page_alloc.c revision 1e548deb5d1630ca14ba04da04e3b6b3766178c7
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/oom.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39#include <linux/mempolicy.h>
40#include <linux/stop_machine.h>
41#include <linux/sort.h>
42#include <linux/pfn.h>
43#include <linux/backing-dev.h>
44#include <linux/fault-inject.h>
45#include <linux/page-isolation.h>
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49#include "internal.h"
50
51/*
52 * Array of node states.
53 */
54nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55	[N_POSSIBLE] = NODE_MASK_ALL,
56	[N_ONLINE] = { { [0] = 1UL } },
57#ifndef CONFIG_NUMA
58	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
59#ifdef CONFIG_HIGHMEM
60	[N_HIGH_MEMORY] = { { [0] = 1UL } },
61#endif
62	[N_CPU] = { { [0] = 1UL } },
63#endif	/* NUMA */
64};
65EXPORT_SYMBOL(node_states);
66
67unsigned long totalram_pages __read_mostly;
68unsigned long totalreserve_pages __read_mostly;
69long nr_swap_pages;
70int percpu_pagelist_fraction;
71
72#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73int pageblock_order __read_mostly;
74#endif
75
76static void __free_pages_ok(struct page *page, unsigned int order);
77
78/*
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 *	1G machine -> (16M dma, 784M normal, 224M high)
82 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85 *
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
88 */
89int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90#ifdef CONFIG_ZONE_DMA
91	 256,
92#endif
93#ifdef CONFIG_ZONE_DMA32
94	 256,
95#endif
96#ifdef CONFIG_HIGHMEM
97	 32,
98#endif
99	 32,
100};
101
102EXPORT_SYMBOL(totalram_pages);
103
104static char * const zone_names[MAX_NR_ZONES] = {
105#ifdef CONFIG_ZONE_DMA
106	 "DMA",
107#endif
108#ifdef CONFIG_ZONE_DMA32
109	 "DMA32",
110#endif
111	 "Normal",
112#ifdef CONFIG_HIGHMEM
113	 "HighMem",
114#endif
115	 "Movable",
116};
117
118int min_free_kbytes = 1024;
119
120unsigned long __meminitdata nr_kernel_pages;
121unsigned long __meminitdata nr_all_pages;
122static unsigned long __meminitdata dma_reserve;
123
124#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125  /*
126   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127   * ranges of memory (RAM) that may be registered with add_active_range().
128   * Ranges passed to add_active_range() will be merged if possible
129   * so the number of times add_active_range() can be called is
130   * related to the number of nodes and the number of holes
131   */
132  #ifdef CONFIG_MAX_ACTIVE_REGIONS
133    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135  #else
136    #if MAX_NUMNODES >= 32
137      /* If there can be many nodes, allow up to 50 holes per node */
138      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139    #else
140      /* By default, allow up to 256 distinct regions */
141      #define MAX_ACTIVE_REGIONS 256
142    #endif
143  #endif
144
145  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146  static int __meminitdata nr_nodemap_entries;
147  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153  unsigned long __initdata required_kernelcore;
154  static unsigned long __initdata required_movablecore;
155  unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158  int movable_zone;
159  EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
167int page_group_by_mobility_disabled __read_mostly;
168
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
171	set_pageblock_flags_group(page, (unsigned long)migratetype,
172					PB_migrate, PB_migrate_end);
173}
174
175#ifdef CONFIG_DEBUG_VM
176static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177{
178	int ret = 0;
179	unsigned seq;
180	unsigned long pfn = page_to_pfn(page);
181
182	do {
183		seq = zone_span_seqbegin(zone);
184		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185			ret = 1;
186		else if (pfn < zone->zone_start_pfn)
187			ret = 1;
188	} while (zone_span_seqretry(zone, seq));
189
190	return ret;
191}
192
193static int page_is_consistent(struct zone *zone, struct page *page)
194{
195	if (!pfn_valid_within(page_to_pfn(page)))
196		return 0;
197	if (zone != page_zone(page))
198		return 0;
199
200	return 1;
201}
202/*
203 * Temporary debugging check for pages not lying within a given zone.
204 */
205static int bad_range(struct zone *zone, struct page *page)
206{
207	if (page_outside_zone_boundaries(zone, page))
208		return 1;
209	if (!page_is_consistent(zone, page))
210		return 1;
211
212	return 0;
213}
214#else
215static inline int bad_range(struct zone *zone, struct page *page)
216{
217	return 0;
218}
219#endif
220
221static void bad_page(struct page *page)
222{
223	printk(KERN_EMERG "Bad page state in process '%s'\n"
224		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226		KERN_EMERG "Backtrace:\n",
227		current->comm, page, (int)(2*sizeof(unsigned long)),
228		(unsigned long)page->flags, page->mapping,
229		page_mapcount(page), page_count(page));
230	dump_stack();
231	page->flags &= ~(1 << PG_lru	|
232			1 << PG_private |
233			1 << PG_locked	|
234			1 << PG_active	|
235			1 << PG_dirty	|
236			1 << PG_reclaim |
237			1 << PG_slab    |
238			1 << PG_swapcache |
239			1 << PG_writeback |
240			1 << PG_buddy );
241	set_page_count(page, 0);
242	reset_page_mapcount(page);
243	page->mapping = NULL;
244	add_taint(TAINT_BAD_PAGE);
245}
246
247/*
248 * Higher-order pages are called "compound pages".  They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set.  All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function.  Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262static void free_compound_page(struct page *page)
263{
264	__free_pages_ok(page, compound_order(page));
265}
266
267static void prep_compound_page(struct page *page, unsigned long order)
268{
269	int i;
270	int nr_pages = 1 << order;
271
272	set_compound_page_dtor(page, free_compound_page);
273	set_compound_order(page, order);
274	__SetPageHead(page);
275	for (i = 1; i < nr_pages; i++) {
276		struct page *p = page + i;
277
278		__SetPageTail(p);
279		p->first_page = page;
280	}
281}
282
283static void destroy_compound_page(struct page *page, unsigned long order)
284{
285	int i;
286	int nr_pages = 1 << order;
287
288	if (unlikely(compound_order(page) != order))
289		bad_page(page);
290
291	if (unlikely(!PageHead(page)))
292			bad_page(page);
293	__ClearPageHead(page);
294	for (i = 1; i < nr_pages; i++) {
295		struct page *p = page + i;
296
297		if (unlikely(!PageTail(p) |
298				(p->first_page != page)))
299			bad_page(page);
300		__ClearPageTail(p);
301	}
302}
303
304static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305{
306	int i;
307
308	/*
309	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311	 */
312	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313	for (i = 0; i < (1 << order); i++)
314		clear_highpage(page + i);
315}
316
317static inline void set_page_order(struct page *page, int order)
318{
319	set_page_private(page, order);
320	__SetPageBuddy(page);
321}
322
323static inline void rmv_page_order(struct page *page)
324{
325	__ClearPageBuddy(page);
326	set_page_private(page, 0);
327}
328
329/*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 *     B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 *     P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346static inline struct page *
347__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348{
349	unsigned long buddy_idx = page_idx ^ (1 << order);
350
351	return page + (buddy_idx - page_idx);
352}
353
354static inline unsigned long
355__find_combined_index(unsigned long page_idx, unsigned int order)
356{
357	return (page_idx & ~(1 << order));
358}
359
360/*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373static inline int page_is_buddy(struct page *page, struct page *buddy,
374								int order)
375{
376	if (!pfn_valid_within(page_to_pfn(buddy)))
377		return 0;
378
379	if (page_zone_id(page) != page_zone_id(buddy))
380		return 0;
381
382	if (PageBuddy(buddy) && page_order(buddy) == order) {
383		BUG_ON(page_count(buddy) != 0);
384		return 1;
385	}
386	return 0;
387}
388
389/*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other.  That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413static inline void __free_one_page(struct page *page,
414		struct zone *zone, unsigned int order)
415{
416	unsigned long page_idx;
417	int order_size = 1 << order;
418	int migratetype = get_pageblock_migratetype(page);
419
420	if (unlikely(PageCompound(page)))
421		destroy_compound_page(page, order);
422
423	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425	VM_BUG_ON(page_idx & (order_size - 1));
426	VM_BUG_ON(bad_range(zone, page));
427
428	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429	while (order < MAX_ORDER-1) {
430		unsigned long combined_idx;
431		struct page *buddy;
432
433		buddy = __page_find_buddy(page, page_idx, order);
434		if (!page_is_buddy(page, buddy, order))
435			break;		/* Move the buddy up one level. */
436
437		list_del(&buddy->lru);
438		zone->free_area[order].nr_free--;
439		rmv_page_order(buddy);
440		combined_idx = __find_combined_index(page_idx, order);
441		page = page + (combined_idx - page_idx);
442		page_idx = combined_idx;
443		order++;
444	}
445	set_page_order(page, order);
446	list_add(&page->lru,
447		&zone->free_area[order].free_list[migratetype]);
448	zone->free_area[order].nr_free++;
449}
450
451static inline int free_pages_check(struct page *page)
452{
453	if (unlikely(page_mapcount(page) |
454		(page->mapping != NULL)  |
455		(page_count(page) != 0)  |
456		(page->flags & (
457			1 << PG_lru	|
458			1 << PG_private |
459			1 << PG_locked	|
460			1 << PG_active	|
461			1 << PG_slab	|
462			1 << PG_swapcache |
463			1 << PG_writeback |
464			1 << PG_reserved |
465			1 << PG_buddy ))))
466		bad_page(page);
467	if (PageDirty(page))
468		__ClearPageDirty(page);
469	/*
470	 * For now, we report if PG_reserved was found set, but do not
471	 * clear it, and do not free the page.  But we shall soon need
472	 * to do more, for when the ZERO_PAGE count wraps negative.
473	 */
474	return PageReserved(page);
475}
476
477/*
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
481 *
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
484 *
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
487 */
488static void free_pages_bulk(struct zone *zone, int count,
489					struct list_head *list, int order)
490{
491	spin_lock(&zone->lock);
492	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
493	zone->pages_scanned = 0;
494	while (count--) {
495		struct page *page;
496
497		VM_BUG_ON(list_empty(list));
498		page = list_entry(list->prev, struct page, lru);
499		/* have to delete it as __free_one_page list manipulates */
500		list_del(&page->lru);
501		__free_one_page(page, zone, order);
502	}
503	spin_unlock(&zone->lock);
504}
505
506static void free_one_page(struct zone *zone, struct page *page, int order)
507{
508	spin_lock(&zone->lock);
509	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
510	zone->pages_scanned = 0;
511	__free_one_page(page, zone, order);
512	spin_unlock(&zone->lock);
513}
514
515static void __free_pages_ok(struct page *page, unsigned int order)
516{
517	unsigned long flags;
518	int i;
519	int reserved = 0;
520
521	for (i = 0 ; i < (1 << order) ; ++i)
522		reserved += free_pages_check(page + i);
523	if (reserved)
524		return;
525
526	if (!PageHighMem(page))
527		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528	arch_free_page(page, order);
529	kernel_map_pages(page, 1 << order, 0);
530
531	local_irq_save(flags);
532	__count_vm_events(PGFREE, 1 << order);
533	free_one_page(page_zone(page), page, order);
534	local_irq_restore(flags);
535}
536
537/*
538 * permit the bootmem allocator to evade page validation on high-order frees
539 */
540void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
541{
542	if (order == 0) {
543		__ClearPageReserved(page);
544		set_page_count(page, 0);
545		set_page_refcounted(page);
546		__free_page(page);
547	} else {
548		int loop;
549
550		prefetchw(page);
551		for (loop = 0; loop < BITS_PER_LONG; loop++) {
552			struct page *p = &page[loop];
553
554			if (loop + 1 < BITS_PER_LONG)
555				prefetchw(p + 1);
556			__ClearPageReserved(p);
557			set_page_count(p, 0);
558		}
559
560		set_page_refcounted(page);
561		__free_pages(page, order);
562	}
563}
564
565
566/*
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
577 *
578 * -- wli
579 */
580static inline void expand(struct zone *zone, struct page *page,
581	int low, int high, struct free_area *area,
582	int migratetype)
583{
584	unsigned long size = 1 << high;
585
586	while (high > low) {
587		area--;
588		high--;
589		size >>= 1;
590		VM_BUG_ON(bad_range(zone, &page[size]));
591		list_add(&page[size].lru, &area->free_list[migratetype]);
592		area->nr_free++;
593		set_page_order(&page[size], high);
594	}
595}
596
597/*
598 * This page is about to be returned from the page allocator
599 */
600static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
601{
602	if (unlikely(page_mapcount(page) |
603		(page->mapping != NULL)  |
604		(page_count(page) != 0)  |
605		(page->flags & (
606			1 << PG_lru	|
607			1 << PG_private	|
608			1 << PG_locked	|
609			1 << PG_active	|
610			1 << PG_dirty	|
611			1 << PG_slab    |
612			1 << PG_swapcache |
613			1 << PG_writeback |
614			1 << PG_reserved |
615			1 << PG_buddy ))))
616		bad_page(page);
617
618	/*
619	 * For now, we report if PG_reserved was found set, but do not
620	 * clear it, and do not allocate the page: as a safety net.
621	 */
622	if (PageReserved(page))
623		return 1;
624
625	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626			1 << PG_referenced | 1 << PG_arch_1 |
627			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628	set_page_private(page, 0);
629	set_page_refcounted(page);
630
631	arch_alloc_page(page, order);
632	kernel_map_pages(page, 1 << order, 1);
633
634	if (gfp_flags & __GFP_ZERO)
635		prep_zero_page(page, order, gfp_flags);
636
637	if (order && (gfp_flags & __GFP_COMP))
638		prep_compound_page(page, order);
639
640	return 0;
641}
642
643/*
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
646 */
647static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648						int migratetype)
649{
650	unsigned int current_order;
651	struct free_area * area;
652	struct page *page;
653
654	/* Find a page of the appropriate size in the preferred list */
655	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656		area = &(zone->free_area[current_order]);
657		if (list_empty(&area->free_list[migratetype]))
658			continue;
659
660		page = list_entry(area->free_list[migratetype].next,
661							struct page, lru);
662		list_del(&page->lru);
663		rmv_page_order(page);
664		area->nr_free--;
665		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666		expand(zone, page, order, current_order, area, migratetype);
667		return page;
668	}
669
670	return NULL;
671}
672
673
674/*
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
677 */
678static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
680	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
683};
684
685/*
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
689 */
690int move_freepages(struct zone *zone,
691			struct page *start_page, struct page *end_page,
692			int migratetype)
693{
694	struct page *page;
695	unsigned long order;
696	int pages_moved = 0;
697
698#ifndef CONFIG_HOLES_IN_ZONE
699	/*
700	 * page_zone is not safe to call in this context when
701	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702	 * anyway as we check zone boundaries in move_freepages_block().
703	 * Remove at a later date when no bug reports exist related to
704	 * grouping pages by mobility
705	 */
706	BUG_ON(page_zone(start_page) != page_zone(end_page));
707#endif
708
709	for (page = start_page; page <= end_page;) {
710		if (!pfn_valid_within(page_to_pfn(page))) {
711			page++;
712			continue;
713		}
714
715		if (!PageBuddy(page)) {
716			page++;
717			continue;
718		}
719
720		order = page_order(page);
721		list_del(&page->lru);
722		list_add(&page->lru,
723			&zone->free_area[order].free_list[migratetype]);
724		page += 1 << order;
725		pages_moved += 1 << order;
726	}
727
728	return pages_moved;
729}
730
731int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
732{
733	unsigned long start_pfn, end_pfn;
734	struct page *start_page, *end_page;
735
736	start_pfn = page_to_pfn(page);
737	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738	start_page = pfn_to_page(start_pfn);
739	end_page = start_page + pageblock_nr_pages - 1;
740	end_pfn = start_pfn + pageblock_nr_pages - 1;
741
742	/* Do not cross zone boundaries */
743	if (start_pfn < zone->zone_start_pfn)
744		start_page = page;
745	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746		return 0;
747
748	return move_freepages(zone, start_page, end_page, migratetype);
749}
750
751/* Remove an element from the buddy allocator from the fallback list */
752static struct page *__rmqueue_fallback(struct zone *zone, int order,
753						int start_migratetype)
754{
755	struct free_area * area;
756	int current_order;
757	struct page *page;
758	int migratetype, i;
759
760	/* Find the largest possible block of pages in the other list */
761	for (current_order = MAX_ORDER-1; current_order >= order;
762						--current_order) {
763		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
764			migratetype = fallbacks[start_migratetype][i];
765
766			/* MIGRATE_RESERVE handled later if necessary */
767			if (migratetype == MIGRATE_RESERVE)
768				continue;
769
770			area = &(zone->free_area[current_order]);
771			if (list_empty(&area->free_list[migratetype]))
772				continue;
773
774			page = list_entry(area->free_list[migratetype].next,
775					struct page, lru);
776			area->nr_free--;
777
778			/*
779			 * If breaking a large block of pages, move all free
780			 * pages to the preferred allocation list. If falling
781			 * back for a reclaimable kernel allocation, be more
782			 * agressive about taking ownership of free pages
783			 */
784			if (unlikely(current_order >= (pageblock_order >> 1)) ||
785					start_migratetype == MIGRATE_RECLAIMABLE) {
786				unsigned long pages;
787				pages = move_freepages_block(zone, page,
788								start_migratetype);
789
790				/* Claim the whole block if over half of it is free */
791				if (pages >= (1 << (pageblock_order-1)))
792					set_pageblock_migratetype(page,
793								start_migratetype);
794
795				migratetype = start_migratetype;
796			}
797
798			/* Remove the page from the freelists */
799			list_del(&page->lru);
800			rmv_page_order(page);
801			__mod_zone_page_state(zone, NR_FREE_PAGES,
802							-(1UL << order));
803
804			if (current_order == pageblock_order)
805				set_pageblock_migratetype(page,
806							start_migratetype);
807
808			expand(zone, page, order, current_order, area, migratetype);
809			return page;
810		}
811	}
812
813	/* Use MIGRATE_RESERVE rather than fail an allocation */
814	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
815}
816
817/*
818 * Do the hard work of removing an element from the buddy allocator.
819 * Call me with the zone->lock already held.
820 */
821static struct page *__rmqueue(struct zone *zone, unsigned int order,
822						int migratetype)
823{
824	struct page *page;
825
826	page = __rmqueue_smallest(zone, order, migratetype);
827
828	if (unlikely(!page))
829		page = __rmqueue_fallback(zone, order, migratetype);
830
831	return page;
832}
833
834/*
835 * Obtain a specified number of elements from the buddy allocator, all under
836 * a single hold of the lock, for efficiency.  Add them to the supplied list.
837 * Returns the number of new pages which were placed at *list.
838 */
839static int rmqueue_bulk(struct zone *zone, unsigned int order,
840			unsigned long count, struct list_head *list,
841			int migratetype)
842{
843	int i;
844
845	spin_lock(&zone->lock);
846	for (i = 0; i < count; ++i) {
847		struct page *page = __rmqueue(zone, order, migratetype);
848		if (unlikely(page == NULL))
849			break;
850
851		/*
852		 * Split buddy pages returned by expand() are received here
853		 * in physical page order. The page is added to the callers and
854		 * list and the list head then moves forward. From the callers
855		 * perspective, the linked list is ordered by page number in
856		 * some conditions. This is useful for IO devices that can
857		 * merge IO requests if the physical pages are ordered
858		 * properly.
859		 */
860		list_add(&page->lru, list);
861		set_page_private(page, migratetype);
862		list = &page->lru;
863	}
864	spin_unlock(&zone->lock);
865	return i;
866}
867
868#ifdef CONFIG_NUMA
869/*
870 * Called from the vmstat counter updater to drain pagesets of this
871 * currently executing processor on remote nodes after they have
872 * expired.
873 *
874 * Note that this function must be called with the thread pinned to
875 * a single processor.
876 */
877void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
878{
879	unsigned long flags;
880	int to_drain;
881
882	local_irq_save(flags);
883	if (pcp->count >= pcp->batch)
884		to_drain = pcp->batch;
885	else
886		to_drain = pcp->count;
887	free_pages_bulk(zone, to_drain, &pcp->list, 0);
888	pcp->count -= to_drain;
889	local_irq_restore(flags);
890}
891#endif
892
893/*
894 * Drain pages of the indicated processor.
895 *
896 * The processor must either be the current processor and the
897 * thread pinned to the current processor or a processor that
898 * is not online.
899 */
900static void drain_pages(unsigned int cpu)
901{
902	unsigned long flags;
903	struct zone *zone;
904
905	for_each_zone(zone) {
906		struct per_cpu_pageset *pset;
907		struct per_cpu_pages *pcp;
908
909		if (!populated_zone(zone))
910			continue;
911
912		pset = zone_pcp(zone, cpu);
913
914		pcp = &pset->pcp;
915		local_irq_save(flags);
916		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
917		pcp->count = 0;
918		local_irq_restore(flags);
919	}
920}
921
922/*
923 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
924 */
925void drain_local_pages(void *arg)
926{
927	drain_pages(smp_processor_id());
928}
929
930/*
931 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
932 */
933void drain_all_pages(void)
934{
935	on_each_cpu(drain_local_pages, NULL, 0, 1);
936}
937
938#ifdef CONFIG_HIBERNATION
939
940void mark_free_pages(struct zone *zone)
941{
942	unsigned long pfn, max_zone_pfn;
943	unsigned long flags;
944	int order, t;
945	struct list_head *curr;
946
947	if (!zone->spanned_pages)
948		return;
949
950	spin_lock_irqsave(&zone->lock, flags);
951
952	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
953	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
954		if (pfn_valid(pfn)) {
955			struct page *page = pfn_to_page(pfn);
956
957			if (!swsusp_page_is_forbidden(page))
958				swsusp_unset_page_free(page);
959		}
960
961	for_each_migratetype_order(order, t) {
962		list_for_each(curr, &zone->free_area[order].free_list[t]) {
963			unsigned long i;
964
965			pfn = page_to_pfn(list_entry(curr, struct page, lru));
966			for (i = 0; i < (1UL << order); i++)
967				swsusp_set_page_free(pfn_to_page(pfn + i));
968		}
969	}
970	spin_unlock_irqrestore(&zone->lock, flags);
971}
972#endif /* CONFIG_PM */
973
974/*
975 * Free a 0-order page
976 */
977static void fastcall free_hot_cold_page(struct page *page, int cold)
978{
979	struct zone *zone = page_zone(page);
980	struct per_cpu_pages *pcp;
981	unsigned long flags;
982
983	if (PageAnon(page))
984		page->mapping = NULL;
985	if (free_pages_check(page))
986		return;
987
988	if (!PageHighMem(page))
989		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
990	arch_free_page(page, 0);
991	kernel_map_pages(page, 1, 0);
992
993	pcp = &zone_pcp(zone, get_cpu())->pcp;
994	local_irq_save(flags);
995	__count_vm_event(PGFREE);
996	if (cold)
997		list_add_tail(&page->lru, &pcp->list);
998	else
999		list_add(&page->lru, &pcp->list);
1000	set_page_private(page, get_pageblock_migratetype(page));
1001	pcp->count++;
1002	if (pcp->count >= pcp->high) {
1003		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1004		pcp->count -= pcp->batch;
1005	}
1006	local_irq_restore(flags);
1007	put_cpu();
1008}
1009
1010void fastcall free_hot_page(struct page *page)
1011{
1012	free_hot_cold_page(page, 0);
1013}
1014
1015void fastcall free_cold_page(struct page *page)
1016{
1017	free_hot_cold_page(page, 1);
1018}
1019
1020/*
1021 * split_page takes a non-compound higher-order page, and splits it into
1022 * n (1<<order) sub-pages: page[0..n]
1023 * Each sub-page must be freed individually.
1024 *
1025 * Note: this is probably too low level an operation for use in drivers.
1026 * Please consult with lkml before using this in your driver.
1027 */
1028void split_page(struct page *page, unsigned int order)
1029{
1030	int i;
1031
1032	VM_BUG_ON(PageCompound(page));
1033	VM_BUG_ON(!page_count(page));
1034	for (i = 1; i < (1 << order); i++)
1035		set_page_refcounted(page + i);
1036}
1037
1038/*
1039 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1040 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1041 * or two.
1042 */
1043static struct page *buffered_rmqueue(struct zonelist *zonelist,
1044			struct zone *zone, int order, gfp_t gfp_flags)
1045{
1046	unsigned long flags;
1047	struct page *page;
1048	int cold = !!(gfp_flags & __GFP_COLD);
1049	int cpu;
1050	int migratetype = allocflags_to_migratetype(gfp_flags);
1051
1052again:
1053	cpu  = get_cpu();
1054	if (likely(order == 0)) {
1055		struct per_cpu_pages *pcp;
1056
1057		pcp = &zone_pcp(zone, cpu)->pcp;
1058		local_irq_save(flags);
1059		if (!pcp->count) {
1060			pcp->count = rmqueue_bulk(zone, 0,
1061					pcp->batch, &pcp->list, migratetype);
1062			if (unlikely(!pcp->count))
1063				goto failed;
1064		}
1065
1066		/* Find a page of the appropriate migrate type */
1067		if (cold) {
1068			list_for_each_entry_reverse(page, &pcp->list, lru)
1069				if (page_private(page) == migratetype)
1070					break;
1071		} else {
1072			list_for_each_entry(page, &pcp->list, lru)
1073				if (page_private(page) == migratetype)
1074					break;
1075		}
1076
1077		/* Allocate more to the pcp list if necessary */
1078		if (unlikely(&page->lru == &pcp->list)) {
1079			pcp->count += rmqueue_bulk(zone, 0,
1080					pcp->batch, &pcp->list, migratetype);
1081			page = list_entry(pcp->list.next, struct page, lru);
1082		}
1083
1084		list_del(&page->lru);
1085		pcp->count--;
1086	} else {
1087		spin_lock_irqsave(&zone->lock, flags);
1088		page = __rmqueue(zone, order, migratetype);
1089		spin_unlock(&zone->lock);
1090		if (!page)
1091			goto failed;
1092	}
1093
1094	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1095	zone_statistics(zonelist, zone);
1096	local_irq_restore(flags);
1097	put_cpu();
1098
1099	VM_BUG_ON(bad_range(zone, page));
1100	if (prep_new_page(page, order, gfp_flags))
1101		goto again;
1102	return page;
1103
1104failed:
1105	local_irq_restore(flags);
1106	put_cpu();
1107	return NULL;
1108}
1109
1110#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1111#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1112#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1113#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1114#define ALLOC_HARDER		0x10 /* try to alloc harder */
1115#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1116#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1117
1118#ifdef CONFIG_FAIL_PAGE_ALLOC
1119
1120static struct fail_page_alloc_attr {
1121	struct fault_attr attr;
1122
1123	u32 ignore_gfp_highmem;
1124	u32 ignore_gfp_wait;
1125	u32 min_order;
1126
1127#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1128
1129	struct dentry *ignore_gfp_highmem_file;
1130	struct dentry *ignore_gfp_wait_file;
1131	struct dentry *min_order_file;
1132
1133#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1134
1135} fail_page_alloc = {
1136	.attr = FAULT_ATTR_INITIALIZER,
1137	.ignore_gfp_wait = 1,
1138	.ignore_gfp_highmem = 1,
1139	.min_order = 1,
1140};
1141
1142static int __init setup_fail_page_alloc(char *str)
1143{
1144	return setup_fault_attr(&fail_page_alloc.attr, str);
1145}
1146__setup("fail_page_alloc=", setup_fail_page_alloc);
1147
1148static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1149{
1150	if (order < fail_page_alloc.min_order)
1151		return 0;
1152	if (gfp_mask & __GFP_NOFAIL)
1153		return 0;
1154	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1155		return 0;
1156	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1157		return 0;
1158
1159	return should_fail(&fail_page_alloc.attr, 1 << order);
1160}
1161
1162#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1163
1164static int __init fail_page_alloc_debugfs(void)
1165{
1166	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1167	struct dentry *dir;
1168	int err;
1169
1170	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1171				       "fail_page_alloc");
1172	if (err)
1173		return err;
1174	dir = fail_page_alloc.attr.dentries.dir;
1175
1176	fail_page_alloc.ignore_gfp_wait_file =
1177		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1178				      &fail_page_alloc.ignore_gfp_wait);
1179
1180	fail_page_alloc.ignore_gfp_highmem_file =
1181		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1182				      &fail_page_alloc.ignore_gfp_highmem);
1183	fail_page_alloc.min_order_file =
1184		debugfs_create_u32("min-order", mode, dir,
1185				   &fail_page_alloc.min_order);
1186
1187	if (!fail_page_alloc.ignore_gfp_wait_file ||
1188            !fail_page_alloc.ignore_gfp_highmem_file ||
1189            !fail_page_alloc.min_order_file) {
1190		err = -ENOMEM;
1191		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1192		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1193		debugfs_remove(fail_page_alloc.min_order_file);
1194		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1195	}
1196
1197	return err;
1198}
1199
1200late_initcall(fail_page_alloc_debugfs);
1201
1202#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1203
1204#else /* CONFIG_FAIL_PAGE_ALLOC */
1205
1206static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1207{
1208	return 0;
1209}
1210
1211#endif /* CONFIG_FAIL_PAGE_ALLOC */
1212
1213/*
1214 * Return 1 if free pages are above 'mark'. This takes into account the order
1215 * of the allocation.
1216 */
1217int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1218		      int classzone_idx, int alloc_flags)
1219{
1220	/* free_pages my go negative - that's OK */
1221	long min = mark;
1222	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1223	int o;
1224
1225	if (alloc_flags & ALLOC_HIGH)
1226		min -= min / 2;
1227	if (alloc_flags & ALLOC_HARDER)
1228		min -= min / 4;
1229
1230	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1231		return 0;
1232	for (o = 0; o < order; o++) {
1233		/* At the next order, this order's pages become unavailable */
1234		free_pages -= z->free_area[o].nr_free << o;
1235
1236		/* Require fewer higher order pages to be free */
1237		min >>= 1;
1238
1239		if (free_pages <= min)
1240			return 0;
1241	}
1242	return 1;
1243}
1244
1245#ifdef CONFIG_NUMA
1246/*
1247 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1248 * skip over zones that are not allowed by the cpuset, or that have
1249 * been recently (in last second) found to be nearly full.  See further
1250 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1251 * that have to skip over a lot of full or unallowed zones.
1252 *
1253 * If the zonelist cache is present in the passed in zonelist, then
1254 * returns a pointer to the allowed node mask (either the current
1255 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1256 *
1257 * If the zonelist cache is not available for this zonelist, does
1258 * nothing and returns NULL.
1259 *
1260 * If the fullzones BITMAP in the zonelist cache is stale (more than
1261 * a second since last zap'd) then we zap it out (clear its bits.)
1262 *
1263 * We hold off even calling zlc_setup, until after we've checked the
1264 * first zone in the zonelist, on the theory that most allocations will
1265 * be satisfied from that first zone, so best to examine that zone as
1266 * quickly as we can.
1267 */
1268static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1269{
1270	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1271	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1272
1273	zlc = zonelist->zlcache_ptr;
1274	if (!zlc)
1275		return NULL;
1276
1277	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1278		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1279		zlc->last_full_zap = jiffies;
1280	}
1281
1282	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1283					&cpuset_current_mems_allowed :
1284					&node_states[N_HIGH_MEMORY];
1285	return allowednodes;
1286}
1287
1288/*
1289 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1290 * if it is worth looking at further for free memory:
1291 *  1) Check that the zone isn't thought to be full (doesn't have its
1292 *     bit set in the zonelist_cache fullzones BITMAP).
1293 *  2) Check that the zones node (obtained from the zonelist_cache
1294 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1295 * Return true (non-zero) if zone is worth looking at further, or
1296 * else return false (zero) if it is not.
1297 *
1298 * This check -ignores- the distinction between various watermarks,
1299 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1300 * found to be full for any variation of these watermarks, it will
1301 * be considered full for up to one second by all requests, unless
1302 * we are so low on memory on all allowed nodes that we are forced
1303 * into the second scan of the zonelist.
1304 *
1305 * In the second scan we ignore this zonelist cache and exactly
1306 * apply the watermarks to all zones, even it is slower to do so.
1307 * We are low on memory in the second scan, and should leave no stone
1308 * unturned looking for a free page.
1309 */
1310static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1311						nodemask_t *allowednodes)
1312{
1313	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1314	int i;				/* index of *z in zonelist zones */
1315	int n;				/* node that zone *z is on */
1316
1317	zlc = zonelist->zlcache_ptr;
1318	if (!zlc)
1319		return 1;
1320
1321	i = z - zonelist->zones;
1322	n = zlc->z_to_n[i];
1323
1324	/* This zone is worth trying if it is allowed but not full */
1325	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1326}
1327
1328/*
1329 * Given 'z' scanning a zonelist, set the corresponding bit in
1330 * zlc->fullzones, so that subsequent attempts to allocate a page
1331 * from that zone don't waste time re-examining it.
1332 */
1333static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1334{
1335	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1336	int i;				/* index of *z in zonelist zones */
1337
1338	zlc = zonelist->zlcache_ptr;
1339	if (!zlc)
1340		return;
1341
1342	i = z - zonelist->zones;
1343
1344	set_bit(i, zlc->fullzones);
1345}
1346
1347#else	/* CONFIG_NUMA */
1348
1349static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1350{
1351	return NULL;
1352}
1353
1354static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1355				nodemask_t *allowednodes)
1356{
1357	return 1;
1358}
1359
1360static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1361{
1362}
1363#endif	/* CONFIG_NUMA */
1364
1365/*
1366 * get_page_from_freelist goes through the zonelist trying to allocate
1367 * a page.
1368 */
1369static struct page *
1370get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1371		struct zonelist *zonelist, int alloc_flags)
1372{
1373	struct zone **z;
1374	struct page *page = NULL;
1375	int classzone_idx = zone_idx(zonelist->zones[0]);
1376	struct zone *zone;
1377	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1378	int zlc_active = 0;		/* set if using zonelist_cache */
1379	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1380	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1381
1382zonelist_scan:
1383	/*
1384	 * Scan zonelist, looking for a zone with enough free.
1385	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1386	 */
1387	z = zonelist->zones;
1388
1389	do {
1390		/*
1391		 * In NUMA, this could be a policy zonelist which contains
1392		 * zones that may not be allowed by the current gfp_mask.
1393		 * Check the zone is allowed by the current flags
1394		 */
1395		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1396			if (highest_zoneidx == -1)
1397				highest_zoneidx = gfp_zone(gfp_mask);
1398			if (zone_idx(*z) > highest_zoneidx)
1399				continue;
1400		}
1401
1402		if (NUMA_BUILD && zlc_active &&
1403			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1404				continue;
1405		zone = *z;
1406		if ((alloc_flags & ALLOC_CPUSET) &&
1407			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1408				goto try_next_zone;
1409
1410		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1411			unsigned long mark;
1412			if (alloc_flags & ALLOC_WMARK_MIN)
1413				mark = zone->pages_min;
1414			else if (alloc_flags & ALLOC_WMARK_LOW)
1415				mark = zone->pages_low;
1416			else
1417				mark = zone->pages_high;
1418			if (!zone_watermark_ok(zone, order, mark,
1419				    classzone_idx, alloc_flags)) {
1420				if (!zone_reclaim_mode ||
1421				    !zone_reclaim(zone, gfp_mask, order))
1422					goto this_zone_full;
1423			}
1424		}
1425
1426		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1427		if (page)
1428			break;
1429this_zone_full:
1430		if (NUMA_BUILD)
1431			zlc_mark_zone_full(zonelist, z);
1432try_next_zone:
1433		if (NUMA_BUILD && !did_zlc_setup) {
1434			/* we do zlc_setup after the first zone is tried */
1435			allowednodes = zlc_setup(zonelist, alloc_flags);
1436			zlc_active = 1;
1437			did_zlc_setup = 1;
1438		}
1439	} while (*(++z) != NULL);
1440
1441	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1442		/* Disable zlc cache for second zonelist scan */
1443		zlc_active = 0;
1444		goto zonelist_scan;
1445	}
1446	return page;
1447}
1448
1449/*
1450 * This is the 'heart' of the zoned buddy allocator.
1451 */
1452struct page * fastcall
1453__alloc_pages(gfp_t gfp_mask, unsigned int order,
1454		struct zonelist *zonelist)
1455{
1456	const gfp_t wait = gfp_mask & __GFP_WAIT;
1457	struct zone **z;
1458	struct page *page;
1459	struct reclaim_state reclaim_state;
1460	struct task_struct *p = current;
1461	int do_retry;
1462	int alloc_flags;
1463	int did_some_progress;
1464
1465	might_sleep_if(wait);
1466
1467	if (should_fail_alloc_page(gfp_mask, order))
1468		return NULL;
1469
1470restart:
1471	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1472
1473	if (unlikely(*z == NULL)) {
1474		/*
1475		 * Happens if we have an empty zonelist as a result of
1476		 * GFP_THISNODE being used on a memoryless node
1477		 */
1478		return NULL;
1479	}
1480
1481	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1482				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1483	if (page)
1484		goto got_pg;
1485
1486	/*
1487	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1488	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1489	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1490	 * using a larger set of nodes after it has established that the
1491	 * allowed per node queues are empty and that nodes are
1492	 * over allocated.
1493	 */
1494	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1495		goto nopage;
1496
1497	for (z = zonelist->zones; *z; z++)
1498		wakeup_kswapd(*z, order);
1499
1500	/*
1501	 * OK, we're below the kswapd watermark and have kicked background
1502	 * reclaim. Now things get more complex, so set up alloc_flags according
1503	 * to how we want to proceed.
1504	 *
1505	 * The caller may dip into page reserves a bit more if the caller
1506	 * cannot run direct reclaim, or if the caller has realtime scheduling
1507	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1508	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1509	 */
1510	alloc_flags = ALLOC_WMARK_MIN;
1511	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1512		alloc_flags |= ALLOC_HARDER;
1513	if (gfp_mask & __GFP_HIGH)
1514		alloc_flags |= ALLOC_HIGH;
1515	if (wait)
1516		alloc_flags |= ALLOC_CPUSET;
1517
1518	/*
1519	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1520	 * coming from realtime tasks go deeper into reserves.
1521	 *
1522	 * This is the last chance, in general, before the goto nopage.
1523	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1524	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1525	 */
1526	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1527	if (page)
1528		goto got_pg;
1529
1530	/* This allocation should allow future memory freeing. */
1531
1532rebalance:
1533	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1534			&& !in_interrupt()) {
1535		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1536nofail_alloc:
1537			/* go through the zonelist yet again, ignoring mins */
1538			page = get_page_from_freelist(gfp_mask, order,
1539				zonelist, ALLOC_NO_WATERMARKS);
1540			if (page)
1541				goto got_pg;
1542			if (gfp_mask & __GFP_NOFAIL) {
1543				congestion_wait(WRITE, HZ/50);
1544				goto nofail_alloc;
1545			}
1546		}
1547		goto nopage;
1548	}
1549
1550	/* Atomic allocations - we can't balance anything */
1551	if (!wait)
1552		goto nopage;
1553
1554	cond_resched();
1555
1556	/* We now go into synchronous reclaim */
1557	cpuset_memory_pressure_bump();
1558	p->flags |= PF_MEMALLOC;
1559	reclaim_state.reclaimed_slab = 0;
1560	p->reclaim_state = &reclaim_state;
1561
1562	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1563
1564	p->reclaim_state = NULL;
1565	p->flags &= ~PF_MEMALLOC;
1566
1567	cond_resched();
1568
1569	if (order != 0)
1570		drain_all_pages();
1571
1572	if (likely(did_some_progress)) {
1573		page = get_page_from_freelist(gfp_mask, order,
1574						zonelist, alloc_flags);
1575		if (page)
1576			goto got_pg;
1577	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1578		if (!try_set_zone_oom(zonelist)) {
1579			schedule_timeout_uninterruptible(1);
1580			goto restart;
1581		}
1582
1583		/*
1584		 * Go through the zonelist yet one more time, keep
1585		 * very high watermark here, this is only to catch
1586		 * a parallel oom killing, we must fail if we're still
1587		 * under heavy pressure.
1588		 */
1589		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1590				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1591		if (page) {
1592			clear_zonelist_oom(zonelist);
1593			goto got_pg;
1594		}
1595
1596		/* The OOM killer will not help higher order allocs so fail */
1597		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1598			clear_zonelist_oom(zonelist);
1599			goto nopage;
1600		}
1601
1602		out_of_memory(zonelist, gfp_mask, order);
1603		clear_zonelist_oom(zonelist);
1604		goto restart;
1605	}
1606
1607	/*
1608	 * Don't let big-order allocations loop unless the caller explicitly
1609	 * requests that.  Wait for some write requests to complete then retry.
1610	 *
1611	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1612	 * <= 3, but that may not be true in other implementations.
1613	 */
1614	do_retry = 0;
1615	if (!(gfp_mask & __GFP_NORETRY)) {
1616		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1617						(gfp_mask & __GFP_REPEAT))
1618			do_retry = 1;
1619		if (gfp_mask & __GFP_NOFAIL)
1620			do_retry = 1;
1621	}
1622	if (do_retry) {
1623		congestion_wait(WRITE, HZ/50);
1624		goto rebalance;
1625	}
1626
1627nopage:
1628	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1629		printk(KERN_WARNING "%s: page allocation failure."
1630			" order:%d, mode:0x%x\n",
1631			p->comm, order, gfp_mask);
1632		dump_stack();
1633		show_mem();
1634	}
1635got_pg:
1636	return page;
1637}
1638
1639EXPORT_SYMBOL(__alloc_pages);
1640
1641/*
1642 * Common helper functions.
1643 */
1644fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1645{
1646	struct page * page;
1647	page = alloc_pages(gfp_mask, order);
1648	if (!page)
1649		return 0;
1650	return (unsigned long) page_address(page);
1651}
1652
1653EXPORT_SYMBOL(__get_free_pages);
1654
1655fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1656{
1657	struct page * page;
1658
1659	/*
1660	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1661	 * a highmem page
1662	 */
1663	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1664
1665	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1666	if (page)
1667		return (unsigned long) page_address(page);
1668	return 0;
1669}
1670
1671EXPORT_SYMBOL(get_zeroed_page);
1672
1673void __pagevec_free(struct pagevec *pvec)
1674{
1675	int i = pagevec_count(pvec);
1676
1677	while (--i >= 0)
1678		free_hot_cold_page(pvec->pages[i], pvec->cold);
1679}
1680
1681fastcall void __free_pages(struct page *page, unsigned int order)
1682{
1683	if (put_page_testzero(page)) {
1684		if (order == 0)
1685			free_hot_page(page);
1686		else
1687			__free_pages_ok(page, order);
1688	}
1689}
1690
1691EXPORT_SYMBOL(__free_pages);
1692
1693fastcall void free_pages(unsigned long addr, unsigned int order)
1694{
1695	if (addr != 0) {
1696		VM_BUG_ON(!virt_addr_valid((void *)addr));
1697		__free_pages(virt_to_page((void *)addr), order);
1698	}
1699}
1700
1701EXPORT_SYMBOL(free_pages);
1702
1703static unsigned int nr_free_zone_pages(int offset)
1704{
1705	/* Just pick one node, since fallback list is circular */
1706	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1707	unsigned int sum = 0;
1708
1709	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1710	struct zone **zonep = zonelist->zones;
1711	struct zone *zone;
1712
1713	for (zone = *zonep++; zone; zone = *zonep++) {
1714		unsigned long size = zone->present_pages;
1715		unsigned long high = zone->pages_high;
1716		if (size > high)
1717			sum += size - high;
1718	}
1719
1720	return sum;
1721}
1722
1723/*
1724 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1725 */
1726unsigned int nr_free_buffer_pages(void)
1727{
1728	return nr_free_zone_pages(gfp_zone(GFP_USER));
1729}
1730EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1731
1732/*
1733 * Amount of free RAM allocatable within all zones
1734 */
1735unsigned int nr_free_pagecache_pages(void)
1736{
1737	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1738}
1739
1740static inline void show_node(struct zone *zone)
1741{
1742	if (NUMA_BUILD)
1743		printk("Node %d ", zone_to_nid(zone));
1744}
1745
1746void si_meminfo(struct sysinfo *val)
1747{
1748	val->totalram = totalram_pages;
1749	val->sharedram = 0;
1750	val->freeram = global_page_state(NR_FREE_PAGES);
1751	val->bufferram = nr_blockdev_pages();
1752	val->totalhigh = totalhigh_pages;
1753	val->freehigh = nr_free_highpages();
1754	val->mem_unit = PAGE_SIZE;
1755}
1756
1757EXPORT_SYMBOL(si_meminfo);
1758
1759#ifdef CONFIG_NUMA
1760void si_meminfo_node(struct sysinfo *val, int nid)
1761{
1762	pg_data_t *pgdat = NODE_DATA(nid);
1763
1764	val->totalram = pgdat->node_present_pages;
1765	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1766#ifdef CONFIG_HIGHMEM
1767	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1768	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1769			NR_FREE_PAGES);
1770#else
1771	val->totalhigh = 0;
1772	val->freehigh = 0;
1773#endif
1774	val->mem_unit = PAGE_SIZE;
1775}
1776#endif
1777
1778#define K(x) ((x) << (PAGE_SHIFT-10))
1779
1780/*
1781 * Show free area list (used inside shift_scroll-lock stuff)
1782 * We also calculate the percentage fragmentation. We do this by counting the
1783 * memory on each free list with the exception of the first item on the list.
1784 */
1785void show_free_areas(void)
1786{
1787	int cpu;
1788	struct zone *zone;
1789
1790	for_each_zone(zone) {
1791		if (!populated_zone(zone))
1792			continue;
1793
1794		show_node(zone);
1795		printk("%s per-cpu:\n", zone->name);
1796
1797		for_each_online_cpu(cpu) {
1798			struct per_cpu_pageset *pageset;
1799
1800			pageset = zone_pcp(zone, cpu);
1801
1802			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1803			       cpu, pageset->pcp.high,
1804			       pageset->pcp.batch, pageset->pcp.count);
1805		}
1806	}
1807
1808	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1809		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1810		global_page_state(NR_ACTIVE),
1811		global_page_state(NR_INACTIVE),
1812		global_page_state(NR_FILE_DIRTY),
1813		global_page_state(NR_WRITEBACK),
1814		global_page_state(NR_UNSTABLE_NFS),
1815		global_page_state(NR_FREE_PAGES),
1816		global_page_state(NR_SLAB_RECLAIMABLE) +
1817			global_page_state(NR_SLAB_UNRECLAIMABLE),
1818		global_page_state(NR_FILE_MAPPED),
1819		global_page_state(NR_PAGETABLE),
1820		global_page_state(NR_BOUNCE));
1821
1822	for_each_zone(zone) {
1823		int i;
1824
1825		if (!populated_zone(zone))
1826			continue;
1827
1828		show_node(zone);
1829		printk("%s"
1830			" free:%lukB"
1831			" min:%lukB"
1832			" low:%lukB"
1833			" high:%lukB"
1834			" active:%lukB"
1835			" inactive:%lukB"
1836			" present:%lukB"
1837			" pages_scanned:%lu"
1838			" all_unreclaimable? %s"
1839			"\n",
1840			zone->name,
1841			K(zone_page_state(zone, NR_FREE_PAGES)),
1842			K(zone->pages_min),
1843			K(zone->pages_low),
1844			K(zone->pages_high),
1845			K(zone_page_state(zone, NR_ACTIVE)),
1846			K(zone_page_state(zone, NR_INACTIVE)),
1847			K(zone->present_pages),
1848			zone->pages_scanned,
1849			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1850			);
1851		printk("lowmem_reserve[]:");
1852		for (i = 0; i < MAX_NR_ZONES; i++)
1853			printk(" %lu", zone->lowmem_reserve[i]);
1854		printk("\n");
1855	}
1856
1857	for_each_zone(zone) {
1858 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1859
1860		if (!populated_zone(zone))
1861			continue;
1862
1863		show_node(zone);
1864		printk("%s: ", zone->name);
1865
1866		spin_lock_irqsave(&zone->lock, flags);
1867		for (order = 0; order < MAX_ORDER; order++) {
1868			nr[order] = zone->free_area[order].nr_free;
1869			total += nr[order] << order;
1870		}
1871		spin_unlock_irqrestore(&zone->lock, flags);
1872		for (order = 0; order < MAX_ORDER; order++)
1873			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1874		printk("= %lukB\n", K(total));
1875	}
1876
1877	show_swap_cache_info();
1878}
1879
1880/*
1881 * Builds allocation fallback zone lists.
1882 *
1883 * Add all populated zones of a node to the zonelist.
1884 */
1885static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1886				int nr_zones, enum zone_type zone_type)
1887{
1888	struct zone *zone;
1889
1890	BUG_ON(zone_type >= MAX_NR_ZONES);
1891	zone_type++;
1892
1893	do {
1894		zone_type--;
1895		zone = pgdat->node_zones + zone_type;
1896		if (populated_zone(zone)) {
1897			zonelist->zones[nr_zones++] = zone;
1898			check_highest_zone(zone_type);
1899		}
1900
1901	} while (zone_type);
1902	return nr_zones;
1903}
1904
1905
1906/*
1907 *  zonelist_order:
1908 *  0 = automatic detection of better ordering.
1909 *  1 = order by ([node] distance, -zonetype)
1910 *  2 = order by (-zonetype, [node] distance)
1911 *
1912 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1913 *  the same zonelist. So only NUMA can configure this param.
1914 */
1915#define ZONELIST_ORDER_DEFAULT  0
1916#define ZONELIST_ORDER_NODE     1
1917#define ZONELIST_ORDER_ZONE     2
1918
1919/* zonelist order in the kernel.
1920 * set_zonelist_order() will set this to NODE or ZONE.
1921 */
1922static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1923static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1924
1925
1926#ifdef CONFIG_NUMA
1927/* The value user specified ....changed by config */
1928static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1929/* string for sysctl */
1930#define NUMA_ZONELIST_ORDER_LEN	16
1931char numa_zonelist_order[16] = "default";
1932
1933/*
1934 * interface for configure zonelist ordering.
1935 * command line option "numa_zonelist_order"
1936 *	= "[dD]efault	- default, automatic configuration.
1937 *	= "[nN]ode 	- order by node locality, then by zone within node
1938 *	= "[zZ]one      - order by zone, then by locality within zone
1939 */
1940
1941static int __parse_numa_zonelist_order(char *s)
1942{
1943	if (*s == 'd' || *s == 'D') {
1944		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1945	} else if (*s == 'n' || *s == 'N') {
1946		user_zonelist_order = ZONELIST_ORDER_NODE;
1947	} else if (*s == 'z' || *s == 'Z') {
1948		user_zonelist_order = ZONELIST_ORDER_ZONE;
1949	} else {
1950		printk(KERN_WARNING
1951			"Ignoring invalid numa_zonelist_order value:  "
1952			"%s\n", s);
1953		return -EINVAL;
1954	}
1955	return 0;
1956}
1957
1958static __init int setup_numa_zonelist_order(char *s)
1959{
1960	if (s)
1961		return __parse_numa_zonelist_order(s);
1962	return 0;
1963}
1964early_param("numa_zonelist_order", setup_numa_zonelist_order);
1965
1966/*
1967 * sysctl handler for numa_zonelist_order
1968 */
1969int numa_zonelist_order_handler(ctl_table *table, int write,
1970		struct file *file, void __user *buffer, size_t *length,
1971		loff_t *ppos)
1972{
1973	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1974	int ret;
1975
1976	if (write)
1977		strncpy(saved_string, (char*)table->data,
1978			NUMA_ZONELIST_ORDER_LEN);
1979	ret = proc_dostring(table, write, file, buffer, length, ppos);
1980	if (ret)
1981		return ret;
1982	if (write) {
1983		int oldval = user_zonelist_order;
1984		if (__parse_numa_zonelist_order((char*)table->data)) {
1985			/*
1986			 * bogus value.  restore saved string
1987			 */
1988			strncpy((char*)table->data, saved_string,
1989				NUMA_ZONELIST_ORDER_LEN);
1990			user_zonelist_order = oldval;
1991		} else if (oldval != user_zonelist_order)
1992			build_all_zonelists();
1993	}
1994	return 0;
1995}
1996
1997
1998#define MAX_NODE_LOAD (num_online_nodes())
1999static int node_load[MAX_NUMNODES];
2000
2001/**
2002 * find_next_best_node - find the next node that should appear in a given node's fallback list
2003 * @node: node whose fallback list we're appending
2004 * @used_node_mask: nodemask_t of already used nodes
2005 *
2006 * We use a number of factors to determine which is the next node that should
2007 * appear on a given node's fallback list.  The node should not have appeared
2008 * already in @node's fallback list, and it should be the next closest node
2009 * according to the distance array (which contains arbitrary distance values
2010 * from each node to each node in the system), and should also prefer nodes
2011 * with no CPUs, since presumably they'll have very little allocation pressure
2012 * on them otherwise.
2013 * It returns -1 if no node is found.
2014 */
2015static int find_next_best_node(int node, nodemask_t *used_node_mask)
2016{
2017	int n, val;
2018	int min_val = INT_MAX;
2019	int best_node = -1;
2020
2021	/* Use the local node if we haven't already */
2022	if (!node_isset(node, *used_node_mask)) {
2023		node_set(node, *used_node_mask);
2024		return node;
2025	}
2026
2027	for_each_node_state(n, N_HIGH_MEMORY) {
2028		cpumask_t tmp;
2029
2030		/* Don't want a node to appear more than once */
2031		if (node_isset(n, *used_node_mask))
2032			continue;
2033
2034		/* Use the distance array to find the distance */
2035		val = node_distance(node, n);
2036
2037		/* Penalize nodes under us ("prefer the next node") */
2038		val += (n < node);
2039
2040		/* Give preference to headless and unused nodes */
2041		tmp = node_to_cpumask(n);
2042		if (!cpus_empty(tmp))
2043			val += PENALTY_FOR_NODE_WITH_CPUS;
2044
2045		/* Slight preference for less loaded node */
2046		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2047		val += node_load[n];
2048
2049		if (val < min_val) {
2050			min_val = val;
2051			best_node = n;
2052		}
2053	}
2054
2055	if (best_node >= 0)
2056		node_set(best_node, *used_node_mask);
2057
2058	return best_node;
2059}
2060
2061
2062/*
2063 * Build zonelists ordered by node and zones within node.
2064 * This results in maximum locality--normal zone overflows into local
2065 * DMA zone, if any--but risks exhausting DMA zone.
2066 */
2067static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2068{
2069	enum zone_type i;
2070	int j;
2071	struct zonelist *zonelist;
2072
2073	for (i = 0; i < MAX_NR_ZONES; i++) {
2074		zonelist = pgdat->node_zonelists + i;
2075		for (j = 0; zonelist->zones[j] != NULL; j++)
2076			;
2077 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2078		zonelist->zones[j] = NULL;
2079	}
2080}
2081
2082/*
2083 * Build gfp_thisnode zonelists
2084 */
2085static void build_thisnode_zonelists(pg_data_t *pgdat)
2086{
2087	enum zone_type i;
2088	int j;
2089	struct zonelist *zonelist;
2090
2091	for (i = 0; i < MAX_NR_ZONES; i++) {
2092		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2093		j = build_zonelists_node(pgdat, zonelist, 0, i);
2094		zonelist->zones[j] = NULL;
2095	}
2096}
2097
2098/*
2099 * Build zonelists ordered by zone and nodes within zones.
2100 * This results in conserving DMA zone[s] until all Normal memory is
2101 * exhausted, but results in overflowing to remote node while memory
2102 * may still exist in local DMA zone.
2103 */
2104static int node_order[MAX_NUMNODES];
2105
2106static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2107{
2108	enum zone_type i;
2109	int pos, j, node;
2110	int zone_type;		/* needs to be signed */
2111	struct zone *z;
2112	struct zonelist *zonelist;
2113
2114	for (i = 0; i < MAX_NR_ZONES; i++) {
2115		zonelist = pgdat->node_zonelists + i;
2116		pos = 0;
2117		for (zone_type = i; zone_type >= 0; zone_type--) {
2118			for (j = 0; j < nr_nodes; j++) {
2119				node = node_order[j];
2120				z = &NODE_DATA(node)->node_zones[zone_type];
2121				if (populated_zone(z)) {
2122					zonelist->zones[pos++] = z;
2123					check_highest_zone(zone_type);
2124				}
2125			}
2126		}
2127		zonelist->zones[pos] = NULL;
2128	}
2129}
2130
2131static int default_zonelist_order(void)
2132{
2133	int nid, zone_type;
2134	unsigned long low_kmem_size,total_size;
2135	struct zone *z;
2136	int average_size;
2137	/*
2138         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2139	 * If they are really small and used heavily, the system can fall
2140	 * into OOM very easily.
2141	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2142	 */
2143	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2144	low_kmem_size = 0;
2145	total_size = 0;
2146	for_each_online_node(nid) {
2147		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2148			z = &NODE_DATA(nid)->node_zones[zone_type];
2149			if (populated_zone(z)) {
2150				if (zone_type < ZONE_NORMAL)
2151					low_kmem_size += z->present_pages;
2152				total_size += z->present_pages;
2153			}
2154		}
2155	}
2156	if (!low_kmem_size ||  /* there are no DMA area. */
2157	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2158		return ZONELIST_ORDER_NODE;
2159	/*
2160	 * look into each node's config.
2161  	 * If there is a node whose DMA/DMA32 memory is very big area on
2162 	 * local memory, NODE_ORDER may be suitable.
2163         */
2164	average_size = total_size /
2165				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2166	for_each_online_node(nid) {
2167		low_kmem_size = 0;
2168		total_size = 0;
2169		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2170			z = &NODE_DATA(nid)->node_zones[zone_type];
2171			if (populated_zone(z)) {
2172				if (zone_type < ZONE_NORMAL)
2173					low_kmem_size += z->present_pages;
2174				total_size += z->present_pages;
2175			}
2176		}
2177		if (low_kmem_size &&
2178		    total_size > average_size && /* ignore small node */
2179		    low_kmem_size > total_size * 70/100)
2180			return ZONELIST_ORDER_NODE;
2181	}
2182	return ZONELIST_ORDER_ZONE;
2183}
2184
2185static void set_zonelist_order(void)
2186{
2187	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2188		current_zonelist_order = default_zonelist_order();
2189	else
2190		current_zonelist_order = user_zonelist_order;
2191}
2192
2193static void build_zonelists(pg_data_t *pgdat)
2194{
2195	int j, node, load;
2196	enum zone_type i;
2197	nodemask_t used_mask;
2198	int local_node, prev_node;
2199	struct zonelist *zonelist;
2200	int order = current_zonelist_order;
2201
2202	/* initialize zonelists */
2203	for (i = 0; i < MAX_ZONELISTS; i++) {
2204		zonelist = pgdat->node_zonelists + i;
2205		zonelist->zones[0] = NULL;
2206	}
2207
2208	/* NUMA-aware ordering of nodes */
2209	local_node = pgdat->node_id;
2210	load = num_online_nodes();
2211	prev_node = local_node;
2212	nodes_clear(used_mask);
2213
2214	memset(node_load, 0, sizeof(node_load));
2215	memset(node_order, 0, sizeof(node_order));
2216	j = 0;
2217
2218	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2219		int distance = node_distance(local_node, node);
2220
2221		/*
2222		 * If another node is sufficiently far away then it is better
2223		 * to reclaim pages in a zone before going off node.
2224		 */
2225		if (distance > RECLAIM_DISTANCE)
2226			zone_reclaim_mode = 1;
2227
2228		/*
2229		 * We don't want to pressure a particular node.
2230		 * So adding penalty to the first node in same
2231		 * distance group to make it round-robin.
2232		 */
2233		if (distance != node_distance(local_node, prev_node))
2234			node_load[node] = load;
2235
2236		prev_node = node;
2237		load--;
2238		if (order == ZONELIST_ORDER_NODE)
2239			build_zonelists_in_node_order(pgdat, node);
2240		else
2241			node_order[j++] = node;	/* remember order */
2242	}
2243
2244	if (order == ZONELIST_ORDER_ZONE) {
2245		/* calculate node order -- i.e., DMA last! */
2246		build_zonelists_in_zone_order(pgdat, j);
2247	}
2248
2249	build_thisnode_zonelists(pgdat);
2250}
2251
2252/* Construct the zonelist performance cache - see further mmzone.h */
2253static void build_zonelist_cache(pg_data_t *pgdat)
2254{
2255	int i;
2256
2257	for (i = 0; i < MAX_NR_ZONES; i++) {
2258		struct zonelist *zonelist;
2259		struct zonelist_cache *zlc;
2260		struct zone **z;
2261
2262		zonelist = pgdat->node_zonelists + i;
2263		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2264		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2265		for (z = zonelist->zones; *z; z++)
2266			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2267	}
2268}
2269
2270
2271#else	/* CONFIG_NUMA */
2272
2273static void set_zonelist_order(void)
2274{
2275	current_zonelist_order = ZONELIST_ORDER_ZONE;
2276}
2277
2278static void build_zonelists(pg_data_t *pgdat)
2279{
2280	int node, local_node;
2281	enum zone_type i,j;
2282
2283	local_node = pgdat->node_id;
2284	for (i = 0; i < MAX_NR_ZONES; i++) {
2285		struct zonelist *zonelist;
2286
2287		zonelist = pgdat->node_zonelists + i;
2288
2289 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2290 		/*
2291 		 * Now we build the zonelist so that it contains the zones
2292 		 * of all the other nodes.
2293 		 * We don't want to pressure a particular node, so when
2294 		 * building the zones for node N, we make sure that the
2295 		 * zones coming right after the local ones are those from
2296 		 * node N+1 (modulo N)
2297 		 */
2298		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2299			if (!node_online(node))
2300				continue;
2301			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2302		}
2303		for (node = 0; node < local_node; node++) {
2304			if (!node_online(node))
2305				continue;
2306			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2307		}
2308
2309		zonelist->zones[j] = NULL;
2310	}
2311}
2312
2313/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2314static void build_zonelist_cache(pg_data_t *pgdat)
2315{
2316	int i;
2317
2318	for (i = 0; i < MAX_NR_ZONES; i++)
2319		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2320}
2321
2322#endif	/* CONFIG_NUMA */
2323
2324/* return values int ....just for stop_machine_run() */
2325static int __build_all_zonelists(void *dummy)
2326{
2327	int nid;
2328
2329	for_each_online_node(nid) {
2330		pg_data_t *pgdat = NODE_DATA(nid);
2331
2332		build_zonelists(pgdat);
2333		build_zonelist_cache(pgdat);
2334	}
2335	return 0;
2336}
2337
2338void build_all_zonelists(void)
2339{
2340	set_zonelist_order();
2341
2342	if (system_state == SYSTEM_BOOTING) {
2343		__build_all_zonelists(NULL);
2344		cpuset_init_current_mems_allowed();
2345	} else {
2346		/* we have to stop all cpus to guarantee there is no user
2347		   of zonelist */
2348		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2349		/* cpuset refresh routine should be here */
2350	}
2351	vm_total_pages = nr_free_pagecache_pages();
2352	/*
2353	 * Disable grouping by mobility if the number of pages in the
2354	 * system is too low to allow the mechanism to work. It would be
2355	 * more accurate, but expensive to check per-zone. This check is
2356	 * made on memory-hotadd so a system can start with mobility
2357	 * disabled and enable it later
2358	 */
2359	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2360		page_group_by_mobility_disabled = 1;
2361	else
2362		page_group_by_mobility_disabled = 0;
2363
2364	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2365		"Total pages: %ld\n",
2366			num_online_nodes(),
2367			zonelist_order_name[current_zonelist_order],
2368			page_group_by_mobility_disabled ? "off" : "on",
2369			vm_total_pages);
2370#ifdef CONFIG_NUMA
2371	printk("Policy zone: %s\n", zone_names[policy_zone]);
2372#endif
2373}
2374
2375/*
2376 * Helper functions to size the waitqueue hash table.
2377 * Essentially these want to choose hash table sizes sufficiently
2378 * large so that collisions trying to wait on pages are rare.
2379 * But in fact, the number of active page waitqueues on typical
2380 * systems is ridiculously low, less than 200. So this is even
2381 * conservative, even though it seems large.
2382 *
2383 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2384 * waitqueues, i.e. the size of the waitq table given the number of pages.
2385 */
2386#define PAGES_PER_WAITQUEUE	256
2387
2388#ifndef CONFIG_MEMORY_HOTPLUG
2389static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2390{
2391	unsigned long size = 1;
2392
2393	pages /= PAGES_PER_WAITQUEUE;
2394
2395	while (size < pages)
2396		size <<= 1;
2397
2398	/*
2399	 * Once we have dozens or even hundreds of threads sleeping
2400	 * on IO we've got bigger problems than wait queue collision.
2401	 * Limit the size of the wait table to a reasonable size.
2402	 */
2403	size = min(size, 4096UL);
2404
2405	return max(size, 4UL);
2406}
2407#else
2408/*
2409 * A zone's size might be changed by hot-add, so it is not possible to determine
2410 * a suitable size for its wait_table.  So we use the maximum size now.
2411 *
2412 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2413 *
2414 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2415 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2416 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2417 *
2418 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2419 * or more by the traditional way. (See above).  It equals:
2420 *
2421 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2422 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2423 *    powerpc (64K page size)             : =  (32G +16M)byte.
2424 */
2425static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2426{
2427	return 4096UL;
2428}
2429#endif
2430
2431/*
2432 * This is an integer logarithm so that shifts can be used later
2433 * to extract the more random high bits from the multiplicative
2434 * hash function before the remainder is taken.
2435 */
2436static inline unsigned long wait_table_bits(unsigned long size)
2437{
2438	return ffz(~size);
2439}
2440
2441#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2442
2443/*
2444 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2445 * of blocks reserved is based on zone->pages_min. The memory within the
2446 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2447 * higher will lead to a bigger reserve which will get freed as contiguous
2448 * blocks as reclaim kicks in
2449 */
2450static void setup_zone_migrate_reserve(struct zone *zone)
2451{
2452	unsigned long start_pfn, pfn, end_pfn;
2453	struct page *page;
2454	unsigned long reserve, block_migratetype;
2455
2456	/* Get the start pfn, end pfn and the number of blocks to reserve */
2457	start_pfn = zone->zone_start_pfn;
2458	end_pfn = start_pfn + zone->spanned_pages;
2459	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2460							pageblock_order;
2461
2462	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2463		if (!pfn_valid(pfn))
2464			continue;
2465		page = pfn_to_page(pfn);
2466
2467		/* Blocks with reserved pages will never free, skip them. */
2468		if (PageReserved(page))
2469			continue;
2470
2471		block_migratetype = get_pageblock_migratetype(page);
2472
2473		/* If this block is reserved, account for it */
2474		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2475			reserve--;
2476			continue;
2477		}
2478
2479		/* Suitable for reserving if this block is movable */
2480		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2481			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2482			move_freepages_block(zone, page, MIGRATE_RESERVE);
2483			reserve--;
2484			continue;
2485		}
2486
2487		/*
2488		 * If the reserve is met and this is a previous reserved block,
2489		 * take it back
2490		 */
2491		if (block_migratetype == MIGRATE_RESERVE) {
2492			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2493			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2494		}
2495	}
2496}
2497
2498/*
2499 * Initially all pages are reserved - free ones are freed
2500 * up by free_all_bootmem() once the early boot process is
2501 * done. Non-atomic initialization, single-pass.
2502 */
2503void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2504		unsigned long start_pfn, enum memmap_context context)
2505{
2506	struct page *page;
2507	unsigned long end_pfn = start_pfn + size;
2508	unsigned long pfn;
2509
2510	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2511		/*
2512		 * There can be holes in boot-time mem_map[]s
2513		 * handed to this function.  They do not
2514		 * exist on hotplugged memory.
2515		 */
2516		if (context == MEMMAP_EARLY) {
2517			if (!early_pfn_valid(pfn))
2518				continue;
2519			if (!early_pfn_in_nid(pfn, nid))
2520				continue;
2521		}
2522		page = pfn_to_page(pfn);
2523		set_page_links(page, zone, nid, pfn);
2524		init_page_count(page);
2525		reset_page_mapcount(page);
2526		SetPageReserved(page);
2527
2528		/*
2529		 * Mark the block movable so that blocks are reserved for
2530		 * movable at startup. This will force kernel allocations
2531		 * to reserve their blocks rather than leaking throughout
2532		 * the address space during boot when many long-lived
2533		 * kernel allocations are made. Later some blocks near
2534		 * the start are marked MIGRATE_RESERVE by
2535		 * setup_zone_migrate_reserve()
2536		 */
2537		if ((pfn & (pageblock_nr_pages-1)))
2538			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2539
2540		INIT_LIST_HEAD(&page->lru);
2541#ifdef WANT_PAGE_VIRTUAL
2542		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2543		if (!is_highmem_idx(zone))
2544			set_page_address(page, __va(pfn << PAGE_SHIFT));
2545#endif
2546	}
2547}
2548
2549static void __meminit zone_init_free_lists(struct zone *zone)
2550{
2551	int order, t;
2552	for_each_migratetype_order(order, t) {
2553		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2554		zone->free_area[order].nr_free = 0;
2555	}
2556}
2557
2558#ifndef __HAVE_ARCH_MEMMAP_INIT
2559#define memmap_init(size, nid, zone, start_pfn) \
2560	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2561#endif
2562
2563static int zone_batchsize(struct zone *zone)
2564{
2565	int batch;
2566
2567	/*
2568	 * The per-cpu-pages pools are set to around 1000th of the
2569	 * size of the zone.  But no more than 1/2 of a meg.
2570	 *
2571	 * OK, so we don't know how big the cache is.  So guess.
2572	 */
2573	batch = zone->present_pages / 1024;
2574	if (batch * PAGE_SIZE > 512 * 1024)
2575		batch = (512 * 1024) / PAGE_SIZE;
2576	batch /= 4;		/* We effectively *= 4 below */
2577	if (batch < 1)
2578		batch = 1;
2579
2580	/*
2581	 * Clamp the batch to a 2^n - 1 value. Having a power
2582	 * of 2 value was found to be more likely to have
2583	 * suboptimal cache aliasing properties in some cases.
2584	 *
2585	 * For example if 2 tasks are alternately allocating
2586	 * batches of pages, one task can end up with a lot
2587	 * of pages of one half of the possible page colors
2588	 * and the other with pages of the other colors.
2589	 */
2590	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2591
2592	return batch;
2593}
2594
2595inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2596{
2597	struct per_cpu_pages *pcp;
2598
2599	memset(p, 0, sizeof(*p));
2600
2601	pcp = &p->pcp;
2602	pcp->count = 0;
2603	pcp->high = 6 * batch;
2604	pcp->batch = max(1UL, 1 * batch);
2605	INIT_LIST_HEAD(&pcp->list);
2606}
2607
2608/*
2609 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2610 * to the value high for the pageset p.
2611 */
2612
2613static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2614				unsigned long high)
2615{
2616	struct per_cpu_pages *pcp;
2617
2618	pcp = &p->pcp;
2619	pcp->high = high;
2620	pcp->batch = max(1UL, high/4);
2621	if ((high/4) > (PAGE_SHIFT * 8))
2622		pcp->batch = PAGE_SHIFT * 8;
2623}
2624
2625
2626#ifdef CONFIG_NUMA
2627/*
2628 * Boot pageset table. One per cpu which is going to be used for all
2629 * zones and all nodes. The parameters will be set in such a way
2630 * that an item put on a list will immediately be handed over to
2631 * the buddy list. This is safe since pageset manipulation is done
2632 * with interrupts disabled.
2633 *
2634 * Some NUMA counter updates may also be caught by the boot pagesets.
2635 *
2636 * The boot_pagesets must be kept even after bootup is complete for
2637 * unused processors and/or zones. They do play a role for bootstrapping
2638 * hotplugged processors.
2639 *
2640 * zoneinfo_show() and maybe other functions do
2641 * not check if the processor is online before following the pageset pointer.
2642 * Other parts of the kernel may not check if the zone is available.
2643 */
2644static struct per_cpu_pageset boot_pageset[NR_CPUS];
2645
2646/*
2647 * Dynamically allocate memory for the
2648 * per cpu pageset array in struct zone.
2649 */
2650static int __cpuinit process_zones(int cpu)
2651{
2652	struct zone *zone, *dzone;
2653	int node = cpu_to_node(cpu);
2654
2655	node_set_state(node, N_CPU);	/* this node has a cpu */
2656
2657	for_each_zone(zone) {
2658
2659		if (!populated_zone(zone))
2660			continue;
2661
2662		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2663					 GFP_KERNEL, node);
2664		if (!zone_pcp(zone, cpu))
2665			goto bad;
2666
2667		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2668
2669		if (percpu_pagelist_fraction)
2670			setup_pagelist_highmark(zone_pcp(zone, cpu),
2671			 	(zone->present_pages / percpu_pagelist_fraction));
2672	}
2673
2674	return 0;
2675bad:
2676	for_each_zone(dzone) {
2677		if (!populated_zone(dzone))
2678			continue;
2679		if (dzone == zone)
2680			break;
2681		kfree(zone_pcp(dzone, cpu));
2682		zone_pcp(dzone, cpu) = NULL;
2683	}
2684	return -ENOMEM;
2685}
2686
2687static inline void free_zone_pagesets(int cpu)
2688{
2689	struct zone *zone;
2690
2691	for_each_zone(zone) {
2692		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2693
2694		/* Free per_cpu_pageset if it is slab allocated */
2695		if (pset != &boot_pageset[cpu])
2696			kfree(pset);
2697		zone_pcp(zone, cpu) = NULL;
2698	}
2699}
2700
2701static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2702		unsigned long action,
2703		void *hcpu)
2704{
2705	int cpu = (long)hcpu;
2706	int ret = NOTIFY_OK;
2707
2708	switch (action) {
2709	case CPU_UP_PREPARE:
2710	case CPU_UP_PREPARE_FROZEN:
2711		if (process_zones(cpu))
2712			ret = NOTIFY_BAD;
2713		break;
2714	case CPU_UP_CANCELED:
2715	case CPU_UP_CANCELED_FROZEN:
2716	case CPU_DEAD:
2717	case CPU_DEAD_FROZEN:
2718		free_zone_pagesets(cpu);
2719		break;
2720	default:
2721		break;
2722	}
2723	return ret;
2724}
2725
2726static struct notifier_block __cpuinitdata pageset_notifier =
2727	{ &pageset_cpuup_callback, NULL, 0 };
2728
2729void __init setup_per_cpu_pageset(void)
2730{
2731	int err;
2732
2733	/* Initialize per_cpu_pageset for cpu 0.
2734	 * A cpuup callback will do this for every cpu
2735	 * as it comes online
2736	 */
2737	err = process_zones(smp_processor_id());
2738	BUG_ON(err);
2739	register_cpu_notifier(&pageset_notifier);
2740}
2741
2742#endif
2743
2744static noinline __init_refok
2745int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2746{
2747	int i;
2748	struct pglist_data *pgdat = zone->zone_pgdat;
2749	size_t alloc_size;
2750
2751	/*
2752	 * The per-page waitqueue mechanism uses hashed waitqueues
2753	 * per zone.
2754	 */
2755	zone->wait_table_hash_nr_entries =
2756		 wait_table_hash_nr_entries(zone_size_pages);
2757	zone->wait_table_bits =
2758		wait_table_bits(zone->wait_table_hash_nr_entries);
2759	alloc_size = zone->wait_table_hash_nr_entries
2760					* sizeof(wait_queue_head_t);
2761
2762 	if (system_state == SYSTEM_BOOTING) {
2763		zone->wait_table = (wait_queue_head_t *)
2764			alloc_bootmem_node(pgdat, alloc_size);
2765	} else {
2766		/*
2767		 * This case means that a zone whose size was 0 gets new memory
2768		 * via memory hot-add.
2769		 * But it may be the case that a new node was hot-added.  In
2770		 * this case vmalloc() will not be able to use this new node's
2771		 * memory - this wait_table must be initialized to use this new
2772		 * node itself as well.
2773		 * To use this new node's memory, further consideration will be
2774		 * necessary.
2775		 */
2776		zone->wait_table = vmalloc(alloc_size);
2777	}
2778	if (!zone->wait_table)
2779		return -ENOMEM;
2780
2781	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2782		init_waitqueue_head(zone->wait_table + i);
2783
2784	return 0;
2785}
2786
2787static __meminit void zone_pcp_init(struct zone *zone)
2788{
2789	int cpu;
2790	unsigned long batch = zone_batchsize(zone);
2791
2792	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2793#ifdef CONFIG_NUMA
2794		/* Early boot. Slab allocator not functional yet */
2795		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2796		setup_pageset(&boot_pageset[cpu],0);
2797#else
2798		setup_pageset(zone_pcp(zone,cpu), batch);
2799#endif
2800	}
2801	if (zone->present_pages)
2802		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2803			zone->name, zone->present_pages, batch);
2804}
2805
2806__meminit int init_currently_empty_zone(struct zone *zone,
2807					unsigned long zone_start_pfn,
2808					unsigned long size,
2809					enum memmap_context context)
2810{
2811	struct pglist_data *pgdat = zone->zone_pgdat;
2812	int ret;
2813	ret = zone_wait_table_init(zone, size);
2814	if (ret)
2815		return ret;
2816	pgdat->nr_zones = zone_idx(zone) + 1;
2817
2818	zone->zone_start_pfn = zone_start_pfn;
2819
2820	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2821
2822	zone_init_free_lists(zone);
2823
2824	return 0;
2825}
2826
2827#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2828/*
2829 * Basic iterator support. Return the first range of PFNs for a node
2830 * Note: nid == MAX_NUMNODES returns first region regardless of node
2831 */
2832static int __meminit first_active_region_index_in_nid(int nid)
2833{
2834	int i;
2835
2836	for (i = 0; i < nr_nodemap_entries; i++)
2837		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2838			return i;
2839
2840	return -1;
2841}
2842
2843/*
2844 * Basic iterator support. Return the next active range of PFNs for a node
2845 * Note: nid == MAX_NUMNODES returns next region regardless of node
2846 */
2847static int __meminit next_active_region_index_in_nid(int index, int nid)
2848{
2849	for (index = index + 1; index < nr_nodemap_entries; index++)
2850		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2851			return index;
2852
2853	return -1;
2854}
2855
2856#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2857/*
2858 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2859 * Architectures may implement their own version but if add_active_range()
2860 * was used and there are no special requirements, this is a convenient
2861 * alternative
2862 */
2863int __meminit early_pfn_to_nid(unsigned long pfn)
2864{
2865	int i;
2866
2867	for (i = 0; i < nr_nodemap_entries; i++) {
2868		unsigned long start_pfn = early_node_map[i].start_pfn;
2869		unsigned long end_pfn = early_node_map[i].end_pfn;
2870
2871		if (start_pfn <= pfn && pfn < end_pfn)
2872			return early_node_map[i].nid;
2873	}
2874
2875	return 0;
2876}
2877#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2878
2879/* Basic iterator support to walk early_node_map[] */
2880#define for_each_active_range_index_in_nid(i, nid) \
2881	for (i = first_active_region_index_in_nid(nid); i != -1; \
2882				i = next_active_region_index_in_nid(i, nid))
2883
2884/**
2885 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2886 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2887 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2888 *
2889 * If an architecture guarantees that all ranges registered with
2890 * add_active_ranges() contain no holes and may be freed, this
2891 * this function may be used instead of calling free_bootmem() manually.
2892 */
2893void __init free_bootmem_with_active_regions(int nid,
2894						unsigned long max_low_pfn)
2895{
2896	int i;
2897
2898	for_each_active_range_index_in_nid(i, nid) {
2899		unsigned long size_pages = 0;
2900		unsigned long end_pfn = early_node_map[i].end_pfn;
2901
2902		if (early_node_map[i].start_pfn >= max_low_pfn)
2903			continue;
2904
2905		if (end_pfn > max_low_pfn)
2906			end_pfn = max_low_pfn;
2907
2908		size_pages = end_pfn - early_node_map[i].start_pfn;
2909		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2910				PFN_PHYS(early_node_map[i].start_pfn),
2911				size_pages << PAGE_SHIFT);
2912	}
2913}
2914
2915/**
2916 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2917 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2918 *
2919 * If an architecture guarantees that all ranges registered with
2920 * add_active_ranges() contain no holes and may be freed, this
2921 * function may be used instead of calling memory_present() manually.
2922 */
2923void __init sparse_memory_present_with_active_regions(int nid)
2924{
2925	int i;
2926
2927	for_each_active_range_index_in_nid(i, nid)
2928		memory_present(early_node_map[i].nid,
2929				early_node_map[i].start_pfn,
2930				early_node_map[i].end_pfn);
2931}
2932
2933/**
2934 * push_node_boundaries - Push node boundaries to at least the requested boundary
2935 * @nid: The nid of the node to push the boundary for
2936 * @start_pfn: The start pfn of the node
2937 * @end_pfn: The end pfn of the node
2938 *
2939 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2940 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2941 * be hotplugged even though no physical memory exists. This function allows
2942 * an arch to push out the node boundaries so mem_map is allocated that can
2943 * be used later.
2944 */
2945#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2946void __init push_node_boundaries(unsigned int nid,
2947		unsigned long start_pfn, unsigned long end_pfn)
2948{
2949	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2950			nid, start_pfn, end_pfn);
2951
2952	/* Initialise the boundary for this node if necessary */
2953	if (node_boundary_end_pfn[nid] == 0)
2954		node_boundary_start_pfn[nid] = -1UL;
2955
2956	/* Update the boundaries */
2957	if (node_boundary_start_pfn[nid] > start_pfn)
2958		node_boundary_start_pfn[nid] = start_pfn;
2959	if (node_boundary_end_pfn[nid] < end_pfn)
2960		node_boundary_end_pfn[nid] = end_pfn;
2961}
2962
2963/* If necessary, push the node boundary out for reserve hotadd */
2964static void __meminit account_node_boundary(unsigned int nid,
2965		unsigned long *start_pfn, unsigned long *end_pfn)
2966{
2967	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2968			nid, *start_pfn, *end_pfn);
2969
2970	/* Return if boundary information has not been provided */
2971	if (node_boundary_end_pfn[nid] == 0)
2972		return;
2973
2974	/* Check the boundaries and update if necessary */
2975	if (node_boundary_start_pfn[nid] < *start_pfn)
2976		*start_pfn = node_boundary_start_pfn[nid];
2977	if (node_boundary_end_pfn[nid] > *end_pfn)
2978		*end_pfn = node_boundary_end_pfn[nid];
2979}
2980#else
2981void __init push_node_boundaries(unsigned int nid,
2982		unsigned long start_pfn, unsigned long end_pfn) {}
2983
2984static void __meminit account_node_boundary(unsigned int nid,
2985		unsigned long *start_pfn, unsigned long *end_pfn) {}
2986#endif
2987
2988
2989/**
2990 * get_pfn_range_for_nid - Return the start and end page frames for a node
2991 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2992 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2993 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2994 *
2995 * It returns the start and end page frame of a node based on information
2996 * provided by an arch calling add_active_range(). If called for a node
2997 * with no available memory, a warning is printed and the start and end
2998 * PFNs will be 0.
2999 */
3000void __meminit get_pfn_range_for_nid(unsigned int nid,
3001			unsigned long *start_pfn, unsigned long *end_pfn)
3002{
3003	int i;
3004	*start_pfn = -1UL;
3005	*end_pfn = 0;
3006
3007	for_each_active_range_index_in_nid(i, nid) {
3008		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3009		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3010	}
3011
3012	if (*start_pfn == -1UL)
3013		*start_pfn = 0;
3014
3015	/* Push the node boundaries out if requested */
3016	account_node_boundary(nid, start_pfn, end_pfn);
3017}
3018
3019/*
3020 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3021 * assumption is made that zones within a node are ordered in monotonic
3022 * increasing memory addresses so that the "highest" populated zone is used
3023 */
3024void __init find_usable_zone_for_movable(void)
3025{
3026	int zone_index;
3027	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3028		if (zone_index == ZONE_MOVABLE)
3029			continue;
3030
3031		if (arch_zone_highest_possible_pfn[zone_index] >
3032				arch_zone_lowest_possible_pfn[zone_index])
3033			break;
3034	}
3035
3036	VM_BUG_ON(zone_index == -1);
3037	movable_zone = zone_index;
3038}
3039
3040/*
3041 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3042 * because it is sized independant of architecture. Unlike the other zones,
3043 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3044 * in each node depending on the size of each node and how evenly kernelcore
3045 * is distributed. This helper function adjusts the zone ranges
3046 * provided by the architecture for a given node by using the end of the
3047 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3048 * zones within a node are in order of monotonic increases memory addresses
3049 */
3050void __meminit adjust_zone_range_for_zone_movable(int nid,
3051					unsigned long zone_type,
3052					unsigned long node_start_pfn,
3053					unsigned long node_end_pfn,
3054					unsigned long *zone_start_pfn,
3055					unsigned long *zone_end_pfn)
3056{
3057	/* Only adjust if ZONE_MOVABLE is on this node */
3058	if (zone_movable_pfn[nid]) {
3059		/* Size ZONE_MOVABLE */
3060		if (zone_type == ZONE_MOVABLE) {
3061			*zone_start_pfn = zone_movable_pfn[nid];
3062			*zone_end_pfn = min(node_end_pfn,
3063				arch_zone_highest_possible_pfn[movable_zone]);
3064
3065		/* Adjust for ZONE_MOVABLE starting within this range */
3066		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3067				*zone_end_pfn > zone_movable_pfn[nid]) {
3068			*zone_end_pfn = zone_movable_pfn[nid];
3069
3070		/* Check if this whole range is within ZONE_MOVABLE */
3071		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3072			*zone_start_pfn = *zone_end_pfn;
3073	}
3074}
3075
3076/*
3077 * Return the number of pages a zone spans in a node, including holes
3078 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3079 */
3080static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3081					unsigned long zone_type,
3082					unsigned long *ignored)
3083{
3084	unsigned long node_start_pfn, node_end_pfn;
3085	unsigned long zone_start_pfn, zone_end_pfn;
3086
3087	/* Get the start and end of the node and zone */
3088	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3089	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3090	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3091	adjust_zone_range_for_zone_movable(nid, zone_type,
3092				node_start_pfn, node_end_pfn,
3093				&zone_start_pfn, &zone_end_pfn);
3094
3095	/* Check that this node has pages within the zone's required range */
3096	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3097		return 0;
3098
3099	/* Move the zone boundaries inside the node if necessary */
3100	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3101	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3102
3103	/* Return the spanned pages */
3104	return zone_end_pfn - zone_start_pfn;
3105}
3106
3107/*
3108 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3109 * then all holes in the requested range will be accounted for.
3110 */
3111unsigned long __meminit __absent_pages_in_range(int nid,
3112				unsigned long range_start_pfn,
3113				unsigned long range_end_pfn)
3114{
3115	int i = 0;
3116	unsigned long prev_end_pfn = 0, hole_pages = 0;
3117	unsigned long start_pfn;
3118
3119	/* Find the end_pfn of the first active range of pfns in the node */
3120	i = first_active_region_index_in_nid(nid);
3121	if (i == -1)
3122		return 0;
3123
3124	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3125
3126	/* Account for ranges before physical memory on this node */
3127	if (early_node_map[i].start_pfn > range_start_pfn)
3128		hole_pages = prev_end_pfn - range_start_pfn;
3129
3130	/* Find all holes for the zone within the node */
3131	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3132
3133		/* No need to continue if prev_end_pfn is outside the zone */
3134		if (prev_end_pfn >= range_end_pfn)
3135			break;
3136
3137		/* Make sure the end of the zone is not within the hole */
3138		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3139		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3140
3141		/* Update the hole size cound and move on */
3142		if (start_pfn > range_start_pfn) {
3143			BUG_ON(prev_end_pfn > start_pfn);
3144			hole_pages += start_pfn - prev_end_pfn;
3145		}
3146		prev_end_pfn = early_node_map[i].end_pfn;
3147	}
3148
3149	/* Account for ranges past physical memory on this node */
3150	if (range_end_pfn > prev_end_pfn)
3151		hole_pages += range_end_pfn -
3152				max(range_start_pfn, prev_end_pfn);
3153
3154	return hole_pages;
3155}
3156
3157/**
3158 * absent_pages_in_range - Return number of page frames in holes within a range
3159 * @start_pfn: The start PFN to start searching for holes
3160 * @end_pfn: The end PFN to stop searching for holes
3161 *
3162 * It returns the number of pages frames in memory holes within a range.
3163 */
3164unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3165							unsigned long end_pfn)
3166{
3167	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3168}
3169
3170/* Return the number of page frames in holes in a zone on a node */
3171static unsigned long __meminit zone_absent_pages_in_node(int nid,
3172					unsigned long zone_type,
3173					unsigned long *ignored)
3174{
3175	unsigned long node_start_pfn, node_end_pfn;
3176	unsigned long zone_start_pfn, zone_end_pfn;
3177
3178	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3179	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3180							node_start_pfn);
3181	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3182							node_end_pfn);
3183
3184	adjust_zone_range_for_zone_movable(nid, zone_type,
3185			node_start_pfn, node_end_pfn,
3186			&zone_start_pfn, &zone_end_pfn);
3187	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3188}
3189
3190#else
3191static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3192					unsigned long zone_type,
3193					unsigned long *zones_size)
3194{
3195	return zones_size[zone_type];
3196}
3197
3198static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3199						unsigned long zone_type,
3200						unsigned long *zholes_size)
3201{
3202	if (!zholes_size)
3203		return 0;
3204
3205	return zholes_size[zone_type];
3206}
3207
3208#endif
3209
3210static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3211		unsigned long *zones_size, unsigned long *zholes_size)
3212{
3213	unsigned long realtotalpages, totalpages = 0;
3214	enum zone_type i;
3215
3216	for (i = 0; i < MAX_NR_ZONES; i++)
3217		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3218								zones_size);
3219	pgdat->node_spanned_pages = totalpages;
3220
3221	realtotalpages = totalpages;
3222	for (i = 0; i < MAX_NR_ZONES; i++)
3223		realtotalpages -=
3224			zone_absent_pages_in_node(pgdat->node_id, i,
3225								zholes_size);
3226	pgdat->node_present_pages = realtotalpages;
3227	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3228							realtotalpages);
3229}
3230
3231#ifndef CONFIG_SPARSEMEM
3232/*
3233 * Calculate the size of the zone->blockflags rounded to an unsigned long
3234 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3235 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3236 * round what is now in bits to nearest long in bits, then return it in
3237 * bytes.
3238 */
3239static unsigned long __init usemap_size(unsigned long zonesize)
3240{
3241	unsigned long usemapsize;
3242
3243	usemapsize = roundup(zonesize, pageblock_nr_pages);
3244	usemapsize = usemapsize >> pageblock_order;
3245	usemapsize *= NR_PAGEBLOCK_BITS;
3246	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3247
3248	return usemapsize / 8;
3249}
3250
3251static void __init setup_usemap(struct pglist_data *pgdat,
3252				struct zone *zone, unsigned long zonesize)
3253{
3254	unsigned long usemapsize = usemap_size(zonesize);
3255	zone->pageblock_flags = NULL;
3256	if (usemapsize) {
3257		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3258		memset(zone->pageblock_flags, 0, usemapsize);
3259	}
3260}
3261#else
3262static void inline setup_usemap(struct pglist_data *pgdat,
3263				struct zone *zone, unsigned long zonesize) {}
3264#endif /* CONFIG_SPARSEMEM */
3265
3266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3267
3268/* Return a sensible default order for the pageblock size. */
3269static inline int pageblock_default_order(void)
3270{
3271	if (HPAGE_SHIFT > PAGE_SHIFT)
3272		return HUGETLB_PAGE_ORDER;
3273
3274	return MAX_ORDER-1;
3275}
3276
3277/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3278static inline void __init set_pageblock_order(unsigned int order)
3279{
3280	/* Check that pageblock_nr_pages has not already been setup */
3281	if (pageblock_order)
3282		return;
3283
3284	/*
3285	 * Assume the largest contiguous order of interest is a huge page.
3286	 * This value may be variable depending on boot parameters on IA64
3287	 */
3288	pageblock_order = order;
3289}
3290#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3291
3292/*
3293 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3294 * and pageblock_default_order() are unused as pageblock_order is set
3295 * at compile-time. See include/linux/pageblock-flags.h for the values of
3296 * pageblock_order based on the kernel config
3297 */
3298static inline int pageblock_default_order(unsigned int order)
3299{
3300	return MAX_ORDER-1;
3301}
3302#define set_pageblock_order(x)	do {} while (0)
3303
3304#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3305
3306/*
3307 * Set up the zone data structures:
3308 *   - mark all pages reserved
3309 *   - mark all memory queues empty
3310 *   - clear the memory bitmaps
3311 */
3312static void __meminit free_area_init_core(struct pglist_data *pgdat,
3313		unsigned long *zones_size, unsigned long *zholes_size)
3314{
3315	enum zone_type j;
3316	int nid = pgdat->node_id;
3317	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3318	int ret;
3319
3320	pgdat_resize_init(pgdat);
3321	pgdat->nr_zones = 0;
3322	init_waitqueue_head(&pgdat->kswapd_wait);
3323	pgdat->kswapd_max_order = 0;
3324
3325	for (j = 0; j < MAX_NR_ZONES; j++) {
3326		struct zone *zone = pgdat->node_zones + j;
3327		unsigned long size, realsize, memmap_pages;
3328
3329		size = zone_spanned_pages_in_node(nid, j, zones_size);
3330		realsize = size - zone_absent_pages_in_node(nid, j,
3331								zholes_size);
3332
3333		/*
3334		 * Adjust realsize so that it accounts for how much memory
3335		 * is used by this zone for memmap. This affects the watermark
3336		 * and per-cpu initialisations
3337		 */
3338		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3339		if (realsize >= memmap_pages) {
3340			realsize -= memmap_pages;
3341			printk(KERN_DEBUG
3342				"  %s zone: %lu pages used for memmap\n",
3343				zone_names[j], memmap_pages);
3344		} else
3345			printk(KERN_WARNING
3346				"  %s zone: %lu pages exceeds realsize %lu\n",
3347				zone_names[j], memmap_pages, realsize);
3348
3349		/* Account for reserved pages */
3350		if (j == 0 && realsize > dma_reserve) {
3351			realsize -= dma_reserve;
3352			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3353					zone_names[0], dma_reserve);
3354		}
3355
3356		if (!is_highmem_idx(j))
3357			nr_kernel_pages += realsize;
3358		nr_all_pages += realsize;
3359
3360		zone->spanned_pages = size;
3361		zone->present_pages = realsize;
3362#ifdef CONFIG_NUMA
3363		zone->node = nid;
3364		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3365						/ 100;
3366		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3367#endif
3368		zone->name = zone_names[j];
3369		spin_lock_init(&zone->lock);
3370		spin_lock_init(&zone->lru_lock);
3371		zone_seqlock_init(zone);
3372		zone->zone_pgdat = pgdat;
3373
3374		zone->prev_priority = DEF_PRIORITY;
3375
3376		zone_pcp_init(zone);
3377		INIT_LIST_HEAD(&zone->active_list);
3378		INIT_LIST_HEAD(&zone->inactive_list);
3379		zone->nr_scan_active = 0;
3380		zone->nr_scan_inactive = 0;
3381		zap_zone_vm_stats(zone);
3382		zone->flags = 0;
3383		if (!size)
3384			continue;
3385
3386		set_pageblock_order(pageblock_default_order());
3387		setup_usemap(pgdat, zone, size);
3388		ret = init_currently_empty_zone(zone, zone_start_pfn,
3389						size, MEMMAP_EARLY);
3390		BUG_ON(ret);
3391		zone_start_pfn += size;
3392	}
3393}
3394
3395static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3396{
3397	/* Skip empty nodes */
3398	if (!pgdat->node_spanned_pages)
3399		return;
3400
3401#ifdef CONFIG_FLAT_NODE_MEM_MAP
3402	/* ia64 gets its own node_mem_map, before this, without bootmem */
3403	if (!pgdat->node_mem_map) {
3404		unsigned long size, start, end;
3405		struct page *map;
3406
3407		/*
3408		 * The zone's endpoints aren't required to be MAX_ORDER
3409		 * aligned but the node_mem_map endpoints must be in order
3410		 * for the buddy allocator to function correctly.
3411		 */
3412		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3413		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3414		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3415		size =  (end - start) * sizeof(struct page);
3416		map = alloc_remap(pgdat->node_id, size);
3417		if (!map)
3418			map = alloc_bootmem_node(pgdat, size);
3419		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3420	}
3421#ifndef CONFIG_NEED_MULTIPLE_NODES
3422	/*
3423	 * With no DISCONTIG, the global mem_map is just set as node 0's
3424	 */
3425	if (pgdat == NODE_DATA(0)) {
3426		mem_map = NODE_DATA(0)->node_mem_map;
3427#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3428		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3429			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3430#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3431	}
3432#endif
3433#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3434}
3435
3436void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3437		unsigned long *zones_size, unsigned long node_start_pfn,
3438		unsigned long *zholes_size)
3439{
3440	pgdat->node_id = nid;
3441	pgdat->node_start_pfn = node_start_pfn;
3442	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3443
3444	alloc_node_mem_map(pgdat);
3445
3446	free_area_init_core(pgdat, zones_size, zholes_size);
3447}
3448
3449#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3450
3451#if MAX_NUMNODES > 1
3452/*
3453 * Figure out the number of possible node ids.
3454 */
3455static void __init setup_nr_node_ids(void)
3456{
3457	unsigned int node;
3458	unsigned int highest = 0;
3459
3460	for_each_node_mask(node, node_possible_map)
3461		highest = node;
3462	nr_node_ids = highest + 1;
3463}
3464#else
3465static inline void setup_nr_node_ids(void)
3466{
3467}
3468#endif
3469
3470/**
3471 * add_active_range - Register a range of PFNs backed by physical memory
3472 * @nid: The node ID the range resides on
3473 * @start_pfn: The start PFN of the available physical memory
3474 * @end_pfn: The end PFN of the available physical memory
3475 *
3476 * These ranges are stored in an early_node_map[] and later used by
3477 * free_area_init_nodes() to calculate zone sizes and holes. If the
3478 * range spans a memory hole, it is up to the architecture to ensure
3479 * the memory is not freed by the bootmem allocator. If possible
3480 * the range being registered will be merged with existing ranges.
3481 */
3482void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3483						unsigned long end_pfn)
3484{
3485	int i;
3486
3487	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3488			  "%d entries of %d used\n",
3489			  nid, start_pfn, end_pfn,
3490			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3491
3492	/* Merge with existing active regions if possible */
3493	for (i = 0; i < nr_nodemap_entries; i++) {
3494		if (early_node_map[i].nid != nid)
3495			continue;
3496
3497		/* Skip if an existing region covers this new one */
3498		if (start_pfn >= early_node_map[i].start_pfn &&
3499				end_pfn <= early_node_map[i].end_pfn)
3500			return;
3501
3502		/* Merge forward if suitable */
3503		if (start_pfn <= early_node_map[i].end_pfn &&
3504				end_pfn > early_node_map[i].end_pfn) {
3505			early_node_map[i].end_pfn = end_pfn;
3506			return;
3507		}
3508
3509		/* Merge backward if suitable */
3510		if (start_pfn < early_node_map[i].end_pfn &&
3511				end_pfn >= early_node_map[i].start_pfn) {
3512			early_node_map[i].start_pfn = start_pfn;
3513			return;
3514		}
3515	}
3516
3517	/* Check that early_node_map is large enough */
3518	if (i >= MAX_ACTIVE_REGIONS) {
3519		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3520							MAX_ACTIVE_REGIONS);
3521		return;
3522	}
3523
3524	early_node_map[i].nid = nid;
3525	early_node_map[i].start_pfn = start_pfn;
3526	early_node_map[i].end_pfn = end_pfn;
3527	nr_nodemap_entries = i + 1;
3528}
3529
3530/**
3531 * shrink_active_range - Shrink an existing registered range of PFNs
3532 * @nid: The node id the range is on that should be shrunk
3533 * @old_end_pfn: The old end PFN of the range
3534 * @new_end_pfn: The new PFN of the range
3535 *
3536 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3537 * The map is kept at the end physical page range that has already been
3538 * registered with add_active_range(). This function allows an arch to shrink
3539 * an existing registered range.
3540 */
3541void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3542						unsigned long new_end_pfn)
3543{
3544	int i;
3545
3546	/* Find the old active region end and shrink */
3547	for_each_active_range_index_in_nid(i, nid)
3548		if (early_node_map[i].end_pfn == old_end_pfn) {
3549			early_node_map[i].end_pfn = new_end_pfn;
3550			break;
3551		}
3552}
3553
3554/**
3555 * remove_all_active_ranges - Remove all currently registered regions
3556 *
3557 * During discovery, it may be found that a table like SRAT is invalid
3558 * and an alternative discovery method must be used. This function removes
3559 * all currently registered regions.
3560 */
3561void __init remove_all_active_ranges(void)
3562{
3563	memset(early_node_map, 0, sizeof(early_node_map));
3564	nr_nodemap_entries = 0;
3565#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3566	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3567	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3568#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3569}
3570
3571/* Compare two active node_active_regions */
3572static int __init cmp_node_active_region(const void *a, const void *b)
3573{
3574	struct node_active_region *arange = (struct node_active_region *)a;
3575	struct node_active_region *brange = (struct node_active_region *)b;
3576
3577	/* Done this way to avoid overflows */
3578	if (arange->start_pfn > brange->start_pfn)
3579		return 1;
3580	if (arange->start_pfn < brange->start_pfn)
3581		return -1;
3582
3583	return 0;
3584}
3585
3586/* sort the node_map by start_pfn */
3587static void __init sort_node_map(void)
3588{
3589	sort(early_node_map, (size_t)nr_nodemap_entries,
3590			sizeof(struct node_active_region),
3591			cmp_node_active_region, NULL);
3592}
3593
3594/* Find the lowest pfn for a node */
3595unsigned long __init find_min_pfn_for_node(unsigned long nid)
3596{
3597	int i;
3598	unsigned long min_pfn = ULONG_MAX;
3599
3600	/* Assuming a sorted map, the first range found has the starting pfn */
3601	for_each_active_range_index_in_nid(i, nid)
3602		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3603
3604	if (min_pfn == ULONG_MAX) {
3605		printk(KERN_WARNING
3606			"Could not find start_pfn for node %lu\n", nid);
3607		return 0;
3608	}
3609
3610	return min_pfn;
3611}
3612
3613/**
3614 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3615 *
3616 * It returns the minimum PFN based on information provided via
3617 * add_active_range().
3618 */
3619unsigned long __init find_min_pfn_with_active_regions(void)
3620{
3621	return find_min_pfn_for_node(MAX_NUMNODES);
3622}
3623
3624/**
3625 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3626 *
3627 * It returns the maximum PFN based on information provided via
3628 * add_active_range().
3629 */
3630unsigned long __init find_max_pfn_with_active_regions(void)
3631{
3632	int i;
3633	unsigned long max_pfn = 0;
3634
3635	for (i = 0; i < nr_nodemap_entries; i++)
3636		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3637
3638	return max_pfn;
3639}
3640
3641/*
3642 * early_calculate_totalpages()
3643 * Sum pages in active regions for movable zone.
3644 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3645 */
3646static unsigned long __init early_calculate_totalpages(void)
3647{
3648	int i;
3649	unsigned long totalpages = 0;
3650
3651	for (i = 0; i < nr_nodemap_entries; i++) {
3652		unsigned long pages = early_node_map[i].end_pfn -
3653						early_node_map[i].start_pfn;
3654		totalpages += pages;
3655		if (pages)
3656			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3657	}
3658  	return totalpages;
3659}
3660
3661/*
3662 * Find the PFN the Movable zone begins in each node. Kernel memory
3663 * is spread evenly between nodes as long as the nodes have enough
3664 * memory. When they don't, some nodes will have more kernelcore than
3665 * others
3666 */
3667void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3668{
3669	int i, nid;
3670	unsigned long usable_startpfn;
3671	unsigned long kernelcore_node, kernelcore_remaining;
3672	unsigned long totalpages = early_calculate_totalpages();
3673	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3674
3675	/*
3676	 * If movablecore was specified, calculate what size of
3677	 * kernelcore that corresponds so that memory usable for
3678	 * any allocation type is evenly spread. If both kernelcore
3679	 * and movablecore are specified, then the value of kernelcore
3680	 * will be used for required_kernelcore if it's greater than
3681	 * what movablecore would have allowed.
3682	 */
3683	if (required_movablecore) {
3684		unsigned long corepages;
3685
3686		/*
3687		 * Round-up so that ZONE_MOVABLE is at least as large as what
3688		 * was requested by the user
3689		 */
3690		required_movablecore =
3691			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3692		corepages = totalpages - required_movablecore;
3693
3694		required_kernelcore = max(required_kernelcore, corepages);
3695	}
3696
3697	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3698	if (!required_kernelcore)
3699		return;
3700
3701	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3702	find_usable_zone_for_movable();
3703	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3704
3705restart:
3706	/* Spread kernelcore memory as evenly as possible throughout nodes */
3707	kernelcore_node = required_kernelcore / usable_nodes;
3708	for_each_node_state(nid, N_HIGH_MEMORY) {
3709		/*
3710		 * Recalculate kernelcore_node if the division per node
3711		 * now exceeds what is necessary to satisfy the requested
3712		 * amount of memory for the kernel
3713		 */
3714		if (required_kernelcore < kernelcore_node)
3715			kernelcore_node = required_kernelcore / usable_nodes;
3716
3717		/*
3718		 * As the map is walked, we track how much memory is usable
3719		 * by the kernel using kernelcore_remaining. When it is
3720		 * 0, the rest of the node is usable by ZONE_MOVABLE
3721		 */
3722		kernelcore_remaining = kernelcore_node;
3723
3724		/* Go through each range of PFNs within this node */
3725		for_each_active_range_index_in_nid(i, nid) {
3726			unsigned long start_pfn, end_pfn;
3727			unsigned long size_pages;
3728
3729			start_pfn = max(early_node_map[i].start_pfn,
3730						zone_movable_pfn[nid]);
3731			end_pfn = early_node_map[i].end_pfn;
3732			if (start_pfn >= end_pfn)
3733				continue;
3734
3735			/* Account for what is only usable for kernelcore */
3736			if (start_pfn < usable_startpfn) {
3737				unsigned long kernel_pages;
3738				kernel_pages = min(end_pfn, usable_startpfn)
3739								- start_pfn;
3740
3741				kernelcore_remaining -= min(kernel_pages,
3742							kernelcore_remaining);
3743				required_kernelcore -= min(kernel_pages,
3744							required_kernelcore);
3745
3746				/* Continue if range is now fully accounted */
3747				if (end_pfn <= usable_startpfn) {
3748
3749					/*
3750					 * Push zone_movable_pfn to the end so
3751					 * that if we have to rebalance
3752					 * kernelcore across nodes, we will
3753					 * not double account here
3754					 */
3755					zone_movable_pfn[nid] = end_pfn;
3756					continue;
3757				}
3758				start_pfn = usable_startpfn;
3759			}
3760
3761			/*
3762			 * The usable PFN range for ZONE_MOVABLE is from
3763			 * start_pfn->end_pfn. Calculate size_pages as the
3764			 * number of pages used as kernelcore
3765			 */
3766			size_pages = end_pfn - start_pfn;
3767			if (size_pages > kernelcore_remaining)
3768				size_pages = kernelcore_remaining;
3769			zone_movable_pfn[nid] = start_pfn + size_pages;
3770
3771			/*
3772			 * Some kernelcore has been met, update counts and
3773			 * break if the kernelcore for this node has been
3774			 * satisified
3775			 */
3776			required_kernelcore -= min(required_kernelcore,
3777								size_pages);
3778			kernelcore_remaining -= size_pages;
3779			if (!kernelcore_remaining)
3780				break;
3781		}
3782	}
3783
3784	/*
3785	 * If there is still required_kernelcore, we do another pass with one
3786	 * less node in the count. This will push zone_movable_pfn[nid] further
3787	 * along on the nodes that still have memory until kernelcore is
3788	 * satisified
3789	 */
3790	usable_nodes--;
3791	if (usable_nodes && required_kernelcore > usable_nodes)
3792		goto restart;
3793
3794	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3795	for (nid = 0; nid < MAX_NUMNODES; nid++)
3796		zone_movable_pfn[nid] =
3797			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3798}
3799
3800/* Any regular memory on that node ? */
3801static void check_for_regular_memory(pg_data_t *pgdat)
3802{
3803#ifdef CONFIG_HIGHMEM
3804	enum zone_type zone_type;
3805
3806	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3807		struct zone *zone = &pgdat->node_zones[zone_type];
3808		if (zone->present_pages)
3809			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3810	}
3811#endif
3812}
3813
3814/**
3815 * free_area_init_nodes - Initialise all pg_data_t and zone data
3816 * @max_zone_pfn: an array of max PFNs for each zone
3817 *
3818 * This will call free_area_init_node() for each active node in the system.
3819 * Using the page ranges provided by add_active_range(), the size of each
3820 * zone in each node and their holes is calculated. If the maximum PFN
3821 * between two adjacent zones match, it is assumed that the zone is empty.
3822 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3823 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3824 * starts where the previous one ended. For example, ZONE_DMA32 starts
3825 * at arch_max_dma_pfn.
3826 */
3827void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3828{
3829	unsigned long nid;
3830	enum zone_type i;
3831
3832	/* Sort early_node_map as initialisation assumes it is sorted */
3833	sort_node_map();
3834
3835	/* Record where the zone boundaries are */
3836	memset(arch_zone_lowest_possible_pfn, 0,
3837				sizeof(arch_zone_lowest_possible_pfn));
3838	memset(arch_zone_highest_possible_pfn, 0,
3839				sizeof(arch_zone_highest_possible_pfn));
3840	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3841	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3842	for (i = 1; i < MAX_NR_ZONES; i++) {
3843		if (i == ZONE_MOVABLE)
3844			continue;
3845		arch_zone_lowest_possible_pfn[i] =
3846			arch_zone_highest_possible_pfn[i-1];
3847		arch_zone_highest_possible_pfn[i] =
3848			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3849	}
3850	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3851	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3852
3853	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3854	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3855	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3856
3857	/* Print out the zone ranges */
3858	printk("Zone PFN ranges:\n");
3859	for (i = 0; i < MAX_NR_ZONES; i++) {
3860		if (i == ZONE_MOVABLE)
3861			continue;
3862		printk("  %-8s %8lu -> %8lu\n",
3863				zone_names[i],
3864				arch_zone_lowest_possible_pfn[i],
3865				arch_zone_highest_possible_pfn[i]);
3866	}
3867
3868	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3869	printk("Movable zone start PFN for each node\n");
3870	for (i = 0; i < MAX_NUMNODES; i++) {
3871		if (zone_movable_pfn[i])
3872			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3873	}
3874
3875	/* Print out the early_node_map[] */
3876	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3877	for (i = 0; i < nr_nodemap_entries; i++)
3878		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3879						early_node_map[i].start_pfn,
3880						early_node_map[i].end_pfn);
3881
3882	/* Initialise every node */
3883	setup_nr_node_ids();
3884	for_each_online_node(nid) {
3885		pg_data_t *pgdat = NODE_DATA(nid);
3886		free_area_init_node(nid, pgdat, NULL,
3887				find_min_pfn_for_node(nid), NULL);
3888
3889		/* Any memory on that node */
3890		if (pgdat->node_present_pages)
3891			node_set_state(nid, N_HIGH_MEMORY);
3892		check_for_regular_memory(pgdat);
3893	}
3894}
3895
3896static int __init cmdline_parse_core(char *p, unsigned long *core)
3897{
3898	unsigned long long coremem;
3899	if (!p)
3900		return -EINVAL;
3901
3902	coremem = memparse(p, &p);
3903	*core = coremem >> PAGE_SHIFT;
3904
3905	/* Paranoid check that UL is enough for the coremem value */
3906	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3907
3908	return 0;
3909}
3910
3911/*
3912 * kernelcore=size sets the amount of memory for use for allocations that
3913 * cannot be reclaimed or migrated.
3914 */
3915static int __init cmdline_parse_kernelcore(char *p)
3916{
3917	return cmdline_parse_core(p, &required_kernelcore);
3918}
3919
3920/*
3921 * movablecore=size sets the amount of memory for use for allocations that
3922 * can be reclaimed or migrated.
3923 */
3924static int __init cmdline_parse_movablecore(char *p)
3925{
3926	return cmdline_parse_core(p, &required_movablecore);
3927}
3928
3929early_param("kernelcore", cmdline_parse_kernelcore);
3930early_param("movablecore", cmdline_parse_movablecore);
3931
3932#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3933
3934/**
3935 * set_dma_reserve - set the specified number of pages reserved in the first zone
3936 * @new_dma_reserve: The number of pages to mark reserved
3937 *
3938 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3939 * In the DMA zone, a significant percentage may be consumed by kernel image
3940 * and other unfreeable allocations which can skew the watermarks badly. This
3941 * function may optionally be used to account for unfreeable pages in the
3942 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3943 * smaller per-cpu batchsize.
3944 */
3945void __init set_dma_reserve(unsigned long new_dma_reserve)
3946{
3947	dma_reserve = new_dma_reserve;
3948}
3949
3950#ifndef CONFIG_NEED_MULTIPLE_NODES
3951static bootmem_data_t contig_bootmem_data;
3952struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3953
3954EXPORT_SYMBOL(contig_page_data);
3955#endif
3956
3957void __init free_area_init(unsigned long *zones_size)
3958{
3959	free_area_init_node(0, NODE_DATA(0), zones_size,
3960			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3961}
3962
3963static int page_alloc_cpu_notify(struct notifier_block *self,
3964				 unsigned long action, void *hcpu)
3965{
3966	int cpu = (unsigned long)hcpu;
3967
3968	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3969		drain_pages(cpu);
3970
3971		/*
3972		 * Spill the event counters of the dead processor
3973		 * into the current processors event counters.
3974		 * This artificially elevates the count of the current
3975		 * processor.
3976		 */
3977		vm_events_fold_cpu(cpu);
3978
3979		/*
3980		 * Zero the differential counters of the dead processor
3981		 * so that the vm statistics are consistent.
3982		 *
3983		 * This is only okay since the processor is dead and cannot
3984		 * race with what we are doing.
3985		 */
3986		refresh_cpu_vm_stats(cpu);
3987	}
3988	return NOTIFY_OK;
3989}
3990
3991void __init page_alloc_init(void)
3992{
3993	hotcpu_notifier(page_alloc_cpu_notify, 0);
3994}
3995
3996/*
3997 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3998 *	or min_free_kbytes changes.
3999 */
4000static void calculate_totalreserve_pages(void)
4001{
4002	struct pglist_data *pgdat;
4003	unsigned long reserve_pages = 0;
4004	enum zone_type i, j;
4005
4006	for_each_online_pgdat(pgdat) {
4007		for (i = 0; i < MAX_NR_ZONES; i++) {
4008			struct zone *zone = pgdat->node_zones + i;
4009			unsigned long max = 0;
4010
4011			/* Find valid and maximum lowmem_reserve in the zone */
4012			for (j = i; j < MAX_NR_ZONES; j++) {
4013				if (zone->lowmem_reserve[j] > max)
4014					max = zone->lowmem_reserve[j];
4015			}
4016
4017			/* we treat pages_high as reserved pages. */
4018			max += zone->pages_high;
4019
4020			if (max > zone->present_pages)
4021				max = zone->present_pages;
4022			reserve_pages += max;
4023		}
4024	}
4025	totalreserve_pages = reserve_pages;
4026}
4027
4028/*
4029 * setup_per_zone_lowmem_reserve - called whenever
4030 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4031 *	has a correct pages reserved value, so an adequate number of
4032 *	pages are left in the zone after a successful __alloc_pages().
4033 */
4034static void setup_per_zone_lowmem_reserve(void)
4035{
4036	struct pglist_data *pgdat;
4037	enum zone_type j, idx;
4038
4039	for_each_online_pgdat(pgdat) {
4040		for (j = 0; j < MAX_NR_ZONES; j++) {
4041			struct zone *zone = pgdat->node_zones + j;
4042			unsigned long present_pages = zone->present_pages;
4043
4044			zone->lowmem_reserve[j] = 0;
4045
4046			idx = j;
4047			while (idx) {
4048				struct zone *lower_zone;
4049
4050				idx--;
4051
4052				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4053					sysctl_lowmem_reserve_ratio[idx] = 1;
4054
4055				lower_zone = pgdat->node_zones + idx;
4056				lower_zone->lowmem_reserve[j] = present_pages /
4057					sysctl_lowmem_reserve_ratio[idx];
4058				present_pages += lower_zone->present_pages;
4059			}
4060		}
4061	}
4062
4063	/* update totalreserve_pages */
4064	calculate_totalreserve_pages();
4065}
4066
4067/**
4068 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4069 *
4070 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4071 * with respect to min_free_kbytes.
4072 */
4073void setup_per_zone_pages_min(void)
4074{
4075	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4076	unsigned long lowmem_pages = 0;
4077	struct zone *zone;
4078	unsigned long flags;
4079
4080	/* Calculate total number of !ZONE_HIGHMEM pages */
4081	for_each_zone(zone) {
4082		if (!is_highmem(zone))
4083			lowmem_pages += zone->present_pages;
4084	}
4085
4086	for_each_zone(zone) {
4087		u64 tmp;
4088
4089		spin_lock_irqsave(&zone->lru_lock, flags);
4090		tmp = (u64)pages_min * zone->present_pages;
4091		do_div(tmp, lowmem_pages);
4092		if (is_highmem(zone)) {
4093			/*
4094			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4095			 * need highmem pages, so cap pages_min to a small
4096			 * value here.
4097			 *
4098			 * The (pages_high-pages_low) and (pages_low-pages_min)
4099			 * deltas controls asynch page reclaim, and so should
4100			 * not be capped for highmem.
4101			 */
4102			int min_pages;
4103
4104			min_pages = zone->present_pages / 1024;
4105			if (min_pages < SWAP_CLUSTER_MAX)
4106				min_pages = SWAP_CLUSTER_MAX;
4107			if (min_pages > 128)
4108				min_pages = 128;
4109			zone->pages_min = min_pages;
4110		} else {
4111			/*
4112			 * If it's a lowmem zone, reserve a number of pages
4113			 * proportionate to the zone's size.
4114			 */
4115			zone->pages_min = tmp;
4116		}
4117
4118		zone->pages_low   = zone->pages_min + (tmp >> 2);
4119		zone->pages_high  = zone->pages_min + (tmp >> 1);
4120		setup_zone_migrate_reserve(zone);
4121		spin_unlock_irqrestore(&zone->lru_lock, flags);
4122	}
4123
4124	/* update totalreserve_pages */
4125	calculate_totalreserve_pages();
4126}
4127
4128/*
4129 * Initialise min_free_kbytes.
4130 *
4131 * For small machines we want it small (128k min).  For large machines
4132 * we want it large (64MB max).  But it is not linear, because network
4133 * bandwidth does not increase linearly with machine size.  We use
4134 *
4135 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4136 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4137 *
4138 * which yields
4139 *
4140 * 16MB:	512k
4141 * 32MB:	724k
4142 * 64MB:	1024k
4143 * 128MB:	1448k
4144 * 256MB:	2048k
4145 * 512MB:	2896k
4146 * 1024MB:	4096k
4147 * 2048MB:	5792k
4148 * 4096MB:	8192k
4149 * 8192MB:	11584k
4150 * 16384MB:	16384k
4151 */
4152static int __init init_per_zone_pages_min(void)
4153{
4154	unsigned long lowmem_kbytes;
4155
4156	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4157
4158	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4159	if (min_free_kbytes < 128)
4160		min_free_kbytes = 128;
4161	if (min_free_kbytes > 65536)
4162		min_free_kbytes = 65536;
4163	setup_per_zone_pages_min();
4164	setup_per_zone_lowmem_reserve();
4165	return 0;
4166}
4167module_init(init_per_zone_pages_min)
4168
4169/*
4170 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4171 *	that we can call two helper functions whenever min_free_kbytes
4172 *	changes.
4173 */
4174int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4175	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4176{
4177	proc_dointvec(table, write, file, buffer, length, ppos);
4178	if (write)
4179		setup_per_zone_pages_min();
4180	return 0;
4181}
4182
4183#ifdef CONFIG_NUMA
4184int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4185	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4186{
4187	struct zone *zone;
4188	int rc;
4189
4190	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4191	if (rc)
4192		return rc;
4193
4194	for_each_zone(zone)
4195		zone->min_unmapped_pages = (zone->present_pages *
4196				sysctl_min_unmapped_ratio) / 100;
4197	return 0;
4198}
4199
4200int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4201	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4202{
4203	struct zone *zone;
4204	int rc;
4205
4206	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4207	if (rc)
4208		return rc;
4209
4210	for_each_zone(zone)
4211		zone->min_slab_pages = (zone->present_pages *
4212				sysctl_min_slab_ratio) / 100;
4213	return 0;
4214}
4215#endif
4216
4217/*
4218 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4219 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4220 *	whenever sysctl_lowmem_reserve_ratio changes.
4221 *
4222 * The reserve ratio obviously has absolutely no relation with the
4223 * pages_min watermarks. The lowmem reserve ratio can only make sense
4224 * if in function of the boot time zone sizes.
4225 */
4226int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4227	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4228{
4229	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4230	setup_per_zone_lowmem_reserve();
4231	return 0;
4232}
4233
4234/*
4235 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4236 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4237 * can have before it gets flushed back to buddy allocator.
4238 */
4239
4240int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4241	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4242{
4243	struct zone *zone;
4244	unsigned int cpu;
4245	int ret;
4246
4247	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4248	if (!write || (ret == -EINVAL))
4249		return ret;
4250	for_each_zone(zone) {
4251		for_each_online_cpu(cpu) {
4252			unsigned long  high;
4253			high = zone->present_pages / percpu_pagelist_fraction;
4254			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4255		}
4256	}
4257	return 0;
4258}
4259
4260int hashdist = HASHDIST_DEFAULT;
4261
4262#ifdef CONFIG_NUMA
4263static int __init set_hashdist(char *str)
4264{
4265	if (!str)
4266		return 0;
4267	hashdist = simple_strtoul(str, &str, 0);
4268	return 1;
4269}
4270__setup("hashdist=", set_hashdist);
4271#endif
4272
4273/*
4274 * allocate a large system hash table from bootmem
4275 * - it is assumed that the hash table must contain an exact power-of-2
4276 *   quantity of entries
4277 * - limit is the number of hash buckets, not the total allocation size
4278 */
4279void *__init alloc_large_system_hash(const char *tablename,
4280				     unsigned long bucketsize,
4281				     unsigned long numentries,
4282				     int scale,
4283				     int flags,
4284				     unsigned int *_hash_shift,
4285				     unsigned int *_hash_mask,
4286				     unsigned long limit)
4287{
4288	unsigned long long max = limit;
4289	unsigned long log2qty, size;
4290	void *table = NULL;
4291
4292	/* allow the kernel cmdline to have a say */
4293	if (!numentries) {
4294		/* round applicable memory size up to nearest megabyte */
4295		numentries = nr_kernel_pages;
4296		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4297		numentries >>= 20 - PAGE_SHIFT;
4298		numentries <<= 20 - PAGE_SHIFT;
4299
4300		/* limit to 1 bucket per 2^scale bytes of low memory */
4301		if (scale > PAGE_SHIFT)
4302			numentries >>= (scale - PAGE_SHIFT);
4303		else
4304			numentries <<= (PAGE_SHIFT - scale);
4305
4306		/* Make sure we've got at least a 0-order allocation.. */
4307		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4308			numentries = PAGE_SIZE / bucketsize;
4309	}
4310	numentries = roundup_pow_of_two(numentries);
4311
4312	/* limit allocation size to 1/16 total memory by default */
4313	if (max == 0) {
4314		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4315		do_div(max, bucketsize);
4316	}
4317
4318	if (numentries > max)
4319		numentries = max;
4320
4321	log2qty = ilog2(numentries);
4322
4323	do {
4324		size = bucketsize << log2qty;
4325		if (flags & HASH_EARLY)
4326			table = alloc_bootmem(size);
4327		else if (hashdist)
4328			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4329		else {
4330			unsigned long order;
4331			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4332				;
4333			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4334			/*
4335			 * If bucketsize is not a power-of-two, we may free
4336			 * some pages at the end of hash table.
4337			 */
4338			if (table) {
4339				unsigned long alloc_end = (unsigned long)table +
4340						(PAGE_SIZE << order);
4341				unsigned long used = (unsigned long)table +
4342						PAGE_ALIGN(size);
4343				split_page(virt_to_page(table), order);
4344				while (used < alloc_end) {
4345					free_page(used);
4346					used += PAGE_SIZE;
4347				}
4348			}
4349		}
4350	} while (!table && size > PAGE_SIZE && --log2qty);
4351
4352	if (!table)
4353		panic("Failed to allocate %s hash table\n", tablename);
4354
4355	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4356	       tablename,
4357	       (1U << log2qty),
4358	       ilog2(size) - PAGE_SHIFT,
4359	       size);
4360
4361	if (_hash_shift)
4362		*_hash_shift = log2qty;
4363	if (_hash_mask)
4364		*_hash_mask = (1 << log2qty) - 1;
4365
4366	return table;
4367}
4368
4369#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4370struct page *pfn_to_page(unsigned long pfn)
4371{
4372	return __pfn_to_page(pfn);
4373}
4374unsigned long page_to_pfn(struct page *page)
4375{
4376	return __page_to_pfn(page);
4377}
4378EXPORT_SYMBOL(pfn_to_page);
4379EXPORT_SYMBOL(page_to_pfn);
4380#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4381
4382/* Return a pointer to the bitmap storing bits affecting a block of pages */
4383static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4384							unsigned long pfn)
4385{
4386#ifdef CONFIG_SPARSEMEM
4387	return __pfn_to_section(pfn)->pageblock_flags;
4388#else
4389	return zone->pageblock_flags;
4390#endif /* CONFIG_SPARSEMEM */
4391}
4392
4393static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4394{
4395#ifdef CONFIG_SPARSEMEM
4396	pfn &= (PAGES_PER_SECTION-1);
4397	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4398#else
4399	pfn = pfn - zone->zone_start_pfn;
4400	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4401#endif /* CONFIG_SPARSEMEM */
4402}
4403
4404/**
4405 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4406 * @page: The page within the block of interest
4407 * @start_bitidx: The first bit of interest to retrieve
4408 * @end_bitidx: The last bit of interest
4409 * returns pageblock_bits flags
4410 */
4411unsigned long get_pageblock_flags_group(struct page *page,
4412					int start_bitidx, int end_bitidx)
4413{
4414	struct zone *zone;
4415	unsigned long *bitmap;
4416	unsigned long pfn, bitidx;
4417	unsigned long flags = 0;
4418	unsigned long value = 1;
4419
4420	zone = page_zone(page);
4421	pfn = page_to_pfn(page);
4422	bitmap = get_pageblock_bitmap(zone, pfn);
4423	bitidx = pfn_to_bitidx(zone, pfn);
4424
4425	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4426		if (test_bit(bitidx + start_bitidx, bitmap))
4427			flags |= value;
4428
4429	return flags;
4430}
4431
4432/**
4433 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4434 * @page: The page within the block of interest
4435 * @start_bitidx: The first bit of interest
4436 * @end_bitidx: The last bit of interest
4437 * @flags: The flags to set
4438 */
4439void set_pageblock_flags_group(struct page *page, unsigned long flags,
4440					int start_bitidx, int end_bitidx)
4441{
4442	struct zone *zone;
4443	unsigned long *bitmap;
4444	unsigned long pfn, bitidx;
4445	unsigned long value = 1;
4446
4447	zone = page_zone(page);
4448	pfn = page_to_pfn(page);
4449	bitmap = get_pageblock_bitmap(zone, pfn);
4450	bitidx = pfn_to_bitidx(zone, pfn);
4451
4452	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4453		if (flags & value)
4454			__set_bit(bitidx + start_bitidx, bitmap);
4455		else
4456			__clear_bit(bitidx + start_bitidx, bitmap);
4457}
4458
4459/*
4460 * This is designed as sub function...plz see page_isolation.c also.
4461 * set/clear page block's type to be ISOLATE.
4462 * page allocater never alloc memory from ISOLATE block.
4463 */
4464
4465int set_migratetype_isolate(struct page *page)
4466{
4467	struct zone *zone;
4468	unsigned long flags;
4469	int ret = -EBUSY;
4470
4471	zone = page_zone(page);
4472	spin_lock_irqsave(&zone->lock, flags);
4473	/*
4474	 * In future, more migrate types will be able to be isolation target.
4475	 */
4476	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4477		goto out;
4478	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4479	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4480	ret = 0;
4481out:
4482	spin_unlock_irqrestore(&zone->lock, flags);
4483	if (!ret)
4484		drain_all_pages();
4485	return ret;
4486}
4487
4488void unset_migratetype_isolate(struct page *page)
4489{
4490	struct zone *zone;
4491	unsigned long flags;
4492	zone = page_zone(page);
4493	spin_lock_irqsave(&zone->lock, flags);
4494	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4495		goto out;
4496	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4497	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4498out:
4499	spin_unlock_irqrestore(&zone->lock, flags);
4500}
4501
4502#ifdef CONFIG_MEMORY_HOTREMOVE
4503/*
4504 * All pages in the range must be isolated before calling this.
4505 */
4506void
4507__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4508{
4509	struct page *page;
4510	struct zone *zone;
4511	int order, i;
4512	unsigned long pfn;
4513	unsigned long flags;
4514	/* find the first valid pfn */
4515	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4516		if (pfn_valid(pfn))
4517			break;
4518	if (pfn == end_pfn)
4519		return;
4520	zone = page_zone(pfn_to_page(pfn));
4521	spin_lock_irqsave(&zone->lock, flags);
4522	pfn = start_pfn;
4523	while (pfn < end_pfn) {
4524		if (!pfn_valid(pfn)) {
4525			pfn++;
4526			continue;
4527		}
4528		page = pfn_to_page(pfn);
4529		BUG_ON(page_count(page));
4530		BUG_ON(!PageBuddy(page));
4531		order = page_order(page);
4532#ifdef CONFIG_DEBUG_VM
4533		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4534		       pfn, 1 << order, end_pfn);
4535#endif
4536		list_del(&page->lru);
4537		rmv_page_order(page);
4538		zone->free_area[order].nr_free--;
4539		__mod_zone_page_state(zone, NR_FREE_PAGES,
4540				      - (1UL << order));
4541		for (i = 0; i < (1 << order); i++)
4542			SetPageReserved((page+i));
4543		pfn += (1 << order);
4544	}
4545	spin_unlock_irqrestore(&zone->lock, flags);
4546}
4547#endif
4548