page_alloc.c revision 2d30a1f6315b8940537e8e98882c6038fbac9ba5
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51#include <linux/memory.h>
52#include <trace/events/kmem.h>
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56#include "internal.h"
57
58/*
59 * Array of node states.
60 */
61nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62	[N_POSSIBLE] = NODE_MASK_ALL,
63	[N_ONLINE] = { { [0] = 1UL } },
64#ifndef CONFIG_NUMA
65	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
66#ifdef CONFIG_HIGHMEM
67	[N_HIGH_MEMORY] = { { [0] = 1UL } },
68#endif
69	[N_CPU] = { { [0] = 1UL } },
70#endif	/* NUMA */
71};
72EXPORT_SYMBOL(node_states);
73
74unsigned long totalram_pages __read_mostly;
75unsigned long totalreserve_pages __read_mostly;
76int percpu_pagelist_fraction;
77gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78
79#ifdef CONFIG_PM_SLEEP
80/*
81 * The following functions are used by the suspend/hibernate code to temporarily
82 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
83 * while devices are suspended.  To avoid races with the suspend/hibernate code,
84 * they should always be called with pm_mutex held (gfp_allowed_mask also should
85 * only be modified with pm_mutex held, unless the suspend/hibernate code is
86 * guaranteed not to run in parallel with that modification).
87 */
88void set_gfp_allowed_mask(gfp_t mask)
89{
90	WARN_ON(!mutex_is_locked(&pm_mutex));
91	gfp_allowed_mask = mask;
92}
93
94gfp_t clear_gfp_allowed_mask(gfp_t mask)
95{
96	gfp_t ret = gfp_allowed_mask;
97
98	WARN_ON(!mutex_is_locked(&pm_mutex));
99	gfp_allowed_mask &= ~mask;
100	return ret;
101}
102#endif /* CONFIG_PM_SLEEP */
103
104#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
105int pageblock_order __read_mostly;
106#endif
107
108static void __free_pages_ok(struct page *page, unsigned int order);
109
110/*
111 * results with 256, 32 in the lowmem_reserve sysctl:
112 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
113 *	1G machine -> (16M dma, 784M normal, 224M high)
114 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
115 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
116 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
117 *
118 * TBD: should special case ZONE_DMA32 machines here - in those we normally
119 * don't need any ZONE_NORMAL reservation
120 */
121int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
122#ifdef CONFIG_ZONE_DMA
123	 256,
124#endif
125#ifdef CONFIG_ZONE_DMA32
126	 256,
127#endif
128#ifdef CONFIG_HIGHMEM
129	 32,
130#endif
131	 32,
132};
133
134EXPORT_SYMBOL(totalram_pages);
135
136static char * const zone_names[MAX_NR_ZONES] = {
137#ifdef CONFIG_ZONE_DMA
138	 "DMA",
139#endif
140#ifdef CONFIG_ZONE_DMA32
141	 "DMA32",
142#endif
143	 "Normal",
144#ifdef CONFIG_HIGHMEM
145	 "HighMem",
146#endif
147	 "Movable",
148};
149
150int min_free_kbytes = 1024;
151
152static unsigned long __meminitdata nr_kernel_pages;
153static unsigned long __meminitdata nr_all_pages;
154static unsigned long __meminitdata dma_reserve;
155
156#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
157  /*
158   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
159   * ranges of memory (RAM) that may be registered with add_active_range().
160   * Ranges passed to add_active_range() will be merged if possible
161   * so the number of times add_active_range() can be called is
162   * related to the number of nodes and the number of holes
163   */
164  #ifdef CONFIG_MAX_ACTIVE_REGIONS
165    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
166    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
167  #else
168    #if MAX_NUMNODES >= 32
169      /* If there can be many nodes, allow up to 50 holes per node */
170      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
171    #else
172      /* By default, allow up to 256 distinct regions */
173      #define MAX_ACTIVE_REGIONS 256
174    #endif
175  #endif
176
177  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
178  static int __meminitdata nr_nodemap_entries;
179  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
180  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
181  static unsigned long __initdata required_kernelcore;
182  static unsigned long __initdata required_movablecore;
183  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
184
185  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
186  int movable_zone;
187  EXPORT_SYMBOL(movable_zone);
188#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
189
190#if MAX_NUMNODES > 1
191int nr_node_ids __read_mostly = MAX_NUMNODES;
192int nr_online_nodes __read_mostly = 1;
193EXPORT_SYMBOL(nr_node_ids);
194EXPORT_SYMBOL(nr_online_nodes);
195#endif
196
197int page_group_by_mobility_disabled __read_mostly;
198
199static void set_pageblock_migratetype(struct page *page, int migratetype)
200{
201
202	if (unlikely(page_group_by_mobility_disabled))
203		migratetype = MIGRATE_UNMOVABLE;
204
205	set_pageblock_flags_group(page, (unsigned long)migratetype,
206					PB_migrate, PB_migrate_end);
207}
208
209bool oom_killer_disabled __read_mostly;
210
211#ifdef CONFIG_DEBUG_VM
212static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
213{
214	int ret = 0;
215	unsigned seq;
216	unsigned long pfn = page_to_pfn(page);
217
218	do {
219		seq = zone_span_seqbegin(zone);
220		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
221			ret = 1;
222		else if (pfn < zone->zone_start_pfn)
223			ret = 1;
224	} while (zone_span_seqretry(zone, seq));
225
226	return ret;
227}
228
229static int page_is_consistent(struct zone *zone, struct page *page)
230{
231	if (!pfn_valid_within(page_to_pfn(page)))
232		return 0;
233	if (zone != page_zone(page))
234		return 0;
235
236	return 1;
237}
238/*
239 * Temporary debugging check for pages not lying within a given zone.
240 */
241static int bad_range(struct zone *zone, struct page *page)
242{
243	if (page_outside_zone_boundaries(zone, page))
244		return 1;
245	if (!page_is_consistent(zone, page))
246		return 1;
247
248	return 0;
249}
250#else
251static inline int bad_range(struct zone *zone, struct page *page)
252{
253	return 0;
254}
255#endif
256
257static void bad_page(struct page *page)
258{
259	static unsigned long resume;
260	static unsigned long nr_shown;
261	static unsigned long nr_unshown;
262
263	/* Don't complain about poisoned pages */
264	if (PageHWPoison(page)) {
265		__ClearPageBuddy(page);
266		return;
267	}
268
269	/*
270	 * Allow a burst of 60 reports, then keep quiet for that minute;
271	 * or allow a steady drip of one report per second.
272	 */
273	if (nr_shown == 60) {
274		if (time_before(jiffies, resume)) {
275			nr_unshown++;
276			goto out;
277		}
278		if (nr_unshown) {
279			printk(KERN_ALERT
280			      "BUG: Bad page state: %lu messages suppressed\n",
281				nr_unshown);
282			nr_unshown = 0;
283		}
284		nr_shown = 0;
285	}
286	if (nr_shown++ == 0)
287		resume = jiffies + 60 * HZ;
288
289	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
290		current->comm, page_to_pfn(page));
291	printk(KERN_ALERT
292		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
293		page, (void *)page->flags, page_count(page),
294		page_mapcount(page), page->mapping, page->index);
295
296	dump_stack();
297out:
298	/* Leave bad fields for debug, except PageBuddy could make trouble */
299	__ClearPageBuddy(page);
300	add_taint(TAINT_BAD_PAGE);
301}
302
303/*
304 * Higher-order pages are called "compound pages".  They are structured thusly:
305 *
306 * The first PAGE_SIZE page is called the "head page".
307 *
308 * The remaining PAGE_SIZE pages are called "tail pages".
309 *
310 * All pages have PG_compound set.  All pages have their ->private pointing at
311 * the head page (even the head page has this).
312 *
313 * The first tail page's ->lru.next holds the address of the compound page's
314 * put_page() function.  Its ->lru.prev holds the order of allocation.
315 * This usage means that zero-order pages may not be compound.
316 */
317
318static void free_compound_page(struct page *page)
319{
320	__free_pages_ok(page, compound_order(page));
321}
322
323void prep_compound_page(struct page *page, unsigned long order)
324{
325	int i;
326	int nr_pages = 1 << order;
327
328	set_compound_page_dtor(page, free_compound_page);
329	set_compound_order(page, order);
330	__SetPageHead(page);
331	for (i = 1; i < nr_pages; i++) {
332		struct page *p = page + i;
333
334		__SetPageTail(p);
335		p->first_page = page;
336	}
337}
338
339static int destroy_compound_page(struct page *page, unsigned long order)
340{
341	int i;
342	int nr_pages = 1 << order;
343	int bad = 0;
344
345	if (unlikely(compound_order(page) != order) ||
346	    unlikely(!PageHead(page))) {
347		bad_page(page);
348		bad++;
349	}
350
351	__ClearPageHead(page);
352
353	for (i = 1; i < nr_pages; i++) {
354		struct page *p = page + i;
355
356		if (unlikely(!PageTail(p) || (p->first_page != page))) {
357			bad_page(page);
358			bad++;
359		}
360		__ClearPageTail(p);
361	}
362
363	return bad;
364}
365
366static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
367{
368	int i;
369
370	/*
371	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
372	 * and __GFP_HIGHMEM from hard or soft interrupt context.
373	 */
374	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
375	for (i = 0; i < (1 << order); i++)
376		clear_highpage(page + i);
377}
378
379static inline void set_page_order(struct page *page, int order)
380{
381	set_page_private(page, order);
382	__SetPageBuddy(page);
383}
384
385static inline void rmv_page_order(struct page *page)
386{
387	__ClearPageBuddy(page);
388	set_page_private(page, 0);
389}
390
391/*
392 * Locate the struct page for both the matching buddy in our
393 * pair (buddy1) and the combined O(n+1) page they form (page).
394 *
395 * 1) Any buddy B1 will have an order O twin B2 which satisfies
396 * the following equation:
397 *     B2 = B1 ^ (1 << O)
398 * For example, if the starting buddy (buddy2) is #8 its order
399 * 1 buddy is #10:
400 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
401 *
402 * 2) Any buddy B will have an order O+1 parent P which
403 * satisfies the following equation:
404 *     P = B & ~(1 << O)
405 *
406 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
407 */
408static inline struct page *
409__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
410{
411	unsigned long buddy_idx = page_idx ^ (1 << order);
412
413	return page + (buddy_idx - page_idx);
414}
415
416static inline unsigned long
417__find_combined_index(unsigned long page_idx, unsigned int order)
418{
419	return (page_idx & ~(1 << order));
420}
421
422/*
423 * This function checks whether a page is free && is the buddy
424 * we can do coalesce a page and its buddy if
425 * (a) the buddy is not in a hole &&
426 * (b) the buddy is in the buddy system &&
427 * (c) a page and its buddy have the same order &&
428 * (d) a page and its buddy are in the same zone.
429 *
430 * For recording whether a page is in the buddy system, we use PG_buddy.
431 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
432 *
433 * For recording page's order, we use page_private(page).
434 */
435static inline int page_is_buddy(struct page *page, struct page *buddy,
436								int order)
437{
438	if (!pfn_valid_within(page_to_pfn(buddy)))
439		return 0;
440
441	if (page_zone_id(page) != page_zone_id(buddy))
442		return 0;
443
444	if (PageBuddy(buddy) && page_order(buddy) == order) {
445		VM_BUG_ON(page_count(buddy) != 0);
446		return 1;
447	}
448	return 0;
449}
450
451/*
452 * Freeing function for a buddy system allocator.
453 *
454 * The concept of a buddy system is to maintain direct-mapped table
455 * (containing bit values) for memory blocks of various "orders".
456 * The bottom level table contains the map for the smallest allocatable
457 * units of memory (here, pages), and each level above it describes
458 * pairs of units from the levels below, hence, "buddies".
459 * At a high level, all that happens here is marking the table entry
460 * at the bottom level available, and propagating the changes upward
461 * as necessary, plus some accounting needed to play nicely with other
462 * parts of the VM system.
463 * At each level, we keep a list of pages, which are heads of continuous
464 * free pages of length of (1 << order) and marked with PG_buddy. Page's
465 * order is recorded in page_private(page) field.
466 * So when we are allocating or freeing one, we can derive the state of the
467 * other.  That is, if we allocate a small block, and both were
468 * free, the remainder of the region must be split into blocks.
469 * If a block is freed, and its buddy is also free, then this
470 * triggers coalescing into a block of larger size.
471 *
472 * -- wli
473 */
474
475static inline void __free_one_page(struct page *page,
476		struct zone *zone, unsigned int order,
477		int migratetype)
478{
479	unsigned long page_idx;
480
481	if (unlikely(PageCompound(page)))
482		if (unlikely(destroy_compound_page(page, order)))
483			return;
484
485	VM_BUG_ON(migratetype == -1);
486
487	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488
489	VM_BUG_ON(page_idx & ((1 << order) - 1));
490	VM_BUG_ON(bad_range(zone, page));
491
492	while (order < MAX_ORDER-1) {
493		unsigned long combined_idx;
494		struct page *buddy;
495
496		buddy = __page_find_buddy(page, page_idx, order);
497		if (!page_is_buddy(page, buddy, order))
498			break;
499
500		/* Our buddy is free, merge with it and move up one order. */
501		list_del(&buddy->lru);
502		zone->free_area[order].nr_free--;
503		rmv_page_order(buddy);
504		combined_idx = __find_combined_index(page_idx, order);
505		page = page + (combined_idx - page_idx);
506		page_idx = combined_idx;
507		order++;
508	}
509	set_page_order(page, order);
510	list_add(&page->lru,
511		&zone->free_area[order].free_list[migratetype]);
512	zone->free_area[order].nr_free++;
513}
514
515/*
516 * free_page_mlock() -- clean up attempts to free and mlocked() page.
517 * Page should not be on lru, so no need to fix that up.
518 * free_pages_check() will verify...
519 */
520static inline void free_page_mlock(struct page *page)
521{
522	__dec_zone_page_state(page, NR_MLOCK);
523	__count_vm_event(UNEVICTABLE_MLOCKFREED);
524}
525
526static inline int free_pages_check(struct page *page)
527{
528	if (unlikely(page_mapcount(page) |
529		(page->mapping != NULL)  |
530		(atomic_read(&page->_count) != 0) |
531		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
532		bad_page(page);
533		return 1;
534	}
535	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
536		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
537	return 0;
538}
539
540/*
541 * Frees a number of pages from the PCP lists
542 * Assumes all pages on list are in same zone, and of same order.
543 * count is the number of pages to free.
544 *
545 * If the zone was previously in an "all pages pinned" state then look to
546 * see if this freeing clears that state.
547 *
548 * And clear the zone's pages_scanned counter, to hold off the "all pages are
549 * pinned" detection logic.
550 */
551static void free_pcppages_bulk(struct zone *zone, int count,
552					struct per_cpu_pages *pcp)
553{
554	int migratetype = 0;
555	int batch_free = 0;
556
557	spin_lock(&zone->lock);
558	zone->all_unreclaimable = 0;
559	zone->pages_scanned = 0;
560
561	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
562	while (count) {
563		struct page *page;
564		struct list_head *list;
565
566		/*
567		 * Remove pages from lists in a round-robin fashion. A
568		 * batch_free count is maintained that is incremented when an
569		 * empty list is encountered.  This is so more pages are freed
570		 * off fuller lists instead of spinning excessively around empty
571		 * lists
572		 */
573		do {
574			batch_free++;
575			if (++migratetype == MIGRATE_PCPTYPES)
576				migratetype = 0;
577			list = &pcp->lists[migratetype];
578		} while (list_empty(list));
579
580		do {
581			page = list_entry(list->prev, struct page, lru);
582			/* must delete as __free_one_page list manipulates */
583			list_del(&page->lru);
584			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
585			__free_one_page(page, zone, 0, page_private(page));
586			trace_mm_page_pcpu_drain(page, 0, page_private(page));
587		} while (--count && --batch_free && !list_empty(list));
588	}
589	spin_unlock(&zone->lock);
590}
591
592static void free_one_page(struct zone *zone, struct page *page, int order,
593				int migratetype)
594{
595	spin_lock(&zone->lock);
596	zone->all_unreclaimable = 0;
597	zone->pages_scanned = 0;
598
599	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
600	__free_one_page(page, zone, order, migratetype);
601	spin_unlock(&zone->lock);
602}
603
604static void __free_pages_ok(struct page *page, unsigned int order)
605{
606	unsigned long flags;
607	int i;
608	int bad = 0;
609	int wasMlocked = __TestClearPageMlocked(page);
610
611	trace_mm_page_free_direct(page, order);
612	kmemcheck_free_shadow(page, order);
613
614	for (i = 0 ; i < (1 << order) ; ++i)
615		bad += free_pages_check(page + i);
616	if (bad)
617		return;
618
619	if (!PageHighMem(page)) {
620		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
621		debug_check_no_obj_freed(page_address(page),
622					   PAGE_SIZE << order);
623	}
624	arch_free_page(page, order);
625	kernel_map_pages(page, 1 << order, 0);
626
627	local_irq_save(flags);
628	if (unlikely(wasMlocked))
629		free_page_mlock(page);
630	__count_vm_events(PGFREE, 1 << order);
631	free_one_page(page_zone(page), page, order,
632					get_pageblock_migratetype(page));
633	local_irq_restore(flags);
634}
635
636/*
637 * permit the bootmem allocator to evade page validation on high-order frees
638 */
639void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
640{
641	if (order == 0) {
642		__ClearPageReserved(page);
643		set_page_count(page, 0);
644		set_page_refcounted(page);
645		__free_page(page);
646	} else {
647		int loop;
648
649		prefetchw(page);
650		for (loop = 0; loop < BITS_PER_LONG; loop++) {
651			struct page *p = &page[loop];
652
653			if (loop + 1 < BITS_PER_LONG)
654				prefetchw(p + 1);
655			__ClearPageReserved(p);
656			set_page_count(p, 0);
657		}
658
659		set_page_refcounted(page);
660		__free_pages(page, order);
661	}
662}
663
664
665/*
666 * The order of subdivision here is critical for the IO subsystem.
667 * Please do not alter this order without good reasons and regression
668 * testing. Specifically, as large blocks of memory are subdivided,
669 * the order in which smaller blocks are delivered depends on the order
670 * they're subdivided in this function. This is the primary factor
671 * influencing the order in which pages are delivered to the IO
672 * subsystem according to empirical testing, and this is also justified
673 * by considering the behavior of a buddy system containing a single
674 * large block of memory acted on by a series of small allocations.
675 * This behavior is a critical factor in sglist merging's success.
676 *
677 * -- wli
678 */
679static inline void expand(struct zone *zone, struct page *page,
680	int low, int high, struct free_area *area,
681	int migratetype)
682{
683	unsigned long size = 1 << high;
684
685	while (high > low) {
686		area--;
687		high--;
688		size >>= 1;
689		VM_BUG_ON(bad_range(zone, &page[size]));
690		list_add(&page[size].lru, &area->free_list[migratetype]);
691		area->nr_free++;
692		set_page_order(&page[size], high);
693	}
694}
695
696/*
697 * This page is about to be returned from the page allocator
698 */
699static inline int check_new_page(struct page *page)
700{
701	if (unlikely(page_mapcount(page) |
702		(page->mapping != NULL)  |
703		(atomic_read(&page->_count) != 0)  |
704		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
705		bad_page(page);
706		return 1;
707	}
708	return 0;
709}
710
711static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
712{
713	int i;
714
715	for (i = 0; i < (1 << order); i++) {
716		struct page *p = page + i;
717		if (unlikely(check_new_page(p)))
718			return 1;
719	}
720
721	set_page_private(page, 0);
722	set_page_refcounted(page);
723
724	arch_alloc_page(page, order);
725	kernel_map_pages(page, 1 << order, 1);
726
727	if (gfp_flags & __GFP_ZERO)
728		prep_zero_page(page, order, gfp_flags);
729
730	if (order && (gfp_flags & __GFP_COMP))
731		prep_compound_page(page, order);
732
733	return 0;
734}
735
736/*
737 * Go through the free lists for the given migratetype and remove
738 * the smallest available page from the freelists
739 */
740static inline
741struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
742						int migratetype)
743{
744	unsigned int current_order;
745	struct free_area * area;
746	struct page *page;
747
748	/* Find a page of the appropriate size in the preferred list */
749	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
750		area = &(zone->free_area[current_order]);
751		if (list_empty(&area->free_list[migratetype]))
752			continue;
753
754		page = list_entry(area->free_list[migratetype].next,
755							struct page, lru);
756		list_del(&page->lru);
757		rmv_page_order(page);
758		area->nr_free--;
759		expand(zone, page, order, current_order, area, migratetype);
760		return page;
761	}
762
763	return NULL;
764}
765
766
767/*
768 * This array describes the order lists are fallen back to when
769 * the free lists for the desirable migrate type are depleted
770 */
771static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
772	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
773	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
774	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
775	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
776};
777
778/*
779 * Move the free pages in a range to the free lists of the requested type.
780 * Note that start_page and end_pages are not aligned on a pageblock
781 * boundary. If alignment is required, use move_freepages_block()
782 */
783static int move_freepages(struct zone *zone,
784			  struct page *start_page, struct page *end_page,
785			  int migratetype)
786{
787	struct page *page;
788	unsigned long order;
789	int pages_moved = 0;
790
791#ifndef CONFIG_HOLES_IN_ZONE
792	/*
793	 * page_zone is not safe to call in this context when
794	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
795	 * anyway as we check zone boundaries in move_freepages_block().
796	 * Remove at a later date when no bug reports exist related to
797	 * grouping pages by mobility
798	 */
799	BUG_ON(page_zone(start_page) != page_zone(end_page));
800#endif
801
802	for (page = start_page; page <= end_page;) {
803		/* Make sure we are not inadvertently changing nodes */
804		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
805
806		if (!pfn_valid_within(page_to_pfn(page))) {
807			page++;
808			continue;
809		}
810
811		if (!PageBuddy(page)) {
812			page++;
813			continue;
814		}
815
816		order = page_order(page);
817		list_del(&page->lru);
818		list_add(&page->lru,
819			&zone->free_area[order].free_list[migratetype]);
820		page += 1 << order;
821		pages_moved += 1 << order;
822	}
823
824	return pages_moved;
825}
826
827static int move_freepages_block(struct zone *zone, struct page *page,
828				int migratetype)
829{
830	unsigned long start_pfn, end_pfn;
831	struct page *start_page, *end_page;
832
833	start_pfn = page_to_pfn(page);
834	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
835	start_page = pfn_to_page(start_pfn);
836	end_page = start_page + pageblock_nr_pages - 1;
837	end_pfn = start_pfn + pageblock_nr_pages - 1;
838
839	/* Do not cross zone boundaries */
840	if (start_pfn < zone->zone_start_pfn)
841		start_page = page;
842	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
843		return 0;
844
845	return move_freepages(zone, start_page, end_page, migratetype);
846}
847
848static void change_pageblock_range(struct page *pageblock_page,
849					int start_order, int migratetype)
850{
851	int nr_pageblocks = 1 << (start_order - pageblock_order);
852
853	while (nr_pageblocks--) {
854		set_pageblock_migratetype(pageblock_page, migratetype);
855		pageblock_page += pageblock_nr_pages;
856	}
857}
858
859/* Remove an element from the buddy allocator from the fallback list */
860static inline struct page *
861__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
862{
863	struct free_area * area;
864	int current_order;
865	struct page *page;
866	int migratetype, i;
867
868	/* Find the largest possible block of pages in the other list */
869	for (current_order = MAX_ORDER-1; current_order >= order;
870						--current_order) {
871		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
872			migratetype = fallbacks[start_migratetype][i];
873
874			/* MIGRATE_RESERVE handled later if necessary */
875			if (migratetype == MIGRATE_RESERVE)
876				continue;
877
878			area = &(zone->free_area[current_order]);
879			if (list_empty(&area->free_list[migratetype]))
880				continue;
881
882			page = list_entry(area->free_list[migratetype].next,
883					struct page, lru);
884			area->nr_free--;
885
886			/*
887			 * If breaking a large block of pages, move all free
888			 * pages to the preferred allocation list. If falling
889			 * back for a reclaimable kernel allocation, be more
890			 * agressive about taking ownership of free pages
891			 */
892			if (unlikely(current_order >= (pageblock_order >> 1)) ||
893					start_migratetype == MIGRATE_RECLAIMABLE ||
894					page_group_by_mobility_disabled) {
895				unsigned long pages;
896				pages = move_freepages_block(zone, page,
897								start_migratetype);
898
899				/* Claim the whole block if over half of it is free */
900				if (pages >= (1 << (pageblock_order-1)) ||
901						page_group_by_mobility_disabled)
902					set_pageblock_migratetype(page,
903								start_migratetype);
904
905				migratetype = start_migratetype;
906			}
907
908			/* Remove the page from the freelists */
909			list_del(&page->lru);
910			rmv_page_order(page);
911
912			/* Take ownership for orders >= pageblock_order */
913			if (current_order >= pageblock_order)
914				change_pageblock_range(page, current_order,
915							start_migratetype);
916
917			expand(zone, page, order, current_order, area, migratetype);
918
919			trace_mm_page_alloc_extfrag(page, order, current_order,
920				start_migratetype, migratetype);
921
922			return page;
923		}
924	}
925
926	return NULL;
927}
928
929/*
930 * Do the hard work of removing an element from the buddy allocator.
931 * Call me with the zone->lock already held.
932 */
933static struct page *__rmqueue(struct zone *zone, unsigned int order,
934						int migratetype)
935{
936	struct page *page;
937
938retry_reserve:
939	page = __rmqueue_smallest(zone, order, migratetype);
940
941	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
942		page = __rmqueue_fallback(zone, order, migratetype);
943
944		/*
945		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
946		 * is used because __rmqueue_smallest is an inline function
947		 * and we want just one call site
948		 */
949		if (!page) {
950			migratetype = MIGRATE_RESERVE;
951			goto retry_reserve;
952		}
953	}
954
955	trace_mm_page_alloc_zone_locked(page, order, migratetype);
956	return page;
957}
958
959/*
960 * Obtain a specified number of elements from the buddy allocator, all under
961 * a single hold of the lock, for efficiency.  Add them to the supplied list.
962 * Returns the number of new pages which were placed at *list.
963 */
964static int rmqueue_bulk(struct zone *zone, unsigned int order,
965			unsigned long count, struct list_head *list,
966			int migratetype, int cold)
967{
968	int i;
969
970	spin_lock(&zone->lock);
971	for (i = 0; i < count; ++i) {
972		struct page *page = __rmqueue(zone, order, migratetype);
973		if (unlikely(page == NULL))
974			break;
975
976		/*
977		 * Split buddy pages returned by expand() are received here
978		 * in physical page order. The page is added to the callers and
979		 * list and the list head then moves forward. From the callers
980		 * perspective, the linked list is ordered by page number in
981		 * some conditions. This is useful for IO devices that can
982		 * merge IO requests if the physical pages are ordered
983		 * properly.
984		 */
985		if (likely(cold == 0))
986			list_add(&page->lru, list);
987		else
988			list_add_tail(&page->lru, list);
989		set_page_private(page, migratetype);
990		list = &page->lru;
991	}
992	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
993	spin_unlock(&zone->lock);
994	return i;
995}
996
997#ifdef CONFIG_NUMA
998/*
999 * Called from the vmstat counter updater to drain pagesets of this
1000 * currently executing processor on remote nodes after they have
1001 * expired.
1002 *
1003 * Note that this function must be called with the thread pinned to
1004 * a single processor.
1005 */
1006void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1007{
1008	unsigned long flags;
1009	int to_drain;
1010
1011	local_irq_save(flags);
1012	if (pcp->count >= pcp->batch)
1013		to_drain = pcp->batch;
1014	else
1015		to_drain = pcp->count;
1016	free_pcppages_bulk(zone, to_drain, pcp);
1017	pcp->count -= to_drain;
1018	local_irq_restore(flags);
1019}
1020#endif
1021
1022/*
1023 * Drain pages of the indicated processor.
1024 *
1025 * The processor must either be the current processor and the
1026 * thread pinned to the current processor or a processor that
1027 * is not online.
1028 */
1029static void drain_pages(unsigned int cpu)
1030{
1031	unsigned long flags;
1032	struct zone *zone;
1033
1034	for_each_populated_zone(zone) {
1035		struct per_cpu_pageset *pset;
1036		struct per_cpu_pages *pcp;
1037
1038		local_irq_save(flags);
1039		pset = per_cpu_ptr(zone->pageset, cpu);
1040
1041		pcp = &pset->pcp;
1042		free_pcppages_bulk(zone, pcp->count, pcp);
1043		pcp->count = 0;
1044		local_irq_restore(flags);
1045	}
1046}
1047
1048/*
1049 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1050 */
1051void drain_local_pages(void *arg)
1052{
1053	drain_pages(smp_processor_id());
1054}
1055
1056/*
1057 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1058 */
1059void drain_all_pages(void)
1060{
1061	on_each_cpu(drain_local_pages, NULL, 1);
1062}
1063
1064#ifdef CONFIG_HIBERNATION
1065
1066void mark_free_pages(struct zone *zone)
1067{
1068	unsigned long pfn, max_zone_pfn;
1069	unsigned long flags;
1070	int order, t;
1071	struct list_head *curr;
1072
1073	if (!zone->spanned_pages)
1074		return;
1075
1076	spin_lock_irqsave(&zone->lock, flags);
1077
1078	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1079	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1080		if (pfn_valid(pfn)) {
1081			struct page *page = pfn_to_page(pfn);
1082
1083			if (!swsusp_page_is_forbidden(page))
1084				swsusp_unset_page_free(page);
1085		}
1086
1087	for_each_migratetype_order(order, t) {
1088		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1089			unsigned long i;
1090
1091			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1092			for (i = 0; i < (1UL << order); i++)
1093				swsusp_set_page_free(pfn_to_page(pfn + i));
1094		}
1095	}
1096	spin_unlock_irqrestore(&zone->lock, flags);
1097}
1098#endif /* CONFIG_PM */
1099
1100/*
1101 * Free a 0-order page
1102 * cold == 1 ? free a cold page : free a hot page
1103 */
1104void free_hot_cold_page(struct page *page, int cold)
1105{
1106	struct zone *zone = page_zone(page);
1107	struct per_cpu_pages *pcp;
1108	unsigned long flags;
1109	int migratetype;
1110	int wasMlocked = __TestClearPageMlocked(page);
1111
1112	trace_mm_page_free_direct(page, 0);
1113	kmemcheck_free_shadow(page, 0);
1114
1115	if (PageAnon(page))
1116		page->mapping = NULL;
1117	if (free_pages_check(page))
1118		return;
1119
1120	if (!PageHighMem(page)) {
1121		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1122		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1123	}
1124	arch_free_page(page, 0);
1125	kernel_map_pages(page, 1, 0);
1126
1127	migratetype = get_pageblock_migratetype(page);
1128	set_page_private(page, migratetype);
1129	local_irq_save(flags);
1130	if (unlikely(wasMlocked))
1131		free_page_mlock(page);
1132	__count_vm_event(PGFREE);
1133
1134	/*
1135	 * We only track unmovable, reclaimable and movable on pcp lists.
1136	 * Free ISOLATE pages back to the allocator because they are being
1137	 * offlined but treat RESERVE as movable pages so we can get those
1138	 * areas back if necessary. Otherwise, we may have to free
1139	 * excessively into the page allocator
1140	 */
1141	if (migratetype >= MIGRATE_PCPTYPES) {
1142		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1143			free_one_page(zone, page, 0, migratetype);
1144			goto out;
1145		}
1146		migratetype = MIGRATE_MOVABLE;
1147	}
1148
1149	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1150	if (cold)
1151		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1152	else
1153		list_add(&page->lru, &pcp->lists[migratetype]);
1154	pcp->count++;
1155	if (pcp->count >= pcp->high) {
1156		free_pcppages_bulk(zone, pcp->batch, pcp);
1157		pcp->count -= pcp->batch;
1158	}
1159
1160out:
1161	local_irq_restore(flags);
1162}
1163
1164/*
1165 * split_page takes a non-compound higher-order page, and splits it into
1166 * n (1<<order) sub-pages: page[0..n]
1167 * Each sub-page must be freed individually.
1168 *
1169 * Note: this is probably too low level an operation for use in drivers.
1170 * Please consult with lkml before using this in your driver.
1171 */
1172void split_page(struct page *page, unsigned int order)
1173{
1174	int i;
1175
1176	VM_BUG_ON(PageCompound(page));
1177	VM_BUG_ON(!page_count(page));
1178
1179#ifdef CONFIG_KMEMCHECK
1180	/*
1181	 * Split shadow pages too, because free(page[0]) would
1182	 * otherwise free the whole shadow.
1183	 */
1184	if (kmemcheck_page_is_tracked(page))
1185		split_page(virt_to_page(page[0].shadow), order);
1186#endif
1187
1188	for (i = 1; i < (1 << order); i++)
1189		set_page_refcounted(page + i);
1190}
1191
1192/*
1193 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1194 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1195 * or two.
1196 */
1197static inline
1198struct page *buffered_rmqueue(struct zone *preferred_zone,
1199			struct zone *zone, int order, gfp_t gfp_flags,
1200			int migratetype)
1201{
1202	unsigned long flags;
1203	struct page *page;
1204	int cold = !!(gfp_flags & __GFP_COLD);
1205
1206again:
1207	if (likely(order == 0)) {
1208		struct per_cpu_pages *pcp;
1209		struct list_head *list;
1210
1211		local_irq_save(flags);
1212		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1213		list = &pcp->lists[migratetype];
1214		if (list_empty(list)) {
1215			pcp->count += rmqueue_bulk(zone, 0,
1216					pcp->batch, list,
1217					migratetype, cold);
1218			if (unlikely(list_empty(list)))
1219				goto failed;
1220		}
1221
1222		if (cold)
1223			page = list_entry(list->prev, struct page, lru);
1224		else
1225			page = list_entry(list->next, struct page, lru);
1226
1227		list_del(&page->lru);
1228		pcp->count--;
1229	} else {
1230		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1231			/*
1232			 * __GFP_NOFAIL is not to be used in new code.
1233			 *
1234			 * All __GFP_NOFAIL callers should be fixed so that they
1235			 * properly detect and handle allocation failures.
1236			 *
1237			 * We most definitely don't want callers attempting to
1238			 * allocate greater than order-1 page units with
1239			 * __GFP_NOFAIL.
1240			 */
1241			WARN_ON_ONCE(order > 1);
1242		}
1243		spin_lock_irqsave(&zone->lock, flags);
1244		page = __rmqueue(zone, order, migratetype);
1245		spin_unlock(&zone->lock);
1246		if (!page)
1247			goto failed;
1248		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1249	}
1250
1251	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1252	zone_statistics(preferred_zone, zone);
1253	local_irq_restore(flags);
1254
1255	VM_BUG_ON(bad_range(zone, page));
1256	if (prep_new_page(page, order, gfp_flags))
1257		goto again;
1258	return page;
1259
1260failed:
1261	local_irq_restore(flags);
1262	return NULL;
1263}
1264
1265/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1266#define ALLOC_WMARK_MIN		WMARK_MIN
1267#define ALLOC_WMARK_LOW		WMARK_LOW
1268#define ALLOC_WMARK_HIGH	WMARK_HIGH
1269#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1270
1271/* Mask to get the watermark bits */
1272#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1273
1274#define ALLOC_HARDER		0x10 /* try to alloc harder */
1275#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1276#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1277
1278#ifdef CONFIG_FAIL_PAGE_ALLOC
1279
1280static struct fail_page_alloc_attr {
1281	struct fault_attr attr;
1282
1283	u32 ignore_gfp_highmem;
1284	u32 ignore_gfp_wait;
1285	u32 min_order;
1286
1287#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1288
1289	struct dentry *ignore_gfp_highmem_file;
1290	struct dentry *ignore_gfp_wait_file;
1291	struct dentry *min_order_file;
1292
1293#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1294
1295} fail_page_alloc = {
1296	.attr = FAULT_ATTR_INITIALIZER,
1297	.ignore_gfp_wait = 1,
1298	.ignore_gfp_highmem = 1,
1299	.min_order = 1,
1300};
1301
1302static int __init setup_fail_page_alloc(char *str)
1303{
1304	return setup_fault_attr(&fail_page_alloc.attr, str);
1305}
1306__setup("fail_page_alloc=", setup_fail_page_alloc);
1307
1308static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1309{
1310	if (order < fail_page_alloc.min_order)
1311		return 0;
1312	if (gfp_mask & __GFP_NOFAIL)
1313		return 0;
1314	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1315		return 0;
1316	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1317		return 0;
1318
1319	return should_fail(&fail_page_alloc.attr, 1 << order);
1320}
1321
1322#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1323
1324static int __init fail_page_alloc_debugfs(void)
1325{
1326	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1327	struct dentry *dir;
1328	int err;
1329
1330	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1331				       "fail_page_alloc");
1332	if (err)
1333		return err;
1334	dir = fail_page_alloc.attr.dentries.dir;
1335
1336	fail_page_alloc.ignore_gfp_wait_file =
1337		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1338				      &fail_page_alloc.ignore_gfp_wait);
1339
1340	fail_page_alloc.ignore_gfp_highmem_file =
1341		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1342				      &fail_page_alloc.ignore_gfp_highmem);
1343	fail_page_alloc.min_order_file =
1344		debugfs_create_u32("min-order", mode, dir,
1345				   &fail_page_alloc.min_order);
1346
1347	if (!fail_page_alloc.ignore_gfp_wait_file ||
1348            !fail_page_alloc.ignore_gfp_highmem_file ||
1349            !fail_page_alloc.min_order_file) {
1350		err = -ENOMEM;
1351		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1352		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1353		debugfs_remove(fail_page_alloc.min_order_file);
1354		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1355	}
1356
1357	return err;
1358}
1359
1360late_initcall(fail_page_alloc_debugfs);
1361
1362#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1363
1364#else /* CONFIG_FAIL_PAGE_ALLOC */
1365
1366static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1367{
1368	return 0;
1369}
1370
1371#endif /* CONFIG_FAIL_PAGE_ALLOC */
1372
1373/*
1374 * Return 1 if free pages are above 'mark'. This takes into account the order
1375 * of the allocation.
1376 */
1377int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1378		      int classzone_idx, int alloc_flags)
1379{
1380	/* free_pages my go negative - that's OK */
1381	long min = mark;
1382	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1383	int o;
1384
1385	if (alloc_flags & ALLOC_HIGH)
1386		min -= min / 2;
1387	if (alloc_flags & ALLOC_HARDER)
1388		min -= min / 4;
1389
1390	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1391		return 0;
1392	for (o = 0; o < order; o++) {
1393		/* At the next order, this order's pages become unavailable */
1394		free_pages -= z->free_area[o].nr_free << o;
1395
1396		/* Require fewer higher order pages to be free */
1397		min >>= 1;
1398
1399		if (free_pages <= min)
1400			return 0;
1401	}
1402	return 1;
1403}
1404
1405#ifdef CONFIG_NUMA
1406/*
1407 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1408 * skip over zones that are not allowed by the cpuset, or that have
1409 * been recently (in last second) found to be nearly full.  See further
1410 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1411 * that have to skip over a lot of full or unallowed zones.
1412 *
1413 * If the zonelist cache is present in the passed in zonelist, then
1414 * returns a pointer to the allowed node mask (either the current
1415 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1416 *
1417 * If the zonelist cache is not available for this zonelist, does
1418 * nothing and returns NULL.
1419 *
1420 * If the fullzones BITMAP in the zonelist cache is stale (more than
1421 * a second since last zap'd) then we zap it out (clear its bits.)
1422 *
1423 * We hold off even calling zlc_setup, until after we've checked the
1424 * first zone in the zonelist, on the theory that most allocations will
1425 * be satisfied from that first zone, so best to examine that zone as
1426 * quickly as we can.
1427 */
1428static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1429{
1430	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1431	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1432
1433	zlc = zonelist->zlcache_ptr;
1434	if (!zlc)
1435		return NULL;
1436
1437	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1438		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1439		zlc->last_full_zap = jiffies;
1440	}
1441
1442	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1443					&cpuset_current_mems_allowed :
1444					&node_states[N_HIGH_MEMORY];
1445	return allowednodes;
1446}
1447
1448/*
1449 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1450 * if it is worth looking at further for free memory:
1451 *  1) Check that the zone isn't thought to be full (doesn't have its
1452 *     bit set in the zonelist_cache fullzones BITMAP).
1453 *  2) Check that the zones node (obtained from the zonelist_cache
1454 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1455 * Return true (non-zero) if zone is worth looking at further, or
1456 * else return false (zero) if it is not.
1457 *
1458 * This check -ignores- the distinction between various watermarks,
1459 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1460 * found to be full for any variation of these watermarks, it will
1461 * be considered full for up to one second by all requests, unless
1462 * we are so low on memory on all allowed nodes that we are forced
1463 * into the second scan of the zonelist.
1464 *
1465 * In the second scan we ignore this zonelist cache and exactly
1466 * apply the watermarks to all zones, even it is slower to do so.
1467 * We are low on memory in the second scan, and should leave no stone
1468 * unturned looking for a free page.
1469 */
1470static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1471						nodemask_t *allowednodes)
1472{
1473	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1474	int i;				/* index of *z in zonelist zones */
1475	int n;				/* node that zone *z is on */
1476
1477	zlc = zonelist->zlcache_ptr;
1478	if (!zlc)
1479		return 1;
1480
1481	i = z - zonelist->_zonerefs;
1482	n = zlc->z_to_n[i];
1483
1484	/* This zone is worth trying if it is allowed but not full */
1485	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1486}
1487
1488/*
1489 * Given 'z' scanning a zonelist, set the corresponding bit in
1490 * zlc->fullzones, so that subsequent attempts to allocate a page
1491 * from that zone don't waste time re-examining it.
1492 */
1493static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1494{
1495	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1496	int i;				/* index of *z in zonelist zones */
1497
1498	zlc = zonelist->zlcache_ptr;
1499	if (!zlc)
1500		return;
1501
1502	i = z - zonelist->_zonerefs;
1503
1504	set_bit(i, zlc->fullzones);
1505}
1506
1507#else	/* CONFIG_NUMA */
1508
1509static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1510{
1511	return NULL;
1512}
1513
1514static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1515				nodemask_t *allowednodes)
1516{
1517	return 1;
1518}
1519
1520static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1521{
1522}
1523#endif	/* CONFIG_NUMA */
1524
1525/*
1526 * get_page_from_freelist goes through the zonelist trying to allocate
1527 * a page.
1528 */
1529static struct page *
1530get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1531		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1532		struct zone *preferred_zone, int migratetype)
1533{
1534	struct zoneref *z;
1535	struct page *page = NULL;
1536	int classzone_idx;
1537	struct zone *zone;
1538	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1539	int zlc_active = 0;		/* set if using zonelist_cache */
1540	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1541
1542	classzone_idx = zone_idx(preferred_zone);
1543zonelist_scan:
1544	/*
1545	 * Scan zonelist, looking for a zone with enough free.
1546	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1547	 */
1548	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1549						high_zoneidx, nodemask) {
1550		if (NUMA_BUILD && zlc_active &&
1551			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1552				continue;
1553		if ((alloc_flags & ALLOC_CPUSET) &&
1554			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1555				goto try_next_zone;
1556
1557		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1558		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1559			unsigned long mark;
1560			int ret;
1561
1562			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1563			if (zone_watermark_ok(zone, order, mark,
1564				    classzone_idx, alloc_flags))
1565				goto try_this_zone;
1566
1567			if (zone_reclaim_mode == 0)
1568				goto this_zone_full;
1569
1570			ret = zone_reclaim(zone, gfp_mask, order);
1571			switch (ret) {
1572			case ZONE_RECLAIM_NOSCAN:
1573				/* did not scan */
1574				goto try_next_zone;
1575			case ZONE_RECLAIM_FULL:
1576				/* scanned but unreclaimable */
1577				goto this_zone_full;
1578			default:
1579				/* did we reclaim enough */
1580				if (!zone_watermark_ok(zone, order, mark,
1581						classzone_idx, alloc_flags))
1582					goto this_zone_full;
1583			}
1584		}
1585
1586try_this_zone:
1587		page = buffered_rmqueue(preferred_zone, zone, order,
1588						gfp_mask, migratetype);
1589		if (page)
1590			break;
1591this_zone_full:
1592		if (NUMA_BUILD)
1593			zlc_mark_zone_full(zonelist, z);
1594try_next_zone:
1595		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1596			/*
1597			 * we do zlc_setup after the first zone is tried but only
1598			 * if there are multiple nodes make it worthwhile
1599			 */
1600			allowednodes = zlc_setup(zonelist, alloc_flags);
1601			zlc_active = 1;
1602			did_zlc_setup = 1;
1603		}
1604	}
1605
1606	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1607		/* Disable zlc cache for second zonelist scan */
1608		zlc_active = 0;
1609		goto zonelist_scan;
1610	}
1611	return page;
1612}
1613
1614static inline int
1615should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1616				unsigned long pages_reclaimed)
1617{
1618	/* Do not loop if specifically requested */
1619	if (gfp_mask & __GFP_NORETRY)
1620		return 0;
1621
1622	/*
1623	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1624	 * means __GFP_NOFAIL, but that may not be true in other
1625	 * implementations.
1626	 */
1627	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1628		return 1;
1629
1630	/*
1631	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1632	 * specified, then we retry until we no longer reclaim any pages
1633	 * (above), or we've reclaimed an order of pages at least as
1634	 * large as the allocation's order. In both cases, if the
1635	 * allocation still fails, we stop retrying.
1636	 */
1637	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1638		return 1;
1639
1640	/*
1641	 * Don't let big-order allocations loop unless the caller
1642	 * explicitly requests that.
1643	 */
1644	if (gfp_mask & __GFP_NOFAIL)
1645		return 1;
1646
1647	return 0;
1648}
1649
1650static inline struct page *
1651__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1652	struct zonelist *zonelist, enum zone_type high_zoneidx,
1653	nodemask_t *nodemask, struct zone *preferred_zone,
1654	int migratetype)
1655{
1656	struct page *page;
1657
1658	/* Acquire the OOM killer lock for the zones in zonelist */
1659	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1660		schedule_timeout_uninterruptible(1);
1661		return NULL;
1662	}
1663
1664	/*
1665	 * Go through the zonelist yet one more time, keep very high watermark
1666	 * here, this is only to catch a parallel oom killing, we must fail if
1667	 * we're still under heavy pressure.
1668	 */
1669	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1670		order, zonelist, high_zoneidx,
1671		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1672		preferred_zone, migratetype);
1673	if (page)
1674		goto out;
1675
1676	if (!(gfp_mask & __GFP_NOFAIL)) {
1677		/* The OOM killer will not help higher order allocs */
1678		if (order > PAGE_ALLOC_COSTLY_ORDER)
1679			goto out;
1680		/*
1681		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1682		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1683		 * The caller should handle page allocation failure by itself if
1684		 * it specifies __GFP_THISNODE.
1685		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1686		 */
1687		if (gfp_mask & __GFP_THISNODE)
1688			goto out;
1689	}
1690	/* Exhausted what can be done so it's blamo time */
1691	out_of_memory(zonelist, gfp_mask, order, nodemask);
1692
1693out:
1694	clear_zonelist_oom(zonelist, gfp_mask);
1695	return page;
1696}
1697
1698/* The really slow allocator path where we enter direct reclaim */
1699static inline struct page *
1700__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1701	struct zonelist *zonelist, enum zone_type high_zoneidx,
1702	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1703	int migratetype, unsigned long *did_some_progress)
1704{
1705	struct page *page = NULL;
1706	struct reclaim_state reclaim_state;
1707	struct task_struct *p = current;
1708
1709	cond_resched();
1710
1711	/* We now go into synchronous reclaim */
1712	cpuset_memory_pressure_bump();
1713	p->flags |= PF_MEMALLOC;
1714	lockdep_set_current_reclaim_state(gfp_mask);
1715	reclaim_state.reclaimed_slab = 0;
1716	p->reclaim_state = &reclaim_state;
1717
1718	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1719
1720	p->reclaim_state = NULL;
1721	lockdep_clear_current_reclaim_state();
1722	p->flags &= ~PF_MEMALLOC;
1723
1724	cond_resched();
1725
1726	if (order != 0)
1727		drain_all_pages();
1728
1729	if (likely(*did_some_progress))
1730		page = get_page_from_freelist(gfp_mask, nodemask, order,
1731					zonelist, high_zoneidx,
1732					alloc_flags, preferred_zone,
1733					migratetype);
1734	return page;
1735}
1736
1737/*
1738 * This is called in the allocator slow-path if the allocation request is of
1739 * sufficient urgency to ignore watermarks and take other desperate measures
1740 */
1741static inline struct page *
1742__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1743	struct zonelist *zonelist, enum zone_type high_zoneidx,
1744	nodemask_t *nodemask, struct zone *preferred_zone,
1745	int migratetype)
1746{
1747	struct page *page;
1748
1749	do {
1750		page = get_page_from_freelist(gfp_mask, nodemask, order,
1751			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1752			preferred_zone, migratetype);
1753
1754		if (!page && gfp_mask & __GFP_NOFAIL)
1755			congestion_wait(BLK_RW_ASYNC, HZ/50);
1756	} while (!page && (gfp_mask & __GFP_NOFAIL));
1757
1758	return page;
1759}
1760
1761static inline
1762void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1763						enum zone_type high_zoneidx)
1764{
1765	struct zoneref *z;
1766	struct zone *zone;
1767
1768	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1769		wakeup_kswapd(zone, order);
1770}
1771
1772static inline int
1773gfp_to_alloc_flags(gfp_t gfp_mask)
1774{
1775	struct task_struct *p = current;
1776	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1777	const gfp_t wait = gfp_mask & __GFP_WAIT;
1778
1779	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1780	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1781
1782	/*
1783	 * The caller may dip into page reserves a bit more if the caller
1784	 * cannot run direct reclaim, or if the caller has realtime scheduling
1785	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1786	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1787	 */
1788	alloc_flags |= (gfp_mask & __GFP_HIGH);
1789
1790	if (!wait) {
1791		alloc_flags |= ALLOC_HARDER;
1792		/*
1793		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1794		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1795		 */
1796		alloc_flags &= ~ALLOC_CPUSET;
1797	} else if (unlikely(rt_task(p)) && !in_interrupt())
1798		alloc_flags |= ALLOC_HARDER;
1799
1800	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1801		if (!in_interrupt() &&
1802		    ((p->flags & PF_MEMALLOC) ||
1803		     unlikely(test_thread_flag(TIF_MEMDIE))))
1804			alloc_flags |= ALLOC_NO_WATERMARKS;
1805	}
1806
1807	return alloc_flags;
1808}
1809
1810static inline struct page *
1811__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1812	struct zonelist *zonelist, enum zone_type high_zoneidx,
1813	nodemask_t *nodemask, struct zone *preferred_zone,
1814	int migratetype)
1815{
1816	const gfp_t wait = gfp_mask & __GFP_WAIT;
1817	struct page *page = NULL;
1818	int alloc_flags;
1819	unsigned long pages_reclaimed = 0;
1820	unsigned long did_some_progress;
1821	struct task_struct *p = current;
1822
1823	/*
1824	 * In the slowpath, we sanity check order to avoid ever trying to
1825	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1826	 * be using allocators in order of preference for an area that is
1827	 * too large.
1828	 */
1829	if (order >= MAX_ORDER) {
1830		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1831		return NULL;
1832	}
1833
1834	/*
1835	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1836	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1837	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1838	 * using a larger set of nodes after it has established that the
1839	 * allowed per node queues are empty and that nodes are
1840	 * over allocated.
1841	 */
1842	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1843		goto nopage;
1844
1845restart:
1846	wake_all_kswapd(order, zonelist, high_zoneidx);
1847
1848	/*
1849	 * OK, we're below the kswapd watermark and have kicked background
1850	 * reclaim. Now things get more complex, so set up alloc_flags according
1851	 * to how we want to proceed.
1852	 */
1853	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1854
1855	/* This is the last chance, in general, before the goto nopage. */
1856	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1857			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1858			preferred_zone, migratetype);
1859	if (page)
1860		goto got_pg;
1861
1862rebalance:
1863	/* Allocate without watermarks if the context allows */
1864	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1865		page = __alloc_pages_high_priority(gfp_mask, order,
1866				zonelist, high_zoneidx, nodemask,
1867				preferred_zone, migratetype);
1868		if (page)
1869			goto got_pg;
1870	}
1871
1872	/* Atomic allocations - we can't balance anything */
1873	if (!wait)
1874		goto nopage;
1875
1876	/* Avoid recursion of direct reclaim */
1877	if (p->flags & PF_MEMALLOC)
1878		goto nopage;
1879
1880	/* Avoid allocations with no watermarks from looping endlessly */
1881	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1882		goto nopage;
1883
1884	/* Try direct reclaim and then allocating */
1885	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1886					zonelist, high_zoneidx,
1887					nodemask,
1888					alloc_flags, preferred_zone,
1889					migratetype, &did_some_progress);
1890	if (page)
1891		goto got_pg;
1892
1893	/*
1894	 * If we failed to make any progress reclaiming, then we are
1895	 * running out of options and have to consider going OOM
1896	 */
1897	if (!did_some_progress) {
1898		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1899			if (oom_killer_disabled)
1900				goto nopage;
1901			page = __alloc_pages_may_oom(gfp_mask, order,
1902					zonelist, high_zoneidx,
1903					nodemask, preferred_zone,
1904					migratetype);
1905			if (page)
1906				goto got_pg;
1907
1908			/*
1909			 * The OOM killer does not trigger for high-order
1910			 * ~__GFP_NOFAIL allocations so if no progress is being
1911			 * made, there are no other options and retrying is
1912			 * unlikely to help.
1913			 */
1914			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1915						!(gfp_mask & __GFP_NOFAIL))
1916				goto nopage;
1917
1918			goto restart;
1919		}
1920	}
1921
1922	/* Check if we should retry the allocation */
1923	pages_reclaimed += did_some_progress;
1924	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1925		/* Wait for some write requests to complete then retry */
1926		congestion_wait(BLK_RW_ASYNC, HZ/50);
1927		goto rebalance;
1928	}
1929
1930nopage:
1931	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1932		printk(KERN_WARNING "%s: page allocation failure."
1933			" order:%d, mode:0x%x\n",
1934			p->comm, order, gfp_mask);
1935		dump_stack();
1936		show_mem();
1937	}
1938	return page;
1939got_pg:
1940	if (kmemcheck_enabled)
1941		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1942	return page;
1943
1944}
1945
1946/*
1947 * This is the 'heart' of the zoned buddy allocator.
1948 */
1949struct page *
1950__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1951			struct zonelist *zonelist, nodemask_t *nodemask)
1952{
1953	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1954	struct zone *preferred_zone;
1955	struct page *page;
1956	int migratetype = allocflags_to_migratetype(gfp_mask);
1957
1958	gfp_mask &= gfp_allowed_mask;
1959
1960	lockdep_trace_alloc(gfp_mask);
1961
1962	might_sleep_if(gfp_mask & __GFP_WAIT);
1963
1964	if (should_fail_alloc_page(gfp_mask, order))
1965		return NULL;
1966
1967	/*
1968	 * Check the zones suitable for the gfp_mask contain at least one
1969	 * valid zone. It's possible to have an empty zonelist as a result
1970	 * of GFP_THISNODE and a memoryless node
1971	 */
1972	if (unlikely(!zonelist->_zonerefs->zone))
1973		return NULL;
1974
1975	/* The preferred zone is used for statistics later */
1976	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1977	if (!preferred_zone)
1978		return NULL;
1979
1980	/* First allocation attempt */
1981	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1982			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1983			preferred_zone, migratetype);
1984	if (unlikely(!page))
1985		page = __alloc_pages_slowpath(gfp_mask, order,
1986				zonelist, high_zoneidx, nodemask,
1987				preferred_zone, migratetype);
1988
1989	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1990	return page;
1991}
1992EXPORT_SYMBOL(__alloc_pages_nodemask);
1993
1994/*
1995 * Common helper functions.
1996 */
1997unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1998{
1999	struct page *page;
2000
2001	/*
2002	 * __get_free_pages() returns a 32-bit address, which cannot represent
2003	 * a highmem page
2004	 */
2005	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2006
2007	page = alloc_pages(gfp_mask, order);
2008	if (!page)
2009		return 0;
2010	return (unsigned long) page_address(page);
2011}
2012EXPORT_SYMBOL(__get_free_pages);
2013
2014unsigned long get_zeroed_page(gfp_t gfp_mask)
2015{
2016	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2017}
2018EXPORT_SYMBOL(get_zeroed_page);
2019
2020void __pagevec_free(struct pagevec *pvec)
2021{
2022	int i = pagevec_count(pvec);
2023
2024	while (--i >= 0) {
2025		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2026		free_hot_cold_page(pvec->pages[i], pvec->cold);
2027	}
2028}
2029
2030void __free_pages(struct page *page, unsigned int order)
2031{
2032	if (put_page_testzero(page)) {
2033		if (order == 0)
2034			free_hot_cold_page(page, 0);
2035		else
2036			__free_pages_ok(page, order);
2037	}
2038}
2039
2040EXPORT_SYMBOL(__free_pages);
2041
2042void free_pages(unsigned long addr, unsigned int order)
2043{
2044	if (addr != 0) {
2045		VM_BUG_ON(!virt_addr_valid((void *)addr));
2046		__free_pages(virt_to_page((void *)addr), order);
2047	}
2048}
2049
2050EXPORT_SYMBOL(free_pages);
2051
2052/**
2053 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2054 * @size: the number of bytes to allocate
2055 * @gfp_mask: GFP flags for the allocation
2056 *
2057 * This function is similar to alloc_pages(), except that it allocates the
2058 * minimum number of pages to satisfy the request.  alloc_pages() can only
2059 * allocate memory in power-of-two pages.
2060 *
2061 * This function is also limited by MAX_ORDER.
2062 *
2063 * Memory allocated by this function must be released by free_pages_exact().
2064 */
2065void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2066{
2067	unsigned int order = get_order(size);
2068	unsigned long addr;
2069
2070	addr = __get_free_pages(gfp_mask, order);
2071	if (addr) {
2072		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2073		unsigned long used = addr + PAGE_ALIGN(size);
2074
2075		split_page(virt_to_page((void *)addr), order);
2076		while (used < alloc_end) {
2077			free_page(used);
2078			used += PAGE_SIZE;
2079		}
2080	}
2081
2082	return (void *)addr;
2083}
2084EXPORT_SYMBOL(alloc_pages_exact);
2085
2086/**
2087 * free_pages_exact - release memory allocated via alloc_pages_exact()
2088 * @virt: the value returned by alloc_pages_exact.
2089 * @size: size of allocation, same value as passed to alloc_pages_exact().
2090 *
2091 * Release the memory allocated by a previous call to alloc_pages_exact.
2092 */
2093void free_pages_exact(void *virt, size_t size)
2094{
2095	unsigned long addr = (unsigned long)virt;
2096	unsigned long end = addr + PAGE_ALIGN(size);
2097
2098	while (addr < end) {
2099		free_page(addr);
2100		addr += PAGE_SIZE;
2101	}
2102}
2103EXPORT_SYMBOL(free_pages_exact);
2104
2105static unsigned int nr_free_zone_pages(int offset)
2106{
2107	struct zoneref *z;
2108	struct zone *zone;
2109
2110	/* Just pick one node, since fallback list is circular */
2111	unsigned int sum = 0;
2112
2113	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2114
2115	for_each_zone_zonelist(zone, z, zonelist, offset) {
2116		unsigned long size = zone->present_pages;
2117		unsigned long high = high_wmark_pages(zone);
2118		if (size > high)
2119			sum += size - high;
2120	}
2121
2122	return sum;
2123}
2124
2125/*
2126 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2127 */
2128unsigned int nr_free_buffer_pages(void)
2129{
2130	return nr_free_zone_pages(gfp_zone(GFP_USER));
2131}
2132EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2133
2134/*
2135 * Amount of free RAM allocatable within all zones
2136 */
2137unsigned int nr_free_pagecache_pages(void)
2138{
2139	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2140}
2141
2142static inline void show_node(struct zone *zone)
2143{
2144	if (NUMA_BUILD)
2145		printk("Node %d ", zone_to_nid(zone));
2146}
2147
2148void si_meminfo(struct sysinfo *val)
2149{
2150	val->totalram = totalram_pages;
2151	val->sharedram = 0;
2152	val->freeram = global_page_state(NR_FREE_PAGES);
2153	val->bufferram = nr_blockdev_pages();
2154	val->totalhigh = totalhigh_pages;
2155	val->freehigh = nr_free_highpages();
2156	val->mem_unit = PAGE_SIZE;
2157}
2158
2159EXPORT_SYMBOL(si_meminfo);
2160
2161#ifdef CONFIG_NUMA
2162void si_meminfo_node(struct sysinfo *val, int nid)
2163{
2164	pg_data_t *pgdat = NODE_DATA(nid);
2165
2166	val->totalram = pgdat->node_present_pages;
2167	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2168#ifdef CONFIG_HIGHMEM
2169	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2170	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2171			NR_FREE_PAGES);
2172#else
2173	val->totalhigh = 0;
2174	val->freehigh = 0;
2175#endif
2176	val->mem_unit = PAGE_SIZE;
2177}
2178#endif
2179
2180#define K(x) ((x) << (PAGE_SHIFT-10))
2181
2182/*
2183 * Show free area list (used inside shift_scroll-lock stuff)
2184 * We also calculate the percentage fragmentation. We do this by counting the
2185 * memory on each free list with the exception of the first item on the list.
2186 */
2187void show_free_areas(void)
2188{
2189	int cpu;
2190	struct zone *zone;
2191
2192	for_each_populated_zone(zone) {
2193		show_node(zone);
2194		printk("%s per-cpu:\n", zone->name);
2195
2196		for_each_online_cpu(cpu) {
2197			struct per_cpu_pageset *pageset;
2198
2199			pageset = per_cpu_ptr(zone->pageset, cpu);
2200
2201			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2202			       cpu, pageset->pcp.high,
2203			       pageset->pcp.batch, pageset->pcp.count);
2204		}
2205	}
2206
2207	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2208		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2209		" unevictable:%lu"
2210		" dirty:%lu writeback:%lu unstable:%lu\n"
2211		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2212		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2213		global_page_state(NR_ACTIVE_ANON),
2214		global_page_state(NR_INACTIVE_ANON),
2215		global_page_state(NR_ISOLATED_ANON),
2216		global_page_state(NR_ACTIVE_FILE),
2217		global_page_state(NR_INACTIVE_FILE),
2218		global_page_state(NR_ISOLATED_FILE),
2219		global_page_state(NR_UNEVICTABLE),
2220		global_page_state(NR_FILE_DIRTY),
2221		global_page_state(NR_WRITEBACK),
2222		global_page_state(NR_UNSTABLE_NFS),
2223		global_page_state(NR_FREE_PAGES),
2224		global_page_state(NR_SLAB_RECLAIMABLE),
2225		global_page_state(NR_SLAB_UNRECLAIMABLE),
2226		global_page_state(NR_FILE_MAPPED),
2227		global_page_state(NR_SHMEM),
2228		global_page_state(NR_PAGETABLE),
2229		global_page_state(NR_BOUNCE));
2230
2231	for_each_populated_zone(zone) {
2232		int i;
2233
2234		show_node(zone);
2235		printk("%s"
2236			" free:%lukB"
2237			" min:%lukB"
2238			" low:%lukB"
2239			" high:%lukB"
2240			" active_anon:%lukB"
2241			" inactive_anon:%lukB"
2242			" active_file:%lukB"
2243			" inactive_file:%lukB"
2244			" unevictable:%lukB"
2245			" isolated(anon):%lukB"
2246			" isolated(file):%lukB"
2247			" present:%lukB"
2248			" mlocked:%lukB"
2249			" dirty:%lukB"
2250			" writeback:%lukB"
2251			" mapped:%lukB"
2252			" shmem:%lukB"
2253			" slab_reclaimable:%lukB"
2254			" slab_unreclaimable:%lukB"
2255			" kernel_stack:%lukB"
2256			" pagetables:%lukB"
2257			" unstable:%lukB"
2258			" bounce:%lukB"
2259			" writeback_tmp:%lukB"
2260			" pages_scanned:%lu"
2261			" all_unreclaimable? %s"
2262			"\n",
2263			zone->name,
2264			K(zone_page_state(zone, NR_FREE_PAGES)),
2265			K(min_wmark_pages(zone)),
2266			K(low_wmark_pages(zone)),
2267			K(high_wmark_pages(zone)),
2268			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2269			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2270			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2271			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2272			K(zone_page_state(zone, NR_UNEVICTABLE)),
2273			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2274			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2275			K(zone->present_pages),
2276			K(zone_page_state(zone, NR_MLOCK)),
2277			K(zone_page_state(zone, NR_FILE_DIRTY)),
2278			K(zone_page_state(zone, NR_WRITEBACK)),
2279			K(zone_page_state(zone, NR_FILE_MAPPED)),
2280			K(zone_page_state(zone, NR_SHMEM)),
2281			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2282			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2283			zone_page_state(zone, NR_KERNEL_STACK) *
2284				THREAD_SIZE / 1024,
2285			K(zone_page_state(zone, NR_PAGETABLE)),
2286			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2287			K(zone_page_state(zone, NR_BOUNCE)),
2288			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2289			zone->pages_scanned,
2290			(zone->all_unreclaimable ? "yes" : "no")
2291			);
2292		printk("lowmem_reserve[]:");
2293		for (i = 0; i < MAX_NR_ZONES; i++)
2294			printk(" %lu", zone->lowmem_reserve[i]);
2295		printk("\n");
2296	}
2297
2298	for_each_populated_zone(zone) {
2299 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2300
2301		show_node(zone);
2302		printk("%s: ", zone->name);
2303
2304		spin_lock_irqsave(&zone->lock, flags);
2305		for (order = 0; order < MAX_ORDER; order++) {
2306			nr[order] = zone->free_area[order].nr_free;
2307			total += nr[order] << order;
2308		}
2309		spin_unlock_irqrestore(&zone->lock, flags);
2310		for (order = 0; order < MAX_ORDER; order++)
2311			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2312		printk("= %lukB\n", K(total));
2313	}
2314
2315	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2316
2317	show_swap_cache_info();
2318}
2319
2320static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2321{
2322	zoneref->zone = zone;
2323	zoneref->zone_idx = zone_idx(zone);
2324}
2325
2326/*
2327 * Builds allocation fallback zone lists.
2328 *
2329 * Add all populated zones of a node to the zonelist.
2330 */
2331static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2332				int nr_zones, enum zone_type zone_type)
2333{
2334	struct zone *zone;
2335
2336	BUG_ON(zone_type >= MAX_NR_ZONES);
2337	zone_type++;
2338
2339	do {
2340		zone_type--;
2341		zone = pgdat->node_zones + zone_type;
2342		if (populated_zone(zone)) {
2343			zoneref_set_zone(zone,
2344				&zonelist->_zonerefs[nr_zones++]);
2345			check_highest_zone(zone_type);
2346		}
2347
2348	} while (zone_type);
2349	return nr_zones;
2350}
2351
2352
2353/*
2354 *  zonelist_order:
2355 *  0 = automatic detection of better ordering.
2356 *  1 = order by ([node] distance, -zonetype)
2357 *  2 = order by (-zonetype, [node] distance)
2358 *
2359 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2360 *  the same zonelist. So only NUMA can configure this param.
2361 */
2362#define ZONELIST_ORDER_DEFAULT  0
2363#define ZONELIST_ORDER_NODE     1
2364#define ZONELIST_ORDER_ZONE     2
2365
2366/* zonelist order in the kernel.
2367 * set_zonelist_order() will set this to NODE or ZONE.
2368 */
2369static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2370static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2371
2372
2373#ifdef CONFIG_NUMA
2374/* The value user specified ....changed by config */
2375static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2376/* string for sysctl */
2377#define NUMA_ZONELIST_ORDER_LEN	16
2378char numa_zonelist_order[16] = "default";
2379
2380/*
2381 * interface for configure zonelist ordering.
2382 * command line option "numa_zonelist_order"
2383 *	= "[dD]efault	- default, automatic configuration.
2384 *	= "[nN]ode 	- order by node locality, then by zone within node
2385 *	= "[zZ]one      - order by zone, then by locality within zone
2386 */
2387
2388static int __parse_numa_zonelist_order(char *s)
2389{
2390	if (*s == 'd' || *s == 'D') {
2391		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2392	} else if (*s == 'n' || *s == 'N') {
2393		user_zonelist_order = ZONELIST_ORDER_NODE;
2394	} else if (*s == 'z' || *s == 'Z') {
2395		user_zonelist_order = ZONELIST_ORDER_ZONE;
2396	} else {
2397		printk(KERN_WARNING
2398			"Ignoring invalid numa_zonelist_order value:  "
2399			"%s\n", s);
2400		return -EINVAL;
2401	}
2402	return 0;
2403}
2404
2405static __init int setup_numa_zonelist_order(char *s)
2406{
2407	if (s)
2408		return __parse_numa_zonelist_order(s);
2409	return 0;
2410}
2411early_param("numa_zonelist_order", setup_numa_zonelist_order);
2412
2413/*
2414 * sysctl handler for numa_zonelist_order
2415 */
2416int numa_zonelist_order_handler(ctl_table *table, int write,
2417		void __user *buffer, size_t *length,
2418		loff_t *ppos)
2419{
2420	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2421	int ret;
2422	static DEFINE_MUTEX(zl_order_mutex);
2423
2424	mutex_lock(&zl_order_mutex);
2425	if (write)
2426		strcpy(saved_string, (char*)table->data);
2427	ret = proc_dostring(table, write, buffer, length, ppos);
2428	if (ret)
2429		goto out;
2430	if (write) {
2431		int oldval = user_zonelist_order;
2432		if (__parse_numa_zonelist_order((char*)table->data)) {
2433			/*
2434			 * bogus value.  restore saved string
2435			 */
2436			strncpy((char*)table->data, saved_string,
2437				NUMA_ZONELIST_ORDER_LEN);
2438			user_zonelist_order = oldval;
2439		} else if (oldval != user_zonelist_order)
2440			build_all_zonelists();
2441	}
2442out:
2443	mutex_unlock(&zl_order_mutex);
2444	return ret;
2445}
2446
2447
2448#define MAX_NODE_LOAD (nr_online_nodes)
2449static int node_load[MAX_NUMNODES];
2450
2451/**
2452 * find_next_best_node - find the next node that should appear in a given node's fallback list
2453 * @node: node whose fallback list we're appending
2454 * @used_node_mask: nodemask_t of already used nodes
2455 *
2456 * We use a number of factors to determine which is the next node that should
2457 * appear on a given node's fallback list.  The node should not have appeared
2458 * already in @node's fallback list, and it should be the next closest node
2459 * according to the distance array (which contains arbitrary distance values
2460 * from each node to each node in the system), and should also prefer nodes
2461 * with no CPUs, since presumably they'll have very little allocation pressure
2462 * on them otherwise.
2463 * It returns -1 if no node is found.
2464 */
2465static int find_next_best_node(int node, nodemask_t *used_node_mask)
2466{
2467	int n, val;
2468	int min_val = INT_MAX;
2469	int best_node = -1;
2470	const struct cpumask *tmp = cpumask_of_node(0);
2471
2472	/* Use the local node if we haven't already */
2473	if (!node_isset(node, *used_node_mask)) {
2474		node_set(node, *used_node_mask);
2475		return node;
2476	}
2477
2478	for_each_node_state(n, N_HIGH_MEMORY) {
2479
2480		/* Don't want a node to appear more than once */
2481		if (node_isset(n, *used_node_mask))
2482			continue;
2483
2484		/* Use the distance array to find the distance */
2485		val = node_distance(node, n);
2486
2487		/* Penalize nodes under us ("prefer the next node") */
2488		val += (n < node);
2489
2490		/* Give preference to headless and unused nodes */
2491		tmp = cpumask_of_node(n);
2492		if (!cpumask_empty(tmp))
2493			val += PENALTY_FOR_NODE_WITH_CPUS;
2494
2495		/* Slight preference for less loaded node */
2496		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2497		val += node_load[n];
2498
2499		if (val < min_val) {
2500			min_val = val;
2501			best_node = n;
2502		}
2503	}
2504
2505	if (best_node >= 0)
2506		node_set(best_node, *used_node_mask);
2507
2508	return best_node;
2509}
2510
2511
2512/*
2513 * Build zonelists ordered by node and zones within node.
2514 * This results in maximum locality--normal zone overflows into local
2515 * DMA zone, if any--but risks exhausting DMA zone.
2516 */
2517static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2518{
2519	int j;
2520	struct zonelist *zonelist;
2521
2522	zonelist = &pgdat->node_zonelists[0];
2523	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2524		;
2525	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2526							MAX_NR_ZONES - 1);
2527	zonelist->_zonerefs[j].zone = NULL;
2528	zonelist->_zonerefs[j].zone_idx = 0;
2529}
2530
2531/*
2532 * Build gfp_thisnode zonelists
2533 */
2534static void build_thisnode_zonelists(pg_data_t *pgdat)
2535{
2536	int j;
2537	struct zonelist *zonelist;
2538
2539	zonelist = &pgdat->node_zonelists[1];
2540	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2541	zonelist->_zonerefs[j].zone = NULL;
2542	zonelist->_zonerefs[j].zone_idx = 0;
2543}
2544
2545/*
2546 * Build zonelists ordered by zone and nodes within zones.
2547 * This results in conserving DMA zone[s] until all Normal memory is
2548 * exhausted, but results in overflowing to remote node while memory
2549 * may still exist in local DMA zone.
2550 */
2551static int node_order[MAX_NUMNODES];
2552
2553static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2554{
2555	int pos, j, node;
2556	int zone_type;		/* needs to be signed */
2557	struct zone *z;
2558	struct zonelist *zonelist;
2559
2560	zonelist = &pgdat->node_zonelists[0];
2561	pos = 0;
2562	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2563		for (j = 0; j < nr_nodes; j++) {
2564			node = node_order[j];
2565			z = &NODE_DATA(node)->node_zones[zone_type];
2566			if (populated_zone(z)) {
2567				zoneref_set_zone(z,
2568					&zonelist->_zonerefs[pos++]);
2569				check_highest_zone(zone_type);
2570			}
2571		}
2572	}
2573	zonelist->_zonerefs[pos].zone = NULL;
2574	zonelist->_zonerefs[pos].zone_idx = 0;
2575}
2576
2577static int default_zonelist_order(void)
2578{
2579	int nid, zone_type;
2580	unsigned long low_kmem_size,total_size;
2581	struct zone *z;
2582	int average_size;
2583	/*
2584         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2585	 * If they are really small and used heavily, the system can fall
2586	 * into OOM very easily.
2587	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2588	 */
2589	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2590	low_kmem_size = 0;
2591	total_size = 0;
2592	for_each_online_node(nid) {
2593		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2594			z = &NODE_DATA(nid)->node_zones[zone_type];
2595			if (populated_zone(z)) {
2596				if (zone_type < ZONE_NORMAL)
2597					low_kmem_size += z->present_pages;
2598				total_size += z->present_pages;
2599			}
2600		}
2601	}
2602	if (!low_kmem_size ||  /* there are no DMA area. */
2603	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2604		return ZONELIST_ORDER_NODE;
2605	/*
2606	 * look into each node's config.
2607  	 * If there is a node whose DMA/DMA32 memory is very big area on
2608 	 * local memory, NODE_ORDER may be suitable.
2609         */
2610	average_size = total_size /
2611				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2612	for_each_online_node(nid) {
2613		low_kmem_size = 0;
2614		total_size = 0;
2615		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2616			z = &NODE_DATA(nid)->node_zones[zone_type];
2617			if (populated_zone(z)) {
2618				if (zone_type < ZONE_NORMAL)
2619					low_kmem_size += z->present_pages;
2620				total_size += z->present_pages;
2621			}
2622		}
2623		if (low_kmem_size &&
2624		    total_size > average_size && /* ignore small node */
2625		    low_kmem_size > total_size * 70/100)
2626			return ZONELIST_ORDER_NODE;
2627	}
2628	return ZONELIST_ORDER_ZONE;
2629}
2630
2631static void set_zonelist_order(void)
2632{
2633	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2634		current_zonelist_order = default_zonelist_order();
2635	else
2636		current_zonelist_order = user_zonelist_order;
2637}
2638
2639static void build_zonelists(pg_data_t *pgdat)
2640{
2641	int j, node, load;
2642	enum zone_type i;
2643	nodemask_t used_mask;
2644	int local_node, prev_node;
2645	struct zonelist *zonelist;
2646	int order = current_zonelist_order;
2647
2648	/* initialize zonelists */
2649	for (i = 0; i < MAX_ZONELISTS; i++) {
2650		zonelist = pgdat->node_zonelists + i;
2651		zonelist->_zonerefs[0].zone = NULL;
2652		zonelist->_zonerefs[0].zone_idx = 0;
2653	}
2654
2655	/* NUMA-aware ordering of nodes */
2656	local_node = pgdat->node_id;
2657	load = nr_online_nodes;
2658	prev_node = local_node;
2659	nodes_clear(used_mask);
2660
2661	memset(node_order, 0, sizeof(node_order));
2662	j = 0;
2663
2664	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2665		int distance = node_distance(local_node, node);
2666
2667		/*
2668		 * If another node is sufficiently far away then it is better
2669		 * to reclaim pages in a zone before going off node.
2670		 */
2671		if (distance > RECLAIM_DISTANCE)
2672			zone_reclaim_mode = 1;
2673
2674		/*
2675		 * We don't want to pressure a particular node.
2676		 * So adding penalty to the first node in same
2677		 * distance group to make it round-robin.
2678		 */
2679		if (distance != node_distance(local_node, prev_node))
2680			node_load[node] = load;
2681
2682		prev_node = node;
2683		load--;
2684		if (order == ZONELIST_ORDER_NODE)
2685			build_zonelists_in_node_order(pgdat, node);
2686		else
2687			node_order[j++] = node;	/* remember order */
2688	}
2689
2690	if (order == ZONELIST_ORDER_ZONE) {
2691		/* calculate node order -- i.e., DMA last! */
2692		build_zonelists_in_zone_order(pgdat, j);
2693	}
2694
2695	build_thisnode_zonelists(pgdat);
2696}
2697
2698/* Construct the zonelist performance cache - see further mmzone.h */
2699static void build_zonelist_cache(pg_data_t *pgdat)
2700{
2701	struct zonelist *zonelist;
2702	struct zonelist_cache *zlc;
2703	struct zoneref *z;
2704
2705	zonelist = &pgdat->node_zonelists[0];
2706	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2707	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2708	for (z = zonelist->_zonerefs; z->zone; z++)
2709		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2710}
2711
2712
2713#else	/* CONFIG_NUMA */
2714
2715static void set_zonelist_order(void)
2716{
2717	current_zonelist_order = ZONELIST_ORDER_ZONE;
2718}
2719
2720static void build_zonelists(pg_data_t *pgdat)
2721{
2722	int node, local_node;
2723	enum zone_type j;
2724	struct zonelist *zonelist;
2725
2726	local_node = pgdat->node_id;
2727
2728	zonelist = &pgdat->node_zonelists[0];
2729	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2730
2731	/*
2732	 * Now we build the zonelist so that it contains the zones
2733	 * of all the other nodes.
2734	 * We don't want to pressure a particular node, so when
2735	 * building the zones for node N, we make sure that the
2736	 * zones coming right after the local ones are those from
2737	 * node N+1 (modulo N)
2738	 */
2739	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2740		if (!node_online(node))
2741			continue;
2742		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2743							MAX_NR_ZONES - 1);
2744	}
2745	for (node = 0; node < local_node; node++) {
2746		if (!node_online(node))
2747			continue;
2748		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2749							MAX_NR_ZONES - 1);
2750	}
2751
2752	zonelist->_zonerefs[j].zone = NULL;
2753	zonelist->_zonerefs[j].zone_idx = 0;
2754}
2755
2756/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2757static void build_zonelist_cache(pg_data_t *pgdat)
2758{
2759	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2760}
2761
2762#endif	/* CONFIG_NUMA */
2763
2764/*
2765 * Boot pageset table. One per cpu which is going to be used for all
2766 * zones and all nodes. The parameters will be set in such a way
2767 * that an item put on a list will immediately be handed over to
2768 * the buddy list. This is safe since pageset manipulation is done
2769 * with interrupts disabled.
2770 *
2771 * The boot_pagesets must be kept even after bootup is complete for
2772 * unused processors and/or zones. They do play a role for bootstrapping
2773 * hotplugged processors.
2774 *
2775 * zoneinfo_show() and maybe other functions do
2776 * not check if the processor is online before following the pageset pointer.
2777 * Other parts of the kernel may not check if the zone is available.
2778 */
2779static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2780static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2781
2782/* return values int ....just for stop_machine() */
2783static int __build_all_zonelists(void *dummy)
2784{
2785	int nid;
2786	int cpu;
2787
2788#ifdef CONFIG_NUMA
2789	memset(node_load, 0, sizeof(node_load));
2790#endif
2791	for_each_online_node(nid) {
2792		pg_data_t *pgdat = NODE_DATA(nid);
2793
2794		build_zonelists(pgdat);
2795		build_zonelist_cache(pgdat);
2796	}
2797
2798	/*
2799	 * Initialize the boot_pagesets that are going to be used
2800	 * for bootstrapping processors. The real pagesets for
2801	 * each zone will be allocated later when the per cpu
2802	 * allocator is available.
2803	 *
2804	 * boot_pagesets are used also for bootstrapping offline
2805	 * cpus if the system is already booted because the pagesets
2806	 * are needed to initialize allocators on a specific cpu too.
2807	 * F.e. the percpu allocator needs the page allocator which
2808	 * needs the percpu allocator in order to allocate its pagesets
2809	 * (a chicken-egg dilemma).
2810	 */
2811	for_each_possible_cpu(cpu)
2812		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2813
2814	return 0;
2815}
2816
2817void build_all_zonelists(void)
2818{
2819	set_zonelist_order();
2820
2821	if (system_state == SYSTEM_BOOTING) {
2822		__build_all_zonelists(NULL);
2823		mminit_verify_zonelist();
2824		cpuset_init_current_mems_allowed();
2825	} else {
2826		/* we have to stop all cpus to guarantee there is no user
2827		   of zonelist */
2828		stop_machine(__build_all_zonelists, NULL, NULL);
2829		/* cpuset refresh routine should be here */
2830	}
2831	vm_total_pages = nr_free_pagecache_pages();
2832	/*
2833	 * Disable grouping by mobility if the number of pages in the
2834	 * system is too low to allow the mechanism to work. It would be
2835	 * more accurate, but expensive to check per-zone. This check is
2836	 * made on memory-hotadd so a system can start with mobility
2837	 * disabled and enable it later
2838	 */
2839	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2840		page_group_by_mobility_disabled = 1;
2841	else
2842		page_group_by_mobility_disabled = 0;
2843
2844	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2845		"Total pages: %ld\n",
2846			nr_online_nodes,
2847			zonelist_order_name[current_zonelist_order],
2848			page_group_by_mobility_disabled ? "off" : "on",
2849			vm_total_pages);
2850#ifdef CONFIG_NUMA
2851	printk("Policy zone: %s\n", zone_names[policy_zone]);
2852#endif
2853}
2854
2855/*
2856 * Helper functions to size the waitqueue hash table.
2857 * Essentially these want to choose hash table sizes sufficiently
2858 * large so that collisions trying to wait on pages are rare.
2859 * But in fact, the number of active page waitqueues on typical
2860 * systems is ridiculously low, less than 200. So this is even
2861 * conservative, even though it seems large.
2862 *
2863 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2864 * waitqueues, i.e. the size of the waitq table given the number of pages.
2865 */
2866#define PAGES_PER_WAITQUEUE	256
2867
2868#ifndef CONFIG_MEMORY_HOTPLUG
2869static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2870{
2871	unsigned long size = 1;
2872
2873	pages /= PAGES_PER_WAITQUEUE;
2874
2875	while (size < pages)
2876		size <<= 1;
2877
2878	/*
2879	 * Once we have dozens or even hundreds of threads sleeping
2880	 * on IO we've got bigger problems than wait queue collision.
2881	 * Limit the size of the wait table to a reasonable size.
2882	 */
2883	size = min(size, 4096UL);
2884
2885	return max(size, 4UL);
2886}
2887#else
2888/*
2889 * A zone's size might be changed by hot-add, so it is not possible to determine
2890 * a suitable size for its wait_table.  So we use the maximum size now.
2891 *
2892 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2893 *
2894 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2895 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2896 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2897 *
2898 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2899 * or more by the traditional way. (See above).  It equals:
2900 *
2901 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2902 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2903 *    powerpc (64K page size)             : =  (32G +16M)byte.
2904 */
2905static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2906{
2907	return 4096UL;
2908}
2909#endif
2910
2911/*
2912 * This is an integer logarithm so that shifts can be used later
2913 * to extract the more random high bits from the multiplicative
2914 * hash function before the remainder is taken.
2915 */
2916static inline unsigned long wait_table_bits(unsigned long size)
2917{
2918	return ffz(~size);
2919}
2920
2921#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2922
2923/*
2924 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2925 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2926 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2927 * higher will lead to a bigger reserve which will get freed as contiguous
2928 * blocks as reclaim kicks in
2929 */
2930static void setup_zone_migrate_reserve(struct zone *zone)
2931{
2932	unsigned long start_pfn, pfn, end_pfn;
2933	struct page *page;
2934	unsigned long block_migratetype;
2935	int reserve;
2936
2937	/* Get the start pfn, end pfn and the number of blocks to reserve */
2938	start_pfn = zone->zone_start_pfn;
2939	end_pfn = start_pfn + zone->spanned_pages;
2940	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2941							pageblock_order;
2942
2943	/*
2944	 * Reserve blocks are generally in place to help high-order atomic
2945	 * allocations that are short-lived. A min_free_kbytes value that
2946	 * would result in more than 2 reserve blocks for atomic allocations
2947	 * is assumed to be in place to help anti-fragmentation for the
2948	 * future allocation of hugepages at runtime.
2949	 */
2950	reserve = min(2, reserve);
2951
2952	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2953		if (!pfn_valid(pfn))
2954			continue;
2955		page = pfn_to_page(pfn);
2956
2957		/* Watch out for overlapping nodes */
2958		if (page_to_nid(page) != zone_to_nid(zone))
2959			continue;
2960
2961		/* Blocks with reserved pages will never free, skip them. */
2962		if (PageReserved(page))
2963			continue;
2964
2965		block_migratetype = get_pageblock_migratetype(page);
2966
2967		/* If this block is reserved, account for it */
2968		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2969			reserve--;
2970			continue;
2971		}
2972
2973		/* Suitable for reserving if this block is movable */
2974		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2975			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2976			move_freepages_block(zone, page, MIGRATE_RESERVE);
2977			reserve--;
2978			continue;
2979		}
2980
2981		/*
2982		 * If the reserve is met and this is a previous reserved block,
2983		 * take it back
2984		 */
2985		if (block_migratetype == MIGRATE_RESERVE) {
2986			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2987			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2988		}
2989	}
2990}
2991
2992/*
2993 * Initially all pages are reserved - free ones are freed
2994 * up by free_all_bootmem() once the early boot process is
2995 * done. Non-atomic initialization, single-pass.
2996 */
2997void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2998		unsigned long start_pfn, enum memmap_context context)
2999{
3000	struct page *page;
3001	unsigned long end_pfn = start_pfn + size;
3002	unsigned long pfn;
3003	struct zone *z;
3004
3005	if (highest_memmap_pfn < end_pfn - 1)
3006		highest_memmap_pfn = end_pfn - 1;
3007
3008	z = &NODE_DATA(nid)->node_zones[zone];
3009	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3010		/*
3011		 * There can be holes in boot-time mem_map[]s
3012		 * handed to this function.  They do not
3013		 * exist on hotplugged memory.
3014		 */
3015		if (context == MEMMAP_EARLY) {
3016			if (!early_pfn_valid(pfn))
3017				continue;
3018			if (!early_pfn_in_nid(pfn, nid))
3019				continue;
3020		}
3021		page = pfn_to_page(pfn);
3022		set_page_links(page, zone, nid, pfn);
3023		mminit_verify_page_links(page, zone, nid, pfn);
3024		init_page_count(page);
3025		reset_page_mapcount(page);
3026		SetPageReserved(page);
3027		/*
3028		 * Mark the block movable so that blocks are reserved for
3029		 * movable at startup. This will force kernel allocations
3030		 * to reserve their blocks rather than leaking throughout
3031		 * the address space during boot when many long-lived
3032		 * kernel allocations are made. Later some blocks near
3033		 * the start are marked MIGRATE_RESERVE by
3034		 * setup_zone_migrate_reserve()
3035		 *
3036		 * bitmap is created for zone's valid pfn range. but memmap
3037		 * can be created for invalid pages (for alignment)
3038		 * check here not to call set_pageblock_migratetype() against
3039		 * pfn out of zone.
3040		 */
3041		if ((z->zone_start_pfn <= pfn)
3042		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3043		    && !(pfn & (pageblock_nr_pages - 1)))
3044			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3045
3046		INIT_LIST_HEAD(&page->lru);
3047#ifdef WANT_PAGE_VIRTUAL
3048		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3049		if (!is_highmem_idx(zone))
3050			set_page_address(page, __va(pfn << PAGE_SHIFT));
3051#endif
3052	}
3053}
3054
3055static void __meminit zone_init_free_lists(struct zone *zone)
3056{
3057	int order, t;
3058	for_each_migratetype_order(order, t) {
3059		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3060		zone->free_area[order].nr_free = 0;
3061	}
3062}
3063
3064#ifndef __HAVE_ARCH_MEMMAP_INIT
3065#define memmap_init(size, nid, zone, start_pfn) \
3066	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3067#endif
3068
3069static int zone_batchsize(struct zone *zone)
3070{
3071#ifdef CONFIG_MMU
3072	int batch;
3073
3074	/*
3075	 * The per-cpu-pages pools are set to around 1000th of the
3076	 * size of the zone.  But no more than 1/2 of a meg.
3077	 *
3078	 * OK, so we don't know how big the cache is.  So guess.
3079	 */
3080	batch = zone->present_pages / 1024;
3081	if (batch * PAGE_SIZE > 512 * 1024)
3082		batch = (512 * 1024) / PAGE_SIZE;
3083	batch /= 4;		/* We effectively *= 4 below */
3084	if (batch < 1)
3085		batch = 1;
3086
3087	/*
3088	 * Clamp the batch to a 2^n - 1 value. Having a power
3089	 * of 2 value was found to be more likely to have
3090	 * suboptimal cache aliasing properties in some cases.
3091	 *
3092	 * For example if 2 tasks are alternately allocating
3093	 * batches of pages, one task can end up with a lot
3094	 * of pages of one half of the possible page colors
3095	 * and the other with pages of the other colors.
3096	 */
3097	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3098
3099	return batch;
3100
3101#else
3102	/* The deferral and batching of frees should be suppressed under NOMMU
3103	 * conditions.
3104	 *
3105	 * The problem is that NOMMU needs to be able to allocate large chunks
3106	 * of contiguous memory as there's no hardware page translation to
3107	 * assemble apparent contiguous memory from discontiguous pages.
3108	 *
3109	 * Queueing large contiguous runs of pages for batching, however,
3110	 * causes the pages to actually be freed in smaller chunks.  As there
3111	 * can be a significant delay between the individual batches being
3112	 * recycled, this leads to the once large chunks of space being
3113	 * fragmented and becoming unavailable for high-order allocations.
3114	 */
3115	return 0;
3116#endif
3117}
3118
3119static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3120{
3121	struct per_cpu_pages *pcp;
3122	int migratetype;
3123
3124	memset(p, 0, sizeof(*p));
3125
3126	pcp = &p->pcp;
3127	pcp->count = 0;
3128	pcp->high = 6 * batch;
3129	pcp->batch = max(1UL, 1 * batch);
3130	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3131		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3132}
3133
3134/*
3135 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3136 * to the value high for the pageset p.
3137 */
3138
3139static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3140				unsigned long high)
3141{
3142	struct per_cpu_pages *pcp;
3143
3144	pcp = &p->pcp;
3145	pcp->high = high;
3146	pcp->batch = max(1UL, high/4);
3147	if ((high/4) > (PAGE_SHIFT * 8))
3148		pcp->batch = PAGE_SHIFT * 8;
3149}
3150
3151/*
3152 * Allocate per cpu pagesets and initialize them.
3153 * Before this call only boot pagesets were available.
3154 * Boot pagesets will no longer be used by this processorr
3155 * after setup_per_cpu_pageset().
3156 */
3157void __init setup_per_cpu_pageset(void)
3158{
3159	struct zone *zone;
3160	int cpu;
3161
3162	for_each_populated_zone(zone) {
3163		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3164
3165		for_each_possible_cpu(cpu) {
3166			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3167
3168			setup_pageset(pcp, zone_batchsize(zone));
3169
3170			if (percpu_pagelist_fraction)
3171				setup_pagelist_highmark(pcp,
3172					(zone->present_pages /
3173						percpu_pagelist_fraction));
3174		}
3175	}
3176}
3177
3178static noinline __init_refok
3179int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3180{
3181	int i;
3182	struct pglist_data *pgdat = zone->zone_pgdat;
3183	size_t alloc_size;
3184
3185	/*
3186	 * The per-page waitqueue mechanism uses hashed waitqueues
3187	 * per zone.
3188	 */
3189	zone->wait_table_hash_nr_entries =
3190		 wait_table_hash_nr_entries(zone_size_pages);
3191	zone->wait_table_bits =
3192		wait_table_bits(zone->wait_table_hash_nr_entries);
3193	alloc_size = zone->wait_table_hash_nr_entries
3194					* sizeof(wait_queue_head_t);
3195
3196	if (!slab_is_available()) {
3197		zone->wait_table = (wait_queue_head_t *)
3198			alloc_bootmem_node(pgdat, alloc_size);
3199	} else {
3200		/*
3201		 * This case means that a zone whose size was 0 gets new memory
3202		 * via memory hot-add.
3203		 * But it may be the case that a new node was hot-added.  In
3204		 * this case vmalloc() will not be able to use this new node's
3205		 * memory - this wait_table must be initialized to use this new
3206		 * node itself as well.
3207		 * To use this new node's memory, further consideration will be
3208		 * necessary.
3209		 */
3210		zone->wait_table = vmalloc(alloc_size);
3211	}
3212	if (!zone->wait_table)
3213		return -ENOMEM;
3214
3215	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3216		init_waitqueue_head(zone->wait_table + i);
3217
3218	return 0;
3219}
3220
3221static int __zone_pcp_update(void *data)
3222{
3223	struct zone *zone = data;
3224	int cpu;
3225	unsigned long batch = zone_batchsize(zone), flags;
3226
3227	for_each_possible_cpu(cpu) {
3228		struct per_cpu_pageset *pset;
3229		struct per_cpu_pages *pcp;
3230
3231		pset = per_cpu_ptr(zone->pageset, cpu);
3232		pcp = &pset->pcp;
3233
3234		local_irq_save(flags);
3235		free_pcppages_bulk(zone, pcp->count, pcp);
3236		setup_pageset(pset, batch);
3237		local_irq_restore(flags);
3238	}
3239	return 0;
3240}
3241
3242void zone_pcp_update(struct zone *zone)
3243{
3244	stop_machine(__zone_pcp_update, zone, NULL);
3245}
3246
3247static __meminit void zone_pcp_init(struct zone *zone)
3248{
3249	/*
3250	 * per cpu subsystem is not up at this point. The following code
3251	 * relies on the ability of the linker to provide the
3252	 * offset of a (static) per cpu variable into the per cpu area.
3253	 */
3254	zone->pageset = &boot_pageset;
3255
3256	if (zone->present_pages)
3257		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3258			zone->name, zone->present_pages,
3259					 zone_batchsize(zone));
3260}
3261
3262__meminit int init_currently_empty_zone(struct zone *zone,
3263					unsigned long zone_start_pfn,
3264					unsigned long size,
3265					enum memmap_context context)
3266{
3267	struct pglist_data *pgdat = zone->zone_pgdat;
3268	int ret;
3269	ret = zone_wait_table_init(zone, size);
3270	if (ret)
3271		return ret;
3272	pgdat->nr_zones = zone_idx(zone) + 1;
3273
3274	zone->zone_start_pfn = zone_start_pfn;
3275
3276	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3277			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3278			pgdat->node_id,
3279			(unsigned long)zone_idx(zone),
3280			zone_start_pfn, (zone_start_pfn + size));
3281
3282	zone_init_free_lists(zone);
3283
3284	return 0;
3285}
3286
3287#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3288/*
3289 * Basic iterator support. Return the first range of PFNs for a node
3290 * Note: nid == MAX_NUMNODES returns first region regardless of node
3291 */
3292static int __meminit first_active_region_index_in_nid(int nid)
3293{
3294	int i;
3295
3296	for (i = 0; i < nr_nodemap_entries; i++)
3297		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3298			return i;
3299
3300	return -1;
3301}
3302
3303/*
3304 * Basic iterator support. Return the next active range of PFNs for a node
3305 * Note: nid == MAX_NUMNODES returns next region regardless of node
3306 */
3307static int __meminit next_active_region_index_in_nid(int index, int nid)
3308{
3309	for (index = index + 1; index < nr_nodemap_entries; index++)
3310		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3311			return index;
3312
3313	return -1;
3314}
3315
3316#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3317/*
3318 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3319 * Architectures may implement their own version but if add_active_range()
3320 * was used and there are no special requirements, this is a convenient
3321 * alternative
3322 */
3323int __meminit __early_pfn_to_nid(unsigned long pfn)
3324{
3325	int i;
3326
3327	for (i = 0; i < nr_nodemap_entries; i++) {
3328		unsigned long start_pfn = early_node_map[i].start_pfn;
3329		unsigned long end_pfn = early_node_map[i].end_pfn;
3330
3331		if (start_pfn <= pfn && pfn < end_pfn)
3332			return early_node_map[i].nid;
3333	}
3334	/* This is a memory hole */
3335	return -1;
3336}
3337#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3338
3339int __meminit early_pfn_to_nid(unsigned long pfn)
3340{
3341	int nid;
3342
3343	nid = __early_pfn_to_nid(pfn);
3344	if (nid >= 0)
3345		return nid;
3346	/* just returns 0 */
3347	return 0;
3348}
3349
3350#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3351bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3352{
3353	int nid;
3354
3355	nid = __early_pfn_to_nid(pfn);
3356	if (nid >= 0 && nid != node)
3357		return false;
3358	return true;
3359}
3360#endif
3361
3362/* Basic iterator support to walk early_node_map[] */
3363#define for_each_active_range_index_in_nid(i, nid) \
3364	for (i = first_active_region_index_in_nid(nid); i != -1; \
3365				i = next_active_region_index_in_nid(i, nid))
3366
3367/**
3368 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3369 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3370 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3371 *
3372 * If an architecture guarantees that all ranges registered with
3373 * add_active_ranges() contain no holes and may be freed, this
3374 * this function may be used instead of calling free_bootmem() manually.
3375 */
3376void __init free_bootmem_with_active_regions(int nid,
3377						unsigned long max_low_pfn)
3378{
3379	int i;
3380
3381	for_each_active_range_index_in_nid(i, nid) {
3382		unsigned long size_pages = 0;
3383		unsigned long end_pfn = early_node_map[i].end_pfn;
3384
3385		if (early_node_map[i].start_pfn >= max_low_pfn)
3386			continue;
3387
3388		if (end_pfn > max_low_pfn)
3389			end_pfn = max_low_pfn;
3390
3391		size_pages = end_pfn - early_node_map[i].start_pfn;
3392		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3393				PFN_PHYS(early_node_map[i].start_pfn),
3394				size_pages << PAGE_SHIFT);
3395	}
3396}
3397
3398int __init add_from_early_node_map(struct range *range, int az,
3399				   int nr_range, int nid)
3400{
3401	int i;
3402	u64 start, end;
3403
3404	/* need to go over early_node_map to find out good range for node */
3405	for_each_active_range_index_in_nid(i, nid) {
3406		start = early_node_map[i].start_pfn;
3407		end = early_node_map[i].end_pfn;
3408		nr_range = add_range(range, az, nr_range, start, end);
3409	}
3410	return nr_range;
3411}
3412
3413#ifdef CONFIG_NO_BOOTMEM
3414void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3415					u64 goal, u64 limit)
3416{
3417	int i;
3418	void *ptr;
3419
3420	/* need to go over early_node_map to find out good range for node */
3421	for_each_active_range_index_in_nid(i, nid) {
3422		u64 addr;
3423		u64 ei_start, ei_last;
3424
3425		ei_last = early_node_map[i].end_pfn;
3426		ei_last <<= PAGE_SHIFT;
3427		ei_start = early_node_map[i].start_pfn;
3428		ei_start <<= PAGE_SHIFT;
3429		addr = find_early_area(ei_start, ei_last,
3430					 goal, limit, size, align);
3431
3432		if (addr == -1ULL)
3433			continue;
3434
3435#if 0
3436		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3437				nid,
3438				ei_start, ei_last, goal, limit, size,
3439				align, addr);
3440#endif
3441
3442		ptr = phys_to_virt(addr);
3443		memset(ptr, 0, size);
3444		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3445		return ptr;
3446	}
3447
3448	return NULL;
3449}
3450#endif
3451
3452
3453void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3454{
3455	int i;
3456	int ret;
3457
3458	for_each_active_range_index_in_nid(i, nid) {
3459		ret = work_fn(early_node_map[i].start_pfn,
3460			      early_node_map[i].end_pfn, data);
3461		if (ret)
3462			break;
3463	}
3464}
3465/**
3466 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3467 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3468 *
3469 * If an architecture guarantees that all ranges registered with
3470 * add_active_ranges() contain no holes and may be freed, this
3471 * function may be used instead of calling memory_present() manually.
3472 */
3473void __init sparse_memory_present_with_active_regions(int nid)
3474{
3475	int i;
3476
3477	for_each_active_range_index_in_nid(i, nid)
3478		memory_present(early_node_map[i].nid,
3479				early_node_map[i].start_pfn,
3480				early_node_map[i].end_pfn);
3481}
3482
3483/**
3484 * get_pfn_range_for_nid - Return the start and end page frames for a node
3485 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3486 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3487 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3488 *
3489 * It returns the start and end page frame of a node based on information
3490 * provided by an arch calling add_active_range(). If called for a node
3491 * with no available memory, a warning is printed and the start and end
3492 * PFNs will be 0.
3493 */
3494void __meminit get_pfn_range_for_nid(unsigned int nid,
3495			unsigned long *start_pfn, unsigned long *end_pfn)
3496{
3497	int i;
3498	*start_pfn = -1UL;
3499	*end_pfn = 0;
3500
3501	for_each_active_range_index_in_nid(i, nid) {
3502		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3503		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3504	}
3505
3506	if (*start_pfn == -1UL)
3507		*start_pfn = 0;
3508}
3509
3510/*
3511 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3512 * assumption is made that zones within a node are ordered in monotonic
3513 * increasing memory addresses so that the "highest" populated zone is used
3514 */
3515static void __init find_usable_zone_for_movable(void)
3516{
3517	int zone_index;
3518	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3519		if (zone_index == ZONE_MOVABLE)
3520			continue;
3521
3522		if (arch_zone_highest_possible_pfn[zone_index] >
3523				arch_zone_lowest_possible_pfn[zone_index])
3524			break;
3525	}
3526
3527	VM_BUG_ON(zone_index == -1);
3528	movable_zone = zone_index;
3529}
3530
3531/*
3532 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3533 * because it is sized independant of architecture. Unlike the other zones,
3534 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3535 * in each node depending on the size of each node and how evenly kernelcore
3536 * is distributed. This helper function adjusts the zone ranges
3537 * provided by the architecture for a given node by using the end of the
3538 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3539 * zones within a node are in order of monotonic increases memory addresses
3540 */
3541static void __meminit adjust_zone_range_for_zone_movable(int nid,
3542					unsigned long zone_type,
3543					unsigned long node_start_pfn,
3544					unsigned long node_end_pfn,
3545					unsigned long *zone_start_pfn,
3546					unsigned long *zone_end_pfn)
3547{
3548	/* Only adjust if ZONE_MOVABLE is on this node */
3549	if (zone_movable_pfn[nid]) {
3550		/* Size ZONE_MOVABLE */
3551		if (zone_type == ZONE_MOVABLE) {
3552			*zone_start_pfn = zone_movable_pfn[nid];
3553			*zone_end_pfn = min(node_end_pfn,
3554				arch_zone_highest_possible_pfn[movable_zone]);
3555
3556		/* Adjust for ZONE_MOVABLE starting within this range */
3557		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3558				*zone_end_pfn > zone_movable_pfn[nid]) {
3559			*zone_end_pfn = zone_movable_pfn[nid];
3560
3561		/* Check if this whole range is within ZONE_MOVABLE */
3562		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3563			*zone_start_pfn = *zone_end_pfn;
3564	}
3565}
3566
3567/*
3568 * Return the number of pages a zone spans in a node, including holes
3569 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3570 */
3571static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3572					unsigned long zone_type,
3573					unsigned long *ignored)
3574{
3575	unsigned long node_start_pfn, node_end_pfn;
3576	unsigned long zone_start_pfn, zone_end_pfn;
3577
3578	/* Get the start and end of the node and zone */
3579	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3580	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3581	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3582	adjust_zone_range_for_zone_movable(nid, zone_type,
3583				node_start_pfn, node_end_pfn,
3584				&zone_start_pfn, &zone_end_pfn);
3585
3586	/* Check that this node has pages within the zone's required range */
3587	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3588		return 0;
3589
3590	/* Move the zone boundaries inside the node if necessary */
3591	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3592	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3593
3594	/* Return the spanned pages */
3595	return zone_end_pfn - zone_start_pfn;
3596}
3597
3598/*
3599 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3600 * then all holes in the requested range will be accounted for.
3601 */
3602unsigned long __meminit __absent_pages_in_range(int nid,
3603				unsigned long range_start_pfn,
3604				unsigned long range_end_pfn)
3605{
3606	int i = 0;
3607	unsigned long prev_end_pfn = 0, hole_pages = 0;
3608	unsigned long start_pfn;
3609
3610	/* Find the end_pfn of the first active range of pfns in the node */
3611	i = first_active_region_index_in_nid(nid);
3612	if (i == -1)
3613		return 0;
3614
3615	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3616
3617	/* Account for ranges before physical memory on this node */
3618	if (early_node_map[i].start_pfn > range_start_pfn)
3619		hole_pages = prev_end_pfn - range_start_pfn;
3620
3621	/* Find all holes for the zone within the node */
3622	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3623
3624		/* No need to continue if prev_end_pfn is outside the zone */
3625		if (prev_end_pfn >= range_end_pfn)
3626			break;
3627
3628		/* Make sure the end of the zone is not within the hole */
3629		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3630		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3631
3632		/* Update the hole size cound and move on */
3633		if (start_pfn > range_start_pfn) {
3634			BUG_ON(prev_end_pfn > start_pfn);
3635			hole_pages += start_pfn - prev_end_pfn;
3636		}
3637		prev_end_pfn = early_node_map[i].end_pfn;
3638	}
3639
3640	/* Account for ranges past physical memory on this node */
3641	if (range_end_pfn > prev_end_pfn)
3642		hole_pages += range_end_pfn -
3643				max(range_start_pfn, prev_end_pfn);
3644
3645	return hole_pages;
3646}
3647
3648/**
3649 * absent_pages_in_range - Return number of page frames in holes within a range
3650 * @start_pfn: The start PFN to start searching for holes
3651 * @end_pfn: The end PFN to stop searching for holes
3652 *
3653 * It returns the number of pages frames in memory holes within a range.
3654 */
3655unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3656							unsigned long end_pfn)
3657{
3658	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3659}
3660
3661/* Return the number of page frames in holes in a zone on a node */
3662static unsigned long __meminit zone_absent_pages_in_node(int nid,
3663					unsigned long zone_type,
3664					unsigned long *ignored)
3665{
3666	unsigned long node_start_pfn, node_end_pfn;
3667	unsigned long zone_start_pfn, zone_end_pfn;
3668
3669	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3670	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3671							node_start_pfn);
3672	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3673							node_end_pfn);
3674
3675	adjust_zone_range_for_zone_movable(nid, zone_type,
3676			node_start_pfn, node_end_pfn,
3677			&zone_start_pfn, &zone_end_pfn);
3678	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3679}
3680
3681#else
3682static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3683					unsigned long zone_type,
3684					unsigned long *zones_size)
3685{
3686	return zones_size[zone_type];
3687}
3688
3689static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3690						unsigned long zone_type,
3691						unsigned long *zholes_size)
3692{
3693	if (!zholes_size)
3694		return 0;
3695
3696	return zholes_size[zone_type];
3697}
3698
3699#endif
3700
3701static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3702		unsigned long *zones_size, unsigned long *zholes_size)
3703{
3704	unsigned long realtotalpages, totalpages = 0;
3705	enum zone_type i;
3706
3707	for (i = 0; i < MAX_NR_ZONES; i++)
3708		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3709								zones_size);
3710	pgdat->node_spanned_pages = totalpages;
3711
3712	realtotalpages = totalpages;
3713	for (i = 0; i < MAX_NR_ZONES; i++)
3714		realtotalpages -=
3715			zone_absent_pages_in_node(pgdat->node_id, i,
3716								zholes_size);
3717	pgdat->node_present_pages = realtotalpages;
3718	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3719							realtotalpages);
3720}
3721
3722#ifndef CONFIG_SPARSEMEM
3723/*
3724 * Calculate the size of the zone->blockflags rounded to an unsigned long
3725 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3726 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3727 * round what is now in bits to nearest long in bits, then return it in
3728 * bytes.
3729 */
3730static unsigned long __init usemap_size(unsigned long zonesize)
3731{
3732	unsigned long usemapsize;
3733
3734	usemapsize = roundup(zonesize, pageblock_nr_pages);
3735	usemapsize = usemapsize >> pageblock_order;
3736	usemapsize *= NR_PAGEBLOCK_BITS;
3737	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3738
3739	return usemapsize / 8;
3740}
3741
3742static void __init setup_usemap(struct pglist_data *pgdat,
3743				struct zone *zone, unsigned long zonesize)
3744{
3745	unsigned long usemapsize = usemap_size(zonesize);
3746	zone->pageblock_flags = NULL;
3747	if (usemapsize)
3748		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3749}
3750#else
3751static void inline setup_usemap(struct pglist_data *pgdat,
3752				struct zone *zone, unsigned long zonesize) {}
3753#endif /* CONFIG_SPARSEMEM */
3754
3755#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3756
3757/* Return a sensible default order for the pageblock size. */
3758static inline int pageblock_default_order(void)
3759{
3760	if (HPAGE_SHIFT > PAGE_SHIFT)
3761		return HUGETLB_PAGE_ORDER;
3762
3763	return MAX_ORDER-1;
3764}
3765
3766/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3767static inline void __init set_pageblock_order(unsigned int order)
3768{
3769	/* Check that pageblock_nr_pages has not already been setup */
3770	if (pageblock_order)
3771		return;
3772
3773	/*
3774	 * Assume the largest contiguous order of interest is a huge page.
3775	 * This value may be variable depending on boot parameters on IA64
3776	 */
3777	pageblock_order = order;
3778}
3779#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3780
3781/*
3782 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3783 * and pageblock_default_order() are unused as pageblock_order is set
3784 * at compile-time. See include/linux/pageblock-flags.h for the values of
3785 * pageblock_order based on the kernel config
3786 */
3787static inline int pageblock_default_order(unsigned int order)
3788{
3789	return MAX_ORDER-1;
3790}
3791#define set_pageblock_order(x)	do {} while (0)
3792
3793#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3794
3795/*
3796 * Set up the zone data structures:
3797 *   - mark all pages reserved
3798 *   - mark all memory queues empty
3799 *   - clear the memory bitmaps
3800 */
3801static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3802		unsigned long *zones_size, unsigned long *zholes_size)
3803{
3804	enum zone_type j;
3805	int nid = pgdat->node_id;
3806	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3807	int ret;
3808
3809	pgdat_resize_init(pgdat);
3810	pgdat->nr_zones = 0;
3811	init_waitqueue_head(&pgdat->kswapd_wait);
3812	pgdat->kswapd_max_order = 0;
3813	pgdat_page_cgroup_init(pgdat);
3814
3815	for (j = 0; j < MAX_NR_ZONES; j++) {
3816		struct zone *zone = pgdat->node_zones + j;
3817		unsigned long size, realsize, memmap_pages;
3818		enum lru_list l;
3819
3820		size = zone_spanned_pages_in_node(nid, j, zones_size);
3821		realsize = size - zone_absent_pages_in_node(nid, j,
3822								zholes_size);
3823
3824		/*
3825		 * Adjust realsize so that it accounts for how much memory
3826		 * is used by this zone for memmap. This affects the watermark
3827		 * and per-cpu initialisations
3828		 */
3829		memmap_pages =
3830			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3831		if (realsize >= memmap_pages) {
3832			realsize -= memmap_pages;
3833			if (memmap_pages)
3834				printk(KERN_DEBUG
3835				       "  %s zone: %lu pages used for memmap\n",
3836				       zone_names[j], memmap_pages);
3837		} else
3838			printk(KERN_WARNING
3839				"  %s zone: %lu pages exceeds realsize %lu\n",
3840				zone_names[j], memmap_pages, realsize);
3841
3842		/* Account for reserved pages */
3843		if (j == 0 && realsize > dma_reserve) {
3844			realsize -= dma_reserve;
3845			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3846					zone_names[0], dma_reserve);
3847		}
3848
3849		if (!is_highmem_idx(j))
3850			nr_kernel_pages += realsize;
3851		nr_all_pages += realsize;
3852
3853		zone->spanned_pages = size;
3854		zone->present_pages = realsize;
3855#ifdef CONFIG_NUMA
3856		zone->node = nid;
3857		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3858						/ 100;
3859		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3860#endif
3861		zone->name = zone_names[j];
3862		spin_lock_init(&zone->lock);
3863		spin_lock_init(&zone->lru_lock);
3864		zone_seqlock_init(zone);
3865		zone->zone_pgdat = pgdat;
3866
3867		zone->prev_priority = DEF_PRIORITY;
3868
3869		zone_pcp_init(zone);
3870		for_each_lru(l) {
3871			INIT_LIST_HEAD(&zone->lru[l].list);
3872			zone->reclaim_stat.nr_saved_scan[l] = 0;
3873		}
3874		zone->reclaim_stat.recent_rotated[0] = 0;
3875		zone->reclaim_stat.recent_rotated[1] = 0;
3876		zone->reclaim_stat.recent_scanned[0] = 0;
3877		zone->reclaim_stat.recent_scanned[1] = 0;
3878		zap_zone_vm_stats(zone);
3879		zone->flags = 0;
3880		if (!size)
3881			continue;
3882
3883		set_pageblock_order(pageblock_default_order());
3884		setup_usemap(pgdat, zone, size);
3885		ret = init_currently_empty_zone(zone, zone_start_pfn,
3886						size, MEMMAP_EARLY);
3887		BUG_ON(ret);
3888		memmap_init(size, nid, j, zone_start_pfn);
3889		zone_start_pfn += size;
3890	}
3891}
3892
3893static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3894{
3895	/* Skip empty nodes */
3896	if (!pgdat->node_spanned_pages)
3897		return;
3898
3899#ifdef CONFIG_FLAT_NODE_MEM_MAP
3900	/* ia64 gets its own node_mem_map, before this, without bootmem */
3901	if (!pgdat->node_mem_map) {
3902		unsigned long size, start, end;
3903		struct page *map;
3904
3905		/*
3906		 * The zone's endpoints aren't required to be MAX_ORDER
3907		 * aligned but the node_mem_map endpoints must be in order
3908		 * for the buddy allocator to function correctly.
3909		 */
3910		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3911		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3912		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3913		size =  (end - start) * sizeof(struct page);
3914		map = alloc_remap(pgdat->node_id, size);
3915		if (!map)
3916			map = alloc_bootmem_node(pgdat, size);
3917		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3918	}
3919#ifndef CONFIG_NEED_MULTIPLE_NODES
3920	/*
3921	 * With no DISCONTIG, the global mem_map is just set as node 0's
3922	 */
3923	if (pgdat == NODE_DATA(0)) {
3924		mem_map = NODE_DATA(0)->node_mem_map;
3925#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3926		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3927			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3928#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3929	}
3930#endif
3931#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3932}
3933
3934void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3935		unsigned long node_start_pfn, unsigned long *zholes_size)
3936{
3937	pg_data_t *pgdat = NODE_DATA(nid);
3938
3939	pgdat->node_id = nid;
3940	pgdat->node_start_pfn = node_start_pfn;
3941	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3942
3943	alloc_node_mem_map(pgdat);
3944#ifdef CONFIG_FLAT_NODE_MEM_MAP
3945	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3946		nid, (unsigned long)pgdat,
3947		(unsigned long)pgdat->node_mem_map);
3948#endif
3949
3950	free_area_init_core(pgdat, zones_size, zholes_size);
3951}
3952
3953#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3954
3955#if MAX_NUMNODES > 1
3956/*
3957 * Figure out the number of possible node ids.
3958 */
3959static void __init setup_nr_node_ids(void)
3960{
3961	unsigned int node;
3962	unsigned int highest = 0;
3963
3964	for_each_node_mask(node, node_possible_map)
3965		highest = node;
3966	nr_node_ids = highest + 1;
3967}
3968#else
3969static inline void setup_nr_node_ids(void)
3970{
3971}
3972#endif
3973
3974/**
3975 * add_active_range - Register a range of PFNs backed by physical memory
3976 * @nid: The node ID the range resides on
3977 * @start_pfn: The start PFN of the available physical memory
3978 * @end_pfn: The end PFN of the available physical memory
3979 *
3980 * These ranges are stored in an early_node_map[] and later used by
3981 * free_area_init_nodes() to calculate zone sizes and holes. If the
3982 * range spans a memory hole, it is up to the architecture to ensure
3983 * the memory is not freed by the bootmem allocator. If possible
3984 * the range being registered will be merged with existing ranges.
3985 */
3986void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3987						unsigned long end_pfn)
3988{
3989	int i;
3990
3991	mminit_dprintk(MMINIT_TRACE, "memory_register",
3992			"Entering add_active_range(%d, %#lx, %#lx) "
3993			"%d entries of %d used\n",
3994			nid, start_pfn, end_pfn,
3995			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3996
3997	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3998
3999	/* Merge with existing active regions if possible */
4000	for (i = 0; i < nr_nodemap_entries; i++) {
4001		if (early_node_map[i].nid != nid)
4002			continue;
4003
4004		/* Skip if an existing region covers this new one */
4005		if (start_pfn >= early_node_map[i].start_pfn &&
4006				end_pfn <= early_node_map[i].end_pfn)
4007			return;
4008
4009		/* Merge forward if suitable */
4010		if (start_pfn <= early_node_map[i].end_pfn &&
4011				end_pfn > early_node_map[i].end_pfn) {
4012			early_node_map[i].end_pfn = end_pfn;
4013			return;
4014		}
4015
4016		/* Merge backward if suitable */
4017		if (start_pfn < early_node_map[i].start_pfn &&
4018				end_pfn >= early_node_map[i].start_pfn) {
4019			early_node_map[i].start_pfn = start_pfn;
4020			return;
4021		}
4022	}
4023
4024	/* Check that early_node_map is large enough */
4025	if (i >= MAX_ACTIVE_REGIONS) {
4026		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4027							MAX_ACTIVE_REGIONS);
4028		return;
4029	}
4030
4031	early_node_map[i].nid = nid;
4032	early_node_map[i].start_pfn = start_pfn;
4033	early_node_map[i].end_pfn = end_pfn;
4034	nr_nodemap_entries = i + 1;
4035}
4036
4037/**
4038 * remove_active_range - Shrink an existing registered range of PFNs
4039 * @nid: The node id the range is on that should be shrunk
4040 * @start_pfn: The new PFN of the range
4041 * @end_pfn: The new PFN of the range
4042 *
4043 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4044 * The map is kept near the end physical page range that has already been
4045 * registered. This function allows an arch to shrink an existing registered
4046 * range.
4047 */
4048void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4049				unsigned long end_pfn)
4050{
4051	int i, j;
4052	int removed = 0;
4053
4054	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4055			  nid, start_pfn, end_pfn);
4056
4057	/* Find the old active region end and shrink */
4058	for_each_active_range_index_in_nid(i, nid) {
4059		if (early_node_map[i].start_pfn >= start_pfn &&
4060		    early_node_map[i].end_pfn <= end_pfn) {
4061			/* clear it */
4062			early_node_map[i].start_pfn = 0;
4063			early_node_map[i].end_pfn = 0;
4064			removed = 1;
4065			continue;
4066		}
4067		if (early_node_map[i].start_pfn < start_pfn &&
4068		    early_node_map[i].end_pfn > start_pfn) {
4069			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4070			early_node_map[i].end_pfn = start_pfn;
4071			if (temp_end_pfn > end_pfn)
4072				add_active_range(nid, end_pfn, temp_end_pfn);
4073			continue;
4074		}
4075		if (early_node_map[i].start_pfn >= start_pfn &&
4076		    early_node_map[i].end_pfn > end_pfn &&
4077		    early_node_map[i].start_pfn < end_pfn) {
4078			early_node_map[i].start_pfn = end_pfn;
4079			continue;
4080		}
4081	}
4082
4083	if (!removed)
4084		return;
4085
4086	/* remove the blank ones */
4087	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4088		if (early_node_map[i].nid != nid)
4089			continue;
4090		if (early_node_map[i].end_pfn)
4091			continue;
4092		/* we found it, get rid of it */
4093		for (j = i; j < nr_nodemap_entries - 1; j++)
4094			memcpy(&early_node_map[j], &early_node_map[j+1],
4095				sizeof(early_node_map[j]));
4096		j = nr_nodemap_entries - 1;
4097		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4098		nr_nodemap_entries--;
4099	}
4100}
4101
4102/**
4103 * remove_all_active_ranges - Remove all currently registered regions
4104 *
4105 * During discovery, it may be found that a table like SRAT is invalid
4106 * and an alternative discovery method must be used. This function removes
4107 * all currently registered regions.
4108 */
4109void __init remove_all_active_ranges(void)
4110{
4111	memset(early_node_map, 0, sizeof(early_node_map));
4112	nr_nodemap_entries = 0;
4113}
4114
4115/* Compare two active node_active_regions */
4116static int __init cmp_node_active_region(const void *a, const void *b)
4117{
4118	struct node_active_region *arange = (struct node_active_region *)a;
4119	struct node_active_region *brange = (struct node_active_region *)b;
4120
4121	/* Done this way to avoid overflows */
4122	if (arange->start_pfn > brange->start_pfn)
4123		return 1;
4124	if (arange->start_pfn < brange->start_pfn)
4125		return -1;
4126
4127	return 0;
4128}
4129
4130/* sort the node_map by start_pfn */
4131void __init sort_node_map(void)
4132{
4133	sort(early_node_map, (size_t)nr_nodemap_entries,
4134			sizeof(struct node_active_region),
4135			cmp_node_active_region, NULL);
4136}
4137
4138/* Find the lowest pfn for a node */
4139static unsigned long __init find_min_pfn_for_node(int nid)
4140{
4141	int i;
4142	unsigned long min_pfn = ULONG_MAX;
4143
4144	/* Assuming a sorted map, the first range found has the starting pfn */
4145	for_each_active_range_index_in_nid(i, nid)
4146		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4147
4148	if (min_pfn == ULONG_MAX) {
4149		printk(KERN_WARNING
4150			"Could not find start_pfn for node %d\n", nid);
4151		return 0;
4152	}
4153
4154	return min_pfn;
4155}
4156
4157/**
4158 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4159 *
4160 * It returns the minimum PFN based on information provided via
4161 * add_active_range().
4162 */
4163unsigned long __init find_min_pfn_with_active_regions(void)
4164{
4165	return find_min_pfn_for_node(MAX_NUMNODES);
4166}
4167
4168/*
4169 * early_calculate_totalpages()
4170 * Sum pages in active regions for movable zone.
4171 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4172 */
4173static unsigned long __init early_calculate_totalpages(void)
4174{
4175	int i;
4176	unsigned long totalpages = 0;
4177
4178	for (i = 0; i < nr_nodemap_entries; i++) {
4179		unsigned long pages = early_node_map[i].end_pfn -
4180						early_node_map[i].start_pfn;
4181		totalpages += pages;
4182		if (pages)
4183			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4184	}
4185  	return totalpages;
4186}
4187
4188/*
4189 * Find the PFN the Movable zone begins in each node. Kernel memory
4190 * is spread evenly between nodes as long as the nodes have enough
4191 * memory. When they don't, some nodes will have more kernelcore than
4192 * others
4193 */
4194static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4195{
4196	int i, nid;
4197	unsigned long usable_startpfn;
4198	unsigned long kernelcore_node, kernelcore_remaining;
4199	/* save the state before borrow the nodemask */
4200	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4201	unsigned long totalpages = early_calculate_totalpages();
4202	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4203
4204	/*
4205	 * If movablecore was specified, calculate what size of
4206	 * kernelcore that corresponds so that memory usable for
4207	 * any allocation type is evenly spread. If both kernelcore
4208	 * and movablecore are specified, then the value of kernelcore
4209	 * will be used for required_kernelcore if it's greater than
4210	 * what movablecore would have allowed.
4211	 */
4212	if (required_movablecore) {
4213		unsigned long corepages;
4214
4215		/*
4216		 * Round-up so that ZONE_MOVABLE is at least as large as what
4217		 * was requested by the user
4218		 */
4219		required_movablecore =
4220			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4221		corepages = totalpages - required_movablecore;
4222
4223		required_kernelcore = max(required_kernelcore, corepages);
4224	}
4225
4226	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4227	if (!required_kernelcore)
4228		goto out;
4229
4230	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4231	find_usable_zone_for_movable();
4232	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4233
4234restart:
4235	/* Spread kernelcore memory as evenly as possible throughout nodes */
4236	kernelcore_node = required_kernelcore / usable_nodes;
4237	for_each_node_state(nid, N_HIGH_MEMORY) {
4238		/*
4239		 * Recalculate kernelcore_node if the division per node
4240		 * now exceeds what is necessary to satisfy the requested
4241		 * amount of memory for the kernel
4242		 */
4243		if (required_kernelcore < kernelcore_node)
4244			kernelcore_node = required_kernelcore / usable_nodes;
4245
4246		/*
4247		 * As the map is walked, we track how much memory is usable
4248		 * by the kernel using kernelcore_remaining. When it is
4249		 * 0, the rest of the node is usable by ZONE_MOVABLE
4250		 */
4251		kernelcore_remaining = kernelcore_node;
4252
4253		/* Go through each range of PFNs within this node */
4254		for_each_active_range_index_in_nid(i, nid) {
4255			unsigned long start_pfn, end_pfn;
4256			unsigned long size_pages;
4257
4258			start_pfn = max(early_node_map[i].start_pfn,
4259						zone_movable_pfn[nid]);
4260			end_pfn = early_node_map[i].end_pfn;
4261			if (start_pfn >= end_pfn)
4262				continue;
4263
4264			/* Account for what is only usable for kernelcore */
4265			if (start_pfn < usable_startpfn) {
4266				unsigned long kernel_pages;
4267				kernel_pages = min(end_pfn, usable_startpfn)
4268								- start_pfn;
4269
4270				kernelcore_remaining -= min(kernel_pages,
4271							kernelcore_remaining);
4272				required_kernelcore -= min(kernel_pages,
4273							required_kernelcore);
4274
4275				/* Continue if range is now fully accounted */
4276				if (end_pfn <= usable_startpfn) {
4277
4278					/*
4279					 * Push zone_movable_pfn to the end so
4280					 * that if we have to rebalance
4281					 * kernelcore across nodes, we will
4282					 * not double account here
4283					 */
4284					zone_movable_pfn[nid] = end_pfn;
4285					continue;
4286				}
4287				start_pfn = usable_startpfn;
4288			}
4289
4290			/*
4291			 * The usable PFN range for ZONE_MOVABLE is from
4292			 * start_pfn->end_pfn. Calculate size_pages as the
4293			 * number of pages used as kernelcore
4294			 */
4295			size_pages = end_pfn - start_pfn;
4296			if (size_pages > kernelcore_remaining)
4297				size_pages = kernelcore_remaining;
4298			zone_movable_pfn[nid] = start_pfn + size_pages;
4299
4300			/*
4301			 * Some kernelcore has been met, update counts and
4302			 * break if the kernelcore for this node has been
4303			 * satisified
4304			 */
4305			required_kernelcore -= min(required_kernelcore,
4306								size_pages);
4307			kernelcore_remaining -= size_pages;
4308			if (!kernelcore_remaining)
4309				break;
4310		}
4311	}
4312
4313	/*
4314	 * If there is still required_kernelcore, we do another pass with one
4315	 * less node in the count. This will push zone_movable_pfn[nid] further
4316	 * along on the nodes that still have memory until kernelcore is
4317	 * satisified
4318	 */
4319	usable_nodes--;
4320	if (usable_nodes && required_kernelcore > usable_nodes)
4321		goto restart;
4322
4323	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4324	for (nid = 0; nid < MAX_NUMNODES; nid++)
4325		zone_movable_pfn[nid] =
4326			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4327
4328out:
4329	/* restore the node_state */
4330	node_states[N_HIGH_MEMORY] = saved_node_state;
4331}
4332
4333/* Any regular memory on that node ? */
4334static void check_for_regular_memory(pg_data_t *pgdat)
4335{
4336#ifdef CONFIG_HIGHMEM
4337	enum zone_type zone_type;
4338
4339	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4340		struct zone *zone = &pgdat->node_zones[zone_type];
4341		if (zone->present_pages)
4342			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4343	}
4344#endif
4345}
4346
4347/**
4348 * free_area_init_nodes - Initialise all pg_data_t and zone data
4349 * @max_zone_pfn: an array of max PFNs for each zone
4350 *
4351 * This will call free_area_init_node() for each active node in the system.
4352 * Using the page ranges provided by add_active_range(), the size of each
4353 * zone in each node and their holes is calculated. If the maximum PFN
4354 * between two adjacent zones match, it is assumed that the zone is empty.
4355 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4356 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4357 * starts where the previous one ended. For example, ZONE_DMA32 starts
4358 * at arch_max_dma_pfn.
4359 */
4360void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4361{
4362	unsigned long nid;
4363	int i;
4364
4365	/* Sort early_node_map as initialisation assumes it is sorted */
4366	sort_node_map();
4367
4368	/* Record where the zone boundaries are */
4369	memset(arch_zone_lowest_possible_pfn, 0,
4370				sizeof(arch_zone_lowest_possible_pfn));
4371	memset(arch_zone_highest_possible_pfn, 0,
4372				sizeof(arch_zone_highest_possible_pfn));
4373	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4374	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4375	for (i = 1; i < MAX_NR_ZONES; i++) {
4376		if (i == ZONE_MOVABLE)
4377			continue;
4378		arch_zone_lowest_possible_pfn[i] =
4379			arch_zone_highest_possible_pfn[i-1];
4380		arch_zone_highest_possible_pfn[i] =
4381			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4382	}
4383	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4384	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4385
4386	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4387	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4388	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4389
4390	/* Print out the zone ranges */
4391	printk("Zone PFN ranges:\n");
4392	for (i = 0; i < MAX_NR_ZONES; i++) {
4393		if (i == ZONE_MOVABLE)
4394			continue;
4395		printk("  %-8s ", zone_names[i]);
4396		if (arch_zone_lowest_possible_pfn[i] ==
4397				arch_zone_highest_possible_pfn[i])
4398			printk("empty\n");
4399		else
4400			printk("%0#10lx -> %0#10lx\n",
4401				arch_zone_lowest_possible_pfn[i],
4402				arch_zone_highest_possible_pfn[i]);
4403	}
4404
4405	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4406	printk("Movable zone start PFN for each node\n");
4407	for (i = 0; i < MAX_NUMNODES; i++) {
4408		if (zone_movable_pfn[i])
4409			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4410	}
4411
4412	/* Print out the early_node_map[] */
4413	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4414	for (i = 0; i < nr_nodemap_entries; i++)
4415		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4416						early_node_map[i].start_pfn,
4417						early_node_map[i].end_pfn);
4418
4419	/* Initialise every node */
4420	mminit_verify_pageflags_layout();
4421	setup_nr_node_ids();
4422	for_each_online_node(nid) {
4423		pg_data_t *pgdat = NODE_DATA(nid);
4424		free_area_init_node(nid, NULL,
4425				find_min_pfn_for_node(nid), NULL);
4426
4427		/* Any memory on that node */
4428		if (pgdat->node_present_pages)
4429			node_set_state(nid, N_HIGH_MEMORY);
4430		check_for_regular_memory(pgdat);
4431	}
4432}
4433
4434static int __init cmdline_parse_core(char *p, unsigned long *core)
4435{
4436	unsigned long long coremem;
4437	if (!p)
4438		return -EINVAL;
4439
4440	coremem = memparse(p, &p);
4441	*core = coremem >> PAGE_SHIFT;
4442
4443	/* Paranoid check that UL is enough for the coremem value */
4444	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4445
4446	return 0;
4447}
4448
4449/*
4450 * kernelcore=size sets the amount of memory for use for allocations that
4451 * cannot be reclaimed or migrated.
4452 */
4453static int __init cmdline_parse_kernelcore(char *p)
4454{
4455	return cmdline_parse_core(p, &required_kernelcore);
4456}
4457
4458/*
4459 * movablecore=size sets the amount of memory for use for allocations that
4460 * can be reclaimed or migrated.
4461 */
4462static int __init cmdline_parse_movablecore(char *p)
4463{
4464	return cmdline_parse_core(p, &required_movablecore);
4465}
4466
4467early_param("kernelcore", cmdline_parse_kernelcore);
4468early_param("movablecore", cmdline_parse_movablecore);
4469
4470#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4471
4472/**
4473 * set_dma_reserve - set the specified number of pages reserved in the first zone
4474 * @new_dma_reserve: The number of pages to mark reserved
4475 *
4476 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4477 * In the DMA zone, a significant percentage may be consumed by kernel image
4478 * and other unfreeable allocations which can skew the watermarks badly. This
4479 * function may optionally be used to account for unfreeable pages in the
4480 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4481 * smaller per-cpu batchsize.
4482 */
4483void __init set_dma_reserve(unsigned long new_dma_reserve)
4484{
4485	dma_reserve = new_dma_reserve;
4486}
4487
4488#ifndef CONFIG_NEED_MULTIPLE_NODES
4489struct pglist_data __refdata contig_page_data = {
4490#ifndef CONFIG_NO_BOOTMEM
4491 .bdata = &bootmem_node_data[0]
4492#endif
4493 };
4494EXPORT_SYMBOL(contig_page_data);
4495#endif
4496
4497void __init free_area_init(unsigned long *zones_size)
4498{
4499	free_area_init_node(0, zones_size,
4500			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4501}
4502
4503static int page_alloc_cpu_notify(struct notifier_block *self,
4504				 unsigned long action, void *hcpu)
4505{
4506	int cpu = (unsigned long)hcpu;
4507
4508	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4509		drain_pages(cpu);
4510
4511		/*
4512		 * Spill the event counters of the dead processor
4513		 * into the current processors event counters.
4514		 * This artificially elevates the count of the current
4515		 * processor.
4516		 */
4517		vm_events_fold_cpu(cpu);
4518
4519		/*
4520		 * Zero the differential counters of the dead processor
4521		 * so that the vm statistics are consistent.
4522		 *
4523		 * This is only okay since the processor is dead and cannot
4524		 * race with what we are doing.
4525		 */
4526		refresh_cpu_vm_stats(cpu);
4527	}
4528	return NOTIFY_OK;
4529}
4530
4531void __init page_alloc_init(void)
4532{
4533	hotcpu_notifier(page_alloc_cpu_notify, 0);
4534}
4535
4536/*
4537 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4538 *	or min_free_kbytes changes.
4539 */
4540static void calculate_totalreserve_pages(void)
4541{
4542	struct pglist_data *pgdat;
4543	unsigned long reserve_pages = 0;
4544	enum zone_type i, j;
4545
4546	for_each_online_pgdat(pgdat) {
4547		for (i = 0; i < MAX_NR_ZONES; i++) {
4548			struct zone *zone = pgdat->node_zones + i;
4549			unsigned long max = 0;
4550
4551			/* Find valid and maximum lowmem_reserve in the zone */
4552			for (j = i; j < MAX_NR_ZONES; j++) {
4553				if (zone->lowmem_reserve[j] > max)
4554					max = zone->lowmem_reserve[j];
4555			}
4556
4557			/* we treat the high watermark as reserved pages. */
4558			max += high_wmark_pages(zone);
4559
4560			if (max > zone->present_pages)
4561				max = zone->present_pages;
4562			reserve_pages += max;
4563		}
4564	}
4565	totalreserve_pages = reserve_pages;
4566}
4567
4568/*
4569 * setup_per_zone_lowmem_reserve - called whenever
4570 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4571 *	has a correct pages reserved value, so an adequate number of
4572 *	pages are left in the zone after a successful __alloc_pages().
4573 */
4574static void setup_per_zone_lowmem_reserve(void)
4575{
4576	struct pglist_data *pgdat;
4577	enum zone_type j, idx;
4578
4579	for_each_online_pgdat(pgdat) {
4580		for (j = 0; j < MAX_NR_ZONES; j++) {
4581			struct zone *zone = pgdat->node_zones + j;
4582			unsigned long present_pages = zone->present_pages;
4583
4584			zone->lowmem_reserve[j] = 0;
4585
4586			idx = j;
4587			while (idx) {
4588				struct zone *lower_zone;
4589
4590				idx--;
4591
4592				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4593					sysctl_lowmem_reserve_ratio[idx] = 1;
4594
4595				lower_zone = pgdat->node_zones + idx;
4596				lower_zone->lowmem_reserve[j] = present_pages /
4597					sysctl_lowmem_reserve_ratio[idx];
4598				present_pages += lower_zone->present_pages;
4599			}
4600		}
4601	}
4602
4603	/* update totalreserve_pages */
4604	calculate_totalreserve_pages();
4605}
4606
4607/**
4608 * setup_per_zone_wmarks - called when min_free_kbytes changes
4609 * or when memory is hot-{added|removed}
4610 *
4611 * Ensures that the watermark[min,low,high] values for each zone are set
4612 * correctly with respect to min_free_kbytes.
4613 */
4614void setup_per_zone_wmarks(void)
4615{
4616	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4617	unsigned long lowmem_pages = 0;
4618	struct zone *zone;
4619	unsigned long flags;
4620
4621	/* Calculate total number of !ZONE_HIGHMEM pages */
4622	for_each_zone(zone) {
4623		if (!is_highmem(zone))
4624			lowmem_pages += zone->present_pages;
4625	}
4626
4627	for_each_zone(zone) {
4628		u64 tmp;
4629
4630		spin_lock_irqsave(&zone->lock, flags);
4631		tmp = (u64)pages_min * zone->present_pages;
4632		do_div(tmp, lowmem_pages);
4633		if (is_highmem(zone)) {
4634			/*
4635			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4636			 * need highmem pages, so cap pages_min to a small
4637			 * value here.
4638			 *
4639			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4640			 * deltas controls asynch page reclaim, and so should
4641			 * not be capped for highmem.
4642			 */
4643			int min_pages;
4644
4645			min_pages = zone->present_pages / 1024;
4646			if (min_pages < SWAP_CLUSTER_MAX)
4647				min_pages = SWAP_CLUSTER_MAX;
4648			if (min_pages > 128)
4649				min_pages = 128;
4650			zone->watermark[WMARK_MIN] = min_pages;
4651		} else {
4652			/*
4653			 * If it's a lowmem zone, reserve a number of pages
4654			 * proportionate to the zone's size.
4655			 */
4656			zone->watermark[WMARK_MIN] = tmp;
4657		}
4658
4659		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4660		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4661		setup_zone_migrate_reserve(zone);
4662		spin_unlock_irqrestore(&zone->lock, flags);
4663	}
4664
4665	/* update totalreserve_pages */
4666	calculate_totalreserve_pages();
4667}
4668
4669/*
4670 * The inactive anon list should be small enough that the VM never has to
4671 * do too much work, but large enough that each inactive page has a chance
4672 * to be referenced again before it is swapped out.
4673 *
4674 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4675 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4676 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4677 * the anonymous pages are kept on the inactive list.
4678 *
4679 * total     target    max
4680 * memory    ratio     inactive anon
4681 * -------------------------------------
4682 *   10MB       1         5MB
4683 *  100MB       1        50MB
4684 *    1GB       3       250MB
4685 *   10GB      10       0.9GB
4686 *  100GB      31         3GB
4687 *    1TB     101        10GB
4688 *   10TB     320        32GB
4689 */
4690void calculate_zone_inactive_ratio(struct zone *zone)
4691{
4692	unsigned int gb, ratio;
4693
4694	/* Zone size in gigabytes */
4695	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4696	if (gb)
4697		ratio = int_sqrt(10 * gb);
4698	else
4699		ratio = 1;
4700
4701	zone->inactive_ratio = ratio;
4702}
4703
4704static void __init setup_per_zone_inactive_ratio(void)
4705{
4706	struct zone *zone;
4707
4708	for_each_zone(zone)
4709		calculate_zone_inactive_ratio(zone);
4710}
4711
4712/*
4713 * Initialise min_free_kbytes.
4714 *
4715 * For small machines we want it small (128k min).  For large machines
4716 * we want it large (64MB max).  But it is not linear, because network
4717 * bandwidth does not increase linearly with machine size.  We use
4718 *
4719 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4720 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4721 *
4722 * which yields
4723 *
4724 * 16MB:	512k
4725 * 32MB:	724k
4726 * 64MB:	1024k
4727 * 128MB:	1448k
4728 * 256MB:	2048k
4729 * 512MB:	2896k
4730 * 1024MB:	4096k
4731 * 2048MB:	5792k
4732 * 4096MB:	8192k
4733 * 8192MB:	11584k
4734 * 16384MB:	16384k
4735 */
4736static int __init init_per_zone_wmark_min(void)
4737{
4738	unsigned long lowmem_kbytes;
4739
4740	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4741
4742	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4743	if (min_free_kbytes < 128)
4744		min_free_kbytes = 128;
4745	if (min_free_kbytes > 65536)
4746		min_free_kbytes = 65536;
4747	setup_per_zone_wmarks();
4748	setup_per_zone_lowmem_reserve();
4749	setup_per_zone_inactive_ratio();
4750	return 0;
4751}
4752module_init(init_per_zone_wmark_min)
4753
4754/*
4755 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4756 *	that we can call two helper functions whenever min_free_kbytes
4757 *	changes.
4758 */
4759int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4760	void __user *buffer, size_t *length, loff_t *ppos)
4761{
4762	proc_dointvec(table, write, buffer, length, ppos);
4763	if (write)
4764		setup_per_zone_wmarks();
4765	return 0;
4766}
4767
4768#ifdef CONFIG_NUMA
4769int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4770	void __user *buffer, size_t *length, loff_t *ppos)
4771{
4772	struct zone *zone;
4773	int rc;
4774
4775	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4776	if (rc)
4777		return rc;
4778
4779	for_each_zone(zone)
4780		zone->min_unmapped_pages = (zone->present_pages *
4781				sysctl_min_unmapped_ratio) / 100;
4782	return 0;
4783}
4784
4785int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4786	void __user *buffer, size_t *length, loff_t *ppos)
4787{
4788	struct zone *zone;
4789	int rc;
4790
4791	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4792	if (rc)
4793		return rc;
4794
4795	for_each_zone(zone)
4796		zone->min_slab_pages = (zone->present_pages *
4797				sysctl_min_slab_ratio) / 100;
4798	return 0;
4799}
4800#endif
4801
4802/*
4803 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4804 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4805 *	whenever sysctl_lowmem_reserve_ratio changes.
4806 *
4807 * The reserve ratio obviously has absolutely no relation with the
4808 * minimum watermarks. The lowmem reserve ratio can only make sense
4809 * if in function of the boot time zone sizes.
4810 */
4811int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4812	void __user *buffer, size_t *length, loff_t *ppos)
4813{
4814	proc_dointvec_minmax(table, write, buffer, length, ppos);
4815	setup_per_zone_lowmem_reserve();
4816	return 0;
4817}
4818
4819/*
4820 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4821 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4822 * can have before it gets flushed back to buddy allocator.
4823 */
4824
4825int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4826	void __user *buffer, size_t *length, loff_t *ppos)
4827{
4828	struct zone *zone;
4829	unsigned int cpu;
4830	int ret;
4831
4832	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4833	if (!write || (ret == -EINVAL))
4834		return ret;
4835	for_each_populated_zone(zone) {
4836		for_each_possible_cpu(cpu) {
4837			unsigned long  high;
4838			high = zone->present_pages / percpu_pagelist_fraction;
4839			setup_pagelist_highmark(
4840				per_cpu_ptr(zone->pageset, cpu), high);
4841		}
4842	}
4843	return 0;
4844}
4845
4846int hashdist = HASHDIST_DEFAULT;
4847
4848#ifdef CONFIG_NUMA
4849static int __init set_hashdist(char *str)
4850{
4851	if (!str)
4852		return 0;
4853	hashdist = simple_strtoul(str, &str, 0);
4854	return 1;
4855}
4856__setup("hashdist=", set_hashdist);
4857#endif
4858
4859/*
4860 * allocate a large system hash table from bootmem
4861 * - it is assumed that the hash table must contain an exact power-of-2
4862 *   quantity of entries
4863 * - limit is the number of hash buckets, not the total allocation size
4864 */
4865void *__init alloc_large_system_hash(const char *tablename,
4866				     unsigned long bucketsize,
4867				     unsigned long numentries,
4868				     int scale,
4869				     int flags,
4870				     unsigned int *_hash_shift,
4871				     unsigned int *_hash_mask,
4872				     unsigned long limit)
4873{
4874	unsigned long long max = limit;
4875	unsigned long log2qty, size;
4876	void *table = NULL;
4877
4878	/* allow the kernel cmdline to have a say */
4879	if (!numentries) {
4880		/* round applicable memory size up to nearest megabyte */
4881		numentries = nr_kernel_pages;
4882		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4883		numentries >>= 20 - PAGE_SHIFT;
4884		numentries <<= 20 - PAGE_SHIFT;
4885
4886		/* limit to 1 bucket per 2^scale bytes of low memory */
4887		if (scale > PAGE_SHIFT)
4888			numentries >>= (scale - PAGE_SHIFT);
4889		else
4890			numentries <<= (PAGE_SHIFT - scale);
4891
4892		/* Make sure we've got at least a 0-order allocation.. */
4893		if (unlikely(flags & HASH_SMALL)) {
4894			/* Makes no sense without HASH_EARLY */
4895			WARN_ON(!(flags & HASH_EARLY));
4896			if (!(numentries >> *_hash_shift)) {
4897				numentries = 1UL << *_hash_shift;
4898				BUG_ON(!numentries);
4899			}
4900		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4901			numentries = PAGE_SIZE / bucketsize;
4902	}
4903	numentries = roundup_pow_of_two(numentries);
4904
4905	/* limit allocation size to 1/16 total memory by default */
4906	if (max == 0) {
4907		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4908		do_div(max, bucketsize);
4909	}
4910
4911	if (numentries > max)
4912		numentries = max;
4913
4914	log2qty = ilog2(numentries);
4915
4916	do {
4917		size = bucketsize << log2qty;
4918		if (flags & HASH_EARLY)
4919			table = alloc_bootmem_nopanic(size);
4920		else if (hashdist)
4921			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4922		else {
4923			/*
4924			 * If bucketsize is not a power-of-two, we may free
4925			 * some pages at the end of hash table which
4926			 * alloc_pages_exact() automatically does
4927			 */
4928			if (get_order(size) < MAX_ORDER) {
4929				table = alloc_pages_exact(size, GFP_ATOMIC);
4930				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4931			}
4932		}
4933	} while (!table && size > PAGE_SIZE && --log2qty);
4934
4935	if (!table)
4936		panic("Failed to allocate %s hash table\n", tablename);
4937
4938	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4939	       tablename,
4940	       (1U << log2qty),
4941	       ilog2(size) - PAGE_SHIFT,
4942	       size);
4943
4944	if (_hash_shift)
4945		*_hash_shift = log2qty;
4946	if (_hash_mask)
4947		*_hash_mask = (1 << log2qty) - 1;
4948
4949	return table;
4950}
4951
4952/* Return a pointer to the bitmap storing bits affecting a block of pages */
4953static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4954							unsigned long pfn)
4955{
4956#ifdef CONFIG_SPARSEMEM
4957	return __pfn_to_section(pfn)->pageblock_flags;
4958#else
4959	return zone->pageblock_flags;
4960#endif /* CONFIG_SPARSEMEM */
4961}
4962
4963static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4964{
4965#ifdef CONFIG_SPARSEMEM
4966	pfn &= (PAGES_PER_SECTION-1);
4967	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4968#else
4969	pfn = pfn - zone->zone_start_pfn;
4970	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4971#endif /* CONFIG_SPARSEMEM */
4972}
4973
4974/**
4975 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4976 * @page: The page within the block of interest
4977 * @start_bitidx: The first bit of interest to retrieve
4978 * @end_bitidx: The last bit of interest
4979 * returns pageblock_bits flags
4980 */
4981unsigned long get_pageblock_flags_group(struct page *page,
4982					int start_bitidx, int end_bitidx)
4983{
4984	struct zone *zone;
4985	unsigned long *bitmap;
4986	unsigned long pfn, bitidx;
4987	unsigned long flags = 0;
4988	unsigned long value = 1;
4989
4990	zone = page_zone(page);
4991	pfn = page_to_pfn(page);
4992	bitmap = get_pageblock_bitmap(zone, pfn);
4993	bitidx = pfn_to_bitidx(zone, pfn);
4994
4995	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4996		if (test_bit(bitidx + start_bitidx, bitmap))
4997			flags |= value;
4998
4999	return flags;
5000}
5001
5002/**
5003 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5004 * @page: The page within the block of interest
5005 * @start_bitidx: The first bit of interest
5006 * @end_bitidx: The last bit of interest
5007 * @flags: The flags to set
5008 */
5009void set_pageblock_flags_group(struct page *page, unsigned long flags,
5010					int start_bitidx, int end_bitidx)
5011{
5012	struct zone *zone;
5013	unsigned long *bitmap;
5014	unsigned long pfn, bitidx;
5015	unsigned long value = 1;
5016
5017	zone = page_zone(page);
5018	pfn = page_to_pfn(page);
5019	bitmap = get_pageblock_bitmap(zone, pfn);
5020	bitidx = pfn_to_bitidx(zone, pfn);
5021	VM_BUG_ON(pfn < zone->zone_start_pfn);
5022	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5023
5024	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5025		if (flags & value)
5026			__set_bit(bitidx + start_bitidx, bitmap);
5027		else
5028			__clear_bit(bitidx + start_bitidx, bitmap);
5029}
5030
5031/*
5032 * This is designed as sub function...plz see page_isolation.c also.
5033 * set/clear page block's type to be ISOLATE.
5034 * page allocater never alloc memory from ISOLATE block.
5035 */
5036
5037int set_migratetype_isolate(struct page *page)
5038{
5039	struct zone *zone;
5040	struct page *curr_page;
5041	unsigned long flags, pfn, iter;
5042	unsigned long immobile = 0;
5043	struct memory_isolate_notify arg;
5044	int notifier_ret;
5045	int ret = -EBUSY;
5046	int zone_idx;
5047
5048	zone = page_zone(page);
5049	zone_idx = zone_idx(zone);
5050
5051	spin_lock_irqsave(&zone->lock, flags);
5052	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5053	    zone_idx == ZONE_MOVABLE) {
5054		ret = 0;
5055		goto out;
5056	}
5057
5058	pfn = page_to_pfn(page);
5059	arg.start_pfn = pfn;
5060	arg.nr_pages = pageblock_nr_pages;
5061	arg.pages_found = 0;
5062
5063	/*
5064	 * It may be possible to isolate a pageblock even if the
5065	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5066	 * notifier chain is used by balloon drivers to return the
5067	 * number of pages in a range that are held by the balloon
5068	 * driver to shrink memory. If all the pages are accounted for
5069	 * by balloons, are free, or on the LRU, isolation can continue.
5070	 * Later, for example, when memory hotplug notifier runs, these
5071	 * pages reported as "can be isolated" should be isolated(freed)
5072	 * by the balloon driver through the memory notifier chain.
5073	 */
5074	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5075	notifier_ret = notifier_to_errno(notifier_ret);
5076	if (notifier_ret || !arg.pages_found)
5077		goto out;
5078
5079	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5080		if (!pfn_valid_within(pfn))
5081			continue;
5082
5083		curr_page = pfn_to_page(iter);
5084		if (!page_count(curr_page) || PageLRU(curr_page))
5085			continue;
5086
5087		immobile++;
5088	}
5089
5090	if (arg.pages_found == immobile)
5091		ret = 0;
5092
5093out:
5094	if (!ret) {
5095		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5096		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5097	}
5098
5099	spin_unlock_irqrestore(&zone->lock, flags);
5100	if (!ret)
5101		drain_all_pages();
5102	return ret;
5103}
5104
5105void unset_migratetype_isolate(struct page *page)
5106{
5107	struct zone *zone;
5108	unsigned long flags;
5109	zone = page_zone(page);
5110	spin_lock_irqsave(&zone->lock, flags);
5111	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5112		goto out;
5113	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5114	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5115out:
5116	spin_unlock_irqrestore(&zone->lock, flags);
5117}
5118
5119#ifdef CONFIG_MEMORY_HOTREMOVE
5120/*
5121 * All pages in the range must be isolated before calling this.
5122 */
5123void
5124__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5125{
5126	struct page *page;
5127	struct zone *zone;
5128	int order, i;
5129	unsigned long pfn;
5130	unsigned long flags;
5131	/* find the first valid pfn */
5132	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5133		if (pfn_valid(pfn))
5134			break;
5135	if (pfn == end_pfn)
5136		return;
5137	zone = page_zone(pfn_to_page(pfn));
5138	spin_lock_irqsave(&zone->lock, flags);
5139	pfn = start_pfn;
5140	while (pfn < end_pfn) {
5141		if (!pfn_valid(pfn)) {
5142			pfn++;
5143			continue;
5144		}
5145		page = pfn_to_page(pfn);
5146		BUG_ON(page_count(page));
5147		BUG_ON(!PageBuddy(page));
5148		order = page_order(page);
5149#ifdef CONFIG_DEBUG_VM
5150		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5151		       pfn, 1 << order, end_pfn);
5152#endif
5153		list_del(&page->lru);
5154		rmv_page_order(page);
5155		zone->free_area[order].nr_free--;
5156		__mod_zone_page_state(zone, NR_FREE_PAGES,
5157				      - (1UL << order));
5158		for (i = 0; i < (1 << order); i++)
5159			SetPageReserved((page+i));
5160		pfn += (1 << order);
5161	}
5162	spin_unlock_irqrestore(&zone->lock, flags);
5163}
5164#endif
5165
5166#ifdef CONFIG_MEMORY_FAILURE
5167bool is_free_buddy_page(struct page *page)
5168{
5169	struct zone *zone = page_zone(page);
5170	unsigned long pfn = page_to_pfn(page);
5171	unsigned long flags;
5172	int order;
5173
5174	spin_lock_irqsave(&zone->lock, flags);
5175	for (order = 0; order < MAX_ORDER; order++) {
5176		struct page *page_head = page - (pfn & ((1 << order) - 1));
5177
5178		if (PageBuddy(page_head) && page_order(page_head) >= order)
5179			break;
5180	}
5181	spin_unlock_irqrestore(&zone->lock, flags);
5182
5183	return order < MAX_ORDER;
5184}
5185#endif
5186