page_alloc.c revision 1192d526412b1b8ccb1493064cea06efc12c772b
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50EXPORT_SYMBOL(node_online_map);
51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52EXPORT_SYMBOL(node_possible_map);
53unsigned long totalram_pages __read_mostly;
54unsigned long totalreserve_pages __read_mostly;
55long nr_swap_pages;
56int percpu_pagelist_fraction;
57
58static void __free_pages_ok(struct page *page, unsigned int order);
59
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 *	1G machine -> (16M dma, 784M normal, 224M high)
64 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72	 256,
73#ifdef CONFIG_ZONE_DMA32
74	 256,
75#endif
76#ifdef CONFIG_HIGHMEM
77	 32
78#endif
79};
80
81EXPORT_SYMBOL(totalram_pages);
82
83/*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
87struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
88EXPORT_SYMBOL(zone_table);
89
90static char *zone_names[MAX_NR_ZONES] = {
91	 "DMA",
92#ifdef CONFIG_ZONE_DMA32
93	 "DMA32",
94#endif
95	 "Normal",
96#ifdef CONFIG_HIGHMEM
97	 "HighMem"
98#endif
99};
100
101int min_free_kbytes = 1024;
102
103unsigned long __meminitdata nr_kernel_pages;
104unsigned long __meminitdata nr_all_pages;
105
106#ifdef CONFIG_DEBUG_VM
107static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
108{
109	int ret = 0;
110	unsigned seq;
111	unsigned long pfn = page_to_pfn(page);
112
113	do {
114		seq = zone_span_seqbegin(zone);
115		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116			ret = 1;
117		else if (pfn < zone->zone_start_pfn)
118			ret = 1;
119	} while (zone_span_seqretry(zone, seq));
120
121	return ret;
122}
123
124static int page_is_consistent(struct zone *zone, struct page *page)
125{
126#ifdef CONFIG_HOLES_IN_ZONE
127	if (!pfn_valid(page_to_pfn(page)))
128		return 0;
129#endif
130	if (zone != page_zone(page))
131		return 0;
132
133	return 1;
134}
135/*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138static int bad_range(struct zone *zone, struct page *page)
139{
140	if (page_outside_zone_boundaries(zone, page))
141		return 1;
142	if (!page_is_consistent(zone, page))
143		return 1;
144
145	return 0;
146}
147#else
148static inline int bad_range(struct zone *zone, struct page *page)
149{
150	return 0;
151}
152#endif
153
154static void bad_page(struct page *page)
155{
156	printk(KERN_EMERG "Bad page state in process '%s'\n"
157		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159		KERN_EMERG "Backtrace:\n",
160		current->comm, page, (int)(2*sizeof(unsigned long)),
161		(unsigned long)page->flags, page->mapping,
162		page_mapcount(page), page_count(page));
163	dump_stack();
164	page->flags &= ~(1 << PG_lru	|
165			1 << PG_private |
166			1 << PG_locked	|
167			1 << PG_active	|
168			1 << PG_dirty	|
169			1 << PG_reclaim |
170			1 << PG_slab    |
171			1 << PG_swapcache |
172			1 << PG_writeback |
173			1 << PG_buddy );
174	set_page_count(page, 0);
175	reset_page_mapcount(page);
176	page->mapping = NULL;
177	add_taint(TAINT_BAD_PAGE);
178}
179
180/*
181 * Higher-order pages are called "compound pages".  They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set.  All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function.  Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
193 */
194
195static void free_compound_page(struct page *page)
196{
197	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
198}
199
200static void prep_compound_page(struct page *page, unsigned long order)
201{
202	int i;
203	int nr_pages = 1 << order;
204
205	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
206	page[1].lru.prev = (void *)order;
207	for (i = 0; i < nr_pages; i++) {
208		struct page *p = page + i;
209
210		__SetPageCompound(p);
211		set_page_private(p, (unsigned long)page);
212	}
213}
214
215static void destroy_compound_page(struct page *page, unsigned long order)
216{
217	int i;
218	int nr_pages = 1 << order;
219
220	if (unlikely((unsigned long)page[1].lru.prev != order))
221		bad_page(page);
222
223	for (i = 0; i < nr_pages; i++) {
224		struct page *p = page + i;
225
226		if (unlikely(!PageCompound(p) |
227				(page_private(p) != (unsigned long)page)))
228			bad_page(page);
229		__ClearPageCompound(p);
230	}
231}
232
233static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234{
235	int i;
236
237	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
238	/*
239	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240	 * and __GFP_HIGHMEM from hard or soft interrupt context.
241	 */
242	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
243	for (i = 0; i < (1 << order); i++)
244		clear_highpage(page + i);
245}
246
247/*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
252static inline unsigned long page_order(struct page *page)
253{
254	return page_private(page);
255}
256
257static inline void set_page_order(struct page *page, int order)
258{
259	set_page_private(page, order);
260	__SetPageBuddy(page);
261}
262
263static inline void rmv_page_order(struct page *page)
264{
265	__ClearPageBuddy(page);
266	set_page_private(page, 0);
267}
268
269/*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 *     B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 *     P = B & ~(1 << O)
283 *
284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
285 */
286static inline struct page *
287__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288{
289	unsigned long buddy_idx = page_idx ^ (1 << order);
290
291	return page + (buddy_idx - page_idx);
292}
293
294static inline unsigned long
295__find_combined_index(unsigned long page_idx, unsigned int order)
296{
297	return (page_idx & ~(1 << order));
298}
299
300/*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
303 * (a) the buddy is not in a hole &&
304 * (b) the buddy is in the buddy system &&
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
310 *
311 * For recording page's order, we use page_private(page).
312 */
313static inline int page_is_buddy(struct page *page, struct page *buddy,
314								int order)
315{
316#ifdef CONFIG_HOLES_IN_ZONE
317	if (!pfn_valid(page_to_pfn(buddy)))
318		return 0;
319#endif
320
321	if (page_zone_id(page) != page_zone_id(buddy))
322		return 0;
323
324	if (PageBuddy(buddy) && page_order(buddy) == order) {
325		BUG_ON(page_count(buddy) != 0);
326		return 1;
327	}
328	return 0;
329}
330
331/*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
345 * order is recorded in page_private(page) field.
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other.  That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
355static inline void __free_one_page(struct page *page,
356		struct zone *zone, unsigned int order)
357{
358	unsigned long page_idx;
359	int order_size = 1 << order;
360
361	if (unlikely(PageCompound(page)))
362		destroy_compound_page(page, order);
363
364	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
366	VM_BUG_ON(page_idx & (order_size - 1));
367	VM_BUG_ON(bad_range(zone, page));
368
369	zone->free_pages += order_size;
370	while (order < MAX_ORDER-1) {
371		unsigned long combined_idx;
372		struct free_area *area;
373		struct page *buddy;
374
375		buddy = __page_find_buddy(page, page_idx, order);
376		if (!page_is_buddy(page, buddy, order))
377			break;		/* Move the buddy up one level. */
378
379		list_del(&buddy->lru);
380		area = zone->free_area + order;
381		area->nr_free--;
382		rmv_page_order(buddy);
383		combined_idx = __find_combined_index(page_idx, order);
384		page = page + (combined_idx - page_idx);
385		page_idx = combined_idx;
386		order++;
387	}
388	set_page_order(page, order);
389	list_add(&page->lru, &zone->free_area[order].free_list);
390	zone->free_area[order].nr_free++;
391}
392
393static inline int free_pages_check(struct page *page)
394{
395	if (unlikely(page_mapcount(page) |
396		(page->mapping != NULL)  |
397		(page_count(page) != 0)  |
398		(page->flags & (
399			1 << PG_lru	|
400			1 << PG_private |
401			1 << PG_locked	|
402			1 << PG_active	|
403			1 << PG_reclaim	|
404			1 << PG_slab	|
405			1 << PG_swapcache |
406			1 << PG_writeback |
407			1 << PG_reserved |
408			1 << PG_buddy ))))
409		bad_page(page);
410	if (PageDirty(page))
411		__ClearPageDirty(page);
412	/*
413	 * For now, we report if PG_reserved was found set, but do not
414	 * clear it, and do not free the page.  But we shall soon need
415	 * to do more, for when the ZERO_PAGE count wraps negative.
416	 */
417	return PageReserved(page);
418}
419
420/*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
423 * count is the number of pages to free.
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
431static void free_pages_bulk(struct zone *zone, int count,
432					struct list_head *list, int order)
433{
434	spin_lock(&zone->lock);
435	zone->all_unreclaimable = 0;
436	zone->pages_scanned = 0;
437	while (count--) {
438		struct page *page;
439
440		VM_BUG_ON(list_empty(list));
441		page = list_entry(list->prev, struct page, lru);
442		/* have to delete it as __free_one_page list manipulates */
443		list_del(&page->lru);
444		__free_one_page(page, zone, order);
445	}
446	spin_unlock(&zone->lock);
447}
448
449static void free_one_page(struct zone *zone, struct page *page, int order)
450{
451	LIST_HEAD(list);
452	list_add(&page->lru, &list);
453	free_pages_bulk(zone, 1, &list, order);
454}
455
456static void __free_pages_ok(struct page *page, unsigned int order)
457{
458	unsigned long flags;
459	int i;
460	int reserved = 0;
461
462	arch_free_page(page, order);
463	if (!PageHighMem(page))
464		debug_check_no_locks_freed(page_address(page),
465					   PAGE_SIZE<<order);
466
467	for (i = 0 ; i < (1 << order) ; ++i)
468		reserved += free_pages_check(page + i);
469	if (reserved)
470		return;
471
472	kernel_map_pages(page, 1 << order, 0);
473	local_irq_save(flags);
474	__count_vm_events(PGFREE, 1 << order);
475	free_one_page(page_zone(page), page, order);
476	local_irq_restore(flags);
477}
478
479/*
480 * permit the bootmem allocator to evade page validation on high-order frees
481 */
482void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
483{
484	if (order == 0) {
485		__ClearPageReserved(page);
486		set_page_count(page, 0);
487		set_page_refcounted(page);
488		__free_page(page);
489	} else {
490		int loop;
491
492		prefetchw(page);
493		for (loop = 0; loop < BITS_PER_LONG; loop++) {
494			struct page *p = &page[loop];
495
496			if (loop + 1 < BITS_PER_LONG)
497				prefetchw(p + 1);
498			__ClearPageReserved(p);
499			set_page_count(p, 0);
500		}
501
502		set_page_refcounted(page);
503		__free_pages(page, order);
504	}
505}
506
507
508/*
509 * The order of subdivision here is critical for the IO subsystem.
510 * Please do not alter this order without good reasons and regression
511 * testing. Specifically, as large blocks of memory are subdivided,
512 * the order in which smaller blocks are delivered depends on the order
513 * they're subdivided in this function. This is the primary factor
514 * influencing the order in which pages are delivered to the IO
515 * subsystem according to empirical testing, and this is also justified
516 * by considering the behavior of a buddy system containing a single
517 * large block of memory acted on by a series of small allocations.
518 * This behavior is a critical factor in sglist merging's success.
519 *
520 * -- wli
521 */
522static inline void expand(struct zone *zone, struct page *page,
523 	int low, int high, struct free_area *area)
524{
525	unsigned long size = 1 << high;
526
527	while (high > low) {
528		area--;
529		high--;
530		size >>= 1;
531		VM_BUG_ON(bad_range(zone, &page[size]));
532		list_add(&page[size].lru, &area->free_list);
533		area->nr_free++;
534		set_page_order(&page[size], high);
535	}
536}
537
538/*
539 * This page is about to be returned from the page allocator
540 */
541static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
542{
543	if (unlikely(page_mapcount(page) |
544		(page->mapping != NULL)  |
545		(page_count(page) != 0)  |
546		(page->flags & (
547			1 << PG_lru	|
548			1 << PG_private	|
549			1 << PG_locked	|
550			1 << PG_active	|
551			1 << PG_dirty	|
552			1 << PG_reclaim	|
553			1 << PG_slab    |
554			1 << PG_swapcache |
555			1 << PG_writeback |
556			1 << PG_reserved |
557			1 << PG_buddy ))))
558		bad_page(page);
559
560	/*
561	 * For now, we report if PG_reserved was found set, but do not
562	 * clear it, and do not allocate the page: as a safety net.
563	 */
564	if (PageReserved(page))
565		return 1;
566
567	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
568			1 << PG_referenced | 1 << PG_arch_1 |
569			1 << PG_checked | 1 << PG_mappedtodisk);
570	set_page_private(page, 0);
571	set_page_refcounted(page);
572	kernel_map_pages(page, 1 << order, 1);
573
574	if (gfp_flags & __GFP_ZERO)
575		prep_zero_page(page, order, gfp_flags);
576
577	if (order && (gfp_flags & __GFP_COMP))
578		prep_compound_page(page, order);
579
580	return 0;
581}
582
583/*
584 * Do the hard work of removing an element from the buddy allocator.
585 * Call me with the zone->lock already held.
586 */
587static struct page *__rmqueue(struct zone *zone, unsigned int order)
588{
589	struct free_area * area;
590	unsigned int current_order;
591	struct page *page;
592
593	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
594		area = zone->free_area + current_order;
595		if (list_empty(&area->free_list))
596			continue;
597
598		page = list_entry(area->free_list.next, struct page, lru);
599		list_del(&page->lru);
600		rmv_page_order(page);
601		area->nr_free--;
602		zone->free_pages -= 1UL << order;
603		expand(zone, page, order, current_order, area);
604		return page;
605	}
606
607	return NULL;
608}
609
610/*
611 * Obtain a specified number of elements from the buddy allocator, all under
612 * a single hold of the lock, for efficiency.  Add them to the supplied list.
613 * Returns the number of new pages which were placed at *list.
614 */
615static int rmqueue_bulk(struct zone *zone, unsigned int order,
616			unsigned long count, struct list_head *list)
617{
618	int i;
619
620	spin_lock(&zone->lock);
621	for (i = 0; i < count; ++i) {
622		struct page *page = __rmqueue(zone, order);
623		if (unlikely(page == NULL))
624			break;
625		list_add_tail(&page->lru, list);
626	}
627	spin_unlock(&zone->lock);
628	return i;
629}
630
631#ifdef CONFIG_NUMA
632/*
633 * Called from the slab reaper to drain pagesets on a particular node that
634 * belong to the currently executing processor.
635 * Note that this function must be called with the thread pinned to
636 * a single processor.
637 */
638void drain_node_pages(int nodeid)
639{
640	int i;
641	enum zone_type z;
642	unsigned long flags;
643
644	for (z = 0; z < MAX_NR_ZONES; z++) {
645		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
646		struct per_cpu_pageset *pset;
647
648		pset = zone_pcp(zone, smp_processor_id());
649		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
650			struct per_cpu_pages *pcp;
651
652			pcp = &pset->pcp[i];
653			if (pcp->count) {
654				local_irq_save(flags);
655				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
656				pcp->count = 0;
657				local_irq_restore(flags);
658			}
659		}
660	}
661}
662#endif
663
664#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
665static void __drain_pages(unsigned int cpu)
666{
667	unsigned long flags;
668	struct zone *zone;
669	int i;
670
671	for_each_zone(zone) {
672		struct per_cpu_pageset *pset;
673
674		pset = zone_pcp(zone, cpu);
675		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
676			struct per_cpu_pages *pcp;
677
678			pcp = &pset->pcp[i];
679			local_irq_save(flags);
680			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
681			pcp->count = 0;
682			local_irq_restore(flags);
683		}
684	}
685}
686#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
687
688#ifdef CONFIG_PM
689
690void mark_free_pages(struct zone *zone)
691{
692	unsigned long zone_pfn, flags;
693	int order;
694	struct list_head *curr;
695
696	if (!zone->spanned_pages)
697		return;
698
699	spin_lock_irqsave(&zone->lock, flags);
700	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
701		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
702
703	for (order = MAX_ORDER - 1; order >= 0; --order)
704		list_for_each(curr, &zone->free_area[order].free_list) {
705			unsigned long start_pfn, i;
706
707			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
708
709			for (i=0; i < (1<<order); i++)
710				SetPageNosaveFree(pfn_to_page(start_pfn+i));
711	}
712	spin_unlock_irqrestore(&zone->lock, flags);
713}
714
715/*
716 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
717 */
718void drain_local_pages(void)
719{
720	unsigned long flags;
721
722	local_irq_save(flags);
723	__drain_pages(smp_processor_id());
724	local_irq_restore(flags);
725}
726#endif /* CONFIG_PM */
727
728/*
729 * Free a 0-order page
730 */
731static void fastcall free_hot_cold_page(struct page *page, int cold)
732{
733	struct zone *zone = page_zone(page);
734	struct per_cpu_pages *pcp;
735	unsigned long flags;
736
737	arch_free_page(page, 0);
738
739	if (PageAnon(page))
740		page->mapping = NULL;
741	if (free_pages_check(page))
742		return;
743
744	kernel_map_pages(page, 1, 0);
745
746	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
747	local_irq_save(flags);
748	__count_vm_event(PGFREE);
749	list_add(&page->lru, &pcp->list);
750	pcp->count++;
751	if (pcp->count >= pcp->high) {
752		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
753		pcp->count -= pcp->batch;
754	}
755	local_irq_restore(flags);
756	put_cpu();
757}
758
759void fastcall free_hot_page(struct page *page)
760{
761	free_hot_cold_page(page, 0);
762}
763
764void fastcall free_cold_page(struct page *page)
765{
766	free_hot_cold_page(page, 1);
767}
768
769/*
770 * split_page takes a non-compound higher-order page, and splits it into
771 * n (1<<order) sub-pages: page[0..n]
772 * Each sub-page must be freed individually.
773 *
774 * Note: this is probably too low level an operation for use in drivers.
775 * Please consult with lkml before using this in your driver.
776 */
777void split_page(struct page *page, unsigned int order)
778{
779	int i;
780
781	VM_BUG_ON(PageCompound(page));
782	VM_BUG_ON(!page_count(page));
783	for (i = 1; i < (1 << order); i++)
784		set_page_refcounted(page + i);
785}
786
787/*
788 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
789 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
790 * or two.
791 */
792static struct page *buffered_rmqueue(struct zonelist *zonelist,
793			struct zone *zone, int order, gfp_t gfp_flags)
794{
795	unsigned long flags;
796	struct page *page;
797	int cold = !!(gfp_flags & __GFP_COLD);
798	int cpu;
799
800again:
801	cpu  = get_cpu();
802	if (likely(order == 0)) {
803		struct per_cpu_pages *pcp;
804
805		pcp = &zone_pcp(zone, cpu)->pcp[cold];
806		local_irq_save(flags);
807		if (!pcp->count) {
808			pcp->count += rmqueue_bulk(zone, 0,
809						pcp->batch, &pcp->list);
810			if (unlikely(!pcp->count))
811				goto failed;
812		}
813		page = list_entry(pcp->list.next, struct page, lru);
814		list_del(&page->lru);
815		pcp->count--;
816	} else {
817		spin_lock_irqsave(&zone->lock, flags);
818		page = __rmqueue(zone, order);
819		spin_unlock(&zone->lock);
820		if (!page)
821			goto failed;
822	}
823
824	__count_zone_vm_events(PGALLOC, zone, 1 << order);
825	zone_statistics(zonelist, zone);
826	local_irq_restore(flags);
827	put_cpu();
828
829	VM_BUG_ON(bad_range(zone, page));
830	if (prep_new_page(page, order, gfp_flags))
831		goto again;
832	return page;
833
834failed:
835	local_irq_restore(flags);
836	put_cpu();
837	return NULL;
838}
839
840#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
841#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
842#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
843#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
844#define ALLOC_HARDER		0x10 /* try to alloc harder */
845#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
846#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
847
848/*
849 * Return 1 if free pages are above 'mark'. This takes into account the order
850 * of the allocation.
851 */
852int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
853		      int classzone_idx, int alloc_flags)
854{
855	/* free_pages my go negative - that's OK */
856	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
857	int o;
858
859	if (alloc_flags & ALLOC_HIGH)
860		min -= min / 2;
861	if (alloc_flags & ALLOC_HARDER)
862		min -= min / 4;
863
864	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
865		return 0;
866	for (o = 0; o < order; o++) {
867		/* At the next order, this order's pages become unavailable */
868		free_pages -= z->free_area[o].nr_free << o;
869
870		/* Require fewer higher order pages to be free */
871		min >>= 1;
872
873		if (free_pages <= min)
874			return 0;
875	}
876	return 1;
877}
878
879/*
880 * get_page_from_freeliest goes through the zonelist trying to allocate
881 * a page.
882 */
883static struct page *
884get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
885		struct zonelist *zonelist, int alloc_flags)
886{
887	struct zone **z = zonelist->zones;
888	struct page *page = NULL;
889	int classzone_idx = zone_idx(*z);
890	struct zone *zone;
891
892	/*
893	 * Go through the zonelist once, looking for a zone with enough free.
894	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
895	 */
896	do {
897		zone = *z;
898		if (unlikely((gfp_mask & __GFP_THISNODE) &&
899			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
900				break;
901		if ((alloc_flags & ALLOC_CPUSET) &&
902				!cpuset_zone_allowed(zone, gfp_mask))
903			continue;
904
905		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
906			unsigned long mark;
907			if (alloc_flags & ALLOC_WMARK_MIN)
908				mark = zone->pages_min;
909			else if (alloc_flags & ALLOC_WMARK_LOW)
910				mark = zone->pages_low;
911			else
912				mark = zone->pages_high;
913			if (!zone_watermark_ok(zone , order, mark,
914				    classzone_idx, alloc_flags))
915				if (!zone_reclaim_mode ||
916				    !zone_reclaim(zone, gfp_mask, order))
917					continue;
918		}
919
920		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
921		if (page) {
922			break;
923		}
924	} while (*(++z) != NULL);
925	return page;
926}
927
928/*
929 * This is the 'heart' of the zoned buddy allocator.
930 */
931struct page * fastcall
932__alloc_pages(gfp_t gfp_mask, unsigned int order,
933		struct zonelist *zonelist)
934{
935	const gfp_t wait = gfp_mask & __GFP_WAIT;
936	struct zone **z;
937	struct page *page;
938	struct reclaim_state reclaim_state;
939	struct task_struct *p = current;
940	int do_retry;
941	int alloc_flags;
942	int did_some_progress;
943
944	might_sleep_if(wait);
945
946restart:
947	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
948
949	if (unlikely(*z == NULL)) {
950		/* Should this ever happen?? */
951		return NULL;
952	}
953
954	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
955				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
956	if (page)
957		goto got_pg;
958
959	do {
960		wakeup_kswapd(*z, order);
961	} while (*(++z));
962
963	/*
964	 * OK, we're below the kswapd watermark and have kicked background
965	 * reclaim. Now things get more complex, so set up alloc_flags according
966	 * to how we want to proceed.
967	 *
968	 * The caller may dip into page reserves a bit more if the caller
969	 * cannot run direct reclaim, or if the caller has realtime scheduling
970	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
971	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
972	 */
973	alloc_flags = ALLOC_WMARK_MIN;
974	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
975		alloc_flags |= ALLOC_HARDER;
976	if (gfp_mask & __GFP_HIGH)
977		alloc_flags |= ALLOC_HIGH;
978	if (wait)
979		alloc_flags |= ALLOC_CPUSET;
980
981	/*
982	 * Go through the zonelist again. Let __GFP_HIGH and allocations
983	 * coming from realtime tasks go deeper into reserves.
984	 *
985	 * This is the last chance, in general, before the goto nopage.
986	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
987	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
988	 */
989	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
990	if (page)
991		goto got_pg;
992
993	/* This allocation should allow future memory freeing. */
994
995	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
996			&& !in_interrupt()) {
997		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
998nofail_alloc:
999			/* go through the zonelist yet again, ignoring mins */
1000			page = get_page_from_freelist(gfp_mask, order,
1001				zonelist, ALLOC_NO_WATERMARKS);
1002			if (page)
1003				goto got_pg;
1004			if (gfp_mask & __GFP_NOFAIL) {
1005				blk_congestion_wait(WRITE, HZ/50);
1006				goto nofail_alloc;
1007			}
1008		}
1009		goto nopage;
1010	}
1011
1012	/* Atomic allocations - we can't balance anything */
1013	if (!wait)
1014		goto nopage;
1015
1016rebalance:
1017	cond_resched();
1018
1019	/* We now go into synchronous reclaim */
1020	cpuset_memory_pressure_bump();
1021	p->flags |= PF_MEMALLOC;
1022	reclaim_state.reclaimed_slab = 0;
1023	p->reclaim_state = &reclaim_state;
1024
1025	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1026
1027	p->reclaim_state = NULL;
1028	p->flags &= ~PF_MEMALLOC;
1029
1030	cond_resched();
1031
1032	if (likely(did_some_progress)) {
1033		page = get_page_from_freelist(gfp_mask, order,
1034						zonelist, alloc_flags);
1035		if (page)
1036			goto got_pg;
1037	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1038		/*
1039		 * Go through the zonelist yet one more time, keep
1040		 * very high watermark here, this is only to catch
1041		 * a parallel oom killing, we must fail if we're still
1042		 * under heavy pressure.
1043		 */
1044		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1045				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1046		if (page)
1047			goto got_pg;
1048
1049		out_of_memory(zonelist, gfp_mask, order);
1050		goto restart;
1051	}
1052
1053	/*
1054	 * Don't let big-order allocations loop unless the caller explicitly
1055	 * requests that.  Wait for some write requests to complete then retry.
1056	 *
1057	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1058	 * <= 3, but that may not be true in other implementations.
1059	 */
1060	do_retry = 0;
1061	if (!(gfp_mask & __GFP_NORETRY)) {
1062		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1063			do_retry = 1;
1064		if (gfp_mask & __GFP_NOFAIL)
1065			do_retry = 1;
1066	}
1067	if (do_retry) {
1068		blk_congestion_wait(WRITE, HZ/50);
1069		goto rebalance;
1070	}
1071
1072nopage:
1073	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1074		printk(KERN_WARNING "%s: page allocation failure."
1075			" order:%d, mode:0x%x\n",
1076			p->comm, order, gfp_mask);
1077		dump_stack();
1078		show_mem();
1079	}
1080got_pg:
1081	return page;
1082}
1083
1084EXPORT_SYMBOL(__alloc_pages);
1085
1086/*
1087 * Common helper functions.
1088 */
1089fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1090{
1091	struct page * page;
1092	page = alloc_pages(gfp_mask, order);
1093	if (!page)
1094		return 0;
1095	return (unsigned long) page_address(page);
1096}
1097
1098EXPORT_SYMBOL(__get_free_pages);
1099
1100fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1101{
1102	struct page * page;
1103
1104	/*
1105	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1106	 * a highmem page
1107	 */
1108	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1109
1110	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1111	if (page)
1112		return (unsigned long) page_address(page);
1113	return 0;
1114}
1115
1116EXPORT_SYMBOL(get_zeroed_page);
1117
1118void __pagevec_free(struct pagevec *pvec)
1119{
1120	int i = pagevec_count(pvec);
1121
1122	while (--i >= 0)
1123		free_hot_cold_page(pvec->pages[i], pvec->cold);
1124}
1125
1126fastcall void __free_pages(struct page *page, unsigned int order)
1127{
1128	if (put_page_testzero(page)) {
1129		if (order == 0)
1130			free_hot_page(page);
1131		else
1132			__free_pages_ok(page, order);
1133	}
1134}
1135
1136EXPORT_SYMBOL(__free_pages);
1137
1138fastcall void free_pages(unsigned long addr, unsigned int order)
1139{
1140	if (addr != 0) {
1141		VM_BUG_ON(!virt_addr_valid((void *)addr));
1142		__free_pages(virt_to_page((void *)addr), order);
1143	}
1144}
1145
1146EXPORT_SYMBOL(free_pages);
1147
1148/*
1149 * Total amount of free (allocatable) RAM:
1150 */
1151unsigned int nr_free_pages(void)
1152{
1153	unsigned int sum = 0;
1154	struct zone *zone;
1155
1156	for_each_zone(zone)
1157		sum += zone->free_pages;
1158
1159	return sum;
1160}
1161
1162EXPORT_SYMBOL(nr_free_pages);
1163
1164#ifdef CONFIG_NUMA
1165unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1166{
1167	unsigned int sum = 0;
1168	enum zone_type i;
1169
1170	for (i = 0; i < MAX_NR_ZONES; i++)
1171		sum += pgdat->node_zones[i].free_pages;
1172
1173	return sum;
1174}
1175#endif
1176
1177static unsigned int nr_free_zone_pages(int offset)
1178{
1179	/* Just pick one node, since fallback list is circular */
1180	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1181	unsigned int sum = 0;
1182
1183	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1184	struct zone **zonep = zonelist->zones;
1185	struct zone *zone;
1186
1187	for (zone = *zonep++; zone; zone = *zonep++) {
1188		unsigned long size = zone->present_pages;
1189		unsigned long high = zone->pages_high;
1190		if (size > high)
1191			sum += size - high;
1192	}
1193
1194	return sum;
1195}
1196
1197/*
1198 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1199 */
1200unsigned int nr_free_buffer_pages(void)
1201{
1202	return nr_free_zone_pages(gfp_zone(GFP_USER));
1203}
1204
1205/*
1206 * Amount of free RAM allocatable within all zones
1207 */
1208unsigned int nr_free_pagecache_pages(void)
1209{
1210	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1211}
1212#ifdef CONFIG_NUMA
1213static void show_node(struct zone *zone)
1214{
1215	printk("Node %d ", zone->zone_pgdat->node_id);
1216}
1217#else
1218#define show_node(zone)	do { } while (0)
1219#endif
1220
1221void si_meminfo(struct sysinfo *val)
1222{
1223	val->totalram = totalram_pages;
1224	val->sharedram = 0;
1225	val->freeram = nr_free_pages();
1226	val->bufferram = nr_blockdev_pages();
1227	val->totalhigh = totalhigh_pages;
1228	val->freehigh = nr_free_highpages();
1229	val->mem_unit = PAGE_SIZE;
1230}
1231
1232EXPORT_SYMBOL(si_meminfo);
1233
1234#ifdef CONFIG_NUMA
1235void si_meminfo_node(struct sysinfo *val, int nid)
1236{
1237	pg_data_t *pgdat = NODE_DATA(nid);
1238
1239	val->totalram = pgdat->node_present_pages;
1240	val->freeram = nr_free_pages_pgdat(pgdat);
1241#ifdef CONFIG_HIGHMEM
1242	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1243	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1244#else
1245	val->totalhigh = 0;
1246	val->freehigh = 0;
1247#endif
1248	val->mem_unit = PAGE_SIZE;
1249}
1250#endif
1251
1252#define K(x) ((x) << (PAGE_SHIFT-10))
1253
1254/*
1255 * Show free area list (used inside shift_scroll-lock stuff)
1256 * We also calculate the percentage fragmentation. We do this by counting the
1257 * memory on each free list with the exception of the first item on the list.
1258 */
1259void show_free_areas(void)
1260{
1261	int cpu, temperature;
1262	unsigned long active;
1263	unsigned long inactive;
1264	unsigned long free;
1265	struct zone *zone;
1266
1267	for_each_zone(zone) {
1268		show_node(zone);
1269		printk("%s per-cpu:", zone->name);
1270
1271		if (!populated_zone(zone)) {
1272			printk(" empty\n");
1273			continue;
1274		} else
1275			printk("\n");
1276
1277		for_each_online_cpu(cpu) {
1278			struct per_cpu_pageset *pageset;
1279
1280			pageset = zone_pcp(zone, cpu);
1281
1282			for (temperature = 0; temperature < 2; temperature++)
1283				printk("cpu %d %s: high %d, batch %d used:%d\n",
1284					cpu,
1285					temperature ? "cold" : "hot",
1286					pageset->pcp[temperature].high,
1287					pageset->pcp[temperature].batch,
1288					pageset->pcp[temperature].count);
1289		}
1290	}
1291
1292	get_zone_counts(&active, &inactive, &free);
1293
1294	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1295		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1296		active,
1297		inactive,
1298		global_page_state(NR_FILE_DIRTY),
1299		global_page_state(NR_WRITEBACK),
1300		global_page_state(NR_UNSTABLE_NFS),
1301		nr_free_pages(),
1302		global_page_state(NR_SLAB),
1303		global_page_state(NR_FILE_MAPPED),
1304		global_page_state(NR_PAGETABLE));
1305
1306	for_each_zone(zone) {
1307		int i;
1308
1309		show_node(zone);
1310		printk("%s"
1311			" free:%lukB"
1312			" min:%lukB"
1313			" low:%lukB"
1314			" high:%lukB"
1315			" active:%lukB"
1316			" inactive:%lukB"
1317			" present:%lukB"
1318			" pages_scanned:%lu"
1319			" all_unreclaimable? %s"
1320			"\n",
1321			zone->name,
1322			K(zone->free_pages),
1323			K(zone->pages_min),
1324			K(zone->pages_low),
1325			K(zone->pages_high),
1326			K(zone->nr_active),
1327			K(zone->nr_inactive),
1328			K(zone->present_pages),
1329			zone->pages_scanned,
1330			(zone->all_unreclaimable ? "yes" : "no")
1331			);
1332		printk("lowmem_reserve[]:");
1333		for (i = 0; i < MAX_NR_ZONES; i++)
1334			printk(" %lu", zone->lowmem_reserve[i]);
1335		printk("\n");
1336	}
1337
1338	for_each_zone(zone) {
1339 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1340
1341		show_node(zone);
1342		printk("%s: ", zone->name);
1343		if (!populated_zone(zone)) {
1344			printk("empty\n");
1345			continue;
1346		}
1347
1348		spin_lock_irqsave(&zone->lock, flags);
1349		for (order = 0; order < MAX_ORDER; order++) {
1350			nr[order] = zone->free_area[order].nr_free;
1351			total += nr[order] << order;
1352		}
1353		spin_unlock_irqrestore(&zone->lock, flags);
1354		for (order = 0; order < MAX_ORDER; order++)
1355			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1356		printk("= %lukB\n", K(total));
1357	}
1358
1359	show_swap_cache_info();
1360}
1361
1362/*
1363 * Builds allocation fallback zone lists.
1364 *
1365 * Add all populated zones of a node to the zonelist.
1366 */
1367static int __meminit build_zonelists_node(pg_data_t *pgdat,
1368			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1369{
1370	struct zone *zone;
1371
1372	BUG_ON(zone_type >= MAX_NR_ZONES);
1373	zone_type++;
1374
1375	do {
1376		zone_type--;
1377		zone = pgdat->node_zones + zone_type;
1378		if (populated_zone(zone)) {
1379			zonelist->zones[nr_zones++] = zone;
1380			check_highest_zone(zone_type);
1381		}
1382
1383	} while (zone_type);
1384	return nr_zones;
1385}
1386
1387#ifdef CONFIG_NUMA
1388#define MAX_NODE_LOAD (num_online_nodes())
1389static int __meminitdata node_load[MAX_NUMNODES];
1390/**
1391 * find_next_best_node - find the next node that should appear in a given node's fallback list
1392 * @node: node whose fallback list we're appending
1393 * @used_node_mask: nodemask_t of already used nodes
1394 *
1395 * We use a number of factors to determine which is the next node that should
1396 * appear on a given node's fallback list.  The node should not have appeared
1397 * already in @node's fallback list, and it should be the next closest node
1398 * according to the distance array (which contains arbitrary distance values
1399 * from each node to each node in the system), and should also prefer nodes
1400 * with no CPUs, since presumably they'll have very little allocation pressure
1401 * on them otherwise.
1402 * It returns -1 if no node is found.
1403 */
1404static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1405{
1406	int n, val;
1407	int min_val = INT_MAX;
1408	int best_node = -1;
1409
1410	/* Use the local node if we haven't already */
1411	if (!node_isset(node, *used_node_mask)) {
1412		node_set(node, *used_node_mask);
1413		return node;
1414	}
1415
1416	for_each_online_node(n) {
1417		cpumask_t tmp;
1418
1419		/* Don't want a node to appear more than once */
1420		if (node_isset(n, *used_node_mask))
1421			continue;
1422
1423		/* Use the distance array to find the distance */
1424		val = node_distance(node, n);
1425
1426		/* Penalize nodes under us ("prefer the next node") */
1427		val += (n < node);
1428
1429		/* Give preference to headless and unused nodes */
1430		tmp = node_to_cpumask(n);
1431		if (!cpus_empty(tmp))
1432			val += PENALTY_FOR_NODE_WITH_CPUS;
1433
1434		/* Slight preference for less loaded node */
1435		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1436		val += node_load[n];
1437
1438		if (val < min_val) {
1439			min_val = val;
1440			best_node = n;
1441		}
1442	}
1443
1444	if (best_node >= 0)
1445		node_set(best_node, *used_node_mask);
1446
1447	return best_node;
1448}
1449
1450static void __meminit build_zonelists(pg_data_t *pgdat)
1451{
1452	int j, node, local_node;
1453	enum zone_type i;
1454	int prev_node, load;
1455	struct zonelist *zonelist;
1456	nodemask_t used_mask;
1457
1458	/* initialize zonelists */
1459	for (i = 0; i < MAX_NR_ZONES; i++) {
1460		zonelist = pgdat->node_zonelists + i;
1461		zonelist->zones[0] = NULL;
1462	}
1463
1464	/* NUMA-aware ordering of nodes */
1465	local_node = pgdat->node_id;
1466	load = num_online_nodes();
1467	prev_node = local_node;
1468	nodes_clear(used_mask);
1469	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1470		int distance = node_distance(local_node, node);
1471
1472		/*
1473		 * If another node is sufficiently far away then it is better
1474		 * to reclaim pages in a zone before going off node.
1475		 */
1476		if (distance > RECLAIM_DISTANCE)
1477			zone_reclaim_mode = 1;
1478
1479		/*
1480		 * We don't want to pressure a particular node.
1481		 * So adding penalty to the first node in same
1482		 * distance group to make it round-robin.
1483		 */
1484
1485		if (distance != node_distance(local_node, prev_node))
1486			node_load[node] += load;
1487		prev_node = node;
1488		load--;
1489		for (i = 0; i < MAX_NR_ZONES; i++) {
1490			zonelist = pgdat->node_zonelists + i;
1491			for (j = 0; zonelist->zones[j] != NULL; j++);
1492
1493	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1494			zonelist->zones[j] = NULL;
1495		}
1496	}
1497}
1498
1499#else	/* CONFIG_NUMA */
1500
1501static void __meminit build_zonelists(pg_data_t *pgdat)
1502{
1503	int node, local_node;
1504	enum zone_type i,j;
1505
1506	local_node = pgdat->node_id;
1507	for (i = 0; i < MAX_NR_ZONES; i++) {
1508		struct zonelist *zonelist;
1509
1510		zonelist = pgdat->node_zonelists + i;
1511
1512 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1513 		/*
1514 		 * Now we build the zonelist so that it contains the zones
1515 		 * of all the other nodes.
1516 		 * We don't want to pressure a particular node, so when
1517 		 * building the zones for node N, we make sure that the
1518 		 * zones coming right after the local ones are those from
1519 		 * node N+1 (modulo N)
1520 		 */
1521		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1522			if (!node_online(node))
1523				continue;
1524			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1525		}
1526		for (node = 0; node < local_node; node++) {
1527			if (!node_online(node))
1528				continue;
1529			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1530		}
1531
1532		zonelist->zones[j] = NULL;
1533	}
1534}
1535
1536#endif	/* CONFIG_NUMA */
1537
1538/* return values int ....just for stop_machine_run() */
1539static int __meminit __build_all_zonelists(void *dummy)
1540{
1541	int nid;
1542	for_each_online_node(nid)
1543		build_zonelists(NODE_DATA(nid));
1544	return 0;
1545}
1546
1547void __meminit build_all_zonelists(void)
1548{
1549	if (system_state == SYSTEM_BOOTING) {
1550		__build_all_zonelists(0);
1551		cpuset_init_current_mems_allowed();
1552	} else {
1553		/* we have to stop all cpus to guaranntee there is no user
1554		   of zonelist */
1555		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1556		/* cpuset refresh routine should be here */
1557	}
1558	vm_total_pages = nr_free_pagecache_pages();
1559	printk("Built %i zonelists.  Total pages: %ld\n",
1560			num_online_nodes(), vm_total_pages);
1561}
1562
1563/*
1564 * Helper functions to size the waitqueue hash table.
1565 * Essentially these want to choose hash table sizes sufficiently
1566 * large so that collisions trying to wait on pages are rare.
1567 * But in fact, the number of active page waitqueues on typical
1568 * systems is ridiculously low, less than 200. So this is even
1569 * conservative, even though it seems large.
1570 *
1571 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1572 * waitqueues, i.e. the size of the waitq table given the number of pages.
1573 */
1574#define PAGES_PER_WAITQUEUE	256
1575
1576#ifndef CONFIG_MEMORY_HOTPLUG
1577static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1578{
1579	unsigned long size = 1;
1580
1581	pages /= PAGES_PER_WAITQUEUE;
1582
1583	while (size < pages)
1584		size <<= 1;
1585
1586	/*
1587	 * Once we have dozens or even hundreds of threads sleeping
1588	 * on IO we've got bigger problems than wait queue collision.
1589	 * Limit the size of the wait table to a reasonable size.
1590	 */
1591	size = min(size, 4096UL);
1592
1593	return max(size, 4UL);
1594}
1595#else
1596/*
1597 * A zone's size might be changed by hot-add, so it is not possible to determine
1598 * a suitable size for its wait_table.  So we use the maximum size now.
1599 *
1600 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1601 *
1602 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1603 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1604 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1605 *
1606 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1607 * or more by the traditional way. (See above).  It equals:
1608 *
1609 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1610 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1611 *    powerpc (64K page size)             : =  (32G +16M)byte.
1612 */
1613static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1614{
1615	return 4096UL;
1616}
1617#endif
1618
1619/*
1620 * This is an integer logarithm so that shifts can be used later
1621 * to extract the more random high bits from the multiplicative
1622 * hash function before the remainder is taken.
1623 */
1624static inline unsigned long wait_table_bits(unsigned long size)
1625{
1626	return ffz(~size);
1627}
1628
1629#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1630
1631static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1632		unsigned long *zones_size, unsigned long *zholes_size)
1633{
1634	unsigned long realtotalpages, totalpages = 0;
1635	enum zone_type i;
1636
1637	for (i = 0; i < MAX_NR_ZONES; i++)
1638		totalpages += zones_size[i];
1639	pgdat->node_spanned_pages = totalpages;
1640
1641	realtotalpages = totalpages;
1642	if (zholes_size)
1643		for (i = 0; i < MAX_NR_ZONES; i++)
1644			realtotalpages -= zholes_size[i];
1645	pgdat->node_present_pages = realtotalpages;
1646	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1647}
1648
1649
1650/*
1651 * Initially all pages are reserved - free ones are freed
1652 * up by free_all_bootmem() once the early boot process is
1653 * done. Non-atomic initialization, single-pass.
1654 */
1655void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1656		unsigned long start_pfn)
1657{
1658	struct page *page;
1659	unsigned long end_pfn = start_pfn + size;
1660	unsigned long pfn;
1661
1662	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1663		if (!early_pfn_valid(pfn))
1664			continue;
1665		page = pfn_to_page(pfn);
1666		set_page_links(page, zone, nid, pfn);
1667		init_page_count(page);
1668		reset_page_mapcount(page);
1669		SetPageReserved(page);
1670		INIT_LIST_HEAD(&page->lru);
1671#ifdef WANT_PAGE_VIRTUAL
1672		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1673		if (!is_highmem_idx(zone))
1674			set_page_address(page, __va(pfn << PAGE_SHIFT));
1675#endif
1676	}
1677}
1678
1679void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1680				unsigned long size)
1681{
1682	int order;
1683	for (order = 0; order < MAX_ORDER ; order++) {
1684		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1685		zone->free_area[order].nr_free = 0;
1686	}
1687}
1688
1689#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1690void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1691		unsigned long pfn, unsigned long size)
1692{
1693	unsigned long snum = pfn_to_section_nr(pfn);
1694	unsigned long end = pfn_to_section_nr(pfn + size);
1695
1696	if (FLAGS_HAS_NODE)
1697		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1698	else
1699		for (; snum <= end; snum++)
1700			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1701}
1702
1703#ifndef __HAVE_ARCH_MEMMAP_INIT
1704#define memmap_init(size, nid, zone, start_pfn) \
1705	memmap_init_zone((size), (nid), (zone), (start_pfn))
1706#endif
1707
1708static int __cpuinit zone_batchsize(struct zone *zone)
1709{
1710	int batch;
1711
1712	/*
1713	 * The per-cpu-pages pools are set to around 1000th of the
1714	 * size of the zone.  But no more than 1/2 of a meg.
1715	 *
1716	 * OK, so we don't know how big the cache is.  So guess.
1717	 */
1718	batch = zone->present_pages / 1024;
1719	if (batch * PAGE_SIZE > 512 * 1024)
1720		batch = (512 * 1024) / PAGE_SIZE;
1721	batch /= 4;		/* We effectively *= 4 below */
1722	if (batch < 1)
1723		batch = 1;
1724
1725	/*
1726	 * Clamp the batch to a 2^n - 1 value. Having a power
1727	 * of 2 value was found to be more likely to have
1728	 * suboptimal cache aliasing properties in some cases.
1729	 *
1730	 * For example if 2 tasks are alternately allocating
1731	 * batches of pages, one task can end up with a lot
1732	 * of pages of one half of the possible page colors
1733	 * and the other with pages of the other colors.
1734	 */
1735	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1736
1737	return batch;
1738}
1739
1740inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1741{
1742	struct per_cpu_pages *pcp;
1743
1744	memset(p, 0, sizeof(*p));
1745
1746	pcp = &p->pcp[0];		/* hot */
1747	pcp->count = 0;
1748	pcp->high = 6 * batch;
1749	pcp->batch = max(1UL, 1 * batch);
1750	INIT_LIST_HEAD(&pcp->list);
1751
1752	pcp = &p->pcp[1];		/* cold*/
1753	pcp->count = 0;
1754	pcp->high = 2 * batch;
1755	pcp->batch = max(1UL, batch/2);
1756	INIT_LIST_HEAD(&pcp->list);
1757}
1758
1759/*
1760 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1761 * to the value high for the pageset p.
1762 */
1763
1764static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1765				unsigned long high)
1766{
1767	struct per_cpu_pages *pcp;
1768
1769	pcp = &p->pcp[0]; /* hot list */
1770	pcp->high = high;
1771	pcp->batch = max(1UL, high/4);
1772	if ((high/4) > (PAGE_SHIFT * 8))
1773		pcp->batch = PAGE_SHIFT * 8;
1774}
1775
1776
1777#ifdef CONFIG_NUMA
1778/*
1779 * Boot pageset table. One per cpu which is going to be used for all
1780 * zones and all nodes. The parameters will be set in such a way
1781 * that an item put on a list will immediately be handed over to
1782 * the buddy list. This is safe since pageset manipulation is done
1783 * with interrupts disabled.
1784 *
1785 * Some NUMA counter updates may also be caught by the boot pagesets.
1786 *
1787 * The boot_pagesets must be kept even after bootup is complete for
1788 * unused processors and/or zones. They do play a role for bootstrapping
1789 * hotplugged processors.
1790 *
1791 * zoneinfo_show() and maybe other functions do
1792 * not check if the processor is online before following the pageset pointer.
1793 * Other parts of the kernel may not check if the zone is available.
1794 */
1795static struct per_cpu_pageset boot_pageset[NR_CPUS];
1796
1797/*
1798 * Dynamically allocate memory for the
1799 * per cpu pageset array in struct zone.
1800 */
1801static int __cpuinit process_zones(int cpu)
1802{
1803	struct zone *zone, *dzone;
1804
1805	for_each_zone(zone) {
1806
1807		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1808					 GFP_KERNEL, cpu_to_node(cpu));
1809		if (!zone_pcp(zone, cpu))
1810			goto bad;
1811
1812		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1813
1814		if (percpu_pagelist_fraction)
1815			setup_pagelist_highmark(zone_pcp(zone, cpu),
1816			 	(zone->present_pages / percpu_pagelist_fraction));
1817	}
1818
1819	return 0;
1820bad:
1821	for_each_zone(dzone) {
1822		if (dzone == zone)
1823			break;
1824		kfree(zone_pcp(dzone, cpu));
1825		zone_pcp(dzone, cpu) = NULL;
1826	}
1827	return -ENOMEM;
1828}
1829
1830static inline void free_zone_pagesets(int cpu)
1831{
1832	struct zone *zone;
1833
1834	for_each_zone(zone) {
1835		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1836
1837		/* Free per_cpu_pageset if it is slab allocated */
1838		if (pset != &boot_pageset[cpu])
1839			kfree(pset);
1840		zone_pcp(zone, cpu) = NULL;
1841	}
1842}
1843
1844static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1845		unsigned long action,
1846		void *hcpu)
1847{
1848	int cpu = (long)hcpu;
1849	int ret = NOTIFY_OK;
1850
1851	switch (action) {
1852		case CPU_UP_PREPARE:
1853			if (process_zones(cpu))
1854				ret = NOTIFY_BAD;
1855			break;
1856		case CPU_UP_CANCELED:
1857		case CPU_DEAD:
1858			free_zone_pagesets(cpu);
1859			break;
1860		default:
1861			break;
1862	}
1863	return ret;
1864}
1865
1866static struct notifier_block __cpuinitdata pageset_notifier =
1867	{ &pageset_cpuup_callback, NULL, 0 };
1868
1869void __init setup_per_cpu_pageset(void)
1870{
1871	int err;
1872
1873	/* Initialize per_cpu_pageset for cpu 0.
1874	 * A cpuup callback will do this for every cpu
1875	 * as it comes online
1876	 */
1877	err = process_zones(smp_processor_id());
1878	BUG_ON(err);
1879	register_cpu_notifier(&pageset_notifier);
1880}
1881
1882#endif
1883
1884static __meminit
1885int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1886{
1887	int i;
1888	struct pglist_data *pgdat = zone->zone_pgdat;
1889	size_t alloc_size;
1890
1891	/*
1892	 * The per-page waitqueue mechanism uses hashed waitqueues
1893	 * per zone.
1894	 */
1895	zone->wait_table_hash_nr_entries =
1896		 wait_table_hash_nr_entries(zone_size_pages);
1897	zone->wait_table_bits =
1898		wait_table_bits(zone->wait_table_hash_nr_entries);
1899	alloc_size = zone->wait_table_hash_nr_entries
1900					* sizeof(wait_queue_head_t);
1901
1902 	if (system_state == SYSTEM_BOOTING) {
1903		zone->wait_table = (wait_queue_head_t *)
1904			alloc_bootmem_node(pgdat, alloc_size);
1905	} else {
1906		/*
1907		 * This case means that a zone whose size was 0 gets new memory
1908		 * via memory hot-add.
1909		 * But it may be the case that a new node was hot-added.  In
1910		 * this case vmalloc() will not be able to use this new node's
1911		 * memory - this wait_table must be initialized to use this new
1912		 * node itself as well.
1913		 * To use this new node's memory, further consideration will be
1914		 * necessary.
1915		 */
1916		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1917	}
1918	if (!zone->wait_table)
1919		return -ENOMEM;
1920
1921	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1922		init_waitqueue_head(zone->wait_table + i);
1923
1924	return 0;
1925}
1926
1927static __meminit void zone_pcp_init(struct zone *zone)
1928{
1929	int cpu;
1930	unsigned long batch = zone_batchsize(zone);
1931
1932	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1933#ifdef CONFIG_NUMA
1934		/* Early boot. Slab allocator not functional yet */
1935		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1936		setup_pageset(&boot_pageset[cpu],0);
1937#else
1938		setup_pageset(zone_pcp(zone,cpu), batch);
1939#endif
1940	}
1941	if (zone->present_pages)
1942		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1943			zone->name, zone->present_pages, batch);
1944}
1945
1946__meminit int init_currently_empty_zone(struct zone *zone,
1947					unsigned long zone_start_pfn,
1948					unsigned long size)
1949{
1950	struct pglist_data *pgdat = zone->zone_pgdat;
1951	int ret;
1952	ret = zone_wait_table_init(zone, size);
1953	if (ret)
1954		return ret;
1955	pgdat->nr_zones = zone_idx(zone) + 1;
1956
1957	zone->zone_start_pfn = zone_start_pfn;
1958
1959	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1960
1961	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1962
1963	return 0;
1964}
1965
1966/*
1967 * Set up the zone data structures:
1968 *   - mark all pages reserved
1969 *   - mark all memory queues empty
1970 *   - clear the memory bitmaps
1971 */
1972static void __meminit free_area_init_core(struct pglist_data *pgdat,
1973		unsigned long *zones_size, unsigned long *zholes_size)
1974{
1975	enum zone_type j;
1976	int nid = pgdat->node_id;
1977	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1978	int ret;
1979
1980	pgdat_resize_init(pgdat);
1981	pgdat->nr_zones = 0;
1982	init_waitqueue_head(&pgdat->kswapd_wait);
1983	pgdat->kswapd_max_order = 0;
1984
1985	for (j = 0; j < MAX_NR_ZONES; j++) {
1986		struct zone *zone = pgdat->node_zones + j;
1987		unsigned long size, realsize;
1988
1989		realsize = size = zones_size[j];
1990		if (zholes_size)
1991			realsize -= zholes_size[j];
1992
1993		if (!is_highmem_idx(j))
1994			nr_kernel_pages += realsize;
1995		nr_all_pages += realsize;
1996
1997		zone->spanned_pages = size;
1998		zone->present_pages = realsize;
1999#ifdef CONFIG_NUMA
2000		zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2001						/ 100;
2002#endif
2003		zone->name = zone_names[j];
2004		spin_lock_init(&zone->lock);
2005		spin_lock_init(&zone->lru_lock);
2006		zone_seqlock_init(zone);
2007		zone->zone_pgdat = pgdat;
2008		zone->free_pages = 0;
2009
2010		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2011
2012		zone_pcp_init(zone);
2013		INIT_LIST_HEAD(&zone->active_list);
2014		INIT_LIST_HEAD(&zone->inactive_list);
2015		zone->nr_scan_active = 0;
2016		zone->nr_scan_inactive = 0;
2017		zone->nr_active = 0;
2018		zone->nr_inactive = 0;
2019		zap_zone_vm_stats(zone);
2020		atomic_set(&zone->reclaim_in_progress, 0);
2021		if (!size)
2022			continue;
2023
2024		zonetable_add(zone, nid, j, zone_start_pfn, size);
2025		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2026		BUG_ON(ret);
2027		zone_start_pfn += size;
2028	}
2029}
2030
2031static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2032{
2033	/* Skip empty nodes */
2034	if (!pgdat->node_spanned_pages)
2035		return;
2036
2037#ifdef CONFIG_FLAT_NODE_MEM_MAP
2038	/* ia64 gets its own node_mem_map, before this, without bootmem */
2039	if (!pgdat->node_mem_map) {
2040		unsigned long size, start, end;
2041		struct page *map;
2042
2043		/*
2044		 * The zone's endpoints aren't required to be MAX_ORDER
2045		 * aligned but the node_mem_map endpoints must be in order
2046		 * for the buddy allocator to function correctly.
2047		 */
2048		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2049		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2050		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2051		size =  (end - start) * sizeof(struct page);
2052		map = alloc_remap(pgdat->node_id, size);
2053		if (!map)
2054			map = alloc_bootmem_node(pgdat, size);
2055		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2056	}
2057#ifdef CONFIG_FLATMEM
2058	/*
2059	 * With no DISCONTIG, the global mem_map is just set as node 0's
2060	 */
2061	if (pgdat == NODE_DATA(0))
2062		mem_map = NODE_DATA(0)->node_mem_map;
2063#endif
2064#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2065}
2066
2067void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2068		unsigned long *zones_size, unsigned long node_start_pfn,
2069		unsigned long *zholes_size)
2070{
2071	pgdat->node_id = nid;
2072	pgdat->node_start_pfn = node_start_pfn;
2073	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2074
2075	alloc_node_mem_map(pgdat);
2076
2077	free_area_init_core(pgdat, zones_size, zholes_size);
2078}
2079
2080#ifndef CONFIG_NEED_MULTIPLE_NODES
2081static bootmem_data_t contig_bootmem_data;
2082struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2083
2084EXPORT_SYMBOL(contig_page_data);
2085#endif
2086
2087void __init free_area_init(unsigned long *zones_size)
2088{
2089	free_area_init_node(0, NODE_DATA(0), zones_size,
2090			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2091}
2092
2093#ifdef CONFIG_HOTPLUG_CPU
2094static int page_alloc_cpu_notify(struct notifier_block *self,
2095				 unsigned long action, void *hcpu)
2096{
2097	int cpu = (unsigned long)hcpu;
2098
2099	if (action == CPU_DEAD) {
2100		local_irq_disable();
2101		__drain_pages(cpu);
2102		vm_events_fold_cpu(cpu);
2103		local_irq_enable();
2104		refresh_cpu_vm_stats(cpu);
2105	}
2106	return NOTIFY_OK;
2107}
2108#endif /* CONFIG_HOTPLUG_CPU */
2109
2110void __init page_alloc_init(void)
2111{
2112	hotcpu_notifier(page_alloc_cpu_notify, 0);
2113}
2114
2115/*
2116 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2117 *	or min_free_kbytes changes.
2118 */
2119static void calculate_totalreserve_pages(void)
2120{
2121	struct pglist_data *pgdat;
2122	unsigned long reserve_pages = 0;
2123	enum zone_type i, j;
2124
2125	for_each_online_pgdat(pgdat) {
2126		for (i = 0; i < MAX_NR_ZONES; i++) {
2127			struct zone *zone = pgdat->node_zones + i;
2128			unsigned long max = 0;
2129
2130			/* Find valid and maximum lowmem_reserve in the zone */
2131			for (j = i; j < MAX_NR_ZONES; j++) {
2132				if (zone->lowmem_reserve[j] > max)
2133					max = zone->lowmem_reserve[j];
2134			}
2135
2136			/* we treat pages_high as reserved pages. */
2137			max += zone->pages_high;
2138
2139			if (max > zone->present_pages)
2140				max = zone->present_pages;
2141			reserve_pages += max;
2142		}
2143	}
2144	totalreserve_pages = reserve_pages;
2145}
2146
2147/*
2148 * setup_per_zone_lowmem_reserve - called whenever
2149 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2150 *	has a correct pages reserved value, so an adequate number of
2151 *	pages are left in the zone after a successful __alloc_pages().
2152 */
2153static void setup_per_zone_lowmem_reserve(void)
2154{
2155	struct pglist_data *pgdat;
2156	enum zone_type j, idx;
2157
2158	for_each_online_pgdat(pgdat) {
2159		for (j = 0; j < MAX_NR_ZONES; j++) {
2160			struct zone *zone = pgdat->node_zones + j;
2161			unsigned long present_pages = zone->present_pages;
2162
2163			zone->lowmem_reserve[j] = 0;
2164
2165			idx = j;
2166			while (idx) {
2167				struct zone *lower_zone;
2168
2169				idx--;
2170
2171				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2172					sysctl_lowmem_reserve_ratio[idx] = 1;
2173
2174				lower_zone = pgdat->node_zones + idx;
2175				lower_zone->lowmem_reserve[j] = present_pages /
2176					sysctl_lowmem_reserve_ratio[idx];
2177				present_pages += lower_zone->present_pages;
2178			}
2179		}
2180	}
2181
2182	/* update totalreserve_pages */
2183	calculate_totalreserve_pages();
2184}
2185
2186/*
2187 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2188 *	that the pages_{min,low,high} values for each zone are set correctly
2189 *	with respect to min_free_kbytes.
2190 */
2191void setup_per_zone_pages_min(void)
2192{
2193	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2194	unsigned long lowmem_pages = 0;
2195	struct zone *zone;
2196	unsigned long flags;
2197
2198	/* Calculate total number of !ZONE_HIGHMEM pages */
2199	for_each_zone(zone) {
2200		if (!is_highmem(zone))
2201			lowmem_pages += zone->present_pages;
2202	}
2203
2204	for_each_zone(zone) {
2205		u64 tmp;
2206
2207		spin_lock_irqsave(&zone->lru_lock, flags);
2208		tmp = (u64)pages_min * zone->present_pages;
2209		do_div(tmp, lowmem_pages);
2210		if (is_highmem(zone)) {
2211			/*
2212			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2213			 * need highmem pages, so cap pages_min to a small
2214			 * value here.
2215			 *
2216			 * The (pages_high-pages_low) and (pages_low-pages_min)
2217			 * deltas controls asynch page reclaim, and so should
2218			 * not be capped for highmem.
2219			 */
2220			int min_pages;
2221
2222			min_pages = zone->present_pages / 1024;
2223			if (min_pages < SWAP_CLUSTER_MAX)
2224				min_pages = SWAP_CLUSTER_MAX;
2225			if (min_pages > 128)
2226				min_pages = 128;
2227			zone->pages_min = min_pages;
2228		} else {
2229			/*
2230			 * If it's a lowmem zone, reserve a number of pages
2231			 * proportionate to the zone's size.
2232			 */
2233			zone->pages_min = tmp;
2234		}
2235
2236		zone->pages_low   = zone->pages_min + (tmp >> 2);
2237		zone->pages_high  = zone->pages_min + (tmp >> 1);
2238		spin_unlock_irqrestore(&zone->lru_lock, flags);
2239	}
2240
2241	/* update totalreserve_pages */
2242	calculate_totalreserve_pages();
2243}
2244
2245/*
2246 * Initialise min_free_kbytes.
2247 *
2248 * For small machines we want it small (128k min).  For large machines
2249 * we want it large (64MB max).  But it is not linear, because network
2250 * bandwidth does not increase linearly with machine size.  We use
2251 *
2252 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2253 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2254 *
2255 * which yields
2256 *
2257 * 16MB:	512k
2258 * 32MB:	724k
2259 * 64MB:	1024k
2260 * 128MB:	1448k
2261 * 256MB:	2048k
2262 * 512MB:	2896k
2263 * 1024MB:	4096k
2264 * 2048MB:	5792k
2265 * 4096MB:	8192k
2266 * 8192MB:	11584k
2267 * 16384MB:	16384k
2268 */
2269static int __init init_per_zone_pages_min(void)
2270{
2271	unsigned long lowmem_kbytes;
2272
2273	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2274
2275	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2276	if (min_free_kbytes < 128)
2277		min_free_kbytes = 128;
2278	if (min_free_kbytes > 65536)
2279		min_free_kbytes = 65536;
2280	setup_per_zone_pages_min();
2281	setup_per_zone_lowmem_reserve();
2282	return 0;
2283}
2284module_init(init_per_zone_pages_min)
2285
2286/*
2287 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2288 *	that we can call two helper functions whenever min_free_kbytes
2289 *	changes.
2290 */
2291int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2292	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2293{
2294	proc_dointvec(table, write, file, buffer, length, ppos);
2295	setup_per_zone_pages_min();
2296	return 0;
2297}
2298
2299#ifdef CONFIG_NUMA
2300int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2301	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2302{
2303	struct zone *zone;
2304	int rc;
2305
2306	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2307	if (rc)
2308		return rc;
2309
2310	for_each_zone(zone)
2311		zone->min_unmapped_ratio = (zone->present_pages *
2312				sysctl_min_unmapped_ratio) / 100;
2313	return 0;
2314}
2315#endif
2316
2317/*
2318 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2319 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2320 *	whenever sysctl_lowmem_reserve_ratio changes.
2321 *
2322 * The reserve ratio obviously has absolutely no relation with the
2323 * pages_min watermarks. The lowmem reserve ratio can only make sense
2324 * if in function of the boot time zone sizes.
2325 */
2326int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2327	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2328{
2329	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2330	setup_per_zone_lowmem_reserve();
2331	return 0;
2332}
2333
2334/*
2335 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2336 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2337 * can have before it gets flushed back to buddy allocator.
2338 */
2339
2340int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2341	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2342{
2343	struct zone *zone;
2344	unsigned int cpu;
2345	int ret;
2346
2347	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2348	if (!write || (ret == -EINVAL))
2349		return ret;
2350	for_each_zone(zone) {
2351		for_each_online_cpu(cpu) {
2352			unsigned long  high;
2353			high = zone->present_pages / percpu_pagelist_fraction;
2354			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2355		}
2356	}
2357	return 0;
2358}
2359
2360int hashdist = HASHDIST_DEFAULT;
2361
2362#ifdef CONFIG_NUMA
2363static int __init set_hashdist(char *str)
2364{
2365	if (!str)
2366		return 0;
2367	hashdist = simple_strtoul(str, &str, 0);
2368	return 1;
2369}
2370__setup("hashdist=", set_hashdist);
2371#endif
2372
2373/*
2374 * allocate a large system hash table from bootmem
2375 * - it is assumed that the hash table must contain an exact power-of-2
2376 *   quantity of entries
2377 * - limit is the number of hash buckets, not the total allocation size
2378 */
2379void *__init alloc_large_system_hash(const char *tablename,
2380				     unsigned long bucketsize,
2381				     unsigned long numentries,
2382				     int scale,
2383				     int flags,
2384				     unsigned int *_hash_shift,
2385				     unsigned int *_hash_mask,
2386				     unsigned long limit)
2387{
2388	unsigned long long max = limit;
2389	unsigned long log2qty, size;
2390	void *table = NULL;
2391
2392	/* allow the kernel cmdline to have a say */
2393	if (!numentries) {
2394		/* round applicable memory size up to nearest megabyte */
2395		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2396		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2397		numentries >>= 20 - PAGE_SHIFT;
2398		numentries <<= 20 - PAGE_SHIFT;
2399
2400		/* limit to 1 bucket per 2^scale bytes of low memory */
2401		if (scale > PAGE_SHIFT)
2402			numentries >>= (scale - PAGE_SHIFT);
2403		else
2404			numentries <<= (PAGE_SHIFT - scale);
2405	}
2406	numentries = roundup_pow_of_two(numentries);
2407
2408	/* limit allocation size to 1/16 total memory by default */
2409	if (max == 0) {
2410		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2411		do_div(max, bucketsize);
2412	}
2413
2414	if (numentries > max)
2415		numentries = max;
2416
2417	log2qty = long_log2(numentries);
2418
2419	do {
2420		size = bucketsize << log2qty;
2421		if (flags & HASH_EARLY)
2422			table = alloc_bootmem(size);
2423		else if (hashdist)
2424			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2425		else {
2426			unsigned long order;
2427			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2428				;
2429			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2430		}
2431	} while (!table && size > PAGE_SIZE && --log2qty);
2432
2433	if (!table)
2434		panic("Failed to allocate %s hash table\n", tablename);
2435
2436	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2437	       tablename,
2438	       (1U << log2qty),
2439	       long_log2(size) - PAGE_SHIFT,
2440	       size);
2441
2442	if (_hash_shift)
2443		*_hash_shift = log2qty;
2444	if (_hash_mask)
2445		*_hash_mask = (1 << log2qty) - 1;
2446
2447	return table;
2448}
2449
2450#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2451struct page *pfn_to_page(unsigned long pfn)
2452{
2453	return __pfn_to_page(pfn);
2454}
2455unsigned long page_to_pfn(struct page *page)
2456{
2457	return __page_to_pfn(page);
2458}
2459EXPORT_SYMBOL(pfn_to_page);
2460EXPORT_SYMBOL(page_to_pfn);
2461#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2462