1860		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1861
1862		/* Free per_cpu_pageset if it is slab allocated */
1863		if (pset != &boot_pageset[cpu])
1864			kfree(pset);
1865		zone_pcp(zone, cpu) = NULL;
1866	}
1867}
1868
1869static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1870		unsigned long action,
1871		void *hcpu)
1872{
1873	int cpu = (long)hcpu;
1874	int ret = NOTIFY_OK;
1875
1876	switch (action) {
1877		case CPU_UP_PREPARE:
1878			if (process_zones(cpu))
1879				ret = NOTIFY_BAD;
1880			break;
1881		case CPU_UP_CANCELED:
1882		case CPU_DEAD:
1883			free_zone_pagesets(cpu);
1884			break;
1885		default:
1886			break;
1887	}
1888	return ret;
1889}
1890
1891static struct notifier_block __cpuinitdata pageset_notifier =
1892	{ &pageset_cpuup_callback, NULL, 0 };
1893
1894void __init setup_per_cpu_pageset(void)
1895{
1896	int err;
1897
1898	/* Initialize per_cpu_pageset for cpu 0.
1899	 * A cpuup callback will do this for every cpu
1900	 * as it comes online
1901	 */
1902	err = process_zones(smp_processor_id());
1903	BUG_ON(err);
1904	register_cpu_notifier(&pageset_notifier);
1905}
1906
1907#endif
1908
1909static __meminit
1910int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1911{
1912	int i;
1913	struct pglist_data *pgdat = zone->zone_pgdat;
1914	size_t alloc_size;
1915
1916	/*
1917	 * The per-page waitqueue mechanism uses hashed waitqueues
1918	 * per zone.
1919	 */
1920	zone->wait_table_hash_nr_entries =
1921		 wait_table_hash_nr_entries(zone_size_pages);
1922	zone->wait_table_bits =
1923		wait_table_bits(zone->wait_table_hash_nr_entries);
1924	alloc_size = zone->wait_table_hash_nr_entries
1925					* sizeof(wait_queue_head_t);
1926
1927 	if (system_state == SYSTEM_BOOTING) {
1928		zone->wait_table = (wait_queue_head_t *)
1929			alloc_bootmem_node(pgdat, alloc_size);
1930	} else {
1931		/*
1932		 * This case means that a zone whose size was 0 gets new memory
1933		 * via memory hot-add.
1934		 * But it may be the case that a new node was hot-added.  In
1935		 * this case vmalloc() will not be able to use this new node's
1936		 * memory - this wait_table must be initialized to use this new
1937		 * node itself as well.
1938		 * To use this new node's memory, further consideration will be
1939		 * necessary.
1940		 */
1941		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1942	}
1943	if (!zone->wait_table)
1944		return -ENOMEM;
1945
1946	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1947		init_waitqueue_head(zone->wait_table + i);
1948
1949	return 0;
1950}
1951
1952static __meminit void zone_pcp_init(struct zone *zone)
1953{
1954	int cpu;
1955	unsigned long batch = zone_batchsize(zone);
1956
1957	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1958#ifdef CONFIG_NUMA
1959		/* Early boot. Slab allocator not functional yet */
1960		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1961		setup_pageset(&boot_pageset[cpu],0);
1962#else
1963		setup_pageset(zone_pcp(zone,cpu), batch);
1964#endif
1965	}
1966	if (zone->present_pages)
1967		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1968			zone->name, zone->present_pages, batch);
1969}
1970
1971__meminit int init_currently_empty_zone(struct zone *zone,
1972					unsigned long zone_start_pfn,
1973					unsigned long size)
1974{
1975	struct pglist_data *pgdat = zone->zone_pgdat;
1976	int ret;
1977	ret = zone_wait_table_init(zone, size);
1978	if (ret)
1979		return ret;
1980	pgdat->nr_zones = zone_idx(zone) + 1;
1981
1982	zone->zone_start_pfn = zone_start_pfn;
1983
1984	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1985
1986	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1987
1988	return 0;
1989}
1990
1991#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1992/*
1993 * Basic iterator support. Return the first range of PFNs for a node
1994 * Note: nid == MAX_NUMNODES returns first region regardless of node
1995 */
1996static int __init first_active_region_index_in_nid(int nid)
1997{
1998	int i;
1999
2000	for (i = 0; i < nr_nodemap_entries; i++)
2001		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2002			return i;
2003
2004	return -1;
2005}
2006
2007/*
2008 * Basic iterator support. Return the next active range of PFNs for a node
2009 * Note: nid == MAX_NUMNODES returns next region regardles of node
2010 */
2011static int __init next_active_region_index_in_nid(int index, int nid)
2012{
2013	for (index = index + 1; index < nr_nodemap_entries; index++)
2014		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2015			return index;
2016
2017	return -1;
2018}
2019
2020#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2021/*
2022 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2023 * Architectures may implement their own version but if add_active_range()
2024 * was used and there are no special requirements, this is a convenient
2025 * alternative
2026 */
2027int __init early_pfn_to_nid(unsigned long pfn)
2028{
2029	int i;
2030
2031	for (i = 0; i < nr_nodemap_entries; i++) {
2032		unsigned long start_pfn = early_node_map[i].start_pfn;
2033		unsigned long end_pfn = early_node_map[i].end_pfn;
2034
2035		if (start_pfn <= pfn && pfn < end_pfn)
2036			return early_node_map[i].nid;
2037	}
2038
2039	return 0;
2040}
2041#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2042
2043/* Basic iterator support to walk early_node_map[] */
2044#define for_each_active_range_index_in_nid(i, nid) \
2045	for (i = first_active_region_index_in_nid(nid); i != -1; \
2046				i = next_active_region_index_in_nid(i, nid))
2047
2048/**
2049 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2050 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed
2051 * @max_low_pfn: The highest PFN that till be passed to free_bootmem_node
2052 *
2053 * If an architecture guarantees that all ranges registered with
2054 * add_active_ranges() contain no holes and may be freed, this
2055 * this function may be used instead of calling free_bootmem() manually.
2056 */
2057void __init free_bootmem_with_active_regions(int nid,
2058						unsigned long max_low_pfn)
2059{
2060	int i;
2061
2062	for_each_active_range_index_in_nid(i, nid) {
2063		unsigned long size_pages = 0;
2064		unsigned long end_pfn = early_node_map[i].end_pfn;
2065
2066		if (early_node_map[i].start_pfn >= max_low_pfn)
2067			continue;
2068
2069		if (end_pfn > max_low_pfn)
2070			end_pfn = max_low_pfn;
2071
2072		size_pages = end_pfn - early_node_map[i].start_pfn;
2073		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2074				PFN_PHYS(early_node_map[i].start_pfn),
2075				size_pages << PAGE_SHIFT);
2076	}
2077}
2078
2079/**
2080 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2081 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used
2082 *
2083 * If an architecture guarantees that all ranges registered with
2084 * add_active_ranges() contain no holes and may be freed, this
2085 * this function may be used instead of calling memory_present() manually.
2086 */
2087void __init sparse_memory_present_with_active_regions(int nid)
2088{
2089	int i;
2090
2091	for_each_active_range_index_in_nid(i, nid)
2092		memory_present(early_node_map[i].nid,
2093				early_node_map[i].start_pfn,
2094				early_node_map[i].end_pfn);
2095}
2096
2097/**
2098 * get_pfn_range_for_nid - Return the start and end page frames for a node
2099 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned
2100 * @start_pfn: Passed by reference. On return, it will have the node start_pfn
2101 * @end_pfn: Passed by reference. On return, it will have the node end_pfn
2102 *
2103 * It returns the start and end page frame of a node based on information
2104 * provided by an arch calling add_active_range(). If called for a node
2105 * with no available memory, a warning is printed and the start and end
2106 * PFNs will be 0
2107 */
2108void __init get_pfn_range_for_nid(unsigned int nid,
2109			unsigned long *start_pfn, unsigned long *end_pfn)
2110{
2111	int i;
2112	*start_pfn = -1UL;
2113	*end_pfn = 0;
2114
2115	for_each_active_range_index_in_nid(i, nid) {
2116		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2117		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2118	}
2119
2120	if (*start_pfn == -1UL) {
2121		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2122		*start_pfn = 0;
2123	}
2124}
2125
2126/*
2127 * Return the number of pages a zone spans in a node, including holes
2128 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2129 */
2130unsigned long __init zone_spanned_pages_in_node(int nid,
2131					unsigned long zone_type,
2132					unsigned long *ignored)
2133{
2134	unsigned long node_start_pfn, node_end_pfn;
2135	unsigned long zone_start_pfn, zone_end_pfn;
2136
2137	/* Get the start and end of the node and zone */
2138	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2139	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2140	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2141
2142	/* Check that this node has pages within the zone's required range */
2143	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2144		return 0;
2145
2146	/* Move the zone boundaries inside the node if necessary */
2147	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2148	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2149
2150	/* Return the spanned pages */
2151	return zone_end_pfn - zone_start_pfn;
2152}
2153
2154/*
2155 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2156 * then all holes in the requested range will be accounted for
2157 */
2158unsigned long __init __absent_pages_in_range(int nid,
2159				unsigned long range_start_pfn,
2160				unsigned long range_end_pfn)
2161{
2162	int i = 0;
2163	unsigned long prev_end_pfn = 0, hole_pages = 0;
2164	unsigned long start_pfn;
2165
2166	/* Find the end_pfn of the first active range of pfns in the node */
2167	i = first_active_region_index_in_nid(nid);
2168	if (i == -1)
2169		return 0;
2170
2171	prev_end_pfn = early_node_map[i].start_pfn;
2172
2173	/* Find all holes for the zone within the node */
2174	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2175
2176		/* No need to continue if prev_end_pfn is outside the zone */
2177		if (prev_end_pfn >= range_end_pfn)
2178			break;
2179
2180		/* Make sure the end of the zone is not within the hole */
2181		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2182		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2183
2184		/* Update the hole size cound and move on */
2185		if (start_pfn > range_start_pfn) {
2186			BUG_ON(prev_end_pfn > start_pfn);
2187			hole_pages += start_pfn - prev_end_pfn;
2188		}
2189		prev_end_pfn = early_node_map[i].end_pfn;
2190	}
2191
2192	return hole_pages;
2193}
2194
2195/**
2196 * absent_pages_in_range - Return number of page frames in holes within a range
2197 * @start_pfn: The start PFN to start searching for holes
2198 * @end_pfn: The end PFN to stop searching for holes
2199 *
2200 * It returns the number of pages frames in memory holes within a range
2201 */
2202unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2203							unsigned long end_pfn)
2204{
2205	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2206}
2207
2208/* Return the number of page frames in holes in a zone on a node */
2209unsigned long __init zone_absent_pages_in_node(int nid,
2210					unsigned long zone_type,
2211					unsigned long *ignored)
2212{
2213	return __absent_pages_in_range(nid,
2214				arch_zone_lowest_possible_pfn[zone_type],
2215				arch_zone_highest_possible_pfn[zone_type]);
2216}
2217
2218/* Return the zone index a PFN is in */
2219int memmap_zone_idx(struct page *lmem_map)
2220{
2221	int i;
2222	unsigned long phys_addr = virt_to_phys(lmem_map);
2223	unsigned long pfn = phys_addr >> PAGE_SHIFT;
2224
2225	for (i = 0; i < MAX_NR_ZONES; i++)
2226		if (pfn < arch_zone_highest_possible_pfn[i])
2227			break;
2228
2229	return i;
2230}
2231#else
2232static inline unsigned long zone_spanned_pages_in_node(int nid,
2233					unsigned long zone_type,
2234					unsigned long *zones_size)
2235{
2236	return zones_size[zone_type];
2237}
2238
2239static inline unsigned long zone_absent_pages_in_node(int nid,
2240						unsigned long zone_type,
2241						unsigned long *zholes_size)
2242{
2243	if (!zholes_size)
2244		return 0;
2245
2246	return zholes_size[zone_type];
2247}
2248
2249static inline int memmap_zone_idx(struct page *lmem_map)
2250{
2251	return MAX_NR_ZONES;
2252}
2253#endif
2254
2255static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2256		unsigned long *zones_size, unsigned long *zholes_size)
2257{
2258	unsigned long realtotalpages, totalpages = 0;
2259	enum zone_type i;
2260
2261	for (i = 0; i < MAX_NR_ZONES; i++)
2262		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2263								zones_size);
2264	pgdat->node_spanned_pages = totalpages;
2265
2266	realtotalpages = totalpages;
2267	for (i = 0; i < MAX_NR_ZONES; i++)
2268		realtotalpages -=
2269			zone_absent_pages_in_node(pgdat->node_id, i,
2270								zholes_size);
2271	pgdat->node_present_pages = realtotalpages;
2272	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2273							realtotalpages);
2274}
2275
2276/*
2277 * Set up the zone data structures:
2278 *   - mark all pages reserved
2279 *   - mark all memory queues empty
2280 *   - clear the memory bitmaps
2281 */
2282static void __meminit free_area_init_core(struct pglist_data *pgdat,
2283		unsigned long *zones_size, unsigned long *zholes_size)
2284{
2285	enum zone_type j;
2286	int nid = pgdat->node_id;
2287	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2288	int ret;
2289
2290	pgdat_resize_init(pgdat);
2291	pgdat->nr_zones = 0;
2292	init_waitqueue_head(&pgdat->kswapd_wait);
2293	pgdat->kswapd_max_order = 0;
2294
2295	for (j = 0; j < MAX_NR_ZONES; j++) {
2296		struct zone *zone = pgdat->node_zones + j;
2297		unsigned long size, realsize, memmap_pages;
2298
2299		size = zone_spanned_pages_in_node(nid, j, zones_size);
2300		realsize = size - zone_absent_pages_in_node(nid, j,
2301								zholes_size);
2302
2303		/*
2304		 * Adjust realsize so that it accounts for how much memory
2305		 * is used by this zone for memmap. This affects the watermark
2306		 * and per-cpu initialisations
2307		 */
2308		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2309		if (realsize >= memmap_pages) {
2310			realsize -= memmap_pages;
2311			printk(KERN_DEBUG
2312				"  %s zone: %lu pages used for memmap\n",
2313				zone_names[j], memmap_pages);
2314		} else
2315			printk(KERN_WARNING
2316				"  %s zone: %lu pages exceeds realsize %lu\n",
2317				zone_names[j], memmap_pages, realsize);
2318
2319		/* Account for reserved DMA pages */
2320		if (j == ZONE_DMA && realsize > dma_reserve) {
2321			realsize -= dma_reserve;
2322			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2323								dma_reserve);
2324		}
2325
2326		if (!is_highmem_idx(j))
2327			nr_kernel_pages += realsize;
2328		nr_all_pages += realsize;
2329
2330		zone->spanned_pages = size;
2331		zone->present_pages = realsize;
2332#ifdef CONFIG_NUMA
2333		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2334						/ 100;
2335		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2336#endif
2337		zone->name = zone_names[j];
2338		spin_lock_init(&zone->lock);
2339		spin_lock_init(&zone->lru_lock);
2340		zone_seqlock_init(zone);
2341		zone->zone_pgdat = pgdat;
2342		zone->free_pages = 0;
2343
2344		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2345
2346		zone_pcp_init(zone);
2347		INIT_LIST_HEAD(&zone->active_list);
2348		INIT_LIST_HEAD(&zone->inactive_list);
2349		zone->nr_scan_active = 0;
2350		zone->nr_scan_inactive = 0;
2351		zone->nr_active = 0;
2352		zone->nr_inactive = 0;
2353		zap_zone_vm_stats(zone);
2354		atomic_set(&zone->reclaim_in_progress, 0);
2355		if (!size)
2356			continue;
2357
2358		zonetable_add(zone, nid, j, zone_start_pfn, size);
2359		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2360		BUG_ON(ret);
2361		zone_start_pfn += size;
2362	}
2363}
2364
2365static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2366{
2367	/* Skip empty nodes */
2368	if (!pgdat->node_spanned_pages)
2369		return;
2370
2371#ifdef CONFIG_FLAT_NODE_MEM_MAP
2372	/* ia64 gets its own node_mem_map, before this, without bootmem */
2373	if (!pgdat->node_mem_map) {
2374		unsigned long size, start, end;
2375		struct page *map;
2376
2377		/*
2378		 * The zone's endpoints aren't required to be MAX_ORDER
2379		 * aligned but the node_mem_map endpoints must be in order
2380		 * for the buddy allocator to function correctly.
2381		 */
2382		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2383		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2384		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2385		size =  (end - start) * sizeof(struct page);
2386		map = alloc_remap(pgdat->node_id, size);
2387		if (!map)
2388			map = alloc_bootmem_node(pgdat, size);
2389		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2390	}
2391#ifdef CONFIG_FLATMEM
2392	/*
2393	 * With no DISCONTIG, the global mem_map is just set as node 0's
2394	 */
2395	if (pgdat == NODE_DATA(0)) {
2396		mem_map = NODE_DATA(0)->node_mem_map;
2397#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2398		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2399			mem_map -= pgdat->node_start_pfn;
2400#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2401	}
2402#endif
2403#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2404}
2405
2406void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2407		unsigned long *zones_size, unsigned long node_start_pfn,
2408		unsigned long *zholes_size)
2409{
2410	pgdat->node_id = nid;
2411	pgdat->node_start_pfn = node_start_pfn;
2412	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2413
2414	alloc_node_mem_map(pgdat);
2415
2416	free_area_init_core(pgdat, zones_size, zholes_size);
2417}
2418
2419#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2420/**
2421 * add_active_range - Register a range of PFNs backed by physical memory
2422 * @nid: The node ID the range resides on
2423 * @start_pfn: The start PFN of the available physical memory
2424 * @end_pfn: The end PFN of the available physical memory
2425 *
2426 * These ranges are stored in an early_node_map[] and later used by
2427 * free_area_init_nodes() to calculate zone sizes and holes. If the
2428 * range spans a memory hole, it is up to the architecture to ensure
2429 * the memory is not freed by the bootmem allocator. If possible
2430 * the range being registered will be merged with existing ranges.
2431 */
2432void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2433						unsigned long end_pfn)
2434{
2435	int i;
2436
2437	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2438			  "%d entries of %d used\n",
2439			  nid, start_pfn, end_pfn,
2440			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2441
2442	/* Merge with existing active regions if possible */
2443	for (i = 0; i < nr_nodemap_entries; i++) {
2444		if (early_node_map[i].nid != nid)
2445			continue;
2446
2447		/* Skip if an existing region covers this new one */
2448		if (start_pfn >= early_node_map[i].start_pfn &&
2449				end_pfn <= early_node_map[i].end_pfn)
2450			return;
2451
2452		/* Merge forward if suitable */
2453		if (start_pfn <= early_node_map[i].end_pfn &&
2454				end_pfn > early_node_map[i].end_pfn) {
2455			early_node_map[i].end_pfn = end_pfn;
2456			return;
2457		}
2458
2459		/* Merge backward if suitable */
2460		if (start_pfn < early_node_map[i].end_pfn &&
2461				end_pfn >= early_node_map[i].start_pfn) {
2462			early_node_map[i].start_pfn = start_pfn;
2463			return;
2464		}
2465	}
2466
2467	/* Check that early_node_map is large enough */
2468	if (i >= MAX_ACTIVE_REGIONS) {
2469		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2470							MAX_ACTIVE_REGIONS);
2471		return;
2472	}
2473
2474	early_node_map[i].nid = nid;
2475	early_node_map[i].start_pfn = start_pfn;
2476	early_node_map[i].end_pfn = end_pfn;
2477	nr_nodemap_entries = i + 1;
2478}
2479
2480/**
2481 * shrink_active_range - Shrink an existing registered range of PFNs
2482 * @nid: The node id the range is on that should be shrunk
2483 * @old_end_pfn: The old end PFN of the range
2484 * @new_end_pfn: The new PFN of the range
2485 *
2486 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2487 * The map is kept at the end physical page range that has already been
2488 * registered with add_active_range(). This function allows an arch to shrink
2489 * an existing registered range.
2490 */
2491void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2492						unsigned long new_end_pfn)
2493{
2494	int i;
2495
2496	/* Find the old active region end and shrink */
2497	for_each_active_range_index_in_nid(i, nid)
2498		if (early_node_map[i].end_pfn == old_end_pfn) {
2499			early_node_map[i].end_pfn = new_end_pfn;
2500			break;
2501		}
2502}
2503
2504/**
2505 * remove_all_active_ranges - Remove all currently registered regions
2506 * During discovery, it may be found that a table like SRAT is invalid
2507 * and an alternative discovery method must be used. This function removes
2508 * all currently registered regions.
2509 */
2510void __init remove_all_active_ranges()
2511{
2512	memset(early_node_map, 0, sizeof(early_node_map));
2513	nr_nodemap_entries = 0;
2514}
2515
2516/* Compare two active node_active_regions */
2517static int __init cmp_node_active_region(const void *a, const void *b)
2518{
2519	struct node_active_region *arange = (struct node_active_region *)a;
2520	struct node_active_region *brange = (struct node_active_region *)b;
2521
2522	/* Done this way to avoid overflows */
2523	if (arange->start_pfn > brange->start_pfn)
2524		return 1;
2525	if (arange->start_pfn < brange->start_pfn)
2526		return -1;
2527
2528	return 0;
2529}
2530
2531/* sort the node_map by start_pfn */
2532static void __init sort_node_map(void)
2533{
2534	sort(early_node_map, (size_t)nr_nodemap_entries,
2535			sizeof(struct node_active_region),
2536			cmp_node_active_region, NULL);
2537}
2538
2539/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2540unsigned long __init find_min_pfn_for_node(unsigned long nid)
2541{
2542	int i;
2543
2544	/* Assuming a sorted map, the first range found has the starting pfn */
2545	for_each_active_range_index_in_nid(i, nid)
2546		return early_node_map[i].start_pfn;
2547
2548	printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2549	return 0;
2550}
2551
2552/**
2553 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2554 *
2555 * It returns the minimum PFN based on information provided via
2556 * add_active_range()
2557 */
2558unsigned long __init find_min_pfn_with_active_regions(void)
2559{
2560	return find_min_pfn_for_node(MAX_NUMNODES);
2561}
2562
2563/**
2564 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2565 *
2566 * It returns the maximum PFN based on information provided via
2567 * add_active_range()
2568 */
2569unsigned long __init find_max_pfn_with_active_regions(void)
2570{
2571	int i;
2572	unsigned long max_pfn = 0;
2573
2574	for (i = 0; i < nr_nodemap_entries; i++)
2575		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2576
2577	return max_pfn;
2578}
2579
2580/**
2581 * free_area_init_nodes - Initialise all pg_data_t and zone data
2582 * @arch_max_dma_pfn: The maximum PFN usable for ZONE_DMA
2583 * @arch_max_dma32_pfn: The maximum PFN usable for ZONE_DMA32
2584 * @arch_max_low_pfn: The maximum PFN usable for ZONE_NORMAL
2585 * @arch_max_high_pfn: The maximum PFN usable for ZONE_HIGHMEM
2586 *
2587 * This will call free_area_init_node() for each active node in the system.
2588 * Using the page ranges provided by add_active_range(), the size of each
2589 * zone in each node and their holes is calculated. If the maximum PFN
2590 * between two adjacent zones match, it is assumed that the zone is empty.
2591 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2592 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2593 * starts where the previous one ended. For example, ZONE_DMA32 starts
2594 * at arch_max_dma_pfn.
2595 */
2596void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2597{
2598	unsigned long nid;
2599	enum zone_type i;
2600
2601	/* Record where the zone boundaries are */
2602	memset(arch_zone_lowest_possible_pfn, 0,
2603				sizeof(arch_zone_lowest_possible_pfn));
2604	memset(arch_zone_highest_possible_pfn, 0,
2605				sizeof(arch_zone_highest_possible_pfn));
2606	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2607	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2608	for (i = 1; i < MAX_NR_ZONES; i++) {
2609		arch_zone_lowest_possible_pfn[i] =
2610			arch_zone_highest_possible_pfn[i-1];
2611		arch_zone_highest_possible_pfn[i] =
2612			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2613	}
2614
2615	/* Regions in the early_node_map can be in any order */
2616	sort_node_map();
2617
2618	/* Print out the zone ranges */
2619	printk("Zone PFN ranges:\n");
2620	for (i = 0; i < MAX_NR_ZONES; i++)
2621		printk("  %-8s %8lu -> %8lu\n",
2622				zone_names[i],
2623				arch_zone_lowest_possible_pfn[i],
2624				arch_zone_highest_possible_pfn[i]);
2625
2626	/* Print out the early_node_map[] */
2627	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2628	for (i = 0; i < nr_nodemap_entries; i++)
2629		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2630						early_node_map[i].start_pfn,
2631						early_node_map[i].end_pfn);
2632
2633	/* Initialise every node */
2634	for_each_online_node(nid) {
2635		pg_data_t *pgdat = NODE_DATA(nid);
2636		free_area_init_node(nid, pgdat, NULL,
2637				find_min_pfn_for_node(nid), NULL);
2638	}
2639}
2640#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2641
2642/**
2643 * set_dma_reserve - Account the specified number of pages reserved in ZONE_DMA
2644 * @new_dma_reserve - The number of pages to mark reserved
2645 *
2646 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2647 * In the DMA zone, a significant percentage may be consumed by kernel image
2648 * and other unfreeable allocations which can skew the watermarks badly. This
2649 * function may optionally be used to account for unfreeable pages in
2650 * ZONE_DMA. The effect will be lower watermarks and smaller per-cpu batchsize
2651 */
2652void __init set_dma_reserve(unsigned long new_dma_reserve)
2653{
2654	dma_reserve = new_dma_reserve;
2655}
2656
2657#ifndef CONFIG_NEED_MULTIPLE_NODES
2658static bootmem_data_t contig_bootmem_data;
2659struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2660
2661EXPORT_SYMBOL(contig_page_data);
2662#endif
2663
2664void __init free_area_init(unsigned long *zones_size)
2665{
2666	free_area_init_node(0, NODE_DATA(0), zones_size,
2667			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2668}
2669
2670#ifdef CONFIG_HOTPLUG_CPU
2671static int page_alloc_cpu_notify(struct notifier_block *self,
2672				 unsigned long action, void *hcpu)
2673{
2674	int cpu = (unsigned long)hcpu;
2675
2676	if (action == CPU_DEAD) {
2677		local_irq_disable();
2678		__drain_pages(cpu);
2679		vm_events_fold_cpu(cpu);
2680		local_irq_enable();
2681		refresh_cpu_vm_stats(cpu);
2682	}
2683	return NOTIFY_OK;
2684}
2685#endif /* CONFIG_HOTPLUG_CPU */
2686
2687void __init page_alloc_init(void)
2688{
2689	hotcpu_notifier(page_alloc_cpu_notify, 0);
2690}
2691
2692/*
2693 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2694 *	or min_free_kbytes changes.
2695 */
2696static void calculate_totalreserve_pages(void)
2697{
2698	struct pglist_data *pgdat;
2699	unsigned long reserve_pages = 0;
2700	enum zone_type i, j;
2701
2702	for_each_online_pgdat(pgdat) {
2703		for (i = 0; i < MAX_NR_ZONES; i++) {
2704			struct zone *zone = pgdat->node_zones + i;
2705			unsigned long max = 0;
2706
2707			/* Find valid and maximum lowmem_reserve in the zone */
2708			for (j = i; j < MAX_NR_ZONES; j++) {
2709				if (zone->lowmem_reserve[j] > max)
2710					max = zone->lowmem_reserve[j];
2711			}
2712
2713			/* we treat pages_high as reserved pages. */
2714			max += zone->pages_high;
2715
2716			if (max > zone->present_pages)
2717				max = zone->present_pages;
2718			reserve_pages += max;
2719		}
2720	}
2721	totalreserve_pages = reserve_pages;
2722}
2723
2724/*
2725 * setup_per_zone_lowmem_reserve - called whenever
2726 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2727 *	has a correct pages reserved value, so an adequate number of
2728 *	pages are left in the zone after a successful __alloc_pages().
2729 */
2730static void setup_per_zone_lowmem_reserve(void)
2731{
2732	struct pglist_data *pgdat;
2733	enum zone_type j, idx;
2734
2735	for_each_online_pgdat(pgdat) {
2736		for (j = 0; j < MAX_NR_ZONES; j++) {
2737			struct zone *zone = pgdat->node_zones + j;
2738			unsigned long present_pages = zone->present_pages;
2739
2740			zone->lowmem_reserve[j] = 0;
2741
2742			idx = j;
2743			while (idx) {
2744				struct zone *lower_zone;
2745
2746				idx--;
2747
2748				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2749					sysctl_lowmem_reserve_ratio[idx] = 1;
2750
2751				lower_zone = pgdat->node_zones + idx;
2752				lower_zone->lowmem_reserve[j] = present_pages /
2753					sysctl_lowmem_reserve_ratio[idx];
2754				present_pages += lower_zone->present_pages;
2755			}
2756		}
2757	}
2758
2759	/* update totalreserve_pages */
2760	calculate_totalreserve_pages();
2761}
2762
2763/*
2764 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2765 *	that the pages_{min,low,high} values for each zone are set correctly
2766 *	with respect to min_free_kbytes.
2767 */
2768void setup_per_zone_pages_min(void)
2769{
2770	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2771	unsigned long lowmem_pages = 0;
2772	struct zone *zone;
2773	unsigned long flags;
2774
2775	/* Calculate total number of !ZONE_HIGHMEM pages */
2776	for_each_zone(zone) {
2777		if (!is_highmem(zone))
2778			lowmem_pages += zone->present_pages;
2779	}
2780
2781	for_each_zone(zone) {
2782		u64 tmp;
2783
2784		spin_lock_irqsave(&zone->lru_lock, flags);
2785		tmp = (u64)pages_min * zone->present_pages;
2786		do_div(tmp, lowmem_pages);
2787		if (is_highmem(zone)) {
2788			/*
2789			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2790			 * need highmem pages, so cap pages_min to a small
2791			 * value here.
2792			 *
2793			 * The (pages_high-pages_low) and (pages_low-pages_min)
2794			 * deltas controls asynch page reclaim, and so should
2795			 * not be capped for highmem.
2796			 */
2797			int min_pages;
2798
2799			min_pages = zone->present_pages / 1024;
2800			if (min_pages < SWAP_CLUSTER_MAX)
2801				min_pages = SWAP_CLUSTER_MAX;
2802			if (min_pages > 128)
2803				min_pages = 128;
2804			zone->pages_min = min_pages;
2805		} else {
2806			/*
2807			 * If it's a lowmem zone, reserve a number of pages
2808			 * proportionate to the zone's size.
2809			 */
2810			zone->pages_min = tmp;
2811		}
2812
2813		zone->pages_low   = zone->pages_min + (tmp >> 2);
2814		zone->pages_high  = zone->pages_min + (tmp >> 1);
2815		spin_unlock_irqrestore(&zone->lru_lock, flags);
2816	}
2817
2818	/* update totalreserve_pages */
2819	calculate_totalreserve_pages();
2820}
2821
2822/*
2823 * Initialise min_free_kbytes.
2824 *
2825 * For small machines we want it small (128k min).  For large machines
2826 * we want it large (64MB max).  But it is not linear, because network
2827 * bandwidth does not increase linearly with machine size.  We use
2828 *
2829 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2830 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2831 *
2832 * which yields
2833 *
2834 * 16MB:	512k
2835 * 32MB:	724k
2836 * 64MB:	1024k
2837 * 128MB:	1448k
2838 * 256MB:	2048k
2839 * 512MB:	2896k
2840 * 1024MB:	4096k
2841 * 2048MB:	5792k
2842 * 4096MB:	8192k
2843 * 8192MB:	11584k
2844 * 16384MB:	16384k
2845 */
2846static int __init init_per_zone_pages_min(void)
2847{
2848	unsigned long lowmem_kbytes;
2849
2850	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2851
2852	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2853	if (min_free_kbytes < 128)
2854		min_free_kbytes = 128;
2855	if (min_free_kbytes > 65536)
2856		min_free_kbytes = 65536;
2857	setup_per_zone_pages_min();
2858	setup_per_zone_lowmem_reserve();
2859	return 0;
2860}
2861module_init(init_per_zone_pages_min)
2862
2863/*
2864 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2865 *	that we can call two helper functions whenever min_free_kbytes
2866 *	changes.
2867 */
2868int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2869	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2870{
2871	proc_dointvec(table, write, file, buffer, length, ppos);
2872	setup_per_zone_pages_min();
2873	return 0;
2874}
2875
2876#ifdef CONFIG_NUMA
2877int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2878	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2879{
2880	struct zone *zone;
2881	int rc;
2882
2883	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2884	if (rc)
2885		return rc;
2886
2887	for_each_zone(zone)
2888		zone->min_unmapped_pages = (zone->present_pages *
2889				sysctl_min_unmapped_ratio) / 100;
2890	return 0;
2891}
2892
2893int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2894	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2895{
2896	struct zone *zone;
2897	int rc;
2898
2899	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2900	if (rc)
2901		return rc;
2902
2903	for_each_zone(zone)
2904		zone->min_slab_pages = (zone->present_pages *
2905				sysctl_min_slab_ratio) / 100;
2906	return 0;
2907}
2908#endif
2909
2910/*
2911 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2912 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2913 *	whenever sysctl_lowmem_reserve_ratio changes.
2914 *
2915 * The reserve ratio obviously has absolutely no relation with the
2916 * pages_min watermarks. The lowmem reserve ratio can only make sense
2917 * if in function of the boot time zone sizes.
2918 */
2919int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2920	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2921{
2922	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2923	setup_per_zone_lowmem_reserve();
2924	return 0;
2925}
2926
2927/*
2928 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2929 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2930 * can have before it gets flushed back to buddy allocator.
2931 */
2932
2933int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2934	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2935{
2936	struct zone *zone;
2937	unsigned int cpu;
2938	int ret;
2939
2940	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2941	if (!write || (ret == -EINVAL))
2942		return ret;
2943	for_each_zone(zone) {
2944		for_each_online_cpu(cpu) {
2945			unsigned long  high;
2946			high = zone->present_pages / percpu_pagelist_fraction;
2947			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2948		}
2949	}
2950	return 0;
2951}
2952
2953int hashdist = HASHDIST_DEFAULT;
2954
2955#ifdef CONFIG_NUMA
2956static int __init set_hashdist(char *str)
2957{
2958	if (!str)
2959		return 0;
2960	hashdist = simple_strtoul(str, &str, 0);
2961	return 1;
2962}
2963__setup("hashdist=", set_hashdist);
2964#endif
2965
2966/*
2967 * allocate a large system hash table from bootmem
2968 * - it is assumed that the hash table must contain an exact power-of-2
2969 *   quantity of entries
2970 * - limit is the number of hash buckets, not the total allocation size
2971 */
2972void *__init alloc_large_system_hash(const char *tablename,
2973				     unsigned long bucketsize,
2974				     unsigned long numentries,
2975				     int scale,
2976				     int flags,
2977				     unsigned int *_hash_shift,
2978				     unsigned int *_hash_mask,
2979				     unsigned long limit)
2980{
2981	unsigned long long max = limit;
2982	unsigned long log2qty, size;
2983	void *table = NULL;
2984
2985	/* allow the kernel cmdline to have a say */
2986	if (!numentries) {
2987		/* round applicable memory size up to nearest megabyte */
2988		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2989		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2990		numentries >>= 20 - PAGE_SHIFT;
2991		numentries <<= 20 - PAGE_SHIFT;
2992
2993		/* limit to 1 bucket per 2^scale bytes of low memory */
2994		if (scale > PAGE_SHIFT)
2995			numentries >>= (scale - PAGE_SHIFT);
2996		else
2997			numentries <<= (PAGE_SHIFT - scale);
2998	}
2999	numentries = roundup_pow_of_two(numentries);
3000
3001	/* limit allocation size to 1/16 total memory by default */
3002	if (max == 0) {
3003		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3004		do_div(max, bucketsize);
3005	}
3006
3007	if (numentries > max)
3008		numentries = max;
3009
3010	log2qty = long_log2(numentries);
3011
3012	do {
3013		size = bucketsize << log2qty;
3014		if (flags & HASH_EARLY)
3015			table = alloc_bootmem(size);
3016		else if (hashdist)
3017			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3018		else {
3019			unsigned long order;
3020			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3021				;
3022			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3023		}
3024	} while (!table && size > PAGE_SIZE && --log2qty);
3025
3026	if (!table)
3027		panic("Failed to allocate %s hash table\n", tablename);
3028
3029	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3030	       tablename,
3031	       (1U << log2qty),
3032	       long_log2(size) - PAGE_SHIFT,
3033	       size);
3034
3035	if (_hash_shift)
3036		*_hash_shift = log2qty;
3037	if (_hash_mask)
3038		*_hash_mask = (1 << log2qty) - 1;
3039
3040	return table;
3041}
3042
3043#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3044struct page *pfn_to_page(unsigned long pfn)
3045{
3046	return __pfn_to_page(pfn);
3047}
3048unsigned long page_to_pfn(struct page *page)
3049{
3050	return __page_to_pfn(page);
3051}
3052EXPORT_SYMBOL(pfn_to_page);
3053EXPORT_SYMBOL(page_to_pfn);
3054#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3055