page_alloc.c revision 12b1c5f382194d3f656e78fb5c9c8f2bfbe8ed8a
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/nodemask.h>
36#include <linux/vmalloc.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45nodemask_t node_online_map = { { [0] = 1UL } };
46EXPORT_SYMBOL(node_online_map);
47nodemask_t node_possible_map = NODE_MASK_ALL;
48EXPORT_SYMBOL(node_possible_map);
49struct pglist_data *pgdat_list;
50unsigned long totalram_pages;
51unsigned long totalhigh_pages;
52long nr_swap_pages;
53
54/*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 *	1G machine -> (16M dma, 784M normal, 224M high)
58 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64EXPORT_SYMBOL(totalram_pages);
65EXPORT_SYMBOL(nr_swap_pages);
66
67/*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71struct zone *zone_table[1 << ZONETABLE_SHIFT];
72EXPORT_SYMBOL(zone_table);
73
74static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75int min_free_kbytes = 1024;
76
77unsigned long __initdata nr_kernel_pages;
78unsigned long __initdata nr_all_pages;
79
80/*
81 * Temporary debugging check for pages not lying within a given zone.
82 */
83static int bad_range(struct zone *zone, struct page *page)
84{
85	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86		return 1;
87	if (page_to_pfn(page) < zone->zone_start_pfn)
88		return 1;
89#ifdef CONFIG_HOLES_IN_ZONE
90	if (!pfn_valid(page_to_pfn(page)))
91		return 1;
92#endif
93	if (zone != page_zone(page))
94		return 1;
95	return 0;
96}
97
98static void bad_page(const char *function, struct page *page)
99{
100	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101		function, current->comm, page);
102	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104		page->mapping, page_mapcount(page), page_count(page));
105	printk(KERN_EMERG "Backtrace:\n");
106	dump_stack();
107	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108	page->flags &= ~(1 << PG_lru	|
109			1 << PG_private |
110			1 << PG_locked	|
111			1 << PG_active	|
112			1 << PG_dirty	|
113			1 << PG_reclaim |
114			1 << PG_slab    |
115			1 << PG_swapcache |
116			1 << PG_writeback);
117	set_page_count(page, 0);
118	reset_page_mapcount(page);
119	page->mapping = NULL;
120	tainted |= TAINT_BAD_PAGE;
121}
122
123#ifndef CONFIG_HUGETLB_PAGE
124#define prep_compound_page(page, order) do { } while (0)
125#define destroy_compound_page(page, order) do { } while (0)
126#else
127/*
128 * Higher-order pages are called "compound pages".  They are structured thusly:
129 *
130 * The first PAGE_SIZE page is called the "head page".
131 *
132 * The remaining PAGE_SIZE pages are called "tail pages".
133 *
134 * All pages have PG_compound set.  All pages have their ->private pointing at
135 * the head page (even the head page has this).
136 *
137 * The first tail page's ->mapping, if non-zero, holds the address of the
138 * compound page's put_page() function.
139 *
140 * The order of the allocation is stored in the first tail page's ->index
141 * This is only for debug at present.  This usage means that zero-order pages
142 * may not be compound.
143 */
144static void prep_compound_page(struct page *page, unsigned long order)
145{
146	int i;
147	int nr_pages = 1 << order;
148
149	page[1].mapping = NULL;
150	page[1].index = order;
151	for (i = 0; i < nr_pages; i++) {
152		struct page *p = page + i;
153
154		SetPageCompound(p);
155		p->private = (unsigned long)page;
156	}
157}
158
159static void destroy_compound_page(struct page *page, unsigned long order)
160{
161	int i;
162	int nr_pages = 1 << order;
163
164	if (!PageCompound(page))
165		return;
166
167	if (page[1].index != order)
168		bad_page(__FUNCTION__, page);
169
170	for (i = 0; i < nr_pages; i++) {
171		struct page *p = page + i;
172
173		if (!PageCompound(p))
174			bad_page(__FUNCTION__, page);
175		if (p->private != (unsigned long)page)
176			bad_page(__FUNCTION__, page);
177		ClearPageCompound(p);
178	}
179}
180#endif		/* CONFIG_HUGETLB_PAGE */
181
182/*
183 * function for dealing with page's order in buddy system.
184 * zone->lock is already acquired when we use these.
185 * So, we don't need atomic page->flags operations here.
186 */
187static inline unsigned long page_order(struct page *page) {
188	return page->private;
189}
190
191static inline void set_page_order(struct page *page, int order) {
192	page->private = order;
193	__SetPagePrivate(page);
194}
195
196static inline void rmv_page_order(struct page *page)
197{
198	__ClearPagePrivate(page);
199	page->private = 0;
200}
201
202/*
203 * Locate the struct page for both the matching buddy in our
204 * pair (buddy1) and the combined O(n+1) page they form (page).
205 *
206 * 1) Any buddy B1 will have an order O twin B2 which satisfies
207 * the following equation:
208 *     B2 = B1 ^ (1 << O)
209 * For example, if the starting buddy (buddy2) is #8 its order
210 * 1 buddy is #10:
211 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
212 *
213 * 2) Any buddy B will have an order O+1 parent P which
214 * satisfies the following equation:
215 *     P = B & ~(1 << O)
216 *
217 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
218 */
219static inline struct page *
220__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
221{
222	unsigned long buddy_idx = page_idx ^ (1 << order);
223
224	return page + (buddy_idx - page_idx);
225}
226
227static inline unsigned long
228__find_combined_index(unsigned long page_idx, unsigned int order)
229{
230	return (page_idx & ~(1 << order));
231}
232
233/*
234 * This function checks whether a page is free && is the buddy
235 * we can do coalesce a page and its buddy if
236 * (a) the buddy is free &&
237 * (b) the buddy is on the buddy system &&
238 * (c) a page and its buddy have the same order.
239 * for recording page's order, we use page->private and PG_private.
240 *
241 */
242static inline int page_is_buddy(struct page *page, int order)
243{
244       if (PagePrivate(page)           &&
245           (page_order(page) == order) &&
246           !PageReserved(page)         &&
247            page_count(page) == 0)
248               return 1;
249       return 0;
250}
251
252/*
253 * Freeing function for a buddy system allocator.
254 *
255 * The concept of a buddy system is to maintain direct-mapped table
256 * (containing bit values) for memory blocks of various "orders".
257 * The bottom level table contains the map for the smallest allocatable
258 * units of memory (here, pages), and each level above it describes
259 * pairs of units from the levels below, hence, "buddies".
260 * At a high level, all that happens here is marking the table entry
261 * at the bottom level available, and propagating the changes upward
262 * as necessary, plus some accounting needed to play nicely with other
263 * parts of the VM system.
264 * At each level, we keep a list of pages, which are heads of continuous
265 * free pages of length of (1 << order) and marked with PG_Private.Page's
266 * order is recorded in page->private field.
267 * So when we are allocating or freeing one, we can derive the state of the
268 * other.  That is, if we allocate a small block, and both were
269 * free, the remainder of the region must be split into blocks.
270 * If a block is freed, and its buddy is also free, then this
271 * triggers coalescing into a block of larger size.
272 *
273 * -- wli
274 */
275
276static inline void __free_pages_bulk (struct page *page,
277		struct zone *zone, unsigned int order)
278{
279	unsigned long page_idx;
280	int order_size = 1 << order;
281
282	if (unlikely(order))
283		destroy_compound_page(page, order);
284
285	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
286
287	BUG_ON(page_idx & (order_size - 1));
288	BUG_ON(bad_range(zone, page));
289
290	zone->free_pages += order_size;
291	while (order < MAX_ORDER-1) {
292		unsigned long combined_idx;
293		struct free_area *area;
294		struct page *buddy;
295
296		combined_idx = __find_combined_index(page_idx, order);
297		buddy = __page_find_buddy(page, page_idx, order);
298
299		if (bad_range(zone, buddy))
300			break;
301		if (!page_is_buddy(buddy, order))
302			break;		/* Move the buddy up one level. */
303		list_del(&buddy->lru);
304		area = zone->free_area + order;
305		area->nr_free--;
306		rmv_page_order(buddy);
307		page = page + (combined_idx - page_idx);
308		page_idx = combined_idx;
309		order++;
310	}
311	set_page_order(page, order);
312	list_add(&page->lru, &zone->free_area[order].free_list);
313	zone->free_area[order].nr_free++;
314}
315
316static inline void free_pages_check(const char *function, struct page *page)
317{
318	if (	page_mapcount(page) ||
319		page->mapping != NULL ||
320		page_count(page) != 0 ||
321		(page->flags & (
322			1 << PG_lru	|
323			1 << PG_private |
324			1 << PG_locked	|
325			1 << PG_active	|
326			1 << PG_reclaim	|
327			1 << PG_slab	|
328			1 << PG_swapcache |
329			1 << PG_writeback )))
330		bad_page(function, page);
331	if (PageDirty(page))
332		ClearPageDirty(page);
333}
334
335/*
336 * Frees a list of pages.
337 * Assumes all pages on list are in same zone, and of same order.
338 * count is the number of pages to free, or 0 for all on the list.
339 *
340 * If the zone was previously in an "all pages pinned" state then look to
341 * see if this freeing clears that state.
342 *
343 * And clear the zone's pages_scanned counter, to hold off the "all pages are
344 * pinned" detection logic.
345 */
346static int
347free_pages_bulk(struct zone *zone, int count,
348		struct list_head *list, unsigned int order)
349{
350	unsigned long flags;
351	struct page *page = NULL;
352	int ret = 0;
353
354	spin_lock_irqsave(&zone->lock, flags);
355	zone->all_unreclaimable = 0;
356	zone->pages_scanned = 0;
357	while (!list_empty(list) && count--) {
358		page = list_entry(list->prev, struct page, lru);
359		/* have to delete it as __free_pages_bulk list manipulates */
360		list_del(&page->lru);
361		__free_pages_bulk(page, zone, order);
362		ret++;
363	}
364	spin_unlock_irqrestore(&zone->lock, flags);
365	return ret;
366}
367
368void __free_pages_ok(struct page *page, unsigned int order)
369{
370	LIST_HEAD(list);
371	int i;
372
373	arch_free_page(page, order);
374
375	mod_page_state(pgfree, 1 << order);
376
377#ifndef CONFIG_MMU
378	if (order > 0)
379		for (i = 1 ; i < (1 << order) ; ++i)
380			__put_page(page + i);
381#endif
382
383	for (i = 0 ; i < (1 << order) ; ++i)
384		free_pages_check(__FUNCTION__, page + i);
385	list_add(&page->lru, &list);
386	kernel_map_pages(page, 1<<order, 0);
387	free_pages_bulk(page_zone(page), 1, &list, order);
388}
389
390
391/*
392 * The order of subdivision here is critical for the IO subsystem.
393 * Please do not alter this order without good reasons and regression
394 * testing. Specifically, as large blocks of memory are subdivided,
395 * the order in which smaller blocks are delivered depends on the order
396 * they're subdivided in this function. This is the primary factor
397 * influencing the order in which pages are delivered to the IO
398 * subsystem according to empirical testing, and this is also justified
399 * by considering the behavior of a buddy system containing a single
400 * large block of memory acted on by a series of small allocations.
401 * This behavior is a critical factor in sglist merging's success.
402 *
403 * -- wli
404 */
405static inline struct page *
406expand(struct zone *zone, struct page *page,
407 	int low, int high, struct free_area *area)
408{
409	unsigned long size = 1 << high;
410
411	while (high > low) {
412		area--;
413		high--;
414		size >>= 1;
415		BUG_ON(bad_range(zone, &page[size]));
416		list_add(&page[size].lru, &area->free_list);
417		area->nr_free++;
418		set_page_order(&page[size], high);
419	}
420	return page;
421}
422
423void set_page_refs(struct page *page, int order)
424{
425#ifdef CONFIG_MMU
426	set_page_count(page, 1);
427#else
428	int i;
429
430	/*
431	 * We need to reference all the pages for this order, otherwise if
432	 * anyone accesses one of the pages with (get/put) it will be freed.
433	 * - eg: access_process_vm()
434	 */
435	for (i = 0; i < (1 << order); i++)
436		set_page_count(page + i, 1);
437#endif /* CONFIG_MMU */
438}
439
440/*
441 * This page is about to be returned from the page allocator
442 */
443static void prep_new_page(struct page *page, int order)
444{
445	if (	page_mapcount(page) ||
446		page->mapping != NULL ||
447		page_count(page) != 0 ||
448		(page->flags & (
449			1 << PG_lru	|
450			1 << PG_private	|
451			1 << PG_locked	|
452			1 << PG_active	|
453			1 << PG_dirty	|
454			1 << PG_reclaim	|
455			1 << PG_slab    |
456			1 << PG_swapcache |
457			1 << PG_writeback )))
458		bad_page(__FUNCTION__, page);
459
460	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461			1 << PG_referenced | 1 << PG_arch_1 |
462			1 << PG_checked | 1 << PG_mappedtodisk);
463	page->private = 0;
464	set_page_refs(page, order);
465	kernel_map_pages(page, 1 << order, 1);
466}
467
468/*
469 * Do the hard work of removing an element from the buddy allocator.
470 * Call me with the zone->lock already held.
471 */
472static struct page *__rmqueue(struct zone *zone, unsigned int order)
473{
474	struct free_area * area;
475	unsigned int current_order;
476	struct page *page;
477
478	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479		area = zone->free_area + current_order;
480		if (list_empty(&area->free_list))
481			continue;
482
483		page = list_entry(area->free_list.next, struct page, lru);
484		list_del(&page->lru);
485		rmv_page_order(page);
486		area->nr_free--;
487		zone->free_pages -= 1UL << order;
488		return expand(zone, page, order, current_order, area);
489	}
490
491	return NULL;
492}
493
494/*
495 * Obtain a specified number of elements from the buddy allocator, all under
496 * a single hold of the lock, for efficiency.  Add them to the supplied list.
497 * Returns the number of new pages which were placed at *list.
498 */
499static int rmqueue_bulk(struct zone *zone, unsigned int order,
500			unsigned long count, struct list_head *list)
501{
502	unsigned long flags;
503	int i;
504	int allocated = 0;
505	struct page *page;
506
507	spin_lock_irqsave(&zone->lock, flags);
508	for (i = 0; i < count; ++i) {
509		page = __rmqueue(zone, order);
510		if (page == NULL)
511			break;
512		allocated++;
513		list_add_tail(&page->lru, list);
514	}
515	spin_unlock_irqrestore(&zone->lock, flags);
516	return allocated;
517}
518
519#ifdef CONFIG_NUMA
520/* Called from the slab reaper to drain remote pagesets */
521void drain_remote_pages(void)
522{
523	struct zone *zone;
524	int i;
525	unsigned long flags;
526
527	local_irq_save(flags);
528	for_each_zone(zone) {
529		struct per_cpu_pageset *pset;
530
531		/* Do not drain local pagesets */
532		if (zone->zone_pgdat->node_id == numa_node_id())
533			continue;
534
535		pset = zone->pageset[smp_processor_id()];
536		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537			struct per_cpu_pages *pcp;
538
539			pcp = &pset->pcp[i];
540			if (pcp->count)
541				pcp->count -= free_pages_bulk(zone, pcp->count,
542						&pcp->list, 0);
543		}
544	}
545	local_irq_restore(flags);
546}
547#endif
548
549#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550static void __drain_pages(unsigned int cpu)
551{
552	struct zone *zone;
553	int i;
554
555	for_each_zone(zone) {
556		struct per_cpu_pageset *pset;
557
558		pset = zone_pcp(zone, cpu);
559		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560			struct per_cpu_pages *pcp;
561
562			pcp = &pset->pcp[i];
563			pcp->count -= free_pages_bulk(zone, pcp->count,
564						&pcp->list, 0);
565		}
566	}
567}
568#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
569
570#ifdef CONFIG_PM
571
572void mark_free_pages(struct zone *zone)
573{
574	unsigned long zone_pfn, flags;
575	int order;
576	struct list_head *curr;
577
578	if (!zone->spanned_pages)
579		return;
580
581	spin_lock_irqsave(&zone->lock, flags);
582	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
584
585	for (order = MAX_ORDER - 1; order >= 0; --order)
586		list_for_each(curr, &zone->free_area[order].free_list) {
587			unsigned long start_pfn, i;
588
589			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
590
591			for (i=0; i < (1<<order); i++)
592				SetPageNosaveFree(pfn_to_page(start_pfn+i));
593	}
594	spin_unlock_irqrestore(&zone->lock, flags);
595}
596
597/*
598 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
599 */
600void drain_local_pages(void)
601{
602	unsigned long flags;
603
604	local_irq_save(flags);
605	__drain_pages(smp_processor_id());
606	local_irq_restore(flags);
607}
608#endif /* CONFIG_PM */
609
610static void zone_statistics(struct zonelist *zonelist, struct zone *z)
611{
612#ifdef CONFIG_NUMA
613	unsigned long flags;
614	int cpu;
615	pg_data_t *pg = z->zone_pgdat;
616	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617	struct per_cpu_pageset *p;
618
619	local_irq_save(flags);
620	cpu = smp_processor_id();
621	p = zone_pcp(z,cpu);
622	if (pg == orig) {
623		p->numa_hit++;
624	} else {
625		p->numa_miss++;
626		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
627	}
628	if (pg == NODE_DATA(numa_node_id()))
629		p->local_node++;
630	else
631		p->other_node++;
632	local_irq_restore(flags);
633#endif
634}
635
636/*
637 * Free a 0-order page
638 */
639static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640static void fastcall free_hot_cold_page(struct page *page, int cold)
641{
642	struct zone *zone = page_zone(page);
643	struct per_cpu_pages *pcp;
644	unsigned long flags;
645
646	arch_free_page(page, 0);
647
648	kernel_map_pages(page, 1, 0);
649	inc_page_state(pgfree);
650	if (PageAnon(page))
651		page->mapping = NULL;
652	free_pages_check(__FUNCTION__, page);
653	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654	local_irq_save(flags);
655	list_add(&page->lru, &pcp->list);
656	pcp->count++;
657	if (pcp->count >= pcp->high)
658		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659	local_irq_restore(flags);
660	put_cpu();
661}
662
663void fastcall free_hot_page(struct page *page)
664{
665	free_hot_cold_page(page, 0);
666}
667
668void fastcall free_cold_page(struct page *page)
669{
670	free_hot_cold_page(page, 1);
671}
672
673static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
674{
675	int i;
676
677	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678	for(i = 0; i < (1 << order); i++)
679		clear_highpage(page + i);
680}
681
682/*
683 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
684 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
685 * or two.
686 */
687static struct page *
688buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
689{
690	unsigned long flags;
691	struct page *page = NULL;
692	int cold = !!(gfp_flags & __GFP_COLD);
693
694	if (order == 0) {
695		struct per_cpu_pages *pcp;
696
697		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698		local_irq_save(flags);
699		if (pcp->count <= pcp->low)
700			pcp->count += rmqueue_bulk(zone, 0,
701						pcp->batch, &pcp->list);
702		if (pcp->count) {
703			page = list_entry(pcp->list.next, struct page, lru);
704			list_del(&page->lru);
705			pcp->count--;
706		}
707		local_irq_restore(flags);
708		put_cpu();
709	}
710
711	if (page == NULL) {
712		spin_lock_irqsave(&zone->lock, flags);
713		page = __rmqueue(zone, order);
714		spin_unlock_irqrestore(&zone->lock, flags);
715	}
716
717	if (page != NULL) {
718		BUG_ON(bad_range(zone, page));
719		mod_page_state_zone(zone, pgalloc, 1 << order);
720		prep_new_page(page, order);
721
722		if (gfp_flags & __GFP_ZERO)
723			prep_zero_page(page, order, gfp_flags);
724
725		if (order && (gfp_flags & __GFP_COMP))
726			prep_compound_page(page, order);
727	}
728	return page;
729}
730
731/*
732 * Return 1 if free pages are above 'mark'. This takes into account the order
733 * of the allocation.
734 */
735int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736		      int classzone_idx, int can_try_harder, int gfp_high)
737{
738	/* free_pages my go negative - that's OK */
739	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
740	int o;
741
742	if (gfp_high)
743		min -= min / 2;
744	if (can_try_harder)
745		min -= min / 4;
746
747	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
748		return 0;
749	for (o = 0; o < order; o++) {
750		/* At the next order, this order's pages become unavailable */
751		free_pages -= z->free_area[o].nr_free << o;
752
753		/* Require fewer higher order pages to be free */
754		min >>= 1;
755
756		if (free_pages <= min)
757			return 0;
758	}
759	return 1;
760}
761
762static inline int
763should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
764{
765	if (!z->reclaim_pages)
766		return 0;
767	if (gfp_mask & __GFP_NORECLAIM)
768		return 0;
769	return 1;
770}
771
772/*
773 * This is the 'heart' of the zoned buddy allocator.
774 */
775struct page * fastcall
776__alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777		struct zonelist *zonelist)
778{
779	const int wait = gfp_mask & __GFP_WAIT;
780	struct zone **zones, *z;
781	struct page *page;
782	struct reclaim_state reclaim_state;
783	struct task_struct *p = current;
784	int i;
785	int classzone_idx;
786	int do_retry;
787	int can_try_harder;
788	int did_some_progress;
789
790	might_sleep_if(wait);
791
792	/*
793	 * The caller may dip into page reserves a bit more if the caller
794	 * cannot run direct reclaim, or is the caller has realtime scheduling
795	 * policy
796	 */
797	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
798
799	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
800
801	if (unlikely(zones[0] == NULL)) {
802		/* Should this ever happen?? */
803		return NULL;
804	}
805
806	classzone_idx = zone_idx(zones[0]);
807
808restart:
809	/* Go through the zonelist once, looking for a zone with enough free */
810	for (i = 0; (z = zones[i]) != NULL; i++) {
811		int do_reclaim = should_reclaim_zone(z, gfp_mask);
812
813		if (!cpuset_zone_allowed(z))
814			continue;
815
816		/*
817		 * If the zone is to attempt early page reclaim then this loop
818		 * will try to reclaim pages and check the watermark a second
819		 * time before giving up and falling back to the next zone.
820		 */
821zone_reclaim_retry:
822		if (!zone_watermark_ok(z, order, z->pages_low,
823				       classzone_idx, 0, 0)) {
824			if (!do_reclaim)
825				continue;
826			else {
827				zone_reclaim(z, gfp_mask, order);
828				/* Only try reclaim once */
829				do_reclaim = 0;
830				goto zone_reclaim_retry;
831			}
832		}
833
834		page = buffered_rmqueue(z, order, gfp_mask);
835		if (page)
836			goto got_pg;
837	}
838
839	for (i = 0; (z = zones[i]) != NULL; i++)
840		wakeup_kswapd(z, order);
841
842	/*
843	 * Go through the zonelist again. Let __GFP_HIGH and allocations
844	 * coming from realtime tasks to go deeper into reserves
845	 *
846	 * This is the last chance, in general, before the goto nopage.
847	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
848	 */
849	for (i = 0; (z = zones[i]) != NULL; i++) {
850		if (!zone_watermark_ok(z, order, z->pages_min,
851				       classzone_idx, can_try_harder,
852				       gfp_mask & __GFP_HIGH))
853			continue;
854
855		if (wait && !cpuset_zone_allowed(z))
856			continue;
857
858		page = buffered_rmqueue(z, order, gfp_mask);
859		if (page)
860			goto got_pg;
861	}
862
863	/* This allocation should allow future memory freeing. */
864
865	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
866			&& !in_interrupt()) {
867		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
868			/* go through the zonelist yet again, ignoring mins */
869			for (i = 0; (z = zones[i]) != NULL; i++) {
870				if (!cpuset_zone_allowed(z))
871					continue;
872				page = buffered_rmqueue(z, order, gfp_mask);
873				if (page)
874					goto got_pg;
875			}
876		}
877		goto nopage;
878	}
879
880	/* Atomic allocations - we can't balance anything */
881	if (!wait)
882		goto nopage;
883
884rebalance:
885	cond_resched();
886
887	/* We now go into synchronous reclaim */
888	p->flags |= PF_MEMALLOC;
889	reclaim_state.reclaimed_slab = 0;
890	p->reclaim_state = &reclaim_state;
891
892	did_some_progress = try_to_free_pages(zones, gfp_mask);
893
894	p->reclaim_state = NULL;
895	p->flags &= ~PF_MEMALLOC;
896
897	cond_resched();
898
899	if (likely(did_some_progress)) {
900		for (i = 0; (z = zones[i]) != NULL; i++) {
901			if (!zone_watermark_ok(z, order, z->pages_min,
902					       classzone_idx, can_try_harder,
903					       gfp_mask & __GFP_HIGH))
904				continue;
905
906			if (!cpuset_zone_allowed(z))
907				continue;
908
909			page = buffered_rmqueue(z, order, gfp_mask);
910			if (page)
911				goto got_pg;
912		}
913	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
914		/*
915		 * Go through the zonelist yet one more time, keep
916		 * very high watermark here, this is only to catch
917		 * a parallel oom killing, we must fail if we're still
918		 * under heavy pressure.
919		 */
920		for (i = 0; (z = zones[i]) != NULL; i++) {
921			if (!zone_watermark_ok(z, order, z->pages_high,
922					       classzone_idx, 0, 0))
923				continue;
924
925			if (!cpuset_zone_allowed(z))
926				continue;
927
928			page = buffered_rmqueue(z, order, gfp_mask);
929			if (page)
930				goto got_pg;
931		}
932
933		out_of_memory(gfp_mask, order);
934		goto restart;
935	}
936
937	/*
938	 * Don't let big-order allocations loop unless the caller explicitly
939	 * requests that.  Wait for some write requests to complete then retry.
940	 *
941	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
942	 * <= 3, but that may not be true in other implementations.
943	 */
944	do_retry = 0;
945	if (!(gfp_mask & __GFP_NORETRY)) {
946		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
947			do_retry = 1;
948		if (gfp_mask & __GFP_NOFAIL)
949			do_retry = 1;
950	}
951	if (do_retry) {
952		blk_congestion_wait(WRITE, HZ/50);
953		goto rebalance;
954	}
955
956nopage:
957	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
958		printk(KERN_WARNING "%s: page allocation failure."
959			" order:%d, mode:0x%x\n",
960			p->comm, order, gfp_mask);
961		dump_stack();
962		show_mem();
963	}
964	return NULL;
965got_pg:
966	zone_statistics(zonelist, z);
967	return page;
968}
969
970EXPORT_SYMBOL(__alloc_pages);
971
972/*
973 * Common helper functions.
974 */
975fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
976{
977	struct page * page;
978	page = alloc_pages(gfp_mask, order);
979	if (!page)
980		return 0;
981	return (unsigned long) page_address(page);
982}
983
984EXPORT_SYMBOL(__get_free_pages);
985
986fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
987{
988	struct page * page;
989
990	/*
991	 * get_zeroed_page() returns a 32-bit address, which cannot represent
992	 * a highmem page
993	 */
994	BUG_ON(gfp_mask & __GFP_HIGHMEM);
995
996	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
997	if (page)
998		return (unsigned long) page_address(page);
999	return 0;
1000}
1001
1002EXPORT_SYMBOL(get_zeroed_page);
1003
1004void __pagevec_free(struct pagevec *pvec)
1005{
1006	int i = pagevec_count(pvec);
1007
1008	while (--i >= 0)
1009		free_hot_cold_page(pvec->pages[i], pvec->cold);
1010}
1011
1012fastcall void __free_pages(struct page *page, unsigned int order)
1013{
1014	if (!PageReserved(page) && put_page_testzero(page)) {
1015		if (order == 0)
1016			free_hot_page(page);
1017		else
1018			__free_pages_ok(page, order);
1019	}
1020}
1021
1022EXPORT_SYMBOL(__free_pages);
1023
1024fastcall void free_pages(unsigned long addr, unsigned int order)
1025{
1026	if (addr != 0) {
1027		BUG_ON(!virt_addr_valid((void *)addr));
1028		__free_pages(virt_to_page((void *)addr), order);
1029	}
1030}
1031
1032EXPORT_SYMBOL(free_pages);
1033
1034/*
1035 * Total amount of free (allocatable) RAM:
1036 */
1037unsigned int nr_free_pages(void)
1038{
1039	unsigned int sum = 0;
1040	struct zone *zone;
1041
1042	for_each_zone(zone)
1043		sum += zone->free_pages;
1044
1045	return sum;
1046}
1047
1048EXPORT_SYMBOL(nr_free_pages);
1049
1050#ifdef CONFIG_NUMA
1051unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1052{
1053	unsigned int i, sum = 0;
1054
1055	for (i = 0; i < MAX_NR_ZONES; i++)
1056		sum += pgdat->node_zones[i].free_pages;
1057
1058	return sum;
1059}
1060#endif
1061
1062static unsigned int nr_free_zone_pages(int offset)
1063{
1064	pg_data_t *pgdat;
1065	unsigned int sum = 0;
1066
1067	for_each_pgdat(pgdat) {
1068		struct zonelist *zonelist = pgdat->node_zonelists + offset;
1069		struct zone **zonep = zonelist->zones;
1070		struct zone *zone;
1071
1072		for (zone = *zonep++; zone; zone = *zonep++) {
1073			unsigned long size = zone->present_pages;
1074			unsigned long high = zone->pages_high;
1075			if (size > high)
1076				sum += size - high;
1077		}
1078	}
1079
1080	return sum;
1081}
1082
1083/*
1084 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1085 */
1086unsigned int nr_free_buffer_pages(void)
1087{
1088	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1089}
1090
1091/*
1092 * Amount of free RAM allocatable within all zones
1093 */
1094unsigned int nr_free_pagecache_pages(void)
1095{
1096	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1097}
1098
1099#ifdef CONFIG_HIGHMEM
1100unsigned int nr_free_highpages (void)
1101{
1102	pg_data_t *pgdat;
1103	unsigned int pages = 0;
1104
1105	for_each_pgdat(pgdat)
1106		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1107
1108	return pages;
1109}
1110#endif
1111
1112#ifdef CONFIG_NUMA
1113static void show_node(struct zone *zone)
1114{
1115	printk("Node %d ", zone->zone_pgdat->node_id);
1116}
1117#else
1118#define show_node(zone)	do { } while (0)
1119#endif
1120
1121/*
1122 * Accumulate the page_state information across all CPUs.
1123 * The result is unavoidably approximate - it can change
1124 * during and after execution of this function.
1125 */
1126static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1127
1128atomic_t nr_pagecache = ATOMIC_INIT(0);
1129EXPORT_SYMBOL(nr_pagecache);
1130#ifdef CONFIG_SMP
1131DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1132#endif
1133
1134void __get_page_state(struct page_state *ret, int nr)
1135{
1136	int cpu = 0;
1137
1138	memset(ret, 0, sizeof(*ret));
1139
1140	cpu = first_cpu(cpu_online_map);
1141	while (cpu < NR_CPUS) {
1142		unsigned long *in, *out, off;
1143
1144		in = (unsigned long *)&per_cpu(page_states, cpu);
1145
1146		cpu = next_cpu(cpu, cpu_online_map);
1147
1148		if (cpu < NR_CPUS)
1149			prefetch(&per_cpu(page_states, cpu));
1150
1151		out = (unsigned long *)ret;
1152		for (off = 0; off < nr; off++)
1153			*out++ += *in++;
1154	}
1155}
1156
1157void get_page_state(struct page_state *ret)
1158{
1159	int nr;
1160
1161	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1162	nr /= sizeof(unsigned long);
1163
1164	__get_page_state(ret, nr + 1);
1165}
1166
1167void get_full_page_state(struct page_state *ret)
1168{
1169	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1170}
1171
1172unsigned long __read_page_state(unsigned long offset)
1173{
1174	unsigned long ret = 0;
1175	int cpu;
1176
1177	for_each_online_cpu(cpu) {
1178		unsigned long in;
1179
1180		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1181		ret += *((unsigned long *)in);
1182	}
1183	return ret;
1184}
1185
1186void __mod_page_state(unsigned long offset, unsigned long delta)
1187{
1188	unsigned long flags;
1189	void* ptr;
1190
1191	local_irq_save(flags);
1192	ptr = &__get_cpu_var(page_states);
1193	*(unsigned long*)(ptr + offset) += delta;
1194	local_irq_restore(flags);
1195}
1196
1197EXPORT_SYMBOL(__mod_page_state);
1198
1199void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1200			unsigned long *free, struct pglist_data *pgdat)
1201{
1202	struct zone *zones = pgdat->node_zones;
1203	int i;
1204
1205	*active = 0;
1206	*inactive = 0;
1207	*free = 0;
1208	for (i = 0; i < MAX_NR_ZONES; i++) {
1209		*active += zones[i].nr_active;
1210		*inactive += zones[i].nr_inactive;
1211		*free += zones[i].free_pages;
1212	}
1213}
1214
1215void get_zone_counts(unsigned long *active,
1216		unsigned long *inactive, unsigned long *free)
1217{
1218	struct pglist_data *pgdat;
1219
1220	*active = 0;
1221	*inactive = 0;
1222	*free = 0;
1223	for_each_pgdat(pgdat) {
1224		unsigned long l, m, n;
1225		__get_zone_counts(&l, &m, &n, pgdat);
1226		*active += l;
1227		*inactive += m;
1228		*free += n;
1229	}
1230}
1231
1232void si_meminfo(struct sysinfo *val)
1233{
1234	val->totalram = totalram_pages;
1235	val->sharedram = 0;
1236	val->freeram = nr_free_pages();
1237	val->bufferram = nr_blockdev_pages();
1238#ifdef CONFIG_HIGHMEM
1239	val->totalhigh = totalhigh_pages;
1240	val->freehigh = nr_free_highpages();
1241#else
1242	val->totalhigh = 0;
1243	val->freehigh = 0;
1244#endif
1245	val->mem_unit = PAGE_SIZE;
1246}
1247
1248EXPORT_SYMBOL(si_meminfo);
1249
1250#ifdef CONFIG_NUMA
1251void si_meminfo_node(struct sysinfo *val, int nid)
1252{
1253	pg_data_t *pgdat = NODE_DATA(nid);
1254
1255	val->totalram = pgdat->node_present_pages;
1256	val->freeram = nr_free_pages_pgdat(pgdat);
1257	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1258	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1259	val->mem_unit = PAGE_SIZE;
1260}
1261#endif
1262
1263#define K(x) ((x) << (PAGE_SHIFT-10))
1264
1265/*
1266 * Show free area list (used inside shift_scroll-lock stuff)
1267 * We also calculate the percentage fragmentation. We do this by counting the
1268 * memory on each free list with the exception of the first item on the list.
1269 */
1270void show_free_areas(void)
1271{
1272	struct page_state ps;
1273	int cpu, temperature;
1274	unsigned long active;
1275	unsigned long inactive;
1276	unsigned long free;
1277	struct zone *zone;
1278
1279	for_each_zone(zone) {
1280		show_node(zone);
1281		printk("%s per-cpu:", zone->name);
1282
1283		if (!zone->present_pages) {
1284			printk(" empty\n");
1285			continue;
1286		} else
1287			printk("\n");
1288
1289		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1290			struct per_cpu_pageset *pageset;
1291
1292			if (!cpu_possible(cpu))
1293				continue;
1294
1295			pageset = zone_pcp(zone, cpu);
1296
1297			for (temperature = 0; temperature < 2; temperature++)
1298				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1299					cpu,
1300					temperature ? "cold" : "hot",
1301					pageset->pcp[temperature].low,
1302					pageset->pcp[temperature].high,
1303					pageset->pcp[temperature].batch,
1304					pageset->pcp[temperature].count);
1305		}
1306	}
1307
1308	get_page_state(&ps);
1309	get_zone_counts(&active, &inactive, &free);
1310
1311	printk("Free pages: %11ukB (%ukB HighMem)\n",
1312		K(nr_free_pages()),
1313		K(nr_free_highpages()));
1314
1315	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1316		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1317		active,
1318		inactive,
1319		ps.nr_dirty,
1320		ps.nr_writeback,
1321		ps.nr_unstable,
1322		nr_free_pages(),
1323		ps.nr_slab,
1324		ps.nr_mapped,
1325		ps.nr_page_table_pages);
1326
1327	for_each_zone(zone) {
1328		int i;
1329
1330		show_node(zone);
1331		printk("%s"
1332			" free:%lukB"
1333			" min:%lukB"
1334			" low:%lukB"
1335			" high:%lukB"
1336			" active:%lukB"
1337			" inactive:%lukB"
1338			" present:%lukB"
1339			" pages_scanned:%lu"
1340			" all_unreclaimable? %s"
1341			"\n",
1342			zone->name,
1343			K(zone->free_pages),
1344			K(zone->pages_min),
1345			K(zone->pages_low),
1346			K(zone->pages_high),
1347			K(zone->nr_active),
1348			K(zone->nr_inactive),
1349			K(zone->present_pages),
1350			zone->pages_scanned,
1351			(zone->all_unreclaimable ? "yes" : "no")
1352			);
1353		printk("lowmem_reserve[]:");
1354		for (i = 0; i < MAX_NR_ZONES; i++)
1355			printk(" %lu", zone->lowmem_reserve[i]);
1356		printk("\n");
1357	}
1358
1359	for_each_zone(zone) {
1360 		unsigned long nr, flags, order, total = 0;
1361
1362		show_node(zone);
1363		printk("%s: ", zone->name);
1364		if (!zone->present_pages) {
1365			printk("empty\n");
1366			continue;
1367		}
1368
1369		spin_lock_irqsave(&zone->lock, flags);
1370		for (order = 0; order < MAX_ORDER; order++) {
1371			nr = zone->free_area[order].nr_free;
1372			total += nr << order;
1373			printk("%lu*%lukB ", nr, K(1UL) << order);
1374		}
1375		spin_unlock_irqrestore(&zone->lock, flags);
1376		printk("= %lukB\n", K(total));
1377	}
1378
1379	show_swap_cache_info();
1380}
1381
1382/*
1383 * Builds allocation fallback zone lists.
1384 */
1385static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1386{
1387	switch (k) {
1388		struct zone *zone;
1389	default:
1390		BUG();
1391	case ZONE_HIGHMEM:
1392		zone = pgdat->node_zones + ZONE_HIGHMEM;
1393		if (zone->present_pages) {
1394#ifndef CONFIG_HIGHMEM
1395			BUG();
1396#endif
1397			zonelist->zones[j++] = zone;
1398		}
1399	case ZONE_NORMAL:
1400		zone = pgdat->node_zones + ZONE_NORMAL;
1401		if (zone->present_pages)
1402			zonelist->zones[j++] = zone;
1403	case ZONE_DMA:
1404		zone = pgdat->node_zones + ZONE_DMA;
1405		if (zone->present_pages)
1406			zonelist->zones[j++] = zone;
1407	}
1408
1409	return j;
1410}
1411
1412#ifdef CONFIG_NUMA
1413#define MAX_NODE_LOAD (num_online_nodes())
1414static int __initdata node_load[MAX_NUMNODES];
1415/**
1416 * find_next_best_node - find the next node that should appear in a given node's fallback list
1417 * @node: node whose fallback list we're appending
1418 * @used_node_mask: nodemask_t of already used nodes
1419 *
1420 * We use a number of factors to determine which is the next node that should
1421 * appear on a given node's fallback list.  The node should not have appeared
1422 * already in @node's fallback list, and it should be the next closest node
1423 * according to the distance array (which contains arbitrary distance values
1424 * from each node to each node in the system), and should also prefer nodes
1425 * with no CPUs, since presumably they'll have very little allocation pressure
1426 * on them otherwise.
1427 * It returns -1 if no node is found.
1428 */
1429static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1430{
1431	int i, n, val;
1432	int min_val = INT_MAX;
1433	int best_node = -1;
1434
1435	for_each_online_node(i) {
1436		cpumask_t tmp;
1437
1438		/* Start from local node */
1439		n = (node+i) % num_online_nodes();
1440
1441		/* Don't want a node to appear more than once */
1442		if (node_isset(n, *used_node_mask))
1443			continue;
1444
1445		/* Use the local node if we haven't already */
1446		if (!node_isset(node, *used_node_mask)) {
1447			best_node = node;
1448			break;
1449		}
1450
1451		/* Use the distance array to find the distance */
1452		val = node_distance(node, n);
1453
1454		/* Give preference to headless and unused nodes */
1455		tmp = node_to_cpumask(n);
1456		if (!cpus_empty(tmp))
1457			val += PENALTY_FOR_NODE_WITH_CPUS;
1458
1459		/* Slight preference for less loaded node */
1460		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1461		val += node_load[n];
1462
1463		if (val < min_val) {
1464			min_val = val;
1465			best_node = n;
1466		}
1467	}
1468
1469	if (best_node >= 0)
1470		node_set(best_node, *used_node_mask);
1471
1472	return best_node;
1473}
1474
1475static void __init build_zonelists(pg_data_t *pgdat)
1476{
1477	int i, j, k, node, local_node;
1478	int prev_node, load;
1479	struct zonelist *zonelist;
1480	nodemask_t used_mask;
1481
1482	/* initialize zonelists */
1483	for (i = 0; i < GFP_ZONETYPES; i++) {
1484		zonelist = pgdat->node_zonelists + i;
1485		zonelist->zones[0] = NULL;
1486	}
1487
1488	/* NUMA-aware ordering of nodes */
1489	local_node = pgdat->node_id;
1490	load = num_online_nodes();
1491	prev_node = local_node;
1492	nodes_clear(used_mask);
1493	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1494		/*
1495		 * We don't want to pressure a particular node.
1496		 * So adding penalty to the first node in same
1497		 * distance group to make it round-robin.
1498		 */
1499		if (node_distance(local_node, node) !=
1500				node_distance(local_node, prev_node))
1501			node_load[node] += load;
1502		prev_node = node;
1503		load--;
1504		for (i = 0; i < GFP_ZONETYPES; i++) {
1505			zonelist = pgdat->node_zonelists + i;
1506			for (j = 0; zonelist->zones[j] != NULL; j++);
1507
1508			k = ZONE_NORMAL;
1509			if (i & __GFP_HIGHMEM)
1510				k = ZONE_HIGHMEM;
1511			if (i & __GFP_DMA)
1512				k = ZONE_DMA;
1513
1514	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1515			zonelist->zones[j] = NULL;
1516		}
1517	}
1518}
1519
1520#else	/* CONFIG_NUMA */
1521
1522static void __init build_zonelists(pg_data_t *pgdat)
1523{
1524	int i, j, k, node, local_node;
1525
1526	local_node = pgdat->node_id;
1527	for (i = 0; i < GFP_ZONETYPES; i++) {
1528		struct zonelist *zonelist;
1529
1530		zonelist = pgdat->node_zonelists + i;
1531
1532		j = 0;
1533		k = ZONE_NORMAL;
1534		if (i & __GFP_HIGHMEM)
1535			k = ZONE_HIGHMEM;
1536		if (i & __GFP_DMA)
1537			k = ZONE_DMA;
1538
1539 		j = build_zonelists_node(pgdat, zonelist, j, k);
1540 		/*
1541 		 * Now we build the zonelist so that it contains the zones
1542 		 * of all the other nodes.
1543 		 * We don't want to pressure a particular node, so when
1544 		 * building the zones for node N, we make sure that the
1545 		 * zones coming right after the local ones are those from
1546 		 * node N+1 (modulo N)
1547 		 */
1548		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1549			if (!node_online(node))
1550				continue;
1551			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1552		}
1553		for (node = 0; node < local_node; node++) {
1554			if (!node_online(node))
1555				continue;
1556			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1557		}
1558
1559		zonelist->zones[j] = NULL;
1560	}
1561}
1562
1563#endif	/* CONFIG_NUMA */
1564
1565void __init build_all_zonelists(void)
1566{
1567	int i;
1568
1569	for_each_online_node(i)
1570		build_zonelists(NODE_DATA(i));
1571	printk("Built %i zonelists\n", num_online_nodes());
1572	cpuset_init_current_mems_allowed();
1573}
1574
1575/*
1576 * Helper functions to size the waitqueue hash table.
1577 * Essentially these want to choose hash table sizes sufficiently
1578 * large so that collisions trying to wait on pages are rare.
1579 * But in fact, the number of active page waitqueues on typical
1580 * systems is ridiculously low, less than 200. So this is even
1581 * conservative, even though it seems large.
1582 *
1583 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1584 * waitqueues, i.e. the size of the waitq table given the number of pages.
1585 */
1586#define PAGES_PER_WAITQUEUE	256
1587
1588static inline unsigned long wait_table_size(unsigned long pages)
1589{
1590	unsigned long size = 1;
1591
1592	pages /= PAGES_PER_WAITQUEUE;
1593
1594	while (size < pages)
1595		size <<= 1;
1596
1597	/*
1598	 * Once we have dozens or even hundreds of threads sleeping
1599	 * on IO we've got bigger problems than wait queue collision.
1600	 * Limit the size of the wait table to a reasonable size.
1601	 */
1602	size = min(size, 4096UL);
1603
1604	return max(size, 4UL);
1605}
1606
1607/*
1608 * This is an integer logarithm so that shifts can be used later
1609 * to extract the more random high bits from the multiplicative
1610 * hash function before the remainder is taken.
1611 */
1612static inline unsigned long wait_table_bits(unsigned long size)
1613{
1614	return ffz(~size);
1615}
1616
1617#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1618
1619static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1620		unsigned long *zones_size, unsigned long *zholes_size)
1621{
1622	unsigned long realtotalpages, totalpages = 0;
1623	int i;
1624
1625	for (i = 0; i < MAX_NR_ZONES; i++)
1626		totalpages += zones_size[i];
1627	pgdat->node_spanned_pages = totalpages;
1628
1629	realtotalpages = totalpages;
1630	if (zholes_size)
1631		for (i = 0; i < MAX_NR_ZONES; i++)
1632			realtotalpages -= zholes_size[i];
1633	pgdat->node_present_pages = realtotalpages;
1634	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1635}
1636
1637
1638/*
1639 * Initially all pages are reserved - free ones are freed
1640 * up by free_all_bootmem() once the early boot process is
1641 * done. Non-atomic initialization, single-pass.
1642 */
1643void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1644		unsigned long start_pfn)
1645{
1646	struct page *page;
1647	unsigned long end_pfn = start_pfn + size;
1648	unsigned long pfn;
1649
1650	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1651		if (!early_pfn_valid(pfn))
1652			continue;
1653		if (!early_pfn_in_nid(pfn, nid))
1654			continue;
1655		page = pfn_to_page(pfn);
1656		set_page_links(page, zone, nid, pfn);
1657		set_page_count(page, 0);
1658		reset_page_mapcount(page);
1659		SetPageReserved(page);
1660		INIT_LIST_HEAD(&page->lru);
1661#ifdef WANT_PAGE_VIRTUAL
1662		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1663		if (!is_highmem_idx(zone))
1664			set_page_address(page, __va(pfn << PAGE_SHIFT));
1665#endif
1666	}
1667}
1668
1669void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1670				unsigned long size)
1671{
1672	int order;
1673	for (order = 0; order < MAX_ORDER ; order++) {
1674		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1675		zone->free_area[order].nr_free = 0;
1676	}
1677}
1678
1679#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1680void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1681		unsigned long size)
1682{
1683	unsigned long snum = pfn_to_section_nr(pfn);
1684	unsigned long end = pfn_to_section_nr(pfn + size);
1685
1686	if (FLAGS_HAS_NODE)
1687		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1688	else
1689		for (; snum <= end; snum++)
1690			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1691}
1692
1693#ifndef __HAVE_ARCH_MEMMAP_INIT
1694#define memmap_init(size, nid, zone, start_pfn) \
1695	memmap_init_zone((size), (nid), (zone), (start_pfn))
1696#endif
1697
1698static int __devinit zone_batchsize(struct zone *zone)
1699{
1700	int batch;
1701
1702	/*
1703	 * The per-cpu-pages pools are set to around 1000th of the
1704	 * size of the zone.  But no more than 1/4 of a meg - there's
1705	 * no point in going beyond the size of L2 cache.
1706	 *
1707	 * OK, so we don't know how big the cache is.  So guess.
1708	 */
1709	batch = zone->present_pages / 1024;
1710	if (batch * PAGE_SIZE > 256 * 1024)
1711		batch = (256 * 1024) / PAGE_SIZE;
1712	batch /= 4;		/* We effectively *= 4 below */
1713	if (batch < 1)
1714		batch = 1;
1715
1716	/*
1717	 * Clamp the batch to a 2^n - 1 value. Having a power
1718	 * of 2 value was found to be more likely to have
1719	 * suboptimal cache aliasing properties in some cases.
1720	 *
1721	 * For example if 2 tasks are alternately allocating
1722	 * batches of pages, one task can end up with a lot
1723	 * of pages of one half of the possible page colors
1724	 * and the other with pages of the other colors.
1725	 */
1726	batch = (1 << fls(batch + batch/2)) - 1;
1727	return batch;
1728}
1729
1730inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1731{
1732	struct per_cpu_pages *pcp;
1733
1734	pcp = &p->pcp[0];		/* hot */
1735	pcp->count = 0;
1736	pcp->low = 2 * batch;
1737	pcp->high = 6 * batch;
1738	pcp->batch = max(1UL, 1 * batch);
1739	INIT_LIST_HEAD(&pcp->list);
1740
1741	pcp = &p->pcp[1];		/* cold*/
1742	pcp->count = 0;
1743	pcp->low = 0;
1744	pcp->high = 2 * batch;
1745	pcp->batch = max(1UL, 1 * batch);
1746	INIT_LIST_HEAD(&pcp->list);
1747}
1748
1749#ifdef CONFIG_NUMA
1750/*
1751 * Boot pageset table. One per cpu which is going to be used for all
1752 * zones and all nodes. The parameters will be set in such a way
1753 * that an item put on a list will immediately be handed over to
1754 * the buddy list. This is safe since pageset manipulation is done
1755 * with interrupts disabled.
1756 *
1757 * Some NUMA counter updates may also be caught by the boot pagesets.
1758 *
1759 * The boot_pagesets must be kept even after bootup is complete for
1760 * unused processors and/or zones. They do play a role for bootstrapping
1761 * hotplugged processors.
1762 *
1763 * zoneinfo_show() and maybe other functions do
1764 * not check if the processor is online before following the pageset pointer.
1765 * Other parts of the kernel may not check if the zone is available.
1766 */
1767static struct per_cpu_pageset
1768	boot_pageset[NR_CPUS];
1769
1770/*
1771 * Dynamically allocate memory for the
1772 * per cpu pageset array in struct zone.
1773 */
1774static int __devinit process_zones(int cpu)
1775{
1776	struct zone *zone, *dzone;
1777
1778	for_each_zone(zone) {
1779
1780		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1781					 GFP_KERNEL, cpu_to_node(cpu));
1782		if (!zone->pageset[cpu])
1783			goto bad;
1784
1785		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1786	}
1787
1788	return 0;
1789bad:
1790	for_each_zone(dzone) {
1791		if (dzone == zone)
1792			break;
1793		kfree(dzone->pageset[cpu]);
1794		dzone->pageset[cpu] = NULL;
1795	}
1796	return -ENOMEM;
1797}
1798
1799static inline void free_zone_pagesets(int cpu)
1800{
1801#ifdef CONFIG_NUMA
1802	struct zone *zone;
1803
1804	for_each_zone(zone) {
1805		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1806
1807		zone_pcp(zone, cpu) = NULL;
1808		kfree(pset);
1809	}
1810#endif
1811}
1812
1813static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1814		unsigned long action,
1815		void *hcpu)
1816{
1817	int cpu = (long)hcpu;
1818	int ret = NOTIFY_OK;
1819
1820	switch (action) {
1821		case CPU_UP_PREPARE:
1822			if (process_zones(cpu))
1823				ret = NOTIFY_BAD;
1824			break;
1825#ifdef CONFIG_HOTPLUG_CPU
1826		case CPU_DEAD:
1827			free_zone_pagesets(cpu);
1828			break;
1829#endif
1830		default:
1831			break;
1832	}
1833	return ret;
1834}
1835
1836static struct notifier_block pageset_notifier =
1837	{ &pageset_cpuup_callback, NULL, 0 };
1838
1839void __init setup_per_cpu_pageset()
1840{
1841	int err;
1842
1843	/* Initialize per_cpu_pageset for cpu 0.
1844	 * A cpuup callback will do this for every cpu
1845	 * as it comes online
1846	 */
1847	err = process_zones(smp_processor_id());
1848	BUG_ON(err);
1849	register_cpu_notifier(&pageset_notifier);
1850}
1851
1852#endif
1853
1854/*
1855 * Set up the zone data structures:
1856 *   - mark all pages reserved
1857 *   - mark all memory queues empty
1858 *   - clear the memory bitmaps
1859 */
1860static void __init free_area_init_core(struct pglist_data *pgdat,
1861		unsigned long *zones_size, unsigned long *zholes_size)
1862{
1863	unsigned long i, j;
1864	int cpu, nid = pgdat->node_id;
1865	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1866
1867	pgdat->nr_zones = 0;
1868	init_waitqueue_head(&pgdat->kswapd_wait);
1869	pgdat->kswapd_max_order = 0;
1870
1871	for (j = 0; j < MAX_NR_ZONES; j++) {
1872		struct zone *zone = pgdat->node_zones + j;
1873		unsigned long size, realsize;
1874		unsigned long batch;
1875
1876		realsize = size = zones_size[j];
1877		if (zholes_size)
1878			realsize -= zholes_size[j];
1879
1880		if (j == ZONE_DMA || j == ZONE_NORMAL)
1881			nr_kernel_pages += realsize;
1882		nr_all_pages += realsize;
1883
1884		zone->spanned_pages = size;
1885		zone->present_pages = realsize;
1886		zone->name = zone_names[j];
1887		spin_lock_init(&zone->lock);
1888		spin_lock_init(&zone->lru_lock);
1889		zone->zone_pgdat = pgdat;
1890		zone->free_pages = 0;
1891
1892		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1893
1894		batch = zone_batchsize(zone);
1895
1896		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1897#ifdef CONFIG_NUMA
1898			/* Early boot. Slab allocator not functional yet */
1899			zone->pageset[cpu] = &boot_pageset[cpu];
1900			setup_pageset(&boot_pageset[cpu],0);
1901#else
1902			setup_pageset(zone_pcp(zone,cpu), batch);
1903#endif
1904		}
1905		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1906				zone_names[j], realsize, batch);
1907		INIT_LIST_HEAD(&zone->active_list);
1908		INIT_LIST_HEAD(&zone->inactive_list);
1909		zone->nr_scan_active = 0;
1910		zone->nr_scan_inactive = 0;
1911		zone->nr_active = 0;
1912		zone->nr_inactive = 0;
1913		atomic_set(&zone->reclaim_in_progress, -1);
1914		if (!size)
1915			continue;
1916
1917		/*
1918		 * The per-page waitqueue mechanism uses hashed waitqueues
1919		 * per zone.
1920		 */
1921		zone->wait_table_size = wait_table_size(size);
1922		zone->wait_table_bits =
1923			wait_table_bits(zone->wait_table_size);
1924		zone->wait_table = (wait_queue_head_t *)
1925			alloc_bootmem_node(pgdat, zone->wait_table_size
1926						* sizeof(wait_queue_head_t));
1927
1928		for(i = 0; i < zone->wait_table_size; ++i)
1929			init_waitqueue_head(zone->wait_table + i);
1930
1931		pgdat->nr_zones = j+1;
1932
1933		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1934		zone->zone_start_pfn = zone_start_pfn;
1935
1936		memmap_init(size, nid, j, zone_start_pfn);
1937
1938		zonetable_add(zone, nid, j, zone_start_pfn, size);
1939
1940		zone_start_pfn += size;
1941
1942		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1943	}
1944}
1945
1946static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1947{
1948	/* Skip empty nodes */
1949	if (!pgdat->node_spanned_pages)
1950		return;
1951
1952#ifdef CONFIG_FLAT_NODE_MEM_MAP
1953	/* ia64 gets its own node_mem_map, before this, without bootmem */
1954	if (!pgdat->node_mem_map) {
1955		unsigned long size;
1956		struct page *map;
1957
1958		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1959		map = alloc_remap(pgdat->node_id, size);
1960		if (!map)
1961			map = alloc_bootmem_node(pgdat, size);
1962		pgdat->node_mem_map = map;
1963	}
1964#ifdef CONFIG_FLATMEM
1965	/*
1966	 * With no DISCONTIG, the global mem_map is just set as node 0's
1967	 */
1968	if (pgdat == NODE_DATA(0))
1969		mem_map = NODE_DATA(0)->node_mem_map;
1970#endif
1971#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1972}
1973
1974void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1975		unsigned long *zones_size, unsigned long node_start_pfn,
1976		unsigned long *zholes_size)
1977{
1978	pgdat->node_id = nid;
1979	pgdat->node_start_pfn = node_start_pfn;
1980	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1981
1982	alloc_node_mem_map(pgdat);
1983
1984	free_area_init_core(pgdat, zones_size, zholes_size);
1985}
1986
1987#ifndef CONFIG_NEED_MULTIPLE_NODES
1988static bootmem_data_t contig_bootmem_data;
1989struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1990
1991EXPORT_SYMBOL(contig_page_data);
1992#endif
1993
1994void __init free_area_init(unsigned long *zones_size)
1995{
1996	free_area_init_node(0, NODE_DATA(0), zones_size,
1997			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1998}
1999
2000#ifdef CONFIG_PROC_FS
2001
2002#include <linux/seq_file.h>
2003
2004static void *frag_start(struct seq_file *m, loff_t *pos)
2005{
2006	pg_data_t *pgdat;
2007	loff_t node = *pos;
2008
2009	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2010		--node;
2011
2012	return pgdat;
2013}
2014
2015static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2016{
2017	pg_data_t *pgdat = (pg_data_t *)arg;
2018
2019	(*pos)++;
2020	return pgdat->pgdat_next;
2021}
2022
2023static void frag_stop(struct seq_file *m, void *arg)
2024{
2025}
2026
2027/*
2028 * This walks the free areas for each zone.
2029 */
2030static int frag_show(struct seq_file *m, void *arg)
2031{
2032	pg_data_t *pgdat = (pg_data_t *)arg;
2033	struct zone *zone;
2034	struct zone *node_zones = pgdat->node_zones;
2035	unsigned long flags;
2036	int order;
2037
2038	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2039		if (!zone->present_pages)
2040			continue;
2041
2042		spin_lock_irqsave(&zone->lock, flags);
2043		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2044		for (order = 0; order < MAX_ORDER; ++order)
2045			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2046		spin_unlock_irqrestore(&zone->lock, flags);
2047		seq_putc(m, '\n');
2048	}
2049	return 0;
2050}
2051
2052struct seq_operations fragmentation_op = {
2053	.start	= frag_start,
2054	.next	= frag_next,
2055	.stop	= frag_stop,
2056	.show	= frag_show,
2057};
2058
2059/*
2060 * Output information about zones in @pgdat.
2061 */
2062static int zoneinfo_show(struct seq_file *m, void *arg)
2063{
2064	pg_data_t *pgdat = arg;
2065	struct zone *zone;
2066	struct zone *node_zones = pgdat->node_zones;
2067	unsigned long flags;
2068
2069	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2070		int i;
2071
2072		if (!zone->present_pages)
2073			continue;
2074
2075		spin_lock_irqsave(&zone->lock, flags);
2076		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2077		seq_printf(m,
2078			   "\n  pages free     %lu"
2079			   "\n        min      %lu"
2080			   "\n        low      %lu"
2081			   "\n        high     %lu"
2082			   "\n        active   %lu"
2083			   "\n        inactive %lu"
2084			   "\n        scanned  %lu (a: %lu i: %lu)"
2085			   "\n        spanned  %lu"
2086			   "\n        present  %lu",
2087			   zone->free_pages,
2088			   zone->pages_min,
2089			   zone->pages_low,
2090			   zone->pages_high,
2091			   zone->nr_active,
2092			   zone->nr_inactive,
2093			   zone->pages_scanned,
2094			   zone->nr_scan_active, zone->nr_scan_inactive,
2095			   zone->spanned_pages,
2096			   zone->present_pages);
2097		seq_printf(m,
2098			   "\n        protection: (%lu",
2099			   zone->lowmem_reserve[0]);
2100		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2101			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2102		seq_printf(m,
2103			   ")"
2104			   "\n  pagesets");
2105		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2106			struct per_cpu_pageset *pageset;
2107			int j;
2108
2109			pageset = zone_pcp(zone, i);
2110			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2111				if (pageset->pcp[j].count)
2112					break;
2113			}
2114			if (j == ARRAY_SIZE(pageset->pcp))
2115				continue;
2116			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2117				seq_printf(m,
2118					   "\n    cpu: %i pcp: %i"
2119					   "\n              count: %i"
2120					   "\n              low:   %i"
2121					   "\n              high:  %i"
2122					   "\n              batch: %i",
2123					   i, j,
2124					   pageset->pcp[j].count,
2125					   pageset->pcp[j].low,
2126					   pageset->pcp[j].high,
2127					   pageset->pcp[j].batch);
2128			}
2129#ifdef CONFIG_NUMA
2130			seq_printf(m,
2131				   "\n            numa_hit:       %lu"
2132				   "\n            numa_miss:      %lu"
2133				   "\n            numa_foreign:   %lu"
2134				   "\n            interleave_hit: %lu"
2135				   "\n            local_node:     %lu"
2136				   "\n            other_node:     %lu",
2137				   pageset->numa_hit,
2138				   pageset->numa_miss,
2139				   pageset->numa_foreign,
2140				   pageset->interleave_hit,
2141				   pageset->local_node,
2142				   pageset->other_node);
2143#endif
2144		}
2145		seq_printf(m,
2146			   "\n  all_unreclaimable: %u"
2147			   "\n  prev_priority:     %i"
2148			   "\n  temp_priority:     %i"
2149			   "\n  start_pfn:         %lu",
2150			   zone->all_unreclaimable,
2151			   zone->prev_priority,
2152			   zone->temp_priority,
2153			   zone->zone_start_pfn);
2154		spin_unlock_irqrestore(&zone->lock, flags);
2155		seq_putc(m, '\n');
2156	}
2157	return 0;
2158}
2159
2160struct seq_operations zoneinfo_op = {
2161	.start	= frag_start, /* iterate over all zones. The same as in
2162			       * fragmentation. */
2163	.next	= frag_next,
2164	.stop	= frag_stop,
2165	.show	= zoneinfo_show,
2166};
2167
2168static char *vmstat_text[] = {
2169	"nr_dirty",
2170	"nr_writeback",
2171	"nr_unstable",
2172	"nr_page_table_pages",
2173	"nr_mapped",
2174	"nr_slab",
2175
2176	"pgpgin",
2177	"pgpgout",
2178	"pswpin",
2179	"pswpout",
2180	"pgalloc_high",
2181
2182	"pgalloc_normal",
2183	"pgalloc_dma",
2184	"pgfree",
2185	"pgactivate",
2186	"pgdeactivate",
2187
2188	"pgfault",
2189	"pgmajfault",
2190	"pgrefill_high",
2191	"pgrefill_normal",
2192	"pgrefill_dma",
2193
2194	"pgsteal_high",
2195	"pgsteal_normal",
2196	"pgsteal_dma",
2197	"pgscan_kswapd_high",
2198	"pgscan_kswapd_normal",
2199
2200	"pgscan_kswapd_dma",
2201	"pgscan_direct_high",
2202	"pgscan_direct_normal",
2203	"pgscan_direct_dma",
2204	"pginodesteal",
2205
2206	"slabs_scanned",
2207	"kswapd_steal",
2208	"kswapd_inodesteal",
2209	"pageoutrun",
2210	"allocstall",
2211
2212	"pgrotated",
2213	"nr_bounce",
2214};
2215
2216static void *vmstat_start(struct seq_file *m, loff_t *pos)
2217{
2218	struct page_state *ps;
2219
2220	if (*pos >= ARRAY_SIZE(vmstat_text))
2221		return NULL;
2222
2223	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2224	m->private = ps;
2225	if (!ps)
2226		return ERR_PTR(-ENOMEM);
2227	get_full_page_state(ps);
2228	ps->pgpgin /= 2;		/* sectors -> kbytes */
2229	ps->pgpgout /= 2;
2230	return (unsigned long *)ps + *pos;
2231}
2232
2233static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2234{
2235	(*pos)++;
2236	if (*pos >= ARRAY_SIZE(vmstat_text))
2237		return NULL;
2238	return (unsigned long *)m->private + *pos;
2239}
2240
2241static int vmstat_show(struct seq_file *m, void *arg)
2242{
2243	unsigned long *l = arg;
2244	unsigned long off = l - (unsigned long *)m->private;
2245
2246	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2247	return 0;
2248}
2249
2250static void vmstat_stop(struct seq_file *m, void *arg)
2251{
2252	kfree(m->private);
2253	m->private = NULL;
2254}
2255
2256struct seq_operations vmstat_op = {
2257	.start	= vmstat_start,
2258	.next	= vmstat_next,
2259	.stop	= vmstat_stop,
2260	.show	= vmstat_show,
2261};
2262
2263#endif /* CONFIG_PROC_FS */
2264
2265#ifdef CONFIG_HOTPLUG_CPU
2266static int page_alloc_cpu_notify(struct notifier_block *self,
2267				 unsigned long action, void *hcpu)
2268{
2269	int cpu = (unsigned long)hcpu;
2270	long *count;
2271	unsigned long *src, *dest;
2272
2273	if (action == CPU_DEAD) {
2274		int i;
2275
2276		/* Drain local pagecache count. */
2277		count = &per_cpu(nr_pagecache_local, cpu);
2278		atomic_add(*count, &nr_pagecache);
2279		*count = 0;
2280		local_irq_disable();
2281		__drain_pages(cpu);
2282
2283		/* Add dead cpu's page_states to our own. */
2284		dest = (unsigned long *)&__get_cpu_var(page_states);
2285		src = (unsigned long *)&per_cpu(page_states, cpu);
2286
2287		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2288				i++) {
2289			dest[i] += src[i];
2290			src[i] = 0;
2291		}
2292
2293		local_irq_enable();
2294	}
2295	return NOTIFY_OK;
2296}
2297#endif /* CONFIG_HOTPLUG_CPU */
2298
2299void __init page_alloc_init(void)
2300{
2301	hotcpu_notifier(page_alloc_cpu_notify, 0);
2302}
2303
2304/*
2305 * setup_per_zone_lowmem_reserve - called whenever
2306 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2307 *	has a correct pages reserved value, so an adequate number of
2308 *	pages are left in the zone after a successful __alloc_pages().
2309 */
2310static void setup_per_zone_lowmem_reserve(void)
2311{
2312	struct pglist_data *pgdat;
2313	int j, idx;
2314
2315	for_each_pgdat(pgdat) {
2316		for (j = 0; j < MAX_NR_ZONES; j++) {
2317			struct zone *zone = pgdat->node_zones + j;
2318			unsigned long present_pages = zone->present_pages;
2319
2320			zone->lowmem_reserve[j] = 0;
2321
2322			for (idx = j-1; idx >= 0; idx--) {
2323				struct zone *lower_zone;
2324
2325				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2326					sysctl_lowmem_reserve_ratio[idx] = 1;
2327
2328				lower_zone = pgdat->node_zones + idx;
2329				lower_zone->lowmem_reserve[j] = present_pages /
2330					sysctl_lowmem_reserve_ratio[idx];
2331				present_pages += lower_zone->present_pages;
2332			}
2333		}
2334	}
2335}
2336
2337/*
2338 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2339 *	that the pages_{min,low,high} values for each zone are set correctly
2340 *	with respect to min_free_kbytes.
2341 */
2342static void setup_per_zone_pages_min(void)
2343{
2344	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2345	unsigned long lowmem_pages = 0;
2346	struct zone *zone;
2347	unsigned long flags;
2348
2349	/* Calculate total number of !ZONE_HIGHMEM pages */
2350	for_each_zone(zone) {
2351		if (!is_highmem(zone))
2352			lowmem_pages += zone->present_pages;
2353	}
2354
2355	for_each_zone(zone) {
2356		spin_lock_irqsave(&zone->lru_lock, flags);
2357		if (is_highmem(zone)) {
2358			/*
2359			 * Often, highmem doesn't need to reserve any pages.
2360			 * But the pages_min/low/high values are also used for
2361			 * batching up page reclaim activity so we need a
2362			 * decent value here.
2363			 */
2364			int min_pages;
2365
2366			min_pages = zone->present_pages / 1024;
2367			if (min_pages < SWAP_CLUSTER_MAX)
2368				min_pages = SWAP_CLUSTER_MAX;
2369			if (min_pages > 128)
2370				min_pages = 128;
2371			zone->pages_min = min_pages;
2372		} else {
2373			/* if it's a lowmem zone, reserve a number of pages
2374			 * proportionate to the zone's size.
2375			 */
2376			zone->pages_min = (pages_min * zone->present_pages) /
2377			                   lowmem_pages;
2378		}
2379
2380		/*
2381		 * When interpreting these watermarks, just keep in mind that:
2382		 * zone->pages_min == (zone->pages_min * 4) / 4;
2383		 */
2384		zone->pages_low   = (zone->pages_min * 5) / 4;
2385		zone->pages_high  = (zone->pages_min * 6) / 4;
2386		spin_unlock_irqrestore(&zone->lru_lock, flags);
2387	}
2388}
2389
2390/*
2391 * Initialise min_free_kbytes.
2392 *
2393 * For small machines we want it small (128k min).  For large machines
2394 * we want it large (64MB max).  But it is not linear, because network
2395 * bandwidth does not increase linearly with machine size.  We use
2396 *
2397 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2398 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2399 *
2400 * which yields
2401 *
2402 * 16MB:	512k
2403 * 32MB:	724k
2404 * 64MB:	1024k
2405 * 128MB:	1448k
2406 * 256MB:	2048k
2407 * 512MB:	2896k
2408 * 1024MB:	4096k
2409 * 2048MB:	5792k
2410 * 4096MB:	8192k
2411 * 8192MB:	11584k
2412 * 16384MB:	16384k
2413 */
2414static int __init init_per_zone_pages_min(void)
2415{
2416	unsigned long lowmem_kbytes;
2417
2418	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2419
2420	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2421	if (min_free_kbytes < 128)
2422		min_free_kbytes = 128;
2423	if (min_free_kbytes > 65536)
2424		min_free_kbytes = 65536;
2425	setup_per_zone_pages_min();
2426	setup_per_zone_lowmem_reserve();
2427	return 0;
2428}
2429module_init(init_per_zone_pages_min)
2430
2431/*
2432 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2433 *	that we can call two helper functions whenever min_free_kbytes
2434 *	changes.
2435 */
2436int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2437	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2438{
2439	proc_dointvec(table, write, file, buffer, length, ppos);
2440	setup_per_zone_pages_min();
2441	return 0;
2442}
2443
2444/*
2445 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2446 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2447 *	whenever sysctl_lowmem_reserve_ratio changes.
2448 *
2449 * The reserve ratio obviously has absolutely no relation with the
2450 * pages_min watermarks. The lowmem reserve ratio can only make sense
2451 * if in function of the boot time zone sizes.
2452 */
2453int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2454	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2455{
2456	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2457	setup_per_zone_lowmem_reserve();
2458	return 0;
2459}
2460
2461__initdata int hashdist = HASHDIST_DEFAULT;
2462
2463#ifdef CONFIG_NUMA
2464static int __init set_hashdist(char *str)
2465{
2466	if (!str)
2467		return 0;
2468	hashdist = simple_strtoul(str, &str, 0);
2469	return 1;
2470}
2471__setup("hashdist=", set_hashdist);
2472#endif
2473
2474/*
2475 * allocate a large system hash table from bootmem
2476 * - it is assumed that the hash table must contain an exact power-of-2
2477 *   quantity of entries
2478 * - limit is the number of hash buckets, not the total allocation size
2479 */
2480void *__init alloc_large_system_hash(const char *tablename,
2481				     unsigned long bucketsize,
2482				     unsigned long numentries,
2483				     int scale,
2484				     int flags,
2485				     unsigned int *_hash_shift,
2486				     unsigned int *_hash_mask,
2487				     unsigned long limit)
2488{
2489	unsigned long long max = limit;
2490	unsigned long log2qty, size;
2491	void *table = NULL;
2492
2493	/* allow the kernel cmdline to have a say */
2494	if (!numentries) {
2495		/* round applicable memory size up to nearest megabyte */
2496		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2497		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2498		numentries >>= 20 - PAGE_SHIFT;
2499		numentries <<= 20 - PAGE_SHIFT;
2500
2501		/* limit to 1 bucket per 2^scale bytes of low memory */
2502		if (scale > PAGE_SHIFT)
2503			numentries >>= (scale - PAGE_SHIFT);
2504		else
2505			numentries <<= (PAGE_SHIFT - scale);
2506	}
2507	/* rounded up to nearest power of 2 in size */
2508	numentries = 1UL << (long_log2(numentries) + 1);
2509
2510	/* limit allocation size to 1/16 total memory by default */
2511	if (max == 0) {
2512		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2513		do_div(max, bucketsize);
2514	}
2515
2516	if (numentries > max)
2517		numentries = max;
2518
2519	log2qty = long_log2(numentries);
2520
2521	do {
2522		size = bucketsize << log2qty;
2523		if (flags & HASH_EARLY)
2524			table = alloc_bootmem(size);
2525		else if (hashdist)
2526			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2527		else {
2528			unsigned long order;
2529			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2530				;
2531			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2532		}
2533	} while (!table && size > PAGE_SIZE && --log2qty);
2534
2535	if (!table)
2536		panic("Failed to allocate %s hash table\n", tablename);
2537
2538	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2539	       tablename,
2540	       (1U << log2qty),
2541	       long_log2(size) - PAGE_SHIFT,
2542	       size);
2543
2544	if (_hash_shift)
2545		*_hash_shift = log2qty;
2546	if (_hash_mask)
2547		*_hash_mask = (1 << log2qty) - 1;
2548
2549	return table;
2550}
2551