page_alloc.c revision 3947be1969a9ce455ec30f60ef51efb10e4323d1
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48EXPORT_SYMBOL(node_online_map);
49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50EXPORT_SYMBOL(node_possible_map);
51struct pglist_data *pgdat_list __read_mostly;
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 *	1G machine -> (16M dma, 784M normal, 224M high)
60 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
63 */
64int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
65
66EXPORT_SYMBOL(totalram_pages);
67EXPORT_SYMBOL(nr_swap_pages);
68
69/*
70 * Used by page_zone() to look up the address of the struct zone whose
71 * id is encoded in the upper bits of page->flags
72 */
73struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
74EXPORT_SYMBOL(zone_table);
75
76static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
77int min_free_kbytes = 1024;
78
79unsigned long __initdata nr_kernel_pages;
80unsigned long __initdata nr_all_pages;
81
82static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
83{
84	int ret = 0;
85	unsigned seq;
86	unsigned long pfn = page_to_pfn(page);
87
88	do {
89		seq = zone_span_seqbegin(zone);
90		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
91			ret = 1;
92		else if (pfn < zone->zone_start_pfn)
93			ret = 1;
94	} while (zone_span_seqretry(zone, seq));
95
96	return ret;
97}
98
99static int page_is_consistent(struct zone *zone, struct page *page)
100{
101#ifdef CONFIG_HOLES_IN_ZONE
102	if (!pfn_valid(page_to_pfn(page)))
103		return 0;
104#endif
105	if (zone != page_zone(page))
106		return 0;
107
108	return 1;
109}
110/*
111 * Temporary debugging check for pages not lying within a given zone.
112 */
113static int bad_range(struct zone *zone, struct page *page)
114{
115	if (page_outside_zone_boundaries(zone, page))
116		return 1;
117	if (!page_is_consistent(zone, page))
118		return 1;
119
120	return 0;
121}
122
123static void bad_page(const char *function, struct page *page)
124{
125	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
126		function, current->comm, page);
127	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
128		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
129		page->mapping, page_mapcount(page), page_count(page));
130	printk(KERN_EMERG "Backtrace:\n");
131	dump_stack();
132	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
133	page->flags &= ~(1 << PG_lru	|
134			1 << PG_private |
135			1 << PG_locked	|
136			1 << PG_active	|
137			1 << PG_dirty	|
138			1 << PG_reclaim |
139			1 << PG_slab    |
140			1 << PG_swapcache |
141			1 << PG_writeback |
142			1 << PG_reserved );
143	set_page_count(page, 0);
144	reset_page_mapcount(page);
145	page->mapping = NULL;
146	add_taint(TAINT_BAD_PAGE);
147}
148
149#ifndef CONFIG_HUGETLB_PAGE
150#define prep_compound_page(page, order) do { } while (0)
151#define destroy_compound_page(page, order) do { } while (0)
152#else
153/*
154 * Higher-order pages are called "compound pages".  They are structured thusly:
155 *
156 * The first PAGE_SIZE page is called the "head page".
157 *
158 * The remaining PAGE_SIZE pages are called "tail pages".
159 *
160 * All pages have PG_compound set.  All pages have their ->private pointing at
161 * the head page (even the head page has this).
162 *
163 * The first tail page's ->mapping, if non-zero, holds the address of the
164 * compound page's put_page() function.
165 *
166 * The order of the allocation is stored in the first tail page's ->index
167 * This is only for debug at present.  This usage means that zero-order pages
168 * may not be compound.
169 */
170static void prep_compound_page(struct page *page, unsigned long order)
171{
172	int i;
173	int nr_pages = 1 << order;
174
175	page[1].mapping = NULL;
176	page[1].index = order;
177	for (i = 0; i < nr_pages; i++) {
178		struct page *p = page + i;
179
180		SetPageCompound(p);
181		set_page_private(p, (unsigned long)page);
182	}
183}
184
185static void destroy_compound_page(struct page *page, unsigned long order)
186{
187	int i;
188	int nr_pages = 1 << order;
189
190	if (!PageCompound(page))
191		return;
192
193	if (page[1].index != order)
194		bad_page(__FUNCTION__, page);
195
196	for (i = 0; i < nr_pages; i++) {
197		struct page *p = page + i;
198
199		if (!PageCompound(p))
200			bad_page(__FUNCTION__, page);
201		if (page_private(p) != (unsigned long)page)
202			bad_page(__FUNCTION__, page);
203		ClearPageCompound(p);
204	}
205}
206#endif		/* CONFIG_HUGETLB_PAGE */
207
208/*
209 * function for dealing with page's order in buddy system.
210 * zone->lock is already acquired when we use these.
211 * So, we don't need atomic page->flags operations here.
212 */
213static inline unsigned long page_order(struct page *page) {
214	return page_private(page);
215}
216
217static inline void set_page_order(struct page *page, int order) {
218	set_page_private(page, order);
219	__SetPagePrivate(page);
220}
221
222static inline void rmv_page_order(struct page *page)
223{
224	__ClearPagePrivate(page);
225	set_page_private(page, 0);
226}
227
228/*
229 * Locate the struct page for both the matching buddy in our
230 * pair (buddy1) and the combined O(n+1) page they form (page).
231 *
232 * 1) Any buddy B1 will have an order O twin B2 which satisfies
233 * the following equation:
234 *     B2 = B1 ^ (1 << O)
235 * For example, if the starting buddy (buddy2) is #8 its order
236 * 1 buddy is #10:
237 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
238 *
239 * 2) Any buddy B will have an order O+1 parent P which
240 * satisfies the following equation:
241 *     P = B & ~(1 << O)
242 *
243 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
244 */
245static inline struct page *
246__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
247{
248	unsigned long buddy_idx = page_idx ^ (1 << order);
249
250	return page + (buddy_idx - page_idx);
251}
252
253static inline unsigned long
254__find_combined_index(unsigned long page_idx, unsigned int order)
255{
256	return (page_idx & ~(1 << order));
257}
258
259/*
260 * This function checks whether a page is free && is the buddy
261 * we can do coalesce a page and its buddy if
262 * (a) the buddy is free &&
263 * (b) the buddy is on the buddy system &&
264 * (c) a page and its buddy have the same order.
265 * for recording page's order, we use page_private(page) and PG_private.
266 *
267 */
268static inline int page_is_buddy(struct page *page, int order)
269{
270       if (PagePrivate(page)           &&
271           (page_order(page) == order) &&
272            page_count(page) == 0)
273               return 1;
274       return 0;
275}
276
277/*
278 * Freeing function for a buddy system allocator.
279 *
280 * The concept of a buddy system is to maintain direct-mapped table
281 * (containing bit values) for memory blocks of various "orders".
282 * The bottom level table contains the map for the smallest allocatable
283 * units of memory (here, pages), and each level above it describes
284 * pairs of units from the levels below, hence, "buddies".
285 * At a high level, all that happens here is marking the table entry
286 * at the bottom level available, and propagating the changes upward
287 * as necessary, plus some accounting needed to play nicely with other
288 * parts of the VM system.
289 * At each level, we keep a list of pages, which are heads of continuous
290 * free pages of length of (1 << order) and marked with PG_Private.Page's
291 * order is recorded in page_private(page) field.
292 * So when we are allocating or freeing one, we can derive the state of the
293 * other.  That is, if we allocate a small block, and both were
294 * free, the remainder of the region must be split into blocks.
295 * If a block is freed, and its buddy is also free, then this
296 * triggers coalescing into a block of larger size.
297 *
298 * -- wli
299 */
300
301static inline void __free_pages_bulk (struct page *page,
302		struct zone *zone, unsigned int order)
303{
304	unsigned long page_idx;
305	int order_size = 1 << order;
306
307	if (unlikely(order))
308		destroy_compound_page(page, order);
309
310	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
311
312	BUG_ON(page_idx & (order_size - 1));
313	BUG_ON(bad_range(zone, page));
314
315	zone->free_pages += order_size;
316	while (order < MAX_ORDER-1) {
317		unsigned long combined_idx;
318		struct free_area *area;
319		struct page *buddy;
320
321		combined_idx = __find_combined_index(page_idx, order);
322		buddy = __page_find_buddy(page, page_idx, order);
323
324		if (bad_range(zone, buddy))
325			break;
326		if (!page_is_buddy(buddy, order))
327			break;		/* Move the buddy up one level. */
328		list_del(&buddy->lru);
329		area = zone->free_area + order;
330		area->nr_free--;
331		rmv_page_order(buddy);
332		page = page + (combined_idx - page_idx);
333		page_idx = combined_idx;
334		order++;
335	}
336	set_page_order(page, order);
337	list_add(&page->lru, &zone->free_area[order].free_list);
338	zone->free_area[order].nr_free++;
339}
340
341static inline void free_pages_check(const char *function, struct page *page)
342{
343	if (	page_mapcount(page) ||
344		page->mapping != NULL ||
345		page_count(page) != 0 ||
346		(page->flags & (
347			1 << PG_lru	|
348			1 << PG_private |
349			1 << PG_locked	|
350			1 << PG_active	|
351			1 << PG_reclaim	|
352			1 << PG_slab	|
353			1 << PG_swapcache |
354			1 << PG_writeback |
355			1 << PG_reserved )))
356		bad_page(function, page);
357	if (PageDirty(page))
358		__ClearPageDirty(page);
359}
360
361/*
362 * Frees a list of pages.
363 * Assumes all pages on list are in same zone, and of same order.
364 * count is the number of pages to free.
365 *
366 * If the zone was previously in an "all pages pinned" state then look to
367 * see if this freeing clears that state.
368 *
369 * And clear the zone's pages_scanned counter, to hold off the "all pages are
370 * pinned" detection logic.
371 */
372static int
373free_pages_bulk(struct zone *zone, int count,
374		struct list_head *list, unsigned int order)
375{
376	unsigned long flags;
377	struct page *page = NULL;
378	int ret = 0;
379
380	spin_lock_irqsave(&zone->lock, flags);
381	zone->all_unreclaimable = 0;
382	zone->pages_scanned = 0;
383	while (!list_empty(list) && count--) {
384		page = list_entry(list->prev, struct page, lru);
385		/* have to delete it as __free_pages_bulk list manipulates */
386		list_del(&page->lru);
387		__free_pages_bulk(page, zone, order);
388		ret++;
389	}
390	spin_unlock_irqrestore(&zone->lock, flags);
391	return ret;
392}
393
394void __free_pages_ok(struct page *page, unsigned int order)
395{
396	LIST_HEAD(list);
397	int i;
398
399	arch_free_page(page, order);
400
401	mod_page_state(pgfree, 1 << order);
402
403#ifndef CONFIG_MMU
404	if (order > 0)
405		for (i = 1 ; i < (1 << order) ; ++i)
406			__put_page(page + i);
407#endif
408
409	for (i = 0 ; i < (1 << order) ; ++i)
410		free_pages_check(__FUNCTION__, page + i);
411	list_add(&page->lru, &list);
412	kernel_map_pages(page, 1<<order, 0);
413	free_pages_bulk(page_zone(page), 1, &list, order);
414}
415
416
417/*
418 * The order of subdivision here is critical for the IO subsystem.
419 * Please do not alter this order without good reasons and regression
420 * testing. Specifically, as large blocks of memory are subdivided,
421 * the order in which smaller blocks are delivered depends on the order
422 * they're subdivided in this function. This is the primary factor
423 * influencing the order in which pages are delivered to the IO
424 * subsystem according to empirical testing, and this is also justified
425 * by considering the behavior of a buddy system containing a single
426 * large block of memory acted on by a series of small allocations.
427 * This behavior is a critical factor in sglist merging's success.
428 *
429 * -- wli
430 */
431static inline struct page *
432expand(struct zone *zone, struct page *page,
433 	int low, int high, struct free_area *area)
434{
435	unsigned long size = 1 << high;
436
437	while (high > low) {
438		area--;
439		high--;
440		size >>= 1;
441		BUG_ON(bad_range(zone, &page[size]));
442		list_add(&page[size].lru, &area->free_list);
443		area->nr_free++;
444		set_page_order(&page[size], high);
445	}
446	return page;
447}
448
449void set_page_refs(struct page *page, int order)
450{
451#ifdef CONFIG_MMU
452	set_page_count(page, 1);
453#else
454	int i;
455
456	/*
457	 * We need to reference all the pages for this order, otherwise if
458	 * anyone accesses one of the pages with (get/put) it will be freed.
459	 * - eg: access_process_vm()
460	 */
461	for (i = 0; i < (1 << order); i++)
462		set_page_count(page + i, 1);
463#endif /* CONFIG_MMU */
464}
465
466/*
467 * This page is about to be returned from the page allocator
468 */
469static void prep_new_page(struct page *page, int order)
470{
471	if (	page_mapcount(page) ||
472		page->mapping != NULL ||
473		page_count(page) != 0 ||
474		(page->flags & (
475			1 << PG_lru	|
476			1 << PG_private	|
477			1 << PG_locked	|
478			1 << PG_active	|
479			1 << PG_dirty	|
480			1 << PG_reclaim	|
481			1 << PG_slab    |
482			1 << PG_swapcache |
483			1 << PG_writeback |
484			1 << PG_reserved )))
485		bad_page(__FUNCTION__, page);
486
487	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
488			1 << PG_referenced | 1 << PG_arch_1 |
489			1 << PG_checked | 1 << PG_mappedtodisk);
490	set_page_private(page, 0);
491	set_page_refs(page, order);
492	kernel_map_pages(page, 1 << order, 1);
493}
494
495/*
496 * Do the hard work of removing an element from the buddy allocator.
497 * Call me with the zone->lock already held.
498 */
499static struct page *__rmqueue(struct zone *zone, unsigned int order)
500{
501	struct free_area * area;
502	unsigned int current_order;
503	struct page *page;
504
505	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
506		area = zone->free_area + current_order;
507		if (list_empty(&area->free_list))
508			continue;
509
510		page = list_entry(area->free_list.next, struct page, lru);
511		list_del(&page->lru);
512		rmv_page_order(page);
513		area->nr_free--;
514		zone->free_pages -= 1UL << order;
515		return expand(zone, page, order, current_order, area);
516	}
517
518	return NULL;
519}
520
521/*
522 * Obtain a specified number of elements from the buddy allocator, all under
523 * a single hold of the lock, for efficiency.  Add them to the supplied list.
524 * Returns the number of new pages which were placed at *list.
525 */
526static int rmqueue_bulk(struct zone *zone, unsigned int order,
527			unsigned long count, struct list_head *list)
528{
529	unsigned long flags;
530	int i;
531	int allocated = 0;
532	struct page *page;
533
534	spin_lock_irqsave(&zone->lock, flags);
535	for (i = 0; i < count; ++i) {
536		page = __rmqueue(zone, order);
537		if (page == NULL)
538			break;
539		allocated++;
540		list_add_tail(&page->lru, list);
541	}
542	spin_unlock_irqrestore(&zone->lock, flags);
543	return allocated;
544}
545
546#ifdef CONFIG_NUMA
547/* Called from the slab reaper to drain remote pagesets */
548void drain_remote_pages(void)
549{
550	struct zone *zone;
551	int i;
552	unsigned long flags;
553
554	local_irq_save(flags);
555	for_each_zone(zone) {
556		struct per_cpu_pageset *pset;
557
558		/* Do not drain local pagesets */
559		if (zone->zone_pgdat->node_id == numa_node_id())
560			continue;
561
562		pset = zone->pageset[smp_processor_id()];
563		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
564			struct per_cpu_pages *pcp;
565
566			pcp = &pset->pcp[i];
567			if (pcp->count)
568				pcp->count -= free_pages_bulk(zone, pcp->count,
569						&pcp->list, 0);
570		}
571	}
572	local_irq_restore(flags);
573}
574#endif
575
576#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
577static void __drain_pages(unsigned int cpu)
578{
579	struct zone *zone;
580	int i;
581
582	for_each_zone(zone) {
583		struct per_cpu_pageset *pset;
584
585		pset = zone_pcp(zone, cpu);
586		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
587			struct per_cpu_pages *pcp;
588
589			pcp = &pset->pcp[i];
590			pcp->count -= free_pages_bulk(zone, pcp->count,
591						&pcp->list, 0);
592		}
593	}
594}
595#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
596
597#ifdef CONFIG_PM
598
599void mark_free_pages(struct zone *zone)
600{
601	unsigned long zone_pfn, flags;
602	int order;
603	struct list_head *curr;
604
605	if (!zone->spanned_pages)
606		return;
607
608	spin_lock_irqsave(&zone->lock, flags);
609	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
610		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
611
612	for (order = MAX_ORDER - 1; order >= 0; --order)
613		list_for_each(curr, &zone->free_area[order].free_list) {
614			unsigned long start_pfn, i;
615
616			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
617
618			for (i=0; i < (1<<order); i++)
619				SetPageNosaveFree(pfn_to_page(start_pfn+i));
620	}
621	spin_unlock_irqrestore(&zone->lock, flags);
622}
623
624/*
625 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
626 */
627void drain_local_pages(void)
628{
629	unsigned long flags;
630
631	local_irq_save(flags);
632	__drain_pages(smp_processor_id());
633	local_irq_restore(flags);
634}
635#endif /* CONFIG_PM */
636
637static void zone_statistics(struct zonelist *zonelist, struct zone *z)
638{
639#ifdef CONFIG_NUMA
640	unsigned long flags;
641	int cpu;
642	pg_data_t *pg = z->zone_pgdat;
643	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
644	struct per_cpu_pageset *p;
645
646	local_irq_save(flags);
647	cpu = smp_processor_id();
648	p = zone_pcp(z,cpu);
649	if (pg == orig) {
650		p->numa_hit++;
651	} else {
652		p->numa_miss++;
653		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
654	}
655	if (pg == NODE_DATA(numa_node_id()))
656		p->local_node++;
657	else
658		p->other_node++;
659	local_irq_restore(flags);
660#endif
661}
662
663/*
664 * Free a 0-order page
665 */
666static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
667static void fastcall free_hot_cold_page(struct page *page, int cold)
668{
669	struct zone *zone = page_zone(page);
670	struct per_cpu_pages *pcp;
671	unsigned long flags;
672
673	arch_free_page(page, 0);
674
675	kernel_map_pages(page, 1, 0);
676	inc_page_state(pgfree);
677	if (PageAnon(page))
678		page->mapping = NULL;
679	free_pages_check(__FUNCTION__, page);
680	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
681	local_irq_save(flags);
682	list_add(&page->lru, &pcp->list);
683	pcp->count++;
684	if (pcp->count >= pcp->high)
685		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
686	local_irq_restore(flags);
687	put_cpu();
688}
689
690void fastcall free_hot_page(struct page *page)
691{
692	free_hot_cold_page(page, 0);
693}
694
695void fastcall free_cold_page(struct page *page)
696{
697	free_hot_cold_page(page, 1);
698}
699
700static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
701{
702	int i;
703
704	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
705	for(i = 0; i < (1 << order); i++)
706		clear_highpage(page + i);
707}
708
709/*
710 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
711 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
712 * or two.
713 */
714static struct page *
715buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
716{
717	unsigned long flags;
718	struct page *page = NULL;
719	int cold = !!(gfp_flags & __GFP_COLD);
720
721	if (order == 0) {
722		struct per_cpu_pages *pcp;
723
724		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
725		local_irq_save(flags);
726		if (pcp->count <= pcp->low)
727			pcp->count += rmqueue_bulk(zone, 0,
728						pcp->batch, &pcp->list);
729		if (pcp->count) {
730			page = list_entry(pcp->list.next, struct page, lru);
731			list_del(&page->lru);
732			pcp->count--;
733		}
734		local_irq_restore(flags);
735		put_cpu();
736	}
737
738	if (page == NULL) {
739		spin_lock_irqsave(&zone->lock, flags);
740		page = __rmqueue(zone, order);
741		spin_unlock_irqrestore(&zone->lock, flags);
742	}
743
744	if (page != NULL) {
745		BUG_ON(bad_range(zone, page));
746		mod_page_state_zone(zone, pgalloc, 1 << order);
747		prep_new_page(page, order);
748
749		if (gfp_flags & __GFP_ZERO)
750			prep_zero_page(page, order, gfp_flags);
751
752		if (order && (gfp_flags & __GFP_COMP))
753			prep_compound_page(page, order);
754	}
755	return page;
756}
757
758/*
759 * Return 1 if free pages are above 'mark'. This takes into account the order
760 * of the allocation.
761 */
762int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
763		      int classzone_idx, int can_try_harder, gfp_t gfp_high)
764{
765	/* free_pages my go negative - that's OK */
766	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
767	int o;
768
769	if (gfp_high)
770		min -= min / 2;
771	if (can_try_harder)
772		min -= min / 4;
773
774	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
775		return 0;
776	for (o = 0; o < order; o++) {
777		/* At the next order, this order's pages become unavailable */
778		free_pages -= z->free_area[o].nr_free << o;
779
780		/* Require fewer higher order pages to be free */
781		min >>= 1;
782
783		if (free_pages <= min)
784			return 0;
785	}
786	return 1;
787}
788
789static inline int
790should_reclaim_zone(struct zone *z, gfp_t gfp_mask)
791{
792	if (!z->reclaim_pages)
793		return 0;
794	if (gfp_mask & __GFP_NORECLAIM)
795		return 0;
796	return 1;
797}
798
799/*
800 * This is the 'heart' of the zoned buddy allocator.
801 */
802struct page * fastcall
803__alloc_pages(gfp_t gfp_mask, unsigned int order,
804		struct zonelist *zonelist)
805{
806	const gfp_t wait = gfp_mask & __GFP_WAIT;
807	struct zone **zones, *z;
808	struct page *page;
809	struct reclaim_state reclaim_state;
810	struct task_struct *p = current;
811	int i;
812	int classzone_idx;
813	int do_retry;
814	int can_try_harder;
815	int did_some_progress;
816
817	might_sleep_if(wait);
818
819	/*
820	 * The caller may dip into page reserves a bit more if the caller
821	 * cannot run direct reclaim, or is the caller has realtime scheduling
822	 * policy
823	 */
824	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
825
826	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
827
828	if (unlikely(zones[0] == NULL)) {
829		/* Should this ever happen?? */
830		return NULL;
831	}
832
833	classzone_idx = zone_idx(zones[0]);
834
835restart:
836	/*
837	 * Go through the zonelist once, looking for a zone with enough free.
838	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
839	 */
840	for (i = 0; (z = zones[i]) != NULL; i++) {
841		int do_reclaim = should_reclaim_zone(z, gfp_mask);
842
843		if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
844			continue;
845
846		/*
847		 * If the zone is to attempt early page reclaim then this loop
848		 * will try to reclaim pages and check the watermark a second
849		 * time before giving up and falling back to the next zone.
850		 */
851zone_reclaim_retry:
852		if (!zone_watermark_ok(z, order, z->pages_low,
853				       classzone_idx, 0, 0)) {
854			if (!do_reclaim)
855				continue;
856			else {
857				zone_reclaim(z, gfp_mask, order);
858				/* Only try reclaim once */
859				do_reclaim = 0;
860				goto zone_reclaim_retry;
861			}
862		}
863
864		page = buffered_rmqueue(z, order, gfp_mask);
865		if (page)
866			goto got_pg;
867	}
868
869	for (i = 0; (z = zones[i]) != NULL; i++)
870		wakeup_kswapd(z, order);
871
872	/*
873	 * Go through the zonelist again. Let __GFP_HIGH and allocations
874	 * coming from realtime tasks to go deeper into reserves
875	 *
876	 * This is the last chance, in general, before the goto nopage.
877	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
878	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
879	 */
880	for (i = 0; (z = zones[i]) != NULL; i++) {
881		if (!zone_watermark_ok(z, order, z->pages_min,
882				       classzone_idx, can_try_harder,
883				       gfp_mask & __GFP_HIGH))
884			continue;
885
886		if (wait && !cpuset_zone_allowed(z, gfp_mask))
887			continue;
888
889		page = buffered_rmqueue(z, order, gfp_mask);
890		if (page)
891			goto got_pg;
892	}
893
894	/* This allocation should allow future memory freeing. */
895
896	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
897			&& !in_interrupt()) {
898		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
899			/* go through the zonelist yet again, ignoring mins */
900			for (i = 0; (z = zones[i]) != NULL; i++) {
901				if (!cpuset_zone_allowed(z, gfp_mask))
902					continue;
903				page = buffered_rmqueue(z, order, gfp_mask);
904				if (page)
905					goto got_pg;
906			}
907		}
908		goto nopage;
909	}
910
911	/* Atomic allocations - we can't balance anything */
912	if (!wait)
913		goto nopage;
914
915rebalance:
916	cond_resched();
917
918	/* We now go into synchronous reclaim */
919	p->flags |= PF_MEMALLOC;
920	reclaim_state.reclaimed_slab = 0;
921	p->reclaim_state = &reclaim_state;
922
923	did_some_progress = try_to_free_pages(zones, gfp_mask);
924
925	p->reclaim_state = NULL;
926	p->flags &= ~PF_MEMALLOC;
927
928	cond_resched();
929
930	if (likely(did_some_progress)) {
931		for (i = 0; (z = zones[i]) != NULL; i++) {
932			if (!zone_watermark_ok(z, order, z->pages_min,
933					       classzone_idx, can_try_harder,
934					       gfp_mask & __GFP_HIGH))
935				continue;
936
937			if (!cpuset_zone_allowed(z, gfp_mask))
938				continue;
939
940			page = buffered_rmqueue(z, order, gfp_mask);
941			if (page)
942				goto got_pg;
943		}
944	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
945		/*
946		 * Go through the zonelist yet one more time, keep
947		 * very high watermark here, this is only to catch
948		 * a parallel oom killing, we must fail if we're still
949		 * under heavy pressure.
950		 */
951		for (i = 0; (z = zones[i]) != NULL; i++) {
952			if (!zone_watermark_ok(z, order, z->pages_high,
953					       classzone_idx, 0, 0))
954				continue;
955
956			if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
957				continue;
958
959			page = buffered_rmqueue(z, order, gfp_mask);
960			if (page)
961				goto got_pg;
962		}
963
964		out_of_memory(gfp_mask, order);
965		goto restart;
966	}
967
968	/*
969	 * Don't let big-order allocations loop unless the caller explicitly
970	 * requests that.  Wait for some write requests to complete then retry.
971	 *
972	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
973	 * <= 3, but that may not be true in other implementations.
974	 */
975	do_retry = 0;
976	if (!(gfp_mask & __GFP_NORETRY)) {
977		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
978			do_retry = 1;
979		if (gfp_mask & __GFP_NOFAIL)
980			do_retry = 1;
981	}
982	if (do_retry) {
983		blk_congestion_wait(WRITE, HZ/50);
984		goto rebalance;
985	}
986
987nopage:
988	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
989		printk(KERN_WARNING "%s: page allocation failure."
990			" order:%d, mode:0x%x\n",
991			p->comm, order, gfp_mask);
992		dump_stack();
993		show_mem();
994	}
995	return NULL;
996got_pg:
997	zone_statistics(zonelist, z);
998	return page;
999}
1000
1001EXPORT_SYMBOL(__alloc_pages);
1002
1003/*
1004 * Common helper functions.
1005 */
1006fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1007{
1008	struct page * page;
1009	page = alloc_pages(gfp_mask, order);
1010	if (!page)
1011		return 0;
1012	return (unsigned long) page_address(page);
1013}
1014
1015EXPORT_SYMBOL(__get_free_pages);
1016
1017fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1018{
1019	struct page * page;
1020
1021	/*
1022	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1023	 * a highmem page
1024	 */
1025	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1026
1027	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1028	if (page)
1029		return (unsigned long) page_address(page);
1030	return 0;
1031}
1032
1033EXPORT_SYMBOL(get_zeroed_page);
1034
1035void __pagevec_free(struct pagevec *pvec)
1036{
1037	int i = pagevec_count(pvec);
1038
1039	while (--i >= 0)
1040		free_hot_cold_page(pvec->pages[i], pvec->cold);
1041}
1042
1043fastcall void __free_pages(struct page *page, unsigned int order)
1044{
1045	if (put_page_testzero(page)) {
1046		if (order == 0)
1047			free_hot_page(page);
1048		else
1049			__free_pages_ok(page, order);
1050	}
1051}
1052
1053EXPORT_SYMBOL(__free_pages);
1054
1055fastcall void free_pages(unsigned long addr, unsigned int order)
1056{
1057	if (addr != 0) {
1058		BUG_ON(!virt_addr_valid((void *)addr));
1059		__free_pages(virt_to_page((void *)addr), order);
1060	}
1061}
1062
1063EXPORT_SYMBOL(free_pages);
1064
1065/*
1066 * Total amount of free (allocatable) RAM:
1067 */
1068unsigned int nr_free_pages(void)
1069{
1070	unsigned int sum = 0;
1071	struct zone *zone;
1072
1073	for_each_zone(zone)
1074		sum += zone->free_pages;
1075
1076	return sum;
1077}
1078
1079EXPORT_SYMBOL(nr_free_pages);
1080
1081#ifdef CONFIG_NUMA
1082unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1083{
1084	unsigned int i, sum = 0;
1085
1086	for (i = 0; i < MAX_NR_ZONES; i++)
1087		sum += pgdat->node_zones[i].free_pages;
1088
1089	return sum;
1090}
1091#endif
1092
1093static unsigned int nr_free_zone_pages(int offset)
1094{
1095	/* Just pick one node, since fallback list is circular */
1096	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1097	unsigned int sum = 0;
1098
1099	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1100	struct zone **zonep = zonelist->zones;
1101	struct zone *zone;
1102
1103	for (zone = *zonep++; zone; zone = *zonep++) {
1104		unsigned long size = zone->present_pages;
1105		unsigned long high = zone->pages_high;
1106		if (size > high)
1107			sum += size - high;
1108	}
1109
1110	return sum;
1111}
1112
1113/*
1114 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1115 */
1116unsigned int nr_free_buffer_pages(void)
1117{
1118	return nr_free_zone_pages(gfp_zone(GFP_USER));
1119}
1120
1121/*
1122 * Amount of free RAM allocatable within all zones
1123 */
1124unsigned int nr_free_pagecache_pages(void)
1125{
1126	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1127}
1128
1129#ifdef CONFIG_HIGHMEM
1130unsigned int nr_free_highpages (void)
1131{
1132	pg_data_t *pgdat;
1133	unsigned int pages = 0;
1134
1135	for_each_pgdat(pgdat)
1136		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1137
1138	return pages;
1139}
1140#endif
1141
1142#ifdef CONFIG_NUMA
1143static void show_node(struct zone *zone)
1144{
1145	printk("Node %d ", zone->zone_pgdat->node_id);
1146}
1147#else
1148#define show_node(zone)	do { } while (0)
1149#endif
1150
1151/*
1152 * Accumulate the page_state information across all CPUs.
1153 * The result is unavoidably approximate - it can change
1154 * during and after execution of this function.
1155 */
1156static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1157
1158atomic_t nr_pagecache = ATOMIC_INIT(0);
1159EXPORT_SYMBOL(nr_pagecache);
1160#ifdef CONFIG_SMP
1161DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1162#endif
1163
1164void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1165{
1166	int cpu = 0;
1167
1168	memset(ret, 0, sizeof(*ret));
1169	cpus_and(*cpumask, *cpumask, cpu_online_map);
1170
1171	cpu = first_cpu(*cpumask);
1172	while (cpu < NR_CPUS) {
1173		unsigned long *in, *out, off;
1174
1175		in = (unsigned long *)&per_cpu(page_states, cpu);
1176
1177		cpu = next_cpu(cpu, *cpumask);
1178
1179		if (cpu < NR_CPUS)
1180			prefetch(&per_cpu(page_states, cpu));
1181
1182		out = (unsigned long *)ret;
1183		for (off = 0; off < nr; off++)
1184			*out++ += *in++;
1185	}
1186}
1187
1188void get_page_state_node(struct page_state *ret, int node)
1189{
1190	int nr;
1191	cpumask_t mask = node_to_cpumask(node);
1192
1193	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1194	nr /= sizeof(unsigned long);
1195
1196	__get_page_state(ret, nr+1, &mask);
1197}
1198
1199void get_page_state(struct page_state *ret)
1200{
1201	int nr;
1202	cpumask_t mask = CPU_MASK_ALL;
1203
1204	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1205	nr /= sizeof(unsigned long);
1206
1207	__get_page_state(ret, nr + 1, &mask);
1208}
1209
1210void get_full_page_state(struct page_state *ret)
1211{
1212	cpumask_t mask = CPU_MASK_ALL;
1213
1214	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1215}
1216
1217unsigned long __read_page_state(unsigned long offset)
1218{
1219	unsigned long ret = 0;
1220	int cpu;
1221
1222	for_each_online_cpu(cpu) {
1223		unsigned long in;
1224
1225		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1226		ret += *((unsigned long *)in);
1227	}
1228	return ret;
1229}
1230
1231void __mod_page_state(unsigned long offset, unsigned long delta)
1232{
1233	unsigned long flags;
1234	void* ptr;
1235
1236	local_irq_save(flags);
1237	ptr = &__get_cpu_var(page_states);
1238	*(unsigned long*)(ptr + offset) += delta;
1239	local_irq_restore(flags);
1240}
1241
1242EXPORT_SYMBOL(__mod_page_state);
1243
1244void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1245			unsigned long *free, struct pglist_data *pgdat)
1246{
1247	struct zone *zones = pgdat->node_zones;
1248	int i;
1249
1250	*active = 0;
1251	*inactive = 0;
1252	*free = 0;
1253	for (i = 0; i < MAX_NR_ZONES; i++) {
1254		*active += zones[i].nr_active;
1255		*inactive += zones[i].nr_inactive;
1256		*free += zones[i].free_pages;
1257	}
1258}
1259
1260void get_zone_counts(unsigned long *active,
1261		unsigned long *inactive, unsigned long *free)
1262{
1263	struct pglist_data *pgdat;
1264
1265	*active = 0;
1266	*inactive = 0;
1267	*free = 0;
1268	for_each_pgdat(pgdat) {
1269		unsigned long l, m, n;
1270		__get_zone_counts(&l, &m, &n, pgdat);
1271		*active += l;
1272		*inactive += m;
1273		*free += n;
1274	}
1275}
1276
1277void si_meminfo(struct sysinfo *val)
1278{
1279	val->totalram = totalram_pages;
1280	val->sharedram = 0;
1281	val->freeram = nr_free_pages();
1282	val->bufferram = nr_blockdev_pages();
1283#ifdef CONFIG_HIGHMEM
1284	val->totalhigh = totalhigh_pages;
1285	val->freehigh = nr_free_highpages();
1286#else
1287	val->totalhigh = 0;
1288	val->freehigh = 0;
1289#endif
1290	val->mem_unit = PAGE_SIZE;
1291}
1292
1293EXPORT_SYMBOL(si_meminfo);
1294
1295#ifdef CONFIG_NUMA
1296void si_meminfo_node(struct sysinfo *val, int nid)
1297{
1298	pg_data_t *pgdat = NODE_DATA(nid);
1299
1300	val->totalram = pgdat->node_present_pages;
1301	val->freeram = nr_free_pages_pgdat(pgdat);
1302	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1303	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1304	val->mem_unit = PAGE_SIZE;
1305}
1306#endif
1307
1308#define K(x) ((x) << (PAGE_SHIFT-10))
1309
1310/*
1311 * Show free area list (used inside shift_scroll-lock stuff)
1312 * We also calculate the percentage fragmentation. We do this by counting the
1313 * memory on each free list with the exception of the first item on the list.
1314 */
1315void show_free_areas(void)
1316{
1317	struct page_state ps;
1318	int cpu, temperature;
1319	unsigned long active;
1320	unsigned long inactive;
1321	unsigned long free;
1322	struct zone *zone;
1323
1324	for_each_zone(zone) {
1325		show_node(zone);
1326		printk("%s per-cpu:", zone->name);
1327
1328		if (!zone->present_pages) {
1329			printk(" empty\n");
1330			continue;
1331		} else
1332			printk("\n");
1333
1334		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1335			struct per_cpu_pageset *pageset;
1336
1337			if (!cpu_possible(cpu))
1338				continue;
1339
1340			pageset = zone_pcp(zone, cpu);
1341
1342			for (temperature = 0; temperature < 2; temperature++)
1343				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1344					cpu,
1345					temperature ? "cold" : "hot",
1346					pageset->pcp[temperature].low,
1347					pageset->pcp[temperature].high,
1348					pageset->pcp[temperature].batch,
1349					pageset->pcp[temperature].count);
1350		}
1351	}
1352
1353	get_page_state(&ps);
1354	get_zone_counts(&active, &inactive, &free);
1355
1356	printk("Free pages: %11ukB (%ukB HighMem)\n",
1357		K(nr_free_pages()),
1358		K(nr_free_highpages()));
1359
1360	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1361		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1362		active,
1363		inactive,
1364		ps.nr_dirty,
1365		ps.nr_writeback,
1366		ps.nr_unstable,
1367		nr_free_pages(),
1368		ps.nr_slab,
1369		ps.nr_mapped,
1370		ps.nr_page_table_pages);
1371
1372	for_each_zone(zone) {
1373		int i;
1374
1375		show_node(zone);
1376		printk("%s"
1377			" free:%lukB"
1378			" min:%lukB"
1379			" low:%lukB"
1380			" high:%lukB"
1381			" active:%lukB"
1382			" inactive:%lukB"
1383			" present:%lukB"
1384			" pages_scanned:%lu"
1385			" all_unreclaimable? %s"
1386			"\n",
1387			zone->name,
1388			K(zone->free_pages),
1389			K(zone->pages_min),
1390			K(zone->pages_low),
1391			K(zone->pages_high),
1392			K(zone->nr_active),
1393			K(zone->nr_inactive),
1394			K(zone->present_pages),
1395			zone->pages_scanned,
1396			(zone->all_unreclaimable ? "yes" : "no")
1397			);
1398		printk("lowmem_reserve[]:");
1399		for (i = 0; i < MAX_NR_ZONES; i++)
1400			printk(" %lu", zone->lowmem_reserve[i]);
1401		printk("\n");
1402	}
1403
1404	for_each_zone(zone) {
1405 		unsigned long nr, flags, order, total = 0;
1406
1407		show_node(zone);
1408		printk("%s: ", zone->name);
1409		if (!zone->present_pages) {
1410			printk("empty\n");
1411			continue;
1412		}
1413
1414		spin_lock_irqsave(&zone->lock, flags);
1415		for (order = 0; order < MAX_ORDER; order++) {
1416			nr = zone->free_area[order].nr_free;
1417			total += nr << order;
1418			printk("%lu*%lukB ", nr, K(1UL) << order);
1419		}
1420		spin_unlock_irqrestore(&zone->lock, flags);
1421		printk("= %lukB\n", K(total));
1422	}
1423
1424	show_swap_cache_info();
1425}
1426
1427/*
1428 * Builds allocation fallback zone lists.
1429 */
1430static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1431{
1432	switch (k) {
1433		struct zone *zone;
1434	default:
1435		BUG();
1436	case ZONE_HIGHMEM:
1437		zone = pgdat->node_zones + ZONE_HIGHMEM;
1438		if (zone->present_pages) {
1439#ifndef CONFIG_HIGHMEM
1440			BUG();
1441#endif
1442			zonelist->zones[j++] = zone;
1443		}
1444	case ZONE_NORMAL:
1445		zone = pgdat->node_zones + ZONE_NORMAL;
1446		if (zone->present_pages)
1447			zonelist->zones[j++] = zone;
1448	case ZONE_DMA:
1449		zone = pgdat->node_zones + ZONE_DMA;
1450		if (zone->present_pages)
1451			zonelist->zones[j++] = zone;
1452	}
1453
1454	return j;
1455}
1456
1457static inline int highest_zone(int zone_bits)
1458{
1459	int res = ZONE_NORMAL;
1460	if (zone_bits & (__force int)__GFP_HIGHMEM)
1461		res = ZONE_HIGHMEM;
1462	if (zone_bits & (__force int)__GFP_DMA)
1463		res = ZONE_DMA;
1464	return res;
1465}
1466
1467#ifdef CONFIG_NUMA
1468#define MAX_NODE_LOAD (num_online_nodes())
1469static int __initdata node_load[MAX_NUMNODES];
1470/**
1471 * find_next_best_node - find the next node that should appear in a given node's fallback list
1472 * @node: node whose fallback list we're appending
1473 * @used_node_mask: nodemask_t of already used nodes
1474 *
1475 * We use a number of factors to determine which is the next node that should
1476 * appear on a given node's fallback list.  The node should not have appeared
1477 * already in @node's fallback list, and it should be the next closest node
1478 * according to the distance array (which contains arbitrary distance values
1479 * from each node to each node in the system), and should also prefer nodes
1480 * with no CPUs, since presumably they'll have very little allocation pressure
1481 * on them otherwise.
1482 * It returns -1 if no node is found.
1483 */
1484static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1485{
1486	int i, n, val;
1487	int min_val = INT_MAX;
1488	int best_node = -1;
1489
1490	for_each_online_node(i) {
1491		cpumask_t tmp;
1492
1493		/* Start from local node */
1494		n = (node+i) % num_online_nodes();
1495
1496		/* Don't want a node to appear more than once */
1497		if (node_isset(n, *used_node_mask))
1498			continue;
1499
1500		/* Use the local node if we haven't already */
1501		if (!node_isset(node, *used_node_mask)) {
1502			best_node = node;
1503			break;
1504		}
1505
1506		/* Use the distance array to find the distance */
1507		val = node_distance(node, n);
1508
1509		/* Give preference to headless and unused nodes */
1510		tmp = node_to_cpumask(n);
1511		if (!cpus_empty(tmp))
1512			val += PENALTY_FOR_NODE_WITH_CPUS;
1513
1514		/* Slight preference for less loaded node */
1515		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1516		val += node_load[n];
1517
1518		if (val < min_val) {
1519			min_val = val;
1520			best_node = n;
1521		}
1522	}
1523
1524	if (best_node >= 0)
1525		node_set(best_node, *used_node_mask);
1526
1527	return best_node;
1528}
1529
1530static void __init build_zonelists(pg_data_t *pgdat)
1531{
1532	int i, j, k, node, local_node;
1533	int prev_node, load;
1534	struct zonelist *zonelist;
1535	nodemask_t used_mask;
1536
1537	/* initialize zonelists */
1538	for (i = 0; i < GFP_ZONETYPES; i++) {
1539		zonelist = pgdat->node_zonelists + i;
1540		zonelist->zones[0] = NULL;
1541	}
1542
1543	/* NUMA-aware ordering of nodes */
1544	local_node = pgdat->node_id;
1545	load = num_online_nodes();
1546	prev_node = local_node;
1547	nodes_clear(used_mask);
1548	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1549		/*
1550		 * We don't want to pressure a particular node.
1551		 * So adding penalty to the first node in same
1552		 * distance group to make it round-robin.
1553		 */
1554		if (node_distance(local_node, node) !=
1555				node_distance(local_node, prev_node))
1556			node_load[node] += load;
1557		prev_node = node;
1558		load--;
1559		for (i = 0; i < GFP_ZONETYPES; i++) {
1560			zonelist = pgdat->node_zonelists + i;
1561			for (j = 0; zonelist->zones[j] != NULL; j++);
1562
1563			k = highest_zone(i);
1564
1565	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1566			zonelist->zones[j] = NULL;
1567		}
1568	}
1569}
1570
1571#else	/* CONFIG_NUMA */
1572
1573static void __init build_zonelists(pg_data_t *pgdat)
1574{
1575	int i, j, k, node, local_node;
1576
1577	local_node = pgdat->node_id;
1578	for (i = 0; i < GFP_ZONETYPES; i++) {
1579		struct zonelist *zonelist;
1580
1581		zonelist = pgdat->node_zonelists + i;
1582
1583		j = 0;
1584		k = highest_zone(i);
1585 		j = build_zonelists_node(pgdat, zonelist, j, k);
1586 		/*
1587 		 * Now we build the zonelist so that it contains the zones
1588 		 * of all the other nodes.
1589 		 * We don't want to pressure a particular node, so when
1590 		 * building the zones for node N, we make sure that the
1591 		 * zones coming right after the local ones are those from
1592 		 * node N+1 (modulo N)
1593 		 */
1594		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1595			if (!node_online(node))
1596				continue;
1597			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1598		}
1599		for (node = 0; node < local_node; node++) {
1600			if (!node_online(node))
1601				continue;
1602			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1603		}
1604
1605		zonelist->zones[j] = NULL;
1606	}
1607}
1608
1609#endif	/* CONFIG_NUMA */
1610
1611void __init build_all_zonelists(void)
1612{
1613	int i;
1614
1615	for_each_online_node(i)
1616		build_zonelists(NODE_DATA(i));
1617	printk("Built %i zonelists\n", num_online_nodes());
1618	cpuset_init_current_mems_allowed();
1619}
1620
1621/*
1622 * Helper functions to size the waitqueue hash table.
1623 * Essentially these want to choose hash table sizes sufficiently
1624 * large so that collisions trying to wait on pages are rare.
1625 * But in fact, the number of active page waitqueues on typical
1626 * systems is ridiculously low, less than 200. So this is even
1627 * conservative, even though it seems large.
1628 *
1629 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1630 * waitqueues, i.e. the size of the waitq table given the number of pages.
1631 */
1632#define PAGES_PER_WAITQUEUE	256
1633
1634static inline unsigned long wait_table_size(unsigned long pages)
1635{
1636	unsigned long size = 1;
1637
1638	pages /= PAGES_PER_WAITQUEUE;
1639
1640	while (size < pages)
1641		size <<= 1;
1642
1643	/*
1644	 * Once we have dozens or even hundreds of threads sleeping
1645	 * on IO we've got bigger problems than wait queue collision.
1646	 * Limit the size of the wait table to a reasonable size.
1647	 */
1648	size = min(size, 4096UL);
1649
1650	return max(size, 4UL);
1651}
1652
1653/*
1654 * This is an integer logarithm so that shifts can be used later
1655 * to extract the more random high bits from the multiplicative
1656 * hash function before the remainder is taken.
1657 */
1658static inline unsigned long wait_table_bits(unsigned long size)
1659{
1660	return ffz(~size);
1661}
1662
1663#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1664
1665static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1666		unsigned long *zones_size, unsigned long *zholes_size)
1667{
1668	unsigned long realtotalpages, totalpages = 0;
1669	int i;
1670
1671	for (i = 0; i < MAX_NR_ZONES; i++)
1672		totalpages += zones_size[i];
1673	pgdat->node_spanned_pages = totalpages;
1674
1675	realtotalpages = totalpages;
1676	if (zholes_size)
1677		for (i = 0; i < MAX_NR_ZONES; i++)
1678			realtotalpages -= zholes_size[i];
1679	pgdat->node_present_pages = realtotalpages;
1680	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1681}
1682
1683
1684/*
1685 * Initially all pages are reserved - free ones are freed
1686 * up by free_all_bootmem() once the early boot process is
1687 * done. Non-atomic initialization, single-pass.
1688 */
1689void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1690		unsigned long start_pfn)
1691{
1692	struct page *page;
1693	unsigned long end_pfn = start_pfn + size;
1694	unsigned long pfn;
1695
1696	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1697		if (!early_pfn_valid(pfn))
1698			continue;
1699		if (!early_pfn_in_nid(pfn, nid))
1700			continue;
1701		page = pfn_to_page(pfn);
1702		set_page_links(page, zone, nid, pfn);
1703		set_page_count(page, 1);
1704		reset_page_mapcount(page);
1705		SetPageReserved(page);
1706		INIT_LIST_HEAD(&page->lru);
1707#ifdef WANT_PAGE_VIRTUAL
1708		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1709		if (!is_highmem_idx(zone))
1710			set_page_address(page, __va(pfn << PAGE_SHIFT));
1711#endif
1712	}
1713}
1714
1715void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1716				unsigned long size)
1717{
1718	int order;
1719	for (order = 0; order < MAX_ORDER ; order++) {
1720		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1721		zone->free_area[order].nr_free = 0;
1722	}
1723}
1724
1725#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1726void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1727		unsigned long size)
1728{
1729	unsigned long snum = pfn_to_section_nr(pfn);
1730	unsigned long end = pfn_to_section_nr(pfn + size);
1731
1732	if (FLAGS_HAS_NODE)
1733		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1734	else
1735		for (; snum <= end; snum++)
1736			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1737}
1738
1739#ifndef __HAVE_ARCH_MEMMAP_INIT
1740#define memmap_init(size, nid, zone, start_pfn) \
1741	memmap_init_zone((size), (nid), (zone), (start_pfn))
1742#endif
1743
1744static int __devinit zone_batchsize(struct zone *zone)
1745{
1746	int batch;
1747
1748	/*
1749	 * The per-cpu-pages pools are set to around 1000th of the
1750	 * size of the zone.  But no more than 1/2 of a meg.
1751	 *
1752	 * OK, so we don't know how big the cache is.  So guess.
1753	 */
1754	batch = zone->present_pages / 1024;
1755	if (batch * PAGE_SIZE > 512 * 1024)
1756		batch = (512 * 1024) / PAGE_SIZE;
1757	batch /= 4;		/* We effectively *= 4 below */
1758	if (batch < 1)
1759		batch = 1;
1760
1761	/*
1762	 * We will be trying to allcoate bigger chunks of contiguous
1763	 * memory of the order of fls(batch).  This should result in
1764	 * better cache coloring.
1765	 *
1766	 * A sanity check also to ensure that batch is still in limits.
1767	 */
1768	batch = (1 << fls(batch + batch/2));
1769
1770	if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1771		batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1772
1773	return batch;
1774}
1775
1776inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1777{
1778	struct per_cpu_pages *pcp;
1779
1780	memset(p, 0, sizeof(*p));
1781
1782	pcp = &p->pcp[0];		/* hot */
1783	pcp->count = 0;
1784	pcp->low = 0;
1785	pcp->high = 6 * batch;
1786	pcp->batch = max(1UL, 1 * batch);
1787	INIT_LIST_HEAD(&pcp->list);
1788
1789	pcp = &p->pcp[1];		/* cold*/
1790	pcp->count = 0;
1791	pcp->low = 0;
1792	pcp->high = 2 * batch;
1793	pcp->batch = max(1UL, batch/2);
1794	INIT_LIST_HEAD(&pcp->list);
1795}
1796
1797#ifdef CONFIG_NUMA
1798/*
1799 * Boot pageset table. One per cpu which is going to be used for all
1800 * zones and all nodes. The parameters will be set in such a way
1801 * that an item put on a list will immediately be handed over to
1802 * the buddy list. This is safe since pageset manipulation is done
1803 * with interrupts disabled.
1804 *
1805 * Some NUMA counter updates may also be caught by the boot pagesets.
1806 *
1807 * The boot_pagesets must be kept even after bootup is complete for
1808 * unused processors and/or zones. They do play a role for bootstrapping
1809 * hotplugged processors.
1810 *
1811 * zoneinfo_show() and maybe other functions do
1812 * not check if the processor is online before following the pageset pointer.
1813 * Other parts of the kernel may not check if the zone is available.
1814 */
1815static struct per_cpu_pageset
1816	boot_pageset[NR_CPUS];
1817
1818/*
1819 * Dynamically allocate memory for the
1820 * per cpu pageset array in struct zone.
1821 */
1822static int __devinit process_zones(int cpu)
1823{
1824	struct zone *zone, *dzone;
1825
1826	for_each_zone(zone) {
1827
1828		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1829					 GFP_KERNEL, cpu_to_node(cpu));
1830		if (!zone->pageset[cpu])
1831			goto bad;
1832
1833		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1834	}
1835
1836	return 0;
1837bad:
1838	for_each_zone(dzone) {
1839		if (dzone == zone)
1840			break;
1841		kfree(dzone->pageset[cpu]);
1842		dzone->pageset[cpu] = NULL;
1843	}
1844	return -ENOMEM;
1845}
1846
1847static inline void free_zone_pagesets(int cpu)
1848{
1849#ifdef CONFIG_NUMA
1850	struct zone *zone;
1851
1852	for_each_zone(zone) {
1853		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1854
1855		zone_pcp(zone, cpu) = NULL;
1856		kfree(pset);
1857	}
1858#endif
1859}
1860
1861static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1862		unsigned long action,
1863		void *hcpu)
1864{
1865	int cpu = (long)hcpu;
1866	int ret = NOTIFY_OK;
1867
1868	switch (action) {
1869		case CPU_UP_PREPARE:
1870			if (process_zones(cpu))
1871				ret = NOTIFY_BAD;
1872			break;
1873#ifdef CONFIG_HOTPLUG_CPU
1874		case CPU_DEAD:
1875			free_zone_pagesets(cpu);
1876			break;
1877#endif
1878		default:
1879			break;
1880	}
1881	return ret;
1882}
1883
1884static struct notifier_block pageset_notifier =
1885	{ &pageset_cpuup_callback, NULL, 0 };
1886
1887void __init setup_per_cpu_pageset()
1888{
1889	int err;
1890
1891	/* Initialize per_cpu_pageset for cpu 0.
1892	 * A cpuup callback will do this for every cpu
1893	 * as it comes online
1894	 */
1895	err = process_zones(smp_processor_id());
1896	BUG_ON(err);
1897	register_cpu_notifier(&pageset_notifier);
1898}
1899
1900#endif
1901
1902static __devinit
1903void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1904{
1905	int i;
1906	struct pglist_data *pgdat = zone->zone_pgdat;
1907
1908	/*
1909	 * The per-page waitqueue mechanism uses hashed waitqueues
1910	 * per zone.
1911	 */
1912	zone->wait_table_size = wait_table_size(zone_size_pages);
1913	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1914	zone->wait_table = (wait_queue_head_t *)
1915		alloc_bootmem_node(pgdat, zone->wait_table_size
1916					* sizeof(wait_queue_head_t));
1917
1918	for(i = 0; i < zone->wait_table_size; ++i)
1919		init_waitqueue_head(zone->wait_table + i);
1920}
1921
1922static __devinit void zone_pcp_init(struct zone *zone)
1923{
1924	int cpu;
1925	unsigned long batch = zone_batchsize(zone);
1926
1927	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1928#ifdef CONFIG_NUMA
1929		/* Early boot. Slab allocator not functional yet */
1930		zone->pageset[cpu] = &boot_pageset[cpu];
1931		setup_pageset(&boot_pageset[cpu],0);
1932#else
1933		setup_pageset(zone_pcp(zone,cpu), batch);
1934#endif
1935	}
1936	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1937		zone->name, zone->present_pages, batch);
1938}
1939
1940static __devinit void init_currently_empty_zone(struct zone *zone,
1941		unsigned long zone_start_pfn, unsigned long size)
1942{
1943	struct pglist_data *pgdat = zone->zone_pgdat;
1944
1945	zone_wait_table_init(zone, size);
1946	pgdat->nr_zones = zone_idx(zone) + 1;
1947
1948	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1949	zone->zone_start_pfn = zone_start_pfn;
1950
1951	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1952
1953	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1954}
1955
1956/*
1957 * Set up the zone data structures:
1958 *   - mark all pages reserved
1959 *   - mark all memory queues empty
1960 *   - clear the memory bitmaps
1961 */
1962static void __init free_area_init_core(struct pglist_data *pgdat,
1963		unsigned long *zones_size, unsigned long *zholes_size)
1964{
1965	unsigned long j;
1966	int nid = pgdat->node_id;
1967	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1968
1969	pgdat_resize_init(pgdat);
1970	pgdat->nr_zones = 0;
1971	init_waitqueue_head(&pgdat->kswapd_wait);
1972	pgdat->kswapd_max_order = 0;
1973
1974	for (j = 0; j < MAX_NR_ZONES; j++) {
1975		struct zone *zone = pgdat->node_zones + j;
1976		unsigned long size, realsize;
1977
1978		realsize = size = zones_size[j];
1979		if (zholes_size)
1980			realsize -= zholes_size[j];
1981
1982		if (j == ZONE_DMA || j == ZONE_NORMAL)
1983			nr_kernel_pages += realsize;
1984		nr_all_pages += realsize;
1985
1986		zone->spanned_pages = size;
1987		zone->present_pages = realsize;
1988		zone->name = zone_names[j];
1989		spin_lock_init(&zone->lock);
1990		spin_lock_init(&zone->lru_lock);
1991		zone_seqlock_init(zone);
1992		zone->zone_pgdat = pgdat;
1993		zone->free_pages = 0;
1994
1995		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1996
1997		zone_pcp_init(zone);
1998		INIT_LIST_HEAD(&zone->active_list);
1999		INIT_LIST_HEAD(&zone->inactive_list);
2000		zone->nr_scan_active = 0;
2001		zone->nr_scan_inactive = 0;
2002		zone->nr_active = 0;
2003		zone->nr_inactive = 0;
2004		atomic_set(&zone->reclaim_in_progress, 0);
2005		if (!size)
2006			continue;
2007
2008		zonetable_add(zone, nid, j, zone_start_pfn, size);
2009		init_currently_empty_zone(zone, zone_start_pfn, size);
2010		zone_start_pfn += size;
2011	}
2012}
2013
2014static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2015{
2016	/* Skip empty nodes */
2017	if (!pgdat->node_spanned_pages)
2018		return;
2019
2020#ifdef CONFIG_FLAT_NODE_MEM_MAP
2021	/* ia64 gets its own node_mem_map, before this, without bootmem */
2022	if (!pgdat->node_mem_map) {
2023		unsigned long size;
2024		struct page *map;
2025
2026		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2027		map = alloc_remap(pgdat->node_id, size);
2028		if (!map)
2029			map = alloc_bootmem_node(pgdat, size);
2030		pgdat->node_mem_map = map;
2031	}
2032#ifdef CONFIG_FLATMEM
2033	/*
2034	 * With no DISCONTIG, the global mem_map is just set as node 0's
2035	 */
2036	if (pgdat == NODE_DATA(0))
2037		mem_map = NODE_DATA(0)->node_mem_map;
2038#endif
2039#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2040}
2041
2042void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2043		unsigned long *zones_size, unsigned long node_start_pfn,
2044		unsigned long *zholes_size)
2045{
2046	pgdat->node_id = nid;
2047	pgdat->node_start_pfn = node_start_pfn;
2048	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2049
2050	alloc_node_mem_map(pgdat);
2051
2052	free_area_init_core(pgdat, zones_size, zholes_size);
2053}
2054
2055#ifndef CONFIG_NEED_MULTIPLE_NODES
2056static bootmem_data_t contig_bootmem_data;
2057struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2058
2059EXPORT_SYMBOL(contig_page_data);
2060#endif
2061
2062void __init free_area_init(unsigned long *zones_size)
2063{
2064	free_area_init_node(0, NODE_DATA(0), zones_size,
2065			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2066}
2067
2068#ifdef CONFIG_PROC_FS
2069
2070#include <linux/seq_file.h>
2071
2072static void *frag_start(struct seq_file *m, loff_t *pos)
2073{
2074	pg_data_t *pgdat;
2075	loff_t node = *pos;
2076
2077	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2078		--node;
2079
2080	return pgdat;
2081}
2082
2083static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2084{
2085	pg_data_t *pgdat = (pg_data_t *)arg;
2086
2087	(*pos)++;
2088	return pgdat->pgdat_next;
2089}
2090
2091static void frag_stop(struct seq_file *m, void *arg)
2092{
2093}
2094
2095/*
2096 * This walks the free areas for each zone.
2097 */
2098static int frag_show(struct seq_file *m, void *arg)
2099{
2100	pg_data_t *pgdat = (pg_data_t *)arg;
2101	struct zone *zone;
2102	struct zone *node_zones = pgdat->node_zones;
2103	unsigned long flags;
2104	int order;
2105
2106	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2107		if (!zone->present_pages)
2108			continue;
2109
2110		spin_lock_irqsave(&zone->lock, flags);
2111		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2112		for (order = 0; order < MAX_ORDER; ++order)
2113			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2114		spin_unlock_irqrestore(&zone->lock, flags);
2115		seq_putc(m, '\n');
2116	}
2117	return 0;
2118}
2119
2120struct seq_operations fragmentation_op = {
2121	.start	= frag_start,
2122	.next	= frag_next,
2123	.stop	= frag_stop,
2124	.show	= frag_show,
2125};
2126
2127/*
2128 * Output information about zones in @pgdat.
2129 */
2130static int zoneinfo_show(struct seq_file *m, void *arg)
2131{
2132	pg_data_t *pgdat = arg;
2133	struct zone *zone;
2134	struct zone *node_zones = pgdat->node_zones;
2135	unsigned long flags;
2136
2137	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2138		int i;
2139
2140		if (!zone->present_pages)
2141			continue;
2142
2143		spin_lock_irqsave(&zone->lock, flags);
2144		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2145		seq_printf(m,
2146			   "\n  pages free     %lu"
2147			   "\n        min      %lu"
2148			   "\n        low      %lu"
2149			   "\n        high     %lu"
2150			   "\n        active   %lu"
2151			   "\n        inactive %lu"
2152			   "\n        scanned  %lu (a: %lu i: %lu)"
2153			   "\n        spanned  %lu"
2154			   "\n        present  %lu",
2155			   zone->free_pages,
2156			   zone->pages_min,
2157			   zone->pages_low,
2158			   zone->pages_high,
2159			   zone->nr_active,
2160			   zone->nr_inactive,
2161			   zone->pages_scanned,
2162			   zone->nr_scan_active, zone->nr_scan_inactive,
2163			   zone->spanned_pages,
2164			   zone->present_pages);
2165		seq_printf(m,
2166			   "\n        protection: (%lu",
2167			   zone->lowmem_reserve[0]);
2168		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2169			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2170		seq_printf(m,
2171			   ")"
2172			   "\n  pagesets");
2173		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2174			struct per_cpu_pageset *pageset;
2175			int j;
2176
2177			pageset = zone_pcp(zone, i);
2178			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2179				if (pageset->pcp[j].count)
2180					break;
2181			}
2182			if (j == ARRAY_SIZE(pageset->pcp))
2183				continue;
2184			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2185				seq_printf(m,
2186					   "\n    cpu: %i pcp: %i"
2187					   "\n              count: %i"
2188					   "\n              low:   %i"
2189					   "\n              high:  %i"
2190					   "\n              batch: %i",
2191					   i, j,
2192					   pageset->pcp[j].count,
2193					   pageset->pcp[j].low,
2194					   pageset->pcp[j].high,
2195					   pageset->pcp[j].batch);
2196			}
2197#ifdef CONFIG_NUMA
2198			seq_printf(m,
2199				   "\n            numa_hit:       %lu"
2200				   "\n            numa_miss:      %lu"
2201				   "\n            numa_foreign:   %lu"
2202				   "\n            interleave_hit: %lu"
2203				   "\n            local_node:     %lu"
2204				   "\n            other_node:     %lu",
2205				   pageset->numa_hit,
2206				   pageset->numa_miss,
2207				   pageset->numa_foreign,
2208				   pageset->interleave_hit,
2209				   pageset->local_node,
2210				   pageset->other_node);
2211#endif
2212		}
2213		seq_printf(m,
2214			   "\n  all_unreclaimable: %u"
2215			   "\n  prev_priority:     %i"
2216			   "\n  temp_priority:     %i"
2217			   "\n  start_pfn:         %lu",
2218			   zone->all_unreclaimable,
2219			   zone->prev_priority,
2220			   zone->temp_priority,
2221			   zone->zone_start_pfn);
2222		spin_unlock_irqrestore(&zone->lock, flags);
2223		seq_putc(m, '\n');
2224	}
2225	return 0;
2226}
2227
2228struct seq_operations zoneinfo_op = {
2229	.start	= frag_start, /* iterate over all zones. The same as in
2230			       * fragmentation. */
2231	.next	= frag_next,
2232	.stop	= frag_stop,
2233	.show	= zoneinfo_show,
2234};
2235
2236static char *vmstat_text[] = {
2237	"nr_dirty",
2238	"nr_writeback",
2239	"nr_unstable",
2240	"nr_page_table_pages",
2241	"nr_mapped",
2242	"nr_slab",
2243
2244	"pgpgin",
2245	"pgpgout",
2246	"pswpin",
2247	"pswpout",
2248	"pgalloc_high",
2249
2250	"pgalloc_normal",
2251	"pgalloc_dma",
2252	"pgfree",
2253	"pgactivate",
2254	"pgdeactivate",
2255
2256	"pgfault",
2257	"pgmajfault",
2258	"pgrefill_high",
2259	"pgrefill_normal",
2260	"pgrefill_dma",
2261
2262	"pgsteal_high",
2263	"pgsteal_normal",
2264	"pgsteal_dma",
2265	"pgscan_kswapd_high",
2266	"pgscan_kswapd_normal",
2267
2268	"pgscan_kswapd_dma",
2269	"pgscan_direct_high",
2270	"pgscan_direct_normal",
2271	"pgscan_direct_dma",
2272	"pginodesteal",
2273
2274	"slabs_scanned",
2275	"kswapd_steal",
2276	"kswapd_inodesteal",
2277	"pageoutrun",
2278	"allocstall",
2279
2280	"pgrotated",
2281	"nr_bounce",
2282};
2283
2284static void *vmstat_start(struct seq_file *m, loff_t *pos)
2285{
2286	struct page_state *ps;
2287
2288	if (*pos >= ARRAY_SIZE(vmstat_text))
2289		return NULL;
2290
2291	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2292	m->private = ps;
2293	if (!ps)
2294		return ERR_PTR(-ENOMEM);
2295	get_full_page_state(ps);
2296	ps->pgpgin /= 2;		/* sectors -> kbytes */
2297	ps->pgpgout /= 2;
2298	return (unsigned long *)ps + *pos;
2299}
2300
2301static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2302{
2303	(*pos)++;
2304	if (*pos >= ARRAY_SIZE(vmstat_text))
2305		return NULL;
2306	return (unsigned long *)m->private + *pos;
2307}
2308
2309static int vmstat_show(struct seq_file *m, void *arg)
2310{
2311	unsigned long *l = arg;
2312	unsigned long off = l - (unsigned long *)m->private;
2313
2314	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2315	return 0;
2316}
2317
2318static void vmstat_stop(struct seq_file *m, void *arg)
2319{
2320	kfree(m->private);
2321	m->private = NULL;
2322}
2323
2324struct seq_operations vmstat_op = {
2325	.start	= vmstat_start,
2326	.next	= vmstat_next,
2327	.stop	= vmstat_stop,
2328	.show	= vmstat_show,
2329};
2330
2331#endif /* CONFIG_PROC_FS */
2332
2333#ifdef CONFIG_HOTPLUG_CPU
2334static int page_alloc_cpu_notify(struct notifier_block *self,
2335				 unsigned long action, void *hcpu)
2336{
2337	int cpu = (unsigned long)hcpu;
2338	long *count;
2339	unsigned long *src, *dest;
2340
2341	if (action == CPU_DEAD) {
2342		int i;
2343
2344		/* Drain local pagecache count. */
2345		count = &per_cpu(nr_pagecache_local, cpu);
2346		atomic_add(*count, &nr_pagecache);
2347		*count = 0;
2348		local_irq_disable();
2349		__drain_pages(cpu);
2350
2351		/* Add dead cpu's page_states to our own. */
2352		dest = (unsigned long *)&__get_cpu_var(page_states);
2353		src = (unsigned long *)&per_cpu(page_states, cpu);
2354
2355		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2356				i++) {
2357			dest[i] += src[i];
2358			src[i] = 0;
2359		}
2360
2361		local_irq_enable();
2362	}
2363	return NOTIFY_OK;
2364}
2365#endif /* CONFIG_HOTPLUG_CPU */
2366
2367void __init page_alloc_init(void)
2368{
2369	hotcpu_notifier(page_alloc_cpu_notify, 0);
2370}
2371
2372/*
2373 * setup_per_zone_lowmem_reserve - called whenever
2374 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2375 *	has a correct pages reserved value, so an adequate number of
2376 *	pages are left in the zone after a successful __alloc_pages().
2377 */
2378static void setup_per_zone_lowmem_reserve(void)
2379{
2380	struct pglist_data *pgdat;
2381	int j, idx;
2382
2383	for_each_pgdat(pgdat) {
2384		for (j = 0; j < MAX_NR_ZONES; j++) {
2385			struct zone *zone = pgdat->node_zones + j;
2386			unsigned long present_pages = zone->present_pages;
2387
2388			zone->lowmem_reserve[j] = 0;
2389
2390			for (idx = j-1; idx >= 0; idx--) {
2391				struct zone *lower_zone;
2392
2393				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2394					sysctl_lowmem_reserve_ratio[idx] = 1;
2395
2396				lower_zone = pgdat->node_zones + idx;
2397				lower_zone->lowmem_reserve[j] = present_pages /
2398					sysctl_lowmem_reserve_ratio[idx];
2399				present_pages += lower_zone->present_pages;
2400			}
2401		}
2402	}
2403}
2404
2405/*
2406 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2407 *	that the pages_{min,low,high} values for each zone are set correctly
2408 *	with respect to min_free_kbytes.
2409 */
2410void setup_per_zone_pages_min(void)
2411{
2412	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2413	unsigned long lowmem_pages = 0;
2414	struct zone *zone;
2415	unsigned long flags;
2416
2417	/* Calculate total number of !ZONE_HIGHMEM pages */
2418	for_each_zone(zone) {
2419		if (!is_highmem(zone))
2420			lowmem_pages += zone->present_pages;
2421	}
2422
2423	for_each_zone(zone) {
2424		spin_lock_irqsave(&zone->lru_lock, flags);
2425		if (is_highmem(zone)) {
2426			/*
2427			 * Often, highmem doesn't need to reserve any pages.
2428			 * But the pages_min/low/high values are also used for
2429			 * batching up page reclaim activity so we need a
2430			 * decent value here.
2431			 */
2432			int min_pages;
2433
2434			min_pages = zone->present_pages / 1024;
2435			if (min_pages < SWAP_CLUSTER_MAX)
2436				min_pages = SWAP_CLUSTER_MAX;
2437			if (min_pages > 128)
2438				min_pages = 128;
2439			zone->pages_min = min_pages;
2440		} else {
2441			/* if it's a lowmem zone, reserve a number of pages
2442			 * proportionate to the zone's size.
2443			 */
2444			zone->pages_min = (pages_min * zone->present_pages) /
2445			                   lowmem_pages;
2446		}
2447
2448		/*
2449		 * When interpreting these watermarks, just keep in mind that:
2450		 * zone->pages_min == (zone->pages_min * 4) / 4;
2451		 */
2452		zone->pages_low   = (zone->pages_min * 5) / 4;
2453		zone->pages_high  = (zone->pages_min * 6) / 4;
2454		spin_unlock_irqrestore(&zone->lru_lock, flags);
2455	}
2456}
2457
2458/*
2459 * Initialise min_free_kbytes.
2460 *
2461 * For small machines we want it small (128k min).  For large machines
2462 * we want it large (64MB max).  But it is not linear, because network
2463 * bandwidth does not increase linearly with machine size.  We use
2464 *
2465 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2466 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2467 *
2468 * which yields
2469 *
2470 * 16MB:	512k
2471 * 32MB:	724k
2472 * 64MB:	1024k
2473 * 128MB:	1448k
2474 * 256MB:	2048k
2475 * 512MB:	2896k
2476 * 1024MB:	4096k
2477 * 2048MB:	5792k
2478 * 4096MB:	8192k
2479 * 8192MB:	11584k
2480 * 16384MB:	16384k
2481 */
2482static int __init init_per_zone_pages_min(void)
2483{
2484	unsigned long lowmem_kbytes;
2485
2486	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2487
2488	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2489	if (min_free_kbytes < 128)
2490		min_free_kbytes = 128;
2491	if (min_free_kbytes > 65536)
2492		min_free_kbytes = 65536;
2493	setup_per_zone_pages_min();
2494	setup_per_zone_lowmem_reserve();
2495	return 0;
2496}
2497module_init(init_per_zone_pages_min)
2498
2499/*
2500 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2501 *	that we can call two helper functions whenever min_free_kbytes
2502 *	changes.
2503 */
2504int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2505	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2506{
2507	proc_dointvec(table, write, file, buffer, length, ppos);
2508	setup_per_zone_pages_min();
2509	return 0;
2510}
2511
2512/*
2513 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2514 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2515 *	whenever sysctl_lowmem_reserve_ratio changes.
2516 *
2517 * The reserve ratio obviously has absolutely no relation with the
2518 * pages_min watermarks. The lowmem reserve ratio can only make sense
2519 * if in function of the boot time zone sizes.
2520 */
2521int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2522	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2523{
2524	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2525	setup_per_zone_lowmem_reserve();
2526	return 0;
2527}
2528
2529__initdata int hashdist = HASHDIST_DEFAULT;
2530
2531#ifdef CONFIG_NUMA
2532static int __init set_hashdist(char *str)
2533{
2534	if (!str)
2535		return 0;
2536	hashdist = simple_strtoul(str, &str, 0);
2537	return 1;
2538}
2539__setup("hashdist=", set_hashdist);
2540#endif
2541
2542/*
2543 * allocate a large system hash table from bootmem
2544 * - it is assumed that the hash table must contain an exact power-of-2
2545 *   quantity of entries
2546 * - limit is the number of hash buckets, not the total allocation size
2547 */
2548void *__init alloc_large_system_hash(const char *tablename,
2549				     unsigned long bucketsize,
2550				     unsigned long numentries,
2551				     int scale,
2552				     int flags,
2553				     unsigned int *_hash_shift,
2554				     unsigned int *_hash_mask,
2555				     unsigned long limit)
2556{
2557	unsigned long long max = limit;
2558	unsigned long log2qty, size;
2559	void *table = NULL;
2560
2561	/* allow the kernel cmdline to have a say */
2562	if (!numentries) {
2563		/* round applicable memory size up to nearest megabyte */
2564		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2565		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2566		numentries >>= 20 - PAGE_SHIFT;
2567		numentries <<= 20 - PAGE_SHIFT;
2568
2569		/* limit to 1 bucket per 2^scale bytes of low memory */
2570		if (scale > PAGE_SHIFT)
2571			numentries >>= (scale - PAGE_SHIFT);
2572		else
2573			numentries <<= (PAGE_SHIFT - scale);
2574	}
2575	/* rounded up to nearest power of 2 in size */
2576	numentries = 1UL << (long_log2(numentries) + 1);
2577
2578	/* limit allocation size to 1/16 total memory by default */
2579	if (max == 0) {
2580		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2581		do_div(max, bucketsize);
2582	}
2583
2584	if (numentries > max)
2585		numentries = max;
2586
2587	log2qty = long_log2(numentries);
2588
2589	do {
2590		size = bucketsize << log2qty;
2591		if (flags & HASH_EARLY)
2592			table = alloc_bootmem(size);
2593		else if (hashdist)
2594			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2595		else {
2596			unsigned long order;
2597			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2598				;
2599			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2600		}
2601	} while (!table && size > PAGE_SIZE && --log2qty);
2602
2603	if (!table)
2604		panic("Failed to allocate %s hash table\n", tablename);
2605
2606	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2607	       tablename,
2608	       (1U << log2qty),
2609	       long_log2(size) - PAGE_SHIFT,
2610	       size);
2611
2612	if (_hash_shift)
2613		*_hash_shift = log2qty;
2614	if (_hash_mask)
2615		*_hash_mask = (1 << log2qty) - 1;
2616
2617	return table;
2618}
2619