page_alloc.c revision 11e33f6a55ed7847d9c8ffe185ef87faf7806abe
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49#include <linux/kmemleak.h>
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53#include "internal.h"
54
55/*
56 * Array of node states.
57 */
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59	[N_POSSIBLE] = NODE_MASK_ALL,
60	[N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64	[N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66	[N_CPU] = { { [0] = 1UL } },
67#endif	/* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
71unsigned long totalram_pages __read_mostly;
72unsigned long totalreserve_pages __read_mostly;
73unsigned long highest_memmap_pfn __read_mostly;
74int percpu_pagelist_fraction;
75
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
80static void __free_pages_ok(struct page *page, unsigned int order);
81
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 *	1G machine -> (16M dma, 784M normal, 224M high)
86 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94#ifdef CONFIG_ZONE_DMA
95	 256,
96#endif
97#ifdef CONFIG_ZONE_DMA32
98	 256,
99#endif
100#ifdef CONFIG_HIGHMEM
101	 32,
102#endif
103	 32,
104};
105
106EXPORT_SYMBOL(totalram_pages);
107
108static char * const zone_names[MAX_NR_ZONES] = {
109#ifdef CONFIG_ZONE_DMA
110	 "DMA",
111#endif
112#ifdef CONFIG_ZONE_DMA32
113	 "DMA32",
114#endif
115	 "Normal",
116#ifdef CONFIG_HIGHMEM
117	 "HighMem",
118#endif
119	 "Movable",
120};
121
122int min_free_kbytes = 1024;
123
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
126static unsigned long __meminitdata dma_reserve;
127
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129  /*
130   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131   * ranges of memory (RAM) that may be registered with add_active_range().
132   * Ranges passed to add_active_range() will be merged if possible
133   * so the number of times add_active_range() can be called is
134   * related to the number of nodes and the number of holes
135   */
136  #ifdef CONFIG_MAX_ACTIVE_REGIONS
137    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139  #else
140    #if MAX_NUMNODES >= 32
141      /* If there can be many nodes, allow up to 50 holes per node */
142      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143    #else
144      /* By default, allow up to 256 distinct regions */
145      #define MAX_ACTIVE_REGIONS 256
146    #endif
147  #endif
148
149  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150  static int __meminitdata nr_nodemap_entries;
151  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153  static unsigned long __initdata required_kernelcore;
154  static unsigned long __initdata required_movablecore;
155  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158  int movable_zone;
159  EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
167int page_group_by_mobility_disabled __read_mostly;
168
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
171	set_pageblock_flags_group(page, (unsigned long)migratetype,
172					PB_migrate, PB_migrate_end);
173}
174
175#ifdef CONFIG_DEBUG_VM
176static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177{
178	int ret = 0;
179	unsigned seq;
180	unsigned long pfn = page_to_pfn(page);
181
182	do {
183		seq = zone_span_seqbegin(zone);
184		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185			ret = 1;
186		else if (pfn < zone->zone_start_pfn)
187			ret = 1;
188	} while (zone_span_seqretry(zone, seq));
189
190	return ret;
191}
192
193static int page_is_consistent(struct zone *zone, struct page *page)
194{
195	if (!pfn_valid_within(page_to_pfn(page)))
196		return 0;
197	if (zone != page_zone(page))
198		return 0;
199
200	return 1;
201}
202/*
203 * Temporary debugging check for pages not lying within a given zone.
204 */
205static int bad_range(struct zone *zone, struct page *page)
206{
207	if (page_outside_zone_boundaries(zone, page))
208		return 1;
209	if (!page_is_consistent(zone, page))
210		return 1;
211
212	return 0;
213}
214#else
215static inline int bad_range(struct zone *zone, struct page *page)
216{
217	return 0;
218}
219#endif
220
221static void bad_page(struct page *page)
222{
223	static unsigned long resume;
224	static unsigned long nr_shown;
225	static unsigned long nr_unshown;
226
227	/*
228	 * Allow a burst of 60 reports, then keep quiet for that minute;
229	 * or allow a steady drip of one report per second.
230	 */
231	if (nr_shown == 60) {
232		if (time_before(jiffies, resume)) {
233			nr_unshown++;
234			goto out;
235		}
236		if (nr_unshown) {
237			printk(KERN_ALERT
238			      "BUG: Bad page state: %lu messages suppressed\n",
239				nr_unshown);
240			nr_unshown = 0;
241		}
242		nr_shown = 0;
243	}
244	if (nr_shown++ == 0)
245		resume = jiffies + 60 * HZ;
246
247	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
248		current->comm, page_to_pfn(page));
249	printk(KERN_ALERT
250		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
251		page, (void *)page->flags, page_count(page),
252		page_mapcount(page), page->mapping, page->index);
253
254	dump_stack();
255out:
256	/* Leave bad fields for debug, except PageBuddy could make trouble */
257	__ClearPageBuddy(page);
258	add_taint(TAINT_BAD_PAGE);
259}
260
261/*
262 * Higher-order pages are called "compound pages".  They are structured thusly:
263 *
264 * The first PAGE_SIZE page is called the "head page".
265 *
266 * The remaining PAGE_SIZE pages are called "tail pages".
267 *
268 * All pages have PG_compound set.  All pages have their ->private pointing at
269 * the head page (even the head page has this).
270 *
271 * The first tail page's ->lru.next holds the address of the compound page's
272 * put_page() function.  Its ->lru.prev holds the order of allocation.
273 * This usage means that zero-order pages may not be compound.
274 */
275
276static void free_compound_page(struct page *page)
277{
278	__free_pages_ok(page, compound_order(page));
279}
280
281void prep_compound_page(struct page *page, unsigned long order)
282{
283	int i;
284	int nr_pages = 1 << order;
285
286	set_compound_page_dtor(page, free_compound_page);
287	set_compound_order(page, order);
288	__SetPageHead(page);
289	for (i = 1; i < nr_pages; i++) {
290		struct page *p = page + i;
291
292		__SetPageTail(p);
293		p->first_page = page;
294	}
295}
296
297#ifdef CONFIG_HUGETLBFS
298void prep_compound_gigantic_page(struct page *page, unsigned long order)
299{
300	int i;
301	int nr_pages = 1 << order;
302	struct page *p = page + 1;
303
304	set_compound_page_dtor(page, free_compound_page);
305	set_compound_order(page, order);
306	__SetPageHead(page);
307	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
308		__SetPageTail(p);
309		p->first_page = page;
310	}
311}
312#endif
313
314static int destroy_compound_page(struct page *page, unsigned long order)
315{
316	int i;
317	int nr_pages = 1 << order;
318	int bad = 0;
319
320	if (unlikely(compound_order(page) != order) ||
321	    unlikely(!PageHead(page))) {
322		bad_page(page);
323		bad++;
324	}
325
326	__ClearPageHead(page);
327
328	for (i = 1; i < nr_pages; i++) {
329		struct page *p = page + i;
330
331		if (unlikely(!PageTail(p) || (p->first_page != page))) {
332			bad_page(page);
333			bad++;
334		}
335		__ClearPageTail(p);
336	}
337
338	return bad;
339}
340
341static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342{
343	int i;
344
345	/*
346	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347	 * and __GFP_HIGHMEM from hard or soft interrupt context.
348	 */
349	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350	for (i = 0; i < (1 << order); i++)
351		clear_highpage(page + i);
352}
353
354static inline void set_page_order(struct page *page, int order)
355{
356	set_page_private(page, order);
357	__SetPageBuddy(page);
358}
359
360static inline void rmv_page_order(struct page *page)
361{
362	__ClearPageBuddy(page);
363	set_page_private(page, 0);
364}
365
366/*
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
369 *
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 *     B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 *
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 *     P = B & ~(1 << O)
380 *
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 */
383static inline struct page *
384__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385{
386	unsigned long buddy_idx = page_idx ^ (1 << order);
387
388	return page + (buddy_idx - page_idx);
389}
390
391static inline unsigned long
392__find_combined_index(unsigned long page_idx, unsigned int order)
393{
394	return (page_idx & ~(1 << order));
395}
396
397/*
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
404 *
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 *
408 * For recording page's order, we use page_private(page).
409 */
410static inline int page_is_buddy(struct page *page, struct page *buddy,
411								int order)
412{
413	if (!pfn_valid_within(page_to_pfn(buddy)))
414		return 0;
415
416	if (page_zone_id(page) != page_zone_id(buddy))
417		return 0;
418
419	if (PageBuddy(buddy) && page_order(buddy) == order) {
420		BUG_ON(page_count(buddy) != 0);
421		return 1;
422	}
423	return 0;
424}
425
426/*
427 * Freeing function for a buddy system allocator.
428 *
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other.  That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
446 *
447 * -- wli
448 */
449
450static inline void __free_one_page(struct page *page,
451		struct zone *zone, unsigned int order)
452{
453	unsigned long page_idx;
454	int order_size = 1 << order;
455	int migratetype = get_pageblock_migratetype(page);
456
457	if (unlikely(PageCompound(page)))
458		if (unlikely(destroy_compound_page(page, order)))
459			return;
460
461	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
462
463	VM_BUG_ON(page_idx & (order_size - 1));
464	VM_BUG_ON(bad_range(zone, page));
465
466	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
467	while (order < MAX_ORDER-1) {
468		unsigned long combined_idx;
469		struct page *buddy;
470
471		buddy = __page_find_buddy(page, page_idx, order);
472		if (!page_is_buddy(page, buddy, order))
473			break;
474
475		/* Our buddy is free, merge with it and move up one order. */
476		list_del(&buddy->lru);
477		zone->free_area[order].nr_free--;
478		rmv_page_order(buddy);
479		combined_idx = __find_combined_index(page_idx, order);
480		page = page + (combined_idx - page_idx);
481		page_idx = combined_idx;
482		order++;
483	}
484	set_page_order(page, order);
485	list_add(&page->lru,
486		&zone->free_area[order].free_list[migratetype]);
487	zone->free_area[order].nr_free++;
488}
489
490static inline int free_pages_check(struct page *page)
491{
492	free_page_mlock(page);
493	if (unlikely(page_mapcount(page) |
494		(page->mapping != NULL)  |
495		(page_count(page) != 0)  |
496		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
497		bad_page(page);
498		return 1;
499	}
500	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
501		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
502	return 0;
503}
504
505/*
506 * Frees a list of pages.
507 * Assumes all pages on list are in same zone, and of same order.
508 * count is the number of pages to free.
509 *
510 * If the zone was previously in an "all pages pinned" state then look to
511 * see if this freeing clears that state.
512 *
513 * And clear the zone's pages_scanned counter, to hold off the "all pages are
514 * pinned" detection logic.
515 */
516static void free_pages_bulk(struct zone *zone, int count,
517					struct list_head *list, int order)
518{
519	spin_lock(&zone->lock);
520	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
521	zone->pages_scanned = 0;
522	while (count--) {
523		struct page *page;
524
525		VM_BUG_ON(list_empty(list));
526		page = list_entry(list->prev, struct page, lru);
527		/* have to delete it as __free_one_page list manipulates */
528		list_del(&page->lru);
529		__free_one_page(page, zone, order);
530	}
531	spin_unlock(&zone->lock);
532}
533
534static void free_one_page(struct zone *zone, struct page *page, int order)
535{
536	spin_lock(&zone->lock);
537	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
538	zone->pages_scanned = 0;
539	__free_one_page(page, zone, order);
540	spin_unlock(&zone->lock);
541}
542
543static void __free_pages_ok(struct page *page, unsigned int order)
544{
545	unsigned long flags;
546	int i;
547	int bad = 0;
548
549	for (i = 0 ; i < (1 << order) ; ++i)
550		bad += free_pages_check(page + i);
551	if (bad)
552		return;
553
554	if (!PageHighMem(page)) {
555		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
556		debug_check_no_obj_freed(page_address(page),
557					   PAGE_SIZE << order);
558	}
559	arch_free_page(page, order);
560	kernel_map_pages(page, 1 << order, 0);
561
562	local_irq_save(flags);
563	__count_vm_events(PGFREE, 1 << order);
564	free_one_page(page_zone(page), page, order);
565	local_irq_restore(flags);
566}
567
568/*
569 * permit the bootmem allocator to evade page validation on high-order frees
570 */
571void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
572{
573	if (order == 0) {
574		__ClearPageReserved(page);
575		set_page_count(page, 0);
576		set_page_refcounted(page);
577		__free_page(page);
578	} else {
579		int loop;
580
581		prefetchw(page);
582		for (loop = 0; loop < BITS_PER_LONG; loop++) {
583			struct page *p = &page[loop];
584
585			if (loop + 1 < BITS_PER_LONG)
586				prefetchw(p + 1);
587			__ClearPageReserved(p);
588			set_page_count(p, 0);
589		}
590
591		set_page_refcounted(page);
592		__free_pages(page, order);
593	}
594}
595
596
597/*
598 * The order of subdivision here is critical for the IO subsystem.
599 * Please do not alter this order without good reasons and regression
600 * testing. Specifically, as large blocks of memory are subdivided,
601 * the order in which smaller blocks are delivered depends on the order
602 * they're subdivided in this function. This is the primary factor
603 * influencing the order in which pages are delivered to the IO
604 * subsystem according to empirical testing, and this is also justified
605 * by considering the behavior of a buddy system containing a single
606 * large block of memory acted on by a series of small allocations.
607 * This behavior is a critical factor in sglist merging's success.
608 *
609 * -- wli
610 */
611static inline void expand(struct zone *zone, struct page *page,
612	int low, int high, struct free_area *area,
613	int migratetype)
614{
615	unsigned long size = 1 << high;
616
617	while (high > low) {
618		area--;
619		high--;
620		size >>= 1;
621		VM_BUG_ON(bad_range(zone, &page[size]));
622		list_add(&page[size].lru, &area->free_list[migratetype]);
623		area->nr_free++;
624		set_page_order(&page[size], high);
625	}
626}
627
628/*
629 * This page is about to be returned from the page allocator
630 */
631static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
632{
633	if (unlikely(page_mapcount(page) |
634		(page->mapping != NULL)  |
635		(page_count(page) != 0)  |
636		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
637		bad_page(page);
638		return 1;
639	}
640
641	set_page_private(page, 0);
642	set_page_refcounted(page);
643
644	arch_alloc_page(page, order);
645	kernel_map_pages(page, 1 << order, 1);
646
647	if (gfp_flags & __GFP_ZERO)
648		prep_zero_page(page, order, gfp_flags);
649
650	if (order && (gfp_flags & __GFP_COMP))
651		prep_compound_page(page, order);
652
653	return 0;
654}
655
656/*
657 * Go through the free lists for the given migratetype and remove
658 * the smallest available page from the freelists
659 */
660static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
661						int migratetype)
662{
663	unsigned int current_order;
664	struct free_area * area;
665	struct page *page;
666
667	/* Find a page of the appropriate size in the preferred list */
668	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
669		area = &(zone->free_area[current_order]);
670		if (list_empty(&area->free_list[migratetype]))
671			continue;
672
673		page = list_entry(area->free_list[migratetype].next,
674							struct page, lru);
675		list_del(&page->lru);
676		rmv_page_order(page);
677		area->nr_free--;
678		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
679		expand(zone, page, order, current_order, area, migratetype);
680		return page;
681	}
682
683	return NULL;
684}
685
686
687/*
688 * This array describes the order lists are fallen back to when
689 * the free lists for the desirable migrate type are depleted
690 */
691static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
692	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
693	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
694	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
695	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
696};
697
698/*
699 * Move the free pages in a range to the free lists of the requested type.
700 * Note that start_page and end_pages are not aligned on a pageblock
701 * boundary. If alignment is required, use move_freepages_block()
702 */
703static int move_freepages(struct zone *zone,
704			  struct page *start_page, struct page *end_page,
705			  int migratetype)
706{
707	struct page *page;
708	unsigned long order;
709	int pages_moved = 0;
710
711#ifndef CONFIG_HOLES_IN_ZONE
712	/*
713	 * page_zone is not safe to call in this context when
714	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
715	 * anyway as we check zone boundaries in move_freepages_block().
716	 * Remove at a later date when no bug reports exist related to
717	 * grouping pages by mobility
718	 */
719	BUG_ON(page_zone(start_page) != page_zone(end_page));
720#endif
721
722	for (page = start_page; page <= end_page;) {
723		/* Make sure we are not inadvertently changing nodes */
724		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
725
726		if (!pfn_valid_within(page_to_pfn(page))) {
727			page++;
728			continue;
729		}
730
731		if (!PageBuddy(page)) {
732			page++;
733			continue;
734		}
735
736		order = page_order(page);
737		list_del(&page->lru);
738		list_add(&page->lru,
739			&zone->free_area[order].free_list[migratetype]);
740		page += 1 << order;
741		pages_moved += 1 << order;
742	}
743
744	return pages_moved;
745}
746
747static int move_freepages_block(struct zone *zone, struct page *page,
748				int migratetype)
749{
750	unsigned long start_pfn, end_pfn;
751	struct page *start_page, *end_page;
752
753	start_pfn = page_to_pfn(page);
754	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
755	start_page = pfn_to_page(start_pfn);
756	end_page = start_page + pageblock_nr_pages - 1;
757	end_pfn = start_pfn + pageblock_nr_pages - 1;
758
759	/* Do not cross zone boundaries */
760	if (start_pfn < zone->zone_start_pfn)
761		start_page = page;
762	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
763		return 0;
764
765	return move_freepages(zone, start_page, end_page, migratetype);
766}
767
768/* Remove an element from the buddy allocator from the fallback list */
769static struct page *__rmqueue_fallback(struct zone *zone, int order,
770						int start_migratetype)
771{
772	struct free_area * area;
773	int current_order;
774	struct page *page;
775	int migratetype, i;
776
777	/* Find the largest possible block of pages in the other list */
778	for (current_order = MAX_ORDER-1; current_order >= order;
779						--current_order) {
780		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781			migratetype = fallbacks[start_migratetype][i];
782
783			/* MIGRATE_RESERVE handled later if necessary */
784			if (migratetype == MIGRATE_RESERVE)
785				continue;
786
787			area = &(zone->free_area[current_order]);
788			if (list_empty(&area->free_list[migratetype]))
789				continue;
790
791			page = list_entry(area->free_list[migratetype].next,
792					struct page, lru);
793			area->nr_free--;
794
795			/*
796			 * If breaking a large block of pages, move all free
797			 * pages to the preferred allocation list. If falling
798			 * back for a reclaimable kernel allocation, be more
799			 * agressive about taking ownership of free pages
800			 */
801			if (unlikely(current_order >= (pageblock_order >> 1)) ||
802					start_migratetype == MIGRATE_RECLAIMABLE) {
803				unsigned long pages;
804				pages = move_freepages_block(zone, page,
805								start_migratetype);
806
807				/* Claim the whole block if over half of it is free */
808				if (pages >= (1 << (pageblock_order-1)))
809					set_pageblock_migratetype(page,
810								start_migratetype);
811
812				migratetype = start_migratetype;
813			}
814
815			/* Remove the page from the freelists */
816			list_del(&page->lru);
817			rmv_page_order(page);
818			__mod_zone_page_state(zone, NR_FREE_PAGES,
819							-(1UL << order));
820
821			if (current_order == pageblock_order)
822				set_pageblock_migratetype(page,
823							start_migratetype);
824
825			expand(zone, page, order, current_order, area, migratetype);
826			return page;
827		}
828	}
829
830	/* Use MIGRATE_RESERVE rather than fail an allocation */
831	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
832}
833
834/*
835 * Do the hard work of removing an element from the buddy allocator.
836 * Call me with the zone->lock already held.
837 */
838static struct page *__rmqueue(struct zone *zone, unsigned int order,
839						int migratetype)
840{
841	struct page *page;
842
843	page = __rmqueue_smallest(zone, order, migratetype);
844
845	if (unlikely(!page))
846		page = __rmqueue_fallback(zone, order, migratetype);
847
848	return page;
849}
850
851/*
852 * Obtain a specified number of elements from the buddy allocator, all under
853 * a single hold of the lock, for efficiency.  Add them to the supplied list.
854 * Returns the number of new pages which were placed at *list.
855 */
856static int rmqueue_bulk(struct zone *zone, unsigned int order,
857			unsigned long count, struct list_head *list,
858			int migratetype)
859{
860	int i;
861
862	spin_lock(&zone->lock);
863	for (i = 0; i < count; ++i) {
864		struct page *page = __rmqueue(zone, order, migratetype);
865		if (unlikely(page == NULL))
866			break;
867
868		/*
869		 * Split buddy pages returned by expand() are received here
870		 * in physical page order. The page is added to the callers and
871		 * list and the list head then moves forward. From the callers
872		 * perspective, the linked list is ordered by page number in
873		 * some conditions. This is useful for IO devices that can
874		 * merge IO requests if the physical pages are ordered
875		 * properly.
876		 */
877		list_add(&page->lru, list);
878		set_page_private(page, migratetype);
879		list = &page->lru;
880	}
881	spin_unlock(&zone->lock);
882	return i;
883}
884
885#ifdef CONFIG_NUMA
886/*
887 * Called from the vmstat counter updater to drain pagesets of this
888 * currently executing processor on remote nodes after they have
889 * expired.
890 *
891 * Note that this function must be called with the thread pinned to
892 * a single processor.
893 */
894void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
895{
896	unsigned long flags;
897	int to_drain;
898
899	local_irq_save(flags);
900	if (pcp->count >= pcp->batch)
901		to_drain = pcp->batch;
902	else
903		to_drain = pcp->count;
904	free_pages_bulk(zone, to_drain, &pcp->list, 0);
905	pcp->count -= to_drain;
906	local_irq_restore(flags);
907}
908#endif
909
910/*
911 * Drain pages of the indicated processor.
912 *
913 * The processor must either be the current processor and the
914 * thread pinned to the current processor or a processor that
915 * is not online.
916 */
917static void drain_pages(unsigned int cpu)
918{
919	unsigned long flags;
920	struct zone *zone;
921
922	for_each_populated_zone(zone) {
923		struct per_cpu_pageset *pset;
924		struct per_cpu_pages *pcp;
925
926		pset = zone_pcp(zone, cpu);
927
928		pcp = &pset->pcp;
929		local_irq_save(flags);
930		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
931		pcp->count = 0;
932		local_irq_restore(flags);
933	}
934}
935
936/*
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
938 */
939void drain_local_pages(void *arg)
940{
941	drain_pages(smp_processor_id());
942}
943
944/*
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
946 */
947void drain_all_pages(void)
948{
949	on_each_cpu(drain_local_pages, NULL, 1);
950}
951
952#ifdef CONFIG_HIBERNATION
953
954void mark_free_pages(struct zone *zone)
955{
956	unsigned long pfn, max_zone_pfn;
957	unsigned long flags;
958	int order, t;
959	struct list_head *curr;
960
961	if (!zone->spanned_pages)
962		return;
963
964	spin_lock_irqsave(&zone->lock, flags);
965
966	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968		if (pfn_valid(pfn)) {
969			struct page *page = pfn_to_page(pfn);
970
971			if (!swsusp_page_is_forbidden(page))
972				swsusp_unset_page_free(page);
973		}
974
975	for_each_migratetype_order(order, t) {
976		list_for_each(curr, &zone->free_area[order].free_list[t]) {
977			unsigned long i;
978
979			pfn = page_to_pfn(list_entry(curr, struct page, lru));
980			for (i = 0; i < (1UL << order); i++)
981				swsusp_set_page_free(pfn_to_page(pfn + i));
982		}
983	}
984	spin_unlock_irqrestore(&zone->lock, flags);
985}
986#endif /* CONFIG_PM */
987
988/*
989 * Free a 0-order page
990 */
991static void free_hot_cold_page(struct page *page, int cold)
992{
993	struct zone *zone = page_zone(page);
994	struct per_cpu_pages *pcp;
995	unsigned long flags;
996
997	if (PageAnon(page))
998		page->mapping = NULL;
999	if (free_pages_check(page))
1000		return;
1001
1002	if (!PageHighMem(page)) {
1003		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1004		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1005	}
1006	arch_free_page(page, 0);
1007	kernel_map_pages(page, 1, 0);
1008
1009	pcp = &zone_pcp(zone, get_cpu())->pcp;
1010	local_irq_save(flags);
1011	__count_vm_event(PGFREE);
1012	if (cold)
1013		list_add_tail(&page->lru, &pcp->list);
1014	else
1015		list_add(&page->lru, &pcp->list);
1016	set_page_private(page, get_pageblock_migratetype(page));
1017	pcp->count++;
1018	if (pcp->count >= pcp->high) {
1019		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1020		pcp->count -= pcp->batch;
1021	}
1022	local_irq_restore(flags);
1023	put_cpu();
1024}
1025
1026void free_hot_page(struct page *page)
1027{
1028	free_hot_cold_page(page, 0);
1029}
1030
1031void free_cold_page(struct page *page)
1032{
1033	free_hot_cold_page(page, 1);
1034}
1035
1036/*
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1040 *
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1043 */
1044void split_page(struct page *page, unsigned int order)
1045{
1046	int i;
1047
1048	VM_BUG_ON(PageCompound(page));
1049	VM_BUG_ON(!page_count(page));
1050	for (i = 1; i < (1 << order); i++)
1051		set_page_refcounted(page + i);
1052}
1053
1054/*
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1056 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1057 * or two.
1058 */
1059static struct page *buffered_rmqueue(struct zone *preferred_zone,
1060			struct zone *zone, int order, gfp_t gfp_flags)
1061{
1062	unsigned long flags;
1063	struct page *page;
1064	int cold = !!(gfp_flags & __GFP_COLD);
1065	int cpu;
1066	int migratetype = allocflags_to_migratetype(gfp_flags);
1067
1068again:
1069	cpu  = get_cpu();
1070	if (likely(order == 0)) {
1071		struct per_cpu_pages *pcp;
1072
1073		pcp = &zone_pcp(zone, cpu)->pcp;
1074		local_irq_save(flags);
1075		if (!pcp->count) {
1076			pcp->count = rmqueue_bulk(zone, 0,
1077					pcp->batch, &pcp->list, migratetype);
1078			if (unlikely(!pcp->count))
1079				goto failed;
1080		}
1081
1082		/* Find a page of the appropriate migrate type */
1083		if (cold) {
1084			list_for_each_entry_reverse(page, &pcp->list, lru)
1085				if (page_private(page) == migratetype)
1086					break;
1087		} else {
1088			list_for_each_entry(page, &pcp->list, lru)
1089				if (page_private(page) == migratetype)
1090					break;
1091		}
1092
1093		/* Allocate more to the pcp list if necessary */
1094		if (unlikely(&page->lru == &pcp->list)) {
1095			pcp->count += rmqueue_bulk(zone, 0,
1096					pcp->batch, &pcp->list, migratetype);
1097			page = list_entry(pcp->list.next, struct page, lru);
1098		}
1099
1100		list_del(&page->lru);
1101		pcp->count--;
1102	} else {
1103		spin_lock_irqsave(&zone->lock, flags);
1104		page = __rmqueue(zone, order, migratetype);
1105		spin_unlock(&zone->lock);
1106		if (!page)
1107			goto failed;
1108	}
1109
1110	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1111	zone_statistics(preferred_zone, zone);
1112	local_irq_restore(flags);
1113	put_cpu();
1114
1115	VM_BUG_ON(bad_range(zone, page));
1116	if (prep_new_page(page, order, gfp_flags))
1117		goto again;
1118	return page;
1119
1120failed:
1121	local_irq_restore(flags);
1122	put_cpu();
1123	return NULL;
1124}
1125
1126#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1127#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1128#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1129#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1130#define ALLOC_HARDER		0x10 /* try to alloc harder */
1131#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1132#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1133
1134#ifdef CONFIG_FAIL_PAGE_ALLOC
1135
1136static struct fail_page_alloc_attr {
1137	struct fault_attr attr;
1138
1139	u32 ignore_gfp_highmem;
1140	u32 ignore_gfp_wait;
1141	u32 min_order;
1142
1143#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1144
1145	struct dentry *ignore_gfp_highmem_file;
1146	struct dentry *ignore_gfp_wait_file;
1147	struct dentry *min_order_file;
1148
1149#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1150
1151} fail_page_alloc = {
1152	.attr = FAULT_ATTR_INITIALIZER,
1153	.ignore_gfp_wait = 1,
1154	.ignore_gfp_highmem = 1,
1155	.min_order = 1,
1156};
1157
1158static int __init setup_fail_page_alloc(char *str)
1159{
1160	return setup_fault_attr(&fail_page_alloc.attr, str);
1161}
1162__setup("fail_page_alloc=", setup_fail_page_alloc);
1163
1164static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1165{
1166	if (order < fail_page_alloc.min_order)
1167		return 0;
1168	if (gfp_mask & __GFP_NOFAIL)
1169		return 0;
1170	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1171		return 0;
1172	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1173		return 0;
1174
1175	return should_fail(&fail_page_alloc.attr, 1 << order);
1176}
1177
1178#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1179
1180static int __init fail_page_alloc_debugfs(void)
1181{
1182	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1183	struct dentry *dir;
1184	int err;
1185
1186	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1187				       "fail_page_alloc");
1188	if (err)
1189		return err;
1190	dir = fail_page_alloc.attr.dentries.dir;
1191
1192	fail_page_alloc.ignore_gfp_wait_file =
1193		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1194				      &fail_page_alloc.ignore_gfp_wait);
1195
1196	fail_page_alloc.ignore_gfp_highmem_file =
1197		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1198				      &fail_page_alloc.ignore_gfp_highmem);
1199	fail_page_alloc.min_order_file =
1200		debugfs_create_u32("min-order", mode, dir,
1201				   &fail_page_alloc.min_order);
1202
1203	if (!fail_page_alloc.ignore_gfp_wait_file ||
1204            !fail_page_alloc.ignore_gfp_highmem_file ||
1205            !fail_page_alloc.min_order_file) {
1206		err = -ENOMEM;
1207		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1208		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1209		debugfs_remove(fail_page_alloc.min_order_file);
1210		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1211	}
1212
1213	return err;
1214}
1215
1216late_initcall(fail_page_alloc_debugfs);
1217
1218#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219
1220#else /* CONFIG_FAIL_PAGE_ALLOC */
1221
1222static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1223{
1224	return 0;
1225}
1226
1227#endif /* CONFIG_FAIL_PAGE_ALLOC */
1228
1229/*
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1232 */
1233int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1234		      int classzone_idx, int alloc_flags)
1235{
1236	/* free_pages my go negative - that's OK */
1237	long min = mark;
1238	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1239	int o;
1240
1241	if (alloc_flags & ALLOC_HIGH)
1242		min -= min / 2;
1243	if (alloc_flags & ALLOC_HARDER)
1244		min -= min / 4;
1245
1246	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1247		return 0;
1248	for (o = 0; o < order; o++) {
1249		/* At the next order, this order's pages become unavailable */
1250		free_pages -= z->free_area[o].nr_free << o;
1251
1252		/* Require fewer higher order pages to be free */
1253		min >>= 1;
1254
1255		if (free_pages <= min)
1256			return 0;
1257	}
1258	return 1;
1259}
1260
1261#ifdef CONFIG_NUMA
1262/*
1263 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full.  See further
1266 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1268 *
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1272 *
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1275 *
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1278 *
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1283 */
1284static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1285{
1286	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1287	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1288
1289	zlc = zonelist->zlcache_ptr;
1290	if (!zlc)
1291		return NULL;
1292
1293	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1294		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1295		zlc->last_full_zap = jiffies;
1296	}
1297
1298	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1299					&cpuset_current_mems_allowed :
1300					&node_states[N_HIGH_MEMORY];
1301	return allowednodes;
1302}
1303
1304/*
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 *  1) Check that the zone isn't thought to be full (doesn't have its
1308 *     bit set in the zonelist_cache fullzones BITMAP).
1309 *  2) Check that the zones node (obtained from the zonelist_cache
1310 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1313 *
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1320 *
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1325 */
1326static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1327						nodemask_t *allowednodes)
1328{
1329	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1330	int i;				/* index of *z in zonelist zones */
1331	int n;				/* node that zone *z is on */
1332
1333	zlc = zonelist->zlcache_ptr;
1334	if (!zlc)
1335		return 1;
1336
1337	i = z - zonelist->_zonerefs;
1338	n = zlc->z_to_n[i];
1339
1340	/* This zone is worth trying if it is allowed but not full */
1341	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1342}
1343
1344/*
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1348 */
1349static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1350{
1351	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1352	int i;				/* index of *z in zonelist zones */
1353
1354	zlc = zonelist->zlcache_ptr;
1355	if (!zlc)
1356		return;
1357
1358	i = z - zonelist->_zonerefs;
1359
1360	set_bit(i, zlc->fullzones);
1361}
1362
1363#else	/* CONFIG_NUMA */
1364
1365static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366{
1367	return NULL;
1368}
1369
1370static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1371				nodemask_t *allowednodes)
1372{
1373	return 1;
1374}
1375
1376static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1377{
1378}
1379#endif	/* CONFIG_NUMA */
1380
1381/*
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1383 * a page.
1384 */
1385static struct page *
1386get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1387		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1388{
1389	struct zoneref *z;
1390	struct page *page = NULL;
1391	int classzone_idx;
1392	struct zone *zone, *preferred_zone;
1393	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1394	int zlc_active = 0;		/* set if using zonelist_cache */
1395	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1396
1397	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1398							&preferred_zone);
1399	if (!preferred_zone)
1400		return NULL;
1401
1402	classzone_idx = zone_idx(preferred_zone);
1403
1404	if (WARN_ON_ONCE(order >= MAX_ORDER))
1405		return NULL;
1406
1407zonelist_scan:
1408	/*
1409	 * Scan zonelist, looking for a zone with enough free.
1410	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411	 */
1412	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1413						high_zoneidx, nodemask) {
1414		if (NUMA_BUILD && zlc_active &&
1415			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1416				continue;
1417		if ((alloc_flags & ALLOC_CPUSET) &&
1418			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1419				goto try_next_zone;
1420
1421		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422			unsigned long mark;
1423			if (alloc_flags & ALLOC_WMARK_MIN)
1424				mark = zone->pages_min;
1425			else if (alloc_flags & ALLOC_WMARK_LOW)
1426				mark = zone->pages_low;
1427			else
1428				mark = zone->pages_high;
1429			if (!zone_watermark_ok(zone, order, mark,
1430				    classzone_idx, alloc_flags)) {
1431				if (!zone_reclaim_mode ||
1432				    !zone_reclaim(zone, gfp_mask, order))
1433					goto this_zone_full;
1434			}
1435		}
1436
1437		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1438		if (page)
1439			break;
1440this_zone_full:
1441		if (NUMA_BUILD)
1442			zlc_mark_zone_full(zonelist, z);
1443try_next_zone:
1444		if (NUMA_BUILD && !did_zlc_setup) {
1445			/* we do zlc_setup after the first zone is tried */
1446			allowednodes = zlc_setup(zonelist, alloc_flags);
1447			zlc_active = 1;
1448			did_zlc_setup = 1;
1449		}
1450	}
1451
1452	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453		/* Disable zlc cache for second zonelist scan */
1454		zlc_active = 0;
1455		goto zonelist_scan;
1456	}
1457	return page;
1458}
1459
1460static inline int
1461should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1462				unsigned long pages_reclaimed)
1463{
1464	/* Do not loop if specifically requested */
1465	if (gfp_mask & __GFP_NORETRY)
1466		return 0;
1467
1468	/*
1469	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1470	 * means __GFP_NOFAIL, but that may not be true in other
1471	 * implementations.
1472	 */
1473	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1474		return 1;
1475
1476	/*
1477	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1478	 * specified, then we retry until we no longer reclaim any pages
1479	 * (above), or we've reclaimed an order of pages at least as
1480	 * large as the allocation's order. In both cases, if the
1481	 * allocation still fails, we stop retrying.
1482	 */
1483	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1484		return 1;
1485
1486	/*
1487	 * Don't let big-order allocations loop unless the caller
1488	 * explicitly requests that.
1489	 */
1490	if (gfp_mask & __GFP_NOFAIL)
1491		return 1;
1492
1493	return 0;
1494}
1495
1496static inline struct page *
1497__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1498	struct zonelist *zonelist, enum zone_type high_zoneidx,
1499	nodemask_t *nodemask)
1500{
1501	struct page *page;
1502
1503	/* Acquire the OOM killer lock for the zones in zonelist */
1504	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1505		schedule_timeout_uninterruptible(1);
1506		return NULL;
1507	}
1508
1509	/*
1510	 * Go through the zonelist yet one more time, keep very high watermark
1511	 * here, this is only to catch a parallel oom killing, we must fail if
1512	 * we're still under heavy pressure.
1513	 */
1514	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1515		order, zonelist, high_zoneidx,
1516		ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1517	if (page)
1518		goto out;
1519
1520	/* The OOM killer will not help higher order allocs */
1521	if (order > PAGE_ALLOC_COSTLY_ORDER)
1522		goto out;
1523
1524	/* Exhausted what can be done so it's blamo time */
1525	out_of_memory(zonelist, gfp_mask, order);
1526
1527out:
1528	clear_zonelist_oom(zonelist, gfp_mask);
1529	return page;
1530}
1531
1532/* The really slow allocator path where we enter direct reclaim */
1533static inline struct page *
1534__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1535	struct zonelist *zonelist, enum zone_type high_zoneidx,
1536	nodemask_t *nodemask, int alloc_flags, unsigned long *did_some_progress)
1537{
1538	struct page *page = NULL;
1539	struct reclaim_state reclaim_state;
1540	struct task_struct *p = current;
1541
1542	cond_resched();
1543
1544	/* We now go into synchronous reclaim */
1545	cpuset_memory_pressure_bump();
1546
1547	/*
1548	 * The task's cpuset might have expanded its set of allowable nodes
1549	 */
1550	p->flags |= PF_MEMALLOC;
1551	lockdep_set_current_reclaim_state(gfp_mask);
1552	reclaim_state.reclaimed_slab = 0;
1553	p->reclaim_state = &reclaim_state;
1554
1555	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1556
1557	p->reclaim_state = NULL;
1558	lockdep_clear_current_reclaim_state();
1559	p->flags &= ~PF_MEMALLOC;
1560
1561	cond_resched();
1562
1563	if (order != 0)
1564		drain_all_pages();
1565
1566	if (likely(*did_some_progress))
1567		page = get_page_from_freelist(gfp_mask, nodemask, order,
1568					zonelist, high_zoneidx, alloc_flags);
1569	return page;
1570}
1571
1572static inline int
1573is_allocation_high_priority(struct task_struct *p, gfp_t gfp_mask)
1574{
1575	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1576			&& !in_interrupt())
1577		return 1;
1578	return 0;
1579}
1580
1581/*
1582 * This is called in the allocator slow-path if the allocation request is of
1583 * sufficient urgency to ignore watermarks and take other desperate measures
1584 */
1585static inline struct page *
1586__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1587	struct zonelist *zonelist, enum zone_type high_zoneidx,
1588	nodemask_t *nodemask)
1589{
1590	struct page *page;
1591
1592	do {
1593		page = get_page_from_freelist(gfp_mask, nodemask, order,
1594			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1595
1596		if (!page && gfp_mask & __GFP_NOFAIL)
1597			congestion_wait(WRITE, HZ/50);
1598	} while (!page && (gfp_mask & __GFP_NOFAIL));
1599
1600	return page;
1601}
1602
1603static inline
1604void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1605						enum zone_type high_zoneidx)
1606{
1607	struct zoneref *z;
1608	struct zone *zone;
1609
1610	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1611		wakeup_kswapd(zone, order);
1612}
1613
1614static inline struct page *
1615__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1616	struct zonelist *zonelist, enum zone_type high_zoneidx,
1617	nodemask_t *nodemask)
1618{
1619	const gfp_t wait = gfp_mask & __GFP_WAIT;
1620	struct page *page = NULL;
1621	int alloc_flags;
1622	unsigned long pages_reclaimed = 0;
1623	unsigned long did_some_progress;
1624	struct task_struct *p = current;
1625
1626	/*
1627	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1628	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1629	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1630	 * using a larger set of nodes after it has established that the
1631	 * allowed per node queues are empty and that nodes are
1632	 * over allocated.
1633	 */
1634	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1635		goto nopage;
1636
1637	wake_all_kswapd(order, zonelist, high_zoneidx);
1638
1639	/*
1640	 * OK, we're below the kswapd watermark and have kicked background
1641	 * reclaim. Now things get more complex, so set up alloc_flags according
1642	 * to how we want to proceed.
1643	 *
1644	 * The caller may dip into page reserves a bit more if the caller
1645	 * cannot run direct reclaim, or if the caller has realtime scheduling
1646	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1647	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1648	 */
1649	alloc_flags = ALLOC_WMARK_MIN;
1650	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1651		alloc_flags |= ALLOC_HARDER;
1652	if (gfp_mask & __GFP_HIGH)
1653		alloc_flags |= ALLOC_HIGH;
1654	if (wait)
1655		alloc_flags |= ALLOC_CPUSET;
1656
1657restart:
1658	/*
1659	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1660	 * coming from realtime tasks go deeper into reserves.
1661	 *
1662	 * This is the last chance, in general, before the goto nopage.
1663	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1664	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1665	 */
1666	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1667						high_zoneidx, alloc_flags);
1668	if (page)
1669		goto got_pg;
1670
1671rebalance:
1672	/* Allocate without watermarks if the context allows */
1673	if (is_allocation_high_priority(p, gfp_mask)) {
1674		/* Do not dip into emergency reserves if specified */
1675		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1676			page = __alloc_pages_high_priority(gfp_mask, order,
1677				zonelist, high_zoneidx, nodemask);
1678			if (page)
1679				goto got_pg;
1680		}
1681
1682		/* Ensure no recursion into the allocator */
1683		goto nopage;
1684	}
1685
1686	/* Atomic allocations - we can't balance anything */
1687	if (!wait)
1688		goto nopage;
1689
1690	/* Try direct reclaim and then allocating */
1691	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1692					zonelist, high_zoneidx,
1693					nodemask,
1694					alloc_flags, &did_some_progress);
1695	if (page)
1696		goto got_pg;
1697
1698	/*
1699	 * If we failed to make any progress reclaiming, then we are
1700	 * running out of options and have to consider going OOM
1701	 */
1702	if (!did_some_progress) {
1703		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1704			page = __alloc_pages_may_oom(gfp_mask, order,
1705					zonelist, high_zoneidx,
1706					nodemask);
1707			if (page)
1708				goto got_pg;
1709
1710			/*
1711			 * The OOM killer does not trigger for high-order allocations
1712			 * but if no progress is being made, there are no other
1713			 * options and retrying is unlikely to help
1714			 */
1715			if (order > PAGE_ALLOC_COSTLY_ORDER)
1716				goto nopage;
1717
1718			goto restart;
1719		}
1720	}
1721
1722	/* Check if we should retry the allocation */
1723	pages_reclaimed += did_some_progress;
1724	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1725		/* Wait for some write requests to complete then retry */
1726		congestion_wait(WRITE, HZ/50);
1727		goto rebalance;
1728	}
1729
1730nopage:
1731	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1732		printk(KERN_WARNING "%s: page allocation failure."
1733			" order:%d, mode:0x%x\n",
1734			p->comm, order, gfp_mask);
1735		dump_stack();
1736		show_mem();
1737	}
1738got_pg:
1739	return page;
1740
1741}
1742
1743/*
1744 * This is the 'heart' of the zoned buddy allocator.
1745 */
1746struct page *
1747__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1748			struct zonelist *zonelist, nodemask_t *nodemask)
1749{
1750	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1751	struct page *page;
1752
1753	lockdep_trace_alloc(gfp_mask);
1754
1755	might_sleep_if(gfp_mask & __GFP_WAIT);
1756
1757	if (should_fail_alloc_page(gfp_mask, order))
1758		return NULL;
1759
1760	/*
1761	 * Check the zones suitable for the gfp_mask contain at least one
1762	 * valid zone. It's possible to have an empty zonelist as a result
1763	 * of GFP_THISNODE and a memoryless node
1764	 */
1765	if (unlikely(!zonelist->_zonerefs->zone))
1766		return NULL;
1767
1768	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1769			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1770	if (unlikely(!page))
1771		page = __alloc_pages_slowpath(gfp_mask, order,
1772				zonelist, high_zoneidx, nodemask);
1773
1774	return page;
1775}
1776EXPORT_SYMBOL(__alloc_pages_nodemask);
1777
1778/*
1779 * Common helper functions.
1780 */
1781unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1782{
1783	struct page * page;
1784	page = alloc_pages(gfp_mask, order);
1785	if (!page)
1786		return 0;
1787	return (unsigned long) page_address(page);
1788}
1789
1790EXPORT_SYMBOL(__get_free_pages);
1791
1792unsigned long get_zeroed_page(gfp_t gfp_mask)
1793{
1794	struct page * page;
1795
1796	/*
1797	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1798	 * a highmem page
1799	 */
1800	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1801
1802	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1803	if (page)
1804		return (unsigned long) page_address(page);
1805	return 0;
1806}
1807
1808EXPORT_SYMBOL(get_zeroed_page);
1809
1810void __pagevec_free(struct pagevec *pvec)
1811{
1812	int i = pagevec_count(pvec);
1813
1814	while (--i >= 0)
1815		free_hot_cold_page(pvec->pages[i], pvec->cold);
1816}
1817
1818void __free_pages(struct page *page, unsigned int order)
1819{
1820	if (put_page_testzero(page)) {
1821		if (order == 0)
1822			free_hot_page(page);
1823		else
1824			__free_pages_ok(page, order);
1825	}
1826}
1827
1828EXPORT_SYMBOL(__free_pages);
1829
1830void free_pages(unsigned long addr, unsigned int order)
1831{
1832	if (addr != 0) {
1833		VM_BUG_ON(!virt_addr_valid((void *)addr));
1834		__free_pages(virt_to_page((void *)addr), order);
1835	}
1836}
1837
1838EXPORT_SYMBOL(free_pages);
1839
1840/**
1841 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1842 * @size: the number of bytes to allocate
1843 * @gfp_mask: GFP flags for the allocation
1844 *
1845 * This function is similar to alloc_pages(), except that it allocates the
1846 * minimum number of pages to satisfy the request.  alloc_pages() can only
1847 * allocate memory in power-of-two pages.
1848 *
1849 * This function is also limited by MAX_ORDER.
1850 *
1851 * Memory allocated by this function must be released by free_pages_exact().
1852 */
1853void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1854{
1855	unsigned int order = get_order(size);
1856	unsigned long addr;
1857
1858	addr = __get_free_pages(gfp_mask, order);
1859	if (addr) {
1860		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1861		unsigned long used = addr + PAGE_ALIGN(size);
1862
1863		split_page(virt_to_page(addr), order);
1864		while (used < alloc_end) {
1865			free_page(used);
1866			used += PAGE_SIZE;
1867		}
1868	}
1869
1870	return (void *)addr;
1871}
1872EXPORT_SYMBOL(alloc_pages_exact);
1873
1874/**
1875 * free_pages_exact - release memory allocated via alloc_pages_exact()
1876 * @virt: the value returned by alloc_pages_exact.
1877 * @size: size of allocation, same value as passed to alloc_pages_exact().
1878 *
1879 * Release the memory allocated by a previous call to alloc_pages_exact.
1880 */
1881void free_pages_exact(void *virt, size_t size)
1882{
1883	unsigned long addr = (unsigned long)virt;
1884	unsigned long end = addr + PAGE_ALIGN(size);
1885
1886	while (addr < end) {
1887		free_page(addr);
1888		addr += PAGE_SIZE;
1889	}
1890}
1891EXPORT_SYMBOL(free_pages_exact);
1892
1893static unsigned int nr_free_zone_pages(int offset)
1894{
1895	struct zoneref *z;
1896	struct zone *zone;
1897
1898	/* Just pick one node, since fallback list is circular */
1899	unsigned int sum = 0;
1900
1901	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1902
1903	for_each_zone_zonelist(zone, z, zonelist, offset) {
1904		unsigned long size = zone->present_pages;
1905		unsigned long high = zone->pages_high;
1906		if (size > high)
1907			sum += size - high;
1908	}
1909
1910	return sum;
1911}
1912
1913/*
1914 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1915 */
1916unsigned int nr_free_buffer_pages(void)
1917{
1918	return nr_free_zone_pages(gfp_zone(GFP_USER));
1919}
1920EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1921
1922/*
1923 * Amount of free RAM allocatable within all zones
1924 */
1925unsigned int nr_free_pagecache_pages(void)
1926{
1927	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1928}
1929
1930static inline void show_node(struct zone *zone)
1931{
1932	if (NUMA_BUILD)
1933		printk("Node %d ", zone_to_nid(zone));
1934}
1935
1936void si_meminfo(struct sysinfo *val)
1937{
1938	val->totalram = totalram_pages;
1939	val->sharedram = 0;
1940	val->freeram = global_page_state(NR_FREE_PAGES);
1941	val->bufferram = nr_blockdev_pages();
1942	val->totalhigh = totalhigh_pages;
1943	val->freehigh = nr_free_highpages();
1944	val->mem_unit = PAGE_SIZE;
1945}
1946
1947EXPORT_SYMBOL(si_meminfo);
1948
1949#ifdef CONFIG_NUMA
1950void si_meminfo_node(struct sysinfo *val, int nid)
1951{
1952	pg_data_t *pgdat = NODE_DATA(nid);
1953
1954	val->totalram = pgdat->node_present_pages;
1955	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1956#ifdef CONFIG_HIGHMEM
1957	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1958	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1959			NR_FREE_PAGES);
1960#else
1961	val->totalhigh = 0;
1962	val->freehigh = 0;
1963#endif
1964	val->mem_unit = PAGE_SIZE;
1965}
1966#endif
1967
1968#define K(x) ((x) << (PAGE_SHIFT-10))
1969
1970/*
1971 * Show free area list (used inside shift_scroll-lock stuff)
1972 * We also calculate the percentage fragmentation. We do this by counting the
1973 * memory on each free list with the exception of the first item on the list.
1974 */
1975void show_free_areas(void)
1976{
1977	int cpu;
1978	struct zone *zone;
1979
1980	for_each_populated_zone(zone) {
1981		show_node(zone);
1982		printk("%s per-cpu:\n", zone->name);
1983
1984		for_each_online_cpu(cpu) {
1985			struct per_cpu_pageset *pageset;
1986
1987			pageset = zone_pcp(zone, cpu);
1988
1989			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1990			       cpu, pageset->pcp.high,
1991			       pageset->pcp.batch, pageset->pcp.count);
1992		}
1993	}
1994
1995	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1996		" inactive_file:%lu"
1997//TODO:  check/adjust line lengths
1998#ifdef CONFIG_UNEVICTABLE_LRU
1999		" unevictable:%lu"
2000#endif
2001		" dirty:%lu writeback:%lu unstable:%lu\n"
2002		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2003		global_page_state(NR_ACTIVE_ANON),
2004		global_page_state(NR_ACTIVE_FILE),
2005		global_page_state(NR_INACTIVE_ANON),
2006		global_page_state(NR_INACTIVE_FILE),
2007#ifdef CONFIG_UNEVICTABLE_LRU
2008		global_page_state(NR_UNEVICTABLE),
2009#endif
2010		global_page_state(NR_FILE_DIRTY),
2011		global_page_state(NR_WRITEBACK),
2012		global_page_state(NR_UNSTABLE_NFS),
2013		global_page_state(NR_FREE_PAGES),
2014		global_page_state(NR_SLAB_RECLAIMABLE) +
2015			global_page_state(NR_SLAB_UNRECLAIMABLE),
2016		global_page_state(NR_FILE_MAPPED),
2017		global_page_state(NR_PAGETABLE),
2018		global_page_state(NR_BOUNCE));
2019
2020	for_each_populated_zone(zone) {
2021		int i;
2022
2023		show_node(zone);
2024		printk("%s"
2025			" free:%lukB"
2026			" min:%lukB"
2027			" low:%lukB"
2028			" high:%lukB"
2029			" active_anon:%lukB"
2030			" inactive_anon:%lukB"
2031			" active_file:%lukB"
2032			" inactive_file:%lukB"
2033#ifdef CONFIG_UNEVICTABLE_LRU
2034			" unevictable:%lukB"
2035#endif
2036			" present:%lukB"
2037			" pages_scanned:%lu"
2038			" all_unreclaimable? %s"
2039			"\n",
2040			zone->name,
2041			K(zone_page_state(zone, NR_FREE_PAGES)),
2042			K(zone->pages_min),
2043			K(zone->pages_low),
2044			K(zone->pages_high),
2045			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2046			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2047			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2048			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2049#ifdef CONFIG_UNEVICTABLE_LRU
2050			K(zone_page_state(zone, NR_UNEVICTABLE)),
2051#endif
2052			K(zone->present_pages),
2053			zone->pages_scanned,
2054			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2055			);
2056		printk("lowmem_reserve[]:");
2057		for (i = 0; i < MAX_NR_ZONES; i++)
2058			printk(" %lu", zone->lowmem_reserve[i]);
2059		printk("\n");
2060	}
2061
2062	for_each_populated_zone(zone) {
2063 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2064
2065		show_node(zone);
2066		printk("%s: ", zone->name);
2067
2068		spin_lock_irqsave(&zone->lock, flags);
2069		for (order = 0; order < MAX_ORDER; order++) {
2070			nr[order] = zone->free_area[order].nr_free;
2071			total += nr[order] << order;
2072		}
2073		spin_unlock_irqrestore(&zone->lock, flags);
2074		for (order = 0; order < MAX_ORDER; order++)
2075			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2076		printk("= %lukB\n", K(total));
2077	}
2078
2079	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2080
2081	show_swap_cache_info();
2082}
2083
2084static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2085{
2086	zoneref->zone = zone;
2087	zoneref->zone_idx = zone_idx(zone);
2088}
2089
2090/*
2091 * Builds allocation fallback zone lists.
2092 *
2093 * Add all populated zones of a node to the zonelist.
2094 */
2095static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2096				int nr_zones, enum zone_type zone_type)
2097{
2098	struct zone *zone;
2099
2100	BUG_ON(zone_type >= MAX_NR_ZONES);
2101	zone_type++;
2102
2103	do {
2104		zone_type--;
2105		zone = pgdat->node_zones + zone_type;
2106		if (populated_zone(zone)) {
2107			zoneref_set_zone(zone,
2108				&zonelist->_zonerefs[nr_zones++]);
2109			check_highest_zone(zone_type);
2110		}
2111
2112	} while (zone_type);
2113	return nr_zones;
2114}
2115
2116
2117/*
2118 *  zonelist_order:
2119 *  0 = automatic detection of better ordering.
2120 *  1 = order by ([node] distance, -zonetype)
2121 *  2 = order by (-zonetype, [node] distance)
2122 *
2123 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2124 *  the same zonelist. So only NUMA can configure this param.
2125 */
2126#define ZONELIST_ORDER_DEFAULT  0
2127#define ZONELIST_ORDER_NODE     1
2128#define ZONELIST_ORDER_ZONE     2
2129
2130/* zonelist order in the kernel.
2131 * set_zonelist_order() will set this to NODE or ZONE.
2132 */
2133static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2134static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2135
2136
2137#ifdef CONFIG_NUMA
2138/* The value user specified ....changed by config */
2139static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2140/* string for sysctl */
2141#define NUMA_ZONELIST_ORDER_LEN	16
2142char numa_zonelist_order[16] = "default";
2143
2144/*
2145 * interface for configure zonelist ordering.
2146 * command line option "numa_zonelist_order"
2147 *	= "[dD]efault	- default, automatic configuration.
2148 *	= "[nN]ode 	- order by node locality, then by zone within node
2149 *	= "[zZ]one      - order by zone, then by locality within zone
2150 */
2151
2152static int __parse_numa_zonelist_order(char *s)
2153{
2154	if (*s == 'd' || *s == 'D') {
2155		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2156	} else if (*s == 'n' || *s == 'N') {
2157		user_zonelist_order = ZONELIST_ORDER_NODE;
2158	} else if (*s == 'z' || *s == 'Z') {
2159		user_zonelist_order = ZONELIST_ORDER_ZONE;
2160	} else {
2161		printk(KERN_WARNING
2162			"Ignoring invalid numa_zonelist_order value:  "
2163			"%s\n", s);
2164		return -EINVAL;
2165	}
2166	return 0;
2167}
2168
2169static __init int setup_numa_zonelist_order(char *s)
2170{
2171	if (s)
2172		return __parse_numa_zonelist_order(s);
2173	return 0;
2174}
2175early_param("numa_zonelist_order", setup_numa_zonelist_order);
2176
2177/*
2178 * sysctl handler for numa_zonelist_order
2179 */
2180int numa_zonelist_order_handler(ctl_table *table, int write,
2181		struct file *file, void __user *buffer, size_t *length,
2182		loff_t *ppos)
2183{
2184	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2185	int ret;
2186
2187	if (write)
2188		strncpy(saved_string, (char*)table->data,
2189			NUMA_ZONELIST_ORDER_LEN);
2190	ret = proc_dostring(table, write, file, buffer, length, ppos);
2191	if (ret)
2192		return ret;
2193	if (write) {
2194		int oldval = user_zonelist_order;
2195		if (__parse_numa_zonelist_order((char*)table->data)) {
2196			/*
2197			 * bogus value.  restore saved string
2198			 */
2199			strncpy((char*)table->data, saved_string,
2200				NUMA_ZONELIST_ORDER_LEN);
2201			user_zonelist_order = oldval;
2202		} else if (oldval != user_zonelist_order)
2203			build_all_zonelists();
2204	}
2205	return 0;
2206}
2207
2208
2209#define MAX_NODE_LOAD (num_online_nodes())
2210static int node_load[MAX_NUMNODES];
2211
2212/**
2213 * find_next_best_node - find the next node that should appear in a given node's fallback list
2214 * @node: node whose fallback list we're appending
2215 * @used_node_mask: nodemask_t of already used nodes
2216 *
2217 * We use a number of factors to determine which is the next node that should
2218 * appear on a given node's fallback list.  The node should not have appeared
2219 * already in @node's fallback list, and it should be the next closest node
2220 * according to the distance array (which contains arbitrary distance values
2221 * from each node to each node in the system), and should also prefer nodes
2222 * with no CPUs, since presumably they'll have very little allocation pressure
2223 * on them otherwise.
2224 * It returns -1 if no node is found.
2225 */
2226static int find_next_best_node(int node, nodemask_t *used_node_mask)
2227{
2228	int n, val;
2229	int min_val = INT_MAX;
2230	int best_node = -1;
2231	const struct cpumask *tmp = cpumask_of_node(0);
2232
2233	/* Use the local node if we haven't already */
2234	if (!node_isset(node, *used_node_mask)) {
2235		node_set(node, *used_node_mask);
2236		return node;
2237	}
2238
2239	for_each_node_state(n, N_HIGH_MEMORY) {
2240
2241		/* Don't want a node to appear more than once */
2242		if (node_isset(n, *used_node_mask))
2243			continue;
2244
2245		/* Use the distance array to find the distance */
2246		val = node_distance(node, n);
2247
2248		/* Penalize nodes under us ("prefer the next node") */
2249		val += (n < node);
2250
2251		/* Give preference to headless and unused nodes */
2252		tmp = cpumask_of_node(n);
2253		if (!cpumask_empty(tmp))
2254			val += PENALTY_FOR_NODE_WITH_CPUS;
2255
2256		/* Slight preference for less loaded node */
2257		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2258		val += node_load[n];
2259
2260		if (val < min_val) {
2261			min_val = val;
2262			best_node = n;
2263		}
2264	}
2265
2266	if (best_node >= 0)
2267		node_set(best_node, *used_node_mask);
2268
2269	return best_node;
2270}
2271
2272
2273/*
2274 * Build zonelists ordered by node and zones within node.
2275 * This results in maximum locality--normal zone overflows into local
2276 * DMA zone, if any--but risks exhausting DMA zone.
2277 */
2278static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2279{
2280	int j;
2281	struct zonelist *zonelist;
2282
2283	zonelist = &pgdat->node_zonelists[0];
2284	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2285		;
2286	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2287							MAX_NR_ZONES - 1);
2288	zonelist->_zonerefs[j].zone = NULL;
2289	zonelist->_zonerefs[j].zone_idx = 0;
2290}
2291
2292/*
2293 * Build gfp_thisnode zonelists
2294 */
2295static void build_thisnode_zonelists(pg_data_t *pgdat)
2296{
2297	int j;
2298	struct zonelist *zonelist;
2299
2300	zonelist = &pgdat->node_zonelists[1];
2301	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2302	zonelist->_zonerefs[j].zone = NULL;
2303	zonelist->_zonerefs[j].zone_idx = 0;
2304}
2305
2306/*
2307 * Build zonelists ordered by zone and nodes within zones.
2308 * This results in conserving DMA zone[s] until all Normal memory is
2309 * exhausted, but results in overflowing to remote node while memory
2310 * may still exist in local DMA zone.
2311 */
2312static int node_order[MAX_NUMNODES];
2313
2314static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2315{
2316	int pos, j, node;
2317	int zone_type;		/* needs to be signed */
2318	struct zone *z;
2319	struct zonelist *zonelist;
2320
2321	zonelist = &pgdat->node_zonelists[0];
2322	pos = 0;
2323	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2324		for (j = 0; j < nr_nodes; j++) {
2325			node = node_order[j];
2326			z = &NODE_DATA(node)->node_zones[zone_type];
2327			if (populated_zone(z)) {
2328				zoneref_set_zone(z,
2329					&zonelist->_zonerefs[pos++]);
2330				check_highest_zone(zone_type);
2331			}
2332		}
2333	}
2334	zonelist->_zonerefs[pos].zone = NULL;
2335	zonelist->_zonerefs[pos].zone_idx = 0;
2336}
2337
2338static int default_zonelist_order(void)
2339{
2340	int nid, zone_type;
2341	unsigned long low_kmem_size,total_size;
2342	struct zone *z;
2343	int average_size;
2344	/*
2345         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2346	 * If they are really small and used heavily, the system can fall
2347	 * into OOM very easily.
2348	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2349	 */
2350	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2351	low_kmem_size = 0;
2352	total_size = 0;
2353	for_each_online_node(nid) {
2354		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2355			z = &NODE_DATA(nid)->node_zones[zone_type];
2356			if (populated_zone(z)) {
2357				if (zone_type < ZONE_NORMAL)
2358					low_kmem_size += z->present_pages;
2359				total_size += z->present_pages;
2360			}
2361		}
2362	}
2363	if (!low_kmem_size ||  /* there are no DMA area. */
2364	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2365		return ZONELIST_ORDER_NODE;
2366	/*
2367	 * look into each node's config.
2368  	 * If there is a node whose DMA/DMA32 memory is very big area on
2369 	 * local memory, NODE_ORDER may be suitable.
2370         */
2371	average_size = total_size /
2372				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2373	for_each_online_node(nid) {
2374		low_kmem_size = 0;
2375		total_size = 0;
2376		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2377			z = &NODE_DATA(nid)->node_zones[zone_type];
2378			if (populated_zone(z)) {
2379				if (zone_type < ZONE_NORMAL)
2380					low_kmem_size += z->present_pages;
2381				total_size += z->present_pages;
2382			}
2383		}
2384		if (low_kmem_size &&
2385		    total_size > average_size && /* ignore small node */
2386		    low_kmem_size > total_size * 70/100)
2387			return ZONELIST_ORDER_NODE;
2388	}
2389	return ZONELIST_ORDER_ZONE;
2390}
2391
2392static void set_zonelist_order(void)
2393{
2394	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2395		current_zonelist_order = default_zonelist_order();
2396	else
2397		current_zonelist_order = user_zonelist_order;
2398}
2399
2400static void build_zonelists(pg_data_t *pgdat)
2401{
2402	int j, node, load;
2403	enum zone_type i;
2404	nodemask_t used_mask;
2405	int local_node, prev_node;
2406	struct zonelist *zonelist;
2407	int order = current_zonelist_order;
2408
2409	/* initialize zonelists */
2410	for (i = 0; i < MAX_ZONELISTS; i++) {
2411		zonelist = pgdat->node_zonelists + i;
2412		zonelist->_zonerefs[0].zone = NULL;
2413		zonelist->_zonerefs[0].zone_idx = 0;
2414	}
2415
2416	/* NUMA-aware ordering of nodes */
2417	local_node = pgdat->node_id;
2418	load = num_online_nodes();
2419	prev_node = local_node;
2420	nodes_clear(used_mask);
2421
2422	memset(node_load, 0, sizeof(node_load));
2423	memset(node_order, 0, sizeof(node_order));
2424	j = 0;
2425
2426	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2427		int distance = node_distance(local_node, node);
2428
2429		/*
2430		 * If another node is sufficiently far away then it is better
2431		 * to reclaim pages in a zone before going off node.
2432		 */
2433		if (distance > RECLAIM_DISTANCE)
2434			zone_reclaim_mode = 1;
2435
2436		/*
2437		 * We don't want to pressure a particular node.
2438		 * So adding penalty to the first node in same
2439		 * distance group to make it round-robin.
2440		 */
2441		if (distance != node_distance(local_node, prev_node))
2442			node_load[node] = load;
2443
2444		prev_node = node;
2445		load--;
2446		if (order == ZONELIST_ORDER_NODE)
2447			build_zonelists_in_node_order(pgdat, node);
2448		else
2449			node_order[j++] = node;	/* remember order */
2450	}
2451
2452	if (order == ZONELIST_ORDER_ZONE) {
2453		/* calculate node order -- i.e., DMA last! */
2454		build_zonelists_in_zone_order(pgdat, j);
2455	}
2456
2457	build_thisnode_zonelists(pgdat);
2458}
2459
2460/* Construct the zonelist performance cache - see further mmzone.h */
2461static void build_zonelist_cache(pg_data_t *pgdat)
2462{
2463	struct zonelist *zonelist;
2464	struct zonelist_cache *zlc;
2465	struct zoneref *z;
2466
2467	zonelist = &pgdat->node_zonelists[0];
2468	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2469	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2470	for (z = zonelist->_zonerefs; z->zone; z++)
2471		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2472}
2473
2474
2475#else	/* CONFIG_NUMA */
2476
2477static void set_zonelist_order(void)
2478{
2479	current_zonelist_order = ZONELIST_ORDER_ZONE;
2480}
2481
2482static void build_zonelists(pg_data_t *pgdat)
2483{
2484	int node, local_node;
2485	enum zone_type j;
2486	struct zonelist *zonelist;
2487
2488	local_node = pgdat->node_id;
2489
2490	zonelist = &pgdat->node_zonelists[0];
2491	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2492
2493	/*
2494	 * Now we build the zonelist so that it contains the zones
2495	 * of all the other nodes.
2496	 * We don't want to pressure a particular node, so when
2497	 * building the zones for node N, we make sure that the
2498	 * zones coming right after the local ones are those from
2499	 * node N+1 (modulo N)
2500	 */
2501	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2502		if (!node_online(node))
2503			continue;
2504		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2505							MAX_NR_ZONES - 1);
2506	}
2507	for (node = 0; node < local_node; node++) {
2508		if (!node_online(node))
2509			continue;
2510		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2511							MAX_NR_ZONES - 1);
2512	}
2513
2514	zonelist->_zonerefs[j].zone = NULL;
2515	zonelist->_zonerefs[j].zone_idx = 0;
2516}
2517
2518/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2519static void build_zonelist_cache(pg_data_t *pgdat)
2520{
2521	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2522}
2523
2524#endif	/* CONFIG_NUMA */
2525
2526/* return values int ....just for stop_machine() */
2527static int __build_all_zonelists(void *dummy)
2528{
2529	int nid;
2530
2531	for_each_online_node(nid) {
2532		pg_data_t *pgdat = NODE_DATA(nid);
2533
2534		build_zonelists(pgdat);
2535		build_zonelist_cache(pgdat);
2536	}
2537	return 0;
2538}
2539
2540void build_all_zonelists(void)
2541{
2542	set_zonelist_order();
2543
2544	if (system_state == SYSTEM_BOOTING) {
2545		__build_all_zonelists(NULL);
2546		mminit_verify_zonelist();
2547		cpuset_init_current_mems_allowed();
2548	} else {
2549		/* we have to stop all cpus to guarantee there is no user
2550		   of zonelist */
2551		stop_machine(__build_all_zonelists, NULL, NULL);
2552		/* cpuset refresh routine should be here */
2553	}
2554	vm_total_pages = nr_free_pagecache_pages();
2555	/*
2556	 * Disable grouping by mobility if the number of pages in the
2557	 * system is too low to allow the mechanism to work. It would be
2558	 * more accurate, but expensive to check per-zone. This check is
2559	 * made on memory-hotadd so a system can start with mobility
2560	 * disabled and enable it later
2561	 */
2562	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2563		page_group_by_mobility_disabled = 1;
2564	else
2565		page_group_by_mobility_disabled = 0;
2566
2567	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2568		"Total pages: %ld\n",
2569			num_online_nodes(),
2570			zonelist_order_name[current_zonelist_order],
2571			page_group_by_mobility_disabled ? "off" : "on",
2572			vm_total_pages);
2573#ifdef CONFIG_NUMA
2574	printk("Policy zone: %s\n", zone_names[policy_zone]);
2575#endif
2576}
2577
2578/*
2579 * Helper functions to size the waitqueue hash table.
2580 * Essentially these want to choose hash table sizes sufficiently
2581 * large so that collisions trying to wait on pages are rare.
2582 * But in fact, the number of active page waitqueues on typical
2583 * systems is ridiculously low, less than 200. So this is even
2584 * conservative, even though it seems large.
2585 *
2586 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2587 * waitqueues, i.e. the size of the waitq table given the number of pages.
2588 */
2589#define PAGES_PER_WAITQUEUE	256
2590
2591#ifndef CONFIG_MEMORY_HOTPLUG
2592static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2593{
2594	unsigned long size = 1;
2595
2596	pages /= PAGES_PER_WAITQUEUE;
2597
2598	while (size < pages)
2599		size <<= 1;
2600
2601	/*
2602	 * Once we have dozens or even hundreds of threads sleeping
2603	 * on IO we've got bigger problems than wait queue collision.
2604	 * Limit the size of the wait table to a reasonable size.
2605	 */
2606	size = min(size, 4096UL);
2607
2608	return max(size, 4UL);
2609}
2610#else
2611/*
2612 * A zone's size might be changed by hot-add, so it is not possible to determine
2613 * a suitable size for its wait_table.  So we use the maximum size now.
2614 *
2615 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2616 *
2617 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2618 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2619 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2620 *
2621 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2622 * or more by the traditional way. (See above).  It equals:
2623 *
2624 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2625 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2626 *    powerpc (64K page size)             : =  (32G +16M)byte.
2627 */
2628static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2629{
2630	return 4096UL;
2631}
2632#endif
2633
2634/*
2635 * This is an integer logarithm so that shifts can be used later
2636 * to extract the more random high bits from the multiplicative
2637 * hash function before the remainder is taken.
2638 */
2639static inline unsigned long wait_table_bits(unsigned long size)
2640{
2641	return ffz(~size);
2642}
2643
2644#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2645
2646/*
2647 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2648 * of blocks reserved is based on zone->pages_min. The memory within the
2649 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2650 * higher will lead to a bigger reserve which will get freed as contiguous
2651 * blocks as reclaim kicks in
2652 */
2653static void setup_zone_migrate_reserve(struct zone *zone)
2654{
2655	unsigned long start_pfn, pfn, end_pfn;
2656	struct page *page;
2657	unsigned long reserve, block_migratetype;
2658
2659	/* Get the start pfn, end pfn and the number of blocks to reserve */
2660	start_pfn = zone->zone_start_pfn;
2661	end_pfn = start_pfn + zone->spanned_pages;
2662	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2663							pageblock_order;
2664
2665	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2666		if (!pfn_valid(pfn))
2667			continue;
2668		page = pfn_to_page(pfn);
2669
2670		/* Watch out for overlapping nodes */
2671		if (page_to_nid(page) != zone_to_nid(zone))
2672			continue;
2673
2674		/* Blocks with reserved pages will never free, skip them. */
2675		if (PageReserved(page))
2676			continue;
2677
2678		block_migratetype = get_pageblock_migratetype(page);
2679
2680		/* If this block is reserved, account for it */
2681		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2682			reserve--;
2683			continue;
2684		}
2685
2686		/* Suitable for reserving if this block is movable */
2687		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2688			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2689			move_freepages_block(zone, page, MIGRATE_RESERVE);
2690			reserve--;
2691			continue;
2692		}
2693
2694		/*
2695		 * If the reserve is met and this is a previous reserved block,
2696		 * take it back
2697		 */
2698		if (block_migratetype == MIGRATE_RESERVE) {
2699			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2700			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2701		}
2702	}
2703}
2704
2705/*
2706 * Initially all pages are reserved - free ones are freed
2707 * up by free_all_bootmem() once the early boot process is
2708 * done. Non-atomic initialization, single-pass.
2709 */
2710void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2711		unsigned long start_pfn, enum memmap_context context)
2712{
2713	struct page *page;
2714	unsigned long end_pfn = start_pfn + size;
2715	unsigned long pfn;
2716	struct zone *z;
2717
2718	if (highest_memmap_pfn < end_pfn - 1)
2719		highest_memmap_pfn = end_pfn - 1;
2720
2721	z = &NODE_DATA(nid)->node_zones[zone];
2722	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2723		/*
2724		 * There can be holes in boot-time mem_map[]s
2725		 * handed to this function.  They do not
2726		 * exist on hotplugged memory.
2727		 */
2728		if (context == MEMMAP_EARLY) {
2729			if (!early_pfn_valid(pfn))
2730				continue;
2731			if (!early_pfn_in_nid(pfn, nid))
2732				continue;
2733		}
2734		page = pfn_to_page(pfn);
2735		set_page_links(page, zone, nid, pfn);
2736		mminit_verify_page_links(page, zone, nid, pfn);
2737		init_page_count(page);
2738		reset_page_mapcount(page);
2739		SetPageReserved(page);
2740		/*
2741		 * Mark the block movable so that blocks are reserved for
2742		 * movable at startup. This will force kernel allocations
2743		 * to reserve their blocks rather than leaking throughout
2744		 * the address space during boot when many long-lived
2745		 * kernel allocations are made. Later some blocks near
2746		 * the start are marked MIGRATE_RESERVE by
2747		 * setup_zone_migrate_reserve()
2748		 *
2749		 * bitmap is created for zone's valid pfn range. but memmap
2750		 * can be created for invalid pages (for alignment)
2751		 * check here not to call set_pageblock_migratetype() against
2752		 * pfn out of zone.
2753		 */
2754		if ((z->zone_start_pfn <= pfn)
2755		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2756		    && !(pfn & (pageblock_nr_pages - 1)))
2757			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2758
2759		INIT_LIST_HEAD(&page->lru);
2760#ifdef WANT_PAGE_VIRTUAL
2761		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2762		if (!is_highmem_idx(zone))
2763			set_page_address(page, __va(pfn << PAGE_SHIFT));
2764#endif
2765	}
2766}
2767
2768static void __meminit zone_init_free_lists(struct zone *zone)
2769{
2770	int order, t;
2771	for_each_migratetype_order(order, t) {
2772		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2773		zone->free_area[order].nr_free = 0;
2774	}
2775}
2776
2777#ifndef __HAVE_ARCH_MEMMAP_INIT
2778#define memmap_init(size, nid, zone, start_pfn) \
2779	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2780#endif
2781
2782static int zone_batchsize(struct zone *zone)
2783{
2784#ifdef CONFIG_MMU
2785	int batch;
2786
2787	/*
2788	 * The per-cpu-pages pools are set to around 1000th of the
2789	 * size of the zone.  But no more than 1/2 of a meg.
2790	 *
2791	 * OK, so we don't know how big the cache is.  So guess.
2792	 */
2793	batch = zone->present_pages / 1024;
2794	if (batch * PAGE_SIZE > 512 * 1024)
2795		batch = (512 * 1024) / PAGE_SIZE;
2796	batch /= 4;		/* We effectively *= 4 below */
2797	if (batch < 1)
2798		batch = 1;
2799
2800	/*
2801	 * Clamp the batch to a 2^n - 1 value. Having a power
2802	 * of 2 value was found to be more likely to have
2803	 * suboptimal cache aliasing properties in some cases.
2804	 *
2805	 * For example if 2 tasks are alternately allocating
2806	 * batches of pages, one task can end up with a lot
2807	 * of pages of one half of the possible page colors
2808	 * and the other with pages of the other colors.
2809	 */
2810	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2811
2812	return batch;
2813
2814#else
2815	/* The deferral and batching of frees should be suppressed under NOMMU
2816	 * conditions.
2817	 *
2818	 * The problem is that NOMMU needs to be able to allocate large chunks
2819	 * of contiguous memory as there's no hardware page translation to
2820	 * assemble apparent contiguous memory from discontiguous pages.
2821	 *
2822	 * Queueing large contiguous runs of pages for batching, however,
2823	 * causes the pages to actually be freed in smaller chunks.  As there
2824	 * can be a significant delay between the individual batches being
2825	 * recycled, this leads to the once large chunks of space being
2826	 * fragmented and becoming unavailable for high-order allocations.
2827	 */
2828	return 0;
2829#endif
2830}
2831
2832static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2833{
2834	struct per_cpu_pages *pcp;
2835
2836	memset(p, 0, sizeof(*p));
2837
2838	pcp = &p->pcp;
2839	pcp->count = 0;
2840	pcp->high = 6 * batch;
2841	pcp->batch = max(1UL, 1 * batch);
2842	INIT_LIST_HEAD(&pcp->list);
2843}
2844
2845/*
2846 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2847 * to the value high for the pageset p.
2848 */
2849
2850static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2851				unsigned long high)
2852{
2853	struct per_cpu_pages *pcp;
2854
2855	pcp = &p->pcp;
2856	pcp->high = high;
2857	pcp->batch = max(1UL, high/4);
2858	if ((high/4) > (PAGE_SHIFT * 8))
2859		pcp->batch = PAGE_SHIFT * 8;
2860}
2861
2862
2863#ifdef CONFIG_NUMA
2864/*
2865 * Boot pageset table. One per cpu which is going to be used for all
2866 * zones and all nodes. The parameters will be set in such a way
2867 * that an item put on a list will immediately be handed over to
2868 * the buddy list. This is safe since pageset manipulation is done
2869 * with interrupts disabled.
2870 *
2871 * Some NUMA counter updates may also be caught by the boot pagesets.
2872 *
2873 * The boot_pagesets must be kept even after bootup is complete for
2874 * unused processors and/or zones. They do play a role for bootstrapping
2875 * hotplugged processors.
2876 *
2877 * zoneinfo_show() and maybe other functions do
2878 * not check if the processor is online before following the pageset pointer.
2879 * Other parts of the kernel may not check if the zone is available.
2880 */
2881static struct per_cpu_pageset boot_pageset[NR_CPUS];
2882
2883/*
2884 * Dynamically allocate memory for the
2885 * per cpu pageset array in struct zone.
2886 */
2887static int __cpuinit process_zones(int cpu)
2888{
2889	struct zone *zone, *dzone;
2890	int node = cpu_to_node(cpu);
2891
2892	node_set_state(node, N_CPU);	/* this node has a cpu */
2893
2894	for_each_populated_zone(zone) {
2895		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2896					 GFP_KERNEL, node);
2897		if (!zone_pcp(zone, cpu))
2898			goto bad;
2899
2900		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2901
2902		if (percpu_pagelist_fraction)
2903			setup_pagelist_highmark(zone_pcp(zone, cpu),
2904			 	(zone->present_pages / percpu_pagelist_fraction));
2905	}
2906
2907	return 0;
2908bad:
2909	for_each_zone(dzone) {
2910		if (!populated_zone(dzone))
2911			continue;
2912		if (dzone == zone)
2913			break;
2914		kfree(zone_pcp(dzone, cpu));
2915		zone_pcp(dzone, cpu) = NULL;
2916	}
2917	return -ENOMEM;
2918}
2919
2920static inline void free_zone_pagesets(int cpu)
2921{
2922	struct zone *zone;
2923
2924	for_each_zone(zone) {
2925		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2926
2927		/* Free per_cpu_pageset if it is slab allocated */
2928		if (pset != &boot_pageset[cpu])
2929			kfree(pset);
2930		zone_pcp(zone, cpu) = NULL;
2931	}
2932}
2933
2934static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2935		unsigned long action,
2936		void *hcpu)
2937{
2938	int cpu = (long)hcpu;
2939	int ret = NOTIFY_OK;
2940
2941	switch (action) {
2942	case CPU_UP_PREPARE:
2943	case CPU_UP_PREPARE_FROZEN:
2944		if (process_zones(cpu))
2945			ret = NOTIFY_BAD;
2946		break;
2947	case CPU_UP_CANCELED:
2948	case CPU_UP_CANCELED_FROZEN:
2949	case CPU_DEAD:
2950	case CPU_DEAD_FROZEN:
2951		free_zone_pagesets(cpu);
2952		break;
2953	default:
2954		break;
2955	}
2956	return ret;
2957}
2958
2959static struct notifier_block __cpuinitdata pageset_notifier =
2960	{ &pageset_cpuup_callback, NULL, 0 };
2961
2962void __init setup_per_cpu_pageset(void)
2963{
2964	int err;
2965
2966	/* Initialize per_cpu_pageset for cpu 0.
2967	 * A cpuup callback will do this for every cpu
2968	 * as it comes online
2969	 */
2970	err = process_zones(smp_processor_id());
2971	BUG_ON(err);
2972	register_cpu_notifier(&pageset_notifier);
2973}
2974
2975#endif
2976
2977static noinline __init_refok
2978int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2979{
2980	int i;
2981	struct pglist_data *pgdat = zone->zone_pgdat;
2982	size_t alloc_size;
2983
2984	/*
2985	 * The per-page waitqueue mechanism uses hashed waitqueues
2986	 * per zone.
2987	 */
2988	zone->wait_table_hash_nr_entries =
2989		 wait_table_hash_nr_entries(zone_size_pages);
2990	zone->wait_table_bits =
2991		wait_table_bits(zone->wait_table_hash_nr_entries);
2992	alloc_size = zone->wait_table_hash_nr_entries
2993					* sizeof(wait_queue_head_t);
2994
2995	if (!slab_is_available()) {
2996		zone->wait_table = (wait_queue_head_t *)
2997			alloc_bootmem_node(pgdat, alloc_size);
2998	} else {
2999		/*
3000		 * This case means that a zone whose size was 0 gets new memory
3001		 * via memory hot-add.
3002		 * But it may be the case that a new node was hot-added.  In
3003		 * this case vmalloc() will not be able to use this new node's
3004		 * memory - this wait_table must be initialized to use this new
3005		 * node itself as well.
3006		 * To use this new node's memory, further consideration will be
3007		 * necessary.
3008		 */
3009		zone->wait_table = vmalloc(alloc_size);
3010	}
3011	if (!zone->wait_table)
3012		return -ENOMEM;
3013
3014	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3015		init_waitqueue_head(zone->wait_table + i);
3016
3017	return 0;
3018}
3019
3020static __meminit void zone_pcp_init(struct zone *zone)
3021{
3022	int cpu;
3023	unsigned long batch = zone_batchsize(zone);
3024
3025	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3026#ifdef CONFIG_NUMA
3027		/* Early boot. Slab allocator not functional yet */
3028		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3029		setup_pageset(&boot_pageset[cpu],0);
3030#else
3031		setup_pageset(zone_pcp(zone,cpu), batch);
3032#endif
3033	}
3034	if (zone->present_pages)
3035		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3036			zone->name, zone->present_pages, batch);
3037}
3038
3039__meminit int init_currently_empty_zone(struct zone *zone,
3040					unsigned long zone_start_pfn,
3041					unsigned long size,
3042					enum memmap_context context)
3043{
3044	struct pglist_data *pgdat = zone->zone_pgdat;
3045	int ret;
3046	ret = zone_wait_table_init(zone, size);
3047	if (ret)
3048		return ret;
3049	pgdat->nr_zones = zone_idx(zone) + 1;
3050
3051	zone->zone_start_pfn = zone_start_pfn;
3052
3053	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3054			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3055			pgdat->node_id,
3056			(unsigned long)zone_idx(zone),
3057			zone_start_pfn, (zone_start_pfn + size));
3058
3059	zone_init_free_lists(zone);
3060
3061	return 0;
3062}
3063
3064#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3065/*
3066 * Basic iterator support. Return the first range of PFNs for a node
3067 * Note: nid == MAX_NUMNODES returns first region regardless of node
3068 */
3069static int __meminit first_active_region_index_in_nid(int nid)
3070{
3071	int i;
3072
3073	for (i = 0; i < nr_nodemap_entries; i++)
3074		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3075			return i;
3076
3077	return -1;
3078}
3079
3080/*
3081 * Basic iterator support. Return the next active range of PFNs for a node
3082 * Note: nid == MAX_NUMNODES returns next region regardless of node
3083 */
3084static int __meminit next_active_region_index_in_nid(int index, int nid)
3085{
3086	for (index = index + 1; index < nr_nodemap_entries; index++)
3087		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3088			return index;
3089
3090	return -1;
3091}
3092
3093#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3094/*
3095 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3096 * Architectures may implement their own version but if add_active_range()
3097 * was used and there are no special requirements, this is a convenient
3098 * alternative
3099 */
3100int __meminit __early_pfn_to_nid(unsigned long pfn)
3101{
3102	int i;
3103
3104	for (i = 0; i < nr_nodemap_entries; i++) {
3105		unsigned long start_pfn = early_node_map[i].start_pfn;
3106		unsigned long end_pfn = early_node_map[i].end_pfn;
3107
3108		if (start_pfn <= pfn && pfn < end_pfn)
3109			return early_node_map[i].nid;
3110	}
3111	/* This is a memory hole */
3112	return -1;
3113}
3114#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3115
3116int __meminit early_pfn_to_nid(unsigned long pfn)
3117{
3118	int nid;
3119
3120	nid = __early_pfn_to_nid(pfn);
3121	if (nid >= 0)
3122		return nid;
3123	/* just returns 0 */
3124	return 0;
3125}
3126
3127#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3128bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3129{
3130	int nid;
3131
3132	nid = __early_pfn_to_nid(pfn);
3133	if (nid >= 0 && nid != node)
3134		return false;
3135	return true;
3136}
3137#endif
3138
3139/* Basic iterator support to walk early_node_map[] */
3140#define for_each_active_range_index_in_nid(i, nid) \
3141	for (i = first_active_region_index_in_nid(nid); i != -1; \
3142				i = next_active_region_index_in_nid(i, nid))
3143
3144/**
3145 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3146 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3147 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3148 *
3149 * If an architecture guarantees that all ranges registered with
3150 * add_active_ranges() contain no holes and may be freed, this
3151 * this function may be used instead of calling free_bootmem() manually.
3152 */
3153void __init free_bootmem_with_active_regions(int nid,
3154						unsigned long max_low_pfn)
3155{
3156	int i;
3157
3158	for_each_active_range_index_in_nid(i, nid) {
3159		unsigned long size_pages = 0;
3160		unsigned long end_pfn = early_node_map[i].end_pfn;
3161
3162		if (early_node_map[i].start_pfn >= max_low_pfn)
3163			continue;
3164
3165		if (end_pfn > max_low_pfn)
3166			end_pfn = max_low_pfn;
3167
3168		size_pages = end_pfn - early_node_map[i].start_pfn;
3169		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3170				PFN_PHYS(early_node_map[i].start_pfn),
3171				size_pages << PAGE_SHIFT);
3172	}
3173}
3174
3175void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3176{
3177	int i;
3178	int ret;
3179
3180	for_each_active_range_index_in_nid(i, nid) {
3181		ret = work_fn(early_node_map[i].start_pfn,
3182			      early_node_map[i].end_pfn, data);
3183		if (ret)
3184			break;
3185	}
3186}
3187/**
3188 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3189 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3190 *
3191 * If an architecture guarantees that all ranges registered with
3192 * add_active_ranges() contain no holes and may be freed, this
3193 * function may be used instead of calling memory_present() manually.
3194 */
3195void __init sparse_memory_present_with_active_regions(int nid)
3196{
3197	int i;
3198
3199	for_each_active_range_index_in_nid(i, nid)
3200		memory_present(early_node_map[i].nid,
3201				early_node_map[i].start_pfn,
3202				early_node_map[i].end_pfn);
3203}
3204
3205/**
3206 * get_pfn_range_for_nid - Return the start and end page frames for a node
3207 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3208 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3209 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3210 *
3211 * It returns the start and end page frame of a node based on information
3212 * provided by an arch calling add_active_range(). If called for a node
3213 * with no available memory, a warning is printed and the start and end
3214 * PFNs will be 0.
3215 */
3216void __meminit get_pfn_range_for_nid(unsigned int nid,
3217			unsigned long *start_pfn, unsigned long *end_pfn)
3218{
3219	int i;
3220	*start_pfn = -1UL;
3221	*end_pfn = 0;
3222
3223	for_each_active_range_index_in_nid(i, nid) {
3224		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3225		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3226	}
3227
3228	if (*start_pfn == -1UL)
3229		*start_pfn = 0;
3230}
3231
3232/*
3233 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3234 * assumption is made that zones within a node are ordered in monotonic
3235 * increasing memory addresses so that the "highest" populated zone is used
3236 */
3237static void __init find_usable_zone_for_movable(void)
3238{
3239	int zone_index;
3240	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3241		if (zone_index == ZONE_MOVABLE)
3242			continue;
3243
3244		if (arch_zone_highest_possible_pfn[zone_index] >
3245				arch_zone_lowest_possible_pfn[zone_index])
3246			break;
3247	}
3248
3249	VM_BUG_ON(zone_index == -1);
3250	movable_zone = zone_index;
3251}
3252
3253/*
3254 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3255 * because it is sized independant of architecture. Unlike the other zones,
3256 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3257 * in each node depending on the size of each node and how evenly kernelcore
3258 * is distributed. This helper function adjusts the zone ranges
3259 * provided by the architecture for a given node by using the end of the
3260 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3261 * zones within a node are in order of monotonic increases memory addresses
3262 */
3263static void __meminit adjust_zone_range_for_zone_movable(int nid,
3264					unsigned long zone_type,
3265					unsigned long node_start_pfn,
3266					unsigned long node_end_pfn,
3267					unsigned long *zone_start_pfn,
3268					unsigned long *zone_end_pfn)
3269{
3270	/* Only adjust if ZONE_MOVABLE is on this node */
3271	if (zone_movable_pfn[nid]) {
3272		/* Size ZONE_MOVABLE */
3273		if (zone_type == ZONE_MOVABLE) {
3274			*zone_start_pfn = zone_movable_pfn[nid];
3275			*zone_end_pfn = min(node_end_pfn,
3276				arch_zone_highest_possible_pfn[movable_zone]);
3277
3278		/* Adjust for ZONE_MOVABLE starting within this range */
3279		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3280				*zone_end_pfn > zone_movable_pfn[nid]) {
3281			*zone_end_pfn = zone_movable_pfn[nid];
3282
3283		/* Check if this whole range is within ZONE_MOVABLE */
3284		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3285			*zone_start_pfn = *zone_end_pfn;
3286	}
3287}
3288
3289/*
3290 * Return the number of pages a zone spans in a node, including holes
3291 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3292 */
3293static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3294					unsigned long zone_type,
3295					unsigned long *ignored)
3296{
3297	unsigned long node_start_pfn, node_end_pfn;
3298	unsigned long zone_start_pfn, zone_end_pfn;
3299
3300	/* Get the start and end of the node and zone */
3301	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3302	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3303	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3304	adjust_zone_range_for_zone_movable(nid, zone_type,
3305				node_start_pfn, node_end_pfn,
3306				&zone_start_pfn, &zone_end_pfn);
3307
3308	/* Check that this node has pages within the zone's required range */
3309	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3310		return 0;
3311
3312	/* Move the zone boundaries inside the node if necessary */
3313	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3314	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3315
3316	/* Return the spanned pages */
3317	return zone_end_pfn - zone_start_pfn;
3318}
3319
3320/*
3321 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3322 * then all holes in the requested range will be accounted for.
3323 */
3324static unsigned long __meminit __absent_pages_in_range(int nid,
3325				unsigned long range_start_pfn,
3326				unsigned long range_end_pfn)
3327{
3328	int i = 0;
3329	unsigned long prev_end_pfn = 0, hole_pages = 0;
3330	unsigned long start_pfn;
3331
3332	/* Find the end_pfn of the first active range of pfns in the node */
3333	i = first_active_region_index_in_nid(nid);
3334	if (i == -1)
3335		return 0;
3336
3337	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3338
3339	/* Account for ranges before physical memory on this node */
3340	if (early_node_map[i].start_pfn > range_start_pfn)
3341		hole_pages = prev_end_pfn - range_start_pfn;
3342
3343	/* Find all holes for the zone within the node */
3344	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3345
3346		/* No need to continue if prev_end_pfn is outside the zone */
3347		if (prev_end_pfn >= range_end_pfn)
3348			break;
3349
3350		/* Make sure the end of the zone is not within the hole */
3351		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3352		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3353
3354		/* Update the hole size cound and move on */
3355		if (start_pfn > range_start_pfn) {
3356			BUG_ON(prev_end_pfn > start_pfn);
3357			hole_pages += start_pfn - prev_end_pfn;
3358		}
3359		prev_end_pfn = early_node_map[i].end_pfn;
3360	}
3361
3362	/* Account for ranges past physical memory on this node */
3363	if (range_end_pfn > prev_end_pfn)
3364		hole_pages += range_end_pfn -
3365				max(range_start_pfn, prev_end_pfn);
3366
3367	return hole_pages;
3368}
3369
3370/**
3371 * absent_pages_in_range - Return number of page frames in holes within a range
3372 * @start_pfn: The start PFN to start searching for holes
3373 * @end_pfn: The end PFN to stop searching for holes
3374 *
3375 * It returns the number of pages frames in memory holes within a range.
3376 */
3377unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3378							unsigned long end_pfn)
3379{
3380	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3381}
3382
3383/* Return the number of page frames in holes in a zone on a node */
3384static unsigned long __meminit zone_absent_pages_in_node(int nid,
3385					unsigned long zone_type,
3386					unsigned long *ignored)
3387{
3388	unsigned long node_start_pfn, node_end_pfn;
3389	unsigned long zone_start_pfn, zone_end_pfn;
3390
3391	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3392	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3393							node_start_pfn);
3394	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3395							node_end_pfn);
3396
3397	adjust_zone_range_for_zone_movable(nid, zone_type,
3398			node_start_pfn, node_end_pfn,
3399			&zone_start_pfn, &zone_end_pfn);
3400	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3401}
3402
3403#else
3404static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3405					unsigned long zone_type,
3406					unsigned long *zones_size)
3407{
3408	return zones_size[zone_type];
3409}
3410
3411static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3412						unsigned long zone_type,
3413						unsigned long *zholes_size)
3414{
3415	if (!zholes_size)
3416		return 0;
3417
3418	return zholes_size[zone_type];
3419}
3420
3421#endif
3422
3423static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3424		unsigned long *zones_size, unsigned long *zholes_size)
3425{
3426	unsigned long realtotalpages, totalpages = 0;
3427	enum zone_type i;
3428
3429	for (i = 0; i < MAX_NR_ZONES; i++)
3430		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3431								zones_size);
3432	pgdat->node_spanned_pages = totalpages;
3433
3434	realtotalpages = totalpages;
3435	for (i = 0; i < MAX_NR_ZONES; i++)
3436		realtotalpages -=
3437			zone_absent_pages_in_node(pgdat->node_id, i,
3438								zholes_size);
3439	pgdat->node_present_pages = realtotalpages;
3440	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3441							realtotalpages);
3442}
3443
3444#ifndef CONFIG_SPARSEMEM
3445/*
3446 * Calculate the size of the zone->blockflags rounded to an unsigned long
3447 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3448 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3449 * round what is now in bits to nearest long in bits, then return it in
3450 * bytes.
3451 */
3452static unsigned long __init usemap_size(unsigned long zonesize)
3453{
3454	unsigned long usemapsize;
3455
3456	usemapsize = roundup(zonesize, pageblock_nr_pages);
3457	usemapsize = usemapsize >> pageblock_order;
3458	usemapsize *= NR_PAGEBLOCK_BITS;
3459	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3460
3461	return usemapsize / 8;
3462}
3463
3464static void __init setup_usemap(struct pglist_data *pgdat,
3465				struct zone *zone, unsigned long zonesize)
3466{
3467	unsigned long usemapsize = usemap_size(zonesize);
3468	zone->pageblock_flags = NULL;
3469	if (usemapsize)
3470		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3471}
3472#else
3473static void inline setup_usemap(struct pglist_data *pgdat,
3474				struct zone *zone, unsigned long zonesize) {}
3475#endif /* CONFIG_SPARSEMEM */
3476
3477#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3478
3479/* Return a sensible default order for the pageblock size. */
3480static inline int pageblock_default_order(void)
3481{
3482	if (HPAGE_SHIFT > PAGE_SHIFT)
3483		return HUGETLB_PAGE_ORDER;
3484
3485	return MAX_ORDER-1;
3486}
3487
3488/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3489static inline void __init set_pageblock_order(unsigned int order)
3490{
3491	/* Check that pageblock_nr_pages has not already been setup */
3492	if (pageblock_order)
3493		return;
3494
3495	/*
3496	 * Assume the largest contiguous order of interest is a huge page.
3497	 * This value may be variable depending on boot parameters on IA64
3498	 */
3499	pageblock_order = order;
3500}
3501#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3502
3503/*
3504 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3505 * and pageblock_default_order() are unused as pageblock_order is set
3506 * at compile-time. See include/linux/pageblock-flags.h for the values of
3507 * pageblock_order based on the kernel config
3508 */
3509static inline int pageblock_default_order(unsigned int order)
3510{
3511	return MAX_ORDER-1;
3512}
3513#define set_pageblock_order(x)	do {} while (0)
3514
3515#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3516
3517/*
3518 * Set up the zone data structures:
3519 *   - mark all pages reserved
3520 *   - mark all memory queues empty
3521 *   - clear the memory bitmaps
3522 */
3523static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3524		unsigned long *zones_size, unsigned long *zholes_size)
3525{
3526	enum zone_type j;
3527	int nid = pgdat->node_id;
3528	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3529	int ret;
3530
3531	pgdat_resize_init(pgdat);
3532	pgdat->nr_zones = 0;
3533	init_waitqueue_head(&pgdat->kswapd_wait);
3534	pgdat->kswapd_max_order = 0;
3535	pgdat_page_cgroup_init(pgdat);
3536
3537	for (j = 0; j < MAX_NR_ZONES; j++) {
3538		struct zone *zone = pgdat->node_zones + j;
3539		unsigned long size, realsize, memmap_pages;
3540		enum lru_list l;
3541
3542		size = zone_spanned_pages_in_node(nid, j, zones_size);
3543		realsize = size - zone_absent_pages_in_node(nid, j,
3544								zholes_size);
3545
3546		/*
3547		 * Adjust realsize so that it accounts for how much memory
3548		 * is used by this zone for memmap. This affects the watermark
3549		 * and per-cpu initialisations
3550		 */
3551		memmap_pages =
3552			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3553		if (realsize >= memmap_pages) {
3554			realsize -= memmap_pages;
3555			if (memmap_pages)
3556				printk(KERN_DEBUG
3557				       "  %s zone: %lu pages used for memmap\n",
3558				       zone_names[j], memmap_pages);
3559		} else
3560			printk(KERN_WARNING
3561				"  %s zone: %lu pages exceeds realsize %lu\n",
3562				zone_names[j], memmap_pages, realsize);
3563
3564		/* Account for reserved pages */
3565		if (j == 0 && realsize > dma_reserve) {
3566			realsize -= dma_reserve;
3567			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3568					zone_names[0], dma_reserve);
3569		}
3570
3571		if (!is_highmem_idx(j))
3572			nr_kernel_pages += realsize;
3573		nr_all_pages += realsize;
3574
3575		zone->spanned_pages = size;
3576		zone->present_pages = realsize;
3577#ifdef CONFIG_NUMA
3578		zone->node = nid;
3579		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3580						/ 100;
3581		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3582#endif
3583		zone->name = zone_names[j];
3584		spin_lock_init(&zone->lock);
3585		spin_lock_init(&zone->lru_lock);
3586		zone_seqlock_init(zone);
3587		zone->zone_pgdat = pgdat;
3588
3589		zone->prev_priority = DEF_PRIORITY;
3590
3591		zone_pcp_init(zone);
3592		for_each_lru(l) {
3593			INIT_LIST_HEAD(&zone->lru[l].list);
3594			zone->lru[l].nr_scan = 0;
3595		}
3596		zone->reclaim_stat.recent_rotated[0] = 0;
3597		zone->reclaim_stat.recent_rotated[1] = 0;
3598		zone->reclaim_stat.recent_scanned[0] = 0;
3599		zone->reclaim_stat.recent_scanned[1] = 0;
3600		zap_zone_vm_stats(zone);
3601		zone->flags = 0;
3602		if (!size)
3603			continue;
3604
3605		set_pageblock_order(pageblock_default_order());
3606		setup_usemap(pgdat, zone, size);
3607		ret = init_currently_empty_zone(zone, zone_start_pfn,
3608						size, MEMMAP_EARLY);
3609		BUG_ON(ret);
3610		memmap_init(size, nid, j, zone_start_pfn);
3611		zone_start_pfn += size;
3612	}
3613}
3614
3615static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3616{
3617	/* Skip empty nodes */
3618	if (!pgdat->node_spanned_pages)
3619		return;
3620
3621#ifdef CONFIG_FLAT_NODE_MEM_MAP
3622	/* ia64 gets its own node_mem_map, before this, without bootmem */
3623	if (!pgdat->node_mem_map) {
3624		unsigned long size, start, end;
3625		struct page *map;
3626
3627		/*
3628		 * The zone's endpoints aren't required to be MAX_ORDER
3629		 * aligned but the node_mem_map endpoints must be in order
3630		 * for the buddy allocator to function correctly.
3631		 */
3632		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3633		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3634		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3635		size =  (end - start) * sizeof(struct page);
3636		map = alloc_remap(pgdat->node_id, size);
3637		if (!map)
3638			map = alloc_bootmem_node(pgdat, size);
3639		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3640	}
3641#ifndef CONFIG_NEED_MULTIPLE_NODES
3642	/*
3643	 * With no DISCONTIG, the global mem_map is just set as node 0's
3644	 */
3645	if (pgdat == NODE_DATA(0)) {
3646		mem_map = NODE_DATA(0)->node_mem_map;
3647#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3648		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3649			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3650#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3651	}
3652#endif
3653#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3654}
3655
3656void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3657		unsigned long node_start_pfn, unsigned long *zholes_size)
3658{
3659	pg_data_t *pgdat = NODE_DATA(nid);
3660
3661	pgdat->node_id = nid;
3662	pgdat->node_start_pfn = node_start_pfn;
3663	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3664
3665	alloc_node_mem_map(pgdat);
3666#ifdef CONFIG_FLAT_NODE_MEM_MAP
3667	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3668		nid, (unsigned long)pgdat,
3669		(unsigned long)pgdat->node_mem_map);
3670#endif
3671
3672	free_area_init_core(pgdat, zones_size, zholes_size);
3673}
3674
3675#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3676
3677#if MAX_NUMNODES > 1
3678/*
3679 * Figure out the number of possible node ids.
3680 */
3681static void __init setup_nr_node_ids(void)
3682{
3683	unsigned int node;
3684	unsigned int highest = 0;
3685
3686	for_each_node_mask(node, node_possible_map)
3687		highest = node;
3688	nr_node_ids = highest + 1;
3689}
3690#else
3691static inline void setup_nr_node_ids(void)
3692{
3693}
3694#endif
3695
3696/**
3697 * add_active_range - Register a range of PFNs backed by physical memory
3698 * @nid: The node ID the range resides on
3699 * @start_pfn: The start PFN of the available physical memory
3700 * @end_pfn: The end PFN of the available physical memory
3701 *
3702 * These ranges are stored in an early_node_map[] and later used by
3703 * free_area_init_nodes() to calculate zone sizes and holes. If the
3704 * range spans a memory hole, it is up to the architecture to ensure
3705 * the memory is not freed by the bootmem allocator. If possible
3706 * the range being registered will be merged with existing ranges.
3707 */
3708void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3709						unsigned long end_pfn)
3710{
3711	int i;
3712
3713	mminit_dprintk(MMINIT_TRACE, "memory_register",
3714			"Entering add_active_range(%d, %#lx, %#lx) "
3715			"%d entries of %d used\n",
3716			nid, start_pfn, end_pfn,
3717			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3718
3719	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3720
3721	/* Merge with existing active regions if possible */
3722	for (i = 0; i < nr_nodemap_entries; i++) {
3723		if (early_node_map[i].nid != nid)
3724			continue;
3725
3726		/* Skip if an existing region covers this new one */
3727		if (start_pfn >= early_node_map[i].start_pfn &&
3728				end_pfn <= early_node_map[i].end_pfn)
3729			return;
3730
3731		/* Merge forward if suitable */
3732		if (start_pfn <= early_node_map[i].end_pfn &&
3733				end_pfn > early_node_map[i].end_pfn) {
3734			early_node_map[i].end_pfn = end_pfn;
3735			return;
3736		}
3737
3738		/* Merge backward if suitable */
3739		if (start_pfn < early_node_map[i].end_pfn &&
3740				end_pfn >= early_node_map[i].start_pfn) {
3741			early_node_map[i].start_pfn = start_pfn;
3742			return;
3743		}
3744	}
3745
3746	/* Check that early_node_map is large enough */
3747	if (i >= MAX_ACTIVE_REGIONS) {
3748		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3749							MAX_ACTIVE_REGIONS);
3750		return;
3751	}
3752
3753	early_node_map[i].nid = nid;
3754	early_node_map[i].start_pfn = start_pfn;
3755	early_node_map[i].end_pfn = end_pfn;
3756	nr_nodemap_entries = i + 1;
3757}
3758
3759/**
3760 * remove_active_range - Shrink an existing registered range of PFNs
3761 * @nid: The node id the range is on that should be shrunk
3762 * @start_pfn: The new PFN of the range
3763 * @end_pfn: The new PFN of the range
3764 *
3765 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3766 * The map is kept near the end physical page range that has already been
3767 * registered. This function allows an arch to shrink an existing registered
3768 * range.
3769 */
3770void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3771				unsigned long end_pfn)
3772{
3773	int i, j;
3774	int removed = 0;
3775
3776	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3777			  nid, start_pfn, end_pfn);
3778
3779	/* Find the old active region end and shrink */
3780	for_each_active_range_index_in_nid(i, nid) {
3781		if (early_node_map[i].start_pfn >= start_pfn &&
3782		    early_node_map[i].end_pfn <= end_pfn) {
3783			/* clear it */
3784			early_node_map[i].start_pfn = 0;
3785			early_node_map[i].end_pfn = 0;
3786			removed = 1;
3787			continue;
3788		}
3789		if (early_node_map[i].start_pfn < start_pfn &&
3790		    early_node_map[i].end_pfn > start_pfn) {
3791			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3792			early_node_map[i].end_pfn = start_pfn;
3793			if (temp_end_pfn > end_pfn)
3794				add_active_range(nid, end_pfn, temp_end_pfn);
3795			continue;
3796		}
3797		if (early_node_map[i].start_pfn >= start_pfn &&
3798		    early_node_map[i].end_pfn > end_pfn &&
3799		    early_node_map[i].start_pfn < end_pfn) {
3800			early_node_map[i].start_pfn = end_pfn;
3801			continue;
3802		}
3803	}
3804
3805	if (!removed)
3806		return;
3807
3808	/* remove the blank ones */
3809	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3810		if (early_node_map[i].nid != nid)
3811			continue;
3812		if (early_node_map[i].end_pfn)
3813			continue;
3814		/* we found it, get rid of it */
3815		for (j = i; j < nr_nodemap_entries - 1; j++)
3816			memcpy(&early_node_map[j], &early_node_map[j+1],
3817				sizeof(early_node_map[j]));
3818		j = nr_nodemap_entries - 1;
3819		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3820		nr_nodemap_entries--;
3821	}
3822}
3823
3824/**
3825 * remove_all_active_ranges - Remove all currently registered regions
3826 *
3827 * During discovery, it may be found that a table like SRAT is invalid
3828 * and an alternative discovery method must be used. This function removes
3829 * all currently registered regions.
3830 */
3831void __init remove_all_active_ranges(void)
3832{
3833	memset(early_node_map, 0, sizeof(early_node_map));
3834	nr_nodemap_entries = 0;
3835}
3836
3837/* Compare two active node_active_regions */
3838static int __init cmp_node_active_region(const void *a, const void *b)
3839{
3840	struct node_active_region *arange = (struct node_active_region *)a;
3841	struct node_active_region *brange = (struct node_active_region *)b;
3842
3843	/* Done this way to avoid overflows */
3844	if (arange->start_pfn > brange->start_pfn)
3845		return 1;
3846	if (arange->start_pfn < brange->start_pfn)
3847		return -1;
3848
3849	return 0;
3850}
3851
3852/* sort the node_map by start_pfn */
3853static void __init sort_node_map(void)
3854{
3855	sort(early_node_map, (size_t)nr_nodemap_entries,
3856			sizeof(struct node_active_region),
3857			cmp_node_active_region, NULL);
3858}
3859
3860/* Find the lowest pfn for a node */
3861static unsigned long __init find_min_pfn_for_node(int nid)
3862{
3863	int i;
3864	unsigned long min_pfn = ULONG_MAX;
3865
3866	/* Assuming a sorted map, the first range found has the starting pfn */
3867	for_each_active_range_index_in_nid(i, nid)
3868		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3869
3870	if (min_pfn == ULONG_MAX) {
3871		printk(KERN_WARNING
3872			"Could not find start_pfn for node %d\n", nid);
3873		return 0;
3874	}
3875
3876	return min_pfn;
3877}
3878
3879/**
3880 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3881 *
3882 * It returns the minimum PFN based on information provided via
3883 * add_active_range().
3884 */
3885unsigned long __init find_min_pfn_with_active_regions(void)
3886{
3887	return find_min_pfn_for_node(MAX_NUMNODES);
3888}
3889
3890/*
3891 * early_calculate_totalpages()
3892 * Sum pages in active regions for movable zone.
3893 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3894 */
3895static unsigned long __init early_calculate_totalpages(void)
3896{
3897	int i;
3898	unsigned long totalpages = 0;
3899
3900	for (i = 0; i < nr_nodemap_entries; i++) {
3901		unsigned long pages = early_node_map[i].end_pfn -
3902						early_node_map[i].start_pfn;
3903		totalpages += pages;
3904		if (pages)
3905			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3906	}
3907  	return totalpages;
3908}
3909
3910/*
3911 * Find the PFN the Movable zone begins in each node. Kernel memory
3912 * is spread evenly between nodes as long as the nodes have enough
3913 * memory. When they don't, some nodes will have more kernelcore than
3914 * others
3915 */
3916static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3917{
3918	int i, nid;
3919	unsigned long usable_startpfn;
3920	unsigned long kernelcore_node, kernelcore_remaining;
3921	unsigned long totalpages = early_calculate_totalpages();
3922	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3923
3924	/*
3925	 * If movablecore was specified, calculate what size of
3926	 * kernelcore that corresponds so that memory usable for
3927	 * any allocation type is evenly spread. If both kernelcore
3928	 * and movablecore are specified, then the value of kernelcore
3929	 * will be used for required_kernelcore if it's greater than
3930	 * what movablecore would have allowed.
3931	 */
3932	if (required_movablecore) {
3933		unsigned long corepages;
3934
3935		/*
3936		 * Round-up so that ZONE_MOVABLE is at least as large as what
3937		 * was requested by the user
3938		 */
3939		required_movablecore =
3940			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3941		corepages = totalpages - required_movablecore;
3942
3943		required_kernelcore = max(required_kernelcore, corepages);
3944	}
3945
3946	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3947	if (!required_kernelcore)
3948		return;
3949
3950	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3951	find_usable_zone_for_movable();
3952	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3953
3954restart:
3955	/* Spread kernelcore memory as evenly as possible throughout nodes */
3956	kernelcore_node = required_kernelcore / usable_nodes;
3957	for_each_node_state(nid, N_HIGH_MEMORY) {
3958		/*
3959		 * Recalculate kernelcore_node if the division per node
3960		 * now exceeds what is necessary to satisfy the requested
3961		 * amount of memory for the kernel
3962		 */
3963		if (required_kernelcore < kernelcore_node)
3964			kernelcore_node = required_kernelcore / usable_nodes;
3965
3966		/*
3967		 * As the map is walked, we track how much memory is usable
3968		 * by the kernel using kernelcore_remaining. When it is
3969		 * 0, the rest of the node is usable by ZONE_MOVABLE
3970		 */
3971		kernelcore_remaining = kernelcore_node;
3972
3973		/* Go through each range of PFNs within this node */
3974		for_each_active_range_index_in_nid(i, nid) {
3975			unsigned long start_pfn, end_pfn;
3976			unsigned long size_pages;
3977
3978			start_pfn = max(early_node_map[i].start_pfn,
3979						zone_movable_pfn[nid]);
3980			end_pfn = early_node_map[i].end_pfn;
3981			if (start_pfn >= end_pfn)
3982				continue;
3983
3984			/* Account for what is only usable for kernelcore */
3985			if (start_pfn < usable_startpfn) {
3986				unsigned long kernel_pages;
3987				kernel_pages = min(end_pfn, usable_startpfn)
3988								- start_pfn;
3989
3990				kernelcore_remaining -= min(kernel_pages,
3991							kernelcore_remaining);
3992				required_kernelcore -= min(kernel_pages,
3993							required_kernelcore);
3994
3995				/* Continue if range is now fully accounted */
3996				if (end_pfn <= usable_startpfn) {
3997
3998					/*
3999					 * Push zone_movable_pfn to the end so
4000					 * that if we have to rebalance
4001					 * kernelcore across nodes, we will
4002					 * not double account here
4003					 */
4004					zone_movable_pfn[nid] = end_pfn;
4005					continue;
4006				}
4007				start_pfn = usable_startpfn;
4008			}
4009
4010			/*
4011			 * The usable PFN range for ZONE_MOVABLE is from
4012			 * start_pfn->end_pfn. Calculate size_pages as the
4013			 * number of pages used as kernelcore
4014			 */
4015			size_pages = end_pfn - start_pfn;
4016			if (size_pages > kernelcore_remaining)
4017				size_pages = kernelcore_remaining;
4018			zone_movable_pfn[nid] = start_pfn + size_pages;
4019
4020			/*
4021			 * Some kernelcore has been met, update counts and
4022			 * break if the kernelcore for this node has been
4023			 * satisified
4024			 */
4025			required_kernelcore -= min(required_kernelcore,
4026								size_pages);
4027			kernelcore_remaining -= size_pages;
4028			if (!kernelcore_remaining)
4029				break;
4030		}
4031	}
4032
4033	/*
4034	 * If there is still required_kernelcore, we do another pass with one
4035	 * less node in the count. This will push zone_movable_pfn[nid] further
4036	 * along on the nodes that still have memory until kernelcore is
4037	 * satisified
4038	 */
4039	usable_nodes--;
4040	if (usable_nodes && required_kernelcore > usable_nodes)
4041		goto restart;
4042
4043	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4044	for (nid = 0; nid < MAX_NUMNODES; nid++)
4045		zone_movable_pfn[nid] =
4046			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4047}
4048
4049/* Any regular memory on that node ? */
4050static void check_for_regular_memory(pg_data_t *pgdat)
4051{
4052#ifdef CONFIG_HIGHMEM
4053	enum zone_type zone_type;
4054
4055	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4056		struct zone *zone = &pgdat->node_zones[zone_type];
4057		if (zone->present_pages)
4058			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4059	}
4060#endif
4061}
4062
4063/**
4064 * free_area_init_nodes - Initialise all pg_data_t and zone data
4065 * @max_zone_pfn: an array of max PFNs for each zone
4066 *
4067 * This will call free_area_init_node() for each active node in the system.
4068 * Using the page ranges provided by add_active_range(), the size of each
4069 * zone in each node and their holes is calculated. If the maximum PFN
4070 * between two adjacent zones match, it is assumed that the zone is empty.
4071 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4072 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4073 * starts where the previous one ended. For example, ZONE_DMA32 starts
4074 * at arch_max_dma_pfn.
4075 */
4076void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4077{
4078	unsigned long nid;
4079	int i;
4080
4081	/* Sort early_node_map as initialisation assumes it is sorted */
4082	sort_node_map();
4083
4084	/* Record where the zone boundaries are */
4085	memset(arch_zone_lowest_possible_pfn, 0,
4086				sizeof(arch_zone_lowest_possible_pfn));
4087	memset(arch_zone_highest_possible_pfn, 0,
4088				sizeof(arch_zone_highest_possible_pfn));
4089	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4090	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4091	for (i = 1; i < MAX_NR_ZONES; i++) {
4092		if (i == ZONE_MOVABLE)
4093			continue;
4094		arch_zone_lowest_possible_pfn[i] =
4095			arch_zone_highest_possible_pfn[i-1];
4096		arch_zone_highest_possible_pfn[i] =
4097			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4098	}
4099	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4100	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4101
4102	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4103	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4104	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4105
4106	/* Print out the zone ranges */
4107	printk("Zone PFN ranges:\n");
4108	for (i = 0; i < MAX_NR_ZONES; i++) {
4109		if (i == ZONE_MOVABLE)
4110			continue;
4111		printk("  %-8s %0#10lx -> %0#10lx\n",
4112				zone_names[i],
4113				arch_zone_lowest_possible_pfn[i],
4114				arch_zone_highest_possible_pfn[i]);
4115	}
4116
4117	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4118	printk("Movable zone start PFN for each node\n");
4119	for (i = 0; i < MAX_NUMNODES; i++) {
4120		if (zone_movable_pfn[i])
4121			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4122	}
4123
4124	/* Print out the early_node_map[] */
4125	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4126	for (i = 0; i < nr_nodemap_entries; i++)
4127		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4128						early_node_map[i].start_pfn,
4129						early_node_map[i].end_pfn);
4130
4131	/* Initialise every node */
4132	mminit_verify_pageflags_layout();
4133	setup_nr_node_ids();
4134	for_each_online_node(nid) {
4135		pg_data_t *pgdat = NODE_DATA(nid);
4136		free_area_init_node(nid, NULL,
4137				find_min_pfn_for_node(nid), NULL);
4138
4139		/* Any memory on that node */
4140		if (pgdat->node_present_pages)
4141			node_set_state(nid, N_HIGH_MEMORY);
4142		check_for_regular_memory(pgdat);
4143	}
4144}
4145
4146static int __init cmdline_parse_core(char *p, unsigned long *core)
4147{
4148	unsigned long long coremem;
4149	if (!p)
4150		return -EINVAL;
4151
4152	coremem = memparse(p, &p);
4153	*core = coremem >> PAGE_SHIFT;
4154
4155	/* Paranoid check that UL is enough for the coremem value */
4156	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4157
4158	return 0;
4159}
4160
4161/*
4162 * kernelcore=size sets the amount of memory for use for allocations that
4163 * cannot be reclaimed or migrated.
4164 */
4165static int __init cmdline_parse_kernelcore(char *p)
4166{
4167	return cmdline_parse_core(p, &required_kernelcore);
4168}
4169
4170/*
4171 * movablecore=size sets the amount of memory for use for allocations that
4172 * can be reclaimed or migrated.
4173 */
4174static int __init cmdline_parse_movablecore(char *p)
4175{
4176	return cmdline_parse_core(p, &required_movablecore);
4177}
4178
4179early_param("kernelcore", cmdline_parse_kernelcore);
4180early_param("movablecore", cmdline_parse_movablecore);
4181
4182#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4183
4184/**
4185 * set_dma_reserve - set the specified number of pages reserved in the first zone
4186 * @new_dma_reserve: The number of pages to mark reserved
4187 *
4188 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4189 * In the DMA zone, a significant percentage may be consumed by kernel image
4190 * and other unfreeable allocations which can skew the watermarks badly. This
4191 * function may optionally be used to account for unfreeable pages in the
4192 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4193 * smaller per-cpu batchsize.
4194 */
4195void __init set_dma_reserve(unsigned long new_dma_reserve)
4196{
4197	dma_reserve = new_dma_reserve;
4198}
4199
4200#ifndef CONFIG_NEED_MULTIPLE_NODES
4201struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4202EXPORT_SYMBOL(contig_page_data);
4203#endif
4204
4205void __init free_area_init(unsigned long *zones_size)
4206{
4207	free_area_init_node(0, zones_size,
4208			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4209}
4210
4211static int page_alloc_cpu_notify(struct notifier_block *self,
4212				 unsigned long action, void *hcpu)
4213{
4214	int cpu = (unsigned long)hcpu;
4215
4216	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4217		drain_pages(cpu);
4218
4219		/*
4220		 * Spill the event counters of the dead processor
4221		 * into the current processors event counters.
4222		 * This artificially elevates the count of the current
4223		 * processor.
4224		 */
4225		vm_events_fold_cpu(cpu);
4226
4227		/*
4228		 * Zero the differential counters of the dead processor
4229		 * so that the vm statistics are consistent.
4230		 *
4231		 * This is only okay since the processor is dead and cannot
4232		 * race with what we are doing.
4233		 */
4234		refresh_cpu_vm_stats(cpu);
4235	}
4236	return NOTIFY_OK;
4237}
4238
4239void __init page_alloc_init(void)
4240{
4241	hotcpu_notifier(page_alloc_cpu_notify, 0);
4242}
4243
4244/*
4245 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4246 *	or min_free_kbytes changes.
4247 */
4248static void calculate_totalreserve_pages(void)
4249{
4250	struct pglist_data *pgdat;
4251	unsigned long reserve_pages = 0;
4252	enum zone_type i, j;
4253
4254	for_each_online_pgdat(pgdat) {
4255		for (i = 0; i < MAX_NR_ZONES; i++) {
4256			struct zone *zone = pgdat->node_zones + i;
4257			unsigned long max = 0;
4258
4259			/* Find valid and maximum lowmem_reserve in the zone */
4260			for (j = i; j < MAX_NR_ZONES; j++) {
4261				if (zone->lowmem_reserve[j] > max)
4262					max = zone->lowmem_reserve[j];
4263			}
4264
4265			/* we treat pages_high as reserved pages. */
4266			max += zone->pages_high;
4267
4268			if (max > zone->present_pages)
4269				max = zone->present_pages;
4270			reserve_pages += max;
4271		}
4272	}
4273	totalreserve_pages = reserve_pages;
4274}
4275
4276/*
4277 * setup_per_zone_lowmem_reserve - called whenever
4278 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4279 *	has a correct pages reserved value, so an adequate number of
4280 *	pages are left in the zone after a successful __alloc_pages().
4281 */
4282static void setup_per_zone_lowmem_reserve(void)
4283{
4284	struct pglist_data *pgdat;
4285	enum zone_type j, idx;
4286
4287	for_each_online_pgdat(pgdat) {
4288		for (j = 0; j < MAX_NR_ZONES; j++) {
4289			struct zone *zone = pgdat->node_zones + j;
4290			unsigned long present_pages = zone->present_pages;
4291
4292			zone->lowmem_reserve[j] = 0;
4293
4294			idx = j;
4295			while (idx) {
4296				struct zone *lower_zone;
4297
4298				idx--;
4299
4300				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4301					sysctl_lowmem_reserve_ratio[idx] = 1;
4302
4303				lower_zone = pgdat->node_zones + idx;
4304				lower_zone->lowmem_reserve[j] = present_pages /
4305					sysctl_lowmem_reserve_ratio[idx];
4306				present_pages += lower_zone->present_pages;
4307			}
4308		}
4309	}
4310
4311	/* update totalreserve_pages */
4312	calculate_totalreserve_pages();
4313}
4314
4315/**
4316 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4317 *
4318 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4319 * with respect to min_free_kbytes.
4320 */
4321void setup_per_zone_pages_min(void)
4322{
4323	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4324	unsigned long lowmem_pages = 0;
4325	struct zone *zone;
4326	unsigned long flags;
4327
4328	/* Calculate total number of !ZONE_HIGHMEM pages */
4329	for_each_zone(zone) {
4330		if (!is_highmem(zone))
4331			lowmem_pages += zone->present_pages;
4332	}
4333
4334	for_each_zone(zone) {
4335		u64 tmp;
4336
4337		spin_lock_irqsave(&zone->lock, flags);
4338		tmp = (u64)pages_min * zone->present_pages;
4339		do_div(tmp, lowmem_pages);
4340		if (is_highmem(zone)) {
4341			/*
4342			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4343			 * need highmem pages, so cap pages_min to a small
4344			 * value here.
4345			 *
4346			 * The (pages_high-pages_low) and (pages_low-pages_min)
4347			 * deltas controls asynch page reclaim, and so should
4348			 * not be capped for highmem.
4349			 */
4350			int min_pages;
4351
4352			min_pages = zone->present_pages / 1024;
4353			if (min_pages < SWAP_CLUSTER_MAX)
4354				min_pages = SWAP_CLUSTER_MAX;
4355			if (min_pages > 128)
4356				min_pages = 128;
4357			zone->pages_min = min_pages;
4358		} else {
4359			/*
4360			 * If it's a lowmem zone, reserve a number of pages
4361			 * proportionate to the zone's size.
4362			 */
4363			zone->pages_min = tmp;
4364		}
4365
4366		zone->pages_low   = zone->pages_min + (tmp >> 2);
4367		zone->pages_high  = zone->pages_min + (tmp >> 1);
4368		setup_zone_migrate_reserve(zone);
4369		spin_unlock_irqrestore(&zone->lock, flags);
4370	}
4371
4372	/* update totalreserve_pages */
4373	calculate_totalreserve_pages();
4374}
4375
4376/**
4377 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4378 *
4379 * The inactive anon list should be small enough that the VM never has to
4380 * do too much work, but large enough that each inactive page has a chance
4381 * to be referenced again before it is swapped out.
4382 *
4383 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4384 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4385 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4386 * the anonymous pages are kept on the inactive list.
4387 *
4388 * total     target    max
4389 * memory    ratio     inactive anon
4390 * -------------------------------------
4391 *   10MB       1         5MB
4392 *  100MB       1        50MB
4393 *    1GB       3       250MB
4394 *   10GB      10       0.9GB
4395 *  100GB      31         3GB
4396 *    1TB     101        10GB
4397 *   10TB     320        32GB
4398 */
4399static void setup_per_zone_inactive_ratio(void)
4400{
4401	struct zone *zone;
4402
4403	for_each_zone(zone) {
4404		unsigned int gb, ratio;
4405
4406		/* Zone size in gigabytes */
4407		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4408		ratio = int_sqrt(10 * gb);
4409		if (!ratio)
4410			ratio = 1;
4411
4412		zone->inactive_ratio = ratio;
4413	}
4414}
4415
4416/*
4417 * Initialise min_free_kbytes.
4418 *
4419 * For small machines we want it small (128k min).  For large machines
4420 * we want it large (64MB max).  But it is not linear, because network
4421 * bandwidth does not increase linearly with machine size.  We use
4422 *
4423 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4424 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4425 *
4426 * which yields
4427 *
4428 * 16MB:	512k
4429 * 32MB:	724k
4430 * 64MB:	1024k
4431 * 128MB:	1448k
4432 * 256MB:	2048k
4433 * 512MB:	2896k
4434 * 1024MB:	4096k
4435 * 2048MB:	5792k
4436 * 4096MB:	8192k
4437 * 8192MB:	11584k
4438 * 16384MB:	16384k
4439 */
4440static int __init init_per_zone_pages_min(void)
4441{
4442	unsigned long lowmem_kbytes;
4443
4444	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4445
4446	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4447	if (min_free_kbytes < 128)
4448		min_free_kbytes = 128;
4449	if (min_free_kbytes > 65536)
4450		min_free_kbytes = 65536;
4451	setup_per_zone_pages_min();
4452	setup_per_zone_lowmem_reserve();
4453	setup_per_zone_inactive_ratio();
4454	return 0;
4455}
4456module_init(init_per_zone_pages_min)
4457
4458/*
4459 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4460 *	that we can call two helper functions whenever min_free_kbytes
4461 *	changes.
4462 */
4463int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4464	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4465{
4466	proc_dointvec(table, write, file, buffer, length, ppos);
4467	if (write)
4468		setup_per_zone_pages_min();
4469	return 0;
4470}
4471
4472#ifdef CONFIG_NUMA
4473int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4474	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4475{
4476	struct zone *zone;
4477	int rc;
4478
4479	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4480	if (rc)
4481		return rc;
4482
4483	for_each_zone(zone)
4484		zone->min_unmapped_pages = (zone->present_pages *
4485				sysctl_min_unmapped_ratio) / 100;
4486	return 0;
4487}
4488
4489int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4490	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4491{
4492	struct zone *zone;
4493	int rc;
4494
4495	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4496	if (rc)
4497		return rc;
4498
4499	for_each_zone(zone)
4500		zone->min_slab_pages = (zone->present_pages *
4501				sysctl_min_slab_ratio) / 100;
4502	return 0;
4503}
4504#endif
4505
4506/*
4507 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4508 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4509 *	whenever sysctl_lowmem_reserve_ratio changes.
4510 *
4511 * The reserve ratio obviously has absolutely no relation with the
4512 * pages_min watermarks. The lowmem reserve ratio can only make sense
4513 * if in function of the boot time zone sizes.
4514 */
4515int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4516	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4517{
4518	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4519	setup_per_zone_lowmem_reserve();
4520	return 0;
4521}
4522
4523/*
4524 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4525 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4526 * can have before it gets flushed back to buddy allocator.
4527 */
4528
4529int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4530	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4531{
4532	struct zone *zone;
4533	unsigned int cpu;
4534	int ret;
4535
4536	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4537	if (!write || (ret == -EINVAL))
4538		return ret;
4539	for_each_zone(zone) {
4540		for_each_online_cpu(cpu) {
4541			unsigned long  high;
4542			high = zone->present_pages / percpu_pagelist_fraction;
4543			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4544		}
4545	}
4546	return 0;
4547}
4548
4549int hashdist = HASHDIST_DEFAULT;
4550
4551#ifdef CONFIG_NUMA
4552static int __init set_hashdist(char *str)
4553{
4554	if (!str)
4555		return 0;
4556	hashdist = simple_strtoul(str, &str, 0);
4557	return 1;
4558}
4559__setup("hashdist=", set_hashdist);
4560#endif
4561
4562/*
4563 * allocate a large system hash table from bootmem
4564 * - it is assumed that the hash table must contain an exact power-of-2
4565 *   quantity of entries
4566 * - limit is the number of hash buckets, not the total allocation size
4567 */
4568void *__init alloc_large_system_hash(const char *tablename,
4569				     unsigned long bucketsize,
4570				     unsigned long numentries,
4571				     int scale,
4572				     int flags,
4573				     unsigned int *_hash_shift,
4574				     unsigned int *_hash_mask,
4575				     unsigned long limit)
4576{
4577	unsigned long long max = limit;
4578	unsigned long log2qty, size;
4579	void *table = NULL;
4580
4581	/* allow the kernel cmdline to have a say */
4582	if (!numentries) {
4583		/* round applicable memory size up to nearest megabyte */
4584		numentries = nr_kernel_pages;
4585		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4586		numentries >>= 20 - PAGE_SHIFT;
4587		numentries <<= 20 - PAGE_SHIFT;
4588
4589		/* limit to 1 bucket per 2^scale bytes of low memory */
4590		if (scale > PAGE_SHIFT)
4591			numentries >>= (scale - PAGE_SHIFT);
4592		else
4593			numentries <<= (PAGE_SHIFT - scale);
4594
4595		/* Make sure we've got at least a 0-order allocation.. */
4596		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4597			numentries = PAGE_SIZE / bucketsize;
4598	}
4599	numentries = roundup_pow_of_two(numentries);
4600
4601	/* limit allocation size to 1/16 total memory by default */
4602	if (max == 0) {
4603		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4604		do_div(max, bucketsize);
4605	}
4606
4607	if (numentries > max)
4608		numentries = max;
4609
4610	log2qty = ilog2(numentries);
4611
4612	do {
4613		size = bucketsize << log2qty;
4614		if (flags & HASH_EARLY)
4615			table = alloc_bootmem_nopanic(size);
4616		else if (hashdist)
4617			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4618		else {
4619			unsigned long order = get_order(size);
4620
4621			if (order < MAX_ORDER)
4622				table = (void *)__get_free_pages(GFP_ATOMIC,
4623								order);
4624			/*
4625			 * If bucketsize is not a power-of-two, we may free
4626			 * some pages at the end of hash table.
4627			 */
4628			if (table) {
4629				unsigned long alloc_end = (unsigned long)table +
4630						(PAGE_SIZE << order);
4631				unsigned long used = (unsigned long)table +
4632						PAGE_ALIGN(size);
4633				split_page(virt_to_page(table), order);
4634				while (used < alloc_end) {
4635					free_page(used);
4636					used += PAGE_SIZE;
4637				}
4638			}
4639		}
4640	} while (!table && size > PAGE_SIZE && --log2qty);
4641
4642	if (!table)
4643		panic("Failed to allocate %s hash table\n", tablename);
4644
4645	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4646	       tablename,
4647	       (1U << log2qty),
4648	       ilog2(size) - PAGE_SHIFT,
4649	       size);
4650
4651	if (_hash_shift)
4652		*_hash_shift = log2qty;
4653	if (_hash_mask)
4654		*_hash_mask = (1 << log2qty) - 1;
4655
4656	/*
4657	 * If hashdist is set, the table allocation is done with __vmalloc()
4658	 * which invokes the kmemleak_alloc() callback. This function may also
4659	 * be called before the slab and kmemleak are initialised when
4660	 * kmemleak simply buffers the request to be executed later
4661	 * (GFP_ATOMIC flag ignored in this case).
4662	 */
4663	if (!hashdist)
4664		kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4665
4666	return table;
4667}
4668
4669/* Return a pointer to the bitmap storing bits affecting a block of pages */
4670static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4671							unsigned long pfn)
4672{
4673#ifdef CONFIG_SPARSEMEM
4674	return __pfn_to_section(pfn)->pageblock_flags;
4675#else
4676	return zone->pageblock_flags;
4677#endif /* CONFIG_SPARSEMEM */
4678}
4679
4680static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4681{
4682#ifdef CONFIG_SPARSEMEM
4683	pfn &= (PAGES_PER_SECTION-1);
4684	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4685#else
4686	pfn = pfn - zone->zone_start_pfn;
4687	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4688#endif /* CONFIG_SPARSEMEM */
4689}
4690
4691/**
4692 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4693 * @page: The page within the block of interest
4694 * @start_bitidx: The first bit of interest to retrieve
4695 * @end_bitidx: The last bit of interest
4696 * returns pageblock_bits flags
4697 */
4698unsigned long get_pageblock_flags_group(struct page *page,
4699					int start_bitidx, int end_bitidx)
4700{
4701	struct zone *zone;
4702	unsigned long *bitmap;
4703	unsigned long pfn, bitidx;
4704	unsigned long flags = 0;
4705	unsigned long value = 1;
4706
4707	zone = page_zone(page);
4708	pfn = page_to_pfn(page);
4709	bitmap = get_pageblock_bitmap(zone, pfn);
4710	bitidx = pfn_to_bitidx(zone, pfn);
4711
4712	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4713		if (test_bit(bitidx + start_bitidx, bitmap))
4714			flags |= value;
4715
4716	return flags;
4717}
4718
4719/**
4720 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4721 * @page: The page within the block of interest
4722 * @start_bitidx: The first bit of interest
4723 * @end_bitidx: The last bit of interest
4724 * @flags: The flags to set
4725 */
4726void set_pageblock_flags_group(struct page *page, unsigned long flags,
4727					int start_bitidx, int end_bitidx)
4728{
4729	struct zone *zone;
4730	unsigned long *bitmap;
4731	unsigned long pfn, bitidx;
4732	unsigned long value = 1;
4733
4734	zone = page_zone(page);
4735	pfn = page_to_pfn(page);
4736	bitmap = get_pageblock_bitmap(zone, pfn);
4737	bitidx = pfn_to_bitidx(zone, pfn);
4738	VM_BUG_ON(pfn < zone->zone_start_pfn);
4739	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4740
4741	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4742		if (flags & value)
4743			__set_bit(bitidx + start_bitidx, bitmap);
4744		else
4745			__clear_bit(bitidx + start_bitidx, bitmap);
4746}
4747
4748/*
4749 * This is designed as sub function...plz see page_isolation.c also.
4750 * set/clear page block's type to be ISOLATE.
4751 * page allocater never alloc memory from ISOLATE block.
4752 */
4753
4754int set_migratetype_isolate(struct page *page)
4755{
4756	struct zone *zone;
4757	unsigned long flags;
4758	int ret = -EBUSY;
4759
4760	zone = page_zone(page);
4761	spin_lock_irqsave(&zone->lock, flags);
4762	/*
4763	 * In future, more migrate types will be able to be isolation target.
4764	 */
4765	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4766		goto out;
4767	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4768	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4769	ret = 0;
4770out:
4771	spin_unlock_irqrestore(&zone->lock, flags);
4772	if (!ret)
4773		drain_all_pages();
4774	return ret;
4775}
4776
4777void unset_migratetype_isolate(struct page *page)
4778{
4779	struct zone *zone;
4780	unsigned long flags;
4781	zone = page_zone(page);
4782	spin_lock_irqsave(&zone->lock, flags);
4783	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4784		goto out;
4785	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4786	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4787out:
4788	spin_unlock_irqrestore(&zone->lock, flags);
4789}
4790
4791#ifdef CONFIG_MEMORY_HOTREMOVE
4792/*
4793 * All pages in the range must be isolated before calling this.
4794 */
4795void
4796__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4797{
4798	struct page *page;
4799	struct zone *zone;
4800	int order, i;
4801	unsigned long pfn;
4802	unsigned long flags;
4803	/* find the first valid pfn */
4804	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4805		if (pfn_valid(pfn))
4806			break;
4807	if (pfn == end_pfn)
4808		return;
4809	zone = page_zone(pfn_to_page(pfn));
4810	spin_lock_irqsave(&zone->lock, flags);
4811	pfn = start_pfn;
4812	while (pfn < end_pfn) {
4813		if (!pfn_valid(pfn)) {
4814			pfn++;
4815			continue;
4816		}
4817		page = pfn_to_page(pfn);
4818		BUG_ON(page_count(page));
4819		BUG_ON(!PageBuddy(page));
4820		order = page_order(page);
4821#ifdef CONFIG_DEBUG_VM
4822		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4823		       pfn, 1 << order, end_pfn);
4824#endif
4825		list_del(&page->lru);
4826		rmv_page_order(page);
4827		zone->free_area[order].nr_free--;
4828		__mod_zone_page_state(zone, NR_FREE_PAGES,
4829				      - (1UL << order));
4830		for (i = 0; i < (1 << order); i++)
4831			SetPageReserved((page+i));
4832		pfn += (1 << order);
4833	}
4834	spin_unlock_irqrestore(&zone->lock, flags);
4835}
4836#endif
4837