page_alloc.c revision 1d6f4e60e736a00b50ec668ba1a9fe27afb083a3
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/oom.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39#include <linux/mempolicy.h>
40#include <linux/stop_machine.h>
41#include <linux/sort.h>
42#include <linux/pfn.h>
43#include <linux/backing-dev.h>
44#include <linux/fault-inject.h>
45#include <linux/page-isolation.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49#include "internal.h"
50
51/*
52 * Array of node states.
53 */
54nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55	[N_POSSIBLE] = NODE_MASK_ALL,
56	[N_ONLINE] = { { [0] = 1UL } },
57#ifndef CONFIG_NUMA
58	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
59#ifdef CONFIG_HIGHMEM
60	[N_HIGH_MEMORY] = { { [0] = 1UL } },
61#endif
62	[N_CPU] = { { [0] = 1UL } },
63#endif	/* NUMA */
64};
65EXPORT_SYMBOL(node_states);
66
67unsigned long totalram_pages __read_mostly;
68unsigned long totalreserve_pages __read_mostly;
69long nr_swap_pages;
70int percpu_pagelist_fraction;
71
72#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73int pageblock_order __read_mostly;
74#endif
75
76static void __free_pages_ok(struct page *page, unsigned int order);
77
78/*
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 *	1G machine -> (16M dma, 784M normal, 224M high)
82 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85 *
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
88 */
89int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90#ifdef CONFIG_ZONE_DMA
91	 256,
92#endif
93#ifdef CONFIG_ZONE_DMA32
94	 256,
95#endif
96#ifdef CONFIG_HIGHMEM
97	 32,
98#endif
99	 32,
100};
101
102EXPORT_SYMBOL(totalram_pages);
103
104static char * const zone_names[MAX_NR_ZONES] = {
105#ifdef CONFIG_ZONE_DMA
106	 "DMA",
107#endif
108#ifdef CONFIG_ZONE_DMA32
109	 "DMA32",
110#endif
111	 "Normal",
112#ifdef CONFIG_HIGHMEM
113	 "HighMem",
114#endif
115	 "Movable",
116};
117
118int min_free_kbytes = 1024;
119
120unsigned long __meminitdata nr_kernel_pages;
121unsigned long __meminitdata nr_all_pages;
122static unsigned long __meminitdata dma_reserve;
123
124#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125  /*
126   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127   * ranges of memory (RAM) that may be registered with add_active_range().
128   * Ranges passed to add_active_range() will be merged if possible
129   * so the number of times add_active_range() can be called is
130   * related to the number of nodes and the number of holes
131   */
132  #ifdef CONFIG_MAX_ACTIVE_REGIONS
133    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135  #else
136    #if MAX_NUMNODES >= 32
137      /* If there can be many nodes, allow up to 50 holes per node */
138      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139    #else
140      /* By default, allow up to 256 distinct regions */
141      #define MAX_ACTIVE_REGIONS 256
142    #endif
143  #endif
144
145  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146  static int __meminitdata nr_nodemap_entries;
147  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153  unsigned long __initdata required_kernelcore;
154  static unsigned long __initdata required_movablecore;
155  unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158  int movable_zone;
159  EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
167int page_group_by_mobility_disabled __read_mostly;
168
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
171	set_pageblock_flags_group(page, (unsigned long)migratetype,
172					PB_migrate, PB_migrate_end);
173}
174
175#ifdef CONFIG_DEBUG_VM
176static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177{
178	int ret = 0;
179	unsigned seq;
180	unsigned long pfn = page_to_pfn(page);
181
182	do {
183		seq = zone_span_seqbegin(zone);
184		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185			ret = 1;
186		else if (pfn < zone->zone_start_pfn)
187			ret = 1;
188	} while (zone_span_seqretry(zone, seq));
189
190	return ret;
191}
192
193static int page_is_consistent(struct zone *zone, struct page *page)
194{
195	if (!pfn_valid_within(page_to_pfn(page)))
196		return 0;
197	if (zone != page_zone(page))
198		return 0;
199
200	return 1;
201}
202/*
203 * Temporary debugging check for pages not lying within a given zone.
204 */
205static int bad_range(struct zone *zone, struct page *page)
206{
207	if (page_outside_zone_boundaries(zone, page))
208		return 1;
209	if (!page_is_consistent(zone, page))
210		return 1;
211
212	return 0;
213}
214#else
215static inline int bad_range(struct zone *zone, struct page *page)
216{
217	return 0;
218}
219#endif
220
221static void bad_page(struct page *page)
222{
223	printk(KERN_EMERG "Bad page state in process '%s'\n"
224		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226		KERN_EMERG "Backtrace:\n",
227		current->comm, page, (int)(2*sizeof(unsigned long)),
228		(unsigned long)page->flags, page->mapping,
229		page_mapcount(page), page_count(page));
230	dump_stack();
231	page->flags &= ~(1 << PG_lru	|
232			1 << PG_private |
233			1 << PG_locked	|
234			1 << PG_active	|
235			1 << PG_dirty	|
236			1 << PG_reclaim |
237			1 << PG_slab    |
238			1 << PG_swapcache |
239			1 << PG_writeback |
240			1 << PG_buddy );
241	set_page_count(page, 0);
242	reset_page_mapcount(page);
243	page->mapping = NULL;
244	add_taint(TAINT_BAD_PAGE);
245}
246
247/*
248 * Higher-order pages are called "compound pages".  They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set.  All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function.  Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262static void free_compound_page(struct page *page)
263{
264	__free_pages_ok(page, compound_order(page));
265}
266
267static void prep_compound_page(struct page *page, unsigned long order)
268{
269	int i;
270	int nr_pages = 1 << order;
271
272	set_compound_page_dtor(page, free_compound_page);
273	set_compound_order(page, order);
274	__SetPageHead(page);
275	for (i = 1; i < nr_pages; i++) {
276		struct page *p = page + i;
277
278		__SetPageTail(p);
279		p->first_page = page;
280	}
281}
282
283static void destroy_compound_page(struct page *page, unsigned long order)
284{
285	int i;
286	int nr_pages = 1 << order;
287
288	if (unlikely(compound_order(page) != order))
289		bad_page(page);
290
291	if (unlikely(!PageHead(page)))
292			bad_page(page);
293	__ClearPageHead(page);
294	for (i = 1; i < nr_pages; i++) {
295		struct page *p = page + i;
296
297		if (unlikely(!PageTail(p) |
298				(p->first_page != page)))
299			bad_page(page);
300		__ClearPageTail(p);
301	}
302}
303
304static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305{
306	int i;
307
308	/*
309	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311	 */
312	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313	for (i = 0; i < (1 << order); i++)
314		clear_highpage(page + i);
315}
316
317static inline void set_page_order(struct page *page, int order)
318{
319	set_page_private(page, order);
320	__SetPageBuddy(page);
321}
322
323static inline void rmv_page_order(struct page *page)
324{
325	__ClearPageBuddy(page);
326	set_page_private(page, 0);
327}
328
329/*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 *     B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 *     P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346static inline struct page *
347__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348{
349	unsigned long buddy_idx = page_idx ^ (1 << order);
350
351	return page + (buddy_idx - page_idx);
352}
353
354static inline unsigned long
355__find_combined_index(unsigned long page_idx, unsigned int order)
356{
357	return (page_idx & ~(1 << order));
358}
359
360/*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373static inline int page_is_buddy(struct page *page, struct page *buddy,
374								int order)
375{
376	if (!pfn_valid_within(page_to_pfn(buddy)))
377		return 0;
378
379	if (page_zone_id(page) != page_zone_id(buddy))
380		return 0;
381
382	if (PageBuddy(buddy) && page_order(buddy) == order) {
383		BUG_ON(page_count(buddy) != 0);
384		return 1;
385	}
386	return 0;
387}
388
389/*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other.  That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413static inline void __free_one_page(struct page *page,
414		struct zone *zone, unsigned int order)
415{
416	unsigned long page_idx;
417	int order_size = 1 << order;
418	int migratetype = get_pageblock_migratetype(page);
419
420	if (unlikely(PageCompound(page)))
421		destroy_compound_page(page, order);
422
423	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425	VM_BUG_ON(page_idx & (order_size - 1));
426	VM_BUG_ON(bad_range(zone, page));
427
428	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429	while (order < MAX_ORDER-1) {
430		unsigned long combined_idx;
431		struct page *buddy;
432
433		buddy = __page_find_buddy(page, page_idx, order);
434		if (!page_is_buddy(page, buddy, order))
435			break;		/* Move the buddy up one level. */
436
437		list_del(&buddy->lru);
438		zone->free_area[order].nr_free--;
439		rmv_page_order(buddy);
440		combined_idx = __find_combined_index(page_idx, order);
441		page = page + (combined_idx - page_idx);
442		page_idx = combined_idx;
443		order++;
444	}
445	set_page_order(page, order);
446	list_add(&page->lru,
447		&zone->free_area[order].free_list[migratetype]);
448	zone->free_area[order].nr_free++;
449}
450
451static inline int free_pages_check(struct page *page)
452{
453	if (unlikely(page_mapcount(page) |
454		(page->mapping != NULL)  |
455		(page_count(page) != 0)  |
456		(page->flags & (
457			1 << PG_lru	|
458			1 << PG_private |
459			1 << PG_locked	|
460			1 << PG_active	|
461			1 << PG_slab	|
462			1 << PG_swapcache |
463			1 << PG_writeback |
464			1 << PG_reserved |
465			1 << PG_buddy ))))
466		bad_page(page);
467	if (PageDirty(page))
468		__ClearPageDirty(page);
469	/*
470	 * For now, we report if PG_reserved was found set, but do not
471	 * clear it, and do not free the page.  But we shall soon need
472	 * to do more, for when the ZERO_PAGE count wraps negative.
473	 */
474	return PageReserved(page);
475}
476
477/*
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
481 *
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
484 *
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
487 */
488static void free_pages_bulk(struct zone *zone, int count,
489					struct list_head *list, int order)
490{
491	spin_lock(&zone->lock);
492	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
493	zone->pages_scanned = 0;
494	while (count--) {
495		struct page *page;
496
497		VM_BUG_ON(list_empty(list));
498		page = list_entry(list->prev, struct page, lru);
499		/* have to delete it as __free_one_page list manipulates */
500		list_del(&page->lru);
501		__free_one_page(page, zone, order);
502	}
503	spin_unlock(&zone->lock);
504}
505
506static void free_one_page(struct zone *zone, struct page *page, int order)
507{
508	spin_lock(&zone->lock);
509	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
510	zone->pages_scanned = 0;
511	__free_one_page(page, zone, order);
512	spin_unlock(&zone->lock);
513}
514
515static void __free_pages_ok(struct page *page, unsigned int order)
516{
517	unsigned long flags;
518	int i;
519	int reserved = 0;
520
521	for (i = 0 ; i < (1 << order) ; ++i)
522		reserved += free_pages_check(page + i);
523	if (reserved)
524		return;
525
526	if (!PageHighMem(page))
527		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528	arch_free_page(page, order);
529	kernel_map_pages(page, 1 << order, 0);
530
531	local_irq_save(flags);
532	__count_vm_events(PGFREE, 1 << order);
533	free_one_page(page_zone(page), page, order);
534	local_irq_restore(flags);
535}
536
537/*
538 * permit the bootmem allocator to evade page validation on high-order frees
539 */
540void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
541{
542	if (order == 0) {
543		__ClearPageReserved(page);
544		set_page_count(page, 0);
545		set_page_refcounted(page);
546		__free_page(page);
547	} else {
548		int loop;
549
550		prefetchw(page);
551		for (loop = 0; loop < BITS_PER_LONG; loop++) {
552			struct page *p = &page[loop];
553
554			if (loop + 1 < BITS_PER_LONG)
555				prefetchw(p + 1);
556			__ClearPageReserved(p);
557			set_page_count(p, 0);
558		}
559
560		set_page_refcounted(page);
561		__free_pages(page, order);
562	}
563}
564
565
566/*
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
577 *
578 * -- wli
579 */
580static inline void expand(struct zone *zone, struct page *page,
581	int low, int high, struct free_area *area,
582	int migratetype)
583{
584	unsigned long size = 1 << high;
585
586	while (high > low) {
587		area--;
588		high--;
589		size >>= 1;
590		VM_BUG_ON(bad_range(zone, &page[size]));
591		list_add(&page[size].lru, &area->free_list[migratetype]);
592		area->nr_free++;
593		set_page_order(&page[size], high);
594	}
595}
596
597/*
598 * This page is about to be returned from the page allocator
599 */
600static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
601{
602	if (unlikely(page_mapcount(page) |
603		(page->mapping != NULL)  |
604		(page_count(page) != 0)  |
605		(page->flags & (
606			1 << PG_lru	|
607			1 << PG_private	|
608			1 << PG_locked	|
609			1 << PG_active	|
610			1 << PG_dirty	|
611			1 << PG_slab    |
612			1 << PG_swapcache |
613			1 << PG_writeback |
614			1 << PG_reserved |
615			1 << PG_buddy ))))
616		bad_page(page);
617
618	/*
619	 * For now, we report if PG_reserved was found set, but do not
620	 * clear it, and do not allocate the page: as a safety net.
621	 */
622	if (PageReserved(page))
623		return 1;
624
625	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626			1 << PG_referenced | 1 << PG_arch_1 |
627			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628	set_page_private(page, 0);
629	set_page_refcounted(page);
630
631	arch_alloc_page(page, order);
632	kernel_map_pages(page, 1 << order, 1);
633
634	if (gfp_flags & __GFP_ZERO)
635		prep_zero_page(page, order, gfp_flags);
636
637	if (order && (gfp_flags & __GFP_COMP))
638		prep_compound_page(page, order);
639
640	return 0;
641}
642
643/*
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
646 */
647static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648						int migratetype)
649{
650	unsigned int current_order;
651	struct free_area * area;
652	struct page *page;
653
654	/* Find a page of the appropriate size in the preferred list */
655	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656		area = &(zone->free_area[current_order]);
657		if (list_empty(&area->free_list[migratetype]))
658			continue;
659
660		page = list_entry(area->free_list[migratetype].next,
661							struct page, lru);
662		list_del(&page->lru);
663		rmv_page_order(page);
664		area->nr_free--;
665		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666		expand(zone, page, order, current_order, area, migratetype);
667		return page;
668	}
669
670	return NULL;
671}
672
673
674/*
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
677 */
678static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
680	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
683};
684
685/*
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
689 */
690int move_freepages(struct zone *zone,
691			struct page *start_page, struct page *end_page,
692			int migratetype)
693{
694	struct page *page;
695	unsigned long order;
696	int pages_moved = 0;
697
698#ifndef CONFIG_HOLES_IN_ZONE
699	/*
700	 * page_zone is not safe to call in this context when
701	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702	 * anyway as we check zone boundaries in move_freepages_block().
703	 * Remove at a later date when no bug reports exist related to
704	 * grouping pages by mobility
705	 */
706	BUG_ON(page_zone(start_page) != page_zone(end_page));
707#endif
708
709	for (page = start_page; page <= end_page;) {
710		if (!pfn_valid_within(page_to_pfn(page))) {
711			page++;
712			continue;
713		}
714
715		if (!PageBuddy(page)) {
716			page++;
717			continue;
718		}
719
720		order = page_order(page);
721		list_del(&page->lru);
722		list_add(&page->lru,
723			&zone->free_area[order].free_list[migratetype]);
724		page += 1 << order;
725		pages_moved += 1 << order;
726	}
727
728	return pages_moved;
729}
730
731int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
732{
733	unsigned long start_pfn, end_pfn;
734	struct page *start_page, *end_page;
735
736	start_pfn = page_to_pfn(page);
737	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738	start_page = pfn_to_page(start_pfn);
739	end_page = start_page + pageblock_nr_pages - 1;
740	end_pfn = start_pfn + pageblock_nr_pages - 1;
741
742	/* Do not cross zone boundaries */
743	if (start_pfn < zone->zone_start_pfn)
744		start_page = page;
745	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746		return 0;
747
748	return move_freepages(zone, start_page, end_page, migratetype);
749}
750
751/* Remove an element from the buddy allocator from the fallback list */
752static struct page *__rmqueue_fallback(struct zone *zone, int order,
753						int start_migratetype)
754{
755	struct free_area * area;
756	int current_order;
757	struct page *page;
758	int migratetype, i;
759
760	/* Find the largest possible block of pages in the other list */
761	for (current_order = MAX_ORDER-1; current_order >= order;
762						--current_order) {
763		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
764			migratetype = fallbacks[start_migratetype][i];
765
766			/* MIGRATE_RESERVE handled later if necessary */
767			if (migratetype == MIGRATE_RESERVE)
768				continue;
769
770			area = &(zone->free_area[current_order]);
771			if (list_empty(&area->free_list[migratetype]))
772				continue;
773
774			page = list_entry(area->free_list[migratetype].next,
775					struct page, lru);
776			area->nr_free--;
777
778			/*
779			 * If breaking a large block of pages, move all free
780			 * pages to the preferred allocation list. If falling
781			 * back for a reclaimable kernel allocation, be more
782			 * agressive about taking ownership of free pages
783			 */
784			if (unlikely(current_order >= (pageblock_order >> 1)) ||
785					start_migratetype == MIGRATE_RECLAIMABLE) {
786				unsigned long pages;
787				pages = move_freepages_block(zone, page,
788								start_migratetype);
789
790				/* Claim the whole block if over half of it is free */
791				if (pages >= (1 << (pageblock_order-1)))
792					set_pageblock_migratetype(page,
793								start_migratetype);
794
795				migratetype = start_migratetype;
796			}
797
798			/* Remove the page from the freelists */
799			list_del(&page->lru);
800			rmv_page_order(page);
801			__mod_zone_page_state(zone, NR_FREE_PAGES,
802							-(1UL << order));
803
804			if (current_order == pageblock_order)
805				set_pageblock_migratetype(page,
806							start_migratetype);
807
808			expand(zone, page, order, current_order, area, migratetype);
809			return page;
810		}
811	}
812
813	/* Use MIGRATE_RESERVE rather than fail an allocation */
814	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
815}
816
817/*
818 * Do the hard work of removing an element from the buddy allocator.
819 * Call me with the zone->lock already held.
820 */
821static struct page *__rmqueue(struct zone *zone, unsigned int order,
822						int migratetype)
823{
824	struct page *page;
825
826	page = __rmqueue_smallest(zone, order, migratetype);
827
828	if (unlikely(!page))
829		page = __rmqueue_fallback(zone, order, migratetype);
830
831	return page;
832}
833
834/*
835 * Obtain a specified number of elements from the buddy allocator, all under
836 * a single hold of the lock, for efficiency.  Add them to the supplied list.
837 * Returns the number of new pages which were placed at *list.
838 */
839static int rmqueue_bulk(struct zone *zone, unsigned int order,
840			unsigned long count, struct list_head *list,
841			int migratetype)
842{
843	int i;
844
845	spin_lock(&zone->lock);
846	for (i = 0; i < count; ++i) {
847		struct page *page = __rmqueue(zone, order, migratetype);
848		if (unlikely(page == NULL))
849			break;
850
851		/*
852		 * Split buddy pages returned by expand() are received here
853		 * in physical page order. The page is added to the callers and
854		 * list and the list head then moves forward. From the callers
855		 * perspective, the linked list is ordered by page number in
856		 * some conditions. This is useful for IO devices that can
857		 * merge IO requests if the physical pages are ordered
858		 * properly.
859		 */
860		list_add(&page->lru, list);
861		set_page_private(page, migratetype);
862		list = &page->lru;
863	}
864	spin_unlock(&zone->lock);
865	return i;
866}
867
868#ifdef CONFIG_NUMA
869/*
870 * Called from the vmstat counter updater to drain pagesets of this
871 * currently executing processor on remote nodes after they have
872 * expired.
873 *
874 * Note that this function must be called with the thread pinned to
875 * a single processor.
876 */
877void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
878{
879	unsigned long flags;
880	int to_drain;
881
882	local_irq_save(flags);
883	if (pcp->count >= pcp->batch)
884		to_drain = pcp->batch;
885	else
886		to_drain = pcp->count;
887	free_pages_bulk(zone, to_drain, &pcp->list, 0);
888	pcp->count -= to_drain;
889	local_irq_restore(flags);
890}
891#endif
892
893static void __drain_pages(unsigned int cpu)
894{
895	unsigned long flags;
896	struct zone *zone;
897	int i;
898
899	for_each_zone(zone) {
900		struct per_cpu_pageset *pset;
901
902		if (!populated_zone(zone))
903			continue;
904
905		pset = zone_pcp(zone, cpu);
906		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
907			struct per_cpu_pages *pcp;
908
909			pcp = &pset->pcp[i];
910			local_irq_save(flags);
911			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
912			pcp->count = 0;
913			local_irq_restore(flags);
914		}
915	}
916}
917
918#ifdef CONFIG_HIBERNATION
919
920void mark_free_pages(struct zone *zone)
921{
922	unsigned long pfn, max_zone_pfn;
923	unsigned long flags;
924	int order, t;
925	struct list_head *curr;
926
927	if (!zone->spanned_pages)
928		return;
929
930	spin_lock_irqsave(&zone->lock, flags);
931
932	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
933	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
934		if (pfn_valid(pfn)) {
935			struct page *page = pfn_to_page(pfn);
936
937			if (!swsusp_page_is_forbidden(page))
938				swsusp_unset_page_free(page);
939		}
940
941	for_each_migratetype_order(order, t) {
942		list_for_each(curr, &zone->free_area[order].free_list[t]) {
943			unsigned long i;
944
945			pfn = page_to_pfn(list_entry(curr, struct page, lru));
946			for (i = 0; i < (1UL << order); i++)
947				swsusp_set_page_free(pfn_to_page(pfn + i));
948		}
949	}
950	spin_unlock_irqrestore(&zone->lock, flags);
951}
952#endif /* CONFIG_PM */
953
954/*
955 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
956 */
957void drain_local_pages(void)
958{
959	unsigned long flags;
960
961	local_irq_save(flags);
962	__drain_pages(smp_processor_id());
963	local_irq_restore(flags);
964}
965
966void smp_drain_local_pages(void *arg)
967{
968	drain_local_pages();
969}
970
971/*
972 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
973 */
974void drain_all_local_pages(void)
975{
976	unsigned long flags;
977
978	local_irq_save(flags);
979	__drain_pages(smp_processor_id());
980	local_irq_restore(flags);
981
982	smp_call_function(smp_drain_local_pages, NULL, 0, 1);
983}
984
985/*
986 * Free a 0-order page
987 */
988static void fastcall free_hot_cold_page(struct page *page, int cold)
989{
990	struct zone *zone = page_zone(page);
991	struct per_cpu_pages *pcp;
992	unsigned long flags;
993
994	if (PageAnon(page))
995		page->mapping = NULL;
996	if (free_pages_check(page))
997		return;
998
999	if (!PageHighMem(page))
1000		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1001	arch_free_page(page, 0);
1002	kernel_map_pages(page, 1, 0);
1003
1004	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1005	local_irq_save(flags);
1006	__count_vm_event(PGFREE);
1007	list_add(&page->lru, &pcp->list);
1008	set_page_private(page, get_pageblock_migratetype(page));
1009	pcp->count++;
1010	if (pcp->count >= pcp->high) {
1011		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1012		pcp->count -= pcp->batch;
1013	}
1014	local_irq_restore(flags);
1015	put_cpu();
1016}
1017
1018void fastcall free_hot_page(struct page *page)
1019{
1020	free_hot_cold_page(page, 0);
1021}
1022
1023void fastcall free_cold_page(struct page *page)
1024{
1025	free_hot_cold_page(page, 1);
1026}
1027
1028/*
1029 * split_page takes a non-compound higher-order page, and splits it into
1030 * n (1<<order) sub-pages: page[0..n]
1031 * Each sub-page must be freed individually.
1032 *
1033 * Note: this is probably too low level an operation for use in drivers.
1034 * Please consult with lkml before using this in your driver.
1035 */
1036void split_page(struct page *page, unsigned int order)
1037{
1038	int i;
1039
1040	VM_BUG_ON(PageCompound(page));
1041	VM_BUG_ON(!page_count(page));
1042	for (i = 1; i < (1 << order); i++)
1043		set_page_refcounted(page + i);
1044}
1045
1046/*
1047 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1048 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1049 * or two.
1050 */
1051static struct page *buffered_rmqueue(struct zonelist *zonelist,
1052			struct zone *zone, int order, gfp_t gfp_flags)
1053{
1054	unsigned long flags;
1055	struct page *page;
1056	int cold = !!(gfp_flags & __GFP_COLD);
1057	int cpu;
1058	int migratetype = allocflags_to_migratetype(gfp_flags);
1059
1060again:
1061	cpu  = get_cpu();
1062	if (likely(order == 0)) {
1063		struct per_cpu_pages *pcp;
1064
1065		pcp = &zone_pcp(zone, cpu)->pcp[cold];
1066		local_irq_save(flags);
1067		if (!pcp->count) {
1068			pcp->count = rmqueue_bulk(zone, 0,
1069					pcp->batch, &pcp->list, migratetype);
1070			if (unlikely(!pcp->count))
1071				goto failed;
1072		}
1073
1074		/* Find a page of the appropriate migrate type */
1075		list_for_each_entry(page, &pcp->list, lru)
1076			if (page_private(page) == migratetype)
1077				break;
1078
1079		/* Allocate more to the pcp list if necessary */
1080		if (unlikely(&page->lru == &pcp->list)) {
1081			pcp->count += rmqueue_bulk(zone, 0,
1082					pcp->batch, &pcp->list, migratetype);
1083			page = list_entry(pcp->list.next, struct page, lru);
1084		}
1085
1086		list_del(&page->lru);
1087		pcp->count--;
1088	} else {
1089		spin_lock_irqsave(&zone->lock, flags);
1090		page = __rmqueue(zone, order, migratetype);
1091		spin_unlock(&zone->lock);
1092		if (!page)
1093			goto failed;
1094	}
1095
1096	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1097	zone_statistics(zonelist, zone);
1098	local_irq_restore(flags);
1099	put_cpu();
1100
1101	VM_BUG_ON(bad_range(zone, page));
1102	if (prep_new_page(page, order, gfp_flags))
1103		goto again;
1104	return page;
1105
1106failed:
1107	local_irq_restore(flags);
1108	put_cpu();
1109	return NULL;
1110}
1111
1112#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1113#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1114#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1115#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1116#define ALLOC_HARDER		0x10 /* try to alloc harder */
1117#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1118#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1119
1120#ifdef CONFIG_FAIL_PAGE_ALLOC
1121
1122static struct fail_page_alloc_attr {
1123	struct fault_attr attr;
1124
1125	u32 ignore_gfp_highmem;
1126	u32 ignore_gfp_wait;
1127	u32 min_order;
1128
1129#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1130
1131	struct dentry *ignore_gfp_highmem_file;
1132	struct dentry *ignore_gfp_wait_file;
1133	struct dentry *min_order_file;
1134
1135#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1136
1137} fail_page_alloc = {
1138	.attr = FAULT_ATTR_INITIALIZER,
1139	.ignore_gfp_wait = 1,
1140	.ignore_gfp_highmem = 1,
1141	.min_order = 1,
1142};
1143
1144static int __init setup_fail_page_alloc(char *str)
1145{
1146	return setup_fault_attr(&fail_page_alloc.attr, str);
1147}
1148__setup("fail_page_alloc=", setup_fail_page_alloc);
1149
1150static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1151{
1152	if (order < fail_page_alloc.min_order)
1153		return 0;
1154	if (gfp_mask & __GFP_NOFAIL)
1155		return 0;
1156	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1157		return 0;
1158	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1159		return 0;
1160
1161	return should_fail(&fail_page_alloc.attr, 1 << order);
1162}
1163
1164#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1165
1166static int __init fail_page_alloc_debugfs(void)
1167{
1168	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1169	struct dentry *dir;
1170	int err;
1171
1172	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1173				       "fail_page_alloc");
1174	if (err)
1175		return err;
1176	dir = fail_page_alloc.attr.dentries.dir;
1177
1178	fail_page_alloc.ignore_gfp_wait_file =
1179		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1180				      &fail_page_alloc.ignore_gfp_wait);
1181
1182	fail_page_alloc.ignore_gfp_highmem_file =
1183		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1184				      &fail_page_alloc.ignore_gfp_highmem);
1185	fail_page_alloc.min_order_file =
1186		debugfs_create_u32("min-order", mode, dir,
1187				   &fail_page_alloc.min_order);
1188
1189	if (!fail_page_alloc.ignore_gfp_wait_file ||
1190            !fail_page_alloc.ignore_gfp_highmem_file ||
1191            !fail_page_alloc.min_order_file) {
1192		err = -ENOMEM;
1193		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1194		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1195		debugfs_remove(fail_page_alloc.min_order_file);
1196		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1197	}
1198
1199	return err;
1200}
1201
1202late_initcall(fail_page_alloc_debugfs);
1203
1204#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1205
1206#else /* CONFIG_FAIL_PAGE_ALLOC */
1207
1208static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1209{
1210	return 0;
1211}
1212
1213#endif /* CONFIG_FAIL_PAGE_ALLOC */
1214
1215/*
1216 * Return 1 if free pages are above 'mark'. This takes into account the order
1217 * of the allocation.
1218 */
1219int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1220		      int classzone_idx, int alloc_flags)
1221{
1222	/* free_pages my go negative - that's OK */
1223	long min = mark;
1224	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1225	int o;
1226
1227	if (alloc_flags & ALLOC_HIGH)
1228		min -= min / 2;
1229	if (alloc_flags & ALLOC_HARDER)
1230		min -= min / 4;
1231
1232	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1233		return 0;
1234	for (o = 0; o < order; o++) {
1235		/* At the next order, this order's pages become unavailable */
1236		free_pages -= z->free_area[o].nr_free << o;
1237
1238		/* Require fewer higher order pages to be free */
1239		min >>= 1;
1240
1241		if (free_pages <= min)
1242			return 0;
1243	}
1244	return 1;
1245}
1246
1247#ifdef CONFIG_NUMA
1248/*
1249 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1250 * skip over zones that are not allowed by the cpuset, or that have
1251 * been recently (in last second) found to be nearly full.  See further
1252 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1253 * that have to skip over a lot of full or unallowed zones.
1254 *
1255 * If the zonelist cache is present in the passed in zonelist, then
1256 * returns a pointer to the allowed node mask (either the current
1257 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1258 *
1259 * If the zonelist cache is not available for this zonelist, does
1260 * nothing and returns NULL.
1261 *
1262 * If the fullzones BITMAP in the zonelist cache is stale (more than
1263 * a second since last zap'd) then we zap it out (clear its bits.)
1264 *
1265 * We hold off even calling zlc_setup, until after we've checked the
1266 * first zone in the zonelist, on the theory that most allocations will
1267 * be satisfied from that first zone, so best to examine that zone as
1268 * quickly as we can.
1269 */
1270static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1271{
1272	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1273	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1274
1275	zlc = zonelist->zlcache_ptr;
1276	if (!zlc)
1277		return NULL;
1278
1279	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1280		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1281		zlc->last_full_zap = jiffies;
1282	}
1283
1284	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1285					&cpuset_current_mems_allowed :
1286					&node_states[N_HIGH_MEMORY];
1287	return allowednodes;
1288}
1289
1290/*
1291 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1292 * if it is worth looking at further for free memory:
1293 *  1) Check that the zone isn't thought to be full (doesn't have its
1294 *     bit set in the zonelist_cache fullzones BITMAP).
1295 *  2) Check that the zones node (obtained from the zonelist_cache
1296 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1297 * Return true (non-zero) if zone is worth looking at further, or
1298 * else return false (zero) if it is not.
1299 *
1300 * This check -ignores- the distinction between various watermarks,
1301 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1302 * found to be full for any variation of these watermarks, it will
1303 * be considered full for up to one second by all requests, unless
1304 * we are so low on memory on all allowed nodes that we are forced
1305 * into the second scan of the zonelist.
1306 *
1307 * In the second scan we ignore this zonelist cache and exactly
1308 * apply the watermarks to all zones, even it is slower to do so.
1309 * We are low on memory in the second scan, and should leave no stone
1310 * unturned looking for a free page.
1311 */
1312static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1313						nodemask_t *allowednodes)
1314{
1315	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1316	int i;				/* index of *z in zonelist zones */
1317	int n;				/* node that zone *z is on */
1318
1319	zlc = zonelist->zlcache_ptr;
1320	if (!zlc)
1321		return 1;
1322
1323	i = z - zonelist->zones;
1324	n = zlc->z_to_n[i];
1325
1326	/* This zone is worth trying if it is allowed but not full */
1327	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1328}
1329
1330/*
1331 * Given 'z' scanning a zonelist, set the corresponding bit in
1332 * zlc->fullzones, so that subsequent attempts to allocate a page
1333 * from that zone don't waste time re-examining it.
1334 */
1335static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1336{
1337	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1338	int i;				/* index of *z in zonelist zones */
1339
1340	zlc = zonelist->zlcache_ptr;
1341	if (!zlc)
1342		return;
1343
1344	i = z - zonelist->zones;
1345
1346	set_bit(i, zlc->fullzones);
1347}
1348
1349#else	/* CONFIG_NUMA */
1350
1351static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1352{
1353	return NULL;
1354}
1355
1356static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1357				nodemask_t *allowednodes)
1358{
1359	return 1;
1360}
1361
1362static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1363{
1364}
1365#endif	/* CONFIG_NUMA */
1366
1367/*
1368 * get_page_from_freelist goes through the zonelist trying to allocate
1369 * a page.
1370 */
1371static struct page *
1372get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1373		struct zonelist *zonelist, int alloc_flags)
1374{
1375	struct zone **z;
1376	struct page *page = NULL;
1377	int classzone_idx = zone_idx(zonelist->zones[0]);
1378	struct zone *zone;
1379	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1380	int zlc_active = 0;		/* set if using zonelist_cache */
1381	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1382	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1383
1384zonelist_scan:
1385	/*
1386	 * Scan zonelist, looking for a zone with enough free.
1387	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1388	 */
1389	z = zonelist->zones;
1390
1391	do {
1392		/*
1393		 * In NUMA, this could be a policy zonelist which contains
1394		 * zones that may not be allowed by the current gfp_mask.
1395		 * Check the zone is allowed by the current flags
1396		 */
1397		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1398			if (highest_zoneidx == -1)
1399				highest_zoneidx = gfp_zone(gfp_mask);
1400			if (zone_idx(*z) > highest_zoneidx)
1401				continue;
1402		}
1403
1404		if (NUMA_BUILD && zlc_active &&
1405			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1406				continue;
1407		zone = *z;
1408		if ((alloc_flags & ALLOC_CPUSET) &&
1409			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1410				goto try_next_zone;
1411
1412		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1413			unsigned long mark;
1414			if (alloc_flags & ALLOC_WMARK_MIN)
1415				mark = zone->pages_min;
1416			else if (alloc_flags & ALLOC_WMARK_LOW)
1417				mark = zone->pages_low;
1418			else
1419				mark = zone->pages_high;
1420			if (!zone_watermark_ok(zone, order, mark,
1421				    classzone_idx, alloc_flags)) {
1422				if (!zone_reclaim_mode ||
1423				    !zone_reclaim(zone, gfp_mask, order))
1424					goto this_zone_full;
1425			}
1426		}
1427
1428		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1429		if (page)
1430			break;
1431this_zone_full:
1432		if (NUMA_BUILD)
1433			zlc_mark_zone_full(zonelist, z);
1434try_next_zone:
1435		if (NUMA_BUILD && !did_zlc_setup) {
1436			/* we do zlc_setup after the first zone is tried */
1437			allowednodes = zlc_setup(zonelist, alloc_flags);
1438			zlc_active = 1;
1439			did_zlc_setup = 1;
1440		}
1441	} while (*(++z) != NULL);
1442
1443	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1444		/* Disable zlc cache for second zonelist scan */
1445		zlc_active = 0;
1446		goto zonelist_scan;
1447	}
1448	return page;
1449}
1450
1451/*
1452 * This is the 'heart' of the zoned buddy allocator.
1453 */
1454struct page * fastcall
1455__alloc_pages(gfp_t gfp_mask, unsigned int order,
1456		struct zonelist *zonelist)
1457{
1458	const gfp_t wait = gfp_mask & __GFP_WAIT;
1459	struct zone **z;
1460	struct page *page;
1461	struct reclaim_state reclaim_state;
1462	struct task_struct *p = current;
1463	int do_retry;
1464	int alloc_flags;
1465	int did_some_progress;
1466
1467	might_sleep_if(wait);
1468
1469	if (should_fail_alloc_page(gfp_mask, order))
1470		return NULL;
1471
1472restart:
1473	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1474
1475	if (unlikely(*z == NULL)) {
1476		/*
1477		 * Happens if we have an empty zonelist as a result of
1478		 * GFP_THISNODE being used on a memoryless node
1479		 */
1480		return NULL;
1481	}
1482
1483	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1484				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1485	if (page)
1486		goto got_pg;
1487
1488	/*
1489	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492	 * using a larger set of nodes after it has established that the
1493	 * allowed per node queues are empty and that nodes are
1494	 * over allocated.
1495	 */
1496	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1497		goto nopage;
1498
1499	for (z = zonelist->zones; *z; z++)
1500		wakeup_kswapd(*z, order);
1501
1502	/*
1503	 * OK, we're below the kswapd watermark and have kicked background
1504	 * reclaim. Now things get more complex, so set up alloc_flags according
1505	 * to how we want to proceed.
1506	 *
1507	 * The caller may dip into page reserves a bit more if the caller
1508	 * cannot run direct reclaim, or if the caller has realtime scheduling
1509	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1510	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511	 */
1512	alloc_flags = ALLOC_WMARK_MIN;
1513	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1514		alloc_flags |= ALLOC_HARDER;
1515	if (gfp_mask & __GFP_HIGH)
1516		alloc_flags |= ALLOC_HIGH;
1517	if (wait)
1518		alloc_flags |= ALLOC_CPUSET;
1519
1520	/*
1521	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1522	 * coming from realtime tasks go deeper into reserves.
1523	 *
1524	 * This is the last chance, in general, before the goto nopage.
1525	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527	 */
1528	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1529	if (page)
1530		goto got_pg;
1531
1532	/* This allocation should allow future memory freeing. */
1533
1534rebalance:
1535	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1536			&& !in_interrupt()) {
1537		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1538nofail_alloc:
1539			/* go through the zonelist yet again, ignoring mins */
1540			page = get_page_from_freelist(gfp_mask, order,
1541				zonelist, ALLOC_NO_WATERMARKS);
1542			if (page)
1543				goto got_pg;
1544			if (gfp_mask & __GFP_NOFAIL) {
1545				congestion_wait(WRITE, HZ/50);
1546				goto nofail_alloc;
1547			}
1548		}
1549		goto nopage;
1550	}
1551
1552	/* Atomic allocations - we can't balance anything */
1553	if (!wait)
1554		goto nopage;
1555
1556	cond_resched();
1557
1558	/* We now go into synchronous reclaim */
1559	cpuset_memory_pressure_bump();
1560	p->flags |= PF_MEMALLOC;
1561	reclaim_state.reclaimed_slab = 0;
1562	p->reclaim_state = &reclaim_state;
1563
1564	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1565
1566	p->reclaim_state = NULL;
1567	p->flags &= ~PF_MEMALLOC;
1568
1569	cond_resched();
1570
1571	if (order != 0)
1572		drain_all_local_pages();
1573
1574	if (likely(did_some_progress)) {
1575		page = get_page_from_freelist(gfp_mask, order,
1576						zonelist, alloc_flags);
1577		if (page)
1578			goto got_pg;
1579	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1580		if (!try_set_zone_oom(zonelist)) {
1581			schedule_timeout_uninterruptible(1);
1582			goto restart;
1583		}
1584
1585		/*
1586		 * Go through the zonelist yet one more time, keep
1587		 * very high watermark here, this is only to catch
1588		 * a parallel oom killing, we must fail if we're still
1589		 * under heavy pressure.
1590		 */
1591		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1592				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1593		if (page) {
1594			clear_zonelist_oom(zonelist);
1595			goto got_pg;
1596		}
1597
1598		/* The OOM killer will not help higher order allocs so fail */
1599		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1600			clear_zonelist_oom(zonelist);
1601			goto nopage;
1602		}
1603
1604		out_of_memory(zonelist, gfp_mask, order);
1605		clear_zonelist_oom(zonelist);
1606		goto restart;
1607	}
1608
1609	/*
1610	 * Don't let big-order allocations loop unless the caller explicitly
1611	 * requests that.  Wait for some write requests to complete then retry.
1612	 *
1613	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1614	 * <= 3, but that may not be true in other implementations.
1615	 */
1616	do_retry = 0;
1617	if (!(gfp_mask & __GFP_NORETRY)) {
1618		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1619						(gfp_mask & __GFP_REPEAT))
1620			do_retry = 1;
1621		if (gfp_mask & __GFP_NOFAIL)
1622			do_retry = 1;
1623	}
1624	if (do_retry) {
1625		congestion_wait(WRITE, HZ/50);
1626		goto rebalance;
1627	}
1628
1629nopage:
1630	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1631		printk(KERN_WARNING "%s: page allocation failure."
1632			" order:%d, mode:0x%x\n",
1633			p->comm, order, gfp_mask);
1634		dump_stack();
1635		show_mem();
1636	}
1637got_pg:
1638	return page;
1639}
1640
1641EXPORT_SYMBOL(__alloc_pages);
1642
1643/*
1644 * Common helper functions.
1645 */
1646fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1647{
1648	struct page * page;
1649	page = alloc_pages(gfp_mask, order);
1650	if (!page)
1651		return 0;
1652	return (unsigned long) page_address(page);
1653}
1654
1655EXPORT_SYMBOL(__get_free_pages);
1656
1657fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1658{
1659	struct page * page;
1660
1661	/*
1662	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1663	 * a highmem page
1664	 */
1665	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1666
1667	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1668	if (page)
1669		return (unsigned long) page_address(page);
1670	return 0;
1671}
1672
1673EXPORT_SYMBOL(get_zeroed_page);
1674
1675void __pagevec_free(struct pagevec *pvec)
1676{
1677	int i = pagevec_count(pvec);
1678
1679	while (--i >= 0)
1680		free_hot_cold_page(pvec->pages[i], pvec->cold);
1681}
1682
1683fastcall void __free_pages(struct page *page, unsigned int order)
1684{
1685	if (put_page_testzero(page)) {
1686		if (order == 0)
1687			free_hot_page(page);
1688		else
1689			__free_pages_ok(page, order);
1690	}
1691}
1692
1693EXPORT_SYMBOL(__free_pages);
1694
1695fastcall void free_pages(unsigned long addr, unsigned int order)
1696{
1697	if (addr != 0) {
1698		VM_BUG_ON(!virt_addr_valid((void *)addr));
1699		__free_pages(virt_to_page((void *)addr), order);
1700	}
1701}
1702
1703EXPORT_SYMBOL(free_pages);
1704
1705static unsigned int nr_free_zone_pages(int offset)
1706{
1707	/* Just pick one node, since fallback list is circular */
1708	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1709	unsigned int sum = 0;
1710
1711	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1712	struct zone **zonep = zonelist->zones;
1713	struct zone *zone;
1714
1715	for (zone = *zonep++; zone; zone = *zonep++) {
1716		unsigned long size = zone->present_pages;
1717		unsigned long high = zone->pages_high;
1718		if (size > high)
1719			sum += size - high;
1720	}
1721
1722	return sum;
1723}
1724
1725/*
1726 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1727 */
1728unsigned int nr_free_buffer_pages(void)
1729{
1730	return nr_free_zone_pages(gfp_zone(GFP_USER));
1731}
1732EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1733
1734/*
1735 * Amount of free RAM allocatable within all zones
1736 */
1737unsigned int nr_free_pagecache_pages(void)
1738{
1739	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1740}
1741
1742static inline void show_node(struct zone *zone)
1743{
1744	if (NUMA_BUILD)
1745		printk("Node %d ", zone_to_nid(zone));
1746}
1747
1748void si_meminfo(struct sysinfo *val)
1749{
1750	val->totalram = totalram_pages;
1751	val->sharedram = 0;
1752	val->freeram = global_page_state(NR_FREE_PAGES);
1753	val->bufferram = nr_blockdev_pages();
1754	val->totalhigh = totalhigh_pages;
1755	val->freehigh = nr_free_highpages();
1756	val->mem_unit = PAGE_SIZE;
1757}
1758
1759EXPORT_SYMBOL(si_meminfo);
1760
1761#ifdef CONFIG_NUMA
1762void si_meminfo_node(struct sysinfo *val, int nid)
1763{
1764	pg_data_t *pgdat = NODE_DATA(nid);
1765
1766	val->totalram = pgdat->node_present_pages;
1767	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1768#ifdef CONFIG_HIGHMEM
1769	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1770	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1771			NR_FREE_PAGES);
1772#else
1773	val->totalhigh = 0;
1774	val->freehigh = 0;
1775#endif
1776	val->mem_unit = PAGE_SIZE;
1777}
1778#endif
1779
1780#define K(x) ((x) << (PAGE_SHIFT-10))
1781
1782/*
1783 * Show free area list (used inside shift_scroll-lock stuff)
1784 * We also calculate the percentage fragmentation. We do this by counting the
1785 * memory on each free list with the exception of the first item on the list.
1786 */
1787void show_free_areas(void)
1788{
1789	int cpu;
1790	struct zone *zone;
1791
1792	for_each_zone(zone) {
1793		if (!populated_zone(zone))
1794			continue;
1795
1796		show_node(zone);
1797		printk("%s per-cpu:\n", zone->name);
1798
1799		for_each_online_cpu(cpu) {
1800			struct per_cpu_pageset *pageset;
1801
1802			pageset = zone_pcp(zone, cpu);
1803
1804			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1805			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1806			       cpu, pageset->pcp[0].high,
1807			       pageset->pcp[0].batch, pageset->pcp[0].count,
1808			       pageset->pcp[1].high, pageset->pcp[1].batch,
1809			       pageset->pcp[1].count);
1810		}
1811	}
1812
1813	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1814		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1815		global_page_state(NR_ACTIVE),
1816		global_page_state(NR_INACTIVE),
1817		global_page_state(NR_FILE_DIRTY),
1818		global_page_state(NR_WRITEBACK),
1819		global_page_state(NR_UNSTABLE_NFS),
1820		global_page_state(NR_FREE_PAGES),
1821		global_page_state(NR_SLAB_RECLAIMABLE) +
1822			global_page_state(NR_SLAB_UNRECLAIMABLE),
1823		global_page_state(NR_FILE_MAPPED),
1824		global_page_state(NR_PAGETABLE),
1825		global_page_state(NR_BOUNCE));
1826
1827	for_each_zone(zone) {
1828		int i;
1829
1830		if (!populated_zone(zone))
1831			continue;
1832
1833		show_node(zone);
1834		printk("%s"
1835			" free:%lukB"
1836			" min:%lukB"
1837			" low:%lukB"
1838			" high:%lukB"
1839			" active:%lukB"
1840			" inactive:%lukB"
1841			" present:%lukB"
1842			" pages_scanned:%lu"
1843			" all_unreclaimable? %s"
1844			"\n",
1845			zone->name,
1846			K(zone_page_state(zone, NR_FREE_PAGES)),
1847			K(zone->pages_min),
1848			K(zone->pages_low),
1849			K(zone->pages_high),
1850			K(zone_page_state(zone, NR_ACTIVE)),
1851			K(zone_page_state(zone, NR_INACTIVE)),
1852			K(zone->present_pages),
1853			zone->pages_scanned,
1854			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1855			);
1856		printk("lowmem_reserve[]:");
1857		for (i = 0; i < MAX_NR_ZONES; i++)
1858			printk(" %lu", zone->lowmem_reserve[i]);
1859		printk("\n");
1860	}
1861
1862	for_each_zone(zone) {
1863 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1864
1865		if (!populated_zone(zone))
1866			continue;
1867
1868		show_node(zone);
1869		printk("%s: ", zone->name);
1870
1871		spin_lock_irqsave(&zone->lock, flags);
1872		for (order = 0; order < MAX_ORDER; order++) {
1873			nr[order] = zone->free_area[order].nr_free;
1874			total += nr[order] << order;
1875		}
1876		spin_unlock_irqrestore(&zone->lock, flags);
1877		for (order = 0; order < MAX_ORDER; order++)
1878			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1879		printk("= %lukB\n", K(total));
1880	}
1881
1882	show_swap_cache_info();
1883}
1884
1885/*
1886 * Builds allocation fallback zone lists.
1887 *
1888 * Add all populated zones of a node to the zonelist.
1889 */
1890static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1891				int nr_zones, enum zone_type zone_type)
1892{
1893	struct zone *zone;
1894
1895	BUG_ON(zone_type >= MAX_NR_ZONES);
1896	zone_type++;
1897
1898	do {
1899		zone_type--;
1900		zone = pgdat->node_zones + zone_type;
1901		if (populated_zone(zone)) {
1902			zonelist->zones[nr_zones++] = zone;
1903			check_highest_zone(zone_type);
1904		}
1905
1906	} while (zone_type);
1907	return nr_zones;
1908}
1909
1910
1911/*
1912 *  zonelist_order:
1913 *  0 = automatic detection of better ordering.
1914 *  1 = order by ([node] distance, -zonetype)
1915 *  2 = order by (-zonetype, [node] distance)
1916 *
1917 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1918 *  the same zonelist. So only NUMA can configure this param.
1919 */
1920#define ZONELIST_ORDER_DEFAULT  0
1921#define ZONELIST_ORDER_NODE     1
1922#define ZONELIST_ORDER_ZONE     2
1923
1924/* zonelist order in the kernel.
1925 * set_zonelist_order() will set this to NODE or ZONE.
1926 */
1927static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1928static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1929
1930
1931#ifdef CONFIG_NUMA
1932/* The value user specified ....changed by config */
1933static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1934/* string for sysctl */
1935#define NUMA_ZONELIST_ORDER_LEN	16
1936char numa_zonelist_order[16] = "default";
1937
1938/*
1939 * interface for configure zonelist ordering.
1940 * command line option "numa_zonelist_order"
1941 *	= "[dD]efault	- default, automatic configuration.
1942 *	= "[nN]ode 	- order by node locality, then by zone within node
1943 *	= "[zZ]one      - order by zone, then by locality within zone
1944 */
1945
1946static int __parse_numa_zonelist_order(char *s)
1947{
1948	if (*s == 'd' || *s == 'D') {
1949		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1950	} else if (*s == 'n' || *s == 'N') {
1951		user_zonelist_order = ZONELIST_ORDER_NODE;
1952	} else if (*s == 'z' || *s == 'Z') {
1953		user_zonelist_order = ZONELIST_ORDER_ZONE;
1954	} else {
1955		printk(KERN_WARNING
1956			"Ignoring invalid numa_zonelist_order value:  "
1957			"%s\n", s);
1958		return -EINVAL;
1959	}
1960	return 0;
1961}
1962
1963static __init int setup_numa_zonelist_order(char *s)
1964{
1965	if (s)
1966		return __parse_numa_zonelist_order(s);
1967	return 0;
1968}
1969early_param("numa_zonelist_order", setup_numa_zonelist_order);
1970
1971/*
1972 * sysctl handler for numa_zonelist_order
1973 */
1974int numa_zonelist_order_handler(ctl_table *table, int write,
1975		struct file *file, void __user *buffer, size_t *length,
1976		loff_t *ppos)
1977{
1978	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1979	int ret;
1980
1981	if (write)
1982		strncpy(saved_string, (char*)table->data,
1983			NUMA_ZONELIST_ORDER_LEN);
1984	ret = proc_dostring(table, write, file, buffer, length, ppos);
1985	if (ret)
1986		return ret;
1987	if (write) {
1988		int oldval = user_zonelist_order;
1989		if (__parse_numa_zonelist_order((char*)table->data)) {
1990			/*
1991			 * bogus value.  restore saved string
1992			 */
1993			strncpy((char*)table->data, saved_string,
1994				NUMA_ZONELIST_ORDER_LEN);
1995			user_zonelist_order = oldval;
1996		} else if (oldval != user_zonelist_order)
1997			build_all_zonelists();
1998	}
1999	return 0;
2000}
2001
2002
2003#define MAX_NODE_LOAD (num_online_nodes())
2004static int node_load[MAX_NUMNODES];
2005
2006/**
2007 * find_next_best_node - find the next node that should appear in a given node's fallback list
2008 * @node: node whose fallback list we're appending
2009 * @used_node_mask: nodemask_t of already used nodes
2010 *
2011 * We use a number of factors to determine which is the next node that should
2012 * appear on a given node's fallback list.  The node should not have appeared
2013 * already in @node's fallback list, and it should be the next closest node
2014 * according to the distance array (which contains arbitrary distance values
2015 * from each node to each node in the system), and should also prefer nodes
2016 * with no CPUs, since presumably they'll have very little allocation pressure
2017 * on them otherwise.
2018 * It returns -1 if no node is found.
2019 */
2020static int find_next_best_node(int node, nodemask_t *used_node_mask)
2021{
2022	int n, val;
2023	int min_val = INT_MAX;
2024	int best_node = -1;
2025
2026	/* Use the local node if we haven't already */
2027	if (!node_isset(node, *used_node_mask)) {
2028		node_set(node, *used_node_mask);
2029		return node;
2030	}
2031
2032	for_each_node_state(n, N_HIGH_MEMORY) {
2033		cpumask_t tmp;
2034
2035		/* Don't want a node to appear more than once */
2036		if (node_isset(n, *used_node_mask))
2037			continue;
2038
2039		/* Use the distance array to find the distance */
2040		val = node_distance(node, n);
2041
2042		/* Penalize nodes under us ("prefer the next node") */
2043		val += (n < node);
2044
2045		/* Give preference to headless and unused nodes */
2046		tmp = node_to_cpumask(n);
2047		if (!cpus_empty(tmp))
2048			val += PENALTY_FOR_NODE_WITH_CPUS;
2049
2050		/* Slight preference for less loaded node */
2051		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2052		val += node_load[n];
2053
2054		if (val < min_val) {
2055			min_val = val;
2056			best_node = n;
2057		}
2058	}
2059
2060	if (best_node >= 0)
2061		node_set(best_node, *used_node_mask);
2062
2063	return best_node;
2064}
2065
2066
2067/*
2068 * Build zonelists ordered by node and zones within node.
2069 * This results in maximum locality--normal zone overflows into local
2070 * DMA zone, if any--but risks exhausting DMA zone.
2071 */
2072static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2073{
2074	enum zone_type i;
2075	int j;
2076	struct zonelist *zonelist;
2077
2078	for (i = 0; i < MAX_NR_ZONES; i++) {
2079		zonelist = pgdat->node_zonelists + i;
2080		for (j = 0; zonelist->zones[j] != NULL; j++)
2081			;
2082 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2083		zonelist->zones[j] = NULL;
2084	}
2085}
2086
2087/*
2088 * Build gfp_thisnode zonelists
2089 */
2090static void build_thisnode_zonelists(pg_data_t *pgdat)
2091{
2092	enum zone_type i;
2093	int j;
2094	struct zonelist *zonelist;
2095
2096	for (i = 0; i < MAX_NR_ZONES; i++) {
2097		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2098		j = build_zonelists_node(pgdat, zonelist, 0, i);
2099		zonelist->zones[j] = NULL;
2100	}
2101}
2102
2103/*
2104 * Build zonelists ordered by zone and nodes within zones.
2105 * This results in conserving DMA zone[s] until all Normal memory is
2106 * exhausted, but results in overflowing to remote node while memory
2107 * may still exist in local DMA zone.
2108 */
2109static int node_order[MAX_NUMNODES];
2110
2111static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2112{
2113	enum zone_type i;
2114	int pos, j, node;
2115	int zone_type;		/* needs to be signed */
2116	struct zone *z;
2117	struct zonelist *zonelist;
2118
2119	for (i = 0; i < MAX_NR_ZONES; i++) {
2120		zonelist = pgdat->node_zonelists + i;
2121		pos = 0;
2122		for (zone_type = i; zone_type >= 0; zone_type--) {
2123			for (j = 0; j < nr_nodes; j++) {
2124				node = node_order[j];
2125				z = &NODE_DATA(node)->node_zones[zone_type];
2126				if (populated_zone(z)) {
2127					zonelist->zones[pos++] = z;
2128					check_highest_zone(zone_type);
2129				}
2130			}
2131		}
2132		zonelist->zones[pos] = NULL;
2133	}
2134}
2135
2136static int default_zonelist_order(void)
2137{
2138	int nid, zone_type;
2139	unsigned long low_kmem_size,total_size;
2140	struct zone *z;
2141	int average_size;
2142	/*
2143         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2144	 * If they are really small and used heavily, the system can fall
2145	 * into OOM very easily.
2146	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2147	 */
2148	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2149	low_kmem_size = 0;
2150	total_size = 0;
2151	for_each_online_node(nid) {
2152		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2153			z = &NODE_DATA(nid)->node_zones[zone_type];
2154			if (populated_zone(z)) {
2155				if (zone_type < ZONE_NORMAL)
2156					low_kmem_size += z->present_pages;
2157				total_size += z->present_pages;
2158			}
2159		}
2160	}
2161	if (!low_kmem_size ||  /* there are no DMA area. */
2162	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2163		return ZONELIST_ORDER_NODE;
2164	/*
2165	 * look into each node's config.
2166  	 * If there is a node whose DMA/DMA32 memory is very big area on
2167 	 * local memory, NODE_ORDER may be suitable.
2168         */
2169	average_size = total_size /
2170				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2171	for_each_online_node(nid) {
2172		low_kmem_size = 0;
2173		total_size = 0;
2174		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2175			z = &NODE_DATA(nid)->node_zones[zone_type];
2176			if (populated_zone(z)) {
2177				if (zone_type < ZONE_NORMAL)
2178					low_kmem_size += z->present_pages;
2179				total_size += z->present_pages;
2180			}
2181		}
2182		if (low_kmem_size &&
2183		    total_size > average_size && /* ignore small node */
2184		    low_kmem_size > total_size * 70/100)
2185			return ZONELIST_ORDER_NODE;
2186	}
2187	return ZONELIST_ORDER_ZONE;
2188}
2189
2190static void set_zonelist_order(void)
2191{
2192	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2193		current_zonelist_order = default_zonelist_order();
2194	else
2195		current_zonelist_order = user_zonelist_order;
2196}
2197
2198static void build_zonelists(pg_data_t *pgdat)
2199{
2200	int j, node, load;
2201	enum zone_type i;
2202	nodemask_t used_mask;
2203	int local_node, prev_node;
2204	struct zonelist *zonelist;
2205	int order = current_zonelist_order;
2206
2207	/* initialize zonelists */
2208	for (i = 0; i < MAX_ZONELISTS; i++) {
2209		zonelist = pgdat->node_zonelists + i;
2210		zonelist->zones[0] = NULL;
2211	}
2212
2213	/* NUMA-aware ordering of nodes */
2214	local_node = pgdat->node_id;
2215	load = num_online_nodes();
2216	prev_node = local_node;
2217	nodes_clear(used_mask);
2218
2219	memset(node_load, 0, sizeof(node_load));
2220	memset(node_order, 0, sizeof(node_order));
2221	j = 0;
2222
2223	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2224		int distance = node_distance(local_node, node);
2225
2226		/*
2227		 * If another node is sufficiently far away then it is better
2228		 * to reclaim pages in a zone before going off node.
2229		 */
2230		if (distance > RECLAIM_DISTANCE)
2231			zone_reclaim_mode = 1;
2232
2233		/*
2234		 * We don't want to pressure a particular node.
2235		 * So adding penalty to the first node in same
2236		 * distance group to make it round-robin.
2237		 */
2238		if (distance != node_distance(local_node, prev_node))
2239			node_load[node] = load;
2240
2241		prev_node = node;
2242		load--;
2243		if (order == ZONELIST_ORDER_NODE)
2244			build_zonelists_in_node_order(pgdat, node);
2245		else
2246			node_order[j++] = node;	/* remember order */
2247	}
2248
2249	if (order == ZONELIST_ORDER_ZONE) {
2250		/* calculate node order -- i.e., DMA last! */
2251		build_zonelists_in_zone_order(pgdat, j);
2252	}
2253
2254	build_thisnode_zonelists(pgdat);
2255}
2256
2257/* Construct the zonelist performance cache - see further mmzone.h */
2258static void build_zonelist_cache(pg_data_t *pgdat)
2259{
2260	int i;
2261
2262	for (i = 0; i < MAX_NR_ZONES; i++) {
2263		struct zonelist *zonelist;
2264		struct zonelist_cache *zlc;
2265		struct zone **z;
2266
2267		zonelist = pgdat->node_zonelists + i;
2268		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2269		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2270		for (z = zonelist->zones; *z; z++)
2271			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2272	}
2273}
2274
2275
2276#else	/* CONFIG_NUMA */
2277
2278static void set_zonelist_order(void)
2279{
2280	current_zonelist_order = ZONELIST_ORDER_ZONE;
2281}
2282
2283static void build_zonelists(pg_data_t *pgdat)
2284{
2285	int node, local_node;
2286	enum zone_type i,j;
2287
2288	local_node = pgdat->node_id;
2289	for (i = 0; i < MAX_NR_ZONES; i++) {
2290		struct zonelist *zonelist;
2291
2292		zonelist = pgdat->node_zonelists + i;
2293
2294 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2295 		/*
2296 		 * Now we build the zonelist so that it contains the zones
2297 		 * of all the other nodes.
2298 		 * We don't want to pressure a particular node, so when
2299 		 * building the zones for node N, we make sure that the
2300 		 * zones coming right after the local ones are those from
2301 		 * node N+1 (modulo N)
2302 		 */
2303		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2304			if (!node_online(node))
2305				continue;
2306			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2307		}
2308		for (node = 0; node < local_node; node++) {
2309			if (!node_online(node))
2310				continue;
2311			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2312		}
2313
2314		zonelist->zones[j] = NULL;
2315	}
2316}
2317
2318/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2319static void build_zonelist_cache(pg_data_t *pgdat)
2320{
2321	int i;
2322
2323	for (i = 0; i < MAX_NR_ZONES; i++)
2324		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2325}
2326
2327#endif	/* CONFIG_NUMA */
2328
2329/* return values int ....just for stop_machine_run() */
2330static int __build_all_zonelists(void *dummy)
2331{
2332	int nid;
2333
2334	for_each_online_node(nid) {
2335		pg_data_t *pgdat = NODE_DATA(nid);
2336
2337		build_zonelists(pgdat);
2338		build_zonelist_cache(pgdat);
2339	}
2340	return 0;
2341}
2342
2343void build_all_zonelists(void)
2344{
2345	set_zonelist_order();
2346
2347	if (system_state == SYSTEM_BOOTING) {
2348		__build_all_zonelists(NULL);
2349		cpuset_init_current_mems_allowed();
2350	} else {
2351		/* we have to stop all cpus to guarantee there is no user
2352		   of zonelist */
2353		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2354		/* cpuset refresh routine should be here */
2355	}
2356	vm_total_pages = nr_free_pagecache_pages();
2357	/*
2358	 * Disable grouping by mobility if the number of pages in the
2359	 * system is too low to allow the mechanism to work. It would be
2360	 * more accurate, but expensive to check per-zone. This check is
2361	 * made on memory-hotadd so a system can start with mobility
2362	 * disabled and enable it later
2363	 */
2364	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2365		page_group_by_mobility_disabled = 1;
2366	else
2367		page_group_by_mobility_disabled = 0;
2368
2369	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2370		"Total pages: %ld\n",
2371			num_online_nodes(),
2372			zonelist_order_name[current_zonelist_order],
2373			page_group_by_mobility_disabled ? "off" : "on",
2374			vm_total_pages);
2375#ifdef CONFIG_NUMA
2376	printk("Policy zone: %s\n", zone_names[policy_zone]);
2377#endif
2378}
2379
2380/*
2381 * Helper functions to size the waitqueue hash table.
2382 * Essentially these want to choose hash table sizes sufficiently
2383 * large so that collisions trying to wait on pages are rare.
2384 * But in fact, the number of active page waitqueues on typical
2385 * systems is ridiculously low, less than 200. So this is even
2386 * conservative, even though it seems large.
2387 *
2388 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2389 * waitqueues, i.e. the size of the waitq table given the number of pages.
2390 */
2391#define PAGES_PER_WAITQUEUE	256
2392
2393#ifndef CONFIG_MEMORY_HOTPLUG
2394static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2395{
2396	unsigned long size = 1;
2397
2398	pages /= PAGES_PER_WAITQUEUE;
2399
2400	while (size < pages)
2401		size <<= 1;
2402
2403	/*
2404	 * Once we have dozens or even hundreds of threads sleeping
2405	 * on IO we've got bigger problems than wait queue collision.
2406	 * Limit the size of the wait table to a reasonable size.
2407	 */
2408	size = min(size, 4096UL);
2409
2410	return max(size, 4UL);
2411}
2412#else
2413/*
2414 * A zone's size might be changed by hot-add, so it is not possible to determine
2415 * a suitable size for its wait_table.  So we use the maximum size now.
2416 *
2417 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2418 *
2419 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2420 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2421 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2422 *
2423 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2424 * or more by the traditional way. (See above).  It equals:
2425 *
2426 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2427 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2428 *    powerpc (64K page size)             : =  (32G +16M)byte.
2429 */
2430static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2431{
2432	return 4096UL;
2433}
2434#endif
2435
2436/*
2437 * This is an integer logarithm so that shifts can be used later
2438 * to extract the more random high bits from the multiplicative
2439 * hash function before the remainder is taken.
2440 */
2441static inline unsigned long wait_table_bits(unsigned long size)
2442{
2443	return ffz(~size);
2444}
2445
2446#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2447
2448/*
2449 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2450 * of blocks reserved is based on zone->pages_min. The memory within the
2451 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2452 * higher will lead to a bigger reserve which will get freed as contiguous
2453 * blocks as reclaim kicks in
2454 */
2455static void setup_zone_migrate_reserve(struct zone *zone)
2456{
2457	unsigned long start_pfn, pfn, end_pfn;
2458	struct page *page;
2459	unsigned long reserve, block_migratetype;
2460
2461	/* Get the start pfn, end pfn and the number of blocks to reserve */
2462	start_pfn = zone->zone_start_pfn;
2463	end_pfn = start_pfn + zone->spanned_pages;
2464	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2465							pageblock_order;
2466
2467	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2468		if (!pfn_valid(pfn))
2469			continue;
2470		page = pfn_to_page(pfn);
2471
2472		/* Blocks with reserved pages will never free, skip them. */
2473		if (PageReserved(page))
2474			continue;
2475
2476		block_migratetype = get_pageblock_migratetype(page);
2477
2478		/* If this block is reserved, account for it */
2479		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2480			reserve--;
2481			continue;
2482		}
2483
2484		/* Suitable for reserving if this block is movable */
2485		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2486			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2487			move_freepages_block(zone, page, MIGRATE_RESERVE);
2488			reserve--;
2489			continue;
2490		}
2491
2492		/*
2493		 * If the reserve is met and this is a previous reserved block,
2494		 * take it back
2495		 */
2496		if (block_migratetype == MIGRATE_RESERVE) {
2497			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2498			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2499		}
2500	}
2501}
2502
2503/*
2504 * Initially all pages are reserved - free ones are freed
2505 * up by free_all_bootmem() once the early boot process is
2506 * done. Non-atomic initialization, single-pass.
2507 */
2508void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2509		unsigned long start_pfn, enum memmap_context context)
2510{
2511	struct page *page;
2512	unsigned long end_pfn = start_pfn + size;
2513	unsigned long pfn;
2514
2515	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2516		/*
2517		 * There can be holes in boot-time mem_map[]s
2518		 * handed to this function.  They do not
2519		 * exist on hotplugged memory.
2520		 */
2521		if (context == MEMMAP_EARLY) {
2522			if (!early_pfn_valid(pfn))
2523				continue;
2524			if (!early_pfn_in_nid(pfn, nid))
2525				continue;
2526		}
2527		page = pfn_to_page(pfn);
2528		set_page_links(page, zone, nid, pfn);
2529		init_page_count(page);
2530		reset_page_mapcount(page);
2531		SetPageReserved(page);
2532
2533		/*
2534		 * Mark the block movable so that blocks are reserved for
2535		 * movable at startup. This will force kernel allocations
2536		 * to reserve their blocks rather than leaking throughout
2537		 * the address space during boot when many long-lived
2538		 * kernel allocations are made. Later some blocks near
2539		 * the start are marked MIGRATE_RESERVE by
2540		 * setup_zone_migrate_reserve()
2541		 */
2542		if ((pfn & (pageblock_nr_pages-1)))
2543			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2544
2545		INIT_LIST_HEAD(&page->lru);
2546#ifdef WANT_PAGE_VIRTUAL
2547		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2548		if (!is_highmem_idx(zone))
2549			set_page_address(page, __va(pfn << PAGE_SHIFT));
2550#endif
2551	}
2552}
2553
2554static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2555				struct zone *zone, unsigned long size)
2556{
2557	int order, t;
2558	for_each_migratetype_order(order, t) {
2559		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2560		zone->free_area[order].nr_free = 0;
2561	}
2562}
2563
2564#ifndef __HAVE_ARCH_MEMMAP_INIT
2565#define memmap_init(size, nid, zone, start_pfn) \
2566	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2567#endif
2568
2569static int zone_batchsize(struct zone *zone)
2570{
2571	int batch;
2572
2573	/*
2574	 * The per-cpu-pages pools are set to around 1000th of the
2575	 * size of the zone.  But no more than 1/2 of a meg.
2576	 *
2577	 * OK, so we don't know how big the cache is.  So guess.
2578	 */
2579	batch = zone->present_pages / 1024;
2580	if (batch * PAGE_SIZE > 512 * 1024)
2581		batch = (512 * 1024) / PAGE_SIZE;
2582	batch /= 4;		/* We effectively *= 4 below */
2583	if (batch < 1)
2584		batch = 1;
2585
2586	/*
2587	 * Clamp the batch to a 2^n - 1 value. Having a power
2588	 * of 2 value was found to be more likely to have
2589	 * suboptimal cache aliasing properties in some cases.
2590	 *
2591	 * For example if 2 tasks are alternately allocating
2592	 * batches of pages, one task can end up with a lot
2593	 * of pages of one half of the possible page colors
2594	 * and the other with pages of the other colors.
2595	 */
2596	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2597
2598	return batch;
2599}
2600
2601inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2602{
2603	struct per_cpu_pages *pcp;
2604
2605	memset(p, 0, sizeof(*p));
2606
2607	pcp = &p->pcp[0];		/* hot */
2608	pcp->count = 0;
2609	pcp->high = 6 * batch;
2610	pcp->batch = max(1UL, 1 * batch);
2611	INIT_LIST_HEAD(&pcp->list);
2612
2613	pcp = &p->pcp[1];		/* cold*/
2614	pcp->count = 0;
2615	pcp->high = 2 * batch;
2616	pcp->batch = max(1UL, batch/2);
2617	INIT_LIST_HEAD(&pcp->list);
2618}
2619
2620/*
2621 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2622 * to the value high for the pageset p.
2623 */
2624
2625static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2626				unsigned long high)
2627{
2628	struct per_cpu_pages *pcp;
2629
2630	pcp = &p->pcp[0]; /* hot list */
2631	pcp->high = high;
2632	pcp->batch = max(1UL, high/4);
2633	if ((high/4) > (PAGE_SHIFT * 8))
2634		pcp->batch = PAGE_SHIFT * 8;
2635}
2636
2637
2638#ifdef CONFIG_NUMA
2639/*
2640 * Boot pageset table. One per cpu which is going to be used for all
2641 * zones and all nodes. The parameters will be set in such a way
2642 * that an item put on a list will immediately be handed over to
2643 * the buddy list. This is safe since pageset manipulation is done
2644 * with interrupts disabled.
2645 *
2646 * Some NUMA counter updates may also be caught by the boot pagesets.
2647 *
2648 * The boot_pagesets must be kept even after bootup is complete for
2649 * unused processors and/or zones. They do play a role for bootstrapping
2650 * hotplugged processors.
2651 *
2652 * zoneinfo_show() and maybe other functions do
2653 * not check if the processor is online before following the pageset pointer.
2654 * Other parts of the kernel may not check if the zone is available.
2655 */
2656static struct per_cpu_pageset boot_pageset[NR_CPUS];
2657
2658/*
2659 * Dynamically allocate memory for the
2660 * per cpu pageset array in struct zone.
2661 */
2662static int __cpuinit process_zones(int cpu)
2663{
2664	struct zone *zone, *dzone;
2665	int node = cpu_to_node(cpu);
2666
2667	node_set_state(node, N_CPU);	/* this node has a cpu */
2668
2669	for_each_zone(zone) {
2670
2671		if (!populated_zone(zone))
2672			continue;
2673
2674		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2675					 GFP_KERNEL, node);
2676		if (!zone_pcp(zone, cpu))
2677			goto bad;
2678
2679		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2680
2681		if (percpu_pagelist_fraction)
2682			setup_pagelist_highmark(zone_pcp(zone, cpu),
2683			 	(zone->present_pages / percpu_pagelist_fraction));
2684	}
2685
2686	return 0;
2687bad:
2688	for_each_zone(dzone) {
2689		if (!populated_zone(dzone))
2690			continue;
2691		if (dzone == zone)
2692			break;
2693		kfree(zone_pcp(dzone, cpu));
2694		zone_pcp(dzone, cpu) = NULL;
2695	}
2696	return -ENOMEM;
2697}
2698
2699static inline void free_zone_pagesets(int cpu)
2700{
2701	struct zone *zone;
2702
2703	for_each_zone(zone) {
2704		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2705
2706		/* Free per_cpu_pageset if it is slab allocated */
2707		if (pset != &boot_pageset[cpu])
2708			kfree(pset);
2709		zone_pcp(zone, cpu) = NULL;
2710	}
2711}
2712
2713static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2714		unsigned long action,
2715		void *hcpu)
2716{
2717	int cpu = (long)hcpu;
2718	int ret = NOTIFY_OK;
2719
2720	switch (action) {
2721	case CPU_UP_PREPARE:
2722	case CPU_UP_PREPARE_FROZEN:
2723		if (process_zones(cpu))
2724			ret = NOTIFY_BAD;
2725		break;
2726	case CPU_UP_CANCELED:
2727	case CPU_UP_CANCELED_FROZEN:
2728	case CPU_DEAD:
2729	case CPU_DEAD_FROZEN:
2730		free_zone_pagesets(cpu);
2731		break;
2732	default:
2733		break;
2734	}
2735	return ret;
2736}
2737
2738static struct notifier_block __cpuinitdata pageset_notifier =
2739	{ &pageset_cpuup_callback, NULL, 0 };
2740
2741void __init setup_per_cpu_pageset(void)
2742{
2743	int err;
2744
2745	/* Initialize per_cpu_pageset for cpu 0.
2746	 * A cpuup callback will do this for every cpu
2747	 * as it comes online
2748	 */
2749	err = process_zones(smp_processor_id());
2750	BUG_ON(err);
2751	register_cpu_notifier(&pageset_notifier);
2752}
2753
2754#endif
2755
2756static noinline __init_refok
2757int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2758{
2759	int i;
2760	struct pglist_data *pgdat = zone->zone_pgdat;
2761	size_t alloc_size;
2762
2763	/*
2764	 * The per-page waitqueue mechanism uses hashed waitqueues
2765	 * per zone.
2766	 */
2767	zone->wait_table_hash_nr_entries =
2768		 wait_table_hash_nr_entries(zone_size_pages);
2769	zone->wait_table_bits =
2770		wait_table_bits(zone->wait_table_hash_nr_entries);
2771	alloc_size = zone->wait_table_hash_nr_entries
2772					* sizeof(wait_queue_head_t);
2773
2774 	if (system_state == SYSTEM_BOOTING) {
2775		zone->wait_table = (wait_queue_head_t *)
2776			alloc_bootmem_node(pgdat, alloc_size);
2777	} else {
2778		/*
2779		 * This case means that a zone whose size was 0 gets new memory
2780		 * via memory hot-add.
2781		 * But it may be the case that a new node was hot-added.  In
2782		 * this case vmalloc() will not be able to use this new node's
2783		 * memory - this wait_table must be initialized to use this new
2784		 * node itself as well.
2785		 * To use this new node's memory, further consideration will be
2786		 * necessary.
2787		 */
2788		zone->wait_table = vmalloc(alloc_size);
2789	}
2790	if (!zone->wait_table)
2791		return -ENOMEM;
2792
2793	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2794		init_waitqueue_head(zone->wait_table + i);
2795
2796	return 0;
2797}
2798
2799static __meminit void zone_pcp_init(struct zone *zone)
2800{
2801	int cpu;
2802	unsigned long batch = zone_batchsize(zone);
2803
2804	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2805#ifdef CONFIG_NUMA
2806		/* Early boot. Slab allocator not functional yet */
2807		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2808		setup_pageset(&boot_pageset[cpu],0);
2809#else
2810		setup_pageset(zone_pcp(zone,cpu), batch);
2811#endif
2812	}
2813	if (zone->present_pages)
2814		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2815			zone->name, zone->present_pages, batch);
2816}
2817
2818__meminit int init_currently_empty_zone(struct zone *zone,
2819					unsigned long zone_start_pfn,
2820					unsigned long size,
2821					enum memmap_context context)
2822{
2823	struct pglist_data *pgdat = zone->zone_pgdat;
2824	int ret;
2825	ret = zone_wait_table_init(zone, size);
2826	if (ret)
2827		return ret;
2828	pgdat->nr_zones = zone_idx(zone) + 1;
2829
2830	zone->zone_start_pfn = zone_start_pfn;
2831
2832	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2833
2834	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2835
2836	return 0;
2837}
2838
2839#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2840/*
2841 * Basic iterator support. Return the first range of PFNs for a node
2842 * Note: nid == MAX_NUMNODES returns first region regardless of node
2843 */
2844static int __meminit first_active_region_index_in_nid(int nid)
2845{
2846	int i;
2847
2848	for (i = 0; i < nr_nodemap_entries; i++)
2849		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2850			return i;
2851
2852	return -1;
2853}
2854
2855/*
2856 * Basic iterator support. Return the next active range of PFNs for a node
2857 * Note: nid == MAX_NUMNODES returns next region regardless of node
2858 */
2859static int __meminit next_active_region_index_in_nid(int index, int nid)
2860{
2861	for (index = index + 1; index < nr_nodemap_entries; index++)
2862		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2863			return index;
2864
2865	return -1;
2866}
2867
2868#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2869/*
2870 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2871 * Architectures may implement their own version but if add_active_range()
2872 * was used and there are no special requirements, this is a convenient
2873 * alternative
2874 */
2875int __meminit early_pfn_to_nid(unsigned long pfn)
2876{
2877	int i;
2878
2879	for (i = 0; i < nr_nodemap_entries; i++) {
2880		unsigned long start_pfn = early_node_map[i].start_pfn;
2881		unsigned long end_pfn = early_node_map[i].end_pfn;
2882
2883		if (start_pfn <= pfn && pfn < end_pfn)
2884			return early_node_map[i].nid;
2885	}
2886
2887	return 0;
2888}
2889#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2890
2891/* Basic iterator support to walk early_node_map[] */
2892#define for_each_active_range_index_in_nid(i, nid) \
2893	for (i = first_active_region_index_in_nid(nid); i != -1; \
2894				i = next_active_region_index_in_nid(i, nid))
2895
2896/**
2897 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2898 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2899 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2900 *
2901 * If an architecture guarantees that all ranges registered with
2902 * add_active_ranges() contain no holes and may be freed, this
2903 * this function may be used instead of calling free_bootmem() manually.
2904 */
2905void __init free_bootmem_with_active_regions(int nid,
2906						unsigned long max_low_pfn)
2907{
2908	int i;
2909
2910	for_each_active_range_index_in_nid(i, nid) {
2911		unsigned long size_pages = 0;
2912		unsigned long end_pfn = early_node_map[i].end_pfn;
2913
2914		if (early_node_map[i].start_pfn >= max_low_pfn)
2915			continue;
2916
2917		if (end_pfn > max_low_pfn)
2918			end_pfn = max_low_pfn;
2919
2920		size_pages = end_pfn - early_node_map[i].start_pfn;
2921		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2922				PFN_PHYS(early_node_map[i].start_pfn),
2923				size_pages << PAGE_SHIFT);
2924	}
2925}
2926
2927/**
2928 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2929 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2930 *
2931 * If an architecture guarantees that all ranges registered with
2932 * add_active_ranges() contain no holes and may be freed, this
2933 * function may be used instead of calling memory_present() manually.
2934 */
2935void __init sparse_memory_present_with_active_regions(int nid)
2936{
2937	int i;
2938
2939	for_each_active_range_index_in_nid(i, nid)
2940		memory_present(early_node_map[i].nid,
2941				early_node_map[i].start_pfn,
2942				early_node_map[i].end_pfn);
2943}
2944
2945/**
2946 * push_node_boundaries - Push node boundaries to at least the requested boundary
2947 * @nid: The nid of the node to push the boundary for
2948 * @start_pfn: The start pfn of the node
2949 * @end_pfn: The end pfn of the node
2950 *
2951 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2952 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2953 * be hotplugged even though no physical memory exists. This function allows
2954 * an arch to push out the node boundaries so mem_map is allocated that can
2955 * be used later.
2956 */
2957#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2958void __init push_node_boundaries(unsigned int nid,
2959		unsigned long start_pfn, unsigned long end_pfn)
2960{
2961	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2962			nid, start_pfn, end_pfn);
2963
2964	/* Initialise the boundary for this node if necessary */
2965	if (node_boundary_end_pfn[nid] == 0)
2966		node_boundary_start_pfn[nid] = -1UL;
2967
2968	/* Update the boundaries */
2969	if (node_boundary_start_pfn[nid] > start_pfn)
2970		node_boundary_start_pfn[nid] = start_pfn;
2971	if (node_boundary_end_pfn[nid] < end_pfn)
2972		node_boundary_end_pfn[nid] = end_pfn;
2973}
2974
2975/* If necessary, push the node boundary out for reserve hotadd */
2976static void __meminit account_node_boundary(unsigned int nid,
2977		unsigned long *start_pfn, unsigned long *end_pfn)
2978{
2979	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2980			nid, *start_pfn, *end_pfn);
2981
2982	/* Return if boundary information has not been provided */
2983	if (node_boundary_end_pfn[nid] == 0)
2984		return;
2985
2986	/* Check the boundaries and update if necessary */
2987	if (node_boundary_start_pfn[nid] < *start_pfn)
2988		*start_pfn = node_boundary_start_pfn[nid];
2989	if (node_boundary_end_pfn[nid] > *end_pfn)
2990		*end_pfn = node_boundary_end_pfn[nid];
2991}
2992#else
2993void __init push_node_boundaries(unsigned int nid,
2994		unsigned long start_pfn, unsigned long end_pfn) {}
2995
2996static void __meminit account_node_boundary(unsigned int nid,
2997		unsigned long *start_pfn, unsigned long *end_pfn) {}
2998#endif
2999
3000
3001/**
3002 * get_pfn_range_for_nid - Return the start and end page frames for a node
3003 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3004 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3005 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3006 *
3007 * It returns the start and end page frame of a node based on information
3008 * provided by an arch calling add_active_range(). If called for a node
3009 * with no available memory, a warning is printed and the start and end
3010 * PFNs will be 0.
3011 */
3012void __meminit get_pfn_range_for_nid(unsigned int nid,
3013			unsigned long *start_pfn, unsigned long *end_pfn)
3014{
3015	int i;
3016	*start_pfn = -1UL;
3017	*end_pfn = 0;
3018
3019	for_each_active_range_index_in_nid(i, nid) {
3020		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3021		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3022	}
3023
3024	if (*start_pfn == -1UL)
3025		*start_pfn = 0;
3026
3027	/* Push the node boundaries out if requested */
3028	account_node_boundary(nid, start_pfn, end_pfn);
3029}
3030
3031/*
3032 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3033 * assumption is made that zones within a node are ordered in monotonic
3034 * increasing memory addresses so that the "highest" populated zone is used
3035 */
3036void __init find_usable_zone_for_movable(void)
3037{
3038	int zone_index;
3039	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3040		if (zone_index == ZONE_MOVABLE)
3041			continue;
3042
3043		if (arch_zone_highest_possible_pfn[zone_index] >
3044				arch_zone_lowest_possible_pfn[zone_index])
3045			break;
3046	}
3047
3048	VM_BUG_ON(zone_index == -1);
3049	movable_zone = zone_index;
3050}
3051
3052/*
3053 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3054 * because it is sized independant of architecture. Unlike the other zones,
3055 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3056 * in each node depending on the size of each node and how evenly kernelcore
3057 * is distributed. This helper function adjusts the zone ranges
3058 * provided by the architecture for a given node by using the end of the
3059 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3060 * zones within a node are in order of monotonic increases memory addresses
3061 */
3062void __meminit adjust_zone_range_for_zone_movable(int nid,
3063					unsigned long zone_type,
3064					unsigned long node_start_pfn,
3065					unsigned long node_end_pfn,
3066					unsigned long *zone_start_pfn,
3067					unsigned long *zone_end_pfn)
3068{
3069	/* Only adjust if ZONE_MOVABLE is on this node */
3070	if (zone_movable_pfn[nid]) {
3071		/* Size ZONE_MOVABLE */
3072		if (zone_type == ZONE_MOVABLE) {
3073			*zone_start_pfn = zone_movable_pfn[nid];
3074			*zone_end_pfn = min(node_end_pfn,
3075				arch_zone_highest_possible_pfn[movable_zone]);
3076
3077		/* Adjust for ZONE_MOVABLE starting within this range */
3078		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3079				*zone_end_pfn > zone_movable_pfn[nid]) {
3080			*zone_end_pfn = zone_movable_pfn[nid];
3081
3082		/* Check if this whole range is within ZONE_MOVABLE */
3083		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3084			*zone_start_pfn = *zone_end_pfn;
3085	}
3086}
3087
3088/*
3089 * Return the number of pages a zone spans in a node, including holes
3090 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3091 */
3092static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3093					unsigned long zone_type,
3094					unsigned long *ignored)
3095{
3096	unsigned long node_start_pfn, node_end_pfn;
3097	unsigned long zone_start_pfn, zone_end_pfn;
3098
3099	/* Get the start and end of the node and zone */
3100	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3101	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3102	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3103	adjust_zone_range_for_zone_movable(nid, zone_type,
3104				node_start_pfn, node_end_pfn,
3105				&zone_start_pfn, &zone_end_pfn);
3106
3107	/* Check that this node has pages within the zone's required range */
3108	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3109		return 0;
3110
3111	/* Move the zone boundaries inside the node if necessary */
3112	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3113	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3114
3115	/* Return the spanned pages */
3116	return zone_end_pfn - zone_start_pfn;
3117}
3118
3119/*
3120 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3121 * then all holes in the requested range will be accounted for.
3122 */
3123unsigned long __meminit __absent_pages_in_range(int nid,
3124				unsigned long range_start_pfn,
3125				unsigned long range_end_pfn)
3126{
3127	int i = 0;
3128	unsigned long prev_end_pfn = 0, hole_pages = 0;
3129	unsigned long start_pfn;
3130
3131	/* Find the end_pfn of the first active range of pfns in the node */
3132	i = first_active_region_index_in_nid(nid);
3133	if (i == -1)
3134		return 0;
3135
3136	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3137
3138	/* Account for ranges before physical memory on this node */
3139	if (early_node_map[i].start_pfn > range_start_pfn)
3140		hole_pages = prev_end_pfn - range_start_pfn;
3141
3142	/* Find all holes for the zone within the node */
3143	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3144
3145		/* No need to continue if prev_end_pfn is outside the zone */
3146		if (prev_end_pfn >= range_end_pfn)
3147			break;
3148
3149		/* Make sure the end of the zone is not within the hole */
3150		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3151		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3152
3153		/* Update the hole size cound and move on */
3154		if (start_pfn > range_start_pfn) {
3155			BUG_ON(prev_end_pfn > start_pfn);
3156			hole_pages += start_pfn - prev_end_pfn;
3157		}
3158		prev_end_pfn = early_node_map[i].end_pfn;
3159	}
3160
3161	/* Account for ranges past physical memory on this node */
3162	if (range_end_pfn > prev_end_pfn)
3163		hole_pages += range_end_pfn -
3164				max(range_start_pfn, prev_end_pfn);
3165
3166	return hole_pages;
3167}
3168
3169/**
3170 * absent_pages_in_range - Return number of page frames in holes within a range
3171 * @start_pfn: The start PFN to start searching for holes
3172 * @end_pfn: The end PFN to stop searching for holes
3173 *
3174 * It returns the number of pages frames in memory holes within a range.
3175 */
3176unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3177							unsigned long end_pfn)
3178{
3179	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3180}
3181
3182/* Return the number of page frames in holes in a zone on a node */
3183static unsigned long __meminit zone_absent_pages_in_node(int nid,
3184					unsigned long zone_type,
3185					unsigned long *ignored)
3186{
3187	unsigned long node_start_pfn, node_end_pfn;
3188	unsigned long zone_start_pfn, zone_end_pfn;
3189
3190	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3191	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3192							node_start_pfn);
3193	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3194							node_end_pfn);
3195
3196	adjust_zone_range_for_zone_movable(nid, zone_type,
3197			node_start_pfn, node_end_pfn,
3198			&zone_start_pfn, &zone_end_pfn);
3199	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3200}
3201
3202#else
3203static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3204					unsigned long zone_type,
3205					unsigned long *zones_size)
3206{
3207	return zones_size[zone_type];
3208}
3209
3210static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3211						unsigned long zone_type,
3212						unsigned long *zholes_size)
3213{
3214	if (!zholes_size)
3215		return 0;
3216
3217	return zholes_size[zone_type];
3218}
3219
3220#endif
3221
3222static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3223		unsigned long *zones_size, unsigned long *zholes_size)
3224{
3225	unsigned long realtotalpages, totalpages = 0;
3226	enum zone_type i;
3227
3228	for (i = 0; i < MAX_NR_ZONES; i++)
3229		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3230								zones_size);
3231	pgdat->node_spanned_pages = totalpages;
3232
3233	realtotalpages = totalpages;
3234	for (i = 0; i < MAX_NR_ZONES; i++)
3235		realtotalpages -=
3236			zone_absent_pages_in_node(pgdat->node_id, i,
3237								zholes_size);
3238	pgdat->node_present_pages = realtotalpages;
3239	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3240							realtotalpages);
3241}
3242
3243#ifndef CONFIG_SPARSEMEM
3244/*
3245 * Calculate the size of the zone->blockflags rounded to an unsigned long
3246 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3247 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3248 * round what is now in bits to nearest long in bits, then return it in
3249 * bytes.
3250 */
3251static unsigned long __init usemap_size(unsigned long zonesize)
3252{
3253	unsigned long usemapsize;
3254
3255	usemapsize = roundup(zonesize, pageblock_nr_pages);
3256	usemapsize = usemapsize >> pageblock_order;
3257	usemapsize *= NR_PAGEBLOCK_BITS;
3258	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3259
3260	return usemapsize / 8;
3261}
3262
3263static void __init setup_usemap(struct pglist_data *pgdat,
3264				struct zone *zone, unsigned long zonesize)
3265{
3266	unsigned long usemapsize = usemap_size(zonesize);
3267	zone->pageblock_flags = NULL;
3268	if (usemapsize) {
3269		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3270		memset(zone->pageblock_flags, 0, usemapsize);
3271	}
3272}
3273#else
3274static void inline setup_usemap(struct pglist_data *pgdat,
3275				struct zone *zone, unsigned long zonesize) {}
3276#endif /* CONFIG_SPARSEMEM */
3277
3278#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3279
3280/* Return a sensible default order for the pageblock size. */
3281static inline int pageblock_default_order(void)
3282{
3283	if (HPAGE_SHIFT > PAGE_SHIFT)
3284		return HUGETLB_PAGE_ORDER;
3285
3286	return MAX_ORDER-1;
3287}
3288
3289/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3290static inline void __init set_pageblock_order(unsigned int order)
3291{
3292	/* Check that pageblock_nr_pages has not already been setup */
3293	if (pageblock_order)
3294		return;
3295
3296	/*
3297	 * Assume the largest contiguous order of interest is a huge page.
3298	 * This value may be variable depending on boot parameters on IA64
3299	 */
3300	pageblock_order = order;
3301}
3302#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3303
3304/*
3305 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3306 * and pageblock_default_order() are unused as pageblock_order is set
3307 * at compile-time. See include/linux/pageblock-flags.h for the values of
3308 * pageblock_order based on the kernel config
3309 */
3310static inline int pageblock_default_order(unsigned int order)
3311{
3312	return MAX_ORDER-1;
3313}
3314#define set_pageblock_order(x)	do {} while (0)
3315
3316#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3317
3318/*
3319 * Set up the zone data structures:
3320 *   - mark all pages reserved
3321 *   - mark all memory queues empty
3322 *   - clear the memory bitmaps
3323 */
3324static void __meminit free_area_init_core(struct pglist_data *pgdat,
3325		unsigned long *zones_size, unsigned long *zholes_size)
3326{
3327	enum zone_type j;
3328	int nid = pgdat->node_id;
3329	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3330	int ret;
3331
3332	pgdat_resize_init(pgdat);
3333	pgdat->nr_zones = 0;
3334	init_waitqueue_head(&pgdat->kswapd_wait);
3335	pgdat->kswapd_max_order = 0;
3336
3337	for (j = 0; j < MAX_NR_ZONES; j++) {
3338		struct zone *zone = pgdat->node_zones + j;
3339		unsigned long size, realsize, memmap_pages;
3340
3341		size = zone_spanned_pages_in_node(nid, j, zones_size);
3342		realsize = size - zone_absent_pages_in_node(nid, j,
3343								zholes_size);
3344
3345		/*
3346		 * Adjust realsize so that it accounts for how much memory
3347		 * is used by this zone for memmap. This affects the watermark
3348		 * and per-cpu initialisations
3349		 */
3350		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3351		if (realsize >= memmap_pages) {
3352			realsize -= memmap_pages;
3353			printk(KERN_DEBUG
3354				"  %s zone: %lu pages used for memmap\n",
3355				zone_names[j], memmap_pages);
3356		} else
3357			printk(KERN_WARNING
3358				"  %s zone: %lu pages exceeds realsize %lu\n",
3359				zone_names[j], memmap_pages, realsize);
3360
3361		/* Account for reserved pages */
3362		if (j == 0 && realsize > dma_reserve) {
3363			realsize -= dma_reserve;
3364			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3365					zone_names[0], dma_reserve);
3366		}
3367
3368		if (!is_highmem_idx(j))
3369			nr_kernel_pages += realsize;
3370		nr_all_pages += realsize;
3371
3372		zone->spanned_pages = size;
3373		zone->present_pages = realsize;
3374#ifdef CONFIG_NUMA
3375		zone->node = nid;
3376		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3377						/ 100;
3378		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3379#endif
3380		zone->name = zone_names[j];
3381		spin_lock_init(&zone->lock);
3382		spin_lock_init(&zone->lru_lock);
3383		zone_seqlock_init(zone);
3384		zone->zone_pgdat = pgdat;
3385
3386		zone->prev_priority = DEF_PRIORITY;
3387
3388		zone_pcp_init(zone);
3389		INIT_LIST_HEAD(&zone->active_list);
3390		INIT_LIST_HEAD(&zone->inactive_list);
3391		zone->nr_scan_active = 0;
3392		zone->nr_scan_inactive = 0;
3393		zap_zone_vm_stats(zone);
3394		zone->flags = 0;
3395		if (!size)
3396			continue;
3397
3398		set_pageblock_order(pageblock_default_order());
3399		setup_usemap(pgdat, zone, size);
3400		ret = init_currently_empty_zone(zone, zone_start_pfn,
3401						size, MEMMAP_EARLY);
3402		BUG_ON(ret);
3403		zone_start_pfn += size;
3404	}
3405}
3406
3407static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3408{
3409	/* Skip empty nodes */
3410	if (!pgdat->node_spanned_pages)
3411		return;
3412
3413#ifdef CONFIG_FLAT_NODE_MEM_MAP
3414	/* ia64 gets its own node_mem_map, before this, without bootmem */
3415	if (!pgdat->node_mem_map) {
3416		unsigned long size, start, end;
3417		struct page *map;
3418
3419		/*
3420		 * The zone's endpoints aren't required to be MAX_ORDER
3421		 * aligned but the node_mem_map endpoints must be in order
3422		 * for the buddy allocator to function correctly.
3423		 */
3424		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3425		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3426		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3427		size =  (end - start) * sizeof(struct page);
3428		map = alloc_remap(pgdat->node_id, size);
3429		if (!map)
3430			map = alloc_bootmem_node(pgdat, size);
3431		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3432	}
3433#ifndef CONFIG_NEED_MULTIPLE_NODES
3434	/*
3435	 * With no DISCONTIG, the global mem_map is just set as node 0's
3436	 */
3437	if (pgdat == NODE_DATA(0)) {
3438		mem_map = NODE_DATA(0)->node_mem_map;
3439#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3440		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3441			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3442#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3443	}
3444#endif
3445#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3446}
3447
3448void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3449		unsigned long *zones_size, unsigned long node_start_pfn,
3450		unsigned long *zholes_size)
3451{
3452	pgdat->node_id = nid;
3453	pgdat->node_start_pfn = node_start_pfn;
3454	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3455
3456	alloc_node_mem_map(pgdat);
3457
3458	free_area_init_core(pgdat, zones_size, zholes_size);
3459}
3460
3461#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3462
3463#if MAX_NUMNODES > 1
3464/*
3465 * Figure out the number of possible node ids.
3466 */
3467static void __init setup_nr_node_ids(void)
3468{
3469	unsigned int node;
3470	unsigned int highest = 0;
3471
3472	for_each_node_mask(node, node_possible_map)
3473		highest = node;
3474	nr_node_ids = highest + 1;
3475}
3476#else
3477static inline void setup_nr_node_ids(void)
3478{
3479}
3480#endif
3481
3482/**
3483 * add_active_range - Register a range of PFNs backed by physical memory
3484 * @nid: The node ID the range resides on
3485 * @start_pfn: The start PFN of the available physical memory
3486 * @end_pfn: The end PFN of the available physical memory
3487 *
3488 * These ranges are stored in an early_node_map[] and later used by
3489 * free_area_init_nodes() to calculate zone sizes and holes. If the
3490 * range spans a memory hole, it is up to the architecture to ensure
3491 * the memory is not freed by the bootmem allocator. If possible
3492 * the range being registered will be merged with existing ranges.
3493 */
3494void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3495						unsigned long end_pfn)
3496{
3497	int i;
3498
3499	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3500			  "%d entries of %d used\n",
3501			  nid, start_pfn, end_pfn,
3502			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3503
3504	/* Merge with existing active regions if possible */
3505	for (i = 0; i < nr_nodemap_entries; i++) {
3506		if (early_node_map[i].nid != nid)
3507			continue;
3508
3509		/* Skip if an existing region covers this new one */
3510		if (start_pfn >= early_node_map[i].start_pfn &&
3511				end_pfn <= early_node_map[i].end_pfn)
3512			return;
3513
3514		/* Merge forward if suitable */
3515		if (start_pfn <= early_node_map[i].end_pfn &&
3516				end_pfn > early_node_map[i].end_pfn) {
3517			early_node_map[i].end_pfn = end_pfn;
3518			return;
3519		}
3520
3521		/* Merge backward if suitable */
3522		if (start_pfn < early_node_map[i].end_pfn &&
3523				end_pfn >= early_node_map[i].start_pfn) {
3524			early_node_map[i].start_pfn = start_pfn;
3525			return;
3526		}
3527	}
3528
3529	/* Check that early_node_map is large enough */
3530	if (i >= MAX_ACTIVE_REGIONS) {
3531		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3532							MAX_ACTIVE_REGIONS);
3533		return;
3534	}
3535
3536	early_node_map[i].nid = nid;
3537	early_node_map[i].start_pfn = start_pfn;
3538	early_node_map[i].end_pfn = end_pfn;
3539	nr_nodemap_entries = i + 1;
3540}
3541
3542/**
3543 * shrink_active_range - Shrink an existing registered range of PFNs
3544 * @nid: The node id the range is on that should be shrunk
3545 * @old_end_pfn: The old end PFN of the range
3546 * @new_end_pfn: The new PFN of the range
3547 *
3548 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3549 * The map is kept at the end physical page range that has already been
3550 * registered with add_active_range(). This function allows an arch to shrink
3551 * an existing registered range.
3552 */
3553void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3554						unsigned long new_end_pfn)
3555{
3556	int i;
3557
3558	/* Find the old active region end and shrink */
3559	for_each_active_range_index_in_nid(i, nid)
3560		if (early_node_map[i].end_pfn == old_end_pfn) {
3561			early_node_map[i].end_pfn = new_end_pfn;
3562			break;
3563		}
3564}
3565
3566/**
3567 * remove_all_active_ranges - Remove all currently registered regions
3568 *
3569 * During discovery, it may be found that a table like SRAT is invalid
3570 * and an alternative discovery method must be used. This function removes
3571 * all currently registered regions.
3572 */
3573void __init remove_all_active_ranges(void)
3574{
3575	memset(early_node_map, 0, sizeof(early_node_map));
3576	nr_nodemap_entries = 0;
3577#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3578	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3579	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3580#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3581}
3582
3583/* Compare two active node_active_regions */
3584static int __init cmp_node_active_region(const void *a, const void *b)
3585{
3586	struct node_active_region *arange = (struct node_active_region *)a;
3587	struct node_active_region *brange = (struct node_active_region *)b;
3588
3589	/* Done this way to avoid overflows */
3590	if (arange->start_pfn > brange->start_pfn)
3591		return 1;
3592	if (arange->start_pfn < brange->start_pfn)
3593		return -1;
3594
3595	return 0;
3596}
3597
3598/* sort the node_map by start_pfn */
3599static void __init sort_node_map(void)
3600{
3601	sort(early_node_map, (size_t)nr_nodemap_entries,
3602			sizeof(struct node_active_region),
3603			cmp_node_active_region, NULL);
3604}
3605
3606/* Find the lowest pfn for a node */
3607unsigned long __init find_min_pfn_for_node(unsigned long nid)
3608{
3609	int i;
3610	unsigned long min_pfn = ULONG_MAX;
3611
3612	/* Assuming a sorted map, the first range found has the starting pfn */
3613	for_each_active_range_index_in_nid(i, nid)
3614		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3615
3616	if (min_pfn == ULONG_MAX) {
3617		printk(KERN_WARNING
3618			"Could not find start_pfn for node %lu\n", nid);
3619		return 0;
3620	}
3621
3622	return min_pfn;
3623}
3624
3625/**
3626 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3627 *
3628 * It returns the minimum PFN based on information provided via
3629 * add_active_range().
3630 */
3631unsigned long __init find_min_pfn_with_active_regions(void)
3632{
3633	return find_min_pfn_for_node(MAX_NUMNODES);
3634}
3635
3636/**
3637 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3638 *
3639 * It returns the maximum PFN based on information provided via
3640 * add_active_range().
3641 */
3642unsigned long __init find_max_pfn_with_active_regions(void)
3643{
3644	int i;
3645	unsigned long max_pfn = 0;
3646
3647	for (i = 0; i < nr_nodemap_entries; i++)
3648		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3649
3650	return max_pfn;
3651}
3652
3653/*
3654 * early_calculate_totalpages()
3655 * Sum pages in active regions for movable zone.
3656 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3657 */
3658static unsigned long __init early_calculate_totalpages(void)
3659{
3660	int i;
3661	unsigned long totalpages = 0;
3662
3663	for (i = 0; i < nr_nodemap_entries; i++) {
3664		unsigned long pages = early_node_map[i].end_pfn -
3665						early_node_map[i].start_pfn;
3666		totalpages += pages;
3667		if (pages)
3668			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3669	}
3670  	return totalpages;
3671}
3672
3673/*
3674 * Find the PFN the Movable zone begins in each node. Kernel memory
3675 * is spread evenly between nodes as long as the nodes have enough
3676 * memory. When they don't, some nodes will have more kernelcore than
3677 * others
3678 */
3679void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3680{
3681	int i, nid;
3682	unsigned long usable_startpfn;
3683	unsigned long kernelcore_node, kernelcore_remaining;
3684	unsigned long totalpages = early_calculate_totalpages();
3685	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3686
3687	/*
3688	 * If movablecore was specified, calculate what size of
3689	 * kernelcore that corresponds so that memory usable for
3690	 * any allocation type is evenly spread. If both kernelcore
3691	 * and movablecore are specified, then the value of kernelcore
3692	 * will be used for required_kernelcore if it's greater than
3693	 * what movablecore would have allowed.
3694	 */
3695	if (required_movablecore) {
3696		unsigned long corepages;
3697
3698		/*
3699		 * Round-up so that ZONE_MOVABLE is at least as large as what
3700		 * was requested by the user
3701		 */
3702		required_movablecore =
3703			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3704		corepages = totalpages - required_movablecore;
3705
3706		required_kernelcore = max(required_kernelcore, corepages);
3707	}
3708
3709	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3710	if (!required_kernelcore)
3711		return;
3712
3713	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3714	find_usable_zone_for_movable();
3715	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3716
3717restart:
3718	/* Spread kernelcore memory as evenly as possible throughout nodes */
3719	kernelcore_node = required_kernelcore / usable_nodes;
3720	for_each_node_state(nid, N_HIGH_MEMORY) {
3721		/*
3722		 * Recalculate kernelcore_node if the division per node
3723		 * now exceeds what is necessary to satisfy the requested
3724		 * amount of memory for the kernel
3725		 */
3726		if (required_kernelcore < kernelcore_node)
3727			kernelcore_node = required_kernelcore / usable_nodes;
3728
3729		/*
3730		 * As the map is walked, we track how much memory is usable
3731		 * by the kernel using kernelcore_remaining. When it is
3732		 * 0, the rest of the node is usable by ZONE_MOVABLE
3733		 */
3734		kernelcore_remaining = kernelcore_node;
3735
3736		/* Go through each range of PFNs within this node */
3737		for_each_active_range_index_in_nid(i, nid) {
3738			unsigned long start_pfn, end_pfn;
3739			unsigned long size_pages;
3740
3741			start_pfn = max(early_node_map[i].start_pfn,
3742						zone_movable_pfn[nid]);
3743			end_pfn = early_node_map[i].end_pfn;
3744			if (start_pfn >= end_pfn)
3745				continue;
3746
3747			/* Account for what is only usable for kernelcore */
3748			if (start_pfn < usable_startpfn) {
3749				unsigned long kernel_pages;
3750				kernel_pages = min(end_pfn, usable_startpfn)
3751								- start_pfn;
3752
3753				kernelcore_remaining -= min(kernel_pages,
3754							kernelcore_remaining);
3755				required_kernelcore -= min(kernel_pages,
3756							required_kernelcore);
3757
3758				/* Continue if range is now fully accounted */
3759				if (end_pfn <= usable_startpfn) {
3760
3761					/*
3762					 * Push zone_movable_pfn to the end so
3763					 * that if we have to rebalance
3764					 * kernelcore across nodes, we will
3765					 * not double account here
3766					 */
3767					zone_movable_pfn[nid] = end_pfn;
3768					continue;
3769				}
3770				start_pfn = usable_startpfn;
3771			}
3772
3773			/*
3774			 * The usable PFN range for ZONE_MOVABLE is from
3775			 * start_pfn->end_pfn. Calculate size_pages as the
3776			 * number of pages used as kernelcore
3777			 */
3778			size_pages = end_pfn - start_pfn;
3779			if (size_pages > kernelcore_remaining)
3780				size_pages = kernelcore_remaining;
3781			zone_movable_pfn[nid] = start_pfn + size_pages;
3782
3783			/*
3784			 * Some kernelcore has been met, update counts and
3785			 * break if the kernelcore for this node has been
3786			 * satisified
3787			 */
3788			required_kernelcore -= min(required_kernelcore,
3789								size_pages);
3790			kernelcore_remaining -= size_pages;
3791			if (!kernelcore_remaining)
3792				break;
3793		}
3794	}
3795
3796	/*
3797	 * If there is still required_kernelcore, we do another pass with one
3798	 * less node in the count. This will push zone_movable_pfn[nid] further
3799	 * along on the nodes that still have memory until kernelcore is
3800	 * satisified
3801	 */
3802	usable_nodes--;
3803	if (usable_nodes && required_kernelcore > usable_nodes)
3804		goto restart;
3805
3806	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3807	for (nid = 0; nid < MAX_NUMNODES; nid++)
3808		zone_movable_pfn[nid] =
3809			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3810}
3811
3812/* Any regular memory on that node ? */
3813static void check_for_regular_memory(pg_data_t *pgdat)
3814{
3815#ifdef CONFIG_HIGHMEM
3816	enum zone_type zone_type;
3817
3818	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3819		struct zone *zone = &pgdat->node_zones[zone_type];
3820		if (zone->present_pages)
3821			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3822	}
3823#endif
3824}
3825
3826/**
3827 * free_area_init_nodes - Initialise all pg_data_t and zone data
3828 * @max_zone_pfn: an array of max PFNs for each zone
3829 *
3830 * This will call free_area_init_node() for each active node in the system.
3831 * Using the page ranges provided by add_active_range(), the size of each
3832 * zone in each node and their holes is calculated. If the maximum PFN
3833 * between two adjacent zones match, it is assumed that the zone is empty.
3834 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3835 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3836 * starts where the previous one ended. For example, ZONE_DMA32 starts
3837 * at arch_max_dma_pfn.
3838 */
3839void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3840{
3841	unsigned long nid;
3842	enum zone_type i;
3843
3844	/* Sort early_node_map as initialisation assumes it is sorted */
3845	sort_node_map();
3846
3847	/* Record where the zone boundaries are */
3848	memset(arch_zone_lowest_possible_pfn, 0,
3849				sizeof(arch_zone_lowest_possible_pfn));
3850	memset(arch_zone_highest_possible_pfn, 0,
3851				sizeof(arch_zone_highest_possible_pfn));
3852	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3853	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3854	for (i = 1; i < MAX_NR_ZONES; i++) {
3855		if (i == ZONE_MOVABLE)
3856			continue;
3857		arch_zone_lowest_possible_pfn[i] =
3858			arch_zone_highest_possible_pfn[i-1];
3859		arch_zone_highest_possible_pfn[i] =
3860			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3861	}
3862	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3863	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3864
3865	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3866	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3867	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3868
3869	/* Print out the zone ranges */
3870	printk("Zone PFN ranges:\n");
3871	for (i = 0; i < MAX_NR_ZONES; i++) {
3872		if (i == ZONE_MOVABLE)
3873			continue;
3874		printk("  %-8s %8lu -> %8lu\n",
3875				zone_names[i],
3876				arch_zone_lowest_possible_pfn[i],
3877				arch_zone_highest_possible_pfn[i]);
3878	}
3879
3880	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3881	printk("Movable zone start PFN for each node\n");
3882	for (i = 0; i < MAX_NUMNODES; i++) {
3883		if (zone_movable_pfn[i])
3884			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3885	}
3886
3887	/* Print out the early_node_map[] */
3888	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3889	for (i = 0; i < nr_nodemap_entries; i++)
3890		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3891						early_node_map[i].start_pfn,
3892						early_node_map[i].end_pfn);
3893
3894	/* Initialise every node */
3895	setup_nr_node_ids();
3896	for_each_online_node(nid) {
3897		pg_data_t *pgdat = NODE_DATA(nid);
3898		free_area_init_node(nid, pgdat, NULL,
3899				find_min_pfn_for_node(nid), NULL);
3900
3901		/* Any memory on that node */
3902		if (pgdat->node_present_pages)
3903			node_set_state(nid, N_HIGH_MEMORY);
3904		check_for_regular_memory(pgdat);
3905	}
3906}
3907
3908static int __init cmdline_parse_core(char *p, unsigned long *core)
3909{
3910	unsigned long long coremem;
3911	if (!p)
3912		return -EINVAL;
3913
3914	coremem = memparse(p, &p);
3915	*core = coremem >> PAGE_SHIFT;
3916
3917	/* Paranoid check that UL is enough for the coremem value */
3918	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3919
3920	return 0;
3921}
3922
3923/*
3924 * kernelcore=size sets the amount of memory for use for allocations that
3925 * cannot be reclaimed or migrated.
3926 */
3927static int __init cmdline_parse_kernelcore(char *p)
3928{
3929	return cmdline_parse_core(p, &required_kernelcore);
3930}
3931
3932/*
3933 * movablecore=size sets the amount of memory for use for allocations that
3934 * can be reclaimed or migrated.
3935 */
3936static int __init cmdline_parse_movablecore(char *p)
3937{
3938	return cmdline_parse_core(p, &required_movablecore);
3939}
3940
3941early_param("kernelcore", cmdline_parse_kernelcore);
3942early_param("movablecore", cmdline_parse_movablecore);
3943
3944#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3945
3946/**
3947 * set_dma_reserve - set the specified number of pages reserved in the first zone
3948 * @new_dma_reserve: The number of pages to mark reserved
3949 *
3950 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3951 * In the DMA zone, a significant percentage may be consumed by kernel image
3952 * and other unfreeable allocations which can skew the watermarks badly. This
3953 * function may optionally be used to account for unfreeable pages in the
3954 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3955 * smaller per-cpu batchsize.
3956 */
3957void __init set_dma_reserve(unsigned long new_dma_reserve)
3958{
3959	dma_reserve = new_dma_reserve;
3960}
3961
3962#ifndef CONFIG_NEED_MULTIPLE_NODES
3963static bootmem_data_t contig_bootmem_data;
3964struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3965
3966EXPORT_SYMBOL(contig_page_data);
3967#endif
3968
3969void __init free_area_init(unsigned long *zones_size)
3970{
3971	free_area_init_node(0, NODE_DATA(0), zones_size,
3972			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3973}
3974
3975static int page_alloc_cpu_notify(struct notifier_block *self,
3976				 unsigned long action, void *hcpu)
3977{
3978	int cpu = (unsigned long)hcpu;
3979
3980	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3981		local_irq_disable();
3982		__drain_pages(cpu);
3983		vm_events_fold_cpu(cpu);
3984		local_irq_enable();
3985		refresh_cpu_vm_stats(cpu);
3986	}
3987	return NOTIFY_OK;
3988}
3989
3990void __init page_alloc_init(void)
3991{
3992	hotcpu_notifier(page_alloc_cpu_notify, 0);
3993}
3994
3995/*
3996 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3997 *	or min_free_kbytes changes.
3998 */
3999static void calculate_totalreserve_pages(void)
4000{
4001	struct pglist_data *pgdat;
4002	unsigned long reserve_pages = 0;
4003	enum zone_type i, j;
4004
4005	for_each_online_pgdat(pgdat) {
4006		for (i = 0; i < MAX_NR_ZONES; i++) {
4007			struct zone *zone = pgdat->node_zones + i;
4008			unsigned long max = 0;
4009
4010			/* Find valid and maximum lowmem_reserve in the zone */
4011			for (j = i; j < MAX_NR_ZONES; j++) {
4012				if (zone->lowmem_reserve[j] > max)
4013					max = zone->lowmem_reserve[j];
4014			}
4015
4016			/* we treat pages_high as reserved pages. */
4017			max += zone->pages_high;
4018
4019			if (max > zone->present_pages)
4020				max = zone->present_pages;
4021			reserve_pages += max;
4022		}
4023	}
4024	totalreserve_pages = reserve_pages;
4025}
4026
4027/*
4028 * setup_per_zone_lowmem_reserve - called whenever
4029 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4030 *	has a correct pages reserved value, so an adequate number of
4031 *	pages are left in the zone after a successful __alloc_pages().
4032 */
4033static void setup_per_zone_lowmem_reserve(void)
4034{
4035	struct pglist_data *pgdat;
4036	enum zone_type j, idx;
4037
4038	for_each_online_pgdat(pgdat) {
4039		for (j = 0; j < MAX_NR_ZONES; j++) {
4040			struct zone *zone = pgdat->node_zones + j;
4041			unsigned long present_pages = zone->present_pages;
4042
4043			zone->lowmem_reserve[j] = 0;
4044
4045			idx = j;
4046			while (idx) {
4047				struct zone *lower_zone;
4048
4049				idx--;
4050
4051				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4052					sysctl_lowmem_reserve_ratio[idx] = 1;
4053
4054				lower_zone = pgdat->node_zones + idx;
4055				lower_zone->lowmem_reserve[j] = present_pages /
4056					sysctl_lowmem_reserve_ratio[idx];
4057				present_pages += lower_zone->present_pages;
4058			}
4059		}
4060	}
4061
4062	/* update totalreserve_pages */
4063	calculate_totalreserve_pages();
4064}
4065
4066/**
4067 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4068 *
4069 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4070 * with respect to min_free_kbytes.
4071 */
4072void setup_per_zone_pages_min(void)
4073{
4074	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4075	unsigned long lowmem_pages = 0;
4076	struct zone *zone;
4077	unsigned long flags;
4078
4079	/* Calculate total number of !ZONE_HIGHMEM pages */
4080	for_each_zone(zone) {
4081		if (!is_highmem(zone))
4082			lowmem_pages += zone->present_pages;
4083	}
4084
4085	for_each_zone(zone) {
4086		u64 tmp;
4087
4088		spin_lock_irqsave(&zone->lru_lock, flags);
4089		tmp = (u64)pages_min * zone->present_pages;
4090		do_div(tmp, lowmem_pages);
4091		if (is_highmem(zone)) {
4092			/*
4093			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4094			 * need highmem pages, so cap pages_min to a small
4095			 * value here.
4096			 *
4097			 * The (pages_high-pages_low) and (pages_low-pages_min)
4098			 * deltas controls asynch page reclaim, and so should
4099			 * not be capped for highmem.
4100			 */
4101			int min_pages;
4102
4103			min_pages = zone->present_pages / 1024;
4104			if (min_pages < SWAP_CLUSTER_MAX)
4105				min_pages = SWAP_CLUSTER_MAX;
4106			if (min_pages > 128)
4107				min_pages = 128;
4108			zone->pages_min = min_pages;
4109		} else {
4110			/*
4111			 * If it's a lowmem zone, reserve a number of pages
4112			 * proportionate to the zone's size.
4113			 */
4114			zone->pages_min = tmp;
4115		}
4116
4117		zone->pages_low   = zone->pages_min + (tmp >> 2);
4118		zone->pages_high  = zone->pages_min + (tmp >> 1);
4119		setup_zone_migrate_reserve(zone);
4120		spin_unlock_irqrestore(&zone->lru_lock, flags);
4121	}
4122
4123	/* update totalreserve_pages */
4124	calculate_totalreserve_pages();
4125}
4126
4127/*
4128 * Initialise min_free_kbytes.
4129 *
4130 * For small machines we want it small (128k min).  For large machines
4131 * we want it large (64MB max).  But it is not linear, because network
4132 * bandwidth does not increase linearly with machine size.  We use
4133 *
4134 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4135 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4136 *
4137 * which yields
4138 *
4139 * 16MB:	512k
4140 * 32MB:	724k
4141 * 64MB:	1024k
4142 * 128MB:	1448k
4143 * 256MB:	2048k
4144 * 512MB:	2896k
4145 * 1024MB:	4096k
4146 * 2048MB:	5792k
4147 * 4096MB:	8192k
4148 * 8192MB:	11584k
4149 * 16384MB:	16384k
4150 */
4151static int __init init_per_zone_pages_min(void)
4152{
4153	unsigned long lowmem_kbytes;
4154
4155	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4156
4157	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4158	if (min_free_kbytes < 128)
4159		min_free_kbytes = 128;
4160	if (min_free_kbytes > 65536)
4161		min_free_kbytes = 65536;
4162	setup_per_zone_pages_min();
4163	setup_per_zone_lowmem_reserve();
4164	return 0;
4165}
4166module_init(init_per_zone_pages_min)
4167
4168/*
4169 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4170 *	that we can call two helper functions whenever min_free_kbytes
4171 *	changes.
4172 */
4173int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4174	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4175{
4176	proc_dointvec(table, write, file, buffer, length, ppos);
4177	if (write)
4178		setup_per_zone_pages_min();
4179	return 0;
4180}
4181
4182#ifdef CONFIG_NUMA
4183int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4184	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4185{
4186	struct zone *zone;
4187	int rc;
4188
4189	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4190	if (rc)
4191		return rc;
4192
4193	for_each_zone(zone)
4194		zone->min_unmapped_pages = (zone->present_pages *
4195				sysctl_min_unmapped_ratio) / 100;
4196	return 0;
4197}
4198
4199int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4200	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4201{
4202	struct zone *zone;
4203	int rc;
4204
4205	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4206	if (rc)
4207		return rc;
4208
4209	for_each_zone(zone)
4210		zone->min_slab_pages = (zone->present_pages *
4211				sysctl_min_slab_ratio) / 100;
4212	return 0;
4213}
4214#endif
4215
4216/*
4217 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4218 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4219 *	whenever sysctl_lowmem_reserve_ratio changes.
4220 *
4221 * The reserve ratio obviously has absolutely no relation with the
4222 * pages_min watermarks. The lowmem reserve ratio can only make sense
4223 * if in function of the boot time zone sizes.
4224 */
4225int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4226	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4227{
4228	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4229	setup_per_zone_lowmem_reserve();
4230	return 0;
4231}
4232
4233/*
4234 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4235 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4236 * can have before it gets flushed back to buddy allocator.
4237 */
4238
4239int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4240	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4241{
4242	struct zone *zone;
4243	unsigned int cpu;
4244	int ret;
4245
4246	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4247	if (!write || (ret == -EINVAL))
4248		return ret;
4249	for_each_zone(zone) {
4250		for_each_online_cpu(cpu) {
4251			unsigned long  high;
4252			high = zone->present_pages / percpu_pagelist_fraction;
4253			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4254		}
4255	}
4256	return 0;
4257}
4258
4259int hashdist = HASHDIST_DEFAULT;
4260
4261#ifdef CONFIG_NUMA
4262static int __init set_hashdist(char *str)
4263{
4264	if (!str)
4265		return 0;
4266	hashdist = simple_strtoul(str, &str, 0);
4267	return 1;
4268}
4269__setup("hashdist=", set_hashdist);
4270#endif
4271
4272/*
4273 * allocate a large system hash table from bootmem
4274 * - it is assumed that the hash table must contain an exact power-of-2
4275 *   quantity of entries
4276 * - limit is the number of hash buckets, not the total allocation size
4277 */
4278void *__init alloc_large_system_hash(const char *tablename,
4279				     unsigned long bucketsize,
4280				     unsigned long numentries,
4281				     int scale,
4282				     int flags,
4283				     unsigned int *_hash_shift,
4284				     unsigned int *_hash_mask,
4285				     unsigned long limit)
4286{
4287	unsigned long long max = limit;
4288	unsigned long log2qty, size;
4289	void *table = NULL;
4290
4291	/* allow the kernel cmdline to have a say */
4292	if (!numentries) {
4293		/* round applicable memory size up to nearest megabyte */
4294		numentries = nr_kernel_pages;
4295		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4296		numentries >>= 20 - PAGE_SHIFT;
4297		numentries <<= 20 - PAGE_SHIFT;
4298
4299		/* limit to 1 bucket per 2^scale bytes of low memory */
4300		if (scale > PAGE_SHIFT)
4301			numentries >>= (scale - PAGE_SHIFT);
4302		else
4303			numentries <<= (PAGE_SHIFT - scale);
4304
4305		/* Make sure we've got at least a 0-order allocation.. */
4306		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4307			numentries = PAGE_SIZE / bucketsize;
4308	}
4309	numentries = roundup_pow_of_two(numentries);
4310
4311	/* limit allocation size to 1/16 total memory by default */
4312	if (max == 0) {
4313		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4314		do_div(max, bucketsize);
4315	}
4316
4317	if (numentries > max)
4318		numentries = max;
4319
4320	log2qty = ilog2(numentries);
4321
4322	do {
4323		size = bucketsize << log2qty;
4324		if (flags & HASH_EARLY)
4325			table = alloc_bootmem(size);
4326		else if (hashdist)
4327			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4328		else {
4329			unsigned long order;
4330			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4331				;
4332			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4333			/*
4334			 * If bucketsize is not a power-of-two, we may free
4335			 * some pages at the end of hash table.
4336			 */
4337			if (table) {
4338				unsigned long alloc_end = (unsigned long)table +
4339						(PAGE_SIZE << order);
4340				unsigned long used = (unsigned long)table +
4341						PAGE_ALIGN(size);
4342				split_page(virt_to_page(table), order);
4343				while (used < alloc_end) {
4344					free_page(used);
4345					used += PAGE_SIZE;
4346				}
4347			}
4348		}
4349	} while (!table && size > PAGE_SIZE && --log2qty);
4350
4351	if (!table)
4352		panic("Failed to allocate %s hash table\n", tablename);
4353
4354	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4355	       tablename,
4356	       (1U << log2qty),
4357	       ilog2(size) - PAGE_SHIFT,
4358	       size);
4359
4360	if (_hash_shift)
4361		*_hash_shift = log2qty;
4362	if (_hash_mask)
4363		*_hash_mask = (1 << log2qty) - 1;
4364
4365	return table;
4366}
4367
4368#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4369struct page *pfn_to_page(unsigned long pfn)
4370{
4371	return __pfn_to_page(pfn);
4372}
4373unsigned long page_to_pfn(struct page *page)
4374{
4375	return __page_to_pfn(page);
4376}
4377EXPORT_SYMBOL(pfn_to_page);
4378EXPORT_SYMBOL(page_to_pfn);
4379#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4380
4381/* Return a pointer to the bitmap storing bits affecting a block of pages */
4382static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4383							unsigned long pfn)
4384{
4385#ifdef CONFIG_SPARSEMEM
4386	return __pfn_to_section(pfn)->pageblock_flags;
4387#else
4388	return zone->pageblock_flags;
4389#endif /* CONFIG_SPARSEMEM */
4390}
4391
4392static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4393{
4394#ifdef CONFIG_SPARSEMEM
4395	pfn &= (PAGES_PER_SECTION-1);
4396	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4397#else
4398	pfn = pfn - zone->zone_start_pfn;
4399	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4400#endif /* CONFIG_SPARSEMEM */
4401}
4402
4403/**
4404 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4405 * @page: The page within the block of interest
4406 * @start_bitidx: The first bit of interest to retrieve
4407 * @end_bitidx: The last bit of interest
4408 * returns pageblock_bits flags
4409 */
4410unsigned long get_pageblock_flags_group(struct page *page,
4411					int start_bitidx, int end_bitidx)
4412{
4413	struct zone *zone;
4414	unsigned long *bitmap;
4415	unsigned long pfn, bitidx;
4416	unsigned long flags = 0;
4417	unsigned long value = 1;
4418
4419	zone = page_zone(page);
4420	pfn = page_to_pfn(page);
4421	bitmap = get_pageblock_bitmap(zone, pfn);
4422	bitidx = pfn_to_bitidx(zone, pfn);
4423
4424	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4425		if (test_bit(bitidx + start_bitidx, bitmap))
4426			flags |= value;
4427
4428	return flags;
4429}
4430
4431/**
4432 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4433 * @page: The page within the block of interest
4434 * @start_bitidx: The first bit of interest
4435 * @end_bitidx: The last bit of interest
4436 * @flags: The flags to set
4437 */
4438void set_pageblock_flags_group(struct page *page, unsigned long flags,
4439					int start_bitidx, int end_bitidx)
4440{
4441	struct zone *zone;
4442	unsigned long *bitmap;
4443	unsigned long pfn, bitidx;
4444	unsigned long value = 1;
4445
4446	zone = page_zone(page);
4447	pfn = page_to_pfn(page);
4448	bitmap = get_pageblock_bitmap(zone, pfn);
4449	bitidx = pfn_to_bitidx(zone, pfn);
4450
4451	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4452		if (flags & value)
4453			__set_bit(bitidx + start_bitidx, bitmap);
4454		else
4455			__clear_bit(bitidx + start_bitidx, bitmap);
4456}
4457
4458/*
4459 * This is designed as sub function...plz see page_isolation.c also.
4460 * set/clear page block's type to be ISOLATE.
4461 * page allocater never alloc memory from ISOLATE block.
4462 */
4463
4464int set_migratetype_isolate(struct page *page)
4465{
4466	struct zone *zone;
4467	unsigned long flags;
4468	int ret = -EBUSY;
4469
4470	zone = page_zone(page);
4471	spin_lock_irqsave(&zone->lock, flags);
4472	/*
4473	 * In future, more migrate types will be able to be isolation target.
4474	 */
4475	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4476		goto out;
4477	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4478	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4479	ret = 0;
4480out:
4481	spin_unlock_irqrestore(&zone->lock, flags);
4482	if (!ret)
4483		drain_all_local_pages();
4484	return ret;
4485}
4486
4487void unset_migratetype_isolate(struct page *page)
4488{
4489	struct zone *zone;
4490	unsigned long flags;
4491	zone = page_zone(page);
4492	spin_lock_irqsave(&zone->lock, flags);
4493	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4494		goto out;
4495	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4496	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4497out:
4498	spin_unlock_irqrestore(&zone->lock, flags);
4499}
4500
4501#ifdef CONFIG_MEMORY_HOTREMOVE
4502/*
4503 * All pages in the range must be isolated before calling this.
4504 */
4505void
4506__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4507{
4508	struct page *page;
4509	struct zone *zone;
4510	int order, i;
4511	unsigned long pfn;
4512	unsigned long flags;
4513	/* find the first valid pfn */
4514	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4515		if (pfn_valid(pfn))
4516			break;
4517	if (pfn == end_pfn)
4518		return;
4519	zone = page_zone(pfn_to_page(pfn));
4520	spin_lock_irqsave(&zone->lock, flags);
4521	pfn = start_pfn;
4522	while (pfn < end_pfn) {
4523		if (!pfn_valid(pfn)) {
4524			pfn++;
4525			continue;
4526		}
4527		page = pfn_to_page(pfn);
4528		BUG_ON(page_count(page));
4529		BUG_ON(!PageBuddy(page));
4530		order = page_order(page);
4531#ifdef CONFIG_DEBUG_VM
4532		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4533		       pfn, 1 << order, end_pfn);
4534#endif
4535		list_del(&page->lru);
4536		rmv_page_order(page);
4537		zone->free_area[order].nr_free--;
4538		__mod_zone_page_state(zone, NR_FREE_PAGES,
4539				      - (1UL << order));
4540		for (i = 0; i < (1 << order); i++)
4541			SetPageReserved((page+i));
4542		pfn += (1 << order);
4543	}
4544	spin_unlock_irqrestore(&zone->lock, flags);
4545}
4546#endif
4547