page_alloc.c revision 12d810c1b8c2b913d48e629e2b5c01d105029839
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77	 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80	 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83	 32
84#endif
85};
86
87EXPORT_SYMBOL(totalram_pages);
88
89static char * const zone_names[MAX_NR_ZONES] = {
90#ifdef CONFIG_ZONE_DMA
91	 "DMA",
92#endif
93#ifdef CONFIG_ZONE_DMA32
94	 "DMA32",
95#endif
96	 "Normal",
97#ifdef CONFIG_HIGHMEM
98	 "HighMem"
99#endif
100};
101
102int min_free_kbytes = 1024;
103
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
106static unsigned long __meminitdata dma_reserve;
107
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109  /*
110   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111   * ranges of memory (RAM) that may be registered with add_active_range().
112   * Ranges passed to add_active_range() will be merged if possible
113   * so the number of times add_active_range() can be called is
114   * related to the number of nodes and the number of holes
115   */
116  #ifdef CONFIG_MAX_ACTIVE_REGIONS
117    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119  #else
120    #if MAX_NUMNODES >= 32
121      /* If there can be many nodes, allow up to 50 holes per node */
122      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123    #else
124      /* By default, allow up to 256 distinct regions */
125      #define MAX_ACTIVE_REGIONS 256
126    #endif
127  #endif
128
129  struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130  int __meminitdata nr_nodemap_entries;
131  unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132  unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139#if MAX_NUMNODES > 1
140int nr_node_ids __read_mostly = MAX_NUMNODES;
141EXPORT_SYMBOL(nr_node_ids);
142#endif
143
144#ifdef CONFIG_DEBUG_VM
145static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
146{
147	int ret = 0;
148	unsigned seq;
149	unsigned long pfn = page_to_pfn(page);
150
151	do {
152		seq = zone_span_seqbegin(zone);
153		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
154			ret = 1;
155		else if (pfn < zone->zone_start_pfn)
156			ret = 1;
157	} while (zone_span_seqretry(zone, seq));
158
159	return ret;
160}
161
162static int page_is_consistent(struct zone *zone, struct page *page)
163{
164	if (!pfn_valid_within(page_to_pfn(page)))
165		return 0;
166	if (zone != page_zone(page))
167		return 0;
168
169	return 1;
170}
171/*
172 * Temporary debugging check for pages not lying within a given zone.
173 */
174static int bad_range(struct zone *zone, struct page *page)
175{
176	if (page_outside_zone_boundaries(zone, page))
177		return 1;
178	if (!page_is_consistent(zone, page))
179		return 1;
180
181	return 0;
182}
183#else
184static inline int bad_range(struct zone *zone, struct page *page)
185{
186	return 0;
187}
188#endif
189
190static void bad_page(struct page *page)
191{
192	printk(KERN_EMERG "Bad page state in process '%s'\n"
193		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
194		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
195		KERN_EMERG "Backtrace:\n",
196		current->comm, page, (int)(2*sizeof(unsigned long)),
197		(unsigned long)page->flags, page->mapping,
198		page_mapcount(page), page_count(page));
199	dump_stack();
200	page->flags &= ~(1 << PG_lru	|
201			1 << PG_private |
202			1 << PG_locked	|
203			1 << PG_active	|
204			1 << PG_dirty	|
205			1 << PG_reclaim |
206			1 << PG_slab    |
207			1 << PG_swapcache |
208			1 << PG_writeback |
209			1 << PG_buddy );
210	set_page_count(page, 0);
211	reset_page_mapcount(page);
212	page->mapping = NULL;
213	add_taint(TAINT_BAD_PAGE);
214}
215
216/*
217 * Higher-order pages are called "compound pages".  They are structured thusly:
218 *
219 * The first PAGE_SIZE page is called the "head page".
220 *
221 * The remaining PAGE_SIZE pages are called "tail pages".
222 *
223 * All pages have PG_compound set.  All pages have their ->private pointing at
224 * the head page (even the head page has this).
225 *
226 * The first tail page's ->lru.next holds the address of the compound page's
227 * put_page() function.  Its ->lru.prev holds the order of allocation.
228 * This usage means that zero-order pages may not be compound.
229 */
230
231static void free_compound_page(struct page *page)
232{
233	__free_pages_ok(page, compound_order(page));
234}
235
236static void prep_compound_page(struct page *page, unsigned long order)
237{
238	int i;
239	int nr_pages = 1 << order;
240
241	set_compound_page_dtor(page, free_compound_page);
242	set_compound_order(page, order);
243	__SetPageHead(page);
244	for (i = 1; i < nr_pages; i++) {
245		struct page *p = page + i;
246
247		__SetPageTail(p);
248		p->first_page = page;
249	}
250}
251
252static void destroy_compound_page(struct page *page, unsigned long order)
253{
254	int i;
255	int nr_pages = 1 << order;
256
257	if (unlikely(compound_order(page) != order))
258		bad_page(page);
259
260	if (unlikely(!PageHead(page)))
261			bad_page(page);
262	__ClearPageHead(page);
263	for (i = 1; i < nr_pages; i++) {
264		struct page *p = page + i;
265
266		if (unlikely(!PageTail(p) |
267				(p->first_page != page)))
268			bad_page(page);
269		__ClearPageTail(p);
270	}
271}
272
273static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
274{
275	int i;
276
277	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
278	/*
279	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
280	 * and __GFP_HIGHMEM from hard or soft interrupt context.
281	 */
282	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
283	for (i = 0; i < (1 << order); i++)
284		clear_highpage(page + i);
285}
286
287/*
288 * function for dealing with page's order in buddy system.
289 * zone->lock is already acquired when we use these.
290 * So, we don't need atomic page->flags operations here.
291 */
292static inline unsigned long page_order(struct page *page)
293{
294	return page_private(page);
295}
296
297static inline void set_page_order(struct page *page, int order)
298{
299	set_page_private(page, order);
300	__SetPageBuddy(page);
301}
302
303static inline void rmv_page_order(struct page *page)
304{
305	__ClearPageBuddy(page);
306	set_page_private(page, 0);
307}
308
309/*
310 * Locate the struct page for both the matching buddy in our
311 * pair (buddy1) and the combined O(n+1) page they form (page).
312 *
313 * 1) Any buddy B1 will have an order O twin B2 which satisfies
314 * the following equation:
315 *     B2 = B1 ^ (1 << O)
316 * For example, if the starting buddy (buddy2) is #8 its order
317 * 1 buddy is #10:
318 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
319 *
320 * 2) Any buddy B will have an order O+1 parent P which
321 * satisfies the following equation:
322 *     P = B & ~(1 << O)
323 *
324 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
325 */
326static inline struct page *
327__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
328{
329	unsigned long buddy_idx = page_idx ^ (1 << order);
330
331	return page + (buddy_idx - page_idx);
332}
333
334static inline unsigned long
335__find_combined_index(unsigned long page_idx, unsigned int order)
336{
337	return (page_idx & ~(1 << order));
338}
339
340/*
341 * This function checks whether a page is free && is the buddy
342 * we can do coalesce a page and its buddy if
343 * (a) the buddy is not in a hole &&
344 * (b) the buddy is in the buddy system &&
345 * (c) a page and its buddy have the same order &&
346 * (d) a page and its buddy are in the same zone.
347 *
348 * For recording whether a page is in the buddy system, we use PG_buddy.
349 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
350 *
351 * For recording page's order, we use page_private(page).
352 */
353static inline int page_is_buddy(struct page *page, struct page *buddy,
354								int order)
355{
356	if (!pfn_valid_within(page_to_pfn(buddy)))
357		return 0;
358
359	if (page_zone_id(page) != page_zone_id(buddy))
360		return 0;
361
362	if (PageBuddy(buddy) && page_order(buddy) == order) {
363		BUG_ON(page_count(buddy) != 0);
364		return 1;
365	}
366	return 0;
367}
368
369/*
370 * Freeing function for a buddy system allocator.
371 *
372 * The concept of a buddy system is to maintain direct-mapped table
373 * (containing bit values) for memory blocks of various "orders".
374 * The bottom level table contains the map for the smallest allocatable
375 * units of memory (here, pages), and each level above it describes
376 * pairs of units from the levels below, hence, "buddies".
377 * At a high level, all that happens here is marking the table entry
378 * at the bottom level available, and propagating the changes upward
379 * as necessary, plus some accounting needed to play nicely with other
380 * parts of the VM system.
381 * At each level, we keep a list of pages, which are heads of continuous
382 * free pages of length of (1 << order) and marked with PG_buddy. Page's
383 * order is recorded in page_private(page) field.
384 * So when we are allocating or freeing one, we can derive the state of the
385 * other.  That is, if we allocate a small block, and both were
386 * free, the remainder of the region must be split into blocks.
387 * If a block is freed, and its buddy is also free, then this
388 * triggers coalescing into a block of larger size.
389 *
390 * -- wli
391 */
392
393static inline void __free_one_page(struct page *page,
394		struct zone *zone, unsigned int order)
395{
396	unsigned long page_idx;
397	int order_size = 1 << order;
398
399	if (unlikely(PageCompound(page)))
400		destroy_compound_page(page, order);
401
402	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
403
404	VM_BUG_ON(page_idx & (order_size - 1));
405	VM_BUG_ON(bad_range(zone, page));
406
407	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
408	while (order < MAX_ORDER-1) {
409		unsigned long combined_idx;
410		struct free_area *area;
411		struct page *buddy;
412
413		buddy = __page_find_buddy(page, page_idx, order);
414		if (!page_is_buddy(page, buddy, order))
415			break;		/* Move the buddy up one level. */
416
417		list_del(&buddy->lru);
418		area = zone->free_area + order;
419		area->nr_free--;
420		rmv_page_order(buddy);
421		combined_idx = __find_combined_index(page_idx, order);
422		page = page + (combined_idx - page_idx);
423		page_idx = combined_idx;
424		order++;
425	}
426	set_page_order(page, order);
427	list_add(&page->lru, &zone->free_area[order].free_list);
428	zone->free_area[order].nr_free++;
429}
430
431static inline int free_pages_check(struct page *page)
432{
433	if (unlikely(page_mapcount(page) |
434		(page->mapping != NULL)  |
435		(page_count(page) != 0)  |
436		(page->flags & (
437			1 << PG_lru	|
438			1 << PG_private |
439			1 << PG_locked	|
440			1 << PG_active	|
441			1 << PG_slab	|
442			1 << PG_swapcache |
443			1 << PG_writeback |
444			1 << PG_reserved |
445			1 << PG_buddy ))))
446		bad_page(page);
447	/*
448	 * PageReclaim == PageTail. It is only an error
449	 * for PageReclaim to be set if PageCompound is clear.
450	 */
451	if (unlikely(!PageCompound(page) && PageReclaim(page)))
452		bad_page(page);
453	if (PageDirty(page))
454		__ClearPageDirty(page);
455	/*
456	 * For now, we report if PG_reserved was found set, but do not
457	 * clear it, and do not free the page.  But we shall soon need
458	 * to do more, for when the ZERO_PAGE count wraps negative.
459	 */
460	return PageReserved(page);
461}
462
463/*
464 * Frees a list of pages.
465 * Assumes all pages on list are in same zone, and of same order.
466 * count is the number of pages to free.
467 *
468 * If the zone was previously in an "all pages pinned" state then look to
469 * see if this freeing clears that state.
470 *
471 * And clear the zone's pages_scanned counter, to hold off the "all pages are
472 * pinned" detection logic.
473 */
474static void free_pages_bulk(struct zone *zone, int count,
475					struct list_head *list, int order)
476{
477	spin_lock(&zone->lock);
478	zone->all_unreclaimable = 0;
479	zone->pages_scanned = 0;
480	while (count--) {
481		struct page *page;
482
483		VM_BUG_ON(list_empty(list));
484		page = list_entry(list->prev, struct page, lru);
485		/* have to delete it as __free_one_page list manipulates */
486		list_del(&page->lru);
487		__free_one_page(page, zone, order);
488	}
489	spin_unlock(&zone->lock);
490}
491
492static void free_one_page(struct zone *zone, struct page *page, int order)
493{
494	spin_lock(&zone->lock);
495	zone->all_unreclaimable = 0;
496	zone->pages_scanned = 0;
497	__free_one_page(page, zone, order);
498	spin_unlock(&zone->lock);
499}
500
501static void __free_pages_ok(struct page *page, unsigned int order)
502{
503	unsigned long flags;
504	int i;
505	int reserved = 0;
506
507	for (i = 0 ; i < (1 << order) ; ++i)
508		reserved += free_pages_check(page + i);
509	if (reserved)
510		return;
511
512	if (!PageHighMem(page))
513		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
514	arch_free_page(page, order);
515	kernel_map_pages(page, 1 << order, 0);
516
517	local_irq_save(flags);
518	__count_vm_events(PGFREE, 1 << order);
519	free_one_page(page_zone(page), page, order);
520	local_irq_restore(flags);
521}
522
523/*
524 * permit the bootmem allocator to evade page validation on high-order frees
525 */
526void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
527{
528	if (order == 0) {
529		__ClearPageReserved(page);
530		set_page_count(page, 0);
531		set_page_refcounted(page);
532		__free_page(page);
533	} else {
534		int loop;
535
536		prefetchw(page);
537		for (loop = 0; loop < BITS_PER_LONG; loop++) {
538			struct page *p = &page[loop];
539
540			if (loop + 1 < BITS_PER_LONG)
541				prefetchw(p + 1);
542			__ClearPageReserved(p);
543			set_page_count(p, 0);
544		}
545
546		set_page_refcounted(page);
547		__free_pages(page, order);
548	}
549}
550
551
552/*
553 * The order of subdivision here is critical for the IO subsystem.
554 * Please do not alter this order without good reasons and regression
555 * testing. Specifically, as large blocks of memory are subdivided,
556 * the order in which smaller blocks are delivered depends on the order
557 * they're subdivided in this function. This is the primary factor
558 * influencing the order in which pages are delivered to the IO
559 * subsystem according to empirical testing, and this is also justified
560 * by considering the behavior of a buddy system containing a single
561 * large block of memory acted on by a series of small allocations.
562 * This behavior is a critical factor in sglist merging's success.
563 *
564 * -- wli
565 */
566static inline void expand(struct zone *zone, struct page *page,
567 	int low, int high, struct free_area *area)
568{
569	unsigned long size = 1 << high;
570
571	while (high > low) {
572		area--;
573		high--;
574		size >>= 1;
575		VM_BUG_ON(bad_range(zone, &page[size]));
576		list_add(&page[size].lru, &area->free_list);
577		area->nr_free++;
578		set_page_order(&page[size], high);
579	}
580}
581
582/*
583 * This page is about to be returned from the page allocator
584 */
585static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
586{
587	if (unlikely(page_mapcount(page) |
588		(page->mapping != NULL)  |
589		(page_count(page) != 0)  |
590		(page->flags & (
591			1 << PG_lru	|
592			1 << PG_private	|
593			1 << PG_locked	|
594			1 << PG_active	|
595			1 << PG_dirty	|
596			1 << PG_reclaim	|
597			1 << PG_slab    |
598			1 << PG_swapcache |
599			1 << PG_writeback |
600			1 << PG_reserved |
601			1 << PG_buddy ))))
602		bad_page(page);
603
604	/*
605	 * For now, we report if PG_reserved was found set, but do not
606	 * clear it, and do not allocate the page: as a safety net.
607	 */
608	if (PageReserved(page))
609		return 1;
610
611	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
612			1 << PG_referenced | 1 << PG_arch_1 |
613			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614	set_page_private(page, 0);
615	set_page_refcounted(page);
616
617	arch_alloc_page(page, order);
618	kernel_map_pages(page, 1 << order, 1);
619
620	if (gfp_flags & __GFP_ZERO)
621		prep_zero_page(page, order, gfp_flags);
622
623	if (order && (gfp_flags & __GFP_COMP))
624		prep_compound_page(page, order);
625
626	return 0;
627}
628
629/*
630 * Do the hard work of removing an element from the buddy allocator.
631 * Call me with the zone->lock already held.
632 */
633static struct page *__rmqueue(struct zone *zone, unsigned int order)
634{
635	struct free_area * area;
636	unsigned int current_order;
637	struct page *page;
638
639	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
640		area = zone->free_area + current_order;
641		if (list_empty(&area->free_list))
642			continue;
643
644		page = list_entry(area->free_list.next, struct page, lru);
645		list_del(&page->lru);
646		rmv_page_order(page);
647		area->nr_free--;
648		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
649		expand(zone, page, order, current_order, area);
650		return page;
651	}
652
653	return NULL;
654}
655
656/*
657 * Obtain a specified number of elements from the buddy allocator, all under
658 * a single hold of the lock, for efficiency.  Add them to the supplied list.
659 * Returns the number of new pages which were placed at *list.
660 */
661static int rmqueue_bulk(struct zone *zone, unsigned int order,
662			unsigned long count, struct list_head *list)
663{
664	int i;
665
666	spin_lock(&zone->lock);
667	for (i = 0; i < count; ++i) {
668		struct page *page = __rmqueue(zone, order);
669		if (unlikely(page == NULL))
670			break;
671		list_add_tail(&page->lru, list);
672	}
673	spin_unlock(&zone->lock);
674	return i;
675}
676
677#ifdef CONFIG_NUMA
678/*
679 * Called from the vmstat counter updater to drain pagesets of this
680 * currently executing processor on remote nodes after they have
681 * expired.
682 *
683 * Note that this function must be called with the thread pinned to
684 * a single processor.
685 */
686void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
687{
688	unsigned long flags;
689	int to_drain;
690
691	local_irq_save(flags);
692	if (pcp->count >= pcp->batch)
693		to_drain = pcp->batch;
694	else
695		to_drain = pcp->count;
696	free_pages_bulk(zone, to_drain, &pcp->list, 0);
697	pcp->count -= to_drain;
698	local_irq_restore(flags);
699}
700#endif
701
702static void __drain_pages(unsigned int cpu)
703{
704	unsigned long flags;
705	struct zone *zone;
706	int i;
707
708	for_each_zone(zone) {
709		struct per_cpu_pageset *pset;
710
711		if (!populated_zone(zone))
712			continue;
713
714		pset = zone_pcp(zone, cpu);
715		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716			struct per_cpu_pages *pcp;
717
718			pcp = &pset->pcp[i];
719			local_irq_save(flags);
720			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721			pcp->count = 0;
722			local_irq_restore(flags);
723		}
724	}
725}
726
727#ifdef CONFIG_PM
728
729void mark_free_pages(struct zone *zone)
730{
731	unsigned long pfn, max_zone_pfn;
732	unsigned long flags;
733	int order;
734	struct list_head *curr;
735
736	if (!zone->spanned_pages)
737		return;
738
739	spin_lock_irqsave(&zone->lock, flags);
740
741	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743		if (pfn_valid(pfn)) {
744			struct page *page = pfn_to_page(pfn);
745
746			if (!swsusp_page_is_forbidden(page))
747				swsusp_unset_page_free(page);
748		}
749
750	for (order = MAX_ORDER - 1; order >= 0; --order)
751		list_for_each(curr, &zone->free_area[order].free_list) {
752			unsigned long i;
753
754			pfn = page_to_pfn(list_entry(curr, struct page, lru));
755			for (i = 0; i < (1UL << order); i++)
756				swsusp_set_page_free(pfn_to_page(pfn + i));
757		}
758
759	spin_unlock_irqrestore(&zone->lock, flags);
760}
761
762/*
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764 */
765void drain_local_pages(void)
766{
767	unsigned long flags;
768
769	local_irq_save(flags);
770	__drain_pages(smp_processor_id());
771	local_irq_restore(flags);
772}
773#endif /* CONFIG_PM */
774
775/*
776 * Free a 0-order page
777 */
778static void fastcall free_hot_cold_page(struct page *page, int cold)
779{
780	struct zone *zone = page_zone(page);
781	struct per_cpu_pages *pcp;
782	unsigned long flags;
783
784	if (PageAnon(page))
785		page->mapping = NULL;
786	if (free_pages_check(page))
787		return;
788
789	if (!PageHighMem(page))
790		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791	arch_free_page(page, 0);
792	kernel_map_pages(page, 1, 0);
793
794	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795	local_irq_save(flags);
796	__count_vm_event(PGFREE);
797	list_add(&page->lru, &pcp->list);
798	pcp->count++;
799	if (pcp->count >= pcp->high) {
800		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801		pcp->count -= pcp->batch;
802	}
803	local_irq_restore(flags);
804	put_cpu();
805}
806
807void fastcall free_hot_page(struct page *page)
808{
809	free_hot_cold_page(page, 0);
810}
811
812void fastcall free_cold_page(struct page *page)
813{
814	free_hot_cold_page(page, 1);
815}
816
817/*
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
821 *
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
824 */
825void split_page(struct page *page, unsigned int order)
826{
827	int i;
828
829	VM_BUG_ON(PageCompound(page));
830	VM_BUG_ON(!page_count(page));
831	for (i = 1; i < (1 << order); i++)
832		set_page_refcounted(page + i);
833}
834
835/*
836 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
837 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
838 * or two.
839 */
840static struct page *buffered_rmqueue(struct zonelist *zonelist,
841			struct zone *zone, int order, gfp_t gfp_flags)
842{
843	unsigned long flags;
844	struct page *page;
845	int cold = !!(gfp_flags & __GFP_COLD);
846	int cpu;
847
848again:
849	cpu  = get_cpu();
850	if (likely(order == 0)) {
851		struct per_cpu_pages *pcp;
852
853		pcp = &zone_pcp(zone, cpu)->pcp[cold];
854		local_irq_save(flags);
855		if (!pcp->count) {
856			pcp->count = rmqueue_bulk(zone, 0,
857						pcp->batch, &pcp->list);
858			if (unlikely(!pcp->count))
859				goto failed;
860		}
861		page = list_entry(pcp->list.next, struct page, lru);
862		list_del(&page->lru);
863		pcp->count--;
864	} else {
865		spin_lock_irqsave(&zone->lock, flags);
866		page = __rmqueue(zone, order);
867		spin_unlock(&zone->lock);
868		if (!page)
869			goto failed;
870	}
871
872	__count_zone_vm_events(PGALLOC, zone, 1 << order);
873	zone_statistics(zonelist, zone);
874	local_irq_restore(flags);
875	put_cpu();
876
877	VM_BUG_ON(bad_range(zone, page));
878	if (prep_new_page(page, order, gfp_flags))
879		goto again;
880	return page;
881
882failed:
883	local_irq_restore(flags);
884	put_cpu();
885	return NULL;
886}
887
888#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
889#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
890#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
891#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
892#define ALLOC_HARDER		0x10 /* try to alloc harder */
893#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
894#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
895
896#ifdef CONFIG_FAIL_PAGE_ALLOC
897
898static struct fail_page_alloc_attr {
899	struct fault_attr attr;
900
901	u32 ignore_gfp_highmem;
902	u32 ignore_gfp_wait;
903
904#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
905
906	struct dentry *ignore_gfp_highmem_file;
907	struct dentry *ignore_gfp_wait_file;
908
909#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
910
911} fail_page_alloc = {
912	.attr = FAULT_ATTR_INITIALIZER,
913	.ignore_gfp_wait = 1,
914	.ignore_gfp_highmem = 1,
915};
916
917static int __init setup_fail_page_alloc(char *str)
918{
919	return setup_fault_attr(&fail_page_alloc.attr, str);
920}
921__setup("fail_page_alloc=", setup_fail_page_alloc);
922
923static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
924{
925	if (gfp_mask & __GFP_NOFAIL)
926		return 0;
927	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
928		return 0;
929	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
930		return 0;
931
932	return should_fail(&fail_page_alloc.attr, 1 << order);
933}
934
935#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
936
937static int __init fail_page_alloc_debugfs(void)
938{
939	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
940	struct dentry *dir;
941	int err;
942
943	err = init_fault_attr_dentries(&fail_page_alloc.attr,
944				       "fail_page_alloc");
945	if (err)
946		return err;
947	dir = fail_page_alloc.attr.dentries.dir;
948
949	fail_page_alloc.ignore_gfp_wait_file =
950		debugfs_create_bool("ignore-gfp-wait", mode, dir,
951				      &fail_page_alloc.ignore_gfp_wait);
952
953	fail_page_alloc.ignore_gfp_highmem_file =
954		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
955				      &fail_page_alloc.ignore_gfp_highmem);
956
957	if (!fail_page_alloc.ignore_gfp_wait_file ||
958			!fail_page_alloc.ignore_gfp_highmem_file) {
959		err = -ENOMEM;
960		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
961		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
962		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
963	}
964
965	return err;
966}
967
968late_initcall(fail_page_alloc_debugfs);
969
970#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
971
972#else /* CONFIG_FAIL_PAGE_ALLOC */
973
974static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
975{
976	return 0;
977}
978
979#endif /* CONFIG_FAIL_PAGE_ALLOC */
980
981/*
982 * Return 1 if free pages are above 'mark'. This takes into account the order
983 * of the allocation.
984 */
985int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
986		      int classzone_idx, int alloc_flags)
987{
988	/* free_pages my go negative - that's OK */
989	long min = mark;
990	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
991	int o;
992
993	if (alloc_flags & ALLOC_HIGH)
994		min -= min / 2;
995	if (alloc_flags & ALLOC_HARDER)
996		min -= min / 4;
997
998	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
999		return 0;
1000	for (o = 0; o < order; o++) {
1001		/* At the next order, this order's pages become unavailable */
1002		free_pages -= z->free_area[o].nr_free << o;
1003
1004		/* Require fewer higher order pages to be free */
1005		min >>= 1;
1006
1007		if (free_pages <= min)
1008			return 0;
1009	}
1010	return 1;
1011}
1012
1013#ifdef CONFIG_NUMA
1014/*
1015 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1016 * skip over zones that are not allowed by the cpuset, or that have
1017 * been recently (in last second) found to be nearly full.  See further
1018 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1019 * that have to skip over alot of full or unallowed zones.
1020 *
1021 * If the zonelist cache is present in the passed in zonelist, then
1022 * returns a pointer to the allowed node mask (either the current
1023 * tasks mems_allowed, or node_online_map.)
1024 *
1025 * If the zonelist cache is not available for this zonelist, does
1026 * nothing and returns NULL.
1027 *
1028 * If the fullzones BITMAP in the zonelist cache is stale (more than
1029 * a second since last zap'd) then we zap it out (clear its bits.)
1030 *
1031 * We hold off even calling zlc_setup, until after we've checked the
1032 * first zone in the zonelist, on the theory that most allocations will
1033 * be satisfied from that first zone, so best to examine that zone as
1034 * quickly as we can.
1035 */
1036static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1037{
1038	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1039	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1040
1041	zlc = zonelist->zlcache_ptr;
1042	if (!zlc)
1043		return NULL;
1044
1045	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1046		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1047		zlc->last_full_zap = jiffies;
1048	}
1049
1050	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1051					&cpuset_current_mems_allowed :
1052					&node_online_map;
1053	return allowednodes;
1054}
1055
1056/*
1057 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1058 * if it is worth looking at further for free memory:
1059 *  1) Check that the zone isn't thought to be full (doesn't have its
1060 *     bit set in the zonelist_cache fullzones BITMAP).
1061 *  2) Check that the zones node (obtained from the zonelist_cache
1062 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1063 * Return true (non-zero) if zone is worth looking at further, or
1064 * else return false (zero) if it is not.
1065 *
1066 * This check -ignores- the distinction between various watermarks,
1067 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1068 * found to be full for any variation of these watermarks, it will
1069 * be considered full for up to one second by all requests, unless
1070 * we are so low on memory on all allowed nodes that we are forced
1071 * into the second scan of the zonelist.
1072 *
1073 * In the second scan we ignore this zonelist cache and exactly
1074 * apply the watermarks to all zones, even it is slower to do so.
1075 * We are low on memory in the second scan, and should leave no stone
1076 * unturned looking for a free page.
1077 */
1078static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1079						nodemask_t *allowednodes)
1080{
1081	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1082	int i;				/* index of *z in zonelist zones */
1083	int n;				/* node that zone *z is on */
1084
1085	zlc = zonelist->zlcache_ptr;
1086	if (!zlc)
1087		return 1;
1088
1089	i = z - zonelist->zones;
1090	n = zlc->z_to_n[i];
1091
1092	/* This zone is worth trying if it is allowed but not full */
1093	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1094}
1095
1096/*
1097 * Given 'z' scanning a zonelist, set the corresponding bit in
1098 * zlc->fullzones, so that subsequent attempts to allocate a page
1099 * from that zone don't waste time re-examining it.
1100 */
1101static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1102{
1103	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1104	int i;				/* index of *z in zonelist zones */
1105
1106	zlc = zonelist->zlcache_ptr;
1107	if (!zlc)
1108		return;
1109
1110	i = z - zonelist->zones;
1111
1112	set_bit(i, zlc->fullzones);
1113}
1114
1115#else	/* CONFIG_NUMA */
1116
1117static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1118{
1119	return NULL;
1120}
1121
1122static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1123				nodemask_t *allowednodes)
1124{
1125	return 1;
1126}
1127
1128static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1129{
1130}
1131#endif	/* CONFIG_NUMA */
1132
1133/*
1134 * get_page_from_freelist goes through the zonelist trying to allocate
1135 * a page.
1136 */
1137static struct page *
1138get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1139		struct zonelist *zonelist, int alloc_flags)
1140{
1141	struct zone **z;
1142	struct page *page = NULL;
1143	int classzone_idx = zone_idx(zonelist->zones[0]);
1144	struct zone *zone;
1145	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1146	int zlc_active = 0;		/* set if using zonelist_cache */
1147	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1148
1149zonelist_scan:
1150	/*
1151	 * Scan zonelist, looking for a zone with enough free.
1152	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1153	 */
1154	z = zonelist->zones;
1155
1156	do {
1157		if (NUMA_BUILD && zlc_active &&
1158			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1159				continue;
1160		zone = *z;
1161		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1162			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1163				break;
1164		if ((alloc_flags & ALLOC_CPUSET) &&
1165			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1166				goto try_next_zone;
1167
1168		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1169			unsigned long mark;
1170			if (alloc_flags & ALLOC_WMARK_MIN)
1171				mark = zone->pages_min;
1172			else if (alloc_flags & ALLOC_WMARK_LOW)
1173				mark = zone->pages_low;
1174			else
1175				mark = zone->pages_high;
1176			if (!zone_watermark_ok(zone, order, mark,
1177				    classzone_idx, alloc_flags)) {
1178				if (!zone_reclaim_mode ||
1179				    !zone_reclaim(zone, gfp_mask, order))
1180					goto this_zone_full;
1181			}
1182		}
1183
1184		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1185		if (page)
1186			break;
1187this_zone_full:
1188		if (NUMA_BUILD)
1189			zlc_mark_zone_full(zonelist, z);
1190try_next_zone:
1191		if (NUMA_BUILD && !did_zlc_setup) {
1192			/* we do zlc_setup after the first zone is tried */
1193			allowednodes = zlc_setup(zonelist, alloc_flags);
1194			zlc_active = 1;
1195			did_zlc_setup = 1;
1196		}
1197	} while (*(++z) != NULL);
1198
1199	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1200		/* Disable zlc cache for second zonelist scan */
1201		zlc_active = 0;
1202		goto zonelist_scan;
1203	}
1204	return page;
1205}
1206
1207/*
1208 * This is the 'heart' of the zoned buddy allocator.
1209 */
1210struct page * fastcall
1211__alloc_pages(gfp_t gfp_mask, unsigned int order,
1212		struct zonelist *zonelist)
1213{
1214	const gfp_t wait = gfp_mask & __GFP_WAIT;
1215	struct zone **z;
1216	struct page *page;
1217	struct reclaim_state reclaim_state;
1218	struct task_struct *p = current;
1219	int do_retry;
1220	int alloc_flags;
1221	int did_some_progress;
1222
1223	might_sleep_if(wait);
1224
1225	if (should_fail_alloc_page(gfp_mask, order))
1226		return NULL;
1227
1228restart:
1229	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1230
1231	if (unlikely(*z == NULL)) {
1232		/* Should this ever happen?? */
1233		return NULL;
1234	}
1235
1236	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1237				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1238	if (page)
1239		goto got_pg;
1240
1241	/*
1242	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1243	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1244	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1245	 * using a larger set of nodes after it has established that the
1246	 * allowed per node queues are empty and that nodes are
1247	 * over allocated.
1248	 */
1249	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1250		goto nopage;
1251
1252	for (z = zonelist->zones; *z; z++)
1253		wakeup_kswapd(*z, order);
1254
1255	/*
1256	 * OK, we're below the kswapd watermark and have kicked background
1257	 * reclaim. Now things get more complex, so set up alloc_flags according
1258	 * to how we want to proceed.
1259	 *
1260	 * The caller may dip into page reserves a bit more if the caller
1261	 * cannot run direct reclaim, or if the caller has realtime scheduling
1262	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1263	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1264	 */
1265	alloc_flags = ALLOC_WMARK_MIN;
1266	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1267		alloc_flags |= ALLOC_HARDER;
1268	if (gfp_mask & __GFP_HIGH)
1269		alloc_flags |= ALLOC_HIGH;
1270	if (wait)
1271		alloc_flags |= ALLOC_CPUSET;
1272
1273	/*
1274	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1275	 * coming from realtime tasks go deeper into reserves.
1276	 *
1277	 * This is the last chance, in general, before the goto nopage.
1278	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1279	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1280	 */
1281	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1282	if (page)
1283		goto got_pg;
1284
1285	/* This allocation should allow future memory freeing. */
1286
1287rebalance:
1288	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1289			&& !in_interrupt()) {
1290		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1291nofail_alloc:
1292			/* go through the zonelist yet again, ignoring mins */
1293			page = get_page_from_freelist(gfp_mask, order,
1294				zonelist, ALLOC_NO_WATERMARKS);
1295			if (page)
1296				goto got_pg;
1297			if (gfp_mask & __GFP_NOFAIL) {
1298				congestion_wait(WRITE, HZ/50);
1299				goto nofail_alloc;
1300			}
1301		}
1302		goto nopage;
1303	}
1304
1305	/* Atomic allocations - we can't balance anything */
1306	if (!wait)
1307		goto nopage;
1308
1309	cond_resched();
1310
1311	/* We now go into synchronous reclaim */
1312	cpuset_memory_pressure_bump();
1313	p->flags |= PF_MEMALLOC;
1314	reclaim_state.reclaimed_slab = 0;
1315	p->reclaim_state = &reclaim_state;
1316
1317	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1318
1319	p->reclaim_state = NULL;
1320	p->flags &= ~PF_MEMALLOC;
1321
1322	cond_resched();
1323
1324	if (likely(did_some_progress)) {
1325		page = get_page_from_freelist(gfp_mask, order,
1326						zonelist, alloc_flags);
1327		if (page)
1328			goto got_pg;
1329	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1330		/*
1331		 * Go through the zonelist yet one more time, keep
1332		 * very high watermark here, this is only to catch
1333		 * a parallel oom killing, we must fail if we're still
1334		 * under heavy pressure.
1335		 */
1336		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1337				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1338		if (page)
1339			goto got_pg;
1340
1341		out_of_memory(zonelist, gfp_mask, order);
1342		goto restart;
1343	}
1344
1345	/*
1346	 * Don't let big-order allocations loop unless the caller explicitly
1347	 * requests that.  Wait for some write requests to complete then retry.
1348	 *
1349	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1350	 * <= 3, but that may not be true in other implementations.
1351	 */
1352	do_retry = 0;
1353	if (!(gfp_mask & __GFP_NORETRY)) {
1354		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1355			do_retry = 1;
1356		if (gfp_mask & __GFP_NOFAIL)
1357			do_retry = 1;
1358	}
1359	if (do_retry) {
1360		congestion_wait(WRITE, HZ/50);
1361		goto rebalance;
1362	}
1363
1364nopage:
1365	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1366		printk(KERN_WARNING "%s: page allocation failure."
1367			" order:%d, mode:0x%x\n",
1368			p->comm, order, gfp_mask);
1369		dump_stack();
1370		show_mem();
1371	}
1372got_pg:
1373	return page;
1374}
1375
1376EXPORT_SYMBOL(__alloc_pages);
1377
1378/*
1379 * Common helper functions.
1380 */
1381fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1382{
1383	struct page * page;
1384	page = alloc_pages(gfp_mask, order);
1385	if (!page)
1386		return 0;
1387	return (unsigned long) page_address(page);
1388}
1389
1390EXPORT_SYMBOL(__get_free_pages);
1391
1392fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1393{
1394	struct page * page;
1395
1396	/*
1397	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1398	 * a highmem page
1399	 */
1400	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1401
1402	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1403	if (page)
1404		return (unsigned long) page_address(page);
1405	return 0;
1406}
1407
1408EXPORT_SYMBOL(get_zeroed_page);
1409
1410void __pagevec_free(struct pagevec *pvec)
1411{
1412	int i = pagevec_count(pvec);
1413
1414	while (--i >= 0)
1415		free_hot_cold_page(pvec->pages[i], pvec->cold);
1416}
1417
1418fastcall void __free_pages(struct page *page, unsigned int order)
1419{
1420	if (put_page_testzero(page)) {
1421		if (order == 0)
1422			free_hot_page(page);
1423		else
1424			__free_pages_ok(page, order);
1425	}
1426}
1427
1428EXPORT_SYMBOL(__free_pages);
1429
1430fastcall void free_pages(unsigned long addr, unsigned int order)
1431{
1432	if (addr != 0) {
1433		VM_BUG_ON(!virt_addr_valid((void *)addr));
1434		__free_pages(virt_to_page((void *)addr), order);
1435	}
1436}
1437
1438EXPORT_SYMBOL(free_pages);
1439
1440static unsigned int nr_free_zone_pages(int offset)
1441{
1442	/* Just pick one node, since fallback list is circular */
1443	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1444	unsigned int sum = 0;
1445
1446	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1447	struct zone **zonep = zonelist->zones;
1448	struct zone *zone;
1449
1450	for (zone = *zonep++; zone; zone = *zonep++) {
1451		unsigned long size = zone->present_pages;
1452		unsigned long high = zone->pages_high;
1453		if (size > high)
1454			sum += size - high;
1455	}
1456
1457	return sum;
1458}
1459
1460/*
1461 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1462 */
1463unsigned int nr_free_buffer_pages(void)
1464{
1465	return nr_free_zone_pages(gfp_zone(GFP_USER));
1466}
1467
1468/*
1469 * Amount of free RAM allocatable within all zones
1470 */
1471unsigned int nr_free_pagecache_pages(void)
1472{
1473	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1474}
1475
1476static inline void show_node(struct zone *zone)
1477{
1478	if (NUMA_BUILD)
1479		printk("Node %d ", zone_to_nid(zone));
1480}
1481
1482void si_meminfo(struct sysinfo *val)
1483{
1484	val->totalram = totalram_pages;
1485	val->sharedram = 0;
1486	val->freeram = global_page_state(NR_FREE_PAGES);
1487	val->bufferram = nr_blockdev_pages();
1488	val->totalhigh = totalhigh_pages;
1489	val->freehigh = nr_free_highpages();
1490	val->mem_unit = PAGE_SIZE;
1491}
1492
1493EXPORT_SYMBOL(si_meminfo);
1494
1495#ifdef CONFIG_NUMA
1496void si_meminfo_node(struct sysinfo *val, int nid)
1497{
1498	pg_data_t *pgdat = NODE_DATA(nid);
1499
1500	val->totalram = pgdat->node_present_pages;
1501	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1502#ifdef CONFIG_HIGHMEM
1503	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1504	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1505			NR_FREE_PAGES);
1506#else
1507	val->totalhigh = 0;
1508	val->freehigh = 0;
1509#endif
1510	val->mem_unit = PAGE_SIZE;
1511}
1512#endif
1513
1514#define K(x) ((x) << (PAGE_SHIFT-10))
1515
1516/*
1517 * Show free area list (used inside shift_scroll-lock stuff)
1518 * We also calculate the percentage fragmentation. We do this by counting the
1519 * memory on each free list with the exception of the first item on the list.
1520 */
1521void show_free_areas(void)
1522{
1523	int cpu;
1524	struct zone *zone;
1525
1526	for_each_zone(zone) {
1527		if (!populated_zone(zone))
1528			continue;
1529
1530		show_node(zone);
1531		printk("%s per-cpu:\n", zone->name);
1532
1533		for_each_online_cpu(cpu) {
1534			struct per_cpu_pageset *pageset;
1535
1536			pageset = zone_pcp(zone, cpu);
1537
1538			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1539			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1540			       cpu, pageset->pcp[0].high,
1541			       pageset->pcp[0].batch, pageset->pcp[0].count,
1542			       pageset->pcp[1].high, pageset->pcp[1].batch,
1543			       pageset->pcp[1].count);
1544		}
1545	}
1546
1547	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1548		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1549		global_page_state(NR_ACTIVE),
1550		global_page_state(NR_INACTIVE),
1551		global_page_state(NR_FILE_DIRTY),
1552		global_page_state(NR_WRITEBACK),
1553		global_page_state(NR_UNSTABLE_NFS),
1554		global_page_state(NR_FREE_PAGES),
1555		global_page_state(NR_SLAB_RECLAIMABLE) +
1556			global_page_state(NR_SLAB_UNRECLAIMABLE),
1557		global_page_state(NR_FILE_MAPPED),
1558		global_page_state(NR_PAGETABLE),
1559		global_page_state(NR_BOUNCE));
1560
1561	for_each_zone(zone) {
1562		int i;
1563
1564		if (!populated_zone(zone))
1565			continue;
1566
1567		show_node(zone);
1568		printk("%s"
1569			" free:%lukB"
1570			" min:%lukB"
1571			" low:%lukB"
1572			" high:%lukB"
1573			" active:%lukB"
1574			" inactive:%lukB"
1575			" present:%lukB"
1576			" pages_scanned:%lu"
1577			" all_unreclaimable? %s"
1578			"\n",
1579			zone->name,
1580			K(zone_page_state(zone, NR_FREE_PAGES)),
1581			K(zone->pages_min),
1582			K(zone->pages_low),
1583			K(zone->pages_high),
1584			K(zone_page_state(zone, NR_ACTIVE)),
1585			K(zone_page_state(zone, NR_INACTIVE)),
1586			K(zone->present_pages),
1587			zone->pages_scanned,
1588			(zone->all_unreclaimable ? "yes" : "no")
1589			);
1590		printk("lowmem_reserve[]:");
1591		for (i = 0; i < MAX_NR_ZONES; i++)
1592			printk(" %lu", zone->lowmem_reserve[i]);
1593		printk("\n");
1594	}
1595
1596	for_each_zone(zone) {
1597 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1598
1599		if (!populated_zone(zone))
1600			continue;
1601
1602		show_node(zone);
1603		printk("%s: ", zone->name);
1604
1605		spin_lock_irqsave(&zone->lock, flags);
1606		for (order = 0; order < MAX_ORDER; order++) {
1607			nr[order] = zone->free_area[order].nr_free;
1608			total += nr[order] << order;
1609		}
1610		spin_unlock_irqrestore(&zone->lock, flags);
1611		for (order = 0; order < MAX_ORDER; order++)
1612			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1613		printk("= %lukB\n", K(total));
1614	}
1615
1616	show_swap_cache_info();
1617}
1618
1619/*
1620 * Builds allocation fallback zone lists.
1621 *
1622 * Add all populated zones of a node to the zonelist.
1623 */
1624static int __meminit build_zonelists_node(pg_data_t *pgdat,
1625			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1626{
1627	struct zone *zone;
1628
1629	BUG_ON(zone_type >= MAX_NR_ZONES);
1630	zone_type++;
1631
1632	do {
1633		zone_type--;
1634		zone = pgdat->node_zones + zone_type;
1635		if (populated_zone(zone)) {
1636			zonelist->zones[nr_zones++] = zone;
1637			check_highest_zone(zone_type);
1638		}
1639
1640	} while (zone_type);
1641	return nr_zones;
1642}
1643
1644#ifdef CONFIG_NUMA
1645#define MAX_NODE_LOAD (num_online_nodes())
1646static int __meminitdata node_load[MAX_NUMNODES];
1647/**
1648 * find_next_best_node - find the next node that should appear in a given node's fallback list
1649 * @node: node whose fallback list we're appending
1650 * @used_node_mask: nodemask_t of already used nodes
1651 *
1652 * We use a number of factors to determine which is the next node that should
1653 * appear on a given node's fallback list.  The node should not have appeared
1654 * already in @node's fallback list, and it should be the next closest node
1655 * according to the distance array (which contains arbitrary distance values
1656 * from each node to each node in the system), and should also prefer nodes
1657 * with no CPUs, since presumably they'll have very little allocation pressure
1658 * on them otherwise.
1659 * It returns -1 if no node is found.
1660 */
1661static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1662{
1663	int n, val;
1664	int min_val = INT_MAX;
1665	int best_node = -1;
1666
1667	/* Use the local node if we haven't already */
1668	if (!node_isset(node, *used_node_mask)) {
1669		node_set(node, *used_node_mask);
1670		return node;
1671	}
1672
1673	for_each_online_node(n) {
1674		cpumask_t tmp;
1675
1676		/* Don't want a node to appear more than once */
1677		if (node_isset(n, *used_node_mask))
1678			continue;
1679
1680		/* Use the distance array to find the distance */
1681		val = node_distance(node, n);
1682
1683		/* Penalize nodes under us ("prefer the next node") */
1684		val += (n < node);
1685
1686		/* Give preference to headless and unused nodes */
1687		tmp = node_to_cpumask(n);
1688		if (!cpus_empty(tmp))
1689			val += PENALTY_FOR_NODE_WITH_CPUS;
1690
1691		/* Slight preference for less loaded node */
1692		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1693		val += node_load[n];
1694
1695		if (val < min_val) {
1696			min_val = val;
1697			best_node = n;
1698		}
1699	}
1700
1701	if (best_node >= 0)
1702		node_set(best_node, *used_node_mask);
1703
1704	return best_node;
1705}
1706
1707static void __meminit build_zonelists(pg_data_t *pgdat)
1708{
1709	int j, node, local_node;
1710	enum zone_type i;
1711	int prev_node, load;
1712	struct zonelist *zonelist;
1713	nodemask_t used_mask;
1714
1715	/* initialize zonelists */
1716	for (i = 0; i < MAX_NR_ZONES; i++) {
1717		zonelist = pgdat->node_zonelists + i;
1718		zonelist->zones[0] = NULL;
1719	}
1720
1721	/* NUMA-aware ordering of nodes */
1722	local_node = pgdat->node_id;
1723	load = num_online_nodes();
1724	prev_node = local_node;
1725	nodes_clear(used_mask);
1726	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1727		int distance = node_distance(local_node, node);
1728
1729		/*
1730		 * If another node is sufficiently far away then it is better
1731		 * to reclaim pages in a zone before going off node.
1732		 */
1733		if (distance > RECLAIM_DISTANCE)
1734			zone_reclaim_mode = 1;
1735
1736		/*
1737		 * We don't want to pressure a particular node.
1738		 * So adding penalty to the first node in same
1739		 * distance group to make it round-robin.
1740		 */
1741
1742		if (distance != node_distance(local_node, prev_node))
1743			node_load[node] += load;
1744		prev_node = node;
1745		load--;
1746		for (i = 0; i < MAX_NR_ZONES; i++) {
1747			zonelist = pgdat->node_zonelists + i;
1748			for (j = 0; zonelist->zones[j] != NULL; j++);
1749
1750	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1751			zonelist->zones[j] = NULL;
1752		}
1753	}
1754}
1755
1756/* Construct the zonelist performance cache - see further mmzone.h */
1757static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1758{
1759	int i;
1760
1761	for (i = 0; i < MAX_NR_ZONES; i++) {
1762		struct zonelist *zonelist;
1763		struct zonelist_cache *zlc;
1764		struct zone **z;
1765
1766		zonelist = pgdat->node_zonelists + i;
1767		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1768		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1769		for (z = zonelist->zones; *z; z++)
1770			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1771	}
1772}
1773
1774#else	/* CONFIG_NUMA */
1775
1776static void __meminit build_zonelists(pg_data_t *pgdat)
1777{
1778	int node, local_node;
1779	enum zone_type i,j;
1780
1781	local_node = pgdat->node_id;
1782	for (i = 0; i < MAX_NR_ZONES; i++) {
1783		struct zonelist *zonelist;
1784
1785		zonelist = pgdat->node_zonelists + i;
1786
1787 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1788 		/*
1789 		 * Now we build the zonelist so that it contains the zones
1790 		 * of all the other nodes.
1791 		 * We don't want to pressure a particular node, so when
1792 		 * building the zones for node N, we make sure that the
1793 		 * zones coming right after the local ones are those from
1794 		 * node N+1 (modulo N)
1795 		 */
1796		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1797			if (!node_online(node))
1798				continue;
1799			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1800		}
1801		for (node = 0; node < local_node; node++) {
1802			if (!node_online(node))
1803				continue;
1804			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1805		}
1806
1807		zonelist->zones[j] = NULL;
1808	}
1809}
1810
1811/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1812static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1813{
1814	int i;
1815
1816	for (i = 0; i < MAX_NR_ZONES; i++)
1817		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1818}
1819
1820#endif	/* CONFIG_NUMA */
1821
1822/* return values int ....just for stop_machine_run() */
1823static int __meminit __build_all_zonelists(void *dummy)
1824{
1825	int nid;
1826
1827	for_each_online_node(nid) {
1828		build_zonelists(NODE_DATA(nid));
1829		build_zonelist_cache(NODE_DATA(nid));
1830	}
1831	return 0;
1832}
1833
1834void __meminit build_all_zonelists(void)
1835{
1836	if (system_state == SYSTEM_BOOTING) {
1837		__build_all_zonelists(NULL);
1838		cpuset_init_current_mems_allowed();
1839	} else {
1840		/* we have to stop all cpus to guaranntee there is no user
1841		   of zonelist */
1842		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1843		/* cpuset refresh routine should be here */
1844	}
1845	vm_total_pages = nr_free_pagecache_pages();
1846	printk("Built %i zonelists.  Total pages: %ld\n",
1847			num_online_nodes(), vm_total_pages);
1848}
1849
1850/*
1851 * Helper functions to size the waitqueue hash table.
1852 * Essentially these want to choose hash table sizes sufficiently
1853 * large so that collisions trying to wait on pages are rare.
1854 * But in fact, the number of active page waitqueues on typical
1855 * systems is ridiculously low, less than 200. So this is even
1856 * conservative, even though it seems large.
1857 *
1858 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1859 * waitqueues, i.e. the size of the waitq table given the number of pages.
1860 */
1861#define PAGES_PER_WAITQUEUE	256
1862
1863#ifndef CONFIG_MEMORY_HOTPLUG
1864static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1865{
1866	unsigned long size = 1;
1867
1868	pages /= PAGES_PER_WAITQUEUE;
1869
1870	while (size < pages)
1871		size <<= 1;
1872
1873	/*
1874	 * Once we have dozens or even hundreds of threads sleeping
1875	 * on IO we've got bigger problems than wait queue collision.
1876	 * Limit the size of the wait table to a reasonable size.
1877	 */
1878	size = min(size, 4096UL);
1879
1880	return max(size, 4UL);
1881}
1882#else
1883/*
1884 * A zone's size might be changed by hot-add, so it is not possible to determine
1885 * a suitable size for its wait_table.  So we use the maximum size now.
1886 *
1887 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1888 *
1889 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1890 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1891 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1892 *
1893 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1894 * or more by the traditional way. (See above).  It equals:
1895 *
1896 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1897 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1898 *    powerpc (64K page size)             : =  (32G +16M)byte.
1899 */
1900static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1901{
1902	return 4096UL;
1903}
1904#endif
1905
1906/*
1907 * This is an integer logarithm so that shifts can be used later
1908 * to extract the more random high bits from the multiplicative
1909 * hash function before the remainder is taken.
1910 */
1911static inline unsigned long wait_table_bits(unsigned long size)
1912{
1913	return ffz(~size);
1914}
1915
1916#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1917
1918/*
1919 * Initially all pages are reserved - free ones are freed
1920 * up by free_all_bootmem() once the early boot process is
1921 * done. Non-atomic initialization, single-pass.
1922 */
1923void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1924		unsigned long start_pfn, enum memmap_context context)
1925{
1926	struct page *page;
1927	unsigned long end_pfn = start_pfn + size;
1928	unsigned long pfn;
1929
1930	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1931		/*
1932		 * There can be holes in boot-time mem_map[]s
1933		 * handed to this function.  They do not
1934		 * exist on hotplugged memory.
1935		 */
1936		if (context == MEMMAP_EARLY) {
1937			if (!early_pfn_valid(pfn))
1938				continue;
1939			if (!early_pfn_in_nid(pfn, nid))
1940				continue;
1941		}
1942		page = pfn_to_page(pfn);
1943		set_page_links(page, zone, nid, pfn);
1944		init_page_count(page);
1945		reset_page_mapcount(page);
1946		SetPageReserved(page);
1947		INIT_LIST_HEAD(&page->lru);
1948#ifdef WANT_PAGE_VIRTUAL
1949		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1950		if (!is_highmem_idx(zone))
1951			set_page_address(page, __va(pfn << PAGE_SHIFT));
1952#endif
1953	}
1954}
1955
1956void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1957				unsigned long size)
1958{
1959	int order;
1960	for (order = 0; order < MAX_ORDER ; order++) {
1961		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1962		zone->free_area[order].nr_free = 0;
1963	}
1964}
1965
1966#ifndef __HAVE_ARCH_MEMMAP_INIT
1967#define memmap_init(size, nid, zone, start_pfn) \
1968	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1969#endif
1970
1971static int __cpuinit zone_batchsize(struct zone *zone)
1972{
1973	int batch;
1974
1975	/*
1976	 * The per-cpu-pages pools are set to around 1000th of the
1977	 * size of the zone.  But no more than 1/2 of a meg.
1978	 *
1979	 * OK, so we don't know how big the cache is.  So guess.
1980	 */
1981	batch = zone->present_pages / 1024;
1982	if (batch * PAGE_SIZE > 512 * 1024)
1983		batch = (512 * 1024) / PAGE_SIZE;
1984	batch /= 4;		/* We effectively *= 4 below */
1985	if (batch < 1)
1986		batch = 1;
1987
1988	/*
1989	 * Clamp the batch to a 2^n - 1 value. Having a power
1990	 * of 2 value was found to be more likely to have
1991	 * suboptimal cache aliasing properties in some cases.
1992	 *
1993	 * For example if 2 tasks are alternately allocating
1994	 * batches of pages, one task can end up with a lot
1995	 * of pages of one half of the possible page colors
1996	 * and the other with pages of the other colors.
1997	 */
1998	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1999
2000	return batch;
2001}
2002
2003inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2004{
2005	struct per_cpu_pages *pcp;
2006
2007	memset(p, 0, sizeof(*p));
2008
2009	pcp = &p->pcp[0];		/* hot */
2010	pcp->count = 0;
2011	pcp->high = 6 * batch;
2012	pcp->batch = max(1UL, 1 * batch);
2013	INIT_LIST_HEAD(&pcp->list);
2014
2015	pcp = &p->pcp[1];		/* cold*/
2016	pcp->count = 0;
2017	pcp->high = 2 * batch;
2018	pcp->batch = max(1UL, batch/2);
2019	INIT_LIST_HEAD(&pcp->list);
2020}
2021
2022/*
2023 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2024 * to the value high for the pageset p.
2025 */
2026
2027static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2028				unsigned long high)
2029{
2030	struct per_cpu_pages *pcp;
2031
2032	pcp = &p->pcp[0]; /* hot list */
2033	pcp->high = high;
2034	pcp->batch = max(1UL, high/4);
2035	if ((high/4) > (PAGE_SHIFT * 8))
2036		pcp->batch = PAGE_SHIFT * 8;
2037}
2038
2039
2040#ifdef CONFIG_NUMA
2041/*
2042 * Boot pageset table. One per cpu which is going to be used for all
2043 * zones and all nodes. The parameters will be set in such a way
2044 * that an item put on a list will immediately be handed over to
2045 * the buddy list. This is safe since pageset manipulation is done
2046 * with interrupts disabled.
2047 *
2048 * Some NUMA counter updates may also be caught by the boot pagesets.
2049 *
2050 * The boot_pagesets must be kept even after bootup is complete for
2051 * unused processors and/or zones. They do play a role for bootstrapping
2052 * hotplugged processors.
2053 *
2054 * zoneinfo_show() and maybe other functions do
2055 * not check if the processor is online before following the pageset pointer.
2056 * Other parts of the kernel may not check if the zone is available.
2057 */
2058static struct per_cpu_pageset boot_pageset[NR_CPUS];
2059
2060/*
2061 * Dynamically allocate memory for the
2062 * per cpu pageset array in struct zone.
2063 */
2064static int __cpuinit process_zones(int cpu)
2065{
2066	struct zone *zone, *dzone;
2067
2068	for_each_zone(zone) {
2069
2070		if (!populated_zone(zone))
2071			continue;
2072
2073		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2074					 GFP_KERNEL, cpu_to_node(cpu));
2075		if (!zone_pcp(zone, cpu))
2076			goto bad;
2077
2078		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2079
2080		if (percpu_pagelist_fraction)
2081			setup_pagelist_highmark(zone_pcp(zone, cpu),
2082			 	(zone->present_pages / percpu_pagelist_fraction));
2083	}
2084
2085	return 0;
2086bad:
2087	for_each_zone(dzone) {
2088		if (dzone == zone)
2089			break;
2090		kfree(zone_pcp(dzone, cpu));
2091		zone_pcp(dzone, cpu) = NULL;
2092	}
2093	return -ENOMEM;
2094}
2095
2096static inline void free_zone_pagesets(int cpu)
2097{
2098	struct zone *zone;
2099
2100	for_each_zone(zone) {
2101		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2102
2103		/* Free per_cpu_pageset if it is slab allocated */
2104		if (pset != &boot_pageset[cpu])
2105			kfree(pset);
2106		zone_pcp(zone, cpu) = NULL;
2107	}
2108}
2109
2110static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2111		unsigned long action,
2112		void *hcpu)
2113{
2114	int cpu = (long)hcpu;
2115	int ret = NOTIFY_OK;
2116
2117	switch (action) {
2118	case CPU_UP_PREPARE:
2119	case CPU_UP_PREPARE_FROZEN:
2120		if (process_zones(cpu))
2121			ret = NOTIFY_BAD;
2122		break;
2123	case CPU_UP_CANCELED:
2124	case CPU_UP_CANCELED_FROZEN:
2125	case CPU_DEAD:
2126	case CPU_DEAD_FROZEN:
2127		free_zone_pagesets(cpu);
2128		break;
2129	default:
2130		break;
2131	}
2132	return ret;
2133}
2134
2135static struct notifier_block __cpuinitdata pageset_notifier =
2136	{ &pageset_cpuup_callback, NULL, 0 };
2137
2138void __init setup_per_cpu_pageset(void)
2139{
2140	int err;
2141
2142	/* Initialize per_cpu_pageset for cpu 0.
2143	 * A cpuup callback will do this for every cpu
2144	 * as it comes online
2145	 */
2146	err = process_zones(smp_processor_id());
2147	BUG_ON(err);
2148	register_cpu_notifier(&pageset_notifier);
2149}
2150
2151#endif
2152
2153static noinline __init_refok
2154int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2155{
2156	int i;
2157	struct pglist_data *pgdat = zone->zone_pgdat;
2158	size_t alloc_size;
2159
2160	/*
2161	 * The per-page waitqueue mechanism uses hashed waitqueues
2162	 * per zone.
2163	 */
2164	zone->wait_table_hash_nr_entries =
2165		 wait_table_hash_nr_entries(zone_size_pages);
2166	zone->wait_table_bits =
2167		wait_table_bits(zone->wait_table_hash_nr_entries);
2168	alloc_size = zone->wait_table_hash_nr_entries
2169					* sizeof(wait_queue_head_t);
2170
2171 	if (system_state == SYSTEM_BOOTING) {
2172		zone->wait_table = (wait_queue_head_t *)
2173			alloc_bootmem_node(pgdat, alloc_size);
2174	} else {
2175		/*
2176		 * This case means that a zone whose size was 0 gets new memory
2177		 * via memory hot-add.
2178		 * But it may be the case that a new node was hot-added.  In
2179		 * this case vmalloc() will not be able to use this new node's
2180		 * memory - this wait_table must be initialized to use this new
2181		 * node itself as well.
2182		 * To use this new node's memory, further consideration will be
2183		 * necessary.
2184		 */
2185		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2186	}
2187	if (!zone->wait_table)
2188		return -ENOMEM;
2189
2190	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2191		init_waitqueue_head(zone->wait_table + i);
2192
2193	return 0;
2194}
2195
2196static __meminit void zone_pcp_init(struct zone *zone)
2197{
2198	int cpu;
2199	unsigned long batch = zone_batchsize(zone);
2200
2201	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2202#ifdef CONFIG_NUMA
2203		/* Early boot. Slab allocator not functional yet */
2204		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2205		setup_pageset(&boot_pageset[cpu],0);
2206#else
2207		setup_pageset(zone_pcp(zone,cpu), batch);
2208#endif
2209	}
2210	if (zone->present_pages)
2211		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2212			zone->name, zone->present_pages, batch);
2213}
2214
2215__meminit int init_currently_empty_zone(struct zone *zone,
2216					unsigned long zone_start_pfn,
2217					unsigned long size,
2218					enum memmap_context context)
2219{
2220	struct pglist_data *pgdat = zone->zone_pgdat;
2221	int ret;
2222	ret = zone_wait_table_init(zone, size);
2223	if (ret)
2224		return ret;
2225	pgdat->nr_zones = zone_idx(zone) + 1;
2226
2227	zone->zone_start_pfn = zone_start_pfn;
2228
2229	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2230
2231	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2232
2233	return 0;
2234}
2235
2236#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2237/*
2238 * Basic iterator support. Return the first range of PFNs for a node
2239 * Note: nid == MAX_NUMNODES returns first region regardless of node
2240 */
2241static int __meminit first_active_region_index_in_nid(int nid)
2242{
2243	int i;
2244
2245	for (i = 0; i < nr_nodemap_entries; i++)
2246		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2247			return i;
2248
2249	return -1;
2250}
2251
2252/*
2253 * Basic iterator support. Return the next active range of PFNs for a node
2254 * Note: nid == MAX_NUMNODES returns next region regardles of node
2255 */
2256static int __meminit next_active_region_index_in_nid(int index, int nid)
2257{
2258	for (index = index + 1; index < nr_nodemap_entries; index++)
2259		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2260			return index;
2261
2262	return -1;
2263}
2264
2265#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2266/*
2267 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2268 * Architectures may implement their own version but if add_active_range()
2269 * was used and there are no special requirements, this is a convenient
2270 * alternative
2271 */
2272int __meminit early_pfn_to_nid(unsigned long pfn)
2273{
2274	int i;
2275
2276	for (i = 0; i < nr_nodemap_entries; i++) {
2277		unsigned long start_pfn = early_node_map[i].start_pfn;
2278		unsigned long end_pfn = early_node_map[i].end_pfn;
2279
2280		if (start_pfn <= pfn && pfn < end_pfn)
2281			return early_node_map[i].nid;
2282	}
2283
2284	return 0;
2285}
2286#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2287
2288/* Basic iterator support to walk early_node_map[] */
2289#define for_each_active_range_index_in_nid(i, nid) \
2290	for (i = first_active_region_index_in_nid(nid); i != -1; \
2291				i = next_active_region_index_in_nid(i, nid))
2292
2293/**
2294 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2295 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2296 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2297 *
2298 * If an architecture guarantees that all ranges registered with
2299 * add_active_ranges() contain no holes and may be freed, this
2300 * this function may be used instead of calling free_bootmem() manually.
2301 */
2302void __init free_bootmem_with_active_regions(int nid,
2303						unsigned long max_low_pfn)
2304{
2305	int i;
2306
2307	for_each_active_range_index_in_nid(i, nid) {
2308		unsigned long size_pages = 0;
2309		unsigned long end_pfn = early_node_map[i].end_pfn;
2310
2311		if (early_node_map[i].start_pfn >= max_low_pfn)
2312			continue;
2313
2314		if (end_pfn > max_low_pfn)
2315			end_pfn = max_low_pfn;
2316
2317		size_pages = end_pfn - early_node_map[i].start_pfn;
2318		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2319				PFN_PHYS(early_node_map[i].start_pfn),
2320				size_pages << PAGE_SHIFT);
2321	}
2322}
2323
2324/**
2325 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2326 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2327 *
2328 * If an architecture guarantees that all ranges registered with
2329 * add_active_ranges() contain no holes and may be freed, this
2330 * function may be used instead of calling memory_present() manually.
2331 */
2332void __init sparse_memory_present_with_active_regions(int nid)
2333{
2334	int i;
2335
2336	for_each_active_range_index_in_nid(i, nid)
2337		memory_present(early_node_map[i].nid,
2338				early_node_map[i].start_pfn,
2339				early_node_map[i].end_pfn);
2340}
2341
2342/**
2343 * push_node_boundaries - Push node boundaries to at least the requested boundary
2344 * @nid: The nid of the node to push the boundary for
2345 * @start_pfn: The start pfn of the node
2346 * @end_pfn: The end pfn of the node
2347 *
2348 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2349 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2350 * be hotplugged even though no physical memory exists. This function allows
2351 * an arch to push out the node boundaries so mem_map is allocated that can
2352 * be used later.
2353 */
2354#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2355void __init push_node_boundaries(unsigned int nid,
2356		unsigned long start_pfn, unsigned long end_pfn)
2357{
2358	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2359			nid, start_pfn, end_pfn);
2360
2361	/* Initialise the boundary for this node if necessary */
2362	if (node_boundary_end_pfn[nid] == 0)
2363		node_boundary_start_pfn[nid] = -1UL;
2364
2365	/* Update the boundaries */
2366	if (node_boundary_start_pfn[nid] > start_pfn)
2367		node_boundary_start_pfn[nid] = start_pfn;
2368	if (node_boundary_end_pfn[nid] < end_pfn)
2369		node_boundary_end_pfn[nid] = end_pfn;
2370}
2371
2372/* If necessary, push the node boundary out for reserve hotadd */
2373static void __init account_node_boundary(unsigned int nid,
2374		unsigned long *start_pfn, unsigned long *end_pfn)
2375{
2376	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2377			nid, *start_pfn, *end_pfn);
2378
2379	/* Return if boundary information has not been provided */
2380	if (node_boundary_end_pfn[nid] == 0)
2381		return;
2382
2383	/* Check the boundaries and update if necessary */
2384	if (node_boundary_start_pfn[nid] < *start_pfn)
2385		*start_pfn = node_boundary_start_pfn[nid];
2386	if (node_boundary_end_pfn[nid] > *end_pfn)
2387		*end_pfn = node_boundary_end_pfn[nid];
2388}
2389#else
2390void __init push_node_boundaries(unsigned int nid,
2391		unsigned long start_pfn, unsigned long end_pfn) {}
2392
2393static void __init account_node_boundary(unsigned int nid,
2394		unsigned long *start_pfn, unsigned long *end_pfn) {}
2395#endif
2396
2397
2398/**
2399 * get_pfn_range_for_nid - Return the start and end page frames for a node
2400 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2401 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2402 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2403 *
2404 * It returns the start and end page frame of a node based on information
2405 * provided by an arch calling add_active_range(). If called for a node
2406 * with no available memory, a warning is printed and the start and end
2407 * PFNs will be 0.
2408 */
2409void __meminit get_pfn_range_for_nid(unsigned int nid,
2410			unsigned long *start_pfn, unsigned long *end_pfn)
2411{
2412	int i;
2413	*start_pfn = -1UL;
2414	*end_pfn = 0;
2415
2416	for_each_active_range_index_in_nid(i, nid) {
2417		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2418		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2419	}
2420
2421	if (*start_pfn == -1UL) {
2422		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2423		*start_pfn = 0;
2424	}
2425
2426	/* Push the node boundaries out if requested */
2427	account_node_boundary(nid, start_pfn, end_pfn);
2428}
2429
2430/*
2431 * Return the number of pages a zone spans in a node, including holes
2432 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2433 */
2434unsigned long __meminit zone_spanned_pages_in_node(int nid,
2435					unsigned long zone_type,
2436					unsigned long *ignored)
2437{
2438	unsigned long node_start_pfn, node_end_pfn;
2439	unsigned long zone_start_pfn, zone_end_pfn;
2440
2441	/* Get the start and end of the node and zone */
2442	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2443	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2444	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2445
2446	/* Check that this node has pages within the zone's required range */
2447	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2448		return 0;
2449
2450	/* Move the zone boundaries inside the node if necessary */
2451	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2452	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2453
2454	/* Return the spanned pages */
2455	return zone_end_pfn - zone_start_pfn;
2456}
2457
2458/*
2459 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2460 * then all holes in the requested range will be accounted for.
2461 */
2462unsigned long __meminit __absent_pages_in_range(int nid,
2463				unsigned long range_start_pfn,
2464				unsigned long range_end_pfn)
2465{
2466	int i = 0;
2467	unsigned long prev_end_pfn = 0, hole_pages = 0;
2468	unsigned long start_pfn;
2469
2470	/* Find the end_pfn of the first active range of pfns in the node */
2471	i = first_active_region_index_in_nid(nid);
2472	if (i == -1)
2473		return 0;
2474
2475	/* Account for ranges before physical memory on this node */
2476	if (early_node_map[i].start_pfn > range_start_pfn)
2477		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2478
2479	prev_end_pfn = early_node_map[i].start_pfn;
2480
2481	/* Find all holes for the zone within the node */
2482	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2483
2484		/* No need to continue if prev_end_pfn is outside the zone */
2485		if (prev_end_pfn >= range_end_pfn)
2486			break;
2487
2488		/* Make sure the end of the zone is not within the hole */
2489		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2490		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2491
2492		/* Update the hole size cound and move on */
2493		if (start_pfn > range_start_pfn) {
2494			BUG_ON(prev_end_pfn > start_pfn);
2495			hole_pages += start_pfn - prev_end_pfn;
2496		}
2497		prev_end_pfn = early_node_map[i].end_pfn;
2498	}
2499
2500	/* Account for ranges past physical memory on this node */
2501	if (range_end_pfn > prev_end_pfn)
2502		hole_pages += range_end_pfn -
2503				max(range_start_pfn, prev_end_pfn);
2504
2505	return hole_pages;
2506}
2507
2508/**
2509 * absent_pages_in_range - Return number of page frames in holes within a range
2510 * @start_pfn: The start PFN to start searching for holes
2511 * @end_pfn: The end PFN to stop searching for holes
2512 *
2513 * It returns the number of pages frames in memory holes within a range.
2514 */
2515unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2516							unsigned long end_pfn)
2517{
2518	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2519}
2520
2521/* Return the number of page frames in holes in a zone on a node */
2522unsigned long __meminit zone_absent_pages_in_node(int nid,
2523					unsigned long zone_type,
2524					unsigned long *ignored)
2525{
2526	unsigned long node_start_pfn, node_end_pfn;
2527	unsigned long zone_start_pfn, zone_end_pfn;
2528
2529	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2530	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2531							node_start_pfn);
2532	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2533							node_end_pfn);
2534
2535	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2536}
2537
2538#else
2539static inline unsigned long zone_spanned_pages_in_node(int nid,
2540					unsigned long zone_type,
2541					unsigned long *zones_size)
2542{
2543	return zones_size[zone_type];
2544}
2545
2546static inline unsigned long zone_absent_pages_in_node(int nid,
2547						unsigned long zone_type,
2548						unsigned long *zholes_size)
2549{
2550	if (!zholes_size)
2551		return 0;
2552
2553	return zholes_size[zone_type];
2554}
2555
2556#endif
2557
2558static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2559		unsigned long *zones_size, unsigned long *zholes_size)
2560{
2561	unsigned long realtotalpages, totalpages = 0;
2562	enum zone_type i;
2563
2564	for (i = 0; i < MAX_NR_ZONES; i++)
2565		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2566								zones_size);
2567	pgdat->node_spanned_pages = totalpages;
2568
2569	realtotalpages = totalpages;
2570	for (i = 0; i < MAX_NR_ZONES; i++)
2571		realtotalpages -=
2572			zone_absent_pages_in_node(pgdat->node_id, i,
2573								zholes_size);
2574	pgdat->node_present_pages = realtotalpages;
2575	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2576							realtotalpages);
2577}
2578
2579/*
2580 * Set up the zone data structures:
2581 *   - mark all pages reserved
2582 *   - mark all memory queues empty
2583 *   - clear the memory bitmaps
2584 */
2585static void __meminit free_area_init_core(struct pglist_data *pgdat,
2586		unsigned long *zones_size, unsigned long *zholes_size)
2587{
2588	enum zone_type j;
2589	int nid = pgdat->node_id;
2590	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2591	int ret;
2592
2593	pgdat_resize_init(pgdat);
2594	pgdat->nr_zones = 0;
2595	init_waitqueue_head(&pgdat->kswapd_wait);
2596	pgdat->kswapd_max_order = 0;
2597
2598	for (j = 0; j < MAX_NR_ZONES; j++) {
2599		struct zone *zone = pgdat->node_zones + j;
2600		unsigned long size, realsize, memmap_pages;
2601
2602		size = zone_spanned_pages_in_node(nid, j, zones_size);
2603		realsize = size - zone_absent_pages_in_node(nid, j,
2604								zholes_size);
2605
2606		/*
2607		 * Adjust realsize so that it accounts for how much memory
2608		 * is used by this zone for memmap. This affects the watermark
2609		 * and per-cpu initialisations
2610		 */
2611		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2612		if (realsize >= memmap_pages) {
2613			realsize -= memmap_pages;
2614			printk(KERN_DEBUG
2615				"  %s zone: %lu pages used for memmap\n",
2616				zone_names[j], memmap_pages);
2617		} else
2618			printk(KERN_WARNING
2619				"  %s zone: %lu pages exceeds realsize %lu\n",
2620				zone_names[j], memmap_pages, realsize);
2621
2622		/* Account for reserved pages */
2623		if (j == 0 && realsize > dma_reserve) {
2624			realsize -= dma_reserve;
2625			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2626					zone_names[0], dma_reserve);
2627		}
2628
2629		if (!is_highmem_idx(j))
2630			nr_kernel_pages += realsize;
2631		nr_all_pages += realsize;
2632
2633		zone->spanned_pages = size;
2634		zone->present_pages = realsize;
2635#ifdef CONFIG_NUMA
2636		zone->node = nid;
2637		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2638						/ 100;
2639		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2640#endif
2641		zone->name = zone_names[j];
2642		spin_lock_init(&zone->lock);
2643		spin_lock_init(&zone->lru_lock);
2644		zone_seqlock_init(zone);
2645		zone->zone_pgdat = pgdat;
2646
2647		zone->prev_priority = DEF_PRIORITY;
2648
2649		zone_pcp_init(zone);
2650		INIT_LIST_HEAD(&zone->active_list);
2651		INIT_LIST_HEAD(&zone->inactive_list);
2652		zone->nr_scan_active = 0;
2653		zone->nr_scan_inactive = 0;
2654		zap_zone_vm_stats(zone);
2655		atomic_set(&zone->reclaim_in_progress, 0);
2656		if (!size)
2657			continue;
2658
2659		ret = init_currently_empty_zone(zone, zone_start_pfn,
2660						size, MEMMAP_EARLY);
2661		BUG_ON(ret);
2662		zone_start_pfn += size;
2663	}
2664}
2665
2666static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2667{
2668	/* Skip empty nodes */
2669	if (!pgdat->node_spanned_pages)
2670		return;
2671
2672#ifdef CONFIG_FLAT_NODE_MEM_MAP
2673	/* ia64 gets its own node_mem_map, before this, without bootmem */
2674	if (!pgdat->node_mem_map) {
2675		unsigned long size, start, end;
2676		struct page *map;
2677
2678		/*
2679		 * The zone's endpoints aren't required to be MAX_ORDER
2680		 * aligned but the node_mem_map endpoints must be in order
2681		 * for the buddy allocator to function correctly.
2682		 */
2683		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2684		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2685		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2686		size =  (end - start) * sizeof(struct page);
2687		map = alloc_remap(pgdat->node_id, size);
2688		if (!map)
2689			map = alloc_bootmem_node(pgdat, size);
2690		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2691	}
2692#ifndef CONFIG_NEED_MULTIPLE_NODES
2693	/*
2694	 * With no DISCONTIG, the global mem_map is just set as node 0's
2695	 */
2696	if (pgdat == NODE_DATA(0)) {
2697		mem_map = NODE_DATA(0)->node_mem_map;
2698#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2699		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2700			mem_map -= pgdat->node_start_pfn;
2701#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2702	}
2703#endif
2704#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2705}
2706
2707void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2708		unsigned long *zones_size, unsigned long node_start_pfn,
2709		unsigned long *zholes_size)
2710{
2711	pgdat->node_id = nid;
2712	pgdat->node_start_pfn = node_start_pfn;
2713	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2714
2715	alloc_node_mem_map(pgdat);
2716
2717	free_area_init_core(pgdat, zones_size, zholes_size);
2718}
2719
2720#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2721
2722#if MAX_NUMNODES > 1
2723/*
2724 * Figure out the number of possible node ids.
2725 */
2726static void __init setup_nr_node_ids(void)
2727{
2728	unsigned int node;
2729	unsigned int highest = 0;
2730
2731	for_each_node_mask(node, node_possible_map)
2732		highest = node;
2733	nr_node_ids = highest + 1;
2734}
2735#else
2736static inline void setup_nr_node_ids(void)
2737{
2738}
2739#endif
2740
2741/**
2742 * add_active_range - Register a range of PFNs backed by physical memory
2743 * @nid: The node ID the range resides on
2744 * @start_pfn: The start PFN of the available physical memory
2745 * @end_pfn: The end PFN of the available physical memory
2746 *
2747 * These ranges are stored in an early_node_map[] and later used by
2748 * free_area_init_nodes() to calculate zone sizes and holes. If the
2749 * range spans a memory hole, it is up to the architecture to ensure
2750 * the memory is not freed by the bootmem allocator. If possible
2751 * the range being registered will be merged with existing ranges.
2752 */
2753void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2754						unsigned long end_pfn)
2755{
2756	int i;
2757
2758	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2759			  "%d entries of %d used\n",
2760			  nid, start_pfn, end_pfn,
2761			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2762
2763	/* Merge with existing active regions if possible */
2764	for (i = 0; i < nr_nodemap_entries; i++) {
2765		if (early_node_map[i].nid != nid)
2766			continue;
2767
2768		/* Skip if an existing region covers this new one */
2769		if (start_pfn >= early_node_map[i].start_pfn &&
2770				end_pfn <= early_node_map[i].end_pfn)
2771			return;
2772
2773		/* Merge forward if suitable */
2774		if (start_pfn <= early_node_map[i].end_pfn &&
2775				end_pfn > early_node_map[i].end_pfn) {
2776			early_node_map[i].end_pfn = end_pfn;
2777			return;
2778		}
2779
2780		/* Merge backward if suitable */
2781		if (start_pfn < early_node_map[i].end_pfn &&
2782				end_pfn >= early_node_map[i].start_pfn) {
2783			early_node_map[i].start_pfn = start_pfn;
2784			return;
2785		}
2786	}
2787
2788	/* Check that early_node_map is large enough */
2789	if (i >= MAX_ACTIVE_REGIONS) {
2790		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2791							MAX_ACTIVE_REGIONS);
2792		return;
2793	}
2794
2795	early_node_map[i].nid = nid;
2796	early_node_map[i].start_pfn = start_pfn;
2797	early_node_map[i].end_pfn = end_pfn;
2798	nr_nodemap_entries = i + 1;
2799}
2800
2801/**
2802 * shrink_active_range - Shrink an existing registered range of PFNs
2803 * @nid: The node id the range is on that should be shrunk
2804 * @old_end_pfn: The old end PFN of the range
2805 * @new_end_pfn: The new PFN of the range
2806 *
2807 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2808 * The map is kept at the end physical page range that has already been
2809 * registered with add_active_range(). This function allows an arch to shrink
2810 * an existing registered range.
2811 */
2812void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2813						unsigned long new_end_pfn)
2814{
2815	int i;
2816
2817	/* Find the old active region end and shrink */
2818	for_each_active_range_index_in_nid(i, nid)
2819		if (early_node_map[i].end_pfn == old_end_pfn) {
2820			early_node_map[i].end_pfn = new_end_pfn;
2821			break;
2822		}
2823}
2824
2825/**
2826 * remove_all_active_ranges - Remove all currently registered regions
2827 *
2828 * During discovery, it may be found that a table like SRAT is invalid
2829 * and an alternative discovery method must be used. This function removes
2830 * all currently registered regions.
2831 */
2832void __init remove_all_active_ranges(void)
2833{
2834	memset(early_node_map, 0, sizeof(early_node_map));
2835	nr_nodemap_entries = 0;
2836#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2837	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2838	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2839#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2840}
2841
2842/* Compare two active node_active_regions */
2843static int __init cmp_node_active_region(const void *a, const void *b)
2844{
2845	struct node_active_region *arange = (struct node_active_region *)a;
2846	struct node_active_region *brange = (struct node_active_region *)b;
2847
2848	/* Done this way to avoid overflows */
2849	if (arange->start_pfn > brange->start_pfn)
2850		return 1;
2851	if (arange->start_pfn < brange->start_pfn)
2852		return -1;
2853
2854	return 0;
2855}
2856
2857/* sort the node_map by start_pfn */
2858static void __init sort_node_map(void)
2859{
2860	sort(early_node_map, (size_t)nr_nodemap_entries,
2861			sizeof(struct node_active_region),
2862			cmp_node_active_region, NULL);
2863}
2864
2865/* Find the lowest pfn for a node */
2866unsigned long __init find_min_pfn_for_node(unsigned long nid)
2867{
2868	int i;
2869	unsigned long min_pfn = ULONG_MAX;
2870
2871	/* Assuming a sorted map, the first range found has the starting pfn */
2872	for_each_active_range_index_in_nid(i, nid)
2873		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2874
2875	if (min_pfn == ULONG_MAX) {
2876		printk(KERN_WARNING
2877			"Could not find start_pfn for node %lu\n", nid);
2878		return 0;
2879	}
2880
2881	return min_pfn;
2882}
2883
2884/**
2885 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2886 *
2887 * It returns the minimum PFN based on information provided via
2888 * add_active_range().
2889 */
2890unsigned long __init find_min_pfn_with_active_regions(void)
2891{
2892	return find_min_pfn_for_node(MAX_NUMNODES);
2893}
2894
2895/**
2896 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2897 *
2898 * It returns the maximum PFN based on information provided via
2899 * add_active_range().
2900 */
2901unsigned long __init find_max_pfn_with_active_regions(void)
2902{
2903	int i;
2904	unsigned long max_pfn = 0;
2905
2906	for (i = 0; i < nr_nodemap_entries; i++)
2907		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2908
2909	return max_pfn;
2910}
2911
2912/**
2913 * free_area_init_nodes - Initialise all pg_data_t and zone data
2914 * @max_zone_pfn: an array of max PFNs for each zone
2915 *
2916 * This will call free_area_init_node() for each active node in the system.
2917 * Using the page ranges provided by add_active_range(), the size of each
2918 * zone in each node and their holes is calculated. If the maximum PFN
2919 * between two adjacent zones match, it is assumed that the zone is empty.
2920 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2921 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2922 * starts where the previous one ended. For example, ZONE_DMA32 starts
2923 * at arch_max_dma_pfn.
2924 */
2925void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2926{
2927	unsigned long nid;
2928	enum zone_type i;
2929
2930	/* Sort early_node_map as initialisation assumes it is sorted */
2931	sort_node_map();
2932
2933	/* Record where the zone boundaries are */
2934	memset(arch_zone_lowest_possible_pfn, 0,
2935				sizeof(arch_zone_lowest_possible_pfn));
2936	memset(arch_zone_highest_possible_pfn, 0,
2937				sizeof(arch_zone_highest_possible_pfn));
2938	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2939	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2940	for (i = 1; i < MAX_NR_ZONES; i++) {
2941		arch_zone_lowest_possible_pfn[i] =
2942			arch_zone_highest_possible_pfn[i-1];
2943		arch_zone_highest_possible_pfn[i] =
2944			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2945	}
2946
2947	/* Print out the zone ranges */
2948	printk("Zone PFN ranges:\n");
2949	for (i = 0; i < MAX_NR_ZONES; i++)
2950		printk("  %-8s %8lu -> %8lu\n",
2951				zone_names[i],
2952				arch_zone_lowest_possible_pfn[i],
2953				arch_zone_highest_possible_pfn[i]);
2954
2955	/* Print out the early_node_map[] */
2956	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2957	for (i = 0; i < nr_nodemap_entries; i++)
2958		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2959						early_node_map[i].start_pfn,
2960						early_node_map[i].end_pfn);
2961
2962	/* Initialise every node */
2963	setup_nr_node_ids();
2964	for_each_online_node(nid) {
2965		pg_data_t *pgdat = NODE_DATA(nid);
2966		free_area_init_node(nid, pgdat, NULL,
2967				find_min_pfn_for_node(nid), NULL);
2968	}
2969}
2970#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2971
2972/**
2973 * set_dma_reserve - set the specified number of pages reserved in the first zone
2974 * @new_dma_reserve: The number of pages to mark reserved
2975 *
2976 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2977 * In the DMA zone, a significant percentage may be consumed by kernel image
2978 * and other unfreeable allocations which can skew the watermarks badly. This
2979 * function may optionally be used to account for unfreeable pages in the
2980 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2981 * smaller per-cpu batchsize.
2982 */
2983void __init set_dma_reserve(unsigned long new_dma_reserve)
2984{
2985	dma_reserve = new_dma_reserve;
2986}
2987
2988#ifndef CONFIG_NEED_MULTIPLE_NODES
2989static bootmem_data_t contig_bootmem_data;
2990struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2991
2992EXPORT_SYMBOL(contig_page_data);
2993#endif
2994
2995void __init free_area_init(unsigned long *zones_size)
2996{
2997	free_area_init_node(0, NODE_DATA(0), zones_size,
2998			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2999}
3000
3001static int page_alloc_cpu_notify(struct notifier_block *self,
3002				 unsigned long action, void *hcpu)
3003{
3004	int cpu = (unsigned long)hcpu;
3005
3006	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3007		local_irq_disable();
3008		__drain_pages(cpu);
3009		vm_events_fold_cpu(cpu);
3010		local_irq_enable();
3011		refresh_cpu_vm_stats(cpu);
3012	}
3013	return NOTIFY_OK;
3014}
3015
3016void __init page_alloc_init(void)
3017{
3018	hotcpu_notifier(page_alloc_cpu_notify, 0);
3019}
3020
3021/*
3022 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3023 *	or min_free_kbytes changes.
3024 */
3025static void calculate_totalreserve_pages(void)
3026{
3027	struct pglist_data *pgdat;
3028	unsigned long reserve_pages = 0;
3029	enum zone_type i, j;
3030
3031	for_each_online_pgdat(pgdat) {
3032		for (i = 0; i < MAX_NR_ZONES; i++) {
3033			struct zone *zone = pgdat->node_zones + i;
3034			unsigned long max = 0;
3035
3036			/* Find valid and maximum lowmem_reserve in the zone */
3037			for (j = i; j < MAX_NR_ZONES; j++) {
3038				if (zone->lowmem_reserve[j] > max)
3039					max = zone->lowmem_reserve[j];
3040			}
3041
3042			/* we treat pages_high as reserved pages. */
3043			max += zone->pages_high;
3044
3045			if (max > zone->present_pages)
3046				max = zone->present_pages;
3047			reserve_pages += max;
3048		}
3049	}
3050	totalreserve_pages = reserve_pages;
3051}
3052
3053/*
3054 * setup_per_zone_lowmem_reserve - called whenever
3055 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3056 *	has a correct pages reserved value, so an adequate number of
3057 *	pages are left in the zone after a successful __alloc_pages().
3058 */
3059static void setup_per_zone_lowmem_reserve(void)
3060{
3061	struct pglist_data *pgdat;
3062	enum zone_type j, idx;
3063
3064	for_each_online_pgdat(pgdat) {
3065		for (j = 0; j < MAX_NR_ZONES; j++) {
3066			struct zone *zone = pgdat->node_zones + j;
3067			unsigned long present_pages = zone->present_pages;
3068
3069			zone->lowmem_reserve[j] = 0;
3070
3071			idx = j;
3072			while (idx) {
3073				struct zone *lower_zone;
3074
3075				idx--;
3076
3077				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3078					sysctl_lowmem_reserve_ratio[idx] = 1;
3079
3080				lower_zone = pgdat->node_zones + idx;
3081				lower_zone->lowmem_reserve[j] = present_pages /
3082					sysctl_lowmem_reserve_ratio[idx];
3083				present_pages += lower_zone->present_pages;
3084			}
3085		}
3086	}
3087
3088	/* update totalreserve_pages */
3089	calculate_totalreserve_pages();
3090}
3091
3092/**
3093 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3094 *
3095 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3096 * with respect to min_free_kbytes.
3097 */
3098void setup_per_zone_pages_min(void)
3099{
3100	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3101	unsigned long lowmem_pages = 0;
3102	struct zone *zone;
3103	unsigned long flags;
3104
3105	/* Calculate total number of !ZONE_HIGHMEM pages */
3106	for_each_zone(zone) {
3107		if (!is_highmem(zone))
3108			lowmem_pages += zone->present_pages;
3109	}
3110
3111	for_each_zone(zone) {
3112		u64 tmp;
3113
3114		spin_lock_irqsave(&zone->lru_lock, flags);
3115		tmp = (u64)pages_min * zone->present_pages;
3116		do_div(tmp, lowmem_pages);
3117		if (is_highmem(zone)) {
3118			/*
3119			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3120			 * need highmem pages, so cap pages_min to a small
3121			 * value here.
3122			 *
3123			 * The (pages_high-pages_low) and (pages_low-pages_min)
3124			 * deltas controls asynch page reclaim, and so should
3125			 * not be capped for highmem.
3126			 */
3127			int min_pages;
3128
3129			min_pages = zone->present_pages / 1024;
3130			if (min_pages < SWAP_CLUSTER_MAX)
3131				min_pages = SWAP_CLUSTER_MAX;
3132			if (min_pages > 128)
3133				min_pages = 128;
3134			zone->pages_min = min_pages;
3135		} else {
3136			/*
3137			 * If it's a lowmem zone, reserve a number of pages
3138			 * proportionate to the zone's size.
3139			 */
3140			zone->pages_min = tmp;
3141		}
3142
3143		zone->pages_low   = zone->pages_min + (tmp >> 2);
3144		zone->pages_high  = zone->pages_min + (tmp >> 1);
3145		spin_unlock_irqrestore(&zone->lru_lock, flags);
3146	}
3147
3148	/* update totalreserve_pages */
3149	calculate_totalreserve_pages();
3150}
3151
3152/*
3153 * Initialise min_free_kbytes.
3154 *
3155 * For small machines we want it small (128k min).  For large machines
3156 * we want it large (64MB max).  But it is not linear, because network
3157 * bandwidth does not increase linearly with machine size.  We use
3158 *
3159 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3160 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3161 *
3162 * which yields
3163 *
3164 * 16MB:	512k
3165 * 32MB:	724k
3166 * 64MB:	1024k
3167 * 128MB:	1448k
3168 * 256MB:	2048k
3169 * 512MB:	2896k
3170 * 1024MB:	4096k
3171 * 2048MB:	5792k
3172 * 4096MB:	8192k
3173 * 8192MB:	11584k
3174 * 16384MB:	16384k
3175 */
3176static int __init init_per_zone_pages_min(void)
3177{
3178	unsigned long lowmem_kbytes;
3179
3180	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3181
3182	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3183	if (min_free_kbytes < 128)
3184		min_free_kbytes = 128;
3185	if (min_free_kbytes > 65536)
3186		min_free_kbytes = 65536;
3187	setup_per_zone_pages_min();
3188	setup_per_zone_lowmem_reserve();
3189	return 0;
3190}
3191module_init(init_per_zone_pages_min)
3192
3193/*
3194 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3195 *	that we can call two helper functions whenever min_free_kbytes
3196 *	changes.
3197 */
3198int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3199	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3200{
3201	proc_dointvec(table, write, file, buffer, length, ppos);
3202	if (write)
3203		setup_per_zone_pages_min();
3204	return 0;
3205}
3206
3207#ifdef CONFIG_NUMA
3208int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3209	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3210{
3211	struct zone *zone;
3212	int rc;
3213
3214	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3215	if (rc)
3216		return rc;
3217
3218	for_each_zone(zone)
3219		zone->min_unmapped_pages = (zone->present_pages *
3220				sysctl_min_unmapped_ratio) / 100;
3221	return 0;
3222}
3223
3224int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3225	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3226{
3227	struct zone *zone;
3228	int rc;
3229
3230	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3231	if (rc)
3232		return rc;
3233
3234	for_each_zone(zone)
3235		zone->min_slab_pages = (zone->present_pages *
3236				sysctl_min_slab_ratio) / 100;
3237	return 0;
3238}
3239#endif
3240
3241/*
3242 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3243 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3244 *	whenever sysctl_lowmem_reserve_ratio changes.
3245 *
3246 * The reserve ratio obviously has absolutely no relation with the
3247 * pages_min watermarks. The lowmem reserve ratio can only make sense
3248 * if in function of the boot time zone sizes.
3249 */
3250int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3251	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3252{
3253	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3254	setup_per_zone_lowmem_reserve();
3255	return 0;
3256}
3257
3258/*
3259 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3260 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3261 * can have before it gets flushed back to buddy allocator.
3262 */
3263
3264int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3265	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3266{
3267	struct zone *zone;
3268	unsigned int cpu;
3269	int ret;
3270
3271	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3272	if (!write || (ret == -EINVAL))
3273		return ret;
3274	for_each_zone(zone) {
3275		for_each_online_cpu(cpu) {
3276			unsigned long  high;
3277			high = zone->present_pages / percpu_pagelist_fraction;
3278			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3279		}
3280	}
3281	return 0;
3282}
3283
3284int hashdist = HASHDIST_DEFAULT;
3285
3286#ifdef CONFIG_NUMA
3287static int __init set_hashdist(char *str)
3288{
3289	if (!str)
3290		return 0;
3291	hashdist = simple_strtoul(str, &str, 0);
3292	return 1;
3293}
3294__setup("hashdist=", set_hashdist);
3295#endif
3296
3297/*
3298 * allocate a large system hash table from bootmem
3299 * - it is assumed that the hash table must contain an exact power-of-2
3300 *   quantity of entries
3301 * - limit is the number of hash buckets, not the total allocation size
3302 */
3303void *__init alloc_large_system_hash(const char *tablename,
3304				     unsigned long bucketsize,
3305				     unsigned long numentries,
3306				     int scale,
3307				     int flags,
3308				     unsigned int *_hash_shift,
3309				     unsigned int *_hash_mask,
3310				     unsigned long limit)
3311{
3312	unsigned long long max = limit;
3313	unsigned long log2qty, size;
3314	void *table = NULL;
3315
3316	/* allow the kernel cmdline to have a say */
3317	if (!numentries) {
3318		/* round applicable memory size up to nearest megabyte */
3319		numentries = nr_kernel_pages;
3320		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3321		numentries >>= 20 - PAGE_SHIFT;
3322		numentries <<= 20 - PAGE_SHIFT;
3323
3324		/* limit to 1 bucket per 2^scale bytes of low memory */
3325		if (scale > PAGE_SHIFT)
3326			numentries >>= (scale - PAGE_SHIFT);
3327		else
3328			numentries <<= (PAGE_SHIFT - scale);
3329
3330		/* Make sure we've got at least a 0-order allocation.. */
3331		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3332			numentries = PAGE_SIZE / bucketsize;
3333	}
3334	numentries = roundup_pow_of_two(numentries);
3335
3336	/* limit allocation size to 1/16 total memory by default */
3337	if (max == 0) {
3338		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3339		do_div(max, bucketsize);
3340	}
3341
3342	if (numentries > max)
3343		numentries = max;
3344
3345	log2qty = ilog2(numentries);
3346
3347	do {
3348		size = bucketsize << log2qty;
3349		if (flags & HASH_EARLY)
3350			table = alloc_bootmem(size);
3351		else if (hashdist)
3352			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3353		else {
3354			unsigned long order;
3355			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3356				;
3357			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3358		}
3359	} while (!table && size > PAGE_SIZE && --log2qty);
3360
3361	if (!table)
3362		panic("Failed to allocate %s hash table\n", tablename);
3363
3364	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3365	       tablename,
3366	       (1U << log2qty),
3367	       ilog2(size) - PAGE_SHIFT,
3368	       size);
3369
3370	if (_hash_shift)
3371		*_hash_shift = log2qty;
3372	if (_hash_mask)
3373		*_hash_mask = (1 << log2qty) - 1;
3374
3375	return table;
3376}
3377
3378#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3379struct page *pfn_to_page(unsigned long pfn)
3380{
3381	return __pfn_to_page(pfn);
3382}
3383unsigned long page_to_pfn(struct page *page)
3384{
3385	return __page_to_pfn(page);
3386}
3387EXPORT_SYMBOL(pfn_to_page);
3388EXPORT_SYMBOL(page_to_pfn);
3389#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3390
3391
3392