page_alloc.c revision 2f1b6248682f8b39ca3c7e549dfc216d26c4109b
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50EXPORT_SYMBOL(node_online_map);
51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52EXPORT_SYMBOL(node_possible_map);
53unsigned long totalram_pages __read_mostly;
54unsigned long totalreserve_pages __read_mostly;
55long nr_swap_pages;
56int percpu_pagelist_fraction;
57
58static void __free_pages_ok(struct page *page, unsigned int order);
59
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 *	1G machine -> (16M dma, 784M normal, 224M high)
64 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72	 256,
73	 256,
74	 32
75};
76
77EXPORT_SYMBOL(totalram_pages);
78
79/*
80 * Used by page_zone() to look up the address of the struct zone whose
81 * id is encoded in the upper bits of page->flags
82 */
83struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
84EXPORT_SYMBOL(zone_table);
85
86static char *zone_names[MAX_NR_ZONES] = {
87	 "DMA",
88	 "DMA32",
89	 "Normal",
90	 "HighMem"
91};
92
93int min_free_kbytes = 1024;
94
95unsigned long __meminitdata nr_kernel_pages;
96unsigned long __meminitdata nr_all_pages;
97
98#ifdef CONFIG_DEBUG_VM
99static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
100{
101	int ret = 0;
102	unsigned seq;
103	unsigned long pfn = page_to_pfn(page);
104
105	do {
106		seq = zone_span_seqbegin(zone);
107		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
108			ret = 1;
109		else if (pfn < zone->zone_start_pfn)
110			ret = 1;
111	} while (zone_span_seqretry(zone, seq));
112
113	return ret;
114}
115
116static int page_is_consistent(struct zone *zone, struct page *page)
117{
118#ifdef CONFIG_HOLES_IN_ZONE
119	if (!pfn_valid(page_to_pfn(page)))
120		return 0;
121#endif
122	if (zone != page_zone(page))
123		return 0;
124
125	return 1;
126}
127/*
128 * Temporary debugging check for pages not lying within a given zone.
129 */
130static int bad_range(struct zone *zone, struct page *page)
131{
132	if (page_outside_zone_boundaries(zone, page))
133		return 1;
134	if (!page_is_consistent(zone, page))
135		return 1;
136
137	return 0;
138}
139#else
140static inline int bad_range(struct zone *zone, struct page *page)
141{
142	return 0;
143}
144#endif
145
146static void bad_page(struct page *page)
147{
148	printk(KERN_EMERG "Bad page state in process '%s'\n"
149		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
150		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
151		KERN_EMERG "Backtrace:\n",
152		current->comm, page, (int)(2*sizeof(unsigned long)),
153		(unsigned long)page->flags, page->mapping,
154		page_mapcount(page), page_count(page));
155	dump_stack();
156	page->flags &= ~(1 << PG_lru	|
157			1 << PG_private |
158			1 << PG_locked	|
159			1 << PG_active	|
160			1 << PG_dirty	|
161			1 << PG_reclaim |
162			1 << PG_slab    |
163			1 << PG_swapcache |
164			1 << PG_writeback |
165			1 << PG_buddy );
166	set_page_count(page, 0);
167	reset_page_mapcount(page);
168	page->mapping = NULL;
169	add_taint(TAINT_BAD_PAGE);
170}
171
172/*
173 * Higher-order pages are called "compound pages".  They are structured thusly:
174 *
175 * The first PAGE_SIZE page is called the "head page".
176 *
177 * The remaining PAGE_SIZE pages are called "tail pages".
178 *
179 * All pages have PG_compound set.  All pages have their ->private pointing at
180 * the head page (even the head page has this).
181 *
182 * The first tail page's ->lru.next holds the address of the compound page's
183 * put_page() function.  Its ->lru.prev holds the order of allocation.
184 * This usage means that zero-order pages may not be compound.
185 */
186
187static void free_compound_page(struct page *page)
188{
189	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
190}
191
192static void prep_compound_page(struct page *page, unsigned long order)
193{
194	int i;
195	int nr_pages = 1 << order;
196
197	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
198	page[1].lru.prev = (void *)order;
199	for (i = 0; i < nr_pages; i++) {
200		struct page *p = page + i;
201
202		__SetPageCompound(p);
203		set_page_private(p, (unsigned long)page);
204	}
205}
206
207static void destroy_compound_page(struct page *page, unsigned long order)
208{
209	int i;
210	int nr_pages = 1 << order;
211
212	if (unlikely((unsigned long)page[1].lru.prev != order))
213		bad_page(page);
214
215	for (i = 0; i < nr_pages; i++) {
216		struct page *p = page + i;
217
218		if (unlikely(!PageCompound(p) |
219				(page_private(p) != (unsigned long)page)))
220			bad_page(page);
221		__ClearPageCompound(p);
222	}
223}
224
225static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
226{
227	int i;
228
229	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
230	/*
231	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
232	 * and __GFP_HIGHMEM from hard or soft interrupt context.
233	 */
234	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
235	for (i = 0; i < (1 << order); i++)
236		clear_highpage(page + i);
237}
238
239/*
240 * function for dealing with page's order in buddy system.
241 * zone->lock is already acquired when we use these.
242 * So, we don't need atomic page->flags operations here.
243 */
244static inline unsigned long page_order(struct page *page)
245{
246	return page_private(page);
247}
248
249static inline void set_page_order(struct page *page, int order)
250{
251	set_page_private(page, order);
252	__SetPageBuddy(page);
253}
254
255static inline void rmv_page_order(struct page *page)
256{
257	__ClearPageBuddy(page);
258	set_page_private(page, 0);
259}
260
261/*
262 * Locate the struct page for both the matching buddy in our
263 * pair (buddy1) and the combined O(n+1) page they form (page).
264 *
265 * 1) Any buddy B1 will have an order O twin B2 which satisfies
266 * the following equation:
267 *     B2 = B1 ^ (1 << O)
268 * For example, if the starting buddy (buddy2) is #8 its order
269 * 1 buddy is #10:
270 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
271 *
272 * 2) Any buddy B will have an order O+1 parent P which
273 * satisfies the following equation:
274 *     P = B & ~(1 << O)
275 *
276 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
277 */
278static inline struct page *
279__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
280{
281	unsigned long buddy_idx = page_idx ^ (1 << order);
282
283	return page + (buddy_idx - page_idx);
284}
285
286static inline unsigned long
287__find_combined_index(unsigned long page_idx, unsigned int order)
288{
289	return (page_idx & ~(1 << order));
290}
291
292/*
293 * This function checks whether a page is free && is the buddy
294 * we can do coalesce a page and its buddy if
295 * (a) the buddy is not in a hole &&
296 * (b) the buddy is in the buddy system &&
297 * (c) a page and its buddy have the same order &&
298 * (d) a page and its buddy are in the same zone.
299 *
300 * For recording whether a page is in the buddy system, we use PG_buddy.
301 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
302 *
303 * For recording page's order, we use page_private(page).
304 */
305static inline int page_is_buddy(struct page *page, struct page *buddy,
306								int order)
307{
308#ifdef CONFIG_HOLES_IN_ZONE
309	if (!pfn_valid(page_to_pfn(buddy)))
310		return 0;
311#endif
312
313	if (page_zone_id(page) != page_zone_id(buddy))
314		return 0;
315
316	if (PageBuddy(buddy) && page_order(buddy) == order) {
317		BUG_ON(page_count(buddy) != 0);
318		return 1;
319	}
320	return 0;
321}
322
323/*
324 * Freeing function for a buddy system allocator.
325 *
326 * The concept of a buddy system is to maintain direct-mapped table
327 * (containing bit values) for memory blocks of various "orders".
328 * The bottom level table contains the map for the smallest allocatable
329 * units of memory (here, pages), and each level above it describes
330 * pairs of units from the levels below, hence, "buddies".
331 * At a high level, all that happens here is marking the table entry
332 * at the bottom level available, and propagating the changes upward
333 * as necessary, plus some accounting needed to play nicely with other
334 * parts of the VM system.
335 * At each level, we keep a list of pages, which are heads of continuous
336 * free pages of length of (1 << order) and marked with PG_buddy. Page's
337 * order is recorded in page_private(page) field.
338 * So when we are allocating or freeing one, we can derive the state of the
339 * other.  That is, if we allocate a small block, and both were
340 * free, the remainder of the region must be split into blocks.
341 * If a block is freed, and its buddy is also free, then this
342 * triggers coalescing into a block of larger size.
343 *
344 * -- wli
345 */
346
347static inline void __free_one_page(struct page *page,
348		struct zone *zone, unsigned int order)
349{
350	unsigned long page_idx;
351	int order_size = 1 << order;
352
353	if (unlikely(PageCompound(page)))
354		destroy_compound_page(page, order);
355
356	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
357
358	VM_BUG_ON(page_idx & (order_size - 1));
359	VM_BUG_ON(bad_range(zone, page));
360
361	zone->free_pages += order_size;
362	while (order < MAX_ORDER-1) {
363		unsigned long combined_idx;
364		struct free_area *area;
365		struct page *buddy;
366
367		buddy = __page_find_buddy(page, page_idx, order);
368		if (!page_is_buddy(page, buddy, order))
369			break;		/* Move the buddy up one level. */
370
371		list_del(&buddy->lru);
372		area = zone->free_area + order;
373		area->nr_free--;
374		rmv_page_order(buddy);
375		combined_idx = __find_combined_index(page_idx, order);
376		page = page + (combined_idx - page_idx);
377		page_idx = combined_idx;
378		order++;
379	}
380	set_page_order(page, order);
381	list_add(&page->lru, &zone->free_area[order].free_list);
382	zone->free_area[order].nr_free++;
383}
384
385static inline int free_pages_check(struct page *page)
386{
387	if (unlikely(page_mapcount(page) |
388		(page->mapping != NULL)  |
389		(page_count(page) != 0)  |
390		(page->flags & (
391			1 << PG_lru	|
392			1 << PG_private |
393			1 << PG_locked	|
394			1 << PG_active	|
395			1 << PG_reclaim	|
396			1 << PG_slab	|
397			1 << PG_swapcache |
398			1 << PG_writeback |
399			1 << PG_reserved |
400			1 << PG_buddy ))))
401		bad_page(page);
402	if (PageDirty(page))
403		__ClearPageDirty(page);
404	/*
405	 * For now, we report if PG_reserved was found set, but do not
406	 * clear it, and do not free the page.  But we shall soon need
407	 * to do more, for when the ZERO_PAGE count wraps negative.
408	 */
409	return PageReserved(page);
410}
411
412/*
413 * Frees a list of pages.
414 * Assumes all pages on list are in same zone, and of same order.
415 * count is the number of pages to free.
416 *
417 * If the zone was previously in an "all pages pinned" state then look to
418 * see if this freeing clears that state.
419 *
420 * And clear the zone's pages_scanned counter, to hold off the "all pages are
421 * pinned" detection logic.
422 */
423static void free_pages_bulk(struct zone *zone, int count,
424					struct list_head *list, int order)
425{
426	spin_lock(&zone->lock);
427	zone->all_unreclaimable = 0;
428	zone->pages_scanned = 0;
429	while (count--) {
430		struct page *page;
431
432		VM_BUG_ON(list_empty(list));
433		page = list_entry(list->prev, struct page, lru);
434		/* have to delete it as __free_one_page list manipulates */
435		list_del(&page->lru);
436		__free_one_page(page, zone, order);
437	}
438	spin_unlock(&zone->lock);
439}
440
441static void free_one_page(struct zone *zone, struct page *page, int order)
442{
443	LIST_HEAD(list);
444	list_add(&page->lru, &list);
445	free_pages_bulk(zone, 1, &list, order);
446}
447
448static void __free_pages_ok(struct page *page, unsigned int order)
449{
450	unsigned long flags;
451	int i;
452	int reserved = 0;
453
454	arch_free_page(page, order);
455	if (!PageHighMem(page))
456		debug_check_no_locks_freed(page_address(page),
457					   PAGE_SIZE<<order);
458
459	for (i = 0 ; i < (1 << order) ; ++i)
460		reserved += free_pages_check(page + i);
461	if (reserved)
462		return;
463
464	kernel_map_pages(page, 1 << order, 0);
465	local_irq_save(flags);
466	__count_vm_events(PGFREE, 1 << order);
467	free_one_page(page_zone(page), page, order);
468	local_irq_restore(flags);
469}
470
471/*
472 * permit the bootmem allocator to evade page validation on high-order frees
473 */
474void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
475{
476	if (order == 0) {
477		__ClearPageReserved(page);
478		set_page_count(page, 0);
479		set_page_refcounted(page);
480		__free_page(page);
481	} else {
482		int loop;
483
484		prefetchw(page);
485		for (loop = 0; loop < BITS_PER_LONG; loop++) {
486			struct page *p = &page[loop];
487
488			if (loop + 1 < BITS_PER_LONG)
489				prefetchw(p + 1);
490			__ClearPageReserved(p);
491			set_page_count(p, 0);
492		}
493
494		set_page_refcounted(page);
495		__free_pages(page, order);
496	}
497}
498
499
500/*
501 * The order of subdivision here is critical for the IO subsystem.
502 * Please do not alter this order without good reasons and regression
503 * testing. Specifically, as large blocks of memory are subdivided,
504 * the order in which smaller blocks are delivered depends on the order
505 * they're subdivided in this function. This is the primary factor
506 * influencing the order in which pages are delivered to the IO
507 * subsystem according to empirical testing, and this is also justified
508 * by considering the behavior of a buddy system containing a single
509 * large block of memory acted on by a series of small allocations.
510 * This behavior is a critical factor in sglist merging's success.
511 *
512 * -- wli
513 */
514static inline void expand(struct zone *zone, struct page *page,
515 	int low, int high, struct free_area *area)
516{
517	unsigned long size = 1 << high;
518
519	while (high > low) {
520		area--;
521		high--;
522		size >>= 1;
523		VM_BUG_ON(bad_range(zone, &page[size]));
524		list_add(&page[size].lru, &area->free_list);
525		area->nr_free++;
526		set_page_order(&page[size], high);
527	}
528}
529
530/*
531 * This page is about to be returned from the page allocator
532 */
533static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
534{
535	if (unlikely(page_mapcount(page) |
536		(page->mapping != NULL)  |
537		(page_count(page) != 0)  |
538		(page->flags & (
539			1 << PG_lru	|
540			1 << PG_private	|
541			1 << PG_locked	|
542			1 << PG_active	|
543			1 << PG_dirty	|
544			1 << PG_reclaim	|
545			1 << PG_slab    |
546			1 << PG_swapcache |
547			1 << PG_writeback |
548			1 << PG_reserved |
549			1 << PG_buddy ))))
550		bad_page(page);
551
552	/*
553	 * For now, we report if PG_reserved was found set, but do not
554	 * clear it, and do not allocate the page: as a safety net.
555	 */
556	if (PageReserved(page))
557		return 1;
558
559	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
560			1 << PG_referenced | 1 << PG_arch_1 |
561			1 << PG_checked | 1 << PG_mappedtodisk);
562	set_page_private(page, 0);
563	set_page_refcounted(page);
564	kernel_map_pages(page, 1 << order, 1);
565
566	if (gfp_flags & __GFP_ZERO)
567		prep_zero_page(page, order, gfp_flags);
568
569	if (order && (gfp_flags & __GFP_COMP))
570		prep_compound_page(page, order);
571
572	return 0;
573}
574
575/*
576 * Do the hard work of removing an element from the buddy allocator.
577 * Call me with the zone->lock already held.
578 */
579static struct page *__rmqueue(struct zone *zone, unsigned int order)
580{
581	struct free_area * area;
582	unsigned int current_order;
583	struct page *page;
584
585	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
586		area = zone->free_area + current_order;
587		if (list_empty(&area->free_list))
588			continue;
589
590		page = list_entry(area->free_list.next, struct page, lru);
591		list_del(&page->lru);
592		rmv_page_order(page);
593		area->nr_free--;
594		zone->free_pages -= 1UL << order;
595		expand(zone, page, order, current_order, area);
596		return page;
597	}
598
599	return NULL;
600}
601
602/*
603 * Obtain a specified number of elements from the buddy allocator, all under
604 * a single hold of the lock, for efficiency.  Add them to the supplied list.
605 * Returns the number of new pages which were placed at *list.
606 */
607static int rmqueue_bulk(struct zone *zone, unsigned int order,
608			unsigned long count, struct list_head *list)
609{
610	int i;
611
612	spin_lock(&zone->lock);
613	for (i = 0; i < count; ++i) {
614		struct page *page = __rmqueue(zone, order);
615		if (unlikely(page == NULL))
616			break;
617		list_add_tail(&page->lru, list);
618	}
619	spin_unlock(&zone->lock);
620	return i;
621}
622
623#ifdef CONFIG_NUMA
624/*
625 * Called from the slab reaper to drain pagesets on a particular node that
626 * belong to the currently executing processor.
627 * Note that this function must be called with the thread pinned to
628 * a single processor.
629 */
630void drain_node_pages(int nodeid)
631{
632	int i, z;
633	unsigned long flags;
634
635	for (z = 0; z < MAX_NR_ZONES; z++) {
636		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
637		struct per_cpu_pageset *pset;
638
639		pset = zone_pcp(zone, smp_processor_id());
640		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
641			struct per_cpu_pages *pcp;
642
643			pcp = &pset->pcp[i];
644			if (pcp->count) {
645				local_irq_save(flags);
646				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
647				pcp->count = 0;
648				local_irq_restore(flags);
649			}
650		}
651	}
652}
653#endif
654
655#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
656static void __drain_pages(unsigned int cpu)
657{
658	unsigned long flags;
659	struct zone *zone;
660	int i;
661
662	for_each_zone(zone) {
663		struct per_cpu_pageset *pset;
664
665		pset = zone_pcp(zone, cpu);
666		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
667			struct per_cpu_pages *pcp;
668
669			pcp = &pset->pcp[i];
670			local_irq_save(flags);
671			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
672			pcp->count = 0;
673			local_irq_restore(flags);
674		}
675	}
676}
677#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
678
679#ifdef CONFIG_PM
680
681void mark_free_pages(struct zone *zone)
682{
683	unsigned long zone_pfn, flags;
684	int order;
685	struct list_head *curr;
686
687	if (!zone->spanned_pages)
688		return;
689
690	spin_lock_irqsave(&zone->lock, flags);
691	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
692		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
693
694	for (order = MAX_ORDER - 1; order >= 0; --order)
695		list_for_each(curr, &zone->free_area[order].free_list) {
696			unsigned long start_pfn, i;
697
698			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
699
700			for (i=0; i < (1<<order); i++)
701				SetPageNosaveFree(pfn_to_page(start_pfn+i));
702	}
703	spin_unlock_irqrestore(&zone->lock, flags);
704}
705
706/*
707 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
708 */
709void drain_local_pages(void)
710{
711	unsigned long flags;
712
713	local_irq_save(flags);
714	__drain_pages(smp_processor_id());
715	local_irq_restore(flags);
716}
717#endif /* CONFIG_PM */
718
719/*
720 * Free a 0-order page
721 */
722static void fastcall free_hot_cold_page(struct page *page, int cold)
723{
724	struct zone *zone = page_zone(page);
725	struct per_cpu_pages *pcp;
726	unsigned long flags;
727
728	arch_free_page(page, 0);
729
730	if (PageAnon(page))
731		page->mapping = NULL;
732	if (free_pages_check(page))
733		return;
734
735	kernel_map_pages(page, 1, 0);
736
737	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
738	local_irq_save(flags);
739	__count_vm_event(PGFREE);
740	list_add(&page->lru, &pcp->list);
741	pcp->count++;
742	if (pcp->count >= pcp->high) {
743		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
744		pcp->count -= pcp->batch;
745	}
746	local_irq_restore(flags);
747	put_cpu();
748}
749
750void fastcall free_hot_page(struct page *page)
751{
752	free_hot_cold_page(page, 0);
753}
754
755void fastcall free_cold_page(struct page *page)
756{
757	free_hot_cold_page(page, 1);
758}
759
760/*
761 * split_page takes a non-compound higher-order page, and splits it into
762 * n (1<<order) sub-pages: page[0..n]
763 * Each sub-page must be freed individually.
764 *
765 * Note: this is probably too low level an operation for use in drivers.
766 * Please consult with lkml before using this in your driver.
767 */
768void split_page(struct page *page, unsigned int order)
769{
770	int i;
771
772	VM_BUG_ON(PageCompound(page));
773	VM_BUG_ON(!page_count(page));
774	for (i = 1; i < (1 << order); i++)
775		set_page_refcounted(page + i);
776}
777
778/*
779 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
780 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
781 * or two.
782 */
783static struct page *buffered_rmqueue(struct zonelist *zonelist,
784			struct zone *zone, int order, gfp_t gfp_flags)
785{
786	unsigned long flags;
787	struct page *page;
788	int cold = !!(gfp_flags & __GFP_COLD);
789	int cpu;
790
791again:
792	cpu  = get_cpu();
793	if (likely(order == 0)) {
794		struct per_cpu_pages *pcp;
795
796		pcp = &zone_pcp(zone, cpu)->pcp[cold];
797		local_irq_save(flags);
798		if (!pcp->count) {
799			pcp->count += rmqueue_bulk(zone, 0,
800						pcp->batch, &pcp->list);
801			if (unlikely(!pcp->count))
802				goto failed;
803		}
804		page = list_entry(pcp->list.next, struct page, lru);
805		list_del(&page->lru);
806		pcp->count--;
807	} else {
808		spin_lock_irqsave(&zone->lock, flags);
809		page = __rmqueue(zone, order);
810		spin_unlock(&zone->lock);
811		if (!page)
812			goto failed;
813	}
814
815	__count_zone_vm_events(PGALLOC, zone, 1 << order);
816	zone_statistics(zonelist, zone);
817	local_irq_restore(flags);
818	put_cpu();
819
820	VM_BUG_ON(bad_range(zone, page));
821	if (prep_new_page(page, order, gfp_flags))
822		goto again;
823	return page;
824
825failed:
826	local_irq_restore(flags);
827	put_cpu();
828	return NULL;
829}
830
831#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
832#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
833#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
834#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
835#define ALLOC_HARDER		0x10 /* try to alloc harder */
836#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
837#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
838
839/*
840 * Return 1 if free pages are above 'mark'. This takes into account the order
841 * of the allocation.
842 */
843int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
844		      int classzone_idx, int alloc_flags)
845{
846	/* free_pages my go negative - that's OK */
847	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
848	int o;
849
850	if (alloc_flags & ALLOC_HIGH)
851		min -= min / 2;
852	if (alloc_flags & ALLOC_HARDER)
853		min -= min / 4;
854
855	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
856		return 0;
857	for (o = 0; o < order; o++) {
858		/* At the next order, this order's pages become unavailable */
859		free_pages -= z->free_area[o].nr_free << o;
860
861		/* Require fewer higher order pages to be free */
862		min >>= 1;
863
864		if (free_pages <= min)
865			return 0;
866	}
867	return 1;
868}
869
870/*
871 * get_page_from_freeliest goes through the zonelist trying to allocate
872 * a page.
873 */
874static struct page *
875get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
876		struct zonelist *zonelist, int alloc_flags)
877{
878	struct zone **z = zonelist->zones;
879	struct page *page = NULL;
880	int classzone_idx = zone_idx(*z);
881
882	/*
883	 * Go through the zonelist once, looking for a zone with enough free.
884	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
885	 */
886	do {
887		if ((alloc_flags & ALLOC_CPUSET) &&
888				!cpuset_zone_allowed(*z, gfp_mask))
889			continue;
890
891		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
892			unsigned long mark;
893			if (alloc_flags & ALLOC_WMARK_MIN)
894				mark = (*z)->pages_min;
895			else if (alloc_flags & ALLOC_WMARK_LOW)
896				mark = (*z)->pages_low;
897			else
898				mark = (*z)->pages_high;
899			if (!zone_watermark_ok(*z, order, mark,
900				    classzone_idx, alloc_flags))
901				if (!zone_reclaim_mode ||
902				    !zone_reclaim(*z, gfp_mask, order))
903					continue;
904		}
905
906		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
907		if (page) {
908			break;
909		}
910	} while (*(++z) != NULL);
911	return page;
912}
913
914/*
915 * This is the 'heart' of the zoned buddy allocator.
916 */
917struct page * fastcall
918__alloc_pages(gfp_t gfp_mask, unsigned int order,
919		struct zonelist *zonelist)
920{
921	const gfp_t wait = gfp_mask & __GFP_WAIT;
922	struct zone **z;
923	struct page *page;
924	struct reclaim_state reclaim_state;
925	struct task_struct *p = current;
926	int do_retry;
927	int alloc_flags;
928	int did_some_progress;
929
930	might_sleep_if(wait);
931
932restart:
933	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
934
935	if (unlikely(*z == NULL)) {
936		/* Should this ever happen?? */
937		return NULL;
938	}
939
940	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
941				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
942	if (page)
943		goto got_pg;
944
945	do {
946		wakeup_kswapd(*z, order);
947	} while (*(++z));
948
949	/*
950	 * OK, we're below the kswapd watermark and have kicked background
951	 * reclaim. Now things get more complex, so set up alloc_flags according
952	 * to how we want to proceed.
953	 *
954	 * The caller may dip into page reserves a bit more if the caller
955	 * cannot run direct reclaim, or if the caller has realtime scheduling
956	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
957	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
958	 */
959	alloc_flags = ALLOC_WMARK_MIN;
960	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
961		alloc_flags |= ALLOC_HARDER;
962	if (gfp_mask & __GFP_HIGH)
963		alloc_flags |= ALLOC_HIGH;
964	if (wait)
965		alloc_flags |= ALLOC_CPUSET;
966
967	/*
968	 * Go through the zonelist again. Let __GFP_HIGH and allocations
969	 * coming from realtime tasks go deeper into reserves.
970	 *
971	 * This is the last chance, in general, before the goto nopage.
972	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
973	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
974	 */
975	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
976	if (page)
977		goto got_pg;
978
979	/* This allocation should allow future memory freeing. */
980
981	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
982			&& !in_interrupt()) {
983		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
984nofail_alloc:
985			/* go through the zonelist yet again, ignoring mins */
986			page = get_page_from_freelist(gfp_mask, order,
987				zonelist, ALLOC_NO_WATERMARKS);
988			if (page)
989				goto got_pg;
990			if (gfp_mask & __GFP_NOFAIL) {
991				blk_congestion_wait(WRITE, HZ/50);
992				goto nofail_alloc;
993			}
994		}
995		goto nopage;
996	}
997
998	/* Atomic allocations - we can't balance anything */
999	if (!wait)
1000		goto nopage;
1001
1002rebalance:
1003	cond_resched();
1004
1005	/* We now go into synchronous reclaim */
1006	cpuset_memory_pressure_bump();
1007	p->flags |= PF_MEMALLOC;
1008	reclaim_state.reclaimed_slab = 0;
1009	p->reclaim_state = &reclaim_state;
1010
1011	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1012
1013	p->reclaim_state = NULL;
1014	p->flags &= ~PF_MEMALLOC;
1015
1016	cond_resched();
1017
1018	if (likely(did_some_progress)) {
1019		page = get_page_from_freelist(gfp_mask, order,
1020						zonelist, alloc_flags);
1021		if (page)
1022			goto got_pg;
1023	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1024		/*
1025		 * Go through the zonelist yet one more time, keep
1026		 * very high watermark here, this is only to catch
1027		 * a parallel oom killing, we must fail if we're still
1028		 * under heavy pressure.
1029		 */
1030		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1031				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1032		if (page)
1033			goto got_pg;
1034
1035		out_of_memory(zonelist, gfp_mask, order);
1036		goto restart;
1037	}
1038
1039	/*
1040	 * Don't let big-order allocations loop unless the caller explicitly
1041	 * requests that.  Wait for some write requests to complete then retry.
1042	 *
1043	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1044	 * <= 3, but that may not be true in other implementations.
1045	 */
1046	do_retry = 0;
1047	if (!(gfp_mask & __GFP_NORETRY)) {
1048		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1049			do_retry = 1;
1050		if (gfp_mask & __GFP_NOFAIL)
1051			do_retry = 1;
1052	}
1053	if (do_retry) {
1054		blk_congestion_wait(WRITE, HZ/50);
1055		goto rebalance;
1056	}
1057
1058nopage:
1059	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1060		printk(KERN_WARNING "%s: page allocation failure."
1061			" order:%d, mode:0x%x\n",
1062			p->comm, order, gfp_mask);
1063		dump_stack();
1064		show_mem();
1065	}
1066got_pg:
1067	return page;
1068}
1069
1070EXPORT_SYMBOL(__alloc_pages);
1071
1072/*
1073 * Common helper functions.
1074 */
1075fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1076{
1077	struct page * page;
1078	page = alloc_pages(gfp_mask, order);
1079	if (!page)
1080		return 0;
1081	return (unsigned long) page_address(page);
1082}
1083
1084EXPORT_SYMBOL(__get_free_pages);
1085
1086fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1087{
1088	struct page * page;
1089
1090	/*
1091	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1092	 * a highmem page
1093	 */
1094	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1095
1096	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1097	if (page)
1098		return (unsigned long) page_address(page);
1099	return 0;
1100}
1101
1102EXPORT_SYMBOL(get_zeroed_page);
1103
1104void __pagevec_free(struct pagevec *pvec)
1105{
1106	int i = pagevec_count(pvec);
1107
1108	while (--i >= 0)
1109		free_hot_cold_page(pvec->pages[i], pvec->cold);
1110}
1111
1112fastcall void __free_pages(struct page *page, unsigned int order)
1113{
1114	if (put_page_testzero(page)) {
1115		if (order == 0)
1116			free_hot_page(page);
1117		else
1118			__free_pages_ok(page, order);
1119	}
1120}
1121
1122EXPORT_SYMBOL(__free_pages);
1123
1124fastcall void free_pages(unsigned long addr, unsigned int order)
1125{
1126	if (addr != 0) {
1127		VM_BUG_ON(!virt_addr_valid((void *)addr));
1128		__free_pages(virt_to_page((void *)addr), order);
1129	}
1130}
1131
1132EXPORT_SYMBOL(free_pages);
1133
1134/*
1135 * Total amount of free (allocatable) RAM:
1136 */
1137unsigned int nr_free_pages(void)
1138{
1139	unsigned int sum = 0;
1140	struct zone *zone;
1141
1142	for_each_zone(zone)
1143		sum += zone->free_pages;
1144
1145	return sum;
1146}
1147
1148EXPORT_SYMBOL(nr_free_pages);
1149
1150#ifdef CONFIG_NUMA
1151unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1152{
1153	unsigned int i, sum = 0;
1154
1155	for (i = 0; i < MAX_NR_ZONES; i++)
1156		sum += pgdat->node_zones[i].free_pages;
1157
1158	return sum;
1159}
1160#endif
1161
1162static unsigned int nr_free_zone_pages(int offset)
1163{
1164	/* Just pick one node, since fallback list is circular */
1165	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1166	unsigned int sum = 0;
1167
1168	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1169	struct zone **zonep = zonelist->zones;
1170	struct zone *zone;
1171
1172	for (zone = *zonep++; zone; zone = *zonep++) {
1173		unsigned long size = zone->present_pages;
1174		unsigned long high = zone->pages_high;
1175		if (size > high)
1176			sum += size - high;
1177	}
1178
1179	return sum;
1180}
1181
1182/*
1183 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1184 */
1185unsigned int nr_free_buffer_pages(void)
1186{
1187	return nr_free_zone_pages(gfp_zone(GFP_USER));
1188}
1189
1190/*
1191 * Amount of free RAM allocatable within all zones
1192 */
1193unsigned int nr_free_pagecache_pages(void)
1194{
1195	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1196}
1197#ifdef CONFIG_NUMA
1198static void show_node(struct zone *zone)
1199{
1200	printk("Node %d ", zone->zone_pgdat->node_id);
1201}
1202#else
1203#define show_node(zone)	do { } while (0)
1204#endif
1205
1206void si_meminfo(struct sysinfo *val)
1207{
1208	val->totalram = totalram_pages;
1209	val->sharedram = 0;
1210	val->freeram = nr_free_pages();
1211	val->bufferram = nr_blockdev_pages();
1212	val->totalhigh = totalhigh_pages;
1213	val->freehigh = nr_free_highpages();
1214	val->mem_unit = PAGE_SIZE;
1215}
1216
1217EXPORT_SYMBOL(si_meminfo);
1218
1219#ifdef CONFIG_NUMA
1220void si_meminfo_node(struct sysinfo *val, int nid)
1221{
1222	pg_data_t *pgdat = NODE_DATA(nid);
1223
1224	val->totalram = pgdat->node_present_pages;
1225	val->freeram = nr_free_pages_pgdat(pgdat);
1226#ifdef CONFIG_HIGHMEM
1227	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1228	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1229#else
1230	val->totalhigh = 0;
1231	val->freehigh = 0;
1232#endif
1233	val->mem_unit = PAGE_SIZE;
1234}
1235#endif
1236
1237#define K(x) ((x) << (PAGE_SHIFT-10))
1238
1239/*
1240 * Show free area list (used inside shift_scroll-lock stuff)
1241 * We also calculate the percentage fragmentation. We do this by counting the
1242 * memory on each free list with the exception of the first item on the list.
1243 */
1244void show_free_areas(void)
1245{
1246	int cpu, temperature;
1247	unsigned long active;
1248	unsigned long inactive;
1249	unsigned long free;
1250	struct zone *zone;
1251
1252	for_each_zone(zone) {
1253		show_node(zone);
1254		printk("%s per-cpu:", zone->name);
1255
1256		if (!populated_zone(zone)) {
1257			printk(" empty\n");
1258			continue;
1259		} else
1260			printk("\n");
1261
1262		for_each_online_cpu(cpu) {
1263			struct per_cpu_pageset *pageset;
1264
1265			pageset = zone_pcp(zone, cpu);
1266
1267			for (temperature = 0; temperature < 2; temperature++)
1268				printk("cpu %d %s: high %d, batch %d used:%d\n",
1269					cpu,
1270					temperature ? "cold" : "hot",
1271					pageset->pcp[temperature].high,
1272					pageset->pcp[temperature].batch,
1273					pageset->pcp[temperature].count);
1274		}
1275	}
1276
1277	get_zone_counts(&active, &inactive, &free);
1278
1279	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1280		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1281		active,
1282		inactive,
1283		global_page_state(NR_FILE_DIRTY),
1284		global_page_state(NR_WRITEBACK),
1285		global_page_state(NR_UNSTABLE_NFS),
1286		nr_free_pages(),
1287		global_page_state(NR_SLAB),
1288		global_page_state(NR_FILE_MAPPED),
1289		global_page_state(NR_PAGETABLE));
1290
1291	for_each_zone(zone) {
1292		int i;
1293
1294		show_node(zone);
1295		printk("%s"
1296			" free:%lukB"
1297			" min:%lukB"
1298			" low:%lukB"
1299			" high:%lukB"
1300			" active:%lukB"
1301			" inactive:%lukB"
1302			" present:%lukB"
1303			" pages_scanned:%lu"
1304			" all_unreclaimable? %s"
1305			"\n",
1306			zone->name,
1307			K(zone->free_pages),
1308			K(zone->pages_min),
1309			K(zone->pages_low),
1310			K(zone->pages_high),
1311			K(zone->nr_active),
1312			K(zone->nr_inactive),
1313			K(zone->present_pages),
1314			zone->pages_scanned,
1315			(zone->all_unreclaimable ? "yes" : "no")
1316			);
1317		printk("lowmem_reserve[]:");
1318		for (i = 0; i < MAX_NR_ZONES; i++)
1319			printk(" %lu", zone->lowmem_reserve[i]);
1320		printk("\n");
1321	}
1322
1323	for_each_zone(zone) {
1324 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1325
1326		show_node(zone);
1327		printk("%s: ", zone->name);
1328		if (!populated_zone(zone)) {
1329			printk("empty\n");
1330			continue;
1331		}
1332
1333		spin_lock_irqsave(&zone->lock, flags);
1334		for (order = 0; order < MAX_ORDER; order++) {
1335			nr[order] = zone->free_area[order].nr_free;
1336			total += nr[order] << order;
1337		}
1338		spin_unlock_irqrestore(&zone->lock, flags);
1339		for (order = 0; order < MAX_ORDER; order++)
1340			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1341		printk("= %lukB\n", K(total));
1342	}
1343
1344	show_swap_cache_info();
1345}
1346
1347/*
1348 * Builds allocation fallback zone lists.
1349 *
1350 * Add all populated zones of a node to the zonelist.
1351 */
1352static int __meminit build_zonelists_node(pg_data_t *pgdat,
1353			struct zonelist *zonelist, int nr_zones, int zone_type)
1354{
1355	struct zone *zone;
1356
1357	BUG_ON(zone_type >= MAX_NR_ZONES);
1358
1359	do {
1360		zone = pgdat->node_zones + zone_type;
1361		if (populated_zone(zone)) {
1362			zonelist->zones[nr_zones++] = zone;
1363			check_highest_zone(zone_type);
1364		}
1365		zone_type--;
1366
1367	} while (zone_type >= 0);
1368	return nr_zones;
1369}
1370
1371static inline int highest_zone(int zone_bits)
1372{
1373	int res = ZONE_NORMAL;
1374	if (zone_bits & (__force int)__GFP_HIGHMEM)
1375		res = ZONE_HIGHMEM;
1376	if (zone_bits & (__force int)__GFP_DMA32)
1377		res = ZONE_DMA32;
1378	if (zone_bits & (__force int)__GFP_DMA)
1379		res = ZONE_DMA;
1380	return res;
1381}
1382
1383#ifdef CONFIG_NUMA
1384#define MAX_NODE_LOAD (num_online_nodes())
1385static int __meminitdata node_load[MAX_NUMNODES];
1386/**
1387 * find_next_best_node - find the next node that should appear in a given node's fallback list
1388 * @node: node whose fallback list we're appending
1389 * @used_node_mask: nodemask_t of already used nodes
1390 *
1391 * We use a number of factors to determine which is the next node that should
1392 * appear on a given node's fallback list.  The node should not have appeared
1393 * already in @node's fallback list, and it should be the next closest node
1394 * according to the distance array (which contains arbitrary distance values
1395 * from each node to each node in the system), and should also prefer nodes
1396 * with no CPUs, since presumably they'll have very little allocation pressure
1397 * on them otherwise.
1398 * It returns -1 if no node is found.
1399 */
1400static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1401{
1402	int n, val;
1403	int min_val = INT_MAX;
1404	int best_node = -1;
1405
1406	/* Use the local node if we haven't already */
1407	if (!node_isset(node, *used_node_mask)) {
1408		node_set(node, *used_node_mask);
1409		return node;
1410	}
1411
1412	for_each_online_node(n) {
1413		cpumask_t tmp;
1414
1415		/* Don't want a node to appear more than once */
1416		if (node_isset(n, *used_node_mask))
1417			continue;
1418
1419		/* Use the distance array to find the distance */
1420		val = node_distance(node, n);
1421
1422		/* Penalize nodes under us ("prefer the next node") */
1423		val += (n < node);
1424
1425		/* Give preference to headless and unused nodes */
1426		tmp = node_to_cpumask(n);
1427		if (!cpus_empty(tmp))
1428			val += PENALTY_FOR_NODE_WITH_CPUS;
1429
1430		/* Slight preference for less loaded node */
1431		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1432		val += node_load[n];
1433
1434		if (val < min_val) {
1435			min_val = val;
1436			best_node = n;
1437		}
1438	}
1439
1440	if (best_node >= 0)
1441		node_set(best_node, *used_node_mask);
1442
1443	return best_node;
1444}
1445
1446static void __meminit build_zonelists(pg_data_t *pgdat)
1447{
1448	int i, j, k, node, local_node;
1449	int prev_node, load;
1450	struct zonelist *zonelist;
1451	nodemask_t used_mask;
1452
1453	/* initialize zonelists */
1454	for (i = 0; i < GFP_ZONETYPES; i++) {
1455		zonelist = pgdat->node_zonelists + i;
1456		zonelist->zones[0] = NULL;
1457	}
1458
1459	/* NUMA-aware ordering of nodes */
1460	local_node = pgdat->node_id;
1461	load = num_online_nodes();
1462	prev_node = local_node;
1463	nodes_clear(used_mask);
1464	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1465		int distance = node_distance(local_node, node);
1466
1467		/*
1468		 * If another node is sufficiently far away then it is better
1469		 * to reclaim pages in a zone before going off node.
1470		 */
1471		if (distance > RECLAIM_DISTANCE)
1472			zone_reclaim_mode = 1;
1473
1474		/*
1475		 * We don't want to pressure a particular node.
1476		 * So adding penalty to the first node in same
1477		 * distance group to make it round-robin.
1478		 */
1479
1480		if (distance != node_distance(local_node, prev_node))
1481			node_load[node] += load;
1482		prev_node = node;
1483		load--;
1484		for (i = 0; i < GFP_ZONETYPES; i++) {
1485			zonelist = pgdat->node_zonelists + i;
1486			for (j = 0; zonelist->zones[j] != NULL; j++);
1487
1488			k = highest_zone(i);
1489
1490	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1491			zonelist->zones[j] = NULL;
1492		}
1493	}
1494}
1495
1496#else	/* CONFIG_NUMA */
1497
1498static void __meminit build_zonelists(pg_data_t *pgdat)
1499{
1500	int i, node, local_node;
1501	enum zone_type k;
1502	enum zone_type j;
1503
1504	local_node = pgdat->node_id;
1505	for (i = 0; i < GFP_ZONETYPES; i++) {
1506		struct zonelist *zonelist;
1507
1508		zonelist = pgdat->node_zonelists + i;
1509
1510		j = 0;
1511		k = highest_zone(i);
1512 		j = build_zonelists_node(pgdat, zonelist, j, k);
1513 		/*
1514 		 * Now we build the zonelist so that it contains the zones
1515 		 * of all the other nodes.
1516 		 * We don't want to pressure a particular node, so when
1517 		 * building the zones for node N, we make sure that the
1518 		 * zones coming right after the local ones are those from
1519 		 * node N+1 (modulo N)
1520 		 */
1521		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1522			if (!node_online(node))
1523				continue;
1524			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1525		}
1526		for (node = 0; node < local_node; node++) {
1527			if (!node_online(node))
1528				continue;
1529			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1530		}
1531
1532		zonelist->zones[j] = NULL;
1533	}
1534}
1535
1536#endif	/* CONFIG_NUMA */
1537
1538/* return values int ....just for stop_machine_run() */
1539static int __meminit __build_all_zonelists(void *dummy)
1540{
1541	int nid;
1542	for_each_online_node(nid)
1543		build_zonelists(NODE_DATA(nid));
1544	return 0;
1545}
1546
1547void __meminit build_all_zonelists(void)
1548{
1549	if (system_state == SYSTEM_BOOTING) {
1550		__build_all_zonelists(0);
1551		cpuset_init_current_mems_allowed();
1552	} else {
1553		/* we have to stop all cpus to guaranntee there is no user
1554		   of zonelist */
1555		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1556		/* cpuset refresh routine should be here */
1557	}
1558	vm_total_pages = nr_free_pagecache_pages();
1559	printk("Built %i zonelists.  Total pages: %ld\n",
1560			num_online_nodes(), vm_total_pages);
1561}
1562
1563/*
1564 * Helper functions to size the waitqueue hash table.
1565 * Essentially these want to choose hash table sizes sufficiently
1566 * large so that collisions trying to wait on pages are rare.
1567 * But in fact, the number of active page waitqueues on typical
1568 * systems is ridiculously low, less than 200. So this is even
1569 * conservative, even though it seems large.
1570 *
1571 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1572 * waitqueues, i.e. the size of the waitq table given the number of pages.
1573 */
1574#define PAGES_PER_WAITQUEUE	256
1575
1576#ifndef CONFIG_MEMORY_HOTPLUG
1577static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1578{
1579	unsigned long size = 1;
1580
1581	pages /= PAGES_PER_WAITQUEUE;
1582
1583	while (size < pages)
1584		size <<= 1;
1585
1586	/*
1587	 * Once we have dozens or even hundreds of threads sleeping
1588	 * on IO we've got bigger problems than wait queue collision.
1589	 * Limit the size of the wait table to a reasonable size.
1590	 */
1591	size = min(size, 4096UL);
1592
1593	return max(size, 4UL);
1594}
1595#else
1596/*
1597 * A zone's size might be changed by hot-add, so it is not possible to determine
1598 * a suitable size for its wait_table.  So we use the maximum size now.
1599 *
1600 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1601 *
1602 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1603 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1604 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1605 *
1606 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1607 * or more by the traditional way. (See above).  It equals:
1608 *
1609 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1610 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1611 *    powerpc (64K page size)             : =  (32G +16M)byte.
1612 */
1613static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1614{
1615	return 4096UL;
1616}
1617#endif
1618
1619/*
1620 * This is an integer logarithm so that shifts can be used later
1621 * to extract the more random high bits from the multiplicative
1622 * hash function before the remainder is taken.
1623 */
1624static inline unsigned long wait_table_bits(unsigned long size)
1625{
1626	return ffz(~size);
1627}
1628
1629#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1630
1631static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1632		unsigned long *zones_size, unsigned long *zholes_size)
1633{
1634	unsigned long realtotalpages, totalpages = 0;
1635	int i;
1636
1637	for (i = 0; i < MAX_NR_ZONES; i++)
1638		totalpages += zones_size[i];
1639	pgdat->node_spanned_pages = totalpages;
1640
1641	realtotalpages = totalpages;
1642	if (zholes_size)
1643		for (i = 0; i < MAX_NR_ZONES; i++)
1644			realtotalpages -= zholes_size[i];
1645	pgdat->node_present_pages = realtotalpages;
1646	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1647}
1648
1649
1650/*
1651 * Initially all pages are reserved - free ones are freed
1652 * up by free_all_bootmem() once the early boot process is
1653 * done. Non-atomic initialization, single-pass.
1654 */
1655void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1656		unsigned long start_pfn)
1657{
1658	struct page *page;
1659	unsigned long end_pfn = start_pfn + size;
1660	unsigned long pfn;
1661
1662	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1663		if (!early_pfn_valid(pfn))
1664			continue;
1665		page = pfn_to_page(pfn);
1666		set_page_links(page, zone, nid, pfn);
1667		init_page_count(page);
1668		reset_page_mapcount(page);
1669		SetPageReserved(page);
1670		INIT_LIST_HEAD(&page->lru);
1671#ifdef WANT_PAGE_VIRTUAL
1672		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1673		if (!is_highmem_idx(zone))
1674			set_page_address(page, __va(pfn << PAGE_SHIFT));
1675#endif
1676	}
1677}
1678
1679void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1680				unsigned long size)
1681{
1682	int order;
1683	for (order = 0; order < MAX_ORDER ; order++) {
1684		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1685		zone->free_area[order].nr_free = 0;
1686	}
1687}
1688
1689#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1690void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1691		unsigned long pfn, unsigned long size)
1692{
1693	unsigned long snum = pfn_to_section_nr(pfn);
1694	unsigned long end = pfn_to_section_nr(pfn + size);
1695
1696	if (FLAGS_HAS_NODE)
1697		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1698	else
1699		for (; snum <= end; snum++)
1700			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1701}
1702
1703#ifndef __HAVE_ARCH_MEMMAP_INIT
1704#define memmap_init(size, nid, zone, start_pfn) \
1705	memmap_init_zone((size), (nid), (zone), (start_pfn))
1706#endif
1707
1708static int __cpuinit zone_batchsize(struct zone *zone)
1709{
1710	int batch;
1711
1712	/*
1713	 * The per-cpu-pages pools are set to around 1000th of the
1714	 * size of the zone.  But no more than 1/2 of a meg.
1715	 *
1716	 * OK, so we don't know how big the cache is.  So guess.
1717	 */
1718	batch = zone->present_pages / 1024;
1719	if (batch * PAGE_SIZE > 512 * 1024)
1720		batch = (512 * 1024) / PAGE_SIZE;
1721	batch /= 4;		/* We effectively *= 4 below */
1722	if (batch < 1)
1723		batch = 1;
1724
1725	/*
1726	 * Clamp the batch to a 2^n - 1 value. Having a power
1727	 * of 2 value was found to be more likely to have
1728	 * suboptimal cache aliasing properties in some cases.
1729	 *
1730	 * For example if 2 tasks are alternately allocating
1731	 * batches of pages, one task can end up with a lot
1732	 * of pages of one half of the possible page colors
1733	 * and the other with pages of the other colors.
1734	 */
1735	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1736
1737	return batch;
1738}
1739
1740inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1741{
1742	struct per_cpu_pages *pcp;
1743
1744	memset(p, 0, sizeof(*p));
1745
1746	pcp = &p->pcp[0];		/* hot */
1747	pcp->count = 0;
1748	pcp->high = 6 * batch;
1749	pcp->batch = max(1UL, 1 * batch);
1750	INIT_LIST_HEAD(&pcp->list);
1751
1752	pcp = &p->pcp[1];		/* cold*/
1753	pcp->count = 0;
1754	pcp->high = 2 * batch;
1755	pcp->batch = max(1UL, batch/2);
1756	INIT_LIST_HEAD(&pcp->list);
1757}
1758
1759/*
1760 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1761 * to the value high for the pageset p.
1762 */
1763
1764static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1765				unsigned long high)
1766{
1767	struct per_cpu_pages *pcp;
1768
1769	pcp = &p->pcp[0]; /* hot list */
1770	pcp->high = high;
1771	pcp->batch = max(1UL, high/4);
1772	if ((high/4) > (PAGE_SHIFT * 8))
1773		pcp->batch = PAGE_SHIFT * 8;
1774}
1775
1776
1777#ifdef CONFIG_NUMA
1778/*
1779 * Boot pageset table. One per cpu which is going to be used for all
1780 * zones and all nodes. The parameters will be set in such a way
1781 * that an item put on a list will immediately be handed over to
1782 * the buddy list. This is safe since pageset manipulation is done
1783 * with interrupts disabled.
1784 *
1785 * Some NUMA counter updates may also be caught by the boot pagesets.
1786 *
1787 * The boot_pagesets must be kept even after bootup is complete for
1788 * unused processors and/or zones. They do play a role for bootstrapping
1789 * hotplugged processors.
1790 *
1791 * zoneinfo_show() and maybe other functions do
1792 * not check if the processor is online before following the pageset pointer.
1793 * Other parts of the kernel may not check if the zone is available.
1794 */
1795static struct per_cpu_pageset boot_pageset[NR_CPUS];
1796
1797/*
1798 * Dynamically allocate memory for the
1799 * per cpu pageset array in struct zone.
1800 */
1801static int __cpuinit process_zones(int cpu)
1802{
1803	struct zone *zone, *dzone;
1804
1805	for_each_zone(zone) {
1806
1807		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1808					 GFP_KERNEL, cpu_to_node(cpu));
1809		if (!zone_pcp(zone, cpu))
1810			goto bad;
1811
1812		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1813
1814		if (percpu_pagelist_fraction)
1815			setup_pagelist_highmark(zone_pcp(zone, cpu),
1816			 	(zone->present_pages / percpu_pagelist_fraction));
1817	}
1818
1819	return 0;
1820bad:
1821	for_each_zone(dzone) {
1822		if (dzone == zone)
1823			break;
1824		kfree(zone_pcp(dzone, cpu));
1825		zone_pcp(dzone, cpu) = NULL;
1826	}
1827	return -ENOMEM;
1828}
1829
1830static inline void free_zone_pagesets(int cpu)
1831{
1832	struct zone *zone;
1833
1834	for_each_zone(zone) {
1835		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1836
1837		/* Free per_cpu_pageset if it is slab allocated */
1838		if (pset != &boot_pageset[cpu])
1839			kfree(pset);
1840		zone_pcp(zone, cpu) = NULL;
1841	}
1842}
1843
1844static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1845		unsigned long action,
1846		void *hcpu)
1847{
1848	int cpu = (long)hcpu;
1849	int ret = NOTIFY_OK;
1850
1851	switch (action) {
1852		case CPU_UP_PREPARE:
1853			if (process_zones(cpu))
1854				ret = NOTIFY_BAD;
1855			break;
1856		case CPU_UP_CANCELED:
1857		case CPU_DEAD:
1858			free_zone_pagesets(cpu);
1859			break;
1860		default:
1861			break;
1862	}
1863	return ret;
1864}
1865
1866static struct notifier_block __cpuinitdata pageset_notifier =
1867	{ &pageset_cpuup_callback, NULL, 0 };
1868
1869void __init setup_per_cpu_pageset(void)
1870{
1871	int err;
1872
1873	/* Initialize per_cpu_pageset for cpu 0.
1874	 * A cpuup callback will do this for every cpu
1875	 * as it comes online
1876	 */
1877	err = process_zones(smp_processor_id());
1878	BUG_ON(err);
1879	register_cpu_notifier(&pageset_notifier);
1880}
1881
1882#endif
1883
1884static __meminit
1885int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1886{
1887	int i;
1888	struct pglist_data *pgdat = zone->zone_pgdat;
1889	size_t alloc_size;
1890
1891	/*
1892	 * The per-page waitqueue mechanism uses hashed waitqueues
1893	 * per zone.
1894	 */
1895	zone->wait_table_hash_nr_entries =
1896		 wait_table_hash_nr_entries(zone_size_pages);
1897	zone->wait_table_bits =
1898		wait_table_bits(zone->wait_table_hash_nr_entries);
1899	alloc_size = zone->wait_table_hash_nr_entries
1900					* sizeof(wait_queue_head_t);
1901
1902 	if (system_state == SYSTEM_BOOTING) {
1903		zone->wait_table = (wait_queue_head_t *)
1904			alloc_bootmem_node(pgdat, alloc_size);
1905	} else {
1906		/*
1907		 * This case means that a zone whose size was 0 gets new memory
1908		 * via memory hot-add.
1909		 * But it may be the case that a new node was hot-added.  In
1910		 * this case vmalloc() will not be able to use this new node's
1911		 * memory - this wait_table must be initialized to use this new
1912		 * node itself as well.
1913		 * To use this new node's memory, further consideration will be
1914		 * necessary.
1915		 */
1916		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1917	}
1918	if (!zone->wait_table)
1919		return -ENOMEM;
1920
1921	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1922		init_waitqueue_head(zone->wait_table + i);
1923
1924	return 0;
1925}
1926
1927static __meminit void zone_pcp_init(struct zone *zone)
1928{
1929	int cpu;
1930	unsigned long batch = zone_batchsize(zone);
1931
1932	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1933#ifdef CONFIG_NUMA
1934		/* Early boot. Slab allocator not functional yet */
1935		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1936		setup_pageset(&boot_pageset[cpu],0);
1937#else
1938		setup_pageset(zone_pcp(zone,cpu), batch);
1939#endif
1940	}
1941	if (zone->present_pages)
1942		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1943			zone->name, zone->present_pages, batch);
1944}
1945
1946__meminit int init_currently_empty_zone(struct zone *zone,
1947					unsigned long zone_start_pfn,
1948					unsigned long size)
1949{
1950	struct pglist_data *pgdat = zone->zone_pgdat;
1951	int ret;
1952	ret = zone_wait_table_init(zone, size);
1953	if (ret)
1954		return ret;
1955	pgdat->nr_zones = zone_idx(zone) + 1;
1956
1957	zone->zone_start_pfn = zone_start_pfn;
1958
1959	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1960
1961	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1962
1963	return 0;
1964}
1965
1966/*
1967 * Set up the zone data structures:
1968 *   - mark all pages reserved
1969 *   - mark all memory queues empty
1970 *   - clear the memory bitmaps
1971 */
1972static void __meminit free_area_init_core(struct pglist_data *pgdat,
1973		unsigned long *zones_size, unsigned long *zholes_size)
1974{
1975	enum zone_type j;
1976	int nid = pgdat->node_id;
1977	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1978	int ret;
1979
1980	pgdat_resize_init(pgdat);
1981	pgdat->nr_zones = 0;
1982	init_waitqueue_head(&pgdat->kswapd_wait);
1983	pgdat->kswapd_max_order = 0;
1984
1985	for (j = 0; j < MAX_NR_ZONES; j++) {
1986		struct zone *zone = pgdat->node_zones + j;
1987		unsigned long size, realsize;
1988
1989		realsize = size = zones_size[j];
1990		if (zholes_size)
1991			realsize -= zholes_size[j];
1992
1993		if (!is_highmem_idx(j))
1994			nr_kernel_pages += realsize;
1995		nr_all_pages += realsize;
1996
1997		zone->spanned_pages = size;
1998		zone->present_pages = realsize;
1999#ifdef CONFIG_NUMA
2000		zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2001						/ 100;
2002#endif
2003		zone->name = zone_names[j];
2004		spin_lock_init(&zone->lock);
2005		spin_lock_init(&zone->lru_lock);
2006		zone_seqlock_init(zone);
2007		zone->zone_pgdat = pgdat;
2008		zone->free_pages = 0;
2009
2010		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2011
2012		zone_pcp_init(zone);
2013		INIT_LIST_HEAD(&zone->active_list);
2014		INIT_LIST_HEAD(&zone->inactive_list);
2015		zone->nr_scan_active = 0;
2016		zone->nr_scan_inactive = 0;
2017		zone->nr_active = 0;
2018		zone->nr_inactive = 0;
2019		zap_zone_vm_stats(zone);
2020		atomic_set(&zone->reclaim_in_progress, 0);
2021		if (!size)
2022			continue;
2023
2024		zonetable_add(zone, nid, j, zone_start_pfn, size);
2025		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2026		BUG_ON(ret);
2027		zone_start_pfn += size;
2028	}
2029}
2030
2031static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2032{
2033	/* Skip empty nodes */
2034	if (!pgdat->node_spanned_pages)
2035		return;
2036
2037#ifdef CONFIG_FLAT_NODE_MEM_MAP
2038	/* ia64 gets its own node_mem_map, before this, without bootmem */
2039	if (!pgdat->node_mem_map) {
2040		unsigned long size, start, end;
2041		struct page *map;
2042
2043		/*
2044		 * The zone's endpoints aren't required to be MAX_ORDER
2045		 * aligned but the node_mem_map endpoints must be in order
2046		 * for the buddy allocator to function correctly.
2047		 */
2048		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2049		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2050		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2051		size =  (end - start) * sizeof(struct page);
2052		map = alloc_remap(pgdat->node_id, size);
2053		if (!map)
2054			map = alloc_bootmem_node(pgdat, size);
2055		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2056	}
2057#ifdef CONFIG_FLATMEM
2058	/*
2059	 * With no DISCONTIG, the global mem_map is just set as node 0's
2060	 */
2061	if (pgdat == NODE_DATA(0))
2062		mem_map = NODE_DATA(0)->node_mem_map;
2063#endif
2064#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2065}
2066
2067void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2068		unsigned long *zones_size, unsigned long node_start_pfn,
2069		unsigned long *zholes_size)
2070{
2071	pgdat->node_id = nid;
2072	pgdat->node_start_pfn = node_start_pfn;
2073	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2074
2075	alloc_node_mem_map(pgdat);
2076
2077	free_area_init_core(pgdat, zones_size, zholes_size);
2078}
2079
2080#ifndef CONFIG_NEED_MULTIPLE_NODES
2081static bootmem_data_t contig_bootmem_data;
2082struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2083
2084EXPORT_SYMBOL(contig_page_data);
2085#endif
2086
2087void __init free_area_init(unsigned long *zones_size)
2088{
2089	free_area_init_node(0, NODE_DATA(0), zones_size,
2090			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2091}
2092
2093#ifdef CONFIG_HOTPLUG_CPU
2094static int page_alloc_cpu_notify(struct notifier_block *self,
2095				 unsigned long action, void *hcpu)
2096{
2097	int cpu = (unsigned long)hcpu;
2098
2099	if (action == CPU_DEAD) {
2100		local_irq_disable();
2101		__drain_pages(cpu);
2102		vm_events_fold_cpu(cpu);
2103		local_irq_enable();
2104		refresh_cpu_vm_stats(cpu);
2105	}
2106	return NOTIFY_OK;
2107}
2108#endif /* CONFIG_HOTPLUG_CPU */
2109
2110void __init page_alloc_init(void)
2111{
2112	hotcpu_notifier(page_alloc_cpu_notify, 0);
2113}
2114
2115/*
2116 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2117 *	or min_free_kbytes changes.
2118 */
2119static void calculate_totalreserve_pages(void)
2120{
2121	struct pglist_data *pgdat;
2122	unsigned long reserve_pages = 0;
2123	int i, j;
2124
2125	for_each_online_pgdat(pgdat) {
2126		for (i = 0; i < MAX_NR_ZONES; i++) {
2127			struct zone *zone = pgdat->node_zones + i;
2128			unsigned long max = 0;
2129
2130			/* Find valid and maximum lowmem_reserve in the zone */
2131			for (j = i; j < MAX_NR_ZONES; j++) {
2132				if (zone->lowmem_reserve[j] > max)
2133					max = zone->lowmem_reserve[j];
2134			}
2135
2136			/* we treat pages_high as reserved pages. */
2137			max += zone->pages_high;
2138
2139			if (max > zone->present_pages)
2140				max = zone->present_pages;
2141			reserve_pages += max;
2142		}
2143	}
2144	totalreserve_pages = reserve_pages;
2145}
2146
2147/*
2148 * setup_per_zone_lowmem_reserve - called whenever
2149 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2150 *	has a correct pages reserved value, so an adequate number of
2151 *	pages are left in the zone after a successful __alloc_pages().
2152 */
2153static void setup_per_zone_lowmem_reserve(void)
2154{
2155	struct pglist_data *pgdat;
2156	int j, idx;
2157
2158	for_each_online_pgdat(pgdat) {
2159		for (j = 0; j < MAX_NR_ZONES; j++) {
2160			struct zone *zone = pgdat->node_zones + j;
2161			unsigned long present_pages = zone->present_pages;
2162
2163			zone->lowmem_reserve[j] = 0;
2164
2165			for (idx = j-1; idx >= 0; idx--) {
2166				struct zone *lower_zone;
2167
2168				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2169					sysctl_lowmem_reserve_ratio[idx] = 1;
2170
2171				lower_zone = pgdat->node_zones + idx;
2172				lower_zone->lowmem_reserve[j] = present_pages /
2173					sysctl_lowmem_reserve_ratio[idx];
2174				present_pages += lower_zone->present_pages;
2175			}
2176		}
2177	}
2178
2179	/* update totalreserve_pages */
2180	calculate_totalreserve_pages();
2181}
2182
2183/*
2184 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2185 *	that the pages_{min,low,high} values for each zone are set correctly
2186 *	with respect to min_free_kbytes.
2187 */
2188void setup_per_zone_pages_min(void)
2189{
2190	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2191	unsigned long lowmem_pages = 0;
2192	struct zone *zone;
2193	unsigned long flags;
2194
2195	/* Calculate total number of !ZONE_HIGHMEM pages */
2196	for_each_zone(zone) {
2197		if (!is_highmem(zone))
2198			lowmem_pages += zone->present_pages;
2199	}
2200
2201	for_each_zone(zone) {
2202		u64 tmp;
2203
2204		spin_lock_irqsave(&zone->lru_lock, flags);
2205		tmp = (u64)pages_min * zone->present_pages;
2206		do_div(tmp, lowmem_pages);
2207		if (is_highmem(zone)) {
2208			/*
2209			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2210			 * need highmem pages, so cap pages_min to a small
2211			 * value here.
2212			 *
2213			 * The (pages_high-pages_low) and (pages_low-pages_min)
2214			 * deltas controls asynch page reclaim, and so should
2215			 * not be capped for highmem.
2216			 */
2217			int min_pages;
2218
2219			min_pages = zone->present_pages / 1024;
2220			if (min_pages < SWAP_CLUSTER_MAX)
2221				min_pages = SWAP_CLUSTER_MAX;
2222			if (min_pages > 128)
2223				min_pages = 128;
2224			zone->pages_min = min_pages;
2225		} else {
2226			/*
2227			 * If it's a lowmem zone, reserve a number of pages
2228			 * proportionate to the zone's size.
2229			 */
2230			zone->pages_min = tmp;
2231		}
2232
2233		zone->pages_low   = zone->pages_min + (tmp >> 2);
2234		zone->pages_high  = zone->pages_min + (tmp >> 1);
2235		spin_unlock_irqrestore(&zone->lru_lock, flags);
2236	}
2237
2238	/* update totalreserve_pages */
2239	calculate_totalreserve_pages();
2240}
2241
2242/*
2243 * Initialise min_free_kbytes.
2244 *
2245 * For small machines we want it small (128k min).  For large machines
2246 * we want it large (64MB max).  But it is not linear, because network
2247 * bandwidth does not increase linearly with machine size.  We use
2248 *
2249 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2250 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2251 *
2252 * which yields
2253 *
2254 * 16MB:	512k
2255 * 32MB:	724k
2256 * 64MB:	1024k
2257 * 128MB:	1448k
2258 * 256MB:	2048k
2259 * 512MB:	2896k
2260 * 1024MB:	4096k
2261 * 2048MB:	5792k
2262 * 4096MB:	8192k
2263 * 8192MB:	11584k
2264 * 16384MB:	16384k
2265 */
2266static int __init init_per_zone_pages_min(void)
2267{
2268	unsigned long lowmem_kbytes;
2269
2270	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2271
2272	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2273	if (min_free_kbytes < 128)
2274		min_free_kbytes = 128;
2275	if (min_free_kbytes > 65536)
2276		min_free_kbytes = 65536;
2277	setup_per_zone_pages_min();
2278	setup_per_zone_lowmem_reserve();
2279	return 0;
2280}
2281module_init(init_per_zone_pages_min)
2282
2283/*
2284 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2285 *	that we can call two helper functions whenever min_free_kbytes
2286 *	changes.
2287 */
2288int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2289	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2290{
2291	proc_dointvec(table, write, file, buffer, length, ppos);
2292	setup_per_zone_pages_min();
2293	return 0;
2294}
2295
2296#ifdef CONFIG_NUMA
2297int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2298	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2299{
2300	struct zone *zone;
2301	int rc;
2302
2303	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2304	if (rc)
2305		return rc;
2306
2307	for_each_zone(zone)
2308		zone->min_unmapped_ratio = (zone->present_pages *
2309				sysctl_min_unmapped_ratio) / 100;
2310	return 0;
2311}
2312#endif
2313
2314/*
2315 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2316 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2317 *	whenever sysctl_lowmem_reserve_ratio changes.
2318 *
2319 * The reserve ratio obviously has absolutely no relation with the
2320 * pages_min watermarks. The lowmem reserve ratio can only make sense
2321 * if in function of the boot time zone sizes.
2322 */
2323int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2324	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2325{
2326	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2327	setup_per_zone_lowmem_reserve();
2328	return 0;
2329}
2330
2331/*
2332 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2333 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2334 * can have before it gets flushed back to buddy allocator.
2335 */
2336
2337int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2338	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2339{
2340	struct zone *zone;
2341	unsigned int cpu;
2342	int ret;
2343
2344	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2345	if (!write || (ret == -EINVAL))
2346		return ret;
2347	for_each_zone(zone) {
2348		for_each_online_cpu(cpu) {
2349			unsigned long  high;
2350			high = zone->present_pages / percpu_pagelist_fraction;
2351			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2352		}
2353	}
2354	return 0;
2355}
2356
2357int hashdist = HASHDIST_DEFAULT;
2358
2359#ifdef CONFIG_NUMA
2360static int __init set_hashdist(char *str)
2361{
2362	if (!str)
2363		return 0;
2364	hashdist = simple_strtoul(str, &str, 0);
2365	return 1;
2366}
2367__setup("hashdist=", set_hashdist);
2368#endif
2369
2370/*
2371 * allocate a large system hash table from bootmem
2372 * - it is assumed that the hash table must contain an exact power-of-2
2373 *   quantity of entries
2374 * - limit is the number of hash buckets, not the total allocation size
2375 */
2376void *__init alloc_large_system_hash(const char *tablename,
2377				     unsigned long bucketsize,
2378				     unsigned long numentries,
2379				     int scale,
2380				     int flags,
2381				     unsigned int *_hash_shift,
2382				     unsigned int *_hash_mask,
2383				     unsigned long limit)
2384{
2385	unsigned long long max = limit;
2386	unsigned long log2qty, size;
2387	void *table = NULL;
2388
2389	/* allow the kernel cmdline to have a say */
2390	if (!numentries) {
2391		/* round applicable memory size up to nearest megabyte */
2392		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2393		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2394		numentries >>= 20 - PAGE_SHIFT;
2395		numentries <<= 20 - PAGE_SHIFT;
2396
2397		/* limit to 1 bucket per 2^scale bytes of low memory */
2398		if (scale > PAGE_SHIFT)
2399			numentries >>= (scale - PAGE_SHIFT);
2400		else
2401			numentries <<= (PAGE_SHIFT - scale);
2402	}
2403	numentries = roundup_pow_of_two(numentries);
2404
2405	/* limit allocation size to 1/16 total memory by default */
2406	if (max == 0) {
2407		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2408		do_div(max, bucketsize);
2409	}
2410
2411	if (numentries > max)
2412		numentries = max;
2413
2414	log2qty = long_log2(numentries);
2415
2416	do {
2417		size = bucketsize << log2qty;
2418		if (flags & HASH_EARLY)
2419			table = alloc_bootmem(size);
2420		else if (hashdist)
2421			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2422		else {
2423			unsigned long order;
2424			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2425				;
2426			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2427		}
2428	} while (!table && size > PAGE_SIZE && --log2qty);
2429
2430	if (!table)
2431		panic("Failed to allocate %s hash table\n", tablename);
2432
2433	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2434	       tablename,
2435	       (1U << log2qty),
2436	       long_log2(size) - PAGE_SHIFT,
2437	       size);
2438
2439	if (_hash_shift)
2440		*_hash_shift = log2qty;
2441	if (_hash_mask)
2442		*_hash_mask = (1 << log2qty) - 1;
2443
2444	return table;
2445}
2446
2447#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2448struct page *pfn_to_page(unsigned long pfn)
2449{
2450	return __pfn_to_page(pfn);
2451}
2452unsigned long page_to_pfn(struct page *page)
2453{
2454	return __page_to_pfn(page);
2455}
2456EXPORT_SYMBOL(pfn_to_page);
2457EXPORT_SYMBOL(page_to_pfn);
2458#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2459