page_alloc.c revision 112067f0905b2de862c607ee62411cf47d2fe5c4
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54#include "internal.h"
55
56/*
57 * Array of node states.
58 */
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60	[N_POSSIBLE] = NODE_MASK_ALL,
61	[N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65	[N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67	[N_CPU] = { { [0] = 1UL } },
68#endif	/* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
72unsigned long totalram_pages __read_mostly;
73unsigned long totalreserve_pages __read_mostly;
74unsigned long highest_memmap_pfn __read_mostly;
75int percpu_pagelist_fraction;
76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
82static void __free_pages_ok(struct page *page, unsigned int order);
83
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 *	1G machine -> (16M dma, 784M normal, 224M high)
88 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96#ifdef CONFIG_ZONE_DMA
97	 256,
98#endif
99#ifdef CONFIG_ZONE_DMA32
100	 256,
101#endif
102#ifdef CONFIG_HIGHMEM
103	 32,
104#endif
105	 32,
106};
107
108EXPORT_SYMBOL(totalram_pages);
109
110static char * const zone_names[MAX_NR_ZONES] = {
111#ifdef CONFIG_ZONE_DMA
112	 "DMA",
113#endif
114#ifdef CONFIG_ZONE_DMA32
115	 "DMA32",
116#endif
117	 "Normal",
118#ifdef CONFIG_HIGHMEM
119	 "HighMem",
120#endif
121	 "Movable",
122};
123
124int min_free_kbytes = 1024;
125
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
128static unsigned long __meminitdata dma_reserve;
129
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131  /*
132   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133   * ranges of memory (RAM) that may be registered with add_active_range().
134   * Ranges passed to add_active_range() will be merged if possible
135   * so the number of times add_active_range() can be called is
136   * related to the number of nodes and the number of holes
137   */
138  #ifdef CONFIG_MAX_ACTIVE_REGIONS
139    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141  #else
142    #if MAX_NUMNODES >= 32
143      /* If there can be many nodes, allow up to 50 holes per node */
144      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145    #else
146      /* By default, allow up to 256 distinct regions */
147      #define MAX_ACTIVE_REGIONS 256
148    #endif
149  #endif
150
151  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152  static int __meminitdata nr_nodemap_entries;
153  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155  static unsigned long __initdata required_kernelcore;
156  static unsigned long __initdata required_movablecore;
157  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160  int movable_zone;
161  EXPORT_SYMBOL(movable_zone);
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166int nr_online_nodes __read_mostly = 1;
167EXPORT_SYMBOL(nr_node_ids);
168EXPORT_SYMBOL(nr_online_nodes);
169#endif
170
171int page_group_by_mobility_disabled __read_mostly;
172
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
175
176	if (unlikely(page_group_by_mobility_disabled))
177		migratetype = MIGRATE_UNMOVABLE;
178
179	set_pageblock_flags_group(page, (unsigned long)migratetype,
180					PB_migrate, PB_migrate_end);
181}
182
183bool oom_killer_disabled __read_mostly;
184
185#ifdef CONFIG_DEBUG_VM
186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187{
188	int ret = 0;
189	unsigned seq;
190	unsigned long pfn = page_to_pfn(page);
191
192	do {
193		seq = zone_span_seqbegin(zone);
194		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195			ret = 1;
196		else if (pfn < zone->zone_start_pfn)
197			ret = 1;
198	} while (zone_span_seqretry(zone, seq));
199
200	return ret;
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
205	if (!pfn_valid_within(page_to_pfn(page)))
206		return 0;
207	if (zone != page_zone(page))
208		return 0;
209
210	return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217	if (page_outside_zone_boundaries(zone, page))
218		return 1;
219	if (!page_is_consistent(zone, page))
220		return 1;
221
222	return 0;
223}
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227	return 0;
228}
229#endif
230
231static void bad_page(struct page *page)
232{
233	static unsigned long resume;
234	static unsigned long nr_shown;
235	static unsigned long nr_unshown;
236
237	/*
238	 * Allow a burst of 60 reports, then keep quiet for that minute;
239	 * or allow a steady drip of one report per second.
240	 */
241	if (nr_shown == 60) {
242		if (time_before(jiffies, resume)) {
243			nr_unshown++;
244			goto out;
245		}
246		if (nr_unshown) {
247			printk(KERN_ALERT
248			      "BUG: Bad page state: %lu messages suppressed\n",
249				nr_unshown);
250			nr_unshown = 0;
251		}
252		nr_shown = 0;
253	}
254	if (nr_shown++ == 0)
255		resume = jiffies + 60 * HZ;
256
257	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
258		current->comm, page_to_pfn(page));
259	printk(KERN_ALERT
260		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261		page, (void *)page->flags, page_count(page),
262		page_mapcount(page), page->mapping, page->index);
263
264	dump_stack();
265out:
266	/* Leave bad fields for debug, except PageBuddy could make trouble */
267	__ClearPageBuddy(page);
268	add_taint(TAINT_BAD_PAGE);
269}
270
271/*
272 * Higher-order pages are called "compound pages".  They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set.  All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function.  Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286static void free_compound_page(struct page *page)
287{
288	__free_pages_ok(page, compound_order(page));
289}
290
291void prep_compound_page(struct page *page, unsigned long order)
292{
293	int i;
294	int nr_pages = 1 << order;
295
296	set_compound_page_dtor(page, free_compound_page);
297	set_compound_order(page, order);
298	__SetPageHead(page);
299	for (i = 1; i < nr_pages; i++) {
300		struct page *p = page + i;
301
302		__SetPageTail(p);
303		p->first_page = page;
304	}
305}
306
307static int destroy_compound_page(struct page *page, unsigned long order)
308{
309	int i;
310	int nr_pages = 1 << order;
311	int bad = 0;
312
313	if (unlikely(compound_order(page) != order) ||
314	    unlikely(!PageHead(page))) {
315		bad_page(page);
316		bad++;
317	}
318
319	__ClearPageHead(page);
320
321	for (i = 1; i < nr_pages; i++) {
322		struct page *p = page + i;
323
324		if (unlikely(!PageTail(p) || (p->first_page != page))) {
325			bad_page(page);
326			bad++;
327		}
328		__ClearPageTail(p);
329	}
330
331	return bad;
332}
333
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336	int i;
337
338	/*
339	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340	 * and __GFP_HIGHMEM from hard or soft interrupt context.
341	 */
342	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343	for (i = 0; i < (1 << order); i++)
344		clear_highpage(page + i);
345}
346
347static inline void set_page_order(struct page *page, int order)
348{
349	set_page_private(page, order);
350	__SetPageBuddy(page);
351}
352
353static inline void rmv_page_order(struct page *page)
354{
355	__ClearPageBuddy(page);
356	set_page_private(page, 0);
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 *     B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 *     P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379	unsigned long buddy_idx = page_idx ^ (1 << order);
380
381	return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387	return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404								int order)
405{
406	if (!pfn_valid_within(page_to_pfn(buddy)))
407		return 0;
408
409	if (page_zone_id(page) != page_zone_id(buddy))
410		return 0;
411
412	if (PageBuddy(buddy) && page_order(buddy) == order) {
413		VM_BUG_ON(page_count(buddy) != 0);
414		return 1;
415	}
416	return 0;
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other.  That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443static inline void __free_one_page(struct page *page,
444		struct zone *zone, unsigned int order,
445		int migratetype)
446{
447	unsigned long page_idx;
448
449	if (unlikely(PageCompound(page)))
450		if (unlikely(destroy_compound_page(page, order)))
451			return;
452
453	VM_BUG_ON(migratetype == -1);
454
455	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457	VM_BUG_ON(page_idx & ((1 << order) - 1));
458	VM_BUG_ON(bad_range(zone, page));
459
460	while (order < MAX_ORDER-1) {
461		unsigned long combined_idx;
462		struct page *buddy;
463
464		buddy = __page_find_buddy(page, page_idx, order);
465		if (!page_is_buddy(page, buddy, order))
466			break;
467
468		/* Our buddy is free, merge with it and move up one order. */
469		list_del(&buddy->lru);
470		zone->free_area[order].nr_free--;
471		rmv_page_order(buddy);
472		combined_idx = __find_combined_index(page_idx, order);
473		page = page + (combined_idx - page_idx);
474		page_idx = combined_idx;
475		order++;
476	}
477	set_page_order(page, order);
478	list_add(&page->lru,
479		&zone->free_area[order].free_list[migratetype]);
480	zone->free_area[order].nr_free++;
481}
482
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
491	__dec_zone_page_state(page, NR_MLOCK);
492	__count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
498static inline int free_pages_check(struct page *page)
499{
500	if (unlikely(page_mapcount(page) |
501		(page->mapping != NULL)  |
502		(atomic_read(&page->_count) != 0) |
503		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504		bad_page(page);
505		return 1;
506	}
507	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509	return 0;
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
523static void free_pages_bulk(struct zone *zone, int count,
524					struct list_head *list, int order)
525{
526	spin_lock(&zone->lock);
527	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528	zone->pages_scanned = 0;
529
530	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531	while (count--) {
532		struct page *page;
533
534		VM_BUG_ON(list_empty(list));
535		page = list_entry(list->prev, struct page, lru);
536		/* have to delete it as __free_one_page list manipulates */
537		list_del(&page->lru);
538		__free_one_page(page, zone, order, page_private(page));
539	}
540	spin_unlock(&zone->lock);
541}
542
543static void free_one_page(struct zone *zone, struct page *page, int order,
544				int migratetype)
545{
546	spin_lock(&zone->lock);
547	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548	zone->pages_scanned = 0;
549
550	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551	__free_one_page(page, zone, order, migratetype);
552	spin_unlock(&zone->lock);
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557	unsigned long flags;
558	int i;
559	int bad = 0;
560	int wasMlocked = TestClearPageMlocked(page);
561
562	kmemcheck_free_shadow(page, order);
563
564	for (i = 0 ; i < (1 << order) ; ++i)
565		bad += free_pages_check(page + i);
566	if (bad)
567		return;
568
569	if (!PageHighMem(page)) {
570		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571		debug_check_no_obj_freed(page_address(page),
572					   PAGE_SIZE << order);
573	}
574	arch_free_page(page, order);
575	kernel_map_pages(page, 1 << order, 0);
576
577	local_irq_save(flags);
578	if (unlikely(wasMlocked))
579		free_page_mlock(page);
580	__count_vm_events(PGFREE, 1 << order);
581	free_one_page(page_zone(page), page, order,
582					get_pageblock_migratetype(page));
583	local_irq_restore(flags);
584}
585
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590{
591	if (order == 0) {
592		__ClearPageReserved(page);
593		set_page_count(page, 0);
594		set_page_refcounted(page);
595		__free_page(page);
596	} else {
597		int loop;
598
599		prefetchw(page);
600		for (loop = 0; loop < BITS_PER_LONG; loop++) {
601			struct page *p = &page[loop];
602
603			if (loop + 1 < BITS_PER_LONG)
604				prefetchw(p + 1);
605			__ClearPageReserved(p);
606			set_page_count(p, 0);
607		}
608
609		set_page_refcounted(page);
610		__free_pages(page, order);
611	}
612}
613
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
629static inline void expand(struct zone *zone, struct page *page,
630	int low, int high, struct free_area *area,
631	int migratetype)
632{
633	unsigned long size = 1 << high;
634
635	while (high > low) {
636		area--;
637		high--;
638		size >>= 1;
639		VM_BUG_ON(bad_range(zone, &page[size]));
640		list_add(&page[size].lru, &area->free_list[migratetype]);
641		area->nr_free++;
642		set_page_order(&page[size], high);
643	}
644}
645
646/*
647 * This page is about to be returned from the page allocator
648 */
649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650{
651	if (unlikely(page_mapcount(page) |
652		(page->mapping != NULL)  |
653		(atomic_read(&page->_count) != 0)  |
654		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655		bad_page(page);
656		return 1;
657	}
658
659	set_page_private(page, 0);
660	set_page_refcounted(page);
661
662	arch_alloc_page(page, order);
663	kernel_map_pages(page, 1 << order, 1);
664
665	if (gfp_flags & __GFP_ZERO)
666		prep_zero_page(page, order, gfp_flags);
667
668	if (order && (gfp_flags & __GFP_COMP))
669		prep_compound_page(page, order);
670
671	return 0;
672}
673
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680						int migratetype)
681{
682	unsigned int current_order;
683	struct free_area * area;
684	struct page *page;
685
686	/* Find a page of the appropriate size in the preferred list */
687	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688		area = &(zone->free_area[current_order]);
689		if (list_empty(&area->free_list[migratetype]))
690			continue;
691
692		page = list_entry(area->free_list[migratetype].next,
693							struct page, lru);
694		list_del(&page->lru);
695		rmv_page_order(page);
696		area->nr_free--;
697		expand(zone, page, order, current_order, area, migratetype);
698		return page;
699	}
700
701	return NULL;
702}
703
704
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
711	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
712	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
714};
715
716/*
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
720 */
721static int move_freepages(struct zone *zone,
722			  struct page *start_page, struct page *end_page,
723			  int migratetype)
724{
725	struct page *page;
726	unsigned long order;
727	int pages_moved = 0;
728
729#ifndef CONFIG_HOLES_IN_ZONE
730	/*
731	 * page_zone is not safe to call in this context when
732	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733	 * anyway as we check zone boundaries in move_freepages_block().
734	 * Remove at a later date when no bug reports exist related to
735	 * grouping pages by mobility
736	 */
737	BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740	for (page = start_page; page <= end_page;) {
741		/* Make sure we are not inadvertently changing nodes */
742		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
744		if (!pfn_valid_within(page_to_pfn(page))) {
745			page++;
746			continue;
747		}
748
749		if (!PageBuddy(page)) {
750			page++;
751			continue;
752		}
753
754		order = page_order(page);
755		list_del(&page->lru);
756		list_add(&page->lru,
757			&zone->free_area[order].free_list[migratetype]);
758		page += 1 << order;
759		pages_moved += 1 << order;
760	}
761
762	return pages_moved;
763}
764
765static int move_freepages_block(struct zone *zone, struct page *page,
766				int migratetype)
767{
768	unsigned long start_pfn, end_pfn;
769	struct page *start_page, *end_page;
770
771	start_pfn = page_to_pfn(page);
772	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773	start_page = pfn_to_page(start_pfn);
774	end_page = start_page + pageblock_nr_pages - 1;
775	end_pfn = start_pfn + pageblock_nr_pages - 1;
776
777	/* Do not cross zone boundaries */
778	if (start_pfn < zone->zone_start_pfn)
779		start_page = page;
780	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781		return 0;
782
783	return move_freepages(zone, start_page, end_page, migratetype);
784}
785
786/* Remove an element from the buddy allocator from the fallback list */
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
789{
790	struct free_area * area;
791	int current_order;
792	struct page *page;
793	int migratetype, i;
794
795	/* Find the largest possible block of pages in the other list */
796	for (current_order = MAX_ORDER-1; current_order >= order;
797						--current_order) {
798		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799			migratetype = fallbacks[start_migratetype][i];
800
801			/* MIGRATE_RESERVE handled later if necessary */
802			if (migratetype == MIGRATE_RESERVE)
803				continue;
804
805			area = &(zone->free_area[current_order]);
806			if (list_empty(&area->free_list[migratetype]))
807				continue;
808
809			page = list_entry(area->free_list[migratetype].next,
810					struct page, lru);
811			area->nr_free--;
812
813			/*
814			 * If breaking a large block of pages, move all free
815			 * pages to the preferred allocation list. If falling
816			 * back for a reclaimable kernel allocation, be more
817			 * agressive about taking ownership of free pages
818			 */
819			if (unlikely(current_order >= (pageblock_order >> 1)) ||
820					start_migratetype == MIGRATE_RECLAIMABLE ||
821					page_group_by_mobility_disabled) {
822				unsigned long pages;
823				pages = move_freepages_block(zone, page,
824								start_migratetype);
825
826				/* Claim the whole block if over half of it is free */
827				if (pages >= (1 << (pageblock_order-1)) ||
828						page_group_by_mobility_disabled)
829					set_pageblock_migratetype(page,
830								start_migratetype);
831
832				migratetype = start_migratetype;
833			}
834
835			/* Remove the page from the freelists */
836			list_del(&page->lru);
837			rmv_page_order(page);
838
839			if (current_order == pageblock_order)
840				set_pageblock_migratetype(page,
841							start_migratetype);
842
843			expand(zone, page, order, current_order, area, migratetype);
844			return page;
845		}
846	}
847
848	return NULL;
849}
850
851/*
852 * Do the hard work of removing an element from the buddy allocator.
853 * Call me with the zone->lock already held.
854 */
855static struct page *__rmqueue(struct zone *zone, unsigned int order,
856						int migratetype)
857{
858	struct page *page;
859
860retry_reserve:
861	page = __rmqueue_smallest(zone, order, migratetype);
862
863	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
864		page = __rmqueue_fallback(zone, order, migratetype);
865
866		/*
867		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
868		 * is used because __rmqueue_smallest is an inline function
869		 * and we want just one call site
870		 */
871		if (!page) {
872			migratetype = MIGRATE_RESERVE;
873			goto retry_reserve;
874		}
875	}
876
877	return page;
878}
879
880/*
881 * Obtain a specified number of elements from the buddy allocator, all under
882 * a single hold of the lock, for efficiency.  Add them to the supplied list.
883 * Returns the number of new pages which were placed at *list.
884 */
885static int rmqueue_bulk(struct zone *zone, unsigned int order,
886			unsigned long count, struct list_head *list,
887			int migratetype, int cold)
888{
889	int i;
890
891	spin_lock(&zone->lock);
892	for (i = 0; i < count; ++i) {
893		struct page *page = __rmqueue(zone, order, migratetype);
894		if (unlikely(page == NULL))
895			break;
896
897		/*
898		 * Split buddy pages returned by expand() are received here
899		 * in physical page order. The page is added to the callers and
900		 * list and the list head then moves forward. From the callers
901		 * perspective, the linked list is ordered by page number in
902		 * some conditions. This is useful for IO devices that can
903		 * merge IO requests if the physical pages are ordered
904		 * properly.
905		 */
906		if (likely(cold == 0))
907			list_add(&page->lru, list);
908		else
909			list_add_tail(&page->lru, list);
910		set_page_private(page, migratetype);
911		list = &page->lru;
912	}
913	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
914	spin_unlock(&zone->lock);
915	return i;
916}
917
918#ifdef CONFIG_NUMA
919/*
920 * Called from the vmstat counter updater to drain pagesets of this
921 * currently executing processor on remote nodes after they have
922 * expired.
923 *
924 * Note that this function must be called with the thread pinned to
925 * a single processor.
926 */
927void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
928{
929	unsigned long flags;
930	int to_drain;
931
932	local_irq_save(flags);
933	if (pcp->count >= pcp->batch)
934		to_drain = pcp->batch;
935	else
936		to_drain = pcp->count;
937	free_pages_bulk(zone, to_drain, &pcp->list, 0);
938	pcp->count -= to_drain;
939	local_irq_restore(flags);
940}
941#endif
942
943/*
944 * Drain pages of the indicated processor.
945 *
946 * The processor must either be the current processor and the
947 * thread pinned to the current processor or a processor that
948 * is not online.
949 */
950static void drain_pages(unsigned int cpu)
951{
952	unsigned long flags;
953	struct zone *zone;
954
955	for_each_populated_zone(zone) {
956		struct per_cpu_pageset *pset;
957		struct per_cpu_pages *pcp;
958
959		pset = zone_pcp(zone, cpu);
960
961		pcp = &pset->pcp;
962		local_irq_save(flags);
963		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
964		pcp->count = 0;
965		local_irq_restore(flags);
966	}
967}
968
969/*
970 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
971 */
972void drain_local_pages(void *arg)
973{
974	drain_pages(smp_processor_id());
975}
976
977/*
978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
979 */
980void drain_all_pages(void)
981{
982	on_each_cpu(drain_local_pages, NULL, 1);
983}
984
985#ifdef CONFIG_HIBERNATION
986
987void mark_free_pages(struct zone *zone)
988{
989	unsigned long pfn, max_zone_pfn;
990	unsigned long flags;
991	int order, t;
992	struct list_head *curr;
993
994	if (!zone->spanned_pages)
995		return;
996
997	spin_lock_irqsave(&zone->lock, flags);
998
999	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1000	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1001		if (pfn_valid(pfn)) {
1002			struct page *page = pfn_to_page(pfn);
1003
1004			if (!swsusp_page_is_forbidden(page))
1005				swsusp_unset_page_free(page);
1006		}
1007
1008	for_each_migratetype_order(order, t) {
1009		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1010			unsigned long i;
1011
1012			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1013			for (i = 0; i < (1UL << order); i++)
1014				swsusp_set_page_free(pfn_to_page(pfn + i));
1015		}
1016	}
1017	spin_unlock_irqrestore(&zone->lock, flags);
1018}
1019#endif /* CONFIG_PM */
1020
1021/*
1022 * Free a 0-order page
1023 */
1024static void free_hot_cold_page(struct page *page, int cold)
1025{
1026	struct zone *zone = page_zone(page);
1027	struct per_cpu_pages *pcp;
1028	unsigned long flags;
1029	int wasMlocked = TestClearPageMlocked(page);
1030
1031	kmemcheck_free_shadow(page, 0);
1032
1033	if (PageAnon(page))
1034		page->mapping = NULL;
1035	if (free_pages_check(page))
1036		return;
1037
1038	if (!PageHighMem(page)) {
1039		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1040		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1041	}
1042	arch_free_page(page, 0);
1043	kernel_map_pages(page, 1, 0);
1044
1045	pcp = &zone_pcp(zone, get_cpu())->pcp;
1046	set_page_private(page, get_pageblock_migratetype(page));
1047	local_irq_save(flags);
1048	if (unlikely(wasMlocked))
1049		free_page_mlock(page);
1050	__count_vm_event(PGFREE);
1051
1052	if (cold)
1053		list_add_tail(&page->lru, &pcp->list);
1054	else
1055		list_add(&page->lru, &pcp->list);
1056	pcp->count++;
1057	if (pcp->count >= pcp->high) {
1058		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1059		pcp->count -= pcp->batch;
1060	}
1061	local_irq_restore(flags);
1062	put_cpu();
1063}
1064
1065void free_hot_page(struct page *page)
1066{
1067	free_hot_cold_page(page, 0);
1068}
1069
1070void free_cold_page(struct page *page)
1071{
1072	free_hot_cold_page(page, 1);
1073}
1074
1075/*
1076 * split_page takes a non-compound higher-order page, and splits it into
1077 * n (1<<order) sub-pages: page[0..n]
1078 * Each sub-page must be freed individually.
1079 *
1080 * Note: this is probably too low level an operation for use in drivers.
1081 * Please consult with lkml before using this in your driver.
1082 */
1083void split_page(struct page *page, unsigned int order)
1084{
1085	int i;
1086
1087	VM_BUG_ON(PageCompound(page));
1088	VM_BUG_ON(!page_count(page));
1089
1090#ifdef CONFIG_KMEMCHECK
1091	/*
1092	 * Split shadow pages too, because free(page[0]) would
1093	 * otherwise free the whole shadow.
1094	 */
1095	if (kmemcheck_page_is_tracked(page))
1096		split_page(virt_to_page(page[0].shadow), order);
1097#endif
1098
1099	for (i = 1; i < (1 << order); i++)
1100		set_page_refcounted(page + i);
1101}
1102
1103/*
1104 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1105 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1106 * or two.
1107 */
1108static inline
1109struct page *buffered_rmqueue(struct zone *preferred_zone,
1110			struct zone *zone, int order, gfp_t gfp_flags,
1111			int migratetype)
1112{
1113	unsigned long flags;
1114	struct page *page;
1115	int cold = !!(gfp_flags & __GFP_COLD);
1116	int cpu;
1117
1118again:
1119	cpu  = get_cpu();
1120	if (likely(order == 0)) {
1121		struct per_cpu_pages *pcp;
1122
1123		pcp = &zone_pcp(zone, cpu)->pcp;
1124		local_irq_save(flags);
1125		if (!pcp->count) {
1126			pcp->count = rmqueue_bulk(zone, 0,
1127					pcp->batch, &pcp->list,
1128					migratetype, cold);
1129			if (unlikely(!pcp->count))
1130				goto failed;
1131		}
1132
1133		/* Find a page of the appropriate migrate type */
1134		if (cold) {
1135			list_for_each_entry_reverse(page, &pcp->list, lru)
1136				if (page_private(page) == migratetype)
1137					break;
1138		} else {
1139			list_for_each_entry(page, &pcp->list, lru)
1140				if (page_private(page) == migratetype)
1141					break;
1142		}
1143
1144		/* Allocate more to the pcp list if necessary */
1145		if (unlikely(&page->lru == &pcp->list)) {
1146			pcp->count += rmqueue_bulk(zone, 0,
1147					pcp->batch, &pcp->list,
1148					migratetype, cold);
1149			page = list_entry(pcp->list.next, struct page, lru);
1150		}
1151
1152		list_del(&page->lru);
1153		pcp->count--;
1154	} else {
1155		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1156			/*
1157			 * __GFP_NOFAIL is not to be used in new code.
1158			 *
1159			 * All __GFP_NOFAIL callers should be fixed so that they
1160			 * properly detect and handle allocation failures.
1161			 *
1162			 * We most definitely don't want callers attempting to
1163			 * allocate greater than order-1 page units with
1164			 * __GFP_NOFAIL.
1165			 */
1166			WARN_ON_ONCE(order > 1);
1167		}
1168		spin_lock_irqsave(&zone->lock, flags);
1169		page = __rmqueue(zone, order, migratetype);
1170		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1171		spin_unlock(&zone->lock);
1172		if (!page)
1173			goto failed;
1174	}
1175
1176	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1177	zone_statistics(preferred_zone, zone);
1178	local_irq_restore(flags);
1179	put_cpu();
1180
1181	VM_BUG_ON(bad_range(zone, page));
1182	if (prep_new_page(page, order, gfp_flags))
1183		goto again;
1184	return page;
1185
1186failed:
1187	local_irq_restore(flags);
1188	put_cpu();
1189	return NULL;
1190}
1191
1192/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1193#define ALLOC_WMARK_MIN		WMARK_MIN
1194#define ALLOC_WMARK_LOW		WMARK_LOW
1195#define ALLOC_WMARK_HIGH	WMARK_HIGH
1196#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1197
1198/* Mask to get the watermark bits */
1199#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1200
1201#define ALLOC_HARDER		0x10 /* try to alloc harder */
1202#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1203#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1204
1205#ifdef CONFIG_FAIL_PAGE_ALLOC
1206
1207static struct fail_page_alloc_attr {
1208	struct fault_attr attr;
1209
1210	u32 ignore_gfp_highmem;
1211	u32 ignore_gfp_wait;
1212	u32 min_order;
1213
1214#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1215
1216	struct dentry *ignore_gfp_highmem_file;
1217	struct dentry *ignore_gfp_wait_file;
1218	struct dentry *min_order_file;
1219
1220#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1221
1222} fail_page_alloc = {
1223	.attr = FAULT_ATTR_INITIALIZER,
1224	.ignore_gfp_wait = 1,
1225	.ignore_gfp_highmem = 1,
1226	.min_order = 1,
1227};
1228
1229static int __init setup_fail_page_alloc(char *str)
1230{
1231	return setup_fault_attr(&fail_page_alloc.attr, str);
1232}
1233__setup("fail_page_alloc=", setup_fail_page_alloc);
1234
1235static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1236{
1237	if (order < fail_page_alloc.min_order)
1238		return 0;
1239	if (gfp_mask & __GFP_NOFAIL)
1240		return 0;
1241	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1242		return 0;
1243	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1244		return 0;
1245
1246	return should_fail(&fail_page_alloc.attr, 1 << order);
1247}
1248
1249#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1250
1251static int __init fail_page_alloc_debugfs(void)
1252{
1253	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1254	struct dentry *dir;
1255	int err;
1256
1257	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1258				       "fail_page_alloc");
1259	if (err)
1260		return err;
1261	dir = fail_page_alloc.attr.dentries.dir;
1262
1263	fail_page_alloc.ignore_gfp_wait_file =
1264		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1265				      &fail_page_alloc.ignore_gfp_wait);
1266
1267	fail_page_alloc.ignore_gfp_highmem_file =
1268		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1269				      &fail_page_alloc.ignore_gfp_highmem);
1270	fail_page_alloc.min_order_file =
1271		debugfs_create_u32("min-order", mode, dir,
1272				   &fail_page_alloc.min_order);
1273
1274	if (!fail_page_alloc.ignore_gfp_wait_file ||
1275            !fail_page_alloc.ignore_gfp_highmem_file ||
1276            !fail_page_alloc.min_order_file) {
1277		err = -ENOMEM;
1278		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1279		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1280		debugfs_remove(fail_page_alloc.min_order_file);
1281		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1282	}
1283
1284	return err;
1285}
1286
1287late_initcall(fail_page_alloc_debugfs);
1288
1289#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1290
1291#else /* CONFIG_FAIL_PAGE_ALLOC */
1292
1293static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1294{
1295	return 0;
1296}
1297
1298#endif /* CONFIG_FAIL_PAGE_ALLOC */
1299
1300/*
1301 * Return 1 if free pages are above 'mark'. This takes into account the order
1302 * of the allocation.
1303 */
1304int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1305		      int classzone_idx, int alloc_flags)
1306{
1307	/* free_pages my go negative - that's OK */
1308	long min = mark;
1309	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1310	int o;
1311
1312	if (alloc_flags & ALLOC_HIGH)
1313		min -= min / 2;
1314	if (alloc_flags & ALLOC_HARDER)
1315		min -= min / 4;
1316
1317	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1318		return 0;
1319	for (o = 0; o < order; o++) {
1320		/* At the next order, this order's pages become unavailable */
1321		free_pages -= z->free_area[o].nr_free << o;
1322
1323		/* Require fewer higher order pages to be free */
1324		min >>= 1;
1325
1326		if (free_pages <= min)
1327			return 0;
1328	}
1329	return 1;
1330}
1331
1332#ifdef CONFIG_NUMA
1333/*
1334 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1335 * skip over zones that are not allowed by the cpuset, or that have
1336 * been recently (in last second) found to be nearly full.  See further
1337 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1338 * that have to skip over a lot of full or unallowed zones.
1339 *
1340 * If the zonelist cache is present in the passed in zonelist, then
1341 * returns a pointer to the allowed node mask (either the current
1342 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1343 *
1344 * If the zonelist cache is not available for this zonelist, does
1345 * nothing and returns NULL.
1346 *
1347 * If the fullzones BITMAP in the zonelist cache is stale (more than
1348 * a second since last zap'd) then we zap it out (clear its bits.)
1349 *
1350 * We hold off even calling zlc_setup, until after we've checked the
1351 * first zone in the zonelist, on the theory that most allocations will
1352 * be satisfied from that first zone, so best to examine that zone as
1353 * quickly as we can.
1354 */
1355static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1356{
1357	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1358	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1359
1360	zlc = zonelist->zlcache_ptr;
1361	if (!zlc)
1362		return NULL;
1363
1364	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1365		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1366		zlc->last_full_zap = jiffies;
1367	}
1368
1369	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1370					&cpuset_current_mems_allowed :
1371					&node_states[N_HIGH_MEMORY];
1372	return allowednodes;
1373}
1374
1375/*
1376 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1377 * if it is worth looking at further for free memory:
1378 *  1) Check that the zone isn't thought to be full (doesn't have its
1379 *     bit set in the zonelist_cache fullzones BITMAP).
1380 *  2) Check that the zones node (obtained from the zonelist_cache
1381 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1382 * Return true (non-zero) if zone is worth looking at further, or
1383 * else return false (zero) if it is not.
1384 *
1385 * This check -ignores- the distinction between various watermarks,
1386 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1387 * found to be full for any variation of these watermarks, it will
1388 * be considered full for up to one second by all requests, unless
1389 * we are so low on memory on all allowed nodes that we are forced
1390 * into the second scan of the zonelist.
1391 *
1392 * In the second scan we ignore this zonelist cache and exactly
1393 * apply the watermarks to all zones, even it is slower to do so.
1394 * We are low on memory in the second scan, and should leave no stone
1395 * unturned looking for a free page.
1396 */
1397static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1398						nodemask_t *allowednodes)
1399{
1400	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1401	int i;				/* index of *z in zonelist zones */
1402	int n;				/* node that zone *z is on */
1403
1404	zlc = zonelist->zlcache_ptr;
1405	if (!zlc)
1406		return 1;
1407
1408	i = z - zonelist->_zonerefs;
1409	n = zlc->z_to_n[i];
1410
1411	/* This zone is worth trying if it is allowed but not full */
1412	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1413}
1414
1415/*
1416 * Given 'z' scanning a zonelist, set the corresponding bit in
1417 * zlc->fullzones, so that subsequent attempts to allocate a page
1418 * from that zone don't waste time re-examining it.
1419 */
1420static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1421{
1422	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1423	int i;				/* index of *z in zonelist zones */
1424
1425	zlc = zonelist->zlcache_ptr;
1426	if (!zlc)
1427		return;
1428
1429	i = z - zonelist->_zonerefs;
1430
1431	set_bit(i, zlc->fullzones);
1432}
1433
1434#else	/* CONFIG_NUMA */
1435
1436static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1437{
1438	return NULL;
1439}
1440
1441static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1442				nodemask_t *allowednodes)
1443{
1444	return 1;
1445}
1446
1447static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1448{
1449}
1450#endif	/* CONFIG_NUMA */
1451
1452/*
1453 * get_page_from_freelist goes through the zonelist trying to allocate
1454 * a page.
1455 */
1456static struct page *
1457get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1458		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1459		struct zone *preferred_zone, int migratetype)
1460{
1461	struct zoneref *z;
1462	struct page *page = NULL;
1463	int classzone_idx;
1464	struct zone *zone;
1465	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1466	int zlc_active = 0;		/* set if using zonelist_cache */
1467	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1468
1469	classzone_idx = zone_idx(preferred_zone);
1470zonelist_scan:
1471	/*
1472	 * Scan zonelist, looking for a zone with enough free.
1473	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1474	 */
1475	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1476						high_zoneidx, nodemask) {
1477		if (NUMA_BUILD && zlc_active &&
1478			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1479				continue;
1480		if ((alloc_flags & ALLOC_CPUSET) &&
1481			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1482				goto try_next_zone;
1483
1484		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1485		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1486			unsigned long mark;
1487			int ret;
1488
1489			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1490			if (zone_watermark_ok(zone, order, mark,
1491				    classzone_idx, alloc_flags))
1492				goto try_this_zone;
1493
1494			if (zone_reclaim_mode == 0)
1495				goto this_zone_full;
1496
1497			ret = zone_reclaim(zone, gfp_mask, order);
1498			switch (ret) {
1499			case ZONE_RECLAIM_NOSCAN:
1500				/* did not scan */
1501				goto try_next_zone;
1502			case ZONE_RECLAIM_FULL:
1503				/* scanned but unreclaimable */
1504				goto this_zone_full;
1505			default:
1506				/* did we reclaim enough */
1507				if (!zone_watermark_ok(zone, order, mark,
1508						classzone_idx, alloc_flags))
1509					goto this_zone_full;
1510			}
1511		}
1512
1513try_this_zone:
1514		page = buffered_rmqueue(preferred_zone, zone, order,
1515						gfp_mask, migratetype);
1516		if (page)
1517			break;
1518this_zone_full:
1519		if (NUMA_BUILD)
1520			zlc_mark_zone_full(zonelist, z);
1521try_next_zone:
1522		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1523			/*
1524			 * we do zlc_setup after the first zone is tried but only
1525			 * if there are multiple nodes make it worthwhile
1526			 */
1527			allowednodes = zlc_setup(zonelist, alloc_flags);
1528			zlc_active = 1;
1529			did_zlc_setup = 1;
1530		}
1531	}
1532
1533	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1534		/* Disable zlc cache for second zonelist scan */
1535		zlc_active = 0;
1536		goto zonelist_scan;
1537	}
1538	return page;
1539}
1540
1541static inline int
1542should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1543				unsigned long pages_reclaimed)
1544{
1545	/* Do not loop if specifically requested */
1546	if (gfp_mask & __GFP_NORETRY)
1547		return 0;
1548
1549	/*
1550	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1551	 * means __GFP_NOFAIL, but that may not be true in other
1552	 * implementations.
1553	 */
1554	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1555		return 1;
1556
1557	/*
1558	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1559	 * specified, then we retry until we no longer reclaim any pages
1560	 * (above), or we've reclaimed an order of pages at least as
1561	 * large as the allocation's order. In both cases, if the
1562	 * allocation still fails, we stop retrying.
1563	 */
1564	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1565		return 1;
1566
1567	/*
1568	 * Don't let big-order allocations loop unless the caller
1569	 * explicitly requests that.
1570	 */
1571	if (gfp_mask & __GFP_NOFAIL)
1572		return 1;
1573
1574	return 0;
1575}
1576
1577static inline struct page *
1578__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1579	struct zonelist *zonelist, enum zone_type high_zoneidx,
1580	nodemask_t *nodemask, struct zone *preferred_zone,
1581	int migratetype)
1582{
1583	struct page *page;
1584
1585	/* Acquire the OOM killer lock for the zones in zonelist */
1586	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1587		schedule_timeout_uninterruptible(1);
1588		return NULL;
1589	}
1590
1591	/*
1592	 * Go through the zonelist yet one more time, keep very high watermark
1593	 * here, this is only to catch a parallel oom killing, we must fail if
1594	 * we're still under heavy pressure.
1595	 */
1596	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1597		order, zonelist, high_zoneidx,
1598		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1599		preferred_zone, migratetype);
1600	if (page)
1601		goto out;
1602
1603	/* The OOM killer will not help higher order allocs */
1604	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1605		goto out;
1606
1607	/* Exhausted what can be done so it's blamo time */
1608	out_of_memory(zonelist, gfp_mask, order);
1609
1610out:
1611	clear_zonelist_oom(zonelist, gfp_mask);
1612	return page;
1613}
1614
1615/* The really slow allocator path where we enter direct reclaim */
1616static inline struct page *
1617__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1618	struct zonelist *zonelist, enum zone_type high_zoneidx,
1619	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1620	int migratetype, unsigned long *did_some_progress)
1621{
1622	struct page *page = NULL;
1623	struct reclaim_state reclaim_state;
1624	struct task_struct *p = current;
1625
1626	cond_resched();
1627
1628	/* We now go into synchronous reclaim */
1629	cpuset_memory_pressure_bump();
1630	p->flags |= PF_MEMALLOC;
1631	lockdep_set_current_reclaim_state(gfp_mask);
1632	reclaim_state.reclaimed_slab = 0;
1633	p->reclaim_state = &reclaim_state;
1634
1635	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1636
1637	p->reclaim_state = NULL;
1638	lockdep_clear_current_reclaim_state();
1639	p->flags &= ~PF_MEMALLOC;
1640
1641	cond_resched();
1642
1643	if (order != 0)
1644		drain_all_pages();
1645
1646	if (likely(*did_some_progress))
1647		page = get_page_from_freelist(gfp_mask, nodemask, order,
1648					zonelist, high_zoneidx,
1649					alloc_flags, preferred_zone,
1650					migratetype);
1651	return page;
1652}
1653
1654/*
1655 * This is called in the allocator slow-path if the allocation request is of
1656 * sufficient urgency to ignore watermarks and take other desperate measures
1657 */
1658static inline struct page *
1659__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1660	struct zonelist *zonelist, enum zone_type high_zoneidx,
1661	nodemask_t *nodemask, struct zone *preferred_zone,
1662	int migratetype)
1663{
1664	struct page *page;
1665
1666	do {
1667		page = get_page_from_freelist(gfp_mask, nodemask, order,
1668			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1669			preferred_zone, migratetype);
1670
1671		if (!page && gfp_mask & __GFP_NOFAIL)
1672			congestion_wait(BLK_RW_ASYNC, HZ/50);
1673	} while (!page && (gfp_mask & __GFP_NOFAIL));
1674
1675	return page;
1676}
1677
1678static inline
1679void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1680						enum zone_type high_zoneidx)
1681{
1682	struct zoneref *z;
1683	struct zone *zone;
1684
1685	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1686		wakeup_kswapd(zone, order);
1687}
1688
1689static inline int
1690gfp_to_alloc_flags(gfp_t gfp_mask)
1691{
1692	struct task_struct *p = current;
1693	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1694	const gfp_t wait = gfp_mask & __GFP_WAIT;
1695
1696	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1697	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1698
1699	/*
1700	 * The caller may dip into page reserves a bit more if the caller
1701	 * cannot run direct reclaim, or if the caller has realtime scheduling
1702	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1703	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1704	 */
1705	alloc_flags |= (gfp_mask & __GFP_HIGH);
1706
1707	if (!wait) {
1708		alloc_flags |= ALLOC_HARDER;
1709		/*
1710		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1711		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1712		 */
1713		alloc_flags &= ~ALLOC_CPUSET;
1714	} else if (unlikely(rt_task(p)))
1715		alloc_flags |= ALLOC_HARDER;
1716
1717	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1718		if (!in_interrupt() &&
1719		    ((p->flags & PF_MEMALLOC) ||
1720		     unlikely(test_thread_flag(TIF_MEMDIE))))
1721			alloc_flags |= ALLOC_NO_WATERMARKS;
1722	}
1723
1724	return alloc_flags;
1725}
1726
1727static inline struct page *
1728__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1729	struct zonelist *zonelist, enum zone_type high_zoneidx,
1730	nodemask_t *nodemask, struct zone *preferred_zone,
1731	int migratetype)
1732{
1733	const gfp_t wait = gfp_mask & __GFP_WAIT;
1734	struct page *page = NULL;
1735	int alloc_flags;
1736	unsigned long pages_reclaimed = 0;
1737	unsigned long did_some_progress;
1738	struct task_struct *p = current;
1739
1740	/*
1741	 * In the slowpath, we sanity check order to avoid ever trying to
1742	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1743	 * be using allocators in order of preference for an area that is
1744	 * too large.
1745	 */
1746	if (order >= MAX_ORDER) {
1747		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1748		return NULL;
1749	}
1750
1751	/*
1752	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1753	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1754	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1755	 * using a larger set of nodes after it has established that the
1756	 * allowed per node queues are empty and that nodes are
1757	 * over allocated.
1758	 */
1759	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1760		goto nopage;
1761
1762	wake_all_kswapd(order, zonelist, high_zoneidx);
1763
1764	/*
1765	 * OK, we're below the kswapd watermark and have kicked background
1766	 * reclaim. Now things get more complex, so set up alloc_flags according
1767	 * to how we want to proceed.
1768	 */
1769	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1770
1771restart:
1772	/* This is the last chance, in general, before the goto nopage. */
1773	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1774			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1775			preferred_zone, migratetype);
1776	if (page)
1777		goto got_pg;
1778
1779rebalance:
1780	/* Allocate without watermarks if the context allows */
1781	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1782		page = __alloc_pages_high_priority(gfp_mask, order,
1783				zonelist, high_zoneidx, nodemask,
1784				preferred_zone, migratetype);
1785		if (page)
1786			goto got_pg;
1787	}
1788
1789	/* Atomic allocations - we can't balance anything */
1790	if (!wait)
1791		goto nopage;
1792
1793	/* Avoid recursion of direct reclaim */
1794	if (p->flags & PF_MEMALLOC)
1795		goto nopage;
1796
1797	/* Avoid allocations with no watermarks from looping endlessly */
1798	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1799		goto nopage;
1800
1801	/* Try direct reclaim and then allocating */
1802	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1803					zonelist, high_zoneidx,
1804					nodemask,
1805					alloc_flags, preferred_zone,
1806					migratetype, &did_some_progress);
1807	if (page)
1808		goto got_pg;
1809
1810	/*
1811	 * If we failed to make any progress reclaiming, then we are
1812	 * running out of options and have to consider going OOM
1813	 */
1814	if (!did_some_progress) {
1815		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1816			if (oom_killer_disabled)
1817				goto nopage;
1818			page = __alloc_pages_may_oom(gfp_mask, order,
1819					zonelist, high_zoneidx,
1820					nodemask, preferred_zone,
1821					migratetype);
1822			if (page)
1823				goto got_pg;
1824
1825			/*
1826			 * The OOM killer does not trigger for high-order
1827			 * ~__GFP_NOFAIL allocations so if no progress is being
1828			 * made, there are no other options and retrying is
1829			 * unlikely to help.
1830			 */
1831			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1832						!(gfp_mask & __GFP_NOFAIL))
1833				goto nopage;
1834
1835			goto restart;
1836		}
1837	}
1838
1839	/* Check if we should retry the allocation */
1840	pages_reclaimed += did_some_progress;
1841	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1842		/* Wait for some write requests to complete then retry */
1843		congestion_wait(BLK_RW_ASYNC, HZ/50);
1844		goto rebalance;
1845	}
1846
1847nopage:
1848	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1849		printk(KERN_WARNING "%s: page allocation failure."
1850			" order:%d, mode:0x%x\n",
1851			p->comm, order, gfp_mask);
1852		dump_stack();
1853		show_mem();
1854	}
1855	return page;
1856got_pg:
1857	if (kmemcheck_enabled)
1858		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1859	return page;
1860
1861}
1862
1863/*
1864 * This is the 'heart' of the zoned buddy allocator.
1865 */
1866struct page *
1867__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1868			struct zonelist *zonelist, nodemask_t *nodemask)
1869{
1870	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1871	struct zone *preferred_zone;
1872	struct page *page;
1873	int migratetype = allocflags_to_migratetype(gfp_mask);
1874
1875	gfp_mask &= gfp_allowed_mask;
1876
1877	lockdep_trace_alloc(gfp_mask);
1878
1879	might_sleep_if(gfp_mask & __GFP_WAIT);
1880
1881	if (should_fail_alloc_page(gfp_mask, order))
1882		return NULL;
1883
1884	/*
1885	 * Check the zones suitable for the gfp_mask contain at least one
1886	 * valid zone. It's possible to have an empty zonelist as a result
1887	 * of GFP_THISNODE and a memoryless node
1888	 */
1889	if (unlikely(!zonelist->_zonerefs->zone))
1890		return NULL;
1891
1892	/* The preferred zone is used for statistics later */
1893	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1894	if (!preferred_zone)
1895		return NULL;
1896
1897	/* First allocation attempt */
1898	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1899			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1900			preferred_zone, migratetype);
1901	if (unlikely(!page))
1902		page = __alloc_pages_slowpath(gfp_mask, order,
1903				zonelist, high_zoneidx, nodemask,
1904				preferred_zone, migratetype);
1905
1906	return page;
1907}
1908EXPORT_SYMBOL(__alloc_pages_nodemask);
1909
1910/*
1911 * Common helper functions.
1912 */
1913unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1914{
1915	struct page * page;
1916	page = alloc_pages(gfp_mask, order);
1917	if (!page)
1918		return 0;
1919	return (unsigned long) page_address(page);
1920}
1921
1922EXPORT_SYMBOL(__get_free_pages);
1923
1924unsigned long get_zeroed_page(gfp_t gfp_mask)
1925{
1926	struct page * page;
1927
1928	/*
1929	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1930	 * a highmem page
1931	 */
1932	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1933
1934	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1935	if (page)
1936		return (unsigned long) page_address(page);
1937	return 0;
1938}
1939
1940EXPORT_SYMBOL(get_zeroed_page);
1941
1942void __pagevec_free(struct pagevec *pvec)
1943{
1944	int i = pagevec_count(pvec);
1945
1946	while (--i >= 0)
1947		free_hot_cold_page(pvec->pages[i], pvec->cold);
1948}
1949
1950void __free_pages(struct page *page, unsigned int order)
1951{
1952	if (put_page_testzero(page)) {
1953		if (order == 0)
1954			free_hot_page(page);
1955		else
1956			__free_pages_ok(page, order);
1957	}
1958}
1959
1960EXPORT_SYMBOL(__free_pages);
1961
1962void free_pages(unsigned long addr, unsigned int order)
1963{
1964	if (addr != 0) {
1965		VM_BUG_ON(!virt_addr_valid((void *)addr));
1966		__free_pages(virt_to_page((void *)addr), order);
1967	}
1968}
1969
1970EXPORT_SYMBOL(free_pages);
1971
1972/**
1973 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1974 * @size: the number of bytes to allocate
1975 * @gfp_mask: GFP flags for the allocation
1976 *
1977 * This function is similar to alloc_pages(), except that it allocates the
1978 * minimum number of pages to satisfy the request.  alloc_pages() can only
1979 * allocate memory in power-of-two pages.
1980 *
1981 * This function is also limited by MAX_ORDER.
1982 *
1983 * Memory allocated by this function must be released by free_pages_exact().
1984 */
1985void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1986{
1987	unsigned int order = get_order(size);
1988	unsigned long addr;
1989
1990	addr = __get_free_pages(gfp_mask, order);
1991	if (addr) {
1992		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1993		unsigned long used = addr + PAGE_ALIGN(size);
1994
1995		split_page(virt_to_page((void *)addr), order);
1996		while (used < alloc_end) {
1997			free_page(used);
1998			used += PAGE_SIZE;
1999		}
2000	}
2001
2002	return (void *)addr;
2003}
2004EXPORT_SYMBOL(alloc_pages_exact);
2005
2006/**
2007 * free_pages_exact - release memory allocated via alloc_pages_exact()
2008 * @virt: the value returned by alloc_pages_exact.
2009 * @size: size of allocation, same value as passed to alloc_pages_exact().
2010 *
2011 * Release the memory allocated by a previous call to alloc_pages_exact.
2012 */
2013void free_pages_exact(void *virt, size_t size)
2014{
2015	unsigned long addr = (unsigned long)virt;
2016	unsigned long end = addr + PAGE_ALIGN(size);
2017
2018	while (addr < end) {
2019		free_page(addr);
2020		addr += PAGE_SIZE;
2021	}
2022}
2023EXPORT_SYMBOL(free_pages_exact);
2024
2025static unsigned int nr_free_zone_pages(int offset)
2026{
2027	struct zoneref *z;
2028	struct zone *zone;
2029
2030	/* Just pick one node, since fallback list is circular */
2031	unsigned int sum = 0;
2032
2033	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2034
2035	for_each_zone_zonelist(zone, z, zonelist, offset) {
2036		unsigned long size = zone->present_pages;
2037		unsigned long high = high_wmark_pages(zone);
2038		if (size > high)
2039			sum += size - high;
2040	}
2041
2042	return sum;
2043}
2044
2045/*
2046 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2047 */
2048unsigned int nr_free_buffer_pages(void)
2049{
2050	return nr_free_zone_pages(gfp_zone(GFP_USER));
2051}
2052EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2053
2054/*
2055 * Amount of free RAM allocatable within all zones
2056 */
2057unsigned int nr_free_pagecache_pages(void)
2058{
2059	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2060}
2061
2062static inline void show_node(struct zone *zone)
2063{
2064	if (NUMA_BUILD)
2065		printk("Node %d ", zone_to_nid(zone));
2066}
2067
2068void si_meminfo(struct sysinfo *val)
2069{
2070	val->totalram = totalram_pages;
2071	val->sharedram = 0;
2072	val->freeram = global_page_state(NR_FREE_PAGES);
2073	val->bufferram = nr_blockdev_pages();
2074	val->totalhigh = totalhigh_pages;
2075	val->freehigh = nr_free_highpages();
2076	val->mem_unit = PAGE_SIZE;
2077}
2078
2079EXPORT_SYMBOL(si_meminfo);
2080
2081#ifdef CONFIG_NUMA
2082void si_meminfo_node(struct sysinfo *val, int nid)
2083{
2084	pg_data_t *pgdat = NODE_DATA(nid);
2085
2086	val->totalram = pgdat->node_present_pages;
2087	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2088#ifdef CONFIG_HIGHMEM
2089	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2090	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2091			NR_FREE_PAGES);
2092#else
2093	val->totalhigh = 0;
2094	val->freehigh = 0;
2095#endif
2096	val->mem_unit = PAGE_SIZE;
2097}
2098#endif
2099
2100#define K(x) ((x) << (PAGE_SHIFT-10))
2101
2102/*
2103 * Show free area list (used inside shift_scroll-lock stuff)
2104 * We also calculate the percentage fragmentation. We do this by counting the
2105 * memory on each free list with the exception of the first item on the list.
2106 */
2107void show_free_areas(void)
2108{
2109	int cpu;
2110	struct zone *zone;
2111
2112	for_each_populated_zone(zone) {
2113		show_node(zone);
2114		printk("%s per-cpu:\n", zone->name);
2115
2116		for_each_online_cpu(cpu) {
2117			struct per_cpu_pageset *pageset;
2118
2119			pageset = zone_pcp(zone, cpu);
2120
2121			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2122			       cpu, pageset->pcp.high,
2123			       pageset->pcp.batch, pageset->pcp.count);
2124		}
2125	}
2126
2127	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2128		" inactive_file:%lu"
2129		" unevictable:%lu"
2130		" dirty:%lu writeback:%lu unstable:%lu\n"
2131		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2132		global_page_state(NR_ACTIVE_ANON),
2133		global_page_state(NR_ACTIVE_FILE),
2134		global_page_state(NR_INACTIVE_ANON),
2135		global_page_state(NR_INACTIVE_FILE),
2136		global_page_state(NR_UNEVICTABLE),
2137		global_page_state(NR_FILE_DIRTY),
2138		global_page_state(NR_WRITEBACK),
2139		global_page_state(NR_UNSTABLE_NFS),
2140		global_page_state(NR_FREE_PAGES),
2141		global_page_state(NR_SLAB_RECLAIMABLE) +
2142			global_page_state(NR_SLAB_UNRECLAIMABLE),
2143		global_page_state(NR_FILE_MAPPED),
2144		global_page_state(NR_PAGETABLE),
2145		global_page_state(NR_BOUNCE));
2146
2147	for_each_populated_zone(zone) {
2148		int i;
2149
2150		show_node(zone);
2151		printk("%s"
2152			" free:%lukB"
2153			" min:%lukB"
2154			" low:%lukB"
2155			" high:%lukB"
2156			" active_anon:%lukB"
2157			" inactive_anon:%lukB"
2158			" active_file:%lukB"
2159			" inactive_file:%lukB"
2160			" unevictable:%lukB"
2161			" present:%lukB"
2162			" pages_scanned:%lu"
2163			" all_unreclaimable? %s"
2164			"\n",
2165			zone->name,
2166			K(zone_page_state(zone, NR_FREE_PAGES)),
2167			K(min_wmark_pages(zone)),
2168			K(low_wmark_pages(zone)),
2169			K(high_wmark_pages(zone)),
2170			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2171			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2172			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2173			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2174			K(zone_page_state(zone, NR_UNEVICTABLE)),
2175			K(zone->present_pages),
2176			zone->pages_scanned,
2177			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2178			);
2179		printk("lowmem_reserve[]:");
2180		for (i = 0; i < MAX_NR_ZONES; i++)
2181			printk(" %lu", zone->lowmem_reserve[i]);
2182		printk("\n");
2183	}
2184
2185	for_each_populated_zone(zone) {
2186 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2187
2188		show_node(zone);
2189		printk("%s: ", zone->name);
2190
2191		spin_lock_irqsave(&zone->lock, flags);
2192		for (order = 0; order < MAX_ORDER; order++) {
2193			nr[order] = zone->free_area[order].nr_free;
2194			total += nr[order] << order;
2195		}
2196		spin_unlock_irqrestore(&zone->lock, flags);
2197		for (order = 0; order < MAX_ORDER; order++)
2198			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2199		printk("= %lukB\n", K(total));
2200	}
2201
2202	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2203
2204	show_swap_cache_info();
2205}
2206
2207static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2208{
2209	zoneref->zone = zone;
2210	zoneref->zone_idx = zone_idx(zone);
2211}
2212
2213/*
2214 * Builds allocation fallback zone lists.
2215 *
2216 * Add all populated zones of a node to the zonelist.
2217 */
2218static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2219				int nr_zones, enum zone_type zone_type)
2220{
2221	struct zone *zone;
2222
2223	BUG_ON(zone_type >= MAX_NR_ZONES);
2224	zone_type++;
2225
2226	do {
2227		zone_type--;
2228		zone = pgdat->node_zones + zone_type;
2229		if (populated_zone(zone)) {
2230			zoneref_set_zone(zone,
2231				&zonelist->_zonerefs[nr_zones++]);
2232			check_highest_zone(zone_type);
2233		}
2234
2235	} while (zone_type);
2236	return nr_zones;
2237}
2238
2239
2240/*
2241 *  zonelist_order:
2242 *  0 = automatic detection of better ordering.
2243 *  1 = order by ([node] distance, -zonetype)
2244 *  2 = order by (-zonetype, [node] distance)
2245 *
2246 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2247 *  the same zonelist. So only NUMA can configure this param.
2248 */
2249#define ZONELIST_ORDER_DEFAULT  0
2250#define ZONELIST_ORDER_NODE     1
2251#define ZONELIST_ORDER_ZONE     2
2252
2253/* zonelist order in the kernel.
2254 * set_zonelist_order() will set this to NODE or ZONE.
2255 */
2256static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2257static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2258
2259
2260#ifdef CONFIG_NUMA
2261/* The value user specified ....changed by config */
2262static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2263/* string for sysctl */
2264#define NUMA_ZONELIST_ORDER_LEN	16
2265char numa_zonelist_order[16] = "default";
2266
2267/*
2268 * interface for configure zonelist ordering.
2269 * command line option "numa_zonelist_order"
2270 *	= "[dD]efault	- default, automatic configuration.
2271 *	= "[nN]ode 	- order by node locality, then by zone within node
2272 *	= "[zZ]one      - order by zone, then by locality within zone
2273 */
2274
2275static int __parse_numa_zonelist_order(char *s)
2276{
2277	if (*s == 'd' || *s == 'D') {
2278		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2279	} else if (*s == 'n' || *s == 'N') {
2280		user_zonelist_order = ZONELIST_ORDER_NODE;
2281	} else if (*s == 'z' || *s == 'Z') {
2282		user_zonelist_order = ZONELIST_ORDER_ZONE;
2283	} else {
2284		printk(KERN_WARNING
2285			"Ignoring invalid numa_zonelist_order value:  "
2286			"%s\n", s);
2287		return -EINVAL;
2288	}
2289	return 0;
2290}
2291
2292static __init int setup_numa_zonelist_order(char *s)
2293{
2294	if (s)
2295		return __parse_numa_zonelist_order(s);
2296	return 0;
2297}
2298early_param("numa_zonelist_order", setup_numa_zonelist_order);
2299
2300/*
2301 * sysctl handler for numa_zonelist_order
2302 */
2303int numa_zonelist_order_handler(ctl_table *table, int write,
2304		struct file *file, void __user *buffer, size_t *length,
2305		loff_t *ppos)
2306{
2307	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2308	int ret;
2309
2310	if (write)
2311		strncpy(saved_string, (char*)table->data,
2312			NUMA_ZONELIST_ORDER_LEN);
2313	ret = proc_dostring(table, write, file, buffer, length, ppos);
2314	if (ret)
2315		return ret;
2316	if (write) {
2317		int oldval = user_zonelist_order;
2318		if (__parse_numa_zonelist_order((char*)table->data)) {
2319			/*
2320			 * bogus value.  restore saved string
2321			 */
2322			strncpy((char*)table->data, saved_string,
2323				NUMA_ZONELIST_ORDER_LEN);
2324			user_zonelist_order = oldval;
2325		} else if (oldval != user_zonelist_order)
2326			build_all_zonelists();
2327	}
2328	return 0;
2329}
2330
2331
2332#define MAX_NODE_LOAD (nr_online_nodes)
2333static int node_load[MAX_NUMNODES];
2334
2335/**
2336 * find_next_best_node - find the next node that should appear in a given node's fallback list
2337 * @node: node whose fallback list we're appending
2338 * @used_node_mask: nodemask_t of already used nodes
2339 *
2340 * We use a number of factors to determine which is the next node that should
2341 * appear on a given node's fallback list.  The node should not have appeared
2342 * already in @node's fallback list, and it should be the next closest node
2343 * according to the distance array (which contains arbitrary distance values
2344 * from each node to each node in the system), and should also prefer nodes
2345 * with no CPUs, since presumably they'll have very little allocation pressure
2346 * on them otherwise.
2347 * It returns -1 if no node is found.
2348 */
2349static int find_next_best_node(int node, nodemask_t *used_node_mask)
2350{
2351	int n, val;
2352	int min_val = INT_MAX;
2353	int best_node = -1;
2354	const struct cpumask *tmp = cpumask_of_node(0);
2355
2356	/* Use the local node if we haven't already */
2357	if (!node_isset(node, *used_node_mask)) {
2358		node_set(node, *used_node_mask);
2359		return node;
2360	}
2361
2362	for_each_node_state(n, N_HIGH_MEMORY) {
2363
2364		/* Don't want a node to appear more than once */
2365		if (node_isset(n, *used_node_mask))
2366			continue;
2367
2368		/* Use the distance array to find the distance */
2369		val = node_distance(node, n);
2370
2371		/* Penalize nodes under us ("prefer the next node") */
2372		val += (n < node);
2373
2374		/* Give preference to headless and unused nodes */
2375		tmp = cpumask_of_node(n);
2376		if (!cpumask_empty(tmp))
2377			val += PENALTY_FOR_NODE_WITH_CPUS;
2378
2379		/* Slight preference for less loaded node */
2380		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2381		val += node_load[n];
2382
2383		if (val < min_val) {
2384			min_val = val;
2385			best_node = n;
2386		}
2387	}
2388
2389	if (best_node >= 0)
2390		node_set(best_node, *used_node_mask);
2391
2392	return best_node;
2393}
2394
2395
2396/*
2397 * Build zonelists ordered by node and zones within node.
2398 * This results in maximum locality--normal zone overflows into local
2399 * DMA zone, if any--but risks exhausting DMA zone.
2400 */
2401static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2402{
2403	int j;
2404	struct zonelist *zonelist;
2405
2406	zonelist = &pgdat->node_zonelists[0];
2407	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2408		;
2409	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2410							MAX_NR_ZONES - 1);
2411	zonelist->_zonerefs[j].zone = NULL;
2412	zonelist->_zonerefs[j].zone_idx = 0;
2413}
2414
2415/*
2416 * Build gfp_thisnode zonelists
2417 */
2418static void build_thisnode_zonelists(pg_data_t *pgdat)
2419{
2420	int j;
2421	struct zonelist *zonelist;
2422
2423	zonelist = &pgdat->node_zonelists[1];
2424	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2425	zonelist->_zonerefs[j].zone = NULL;
2426	zonelist->_zonerefs[j].zone_idx = 0;
2427}
2428
2429/*
2430 * Build zonelists ordered by zone and nodes within zones.
2431 * This results in conserving DMA zone[s] until all Normal memory is
2432 * exhausted, but results in overflowing to remote node while memory
2433 * may still exist in local DMA zone.
2434 */
2435static int node_order[MAX_NUMNODES];
2436
2437static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2438{
2439	int pos, j, node;
2440	int zone_type;		/* needs to be signed */
2441	struct zone *z;
2442	struct zonelist *zonelist;
2443
2444	zonelist = &pgdat->node_zonelists[0];
2445	pos = 0;
2446	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2447		for (j = 0; j < nr_nodes; j++) {
2448			node = node_order[j];
2449			z = &NODE_DATA(node)->node_zones[zone_type];
2450			if (populated_zone(z)) {
2451				zoneref_set_zone(z,
2452					&zonelist->_zonerefs[pos++]);
2453				check_highest_zone(zone_type);
2454			}
2455		}
2456	}
2457	zonelist->_zonerefs[pos].zone = NULL;
2458	zonelist->_zonerefs[pos].zone_idx = 0;
2459}
2460
2461static int default_zonelist_order(void)
2462{
2463	int nid, zone_type;
2464	unsigned long low_kmem_size,total_size;
2465	struct zone *z;
2466	int average_size;
2467	/*
2468         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2469	 * If they are really small and used heavily, the system can fall
2470	 * into OOM very easily.
2471	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2472	 */
2473	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2474	low_kmem_size = 0;
2475	total_size = 0;
2476	for_each_online_node(nid) {
2477		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2478			z = &NODE_DATA(nid)->node_zones[zone_type];
2479			if (populated_zone(z)) {
2480				if (zone_type < ZONE_NORMAL)
2481					low_kmem_size += z->present_pages;
2482				total_size += z->present_pages;
2483			}
2484		}
2485	}
2486	if (!low_kmem_size ||  /* there are no DMA area. */
2487	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2488		return ZONELIST_ORDER_NODE;
2489	/*
2490	 * look into each node's config.
2491  	 * If there is a node whose DMA/DMA32 memory is very big area on
2492 	 * local memory, NODE_ORDER may be suitable.
2493         */
2494	average_size = total_size /
2495				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2496	for_each_online_node(nid) {
2497		low_kmem_size = 0;
2498		total_size = 0;
2499		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2500			z = &NODE_DATA(nid)->node_zones[zone_type];
2501			if (populated_zone(z)) {
2502				if (zone_type < ZONE_NORMAL)
2503					low_kmem_size += z->present_pages;
2504				total_size += z->present_pages;
2505			}
2506		}
2507		if (low_kmem_size &&
2508		    total_size > average_size && /* ignore small node */
2509		    low_kmem_size > total_size * 70/100)
2510			return ZONELIST_ORDER_NODE;
2511	}
2512	return ZONELIST_ORDER_ZONE;
2513}
2514
2515static void set_zonelist_order(void)
2516{
2517	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2518		current_zonelist_order = default_zonelist_order();
2519	else
2520		current_zonelist_order = user_zonelist_order;
2521}
2522
2523static void build_zonelists(pg_data_t *pgdat)
2524{
2525	int j, node, load;
2526	enum zone_type i;
2527	nodemask_t used_mask;
2528	int local_node, prev_node;
2529	struct zonelist *zonelist;
2530	int order = current_zonelist_order;
2531
2532	/* initialize zonelists */
2533	for (i = 0; i < MAX_ZONELISTS; i++) {
2534		zonelist = pgdat->node_zonelists + i;
2535		zonelist->_zonerefs[0].zone = NULL;
2536		zonelist->_zonerefs[0].zone_idx = 0;
2537	}
2538
2539	/* NUMA-aware ordering of nodes */
2540	local_node = pgdat->node_id;
2541	load = nr_online_nodes;
2542	prev_node = local_node;
2543	nodes_clear(used_mask);
2544
2545	memset(node_order, 0, sizeof(node_order));
2546	j = 0;
2547
2548	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2549		int distance = node_distance(local_node, node);
2550
2551		/*
2552		 * If another node is sufficiently far away then it is better
2553		 * to reclaim pages in a zone before going off node.
2554		 */
2555		if (distance > RECLAIM_DISTANCE)
2556			zone_reclaim_mode = 1;
2557
2558		/*
2559		 * We don't want to pressure a particular node.
2560		 * So adding penalty to the first node in same
2561		 * distance group to make it round-robin.
2562		 */
2563		if (distance != node_distance(local_node, prev_node))
2564			node_load[node] = load;
2565
2566		prev_node = node;
2567		load--;
2568		if (order == ZONELIST_ORDER_NODE)
2569			build_zonelists_in_node_order(pgdat, node);
2570		else
2571			node_order[j++] = node;	/* remember order */
2572	}
2573
2574	if (order == ZONELIST_ORDER_ZONE) {
2575		/* calculate node order -- i.e., DMA last! */
2576		build_zonelists_in_zone_order(pgdat, j);
2577	}
2578
2579	build_thisnode_zonelists(pgdat);
2580}
2581
2582/* Construct the zonelist performance cache - see further mmzone.h */
2583static void build_zonelist_cache(pg_data_t *pgdat)
2584{
2585	struct zonelist *zonelist;
2586	struct zonelist_cache *zlc;
2587	struct zoneref *z;
2588
2589	zonelist = &pgdat->node_zonelists[0];
2590	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2591	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2592	for (z = zonelist->_zonerefs; z->zone; z++)
2593		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2594}
2595
2596
2597#else	/* CONFIG_NUMA */
2598
2599static void set_zonelist_order(void)
2600{
2601	current_zonelist_order = ZONELIST_ORDER_ZONE;
2602}
2603
2604static void build_zonelists(pg_data_t *pgdat)
2605{
2606	int node, local_node;
2607	enum zone_type j;
2608	struct zonelist *zonelist;
2609
2610	local_node = pgdat->node_id;
2611
2612	zonelist = &pgdat->node_zonelists[0];
2613	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2614
2615	/*
2616	 * Now we build the zonelist so that it contains the zones
2617	 * of all the other nodes.
2618	 * We don't want to pressure a particular node, so when
2619	 * building the zones for node N, we make sure that the
2620	 * zones coming right after the local ones are those from
2621	 * node N+1 (modulo N)
2622	 */
2623	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2624		if (!node_online(node))
2625			continue;
2626		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2627							MAX_NR_ZONES - 1);
2628	}
2629	for (node = 0; node < local_node; node++) {
2630		if (!node_online(node))
2631			continue;
2632		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2633							MAX_NR_ZONES - 1);
2634	}
2635
2636	zonelist->_zonerefs[j].zone = NULL;
2637	zonelist->_zonerefs[j].zone_idx = 0;
2638}
2639
2640/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2641static void build_zonelist_cache(pg_data_t *pgdat)
2642{
2643	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2644}
2645
2646#endif	/* CONFIG_NUMA */
2647
2648/* return values int ....just for stop_machine() */
2649static int __build_all_zonelists(void *dummy)
2650{
2651	int nid;
2652
2653#ifdef CONFIG_NUMA
2654	memset(node_load, 0, sizeof(node_load));
2655#endif
2656	for_each_online_node(nid) {
2657		pg_data_t *pgdat = NODE_DATA(nid);
2658
2659		build_zonelists(pgdat);
2660		build_zonelist_cache(pgdat);
2661	}
2662	return 0;
2663}
2664
2665void build_all_zonelists(void)
2666{
2667	set_zonelist_order();
2668
2669	if (system_state == SYSTEM_BOOTING) {
2670		__build_all_zonelists(NULL);
2671		mminit_verify_zonelist();
2672		cpuset_init_current_mems_allowed();
2673	} else {
2674		/* we have to stop all cpus to guarantee there is no user
2675		   of zonelist */
2676		stop_machine(__build_all_zonelists, NULL, NULL);
2677		/* cpuset refresh routine should be here */
2678	}
2679	vm_total_pages = nr_free_pagecache_pages();
2680	/*
2681	 * Disable grouping by mobility if the number of pages in the
2682	 * system is too low to allow the mechanism to work. It would be
2683	 * more accurate, but expensive to check per-zone. This check is
2684	 * made on memory-hotadd so a system can start with mobility
2685	 * disabled and enable it later
2686	 */
2687	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2688		page_group_by_mobility_disabled = 1;
2689	else
2690		page_group_by_mobility_disabled = 0;
2691
2692	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2693		"Total pages: %ld\n",
2694			nr_online_nodes,
2695			zonelist_order_name[current_zonelist_order],
2696			page_group_by_mobility_disabled ? "off" : "on",
2697			vm_total_pages);
2698#ifdef CONFIG_NUMA
2699	printk("Policy zone: %s\n", zone_names[policy_zone]);
2700#endif
2701}
2702
2703/*
2704 * Helper functions to size the waitqueue hash table.
2705 * Essentially these want to choose hash table sizes sufficiently
2706 * large so that collisions trying to wait on pages are rare.
2707 * But in fact, the number of active page waitqueues on typical
2708 * systems is ridiculously low, less than 200. So this is even
2709 * conservative, even though it seems large.
2710 *
2711 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2712 * waitqueues, i.e. the size of the waitq table given the number of pages.
2713 */
2714#define PAGES_PER_WAITQUEUE	256
2715
2716#ifndef CONFIG_MEMORY_HOTPLUG
2717static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2718{
2719	unsigned long size = 1;
2720
2721	pages /= PAGES_PER_WAITQUEUE;
2722
2723	while (size < pages)
2724		size <<= 1;
2725
2726	/*
2727	 * Once we have dozens or even hundreds of threads sleeping
2728	 * on IO we've got bigger problems than wait queue collision.
2729	 * Limit the size of the wait table to a reasonable size.
2730	 */
2731	size = min(size, 4096UL);
2732
2733	return max(size, 4UL);
2734}
2735#else
2736/*
2737 * A zone's size might be changed by hot-add, so it is not possible to determine
2738 * a suitable size for its wait_table.  So we use the maximum size now.
2739 *
2740 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2741 *
2742 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2743 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2744 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2745 *
2746 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2747 * or more by the traditional way. (See above).  It equals:
2748 *
2749 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2750 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2751 *    powerpc (64K page size)             : =  (32G +16M)byte.
2752 */
2753static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2754{
2755	return 4096UL;
2756}
2757#endif
2758
2759/*
2760 * This is an integer logarithm so that shifts can be used later
2761 * to extract the more random high bits from the multiplicative
2762 * hash function before the remainder is taken.
2763 */
2764static inline unsigned long wait_table_bits(unsigned long size)
2765{
2766	return ffz(~size);
2767}
2768
2769#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2770
2771/*
2772 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2773 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2774 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2775 * higher will lead to a bigger reserve which will get freed as contiguous
2776 * blocks as reclaim kicks in
2777 */
2778static void setup_zone_migrate_reserve(struct zone *zone)
2779{
2780	unsigned long start_pfn, pfn, end_pfn;
2781	struct page *page;
2782	unsigned long reserve, block_migratetype;
2783
2784	/* Get the start pfn, end pfn and the number of blocks to reserve */
2785	start_pfn = zone->zone_start_pfn;
2786	end_pfn = start_pfn + zone->spanned_pages;
2787	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2788							pageblock_order;
2789
2790	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2791		if (!pfn_valid(pfn))
2792			continue;
2793		page = pfn_to_page(pfn);
2794
2795		/* Watch out for overlapping nodes */
2796		if (page_to_nid(page) != zone_to_nid(zone))
2797			continue;
2798
2799		/* Blocks with reserved pages will never free, skip them. */
2800		if (PageReserved(page))
2801			continue;
2802
2803		block_migratetype = get_pageblock_migratetype(page);
2804
2805		/* If this block is reserved, account for it */
2806		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2807			reserve--;
2808			continue;
2809		}
2810
2811		/* Suitable for reserving if this block is movable */
2812		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2813			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2814			move_freepages_block(zone, page, MIGRATE_RESERVE);
2815			reserve--;
2816			continue;
2817		}
2818
2819		/*
2820		 * If the reserve is met and this is a previous reserved block,
2821		 * take it back
2822		 */
2823		if (block_migratetype == MIGRATE_RESERVE) {
2824			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2825			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2826		}
2827	}
2828}
2829
2830/*
2831 * Initially all pages are reserved - free ones are freed
2832 * up by free_all_bootmem() once the early boot process is
2833 * done. Non-atomic initialization, single-pass.
2834 */
2835void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2836		unsigned long start_pfn, enum memmap_context context)
2837{
2838	struct page *page;
2839	unsigned long end_pfn = start_pfn + size;
2840	unsigned long pfn;
2841	struct zone *z;
2842
2843	if (highest_memmap_pfn < end_pfn - 1)
2844		highest_memmap_pfn = end_pfn - 1;
2845
2846	z = &NODE_DATA(nid)->node_zones[zone];
2847	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2848		/*
2849		 * There can be holes in boot-time mem_map[]s
2850		 * handed to this function.  They do not
2851		 * exist on hotplugged memory.
2852		 */
2853		if (context == MEMMAP_EARLY) {
2854			if (!early_pfn_valid(pfn))
2855				continue;
2856			if (!early_pfn_in_nid(pfn, nid))
2857				continue;
2858		}
2859		page = pfn_to_page(pfn);
2860		set_page_links(page, zone, nid, pfn);
2861		mminit_verify_page_links(page, zone, nid, pfn);
2862		init_page_count(page);
2863		reset_page_mapcount(page);
2864		SetPageReserved(page);
2865		/*
2866		 * Mark the block movable so that blocks are reserved for
2867		 * movable at startup. This will force kernel allocations
2868		 * to reserve their blocks rather than leaking throughout
2869		 * the address space during boot when many long-lived
2870		 * kernel allocations are made. Later some blocks near
2871		 * the start are marked MIGRATE_RESERVE by
2872		 * setup_zone_migrate_reserve()
2873		 *
2874		 * bitmap is created for zone's valid pfn range. but memmap
2875		 * can be created for invalid pages (for alignment)
2876		 * check here not to call set_pageblock_migratetype() against
2877		 * pfn out of zone.
2878		 */
2879		if ((z->zone_start_pfn <= pfn)
2880		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2881		    && !(pfn & (pageblock_nr_pages - 1)))
2882			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2883
2884		INIT_LIST_HEAD(&page->lru);
2885#ifdef WANT_PAGE_VIRTUAL
2886		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2887		if (!is_highmem_idx(zone))
2888			set_page_address(page, __va(pfn << PAGE_SHIFT));
2889#endif
2890	}
2891}
2892
2893static void __meminit zone_init_free_lists(struct zone *zone)
2894{
2895	int order, t;
2896	for_each_migratetype_order(order, t) {
2897		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2898		zone->free_area[order].nr_free = 0;
2899	}
2900}
2901
2902#ifndef __HAVE_ARCH_MEMMAP_INIT
2903#define memmap_init(size, nid, zone, start_pfn) \
2904	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2905#endif
2906
2907static int zone_batchsize(struct zone *zone)
2908{
2909#ifdef CONFIG_MMU
2910	int batch;
2911
2912	/*
2913	 * The per-cpu-pages pools are set to around 1000th of the
2914	 * size of the zone.  But no more than 1/2 of a meg.
2915	 *
2916	 * OK, so we don't know how big the cache is.  So guess.
2917	 */
2918	batch = zone->present_pages / 1024;
2919	if (batch * PAGE_SIZE > 512 * 1024)
2920		batch = (512 * 1024) / PAGE_SIZE;
2921	batch /= 4;		/* We effectively *= 4 below */
2922	if (batch < 1)
2923		batch = 1;
2924
2925	/*
2926	 * Clamp the batch to a 2^n - 1 value. Having a power
2927	 * of 2 value was found to be more likely to have
2928	 * suboptimal cache aliasing properties in some cases.
2929	 *
2930	 * For example if 2 tasks are alternately allocating
2931	 * batches of pages, one task can end up with a lot
2932	 * of pages of one half of the possible page colors
2933	 * and the other with pages of the other colors.
2934	 */
2935	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2936
2937	return batch;
2938
2939#else
2940	/* The deferral and batching of frees should be suppressed under NOMMU
2941	 * conditions.
2942	 *
2943	 * The problem is that NOMMU needs to be able to allocate large chunks
2944	 * of contiguous memory as there's no hardware page translation to
2945	 * assemble apparent contiguous memory from discontiguous pages.
2946	 *
2947	 * Queueing large contiguous runs of pages for batching, however,
2948	 * causes the pages to actually be freed in smaller chunks.  As there
2949	 * can be a significant delay between the individual batches being
2950	 * recycled, this leads to the once large chunks of space being
2951	 * fragmented and becoming unavailable for high-order allocations.
2952	 */
2953	return 0;
2954#endif
2955}
2956
2957static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2958{
2959	struct per_cpu_pages *pcp;
2960
2961	memset(p, 0, sizeof(*p));
2962
2963	pcp = &p->pcp;
2964	pcp->count = 0;
2965	pcp->high = 6 * batch;
2966	pcp->batch = max(1UL, 1 * batch);
2967	INIT_LIST_HEAD(&pcp->list);
2968}
2969
2970/*
2971 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2972 * to the value high for the pageset p.
2973 */
2974
2975static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2976				unsigned long high)
2977{
2978	struct per_cpu_pages *pcp;
2979
2980	pcp = &p->pcp;
2981	pcp->high = high;
2982	pcp->batch = max(1UL, high/4);
2983	if ((high/4) > (PAGE_SHIFT * 8))
2984		pcp->batch = PAGE_SHIFT * 8;
2985}
2986
2987
2988#ifdef CONFIG_NUMA
2989/*
2990 * Boot pageset table. One per cpu which is going to be used for all
2991 * zones and all nodes. The parameters will be set in such a way
2992 * that an item put on a list will immediately be handed over to
2993 * the buddy list. This is safe since pageset manipulation is done
2994 * with interrupts disabled.
2995 *
2996 * Some NUMA counter updates may also be caught by the boot pagesets.
2997 *
2998 * The boot_pagesets must be kept even after bootup is complete for
2999 * unused processors and/or zones. They do play a role for bootstrapping
3000 * hotplugged processors.
3001 *
3002 * zoneinfo_show() and maybe other functions do
3003 * not check if the processor is online before following the pageset pointer.
3004 * Other parts of the kernel may not check if the zone is available.
3005 */
3006static struct per_cpu_pageset boot_pageset[NR_CPUS];
3007
3008/*
3009 * Dynamically allocate memory for the
3010 * per cpu pageset array in struct zone.
3011 */
3012static int __cpuinit process_zones(int cpu)
3013{
3014	struct zone *zone, *dzone;
3015	int node = cpu_to_node(cpu);
3016
3017	node_set_state(node, N_CPU);	/* this node has a cpu */
3018
3019	for_each_populated_zone(zone) {
3020		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3021					 GFP_KERNEL, node);
3022		if (!zone_pcp(zone, cpu))
3023			goto bad;
3024
3025		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3026
3027		if (percpu_pagelist_fraction)
3028			setup_pagelist_highmark(zone_pcp(zone, cpu),
3029			 	(zone->present_pages / percpu_pagelist_fraction));
3030	}
3031
3032	return 0;
3033bad:
3034	for_each_zone(dzone) {
3035		if (!populated_zone(dzone))
3036			continue;
3037		if (dzone == zone)
3038			break;
3039		kfree(zone_pcp(dzone, cpu));
3040		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3041	}
3042	return -ENOMEM;
3043}
3044
3045static inline void free_zone_pagesets(int cpu)
3046{
3047	struct zone *zone;
3048
3049	for_each_zone(zone) {
3050		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3051
3052		/* Free per_cpu_pageset if it is slab allocated */
3053		if (pset != &boot_pageset[cpu])
3054			kfree(pset);
3055		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3056	}
3057}
3058
3059static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3060		unsigned long action,
3061		void *hcpu)
3062{
3063	int cpu = (long)hcpu;
3064	int ret = NOTIFY_OK;
3065
3066	switch (action) {
3067	case CPU_UP_PREPARE:
3068	case CPU_UP_PREPARE_FROZEN:
3069		if (process_zones(cpu))
3070			ret = NOTIFY_BAD;
3071		break;
3072	case CPU_UP_CANCELED:
3073	case CPU_UP_CANCELED_FROZEN:
3074	case CPU_DEAD:
3075	case CPU_DEAD_FROZEN:
3076		free_zone_pagesets(cpu);
3077		break;
3078	default:
3079		break;
3080	}
3081	return ret;
3082}
3083
3084static struct notifier_block __cpuinitdata pageset_notifier =
3085	{ &pageset_cpuup_callback, NULL, 0 };
3086
3087void __init setup_per_cpu_pageset(void)
3088{
3089	int err;
3090
3091	/* Initialize per_cpu_pageset for cpu 0.
3092	 * A cpuup callback will do this for every cpu
3093	 * as it comes online
3094	 */
3095	err = process_zones(smp_processor_id());
3096	BUG_ON(err);
3097	register_cpu_notifier(&pageset_notifier);
3098}
3099
3100#endif
3101
3102static noinline __init_refok
3103int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3104{
3105	int i;
3106	struct pglist_data *pgdat = zone->zone_pgdat;
3107	size_t alloc_size;
3108
3109	/*
3110	 * The per-page waitqueue mechanism uses hashed waitqueues
3111	 * per zone.
3112	 */
3113	zone->wait_table_hash_nr_entries =
3114		 wait_table_hash_nr_entries(zone_size_pages);
3115	zone->wait_table_bits =
3116		wait_table_bits(zone->wait_table_hash_nr_entries);
3117	alloc_size = zone->wait_table_hash_nr_entries
3118					* sizeof(wait_queue_head_t);
3119
3120	if (!slab_is_available()) {
3121		zone->wait_table = (wait_queue_head_t *)
3122			alloc_bootmem_node(pgdat, alloc_size);
3123	} else {
3124		/*
3125		 * This case means that a zone whose size was 0 gets new memory
3126		 * via memory hot-add.
3127		 * But it may be the case that a new node was hot-added.  In
3128		 * this case vmalloc() will not be able to use this new node's
3129		 * memory - this wait_table must be initialized to use this new
3130		 * node itself as well.
3131		 * To use this new node's memory, further consideration will be
3132		 * necessary.
3133		 */
3134		zone->wait_table = vmalloc(alloc_size);
3135	}
3136	if (!zone->wait_table)
3137		return -ENOMEM;
3138
3139	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3140		init_waitqueue_head(zone->wait_table + i);
3141
3142	return 0;
3143}
3144
3145static int __zone_pcp_update(void *data)
3146{
3147	struct zone *zone = data;
3148	int cpu;
3149	unsigned long batch = zone_batchsize(zone), flags;
3150
3151	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3152		struct per_cpu_pageset *pset;
3153		struct per_cpu_pages *pcp;
3154
3155		pset = zone_pcp(zone, cpu);
3156		pcp = &pset->pcp;
3157
3158		local_irq_save(flags);
3159		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3160		setup_pageset(pset, batch);
3161		local_irq_restore(flags);
3162	}
3163	return 0;
3164}
3165
3166void zone_pcp_update(struct zone *zone)
3167{
3168	stop_machine(__zone_pcp_update, zone, NULL);
3169}
3170
3171static __meminit void zone_pcp_init(struct zone *zone)
3172{
3173	int cpu;
3174	unsigned long batch = zone_batchsize(zone);
3175
3176	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3177#ifdef CONFIG_NUMA
3178		/* Early boot. Slab allocator not functional yet */
3179		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3180		setup_pageset(&boot_pageset[cpu],0);
3181#else
3182		setup_pageset(zone_pcp(zone,cpu), batch);
3183#endif
3184	}
3185	if (zone->present_pages)
3186		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3187			zone->name, zone->present_pages, batch);
3188}
3189
3190__meminit int init_currently_empty_zone(struct zone *zone,
3191					unsigned long zone_start_pfn,
3192					unsigned long size,
3193					enum memmap_context context)
3194{
3195	struct pglist_data *pgdat = zone->zone_pgdat;
3196	int ret;
3197	ret = zone_wait_table_init(zone, size);
3198	if (ret)
3199		return ret;
3200	pgdat->nr_zones = zone_idx(zone) + 1;
3201
3202	zone->zone_start_pfn = zone_start_pfn;
3203
3204	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3205			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3206			pgdat->node_id,
3207			(unsigned long)zone_idx(zone),
3208			zone_start_pfn, (zone_start_pfn + size));
3209
3210	zone_init_free_lists(zone);
3211
3212	return 0;
3213}
3214
3215#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3216/*
3217 * Basic iterator support. Return the first range of PFNs for a node
3218 * Note: nid == MAX_NUMNODES returns first region regardless of node
3219 */
3220static int __meminit first_active_region_index_in_nid(int nid)
3221{
3222	int i;
3223
3224	for (i = 0; i < nr_nodemap_entries; i++)
3225		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3226			return i;
3227
3228	return -1;
3229}
3230
3231/*
3232 * Basic iterator support. Return the next active range of PFNs for a node
3233 * Note: nid == MAX_NUMNODES returns next region regardless of node
3234 */
3235static int __meminit next_active_region_index_in_nid(int index, int nid)
3236{
3237	for (index = index + 1; index < nr_nodemap_entries; index++)
3238		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3239			return index;
3240
3241	return -1;
3242}
3243
3244#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3245/*
3246 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3247 * Architectures may implement their own version but if add_active_range()
3248 * was used and there are no special requirements, this is a convenient
3249 * alternative
3250 */
3251int __meminit __early_pfn_to_nid(unsigned long pfn)
3252{
3253	int i;
3254
3255	for (i = 0; i < nr_nodemap_entries; i++) {
3256		unsigned long start_pfn = early_node_map[i].start_pfn;
3257		unsigned long end_pfn = early_node_map[i].end_pfn;
3258
3259		if (start_pfn <= pfn && pfn < end_pfn)
3260			return early_node_map[i].nid;
3261	}
3262	/* This is a memory hole */
3263	return -1;
3264}
3265#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3266
3267int __meminit early_pfn_to_nid(unsigned long pfn)
3268{
3269	int nid;
3270
3271	nid = __early_pfn_to_nid(pfn);
3272	if (nid >= 0)
3273		return nid;
3274	/* just returns 0 */
3275	return 0;
3276}
3277
3278#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3279bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3280{
3281	int nid;
3282
3283	nid = __early_pfn_to_nid(pfn);
3284	if (nid >= 0 && nid != node)
3285		return false;
3286	return true;
3287}
3288#endif
3289
3290/* Basic iterator support to walk early_node_map[] */
3291#define for_each_active_range_index_in_nid(i, nid) \
3292	for (i = first_active_region_index_in_nid(nid); i != -1; \
3293				i = next_active_region_index_in_nid(i, nid))
3294
3295/**
3296 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3297 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3298 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3299 *
3300 * If an architecture guarantees that all ranges registered with
3301 * add_active_ranges() contain no holes and may be freed, this
3302 * this function may be used instead of calling free_bootmem() manually.
3303 */
3304void __init free_bootmem_with_active_regions(int nid,
3305						unsigned long max_low_pfn)
3306{
3307	int i;
3308
3309	for_each_active_range_index_in_nid(i, nid) {
3310		unsigned long size_pages = 0;
3311		unsigned long end_pfn = early_node_map[i].end_pfn;
3312
3313		if (early_node_map[i].start_pfn >= max_low_pfn)
3314			continue;
3315
3316		if (end_pfn > max_low_pfn)
3317			end_pfn = max_low_pfn;
3318
3319		size_pages = end_pfn - early_node_map[i].start_pfn;
3320		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3321				PFN_PHYS(early_node_map[i].start_pfn),
3322				size_pages << PAGE_SHIFT);
3323	}
3324}
3325
3326void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3327{
3328	int i;
3329	int ret;
3330
3331	for_each_active_range_index_in_nid(i, nid) {
3332		ret = work_fn(early_node_map[i].start_pfn,
3333			      early_node_map[i].end_pfn, data);
3334		if (ret)
3335			break;
3336	}
3337}
3338/**
3339 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3340 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3341 *
3342 * If an architecture guarantees that all ranges registered with
3343 * add_active_ranges() contain no holes and may be freed, this
3344 * function may be used instead of calling memory_present() manually.
3345 */
3346void __init sparse_memory_present_with_active_regions(int nid)
3347{
3348	int i;
3349
3350	for_each_active_range_index_in_nid(i, nid)
3351		memory_present(early_node_map[i].nid,
3352				early_node_map[i].start_pfn,
3353				early_node_map[i].end_pfn);
3354}
3355
3356/**
3357 * get_pfn_range_for_nid - Return the start and end page frames for a node
3358 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3359 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3360 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3361 *
3362 * It returns the start and end page frame of a node based on information
3363 * provided by an arch calling add_active_range(). If called for a node
3364 * with no available memory, a warning is printed and the start and end
3365 * PFNs will be 0.
3366 */
3367void __meminit get_pfn_range_for_nid(unsigned int nid,
3368			unsigned long *start_pfn, unsigned long *end_pfn)
3369{
3370	int i;
3371	*start_pfn = -1UL;
3372	*end_pfn = 0;
3373
3374	for_each_active_range_index_in_nid(i, nid) {
3375		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3376		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3377	}
3378
3379	if (*start_pfn == -1UL)
3380		*start_pfn = 0;
3381}
3382
3383/*
3384 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3385 * assumption is made that zones within a node are ordered in monotonic
3386 * increasing memory addresses so that the "highest" populated zone is used
3387 */
3388static void __init find_usable_zone_for_movable(void)
3389{
3390	int zone_index;
3391	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3392		if (zone_index == ZONE_MOVABLE)
3393			continue;
3394
3395		if (arch_zone_highest_possible_pfn[zone_index] >
3396				arch_zone_lowest_possible_pfn[zone_index])
3397			break;
3398	}
3399
3400	VM_BUG_ON(zone_index == -1);
3401	movable_zone = zone_index;
3402}
3403
3404/*
3405 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3406 * because it is sized independant of architecture. Unlike the other zones,
3407 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3408 * in each node depending on the size of each node and how evenly kernelcore
3409 * is distributed. This helper function adjusts the zone ranges
3410 * provided by the architecture for a given node by using the end of the
3411 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3412 * zones within a node are in order of monotonic increases memory addresses
3413 */
3414static void __meminit adjust_zone_range_for_zone_movable(int nid,
3415					unsigned long zone_type,
3416					unsigned long node_start_pfn,
3417					unsigned long node_end_pfn,
3418					unsigned long *zone_start_pfn,
3419					unsigned long *zone_end_pfn)
3420{
3421	/* Only adjust if ZONE_MOVABLE is on this node */
3422	if (zone_movable_pfn[nid]) {
3423		/* Size ZONE_MOVABLE */
3424		if (zone_type == ZONE_MOVABLE) {
3425			*zone_start_pfn = zone_movable_pfn[nid];
3426			*zone_end_pfn = min(node_end_pfn,
3427				arch_zone_highest_possible_pfn[movable_zone]);
3428
3429		/* Adjust for ZONE_MOVABLE starting within this range */
3430		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3431				*zone_end_pfn > zone_movable_pfn[nid]) {
3432			*zone_end_pfn = zone_movable_pfn[nid];
3433
3434		/* Check if this whole range is within ZONE_MOVABLE */
3435		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3436			*zone_start_pfn = *zone_end_pfn;
3437	}
3438}
3439
3440/*
3441 * Return the number of pages a zone spans in a node, including holes
3442 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3443 */
3444static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3445					unsigned long zone_type,
3446					unsigned long *ignored)
3447{
3448	unsigned long node_start_pfn, node_end_pfn;
3449	unsigned long zone_start_pfn, zone_end_pfn;
3450
3451	/* Get the start and end of the node and zone */
3452	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3453	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3454	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3455	adjust_zone_range_for_zone_movable(nid, zone_type,
3456				node_start_pfn, node_end_pfn,
3457				&zone_start_pfn, &zone_end_pfn);
3458
3459	/* Check that this node has pages within the zone's required range */
3460	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3461		return 0;
3462
3463	/* Move the zone boundaries inside the node if necessary */
3464	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3465	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3466
3467	/* Return the spanned pages */
3468	return zone_end_pfn - zone_start_pfn;
3469}
3470
3471/*
3472 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3473 * then all holes in the requested range will be accounted for.
3474 */
3475static unsigned long __meminit __absent_pages_in_range(int nid,
3476				unsigned long range_start_pfn,
3477				unsigned long range_end_pfn)
3478{
3479	int i = 0;
3480	unsigned long prev_end_pfn = 0, hole_pages = 0;
3481	unsigned long start_pfn;
3482
3483	/* Find the end_pfn of the first active range of pfns in the node */
3484	i = first_active_region_index_in_nid(nid);
3485	if (i == -1)
3486		return 0;
3487
3488	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3489
3490	/* Account for ranges before physical memory on this node */
3491	if (early_node_map[i].start_pfn > range_start_pfn)
3492		hole_pages = prev_end_pfn - range_start_pfn;
3493
3494	/* Find all holes for the zone within the node */
3495	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3496
3497		/* No need to continue if prev_end_pfn is outside the zone */
3498		if (prev_end_pfn >= range_end_pfn)
3499			break;
3500
3501		/* Make sure the end of the zone is not within the hole */
3502		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3503		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3504
3505		/* Update the hole size cound and move on */
3506		if (start_pfn > range_start_pfn) {
3507			BUG_ON(prev_end_pfn > start_pfn);
3508			hole_pages += start_pfn - prev_end_pfn;
3509		}
3510		prev_end_pfn = early_node_map[i].end_pfn;
3511	}
3512
3513	/* Account for ranges past physical memory on this node */
3514	if (range_end_pfn > prev_end_pfn)
3515		hole_pages += range_end_pfn -
3516				max(range_start_pfn, prev_end_pfn);
3517
3518	return hole_pages;
3519}
3520
3521/**
3522 * absent_pages_in_range - Return number of page frames in holes within a range
3523 * @start_pfn: The start PFN to start searching for holes
3524 * @end_pfn: The end PFN to stop searching for holes
3525 *
3526 * It returns the number of pages frames in memory holes within a range.
3527 */
3528unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3529							unsigned long end_pfn)
3530{
3531	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3532}
3533
3534/* Return the number of page frames in holes in a zone on a node */
3535static unsigned long __meminit zone_absent_pages_in_node(int nid,
3536					unsigned long zone_type,
3537					unsigned long *ignored)
3538{
3539	unsigned long node_start_pfn, node_end_pfn;
3540	unsigned long zone_start_pfn, zone_end_pfn;
3541
3542	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3543	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3544							node_start_pfn);
3545	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3546							node_end_pfn);
3547
3548	adjust_zone_range_for_zone_movable(nid, zone_type,
3549			node_start_pfn, node_end_pfn,
3550			&zone_start_pfn, &zone_end_pfn);
3551	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3552}
3553
3554#else
3555static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3556					unsigned long zone_type,
3557					unsigned long *zones_size)
3558{
3559	return zones_size[zone_type];
3560}
3561
3562static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3563						unsigned long zone_type,
3564						unsigned long *zholes_size)
3565{
3566	if (!zholes_size)
3567		return 0;
3568
3569	return zholes_size[zone_type];
3570}
3571
3572#endif
3573
3574static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3575		unsigned long *zones_size, unsigned long *zholes_size)
3576{
3577	unsigned long realtotalpages, totalpages = 0;
3578	enum zone_type i;
3579
3580	for (i = 0; i < MAX_NR_ZONES; i++)
3581		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3582								zones_size);
3583	pgdat->node_spanned_pages = totalpages;
3584
3585	realtotalpages = totalpages;
3586	for (i = 0; i < MAX_NR_ZONES; i++)
3587		realtotalpages -=
3588			zone_absent_pages_in_node(pgdat->node_id, i,
3589								zholes_size);
3590	pgdat->node_present_pages = realtotalpages;
3591	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3592							realtotalpages);
3593}
3594
3595#ifndef CONFIG_SPARSEMEM
3596/*
3597 * Calculate the size of the zone->blockflags rounded to an unsigned long
3598 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3599 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3600 * round what is now in bits to nearest long in bits, then return it in
3601 * bytes.
3602 */
3603static unsigned long __init usemap_size(unsigned long zonesize)
3604{
3605	unsigned long usemapsize;
3606
3607	usemapsize = roundup(zonesize, pageblock_nr_pages);
3608	usemapsize = usemapsize >> pageblock_order;
3609	usemapsize *= NR_PAGEBLOCK_BITS;
3610	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3611
3612	return usemapsize / 8;
3613}
3614
3615static void __init setup_usemap(struct pglist_data *pgdat,
3616				struct zone *zone, unsigned long zonesize)
3617{
3618	unsigned long usemapsize = usemap_size(zonesize);
3619	zone->pageblock_flags = NULL;
3620	if (usemapsize)
3621		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3622}
3623#else
3624static void inline setup_usemap(struct pglist_data *pgdat,
3625				struct zone *zone, unsigned long zonesize) {}
3626#endif /* CONFIG_SPARSEMEM */
3627
3628#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3629
3630/* Return a sensible default order for the pageblock size. */
3631static inline int pageblock_default_order(void)
3632{
3633	if (HPAGE_SHIFT > PAGE_SHIFT)
3634		return HUGETLB_PAGE_ORDER;
3635
3636	return MAX_ORDER-1;
3637}
3638
3639/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3640static inline void __init set_pageblock_order(unsigned int order)
3641{
3642	/* Check that pageblock_nr_pages has not already been setup */
3643	if (pageblock_order)
3644		return;
3645
3646	/*
3647	 * Assume the largest contiguous order of interest is a huge page.
3648	 * This value may be variable depending on boot parameters on IA64
3649	 */
3650	pageblock_order = order;
3651}
3652#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3653
3654/*
3655 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3656 * and pageblock_default_order() are unused as pageblock_order is set
3657 * at compile-time. See include/linux/pageblock-flags.h for the values of
3658 * pageblock_order based on the kernel config
3659 */
3660static inline int pageblock_default_order(unsigned int order)
3661{
3662	return MAX_ORDER-1;
3663}
3664#define set_pageblock_order(x)	do {} while (0)
3665
3666#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3667
3668/*
3669 * Set up the zone data structures:
3670 *   - mark all pages reserved
3671 *   - mark all memory queues empty
3672 *   - clear the memory bitmaps
3673 */
3674static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3675		unsigned long *zones_size, unsigned long *zholes_size)
3676{
3677	enum zone_type j;
3678	int nid = pgdat->node_id;
3679	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3680	int ret;
3681
3682	pgdat_resize_init(pgdat);
3683	pgdat->nr_zones = 0;
3684	init_waitqueue_head(&pgdat->kswapd_wait);
3685	pgdat->kswapd_max_order = 0;
3686	pgdat_page_cgroup_init(pgdat);
3687
3688	for (j = 0; j < MAX_NR_ZONES; j++) {
3689		struct zone *zone = pgdat->node_zones + j;
3690		unsigned long size, realsize, memmap_pages;
3691		enum lru_list l;
3692
3693		size = zone_spanned_pages_in_node(nid, j, zones_size);
3694		realsize = size - zone_absent_pages_in_node(nid, j,
3695								zholes_size);
3696
3697		/*
3698		 * Adjust realsize so that it accounts for how much memory
3699		 * is used by this zone for memmap. This affects the watermark
3700		 * and per-cpu initialisations
3701		 */
3702		memmap_pages =
3703			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3704		if (realsize >= memmap_pages) {
3705			realsize -= memmap_pages;
3706			if (memmap_pages)
3707				printk(KERN_DEBUG
3708				       "  %s zone: %lu pages used for memmap\n",
3709				       zone_names[j], memmap_pages);
3710		} else
3711			printk(KERN_WARNING
3712				"  %s zone: %lu pages exceeds realsize %lu\n",
3713				zone_names[j], memmap_pages, realsize);
3714
3715		/* Account for reserved pages */
3716		if (j == 0 && realsize > dma_reserve) {
3717			realsize -= dma_reserve;
3718			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3719					zone_names[0], dma_reserve);
3720		}
3721
3722		if (!is_highmem_idx(j))
3723			nr_kernel_pages += realsize;
3724		nr_all_pages += realsize;
3725
3726		zone->spanned_pages = size;
3727		zone->present_pages = realsize;
3728#ifdef CONFIG_NUMA
3729		zone->node = nid;
3730		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3731						/ 100;
3732		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3733#endif
3734		zone->name = zone_names[j];
3735		spin_lock_init(&zone->lock);
3736		spin_lock_init(&zone->lru_lock);
3737		zone_seqlock_init(zone);
3738		zone->zone_pgdat = pgdat;
3739
3740		zone->prev_priority = DEF_PRIORITY;
3741
3742		zone_pcp_init(zone);
3743		for_each_lru(l) {
3744			INIT_LIST_HEAD(&zone->lru[l].list);
3745			zone->lru[l].nr_saved_scan = 0;
3746		}
3747		zone->reclaim_stat.recent_rotated[0] = 0;
3748		zone->reclaim_stat.recent_rotated[1] = 0;
3749		zone->reclaim_stat.recent_scanned[0] = 0;
3750		zone->reclaim_stat.recent_scanned[1] = 0;
3751		zap_zone_vm_stats(zone);
3752		zone->flags = 0;
3753		if (!size)
3754			continue;
3755
3756		set_pageblock_order(pageblock_default_order());
3757		setup_usemap(pgdat, zone, size);
3758		ret = init_currently_empty_zone(zone, zone_start_pfn,
3759						size, MEMMAP_EARLY);
3760		BUG_ON(ret);
3761		memmap_init(size, nid, j, zone_start_pfn);
3762		zone_start_pfn += size;
3763	}
3764}
3765
3766static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3767{
3768	/* Skip empty nodes */
3769	if (!pgdat->node_spanned_pages)
3770		return;
3771
3772#ifdef CONFIG_FLAT_NODE_MEM_MAP
3773	/* ia64 gets its own node_mem_map, before this, without bootmem */
3774	if (!pgdat->node_mem_map) {
3775		unsigned long size, start, end;
3776		struct page *map;
3777
3778		/*
3779		 * The zone's endpoints aren't required to be MAX_ORDER
3780		 * aligned but the node_mem_map endpoints must be in order
3781		 * for the buddy allocator to function correctly.
3782		 */
3783		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3784		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3785		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3786		size =  (end - start) * sizeof(struct page);
3787		map = alloc_remap(pgdat->node_id, size);
3788		if (!map)
3789			map = alloc_bootmem_node(pgdat, size);
3790		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3791	}
3792#ifndef CONFIG_NEED_MULTIPLE_NODES
3793	/*
3794	 * With no DISCONTIG, the global mem_map is just set as node 0's
3795	 */
3796	if (pgdat == NODE_DATA(0)) {
3797		mem_map = NODE_DATA(0)->node_mem_map;
3798#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3799		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3800			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3801#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3802	}
3803#endif
3804#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3805}
3806
3807void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3808		unsigned long node_start_pfn, unsigned long *zholes_size)
3809{
3810	pg_data_t *pgdat = NODE_DATA(nid);
3811
3812	pgdat->node_id = nid;
3813	pgdat->node_start_pfn = node_start_pfn;
3814	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3815
3816	alloc_node_mem_map(pgdat);
3817#ifdef CONFIG_FLAT_NODE_MEM_MAP
3818	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3819		nid, (unsigned long)pgdat,
3820		(unsigned long)pgdat->node_mem_map);
3821#endif
3822
3823	free_area_init_core(pgdat, zones_size, zholes_size);
3824}
3825
3826#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3827
3828#if MAX_NUMNODES > 1
3829/*
3830 * Figure out the number of possible node ids.
3831 */
3832static void __init setup_nr_node_ids(void)
3833{
3834	unsigned int node;
3835	unsigned int highest = 0;
3836
3837	for_each_node_mask(node, node_possible_map)
3838		highest = node;
3839	nr_node_ids = highest + 1;
3840}
3841#else
3842static inline void setup_nr_node_ids(void)
3843{
3844}
3845#endif
3846
3847/**
3848 * add_active_range - Register a range of PFNs backed by physical memory
3849 * @nid: The node ID the range resides on
3850 * @start_pfn: The start PFN of the available physical memory
3851 * @end_pfn: The end PFN of the available physical memory
3852 *
3853 * These ranges are stored in an early_node_map[] and later used by
3854 * free_area_init_nodes() to calculate zone sizes and holes. If the
3855 * range spans a memory hole, it is up to the architecture to ensure
3856 * the memory is not freed by the bootmem allocator. If possible
3857 * the range being registered will be merged with existing ranges.
3858 */
3859void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3860						unsigned long end_pfn)
3861{
3862	int i;
3863
3864	mminit_dprintk(MMINIT_TRACE, "memory_register",
3865			"Entering add_active_range(%d, %#lx, %#lx) "
3866			"%d entries of %d used\n",
3867			nid, start_pfn, end_pfn,
3868			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3869
3870	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3871
3872	/* Merge with existing active regions if possible */
3873	for (i = 0; i < nr_nodemap_entries; i++) {
3874		if (early_node_map[i].nid != nid)
3875			continue;
3876
3877		/* Skip if an existing region covers this new one */
3878		if (start_pfn >= early_node_map[i].start_pfn &&
3879				end_pfn <= early_node_map[i].end_pfn)
3880			return;
3881
3882		/* Merge forward if suitable */
3883		if (start_pfn <= early_node_map[i].end_pfn &&
3884				end_pfn > early_node_map[i].end_pfn) {
3885			early_node_map[i].end_pfn = end_pfn;
3886			return;
3887		}
3888
3889		/* Merge backward if suitable */
3890		if (start_pfn < early_node_map[i].end_pfn &&
3891				end_pfn >= early_node_map[i].start_pfn) {
3892			early_node_map[i].start_pfn = start_pfn;
3893			return;
3894		}
3895	}
3896
3897	/* Check that early_node_map is large enough */
3898	if (i >= MAX_ACTIVE_REGIONS) {
3899		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3900							MAX_ACTIVE_REGIONS);
3901		return;
3902	}
3903
3904	early_node_map[i].nid = nid;
3905	early_node_map[i].start_pfn = start_pfn;
3906	early_node_map[i].end_pfn = end_pfn;
3907	nr_nodemap_entries = i + 1;
3908}
3909
3910/**
3911 * remove_active_range - Shrink an existing registered range of PFNs
3912 * @nid: The node id the range is on that should be shrunk
3913 * @start_pfn: The new PFN of the range
3914 * @end_pfn: The new PFN of the range
3915 *
3916 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3917 * The map is kept near the end physical page range that has already been
3918 * registered. This function allows an arch to shrink an existing registered
3919 * range.
3920 */
3921void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3922				unsigned long end_pfn)
3923{
3924	int i, j;
3925	int removed = 0;
3926
3927	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3928			  nid, start_pfn, end_pfn);
3929
3930	/* Find the old active region end and shrink */
3931	for_each_active_range_index_in_nid(i, nid) {
3932		if (early_node_map[i].start_pfn >= start_pfn &&
3933		    early_node_map[i].end_pfn <= end_pfn) {
3934			/* clear it */
3935			early_node_map[i].start_pfn = 0;
3936			early_node_map[i].end_pfn = 0;
3937			removed = 1;
3938			continue;
3939		}
3940		if (early_node_map[i].start_pfn < start_pfn &&
3941		    early_node_map[i].end_pfn > start_pfn) {
3942			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3943			early_node_map[i].end_pfn = start_pfn;
3944			if (temp_end_pfn > end_pfn)
3945				add_active_range(nid, end_pfn, temp_end_pfn);
3946			continue;
3947		}
3948		if (early_node_map[i].start_pfn >= start_pfn &&
3949		    early_node_map[i].end_pfn > end_pfn &&
3950		    early_node_map[i].start_pfn < end_pfn) {
3951			early_node_map[i].start_pfn = end_pfn;
3952			continue;
3953		}
3954	}
3955
3956	if (!removed)
3957		return;
3958
3959	/* remove the blank ones */
3960	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3961		if (early_node_map[i].nid != nid)
3962			continue;
3963		if (early_node_map[i].end_pfn)
3964			continue;
3965		/* we found it, get rid of it */
3966		for (j = i; j < nr_nodemap_entries - 1; j++)
3967			memcpy(&early_node_map[j], &early_node_map[j+1],
3968				sizeof(early_node_map[j]));
3969		j = nr_nodemap_entries - 1;
3970		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3971		nr_nodemap_entries--;
3972	}
3973}
3974
3975/**
3976 * remove_all_active_ranges - Remove all currently registered regions
3977 *
3978 * During discovery, it may be found that a table like SRAT is invalid
3979 * and an alternative discovery method must be used. This function removes
3980 * all currently registered regions.
3981 */
3982void __init remove_all_active_ranges(void)
3983{
3984	memset(early_node_map, 0, sizeof(early_node_map));
3985	nr_nodemap_entries = 0;
3986}
3987
3988/* Compare two active node_active_regions */
3989static int __init cmp_node_active_region(const void *a, const void *b)
3990{
3991	struct node_active_region *arange = (struct node_active_region *)a;
3992	struct node_active_region *brange = (struct node_active_region *)b;
3993
3994	/* Done this way to avoid overflows */
3995	if (arange->start_pfn > brange->start_pfn)
3996		return 1;
3997	if (arange->start_pfn < brange->start_pfn)
3998		return -1;
3999
4000	return 0;
4001}
4002
4003/* sort the node_map by start_pfn */
4004static void __init sort_node_map(void)
4005{
4006	sort(early_node_map, (size_t)nr_nodemap_entries,
4007			sizeof(struct node_active_region),
4008			cmp_node_active_region, NULL);
4009}
4010
4011/* Find the lowest pfn for a node */
4012static unsigned long __init find_min_pfn_for_node(int nid)
4013{
4014	int i;
4015	unsigned long min_pfn = ULONG_MAX;
4016
4017	/* Assuming a sorted map, the first range found has the starting pfn */
4018	for_each_active_range_index_in_nid(i, nid)
4019		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4020
4021	if (min_pfn == ULONG_MAX) {
4022		printk(KERN_WARNING
4023			"Could not find start_pfn for node %d\n", nid);
4024		return 0;
4025	}
4026
4027	return min_pfn;
4028}
4029
4030/**
4031 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4032 *
4033 * It returns the minimum PFN based on information provided via
4034 * add_active_range().
4035 */
4036unsigned long __init find_min_pfn_with_active_regions(void)
4037{
4038	return find_min_pfn_for_node(MAX_NUMNODES);
4039}
4040
4041/*
4042 * early_calculate_totalpages()
4043 * Sum pages in active regions for movable zone.
4044 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4045 */
4046static unsigned long __init early_calculate_totalpages(void)
4047{
4048	int i;
4049	unsigned long totalpages = 0;
4050
4051	for (i = 0; i < nr_nodemap_entries; i++) {
4052		unsigned long pages = early_node_map[i].end_pfn -
4053						early_node_map[i].start_pfn;
4054		totalpages += pages;
4055		if (pages)
4056			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4057	}
4058  	return totalpages;
4059}
4060
4061/*
4062 * Find the PFN the Movable zone begins in each node. Kernel memory
4063 * is spread evenly between nodes as long as the nodes have enough
4064 * memory. When they don't, some nodes will have more kernelcore than
4065 * others
4066 */
4067static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4068{
4069	int i, nid;
4070	unsigned long usable_startpfn;
4071	unsigned long kernelcore_node, kernelcore_remaining;
4072	/* save the state before borrow the nodemask */
4073	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4074	unsigned long totalpages = early_calculate_totalpages();
4075	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4076
4077	/*
4078	 * If movablecore was specified, calculate what size of
4079	 * kernelcore that corresponds so that memory usable for
4080	 * any allocation type is evenly spread. If both kernelcore
4081	 * and movablecore are specified, then the value of kernelcore
4082	 * will be used for required_kernelcore if it's greater than
4083	 * what movablecore would have allowed.
4084	 */
4085	if (required_movablecore) {
4086		unsigned long corepages;
4087
4088		/*
4089		 * Round-up so that ZONE_MOVABLE is at least as large as what
4090		 * was requested by the user
4091		 */
4092		required_movablecore =
4093			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4094		corepages = totalpages - required_movablecore;
4095
4096		required_kernelcore = max(required_kernelcore, corepages);
4097	}
4098
4099	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4100	if (!required_kernelcore)
4101		goto out;
4102
4103	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4104	find_usable_zone_for_movable();
4105	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4106
4107restart:
4108	/* Spread kernelcore memory as evenly as possible throughout nodes */
4109	kernelcore_node = required_kernelcore / usable_nodes;
4110	for_each_node_state(nid, N_HIGH_MEMORY) {
4111		/*
4112		 * Recalculate kernelcore_node if the division per node
4113		 * now exceeds what is necessary to satisfy the requested
4114		 * amount of memory for the kernel
4115		 */
4116		if (required_kernelcore < kernelcore_node)
4117			kernelcore_node = required_kernelcore / usable_nodes;
4118
4119		/*
4120		 * As the map is walked, we track how much memory is usable
4121		 * by the kernel using kernelcore_remaining. When it is
4122		 * 0, the rest of the node is usable by ZONE_MOVABLE
4123		 */
4124		kernelcore_remaining = kernelcore_node;
4125
4126		/* Go through each range of PFNs within this node */
4127		for_each_active_range_index_in_nid(i, nid) {
4128			unsigned long start_pfn, end_pfn;
4129			unsigned long size_pages;
4130
4131			start_pfn = max(early_node_map[i].start_pfn,
4132						zone_movable_pfn[nid]);
4133			end_pfn = early_node_map[i].end_pfn;
4134			if (start_pfn >= end_pfn)
4135				continue;
4136
4137			/* Account for what is only usable for kernelcore */
4138			if (start_pfn < usable_startpfn) {
4139				unsigned long kernel_pages;
4140				kernel_pages = min(end_pfn, usable_startpfn)
4141								- start_pfn;
4142
4143				kernelcore_remaining -= min(kernel_pages,
4144							kernelcore_remaining);
4145				required_kernelcore -= min(kernel_pages,
4146							required_kernelcore);
4147
4148				/* Continue if range is now fully accounted */
4149				if (end_pfn <= usable_startpfn) {
4150
4151					/*
4152					 * Push zone_movable_pfn to the end so
4153					 * that if we have to rebalance
4154					 * kernelcore across nodes, we will
4155					 * not double account here
4156					 */
4157					zone_movable_pfn[nid] = end_pfn;
4158					continue;
4159				}
4160				start_pfn = usable_startpfn;
4161			}
4162
4163			/*
4164			 * The usable PFN range for ZONE_MOVABLE is from
4165			 * start_pfn->end_pfn. Calculate size_pages as the
4166			 * number of pages used as kernelcore
4167			 */
4168			size_pages = end_pfn - start_pfn;
4169			if (size_pages > kernelcore_remaining)
4170				size_pages = kernelcore_remaining;
4171			zone_movable_pfn[nid] = start_pfn + size_pages;
4172
4173			/*
4174			 * Some kernelcore has been met, update counts and
4175			 * break if the kernelcore for this node has been
4176			 * satisified
4177			 */
4178			required_kernelcore -= min(required_kernelcore,
4179								size_pages);
4180			kernelcore_remaining -= size_pages;
4181			if (!kernelcore_remaining)
4182				break;
4183		}
4184	}
4185
4186	/*
4187	 * If there is still required_kernelcore, we do another pass with one
4188	 * less node in the count. This will push zone_movable_pfn[nid] further
4189	 * along on the nodes that still have memory until kernelcore is
4190	 * satisified
4191	 */
4192	usable_nodes--;
4193	if (usable_nodes && required_kernelcore > usable_nodes)
4194		goto restart;
4195
4196	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4197	for (nid = 0; nid < MAX_NUMNODES; nid++)
4198		zone_movable_pfn[nid] =
4199			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4200
4201out:
4202	/* restore the node_state */
4203	node_states[N_HIGH_MEMORY] = saved_node_state;
4204}
4205
4206/* Any regular memory on that node ? */
4207static void check_for_regular_memory(pg_data_t *pgdat)
4208{
4209#ifdef CONFIG_HIGHMEM
4210	enum zone_type zone_type;
4211
4212	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4213		struct zone *zone = &pgdat->node_zones[zone_type];
4214		if (zone->present_pages)
4215			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4216	}
4217#endif
4218}
4219
4220/**
4221 * free_area_init_nodes - Initialise all pg_data_t and zone data
4222 * @max_zone_pfn: an array of max PFNs for each zone
4223 *
4224 * This will call free_area_init_node() for each active node in the system.
4225 * Using the page ranges provided by add_active_range(), the size of each
4226 * zone in each node and their holes is calculated. If the maximum PFN
4227 * between two adjacent zones match, it is assumed that the zone is empty.
4228 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4229 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4230 * starts where the previous one ended. For example, ZONE_DMA32 starts
4231 * at arch_max_dma_pfn.
4232 */
4233void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4234{
4235	unsigned long nid;
4236	int i;
4237
4238	/* Sort early_node_map as initialisation assumes it is sorted */
4239	sort_node_map();
4240
4241	/* Record where the zone boundaries are */
4242	memset(arch_zone_lowest_possible_pfn, 0,
4243				sizeof(arch_zone_lowest_possible_pfn));
4244	memset(arch_zone_highest_possible_pfn, 0,
4245				sizeof(arch_zone_highest_possible_pfn));
4246	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4247	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4248	for (i = 1; i < MAX_NR_ZONES; i++) {
4249		if (i == ZONE_MOVABLE)
4250			continue;
4251		arch_zone_lowest_possible_pfn[i] =
4252			arch_zone_highest_possible_pfn[i-1];
4253		arch_zone_highest_possible_pfn[i] =
4254			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4255	}
4256	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4257	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4258
4259	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4260	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4261	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4262
4263	/* Print out the zone ranges */
4264	printk("Zone PFN ranges:\n");
4265	for (i = 0; i < MAX_NR_ZONES; i++) {
4266		if (i == ZONE_MOVABLE)
4267			continue;
4268		printk("  %-8s %0#10lx -> %0#10lx\n",
4269				zone_names[i],
4270				arch_zone_lowest_possible_pfn[i],
4271				arch_zone_highest_possible_pfn[i]);
4272	}
4273
4274	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4275	printk("Movable zone start PFN for each node\n");
4276	for (i = 0; i < MAX_NUMNODES; i++) {
4277		if (zone_movable_pfn[i])
4278			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4279	}
4280
4281	/* Print out the early_node_map[] */
4282	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4283	for (i = 0; i < nr_nodemap_entries; i++)
4284		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4285						early_node_map[i].start_pfn,
4286						early_node_map[i].end_pfn);
4287
4288	/* Initialise every node */
4289	mminit_verify_pageflags_layout();
4290	setup_nr_node_ids();
4291	for_each_online_node(nid) {
4292		pg_data_t *pgdat = NODE_DATA(nid);
4293		free_area_init_node(nid, NULL,
4294				find_min_pfn_for_node(nid), NULL);
4295
4296		/* Any memory on that node */
4297		if (pgdat->node_present_pages)
4298			node_set_state(nid, N_HIGH_MEMORY);
4299		check_for_regular_memory(pgdat);
4300	}
4301}
4302
4303static int __init cmdline_parse_core(char *p, unsigned long *core)
4304{
4305	unsigned long long coremem;
4306	if (!p)
4307		return -EINVAL;
4308
4309	coremem = memparse(p, &p);
4310	*core = coremem >> PAGE_SHIFT;
4311
4312	/* Paranoid check that UL is enough for the coremem value */
4313	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4314
4315	return 0;
4316}
4317
4318/*
4319 * kernelcore=size sets the amount of memory for use for allocations that
4320 * cannot be reclaimed or migrated.
4321 */
4322static int __init cmdline_parse_kernelcore(char *p)
4323{
4324	return cmdline_parse_core(p, &required_kernelcore);
4325}
4326
4327/*
4328 * movablecore=size sets the amount of memory for use for allocations that
4329 * can be reclaimed or migrated.
4330 */
4331static int __init cmdline_parse_movablecore(char *p)
4332{
4333	return cmdline_parse_core(p, &required_movablecore);
4334}
4335
4336early_param("kernelcore", cmdline_parse_kernelcore);
4337early_param("movablecore", cmdline_parse_movablecore);
4338
4339#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4340
4341/**
4342 * set_dma_reserve - set the specified number of pages reserved in the first zone
4343 * @new_dma_reserve: The number of pages to mark reserved
4344 *
4345 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4346 * In the DMA zone, a significant percentage may be consumed by kernel image
4347 * and other unfreeable allocations which can skew the watermarks badly. This
4348 * function may optionally be used to account for unfreeable pages in the
4349 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4350 * smaller per-cpu batchsize.
4351 */
4352void __init set_dma_reserve(unsigned long new_dma_reserve)
4353{
4354	dma_reserve = new_dma_reserve;
4355}
4356
4357#ifndef CONFIG_NEED_MULTIPLE_NODES
4358struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4359EXPORT_SYMBOL(contig_page_data);
4360#endif
4361
4362void __init free_area_init(unsigned long *zones_size)
4363{
4364	free_area_init_node(0, zones_size,
4365			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4366}
4367
4368static int page_alloc_cpu_notify(struct notifier_block *self,
4369				 unsigned long action, void *hcpu)
4370{
4371	int cpu = (unsigned long)hcpu;
4372
4373	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4374		drain_pages(cpu);
4375
4376		/*
4377		 * Spill the event counters of the dead processor
4378		 * into the current processors event counters.
4379		 * This artificially elevates the count of the current
4380		 * processor.
4381		 */
4382		vm_events_fold_cpu(cpu);
4383
4384		/*
4385		 * Zero the differential counters of the dead processor
4386		 * so that the vm statistics are consistent.
4387		 *
4388		 * This is only okay since the processor is dead and cannot
4389		 * race with what we are doing.
4390		 */
4391		refresh_cpu_vm_stats(cpu);
4392	}
4393	return NOTIFY_OK;
4394}
4395
4396void __init page_alloc_init(void)
4397{
4398	hotcpu_notifier(page_alloc_cpu_notify, 0);
4399}
4400
4401/*
4402 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4403 *	or min_free_kbytes changes.
4404 */
4405static void calculate_totalreserve_pages(void)
4406{
4407	struct pglist_data *pgdat;
4408	unsigned long reserve_pages = 0;
4409	enum zone_type i, j;
4410
4411	for_each_online_pgdat(pgdat) {
4412		for (i = 0; i < MAX_NR_ZONES; i++) {
4413			struct zone *zone = pgdat->node_zones + i;
4414			unsigned long max = 0;
4415
4416			/* Find valid and maximum lowmem_reserve in the zone */
4417			for (j = i; j < MAX_NR_ZONES; j++) {
4418				if (zone->lowmem_reserve[j] > max)
4419					max = zone->lowmem_reserve[j];
4420			}
4421
4422			/* we treat the high watermark as reserved pages. */
4423			max += high_wmark_pages(zone);
4424
4425			if (max > zone->present_pages)
4426				max = zone->present_pages;
4427			reserve_pages += max;
4428		}
4429	}
4430	totalreserve_pages = reserve_pages;
4431}
4432
4433/*
4434 * setup_per_zone_lowmem_reserve - called whenever
4435 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4436 *	has a correct pages reserved value, so an adequate number of
4437 *	pages are left in the zone after a successful __alloc_pages().
4438 */
4439static void setup_per_zone_lowmem_reserve(void)
4440{
4441	struct pglist_data *pgdat;
4442	enum zone_type j, idx;
4443
4444	for_each_online_pgdat(pgdat) {
4445		for (j = 0; j < MAX_NR_ZONES; j++) {
4446			struct zone *zone = pgdat->node_zones + j;
4447			unsigned long present_pages = zone->present_pages;
4448
4449			zone->lowmem_reserve[j] = 0;
4450
4451			idx = j;
4452			while (idx) {
4453				struct zone *lower_zone;
4454
4455				idx--;
4456
4457				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4458					sysctl_lowmem_reserve_ratio[idx] = 1;
4459
4460				lower_zone = pgdat->node_zones + idx;
4461				lower_zone->lowmem_reserve[j] = present_pages /
4462					sysctl_lowmem_reserve_ratio[idx];
4463				present_pages += lower_zone->present_pages;
4464			}
4465		}
4466	}
4467
4468	/* update totalreserve_pages */
4469	calculate_totalreserve_pages();
4470}
4471
4472/**
4473 * setup_per_zone_wmarks - called when min_free_kbytes changes
4474 * or when memory is hot-{added|removed}
4475 *
4476 * Ensures that the watermark[min,low,high] values for each zone are set
4477 * correctly with respect to min_free_kbytes.
4478 */
4479void setup_per_zone_wmarks(void)
4480{
4481	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4482	unsigned long lowmem_pages = 0;
4483	struct zone *zone;
4484	unsigned long flags;
4485
4486	/* Calculate total number of !ZONE_HIGHMEM pages */
4487	for_each_zone(zone) {
4488		if (!is_highmem(zone))
4489			lowmem_pages += zone->present_pages;
4490	}
4491
4492	for_each_zone(zone) {
4493		u64 tmp;
4494
4495		spin_lock_irqsave(&zone->lock, flags);
4496		tmp = (u64)pages_min * zone->present_pages;
4497		do_div(tmp, lowmem_pages);
4498		if (is_highmem(zone)) {
4499			/*
4500			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4501			 * need highmem pages, so cap pages_min to a small
4502			 * value here.
4503			 *
4504			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4505			 * deltas controls asynch page reclaim, and so should
4506			 * not be capped for highmem.
4507			 */
4508			int min_pages;
4509
4510			min_pages = zone->present_pages / 1024;
4511			if (min_pages < SWAP_CLUSTER_MAX)
4512				min_pages = SWAP_CLUSTER_MAX;
4513			if (min_pages > 128)
4514				min_pages = 128;
4515			zone->watermark[WMARK_MIN] = min_pages;
4516		} else {
4517			/*
4518			 * If it's a lowmem zone, reserve a number of pages
4519			 * proportionate to the zone's size.
4520			 */
4521			zone->watermark[WMARK_MIN] = tmp;
4522		}
4523
4524		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4525		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4526		setup_zone_migrate_reserve(zone);
4527		spin_unlock_irqrestore(&zone->lock, flags);
4528	}
4529
4530	/* update totalreserve_pages */
4531	calculate_totalreserve_pages();
4532}
4533
4534/**
4535 * The inactive anon list should be small enough that the VM never has to
4536 * do too much work, but large enough that each inactive page has a chance
4537 * to be referenced again before it is swapped out.
4538 *
4539 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4540 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4541 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4542 * the anonymous pages are kept on the inactive list.
4543 *
4544 * total     target    max
4545 * memory    ratio     inactive anon
4546 * -------------------------------------
4547 *   10MB       1         5MB
4548 *  100MB       1        50MB
4549 *    1GB       3       250MB
4550 *   10GB      10       0.9GB
4551 *  100GB      31         3GB
4552 *    1TB     101        10GB
4553 *   10TB     320        32GB
4554 */
4555void calculate_zone_inactive_ratio(struct zone *zone)
4556{
4557	unsigned int gb, ratio;
4558
4559	/* Zone size in gigabytes */
4560	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4561	if (gb)
4562		ratio = int_sqrt(10 * gb);
4563	else
4564		ratio = 1;
4565
4566	zone->inactive_ratio = ratio;
4567}
4568
4569static void __init setup_per_zone_inactive_ratio(void)
4570{
4571	struct zone *zone;
4572
4573	for_each_zone(zone)
4574		calculate_zone_inactive_ratio(zone);
4575}
4576
4577/*
4578 * Initialise min_free_kbytes.
4579 *
4580 * For small machines we want it small (128k min).  For large machines
4581 * we want it large (64MB max).  But it is not linear, because network
4582 * bandwidth does not increase linearly with machine size.  We use
4583 *
4584 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4585 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4586 *
4587 * which yields
4588 *
4589 * 16MB:	512k
4590 * 32MB:	724k
4591 * 64MB:	1024k
4592 * 128MB:	1448k
4593 * 256MB:	2048k
4594 * 512MB:	2896k
4595 * 1024MB:	4096k
4596 * 2048MB:	5792k
4597 * 4096MB:	8192k
4598 * 8192MB:	11584k
4599 * 16384MB:	16384k
4600 */
4601static int __init init_per_zone_wmark_min(void)
4602{
4603	unsigned long lowmem_kbytes;
4604
4605	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4606
4607	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4608	if (min_free_kbytes < 128)
4609		min_free_kbytes = 128;
4610	if (min_free_kbytes > 65536)
4611		min_free_kbytes = 65536;
4612	setup_per_zone_wmarks();
4613	setup_per_zone_lowmem_reserve();
4614	setup_per_zone_inactive_ratio();
4615	return 0;
4616}
4617module_init(init_per_zone_wmark_min)
4618
4619/*
4620 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4621 *	that we can call two helper functions whenever min_free_kbytes
4622 *	changes.
4623 */
4624int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4625	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4626{
4627	proc_dointvec(table, write, file, buffer, length, ppos);
4628	if (write)
4629		setup_per_zone_wmarks();
4630	return 0;
4631}
4632
4633#ifdef CONFIG_NUMA
4634int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4635	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4636{
4637	struct zone *zone;
4638	int rc;
4639
4640	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4641	if (rc)
4642		return rc;
4643
4644	for_each_zone(zone)
4645		zone->min_unmapped_pages = (zone->present_pages *
4646				sysctl_min_unmapped_ratio) / 100;
4647	return 0;
4648}
4649
4650int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4651	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4652{
4653	struct zone *zone;
4654	int rc;
4655
4656	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4657	if (rc)
4658		return rc;
4659
4660	for_each_zone(zone)
4661		zone->min_slab_pages = (zone->present_pages *
4662				sysctl_min_slab_ratio) / 100;
4663	return 0;
4664}
4665#endif
4666
4667/*
4668 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4669 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4670 *	whenever sysctl_lowmem_reserve_ratio changes.
4671 *
4672 * The reserve ratio obviously has absolutely no relation with the
4673 * minimum watermarks. The lowmem reserve ratio can only make sense
4674 * if in function of the boot time zone sizes.
4675 */
4676int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4677	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4678{
4679	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4680	setup_per_zone_lowmem_reserve();
4681	return 0;
4682}
4683
4684/*
4685 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4686 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4687 * can have before it gets flushed back to buddy allocator.
4688 */
4689
4690int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4691	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4692{
4693	struct zone *zone;
4694	unsigned int cpu;
4695	int ret;
4696
4697	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4698	if (!write || (ret == -EINVAL))
4699		return ret;
4700	for_each_populated_zone(zone) {
4701		for_each_online_cpu(cpu) {
4702			unsigned long  high;
4703			high = zone->present_pages / percpu_pagelist_fraction;
4704			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4705		}
4706	}
4707	return 0;
4708}
4709
4710int hashdist = HASHDIST_DEFAULT;
4711
4712#ifdef CONFIG_NUMA
4713static int __init set_hashdist(char *str)
4714{
4715	if (!str)
4716		return 0;
4717	hashdist = simple_strtoul(str, &str, 0);
4718	return 1;
4719}
4720__setup("hashdist=", set_hashdist);
4721#endif
4722
4723/*
4724 * allocate a large system hash table from bootmem
4725 * - it is assumed that the hash table must contain an exact power-of-2
4726 *   quantity of entries
4727 * - limit is the number of hash buckets, not the total allocation size
4728 */
4729void *__init alloc_large_system_hash(const char *tablename,
4730				     unsigned long bucketsize,
4731				     unsigned long numentries,
4732				     int scale,
4733				     int flags,
4734				     unsigned int *_hash_shift,
4735				     unsigned int *_hash_mask,
4736				     unsigned long limit)
4737{
4738	unsigned long long max = limit;
4739	unsigned long log2qty, size;
4740	void *table = NULL;
4741
4742	/* allow the kernel cmdline to have a say */
4743	if (!numentries) {
4744		/* round applicable memory size up to nearest megabyte */
4745		numentries = nr_kernel_pages;
4746		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4747		numentries >>= 20 - PAGE_SHIFT;
4748		numentries <<= 20 - PAGE_SHIFT;
4749
4750		/* limit to 1 bucket per 2^scale bytes of low memory */
4751		if (scale > PAGE_SHIFT)
4752			numentries >>= (scale - PAGE_SHIFT);
4753		else
4754			numentries <<= (PAGE_SHIFT - scale);
4755
4756		/* Make sure we've got at least a 0-order allocation.. */
4757		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4758			numentries = PAGE_SIZE / bucketsize;
4759	}
4760	numentries = roundup_pow_of_two(numentries);
4761
4762	/* limit allocation size to 1/16 total memory by default */
4763	if (max == 0) {
4764		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4765		do_div(max, bucketsize);
4766	}
4767
4768	if (numentries > max)
4769		numentries = max;
4770
4771	log2qty = ilog2(numentries);
4772
4773	do {
4774		size = bucketsize << log2qty;
4775		if (flags & HASH_EARLY)
4776			table = alloc_bootmem_nopanic(size);
4777		else if (hashdist)
4778			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4779		else {
4780			/*
4781			 * If bucketsize is not a power-of-two, we may free
4782			 * some pages at the end of hash table which
4783			 * alloc_pages_exact() automatically does
4784			 */
4785			if (get_order(size) < MAX_ORDER) {
4786				table = alloc_pages_exact(size, GFP_ATOMIC);
4787				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4788			}
4789		}
4790	} while (!table && size > PAGE_SIZE && --log2qty);
4791
4792	if (!table)
4793		panic("Failed to allocate %s hash table\n", tablename);
4794
4795	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4796	       tablename,
4797	       (1U << log2qty),
4798	       ilog2(size) - PAGE_SHIFT,
4799	       size);
4800
4801	if (_hash_shift)
4802		*_hash_shift = log2qty;
4803	if (_hash_mask)
4804		*_hash_mask = (1 << log2qty) - 1;
4805
4806	return table;
4807}
4808
4809/* Return a pointer to the bitmap storing bits affecting a block of pages */
4810static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4811							unsigned long pfn)
4812{
4813#ifdef CONFIG_SPARSEMEM
4814	return __pfn_to_section(pfn)->pageblock_flags;
4815#else
4816	return zone->pageblock_flags;
4817#endif /* CONFIG_SPARSEMEM */
4818}
4819
4820static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4821{
4822#ifdef CONFIG_SPARSEMEM
4823	pfn &= (PAGES_PER_SECTION-1);
4824	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4825#else
4826	pfn = pfn - zone->zone_start_pfn;
4827	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4828#endif /* CONFIG_SPARSEMEM */
4829}
4830
4831/**
4832 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4833 * @page: The page within the block of interest
4834 * @start_bitidx: The first bit of interest to retrieve
4835 * @end_bitidx: The last bit of interest
4836 * returns pageblock_bits flags
4837 */
4838unsigned long get_pageblock_flags_group(struct page *page,
4839					int start_bitidx, int end_bitidx)
4840{
4841	struct zone *zone;
4842	unsigned long *bitmap;
4843	unsigned long pfn, bitidx;
4844	unsigned long flags = 0;
4845	unsigned long value = 1;
4846
4847	zone = page_zone(page);
4848	pfn = page_to_pfn(page);
4849	bitmap = get_pageblock_bitmap(zone, pfn);
4850	bitidx = pfn_to_bitidx(zone, pfn);
4851
4852	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4853		if (test_bit(bitidx + start_bitidx, bitmap))
4854			flags |= value;
4855
4856	return flags;
4857}
4858
4859/**
4860 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4861 * @page: The page within the block of interest
4862 * @start_bitidx: The first bit of interest
4863 * @end_bitidx: The last bit of interest
4864 * @flags: The flags to set
4865 */
4866void set_pageblock_flags_group(struct page *page, unsigned long flags,
4867					int start_bitidx, int end_bitidx)
4868{
4869	struct zone *zone;
4870	unsigned long *bitmap;
4871	unsigned long pfn, bitidx;
4872	unsigned long value = 1;
4873
4874	zone = page_zone(page);
4875	pfn = page_to_pfn(page);
4876	bitmap = get_pageblock_bitmap(zone, pfn);
4877	bitidx = pfn_to_bitidx(zone, pfn);
4878	VM_BUG_ON(pfn < zone->zone_start_pfn);
4879	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4880
4881	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4882		if (flags & value)
4883			__set_bit(bitidx + start_bitidx, bitmap);
4884		else
4885			__clear_bit(bitidx + start_bitidx, bitmap);
4886}
4887
4888/*
4889 * This is designed as sub function...plz see page_isolation.c also.
4890 * set/clear page block's type to be ISOLATE.
4891 * page allocater never alloc memory from ISOLATE block.
4892 */
4893
4894int set_migratetype_isolate(struct page *page)
4895{
4896	struct zone *zone;
4897	unsigned long flags;
4898	int ret = -EBUSY;
4899
4900	zone = page_zone(page);
4901	spin_lock_irqsave(&zone->lock, flags);
4902	/*
4903	 * In future, more migrate types will be able to be isolation target.
4904	 */
4905	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4906		goto out;
4907	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4908	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4909	ret = 0;
4910out:
4911	spin_unlock_irqrestore(&zone->lock, flags);
4912	if (!ret)
4913		drain_all_pages();
4914	return ret;
4915}
4916
4917void unset_migratetype_isolate(struct page *page)
4918{
4919	struct zone *zone;
4920	unsigned long flags;
4921	zone = page_zone(page);
4922	spin_lock_irqsave(&zone->lock, flags);
4923	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4924		goto out;
4925	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4926	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4927out:
4928	spin_unlock_irqrestore(&zone->lock, flags);
4929}
4930
4931#ifdef CONFIG_MEMORY_HOTREMOVE
4932/*
4933 * All pages in the range must be isolated before calling this.
4934 */
4935void
4936__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4937{
4938	struct page *page;
4939	struct zone *zone;
4940	int order, i;
4941	unsigned long pfn;
4942	unsigned long flags;
4943	/* find the first valid pfn */
4944	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4945		if (pfn_valid(pfn))
4946			break;
4947	if (pfn == end_pfn)
4948		return;
4949	zone = page_zone(pfn_to_page(pfn));
4950	spin_lock_irqsave(&zone->lock, flags);
4951	pfn = start_pfn;
4952	while (pfn < end_pfn) {
4953		if (!pfn_valid(pfn)) {
4954			pfn++;
4955			continue;
4956		}
4957		page = pfn_to_page(pfn);
4958		BUG_ON(page_count(page));
4959		BUG_ON(!PageBuddy(page));
4960		order = page_order(page);
4961#ifdef CONFIG_DEBUG_VM
4962		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4963		       pfn, 1 << order, end_pfn);
4964#endif
4965		list_del(&page->lru);
4966		rmv_page_order(page);
4967		zone->free_area[order].nr_free--;
4968		__mod_zone_page_state(zone, NR_FREE_PAGES,
4969				      - (1UL << order));
4970		for (i = 0; i < (1 << order); i++)
4971			SetPageReserved((page+i));
4972		pfn += (1 << order);
4973	}
4974	spin_unlock_irqrestore(&zone->lock, flags);
4975}
4976#endif
4977