page_alloc.c revision 3ee9a4f086716d792219c021e8509f91165a4128
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/memory.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <linux/ftrace_event.h>
58#include <linux/memcontrol.h>
59#include <linux/prefetch.h>
60
61#include <asm/tlbflush.h>
62#include <asm/div64.h>
63#include "internal.h"
64
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
81/*
82 * Array of node states.
83 */
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85	[N_POSSIBLE] = NODE_MASK_ALL,
86	[N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90	[N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92	[N_CPU] = { { [0] = 1UL } },
93#endif	/* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
97unsigned long totalram_pages __read_mostly;
98unsigned long totalreserve_pages __read_mostly;
99int percpu_pagelist_fraction;
100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended.  To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
115{
116	WARN_ON(!mutex_is_locked(&pm_mutex));
117	if (saved_gfp_mask) {
118		gfp_allowed_mask = saved_gfp_mask;
119		saved_gfp_mask = 0;
120	}
121}
122
123void pm_restrict_gfp_mask(void)
124{
125	WARN_ON(!mutex_is_locked(&pm_mutex));
126	WARN_ON(saved_gfp_mask);
127	saved_gfp_mask = gfp_allowed_mask;
128	gfp_allowed_mask &= ~GFP_IOFS;
129}
130#endif /* CONFIG_PM_SLEEP */
131
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
136static void __free_pages_ok(struct page *page, unsigned int order);
137
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 *	1G machine -> (16M dma, 784M normal, 224M high)
142 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
148 */
149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150#ifdef CONFIG_ZONE_DMA
151	 256,
152#endif
153#ifdef CONFIG_ZONE_DMA32
154	 256,
155#endif
156#ifdef CONFIG_HIGHMEM
157	 32,
158#endif
159	 32,
160};
161
162EXPORT_SYMBOL(totalram_pages);
163
164static char * const zone_names[MAX_NR_ZONES] = {
165#ifdef CONFIG_ZONE_DMA
166	 "DMA",
167#endif
168#ifdef CONFIG_ZONE_DMA32
169	 "DMA32",
170#endif
171	 "Normal",
172#ifdef CONFIG_HIGHMEM
173	 "HighMem",
174#endif
175	 "Movable",
176};
177
178int min_free_kbytes = 1024;
179
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
182static unsigned long __meminitdata dma_reserve;
183
184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185  /*
186   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187   * ranges of memory (RAM) that may be registered with add_active_range().
188   * Ranges passed to add_active_range() will be merged if possible
189   * so the number of times add_active_range() can be called is
190   * related to the number of nodes and the number of holes
191   */
192  #ifdef CONFIG_MAX_ACTIVE_REGIONS
193    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195  #else
196    #if MAX_NUMNODES >= 32
197      /* If there can be many nodes, allow up to 50 holes per node */
198      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199    #else
200      /* By default, allow up to 256 distinct regions */
201      #define MAX_ACTIVE_REGIONS 256
202    #endif
203  #endif
204
205  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206  static int __meminitdata nr_nodemap_entries;
207  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209  static unsigned long __initdata required_kernelcore;
210  static unsigned long __initdata required_movablecore;
211  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212
213  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214  int movable_zone;
215  EXPORT_SYMBOL(movable_zone);
216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
218#if MAX_NUMNODES > 1
219int nr_node_ids __read_mostly = MAX_NUMNODES;
220int nr_online_nodes __read_mostly = 1;
221EXPORT_SYMBOL(nr_node_ids);
222EXPORT_SYMBOL(nr_online_nodes);
223#endif
224
225int page_group_by_mobility_disabled __read_mostly;
226
227static void set_pageblock_migratetype(struct page *page, int migratetype)
228{
229
230	if (unlikely(page_group_by_mobility_disabled))
231		migratetype = MIGRATE_UNMOVABLE;
232
233	set_pageblock_flags_group(page, (unsigned long)migratetype,
234					PB_migrate, PB_migrate_end);
235}
236
237bool oom_killer_disabled __read_mostly;
238
239#ifdef CONFIG_DEBUG_VM
240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241{
242	int ret = 0;
243	unsigned seq;
244	unsigned long pfn = page_to_pfn(page);
245
246	do {
247		seq = zone_span_seqbegin(zone);
248		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249			ret = 1;
250		else if (pfn < zone->zone_start_pfn)
251			ret = 1;
252	} while (zone_span_seqretry(zone, seq));
253
254	return ret;
255}
256
257static int page_is_consistent(struct zone *zone, struct page *page)
258{
259	if (!pfn_valid_within(page_to_pfn(page)))
260		return 0;
261	if (zone != page_zone(page))
262		return 0;
263
264	return 1;
265}
266/*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269static int bad_range(struct zone *zone, struct page *page)
270{
271	if (page_outside_zone_boundaries(zone, page))
272		return 1;
273	if (!page_is_consistent(zone, page))
274		return 1;
275
276	return 0;
277}
278#else
279static inline int bad_range(struct zone *zone, struct page *page)
280{
281	return 0;
282}
283#endif
284
285static void bad_page(struct page *page)
286{
287	static unsigned long resume;
288	static unsigned long nr_shown;
289	static unsigned long nr_unshown;
290
291	/* Don't complain about poisoned pages */
292	if (PageHWPoison(page)) {
293		reset_page_mapcount(page); /* remove PageBuddy */
294		return;
295	}
296
297	/*
298	 * Allow a burst of 60 reports, then keep quiet for that minute;
299	 * or allow a steady drip of one report per second.
300	 */
301	if (nr_shown == 60) {
302		if (time_before(jiffies, resume)) {
303			nr_unshown++;
304			goto out;
305		}
306		if (nr_unshown) {
307			printk(KERN_ALERT
308			      "BUG: Bad page state: %lu messages suppressed\n",
309				nr_unshown);
310			nr_unshown = 0;
311		}
312		nr_shown = 0;
313	}
314	if (nr_shown++ == 0)
315		resume = jiffies + 60 * HZ;
316
317	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
318		current->comm, page_to_pfn(page));
319	dump_page(page);
320
321	print_modules();
322	dump_stack();
323out:
324	/* Leave bad fields for debug, except PageBuddy could make trouble */
325	reset_page_mapcount(page); /* remove PageBuddy */
326	add_taint(TAINT_BAD_PAGE);
327}
328
329/*
330 * Higher-order pages are called "compound pages".  They are structured thusly:
331 *
332 * The first PAGE_SIZE page is called the "head page".
333 *
334 * The remaining PAGE_SIZE pages are called "tail pages".
335 *
336 * All pages have PG_compound set.  All pages have their ->private pointing at
337 * the head page (even the head page has this).
338 *
339 * The first tail page's ->lru.next holds the address of the compound page's
340 * put_page() function.  Its ->lru.prev holds the order of allocation.
341 * This usage means that zero-order pages may not be compound.
342 */
343
344static void free_compound_page(struct page *page)
345{
346	__free_pages_ok(page, compound_order(page));
347}
348
349void prep_compound_page(struct page *page, unsigned long order)
350{
351	int i;
352	int nr_pages = 1 << order;
353
354	set_compound_page_dtor(page, free_compound_page);
355	set_compound_order(page, order);
356	__SetPageHead(page);
357	for (i = 1; i < nr_pages; i++) {
358		struct page *p = page + i;
359
360		__SetPageTail(p);
361		p->first_page = page;
362	}
363}
364
365/* update __split_huge_page_refcount if you change this function */
366static int destroy_compound_page(struct page *page, unsigned long order)
367{
368	int i;
369	int nr_pages = 1 << order;
370	int bad = 0;
371
372	if (unlikely(compound_order(page) != order) ||
373	    unlikely(!PageHead(page))) {
374		bad_page(page);
375		bad++;
376	}
377
378	__ClearPageHead(page);
379
380	for (i = 1; i < nr_pages; i++) {
381		struct page *p = page + i;
382
383		if (unlikely(!PageTail(p) || (p->first_page != page))) {
384			bad_page(page);
385			bad++;
386		}
387		__ClearPageTail(p);
388	}
389
390	return bad;
391}
392
393static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394{
395	int i;
396
397	/*
398	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
399	 * and __GFP_HIGHMEM from hard or soft interrupt context.
400	 */
401	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
402	for (i = 0; i < (1 << order); i++)
403		clear_highpage(page + i);
404}
405
406static inline void set_page_order(struct page *page, int order)
407{
408	set_page_private(page, order);
409	__SetPageBuddy(page);
410}
411
412static inline void rmv_page_order(struct page *page)
413{
414	__ClearPageBuddy(page);
415	set_page_private(page, 0);
416}
417
418/*
419 * Locate the struct page for both the matching buddy in our
420 * pair (buddy1) and the combined O(n+1) page they form (page).
421 *
422 * 1) Any buddy B1 will have an order O twin B2 which satisfies
423 * the following equation:
424 *     B2 = B1 ^ (1 << O)
425 * For example, if the starting buddy (buddy2) is #8 its order
426 * 1 buddy is #10:
427 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 *
429 * 2) Any buddy B will have an order O+1 parent P which
430 * satisfies the following equation:
431 *     P = B & ~(1 << O)
432 *
433 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 */
435static inline unsigned long
436__find_buddy_index(unsigned long page_idx, unsigned int order)
437{
438	return page_idx ^ (1 << order);
439}
440
441/*
442 * This function checks whether a page is free && is the buddy
443 * we can do coalesce a page and its buddy if
444 * (a) the buddy is not in a hole &&
445 * (b) the buddy is in the buddy system &&
446 * (c) a page and its buddy have the same order &&
447 * (d) a page and its buddy are in the same zone.
448 *
449 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
450 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 *
452 * For recording page's order, we use page_private(page).
453 */
454static inline int page_is_buddy(struct page *page, struct page *buddy,
455								int order)
456{
457	if (!pfn_valid_within(page_to_pfn(buddy)))
458		return 0;
459
460	if (page_zone_id(page) != page_zone_id(buddy))
461		return 0;
462
463	if (PageBuddy(buddy) && page_order(buddy) == order) {
464		VM_BUG_ON(page_count(buddy) != 0);
465		return 1;
466	}
467	return 0;
468}
469
470/*
471 * Freeing function for a buddy system allocator.
472 *
473 * The concept of a buddy system is to maintain direct-mapped table
474 * (containing bit values) for memory blocks of various "orders".
475 * The bottom level table contains the map for the smallest allocatable
476 * units of memory (here, pages), and each level above it describes
477 * pairs of units from the levels below, hence, "buddies".
478 * At a high level, all that happens here is marking the table entry
479 * at the bottom level available, and propagating the changes upward
480 * as necessary, plus some accounting needed to play nicely with other
481 * parts of the VM system.
482 * At each level, we keep a list of pages, which are heads of continuous
483 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
484 * order is recorded in page_private(page) field.
485 * So when we are allocating or freeing one, we can derive the state of the
486 * other.  That is, if we allocate a small block, and both were
487 * free, the remainder of the region must be split into blocks.
488 * If a block is freed, and its buddy is also free, then this
489 * triggers coalescing into a block of larger size.
490 *
491 * -- wli
492 */
493
494static inline void __free_one_page(struct page *page,
495		struct zone *zone, unsigned int order,
496		int migratetype)
497{
498	unsigned long page_idx;
499	unsigned long combined_idx;
500	unsigned long uninitialized_var(buddy_idx);
501	struct page *buddy;
502
503	if (unlikely(PageCompound(page)))
504		if (unlikely(destroy_compound_page(page, order)))
505			return;
506
507	VM_BUG_ON(migratetype == -1);
508
509	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
510
511	VM_BUG_ON(page_idx & ((1 << order) - 1));
512	VM_BUG_ON(bad_range(zone, page));
513
514	while (order < MAX_ORDER-1) {
515		buddy_idx = __find_buddy_index(page_idx, order);
516		buddy = page + (buddy_idx - page_idx);
517		if (!page_is_buddy(page, buddy, order))
518			break;
519
520		/* Our buddy is free, merge with it and move up one order. */
521		list_del(&buddy->lru);
522		zone->free_area[order].nr_free--;
523		rmv_page_order(buddy);
524		combined_idx = buddy_idx & page_idx;
525		page = page + (combined_idx - page_idx);
526		page_idx = combined_idx;
527		order++;
528	}
529	set_page_order(page, order);
530
531	/*
532	 * If this is not the largest possible page, check if the buddy
533	 * of the next-highest order is free. If it is, it's possible
534	 * that pages are being freed that will coalesce soon. In case,
535	 * that is happening, add the free page to the tail of the list
536	 * so it's less likely to be used soon and more likely to be merged
537	 * as a higher order page
538	 */
539	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
540		struct page *higher_page, *higher_buddy;
541		combined_idx = buddy_idx & page_idx;
542		higher_page = page + (combined_idx - page_idx);
543		buddy_idx = __find_buddy_index(combined_idx, order + 1);
544		higher_buddy = page + (buddy_idx - combined_idx);
545		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
546			list_add_tail(&page->lru,
547				&zone->free_area[order].free_list[migratetype]);
548			goto out;
549		}
550	}
551
552	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
553out:
554	zone->free_area[order].nr_free++;
555}
556
557/*
558 * free_page_mlock() -- clean up attempts to free and mlocked() page.
559 * Page should not be on lru, so no need to fix that up.
560 * free_pages_check() will verify...
561 */
562static inline void free_page_mlock(struct page *page)
563{
564	__dec_zone_page_state(page, NR_MLOCK);
565	__count_vm_event(UNEVICTABLE_MLOCKFREED);
566}
567
568static inline int free_pages_check(struct page *page)
569{
570	if (unlikely(page_mapcount(page) |
571		(page->mapping != NULL)  |
572		(atomic_read(&page->_count) != 0) |
573		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
574		(mem_cgroup_bad_page_check(page)))) {
575		bad_page(page);
576		return 1;
577	}
578	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
579		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
580	return 0;
581}
582
583/*
584 * Frees a number of pages from the PCP lists
585 * Assumes all pages on list are in same zone, and of same order.
586 * count is the number of pages to free.
587 *
588 * If the zone was previously in an "all pages pinned" state then look to
589 * see if this freeing clears that state.
590 *
591 * And clear the zone's pages_scanned counter, to hold off the "all pages are
592 * pinned" detection logic.
593 */
594static void free_pcppages_bulk(struct zone *zone, int count,
595					struct per_cpu_pages *pcp)
596{
597	int migratetype = 0;
598	int batch_free = 0;
599	int to_free = count;
600
601	spin_lock(&zone->lock);
602	zone->all_unreclaimable = 0;
603	zone->pages_scanned = 0;
604
605	while (to_free) {
606		struct page *page;
607		struct list_head *list;
608
609		/*
610		 * Remove pages from lists in a round-robin fashion. A
611		 * batch_free count is maintained that is incremented when an
612		 * empty list is encountered.  This is so more pages are freed
613		 * off fuller lists instead of spinning excessively around empty
614		 * lists
615		 */
616		do {
617			batch_free++;
618			if (++migratetype == MIGRATE_PCPTYPES)
619				migratetype = 0;
620			list = &pcp->lists[migratetype];
621		} while (list_empty(list));
622
623		/* This is the only non-empty list. Free them all. */
624		if (batch_free == MIGRATE_PCPTYPES)
625			batch_free = to_free;
626
627		do {
628			page = list_entry(list->prev, struct page, lru);
629			/* must delete as __free_one_page list manipulates */
630			list_del(&page->lru);
631			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
632			__free_one_page(page, zone, 0, page_private(page));
633			trace_mm_page_pcpu_drain(page, 0, page_private(page));
634		} while (--to_free && --batch_free && !list_empty(list));
635	}
636	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
637	spin_unlock(&zone->lock);
638}
639
640static void free_one_page(struct zone *zone, struct page *page, int order,
641				int migratetype)
642{
643	spin_lock(&zone->lock);
644	zone->all_unreclaimable = 0;
645	zone->pages_scanned = 0;
646
647	__free_one_page(page, zone, order, migratetype);
648	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
649	spin_unlock(&zone->lock);
650}
651
652static bool free_pages_prepare(struct page *page, unsigned int order)
653{
654	int i;
655	int bad = 0;
656
657	trace_mm_page_free_direct(page, order);
658	kmemcheck_free_shadow(page, order);
659
660	if (PageAnon(page))
661		page->mapping = NULL;
662	for (i = 0; i < (1 << order); i++)
663		bad += free_pages_check(page + i);
664	if (bad)
665		return false;
666
667	if (!PageHighMem(page)) {
668		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
669		debug_check_no_obj_freed(page_address(page),
670					   PAGE_SIZE << order);
671	}
672	arch_free_page(page, order);
673	kernel_map_pages(page, 1 << order, 0);
674
675	return true;
676}
677
678static void __free_pages_ok(struct page *page, unsigned int order)
679{
680	unsigned long flags;
681	int wasMlocked = __TestClearPageMlocked(page);
682
683	if (!free_pages_prepare(page, order))
684		return;
685
686	local_irq_save(flags);
687	if (unlikely(wasMlocked))
688		free_page_mlock(page);
689	__count_vm_events(PGFREE, 1 << order);
690	free_one_page(page_zone(page), page, order,
691					get_pageblock_migratetype(page));
692	local_irq_restore(flags);
693}
694
695/*
696 * permit the bootmem allocator to evade page validation on high-order frees
697 */
698void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
699{
700	if (order == 0) {
701		__ClearPageReserved(page);
702		set_page_count(page, 0);
703		set_page_refcounted(page);
704		__free_page(page);
705	} else {
706		int loop;
707
708		prefetchw(page);
709		for (loop = 0; loop < BITS_PER_LONG; loop++) {
710			struct page *p = &page[loop];
711
712			if (loop + 1 < BITS_PER_LONG)
713				prefetchw(p + 1);
714			__ClearPageReserved(p);
715			set_page_count(p, 0);
716		}
717
718		set_page_refcounted(page);
719		__free_pages(page, order);
720	}
721}
722
723
724/*
725 * The order of subdivision here is critical for the IO subsystem.
726 * Please do not alter this order without good reasons and regression
727 * testing. Specifically, as large blocks of memory are subdivided,
728 * the order in which smaller blocks are delivered depends on the order
729 * they're subdivided in this function. This is the primary factor
730 * influencing the order in which pages are delivered to the IO
731 * subsystem according to empirical testing, and this is also justified
732 * by considering the behavior of a buddy system containing a single
733 * large block of memory acted on by a series of small allocations.
734 * This behavior is a critical factor in sglist merging's success.
735 *
736 * -- wli
737 */
738static inline void expand(struct zone *zone, struct page *page,
739	int low, int high, struct free_area *area,
740	int migratetype)
741{
742	unsigned long size = 1 << high;
743
744	while (high > low) {
745		area--;
746		high--;
747		size >>= 1;
748		VM_BUG_ON(bad_range(zone, &page[size]));
749		list_add(&page[size].lru, &area->free_list[migratetype]);
750		area->nr_free++;
751		set_page_order(&page[size], high);
752	}
753}
754
755/*
756 * This page is about to be returned from the page allocator
757 */
758static inline int check_new_page(struct page *page)
759{
760	if (unlikely(page_mapcount(page) |
761		(page->mapping != NULL)  |
762		(atomic_read(&page->_count) != 0)  |
763		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
764		(mem_cgroup_bad_page_check(page)))) {
765		bad_page(page);
766		return 1;
767	}
768	return 0;
769}
770
771static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
772{
773	int i;
774
775	for (i = 0; i < (1 << order); i++) {
776		struct page *p = page + i;
777		if (unlikely(check_new_page(p)))
778			return 1;
779	}
780
781	set_page_private(page, 0);
782	set_page_refcounted(page);
783
784	arch_alloc_page(page, order);
785	kernel_map_pages(page, 1 << order, 1);
786
787	if (gfp_flags & __GFP_ZERO)
788		prep_zero_page(page, order, gfp_flags);
789
790	if (order && (gfp_flags & __GFP_COMP))
791		prep_compound_page(page, order);
792
793	return 0;
794}
795
796/*
797 * Go through the free lists for the given migratetype and remove
798 * the smallest available page from the freelists
799 */
800static inline
801struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
802						int migratetype)
803{
804	unsigned int current_order;
805	struct free_area * area;
806	struct page *page;
807
808	/* Find a page of the appropriate size in the preferred list */
809	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
810		area = &(zone->free_area[current_order]);
811		if (list_empty(&area->free_list[migratetype]))
812			continue;
813
814		page = list_entry(area->free_list[migratetype].next,
815							struct page, lru);
816		list_del(&page->lru);
817		rmv_page_order(page);
818		area->nr_free--;
819		expand(zone, page, order, current_order, area, migratetype);
820		return page;
821	}
822
823	return NULL;
824}
825
826
827/*
828 * This array describes the order lists are fallen back to when
829 * the free lists for the desirable migrate type are depleted
830 */
831static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
832	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
833	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
834	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
835	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
836};
837
838/*
839 * Move the free pages in a range to the free lists of the requested type.
840 * Note that start_page and end_pages are not aligned on a pageblock
841 * boundary. If alignment is required, use move_freepages_block()
842 */
843static int move_freepages(struct zone *zone,
844			  struct page *start_page, struct page *end_page,
845			  int migratetype)
846{
847	struct page *page;
848	unsigned long order;
849	int pages_moved = 0;
850
851#ifndef CONFIG_HOLES_IN_ZONE
852	/*
853	 * page_zone is not safe to call in this context when
854	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
855	 * anyway as we check zone boundaries in move_freepages_block().
856	 * Remove at a later date when no bug reports exist related to
857	 * grouping pages by mobility
858	 */
859	BUG_ON(page_zone(start_page) != page_zone(end_page));
860#endif
861
862	for (page = start_page; page <= end_page;) {
863		/* Make sure we are not inadvertently changing nodes */
864		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
865
866		if (!pfn_valid_within(page_to_pfn(page))) {
867			page++;
868			continue;
869		}
870
871		if (!PageBuddy(page)) {
872			page++;
873			continue;
874		}
875
876		order = page_order(page);
877		list_move(&page->lru,
878			  &zone->free_area[order].free_list[migratetype]);
879		page += 1 << order;
880		pages_moved += 1 << order;
881	}
882
883	return pages_moved;
884}
885
886static int move_freepages_block(struct zone *zone, struct page *page,
887				int migratetype)
888{
889	unsigned long start_pfn, end_pfn;
890	struct page *start_page, *end_page;
891
892	start_pfn = page_to_pfn(page);
893	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
894	start_page = pfn_to_page(start_pfn);
895	end_page = start_page + pageblock_nr_pages - 1;
896	end_pfn = start_pfn + pageblock_nr_pages - 1;
897
898	/* Do not cross zone boundaries */
899	if (start_pfn < zone->zone_start_pfn)
900		start_page = page;
901	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
902		return 0;
903
904	return move_freepages(zone, start_page, end_page, migratetype);
905}
906
907static void change_pageblock_range(struct page *pageblock_page,
908					int start_order, int migratetype)
909{
910	int nr_pageblocks = 1 << (start_order - pageblock_order);
911
912	while (nr_pageblocks--) {
913		set_pageblock_migratetype(pageblock_page, migratetype);
914		pageblock_page += pageblock_nr_pages;
915	}
916}
917
918/* Remove an element from the buddy allocator from the fallback list */
919static inline struct page *
920__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
921{
922	struct free_area * area;
923	int current_order;
924	struct page *page;
925	int migratetype, i;
926
927	/* Find the largest possible block of pages in the other list */
928	for (current_order = MAX_ORDER-1; current_order >= order;
929						--current_order) {
930		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
931			migratetype = fallbacks[start_migratetype][i];
932
933			/* MIGRATE_RESERVE handled later if necessary */
934			if (migratetype == MIGRATE_RESERVE)
935				continue;
936
937			area = &(zone->free_area[current_order]);
938			if (list_empty(&area->free_list[migratetype]))
939				continue;
940
941			page = list_entry(area->free_list[migratetype].next,
942					struct page, lru);
943			area->nr_free--;
944
945			/*
946			 * If breaking a large block of pages, move all free
947			 * pages to the preferred allocation list. If falling
948			 * back for a reclaimable kernel allocation, be more
949			 * aggressive about taking ownership of free pages
950			 */
951			if (unlikely(current_order >= (pageblock_order >> 1)) ||
952					start_migratetype == MIGRATE_RECLAIMABLE ||
953					page_group_by_mobility_disabled) {
954				unsigned long pages;
955				pages = move_freepages_block(zone, page,
956								start_migratetype);
957
958				/* Claim the whole block if over half of it is free */
959				if (pages >= (1 << (pageblock_order-1)) ||
960						page_group_by_mobility_disabled)
961					set_pageblock_migratetype(page,
962								start_migratetype);
963
964				migratetype = start_migratetype;
965			}
966
967			/* Remove the page from the freelists */
968			list_del(&page->lru);
969			rmv_page_order(page);
970
971			/* Take ownership for orders >= pageblock_order */
972			if (current_order >= pageblock_order)
973				change_pageblock_range(page, current_order,
974							start_migratetype);
975
976			expand(zone, page, order, current_order, area, migratetype);
977
978			trace_mm_page_alloc_extfrag(page, order, current_order,
979				start_migratetype, migratetype);
980
981			return page;
982		}
983	}
984
985	return NULL;
986}
987
988/*
989 * Do the hard work of removing an element from the buddy allocator.
990 * Call me with the zone->lock already held.
991 */
992static struct page *__rmqueue(struct zone *zone, unsigned int order,
993						int migratetype)
994{
995	struct page *page;
996
997retry_reserve:
998	page = __rmqueue_smallest(zone, order, migratetype);
999
1000	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1001		page = __rmqueue_fallback(zone, order, migratetype);
1002
1003		/*
1004		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1005		 * is used because __rmqueue_smallest is an inline function
1006		 * and we want just one call site
1007		 */
1008		if (!page) {
1009			migratetype = MIGRATE_RESERVE;
1010			goto retry_reserve;
1011		}
1012	}
1013
1014	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1015	return page;
1016}
1017
1018/*
1019 * Obtain a specified number of elements from the buddy allocator, all under
1020 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1021 * Returns the number of new pages which were placed at *list.
1022 */
1023static int rmqueue_bulk(struct zone *zone, unsigned int order,
1024			unsigned long count, struct list_head *list,
1025			int migratetype, int cold)
1026{
1027	int i;
1028
1029	spin_lock(&zone->lock);
1030	for (i = 0; i < count; ++i) {
1031		struct page *page = __rmqueue(zone, order, migratetype);
1032		if (unlikely(page == NULL))
1033			break;
1034
1035		/*
1036		 * Split buddy pages returned by expand() are received here
1037		 * in physical page order. The page is added to the callers and
1038		 * list and the list head then moves forward. From the callers
1039		 * perspective, the linked list is ordered by page number in
1040		 * some conditions. This is useful for IO devices that can
1041		 * merge IO requests if the physical pages are ordered
1042		 * properly.
1043		 */
1044		if (likely(cold == 0))
1045			list_add(&page->lru, list);
1046		else
1047			list_add_tail(&page->lru, list);
1048		set_page_private(page, migratetype);
1049		list = &page->lru;
1050	}
1051	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1052	spin_unlock(&zone->lock);
1053	return i;
1054}
1055
1056#ifdef CONFIG_NUMA
1057/*
1058 * Called from the vmstat counter updater to drain pagesets of this
1059 * currently executing processor on remote nodes after they have
1060 * expired.
1061 *
1062 * Note that this function must be called with the thread pinned to
1063 * a single processor.
1064 */
1065void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1066{
1067	unsigned long flags;
1068	int to_drain;
1069
1070	local_irq_save(flags);
1071	if (pcp->count >= pcp->batch)
1072		to_drain = pcp->batch;
1073	else
1074		to_drain = pcp->count;
1075	free_pcppages_bulk(zone, to_drain, pcp);
1076	pcp->count -= to_drain;
1077	local_irq_restore(flags);
1078}
1079#endif
1080
1081/*
1082 * Drain pages of the indicated processor.
1083 *
1084 * The processor must either be the current processor and the
1085 * thread pinned to the current processor or a processor that
1086 * is not online.
1087 */
1088static void drain_pages(unsigned int cpu)
1089{
1090	unsigned long flags;
1091	struct zone *zone;
1092
1093	for_each_populated_zone(zone) {
1094		struct per_cpu_pageset *pset;
1095		struct per_cpu_pages *pcp;
1096
1097		local_irq_save(flags);
1098		pset = per_cpu_ptr(zone->pageset, cpu);
1099
1100		pcp = &pset->pcp;
1101		if (pcp->count) {
1102			free_pcppages_bulk(zone, pcp->count, pcp);
1103			pcp->count = 0;
1104		}
1105		local_irq_restore(flags);
1106	}
1107}
1108
1109/*
1110 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 */
1112void drain_local_pages(void *arg)
1113{
1114	drain_pages(smp_processor_id());
1115}
1116
1117/*
1118 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 */
1120void drain_all_pages(void)
1121{
1122	on_each_cpu(drain_local_pages, NULL, 1);
1123}
1124
1125#ifdef CONFIG_HIBERNATION
1126
1127void mark_free_pages(struct zone *zone)
1128{
1129	unsigned long pfn, max_zone_pfn;
1130	unsigned long flags;
1131	int order, t;
1132	struct list_head *curr;
1133
1134	if (!zone->spanned_pages)
1135		return;
1136
1137	spin_lock_irqsave(&zone->lock, flags);
1138
1139	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1140	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1141		if (pfn_valid(pfn)) {
1142			struct page *page = pfn_to_page(pfn);
1143
1144			if (!swsusp_page_is_forbidden(page))
1145				swsusp_unset_page_free(page);
1146		}
1147
1148	for_each_migratetype_order(order, t) {
1149		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1150			unsigned long i;
1151
1152			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1153			for (i = 0; i < (1UL << order); i++)
1154				swsusp_set_page_free(pfn_to_page(pfn + i));
1155		}
1156	}
1157	spin_unlock_irqrestore(&zone->lock, flags);
1158}
1159#endif /* CONFIG_PM */
1160
1161/*
1162 * Free a 0-order page
1163 * cold == 1 ? free a cold page : free a hot page
1164 */
1165void free_hot_cold_page(struct page *page, int cold)
1166{
1167	struct zone *zone = page_zone(page);
1168	struct per_cpu_pages *pcp;
1169	unsigned long flags;
1170	int migratetype;
1171	int wasMlocked = __TestClearPageMlocked(page);
1172
1173	if (!free_pages_prepare(page, 0))
1174		return;
1175
1176	migratetype = get_pageblock_migratetype(page);
1177	set_page_private(page, migratetype);
1178	local_irq_save(flags);
1179	if (unlikely(wasMlocked))
1180		free_page_mlock(page);
1181	__count_vm_event(PGFREE);
1182
1183	/*
1184	 * We only track unmovable, reclaimable and movable on pcp lists.
1185	 * Free ISOLATE pages back to the allocator because they are being
1186	 * offlined but treat RESERVE as movable pages so we can get those
1187	 * areas back if necessary. Otherwise, we may have to free
1188	 * excessively into the page allocator
1189	 */
1190	if (migratetype >= MIGRATE_PCPTYPES) {
1191		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1192			free_one_page(zone, page, 0, migratetype);
1193			goto out;
1194		}
1195		migratetype = MIGRATE_MOVABLE;
1196	}
1197
1198	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1199	if (cold)
1200		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1201	else
1202		list_add(&page->lru, &pcp->lists[migratetype]);
1203	pcp->count++;
1204	if (pcp->count >= pcp->high) {
1205		free_pcppages_bulk(zone, pcp->batch, pcp);
1206		pcp->count -= pcp->batch;
1207	}
1208
1209out:
1210	local_irq_restore(flags);
1211}
1212
1213/*
1214 * split_page takes a non-compound higher-order page, and splits it into
1215 * n (1<<order) sub-pages: page[0..n]
1216 * Each sub-page must be freed individually.
1217 *
1218 * Note: this is probably too low level an operation for use in drivers.
1219 * Please consult with lkml before using this in your driver.
1220 */
1221void split_page(struct page *page, unsigned int order)
1222{
1223	int i;
1224
1225	VM_BUG_ON(PageCompound(page));
1226	VM_BUG_ON(!page_count(page));
1227
1228#ifdef CONFIG_KMEMCHECK
1229	/*
1230	 * Split shadow pages too, because free(page[0]) would
1231	 * otherwise free the whole shadow.
1232	 */
1233	if (kmemcheck_page_is_tracked(page))
1234		split_page(virt_to_page(page[0].shadow), order);
1235#endif
1236
1237	for (i = 1; i < (1 << order); i++)
1238		set_page_refcounted(page + i);
1239}
1240
1241/*
1242 * Similar to split_page except the page is already free. As this is only
1243 * being used for migration, the migratetype of the block also changes.
1244 * As this is called with interrupts disabled, the caller is responsible
1245 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1246 * are enabled.
1247 *
1248 * Note: this is probably too low level an operation for use in drivers.
1249 * Please consult with lkml before using this in your driver.
1250 */
1251int split_free_page(struct page *page)
1252{
1253	unsigned int order;
1254	unsigned long watermark;
1255	struct zone *zone;
1256
1257	BUG_ON(!PageBuddy(page));
1258
1259	zone = page_zone(page);
1260	order = page_order(page);
1261
1262	/* Obey watermarks as if the page was being allocated */
1263	watermark = low_wmark_pages(zone) + (1 << order);
1264	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1265		return 0;
1266
1267	/* Remove page from free list */
1268	list_del(&page->lru);
1269	zone->free_area[order].nr_free--;
1270	rmv_page_order(page);
1271	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1272
1273	/* Split into individual pages */
1274	set_page_refcounted(page);
1275	split_page(page, order);
1276
1277	if (order >= pageblock_order - 1) {
1278		struct page *endpage = page + (1 << order) - 1;
1279		for (; page < endpage; page += pageblock_nr_pages)
1280			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1281	}
1282
1283	return 1 << order;
1284}
1285
1286/*
1287 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1288 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1289 * or two.
1290 */
1291static inline
1292struct page *buffered_rmqueue(struct zone *preferred_zone,
1293			struct zone *zone, int order, gfp_t gfp_flags,
1294			int migratetype)
1295{
1296	unsigned long flags;
1297	struct page *page;
1298	int cold = !!(gfp_flags & __GFP_COLD);
1299
1300again:
1301	if (likely(order == 0)) {
1302		struct per_cpu_pages *pcp;
1303		struct list_head *list;
1304
1305		local_irq_save(flags);
1306		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1307		list = &pcp->lists[migratetype];
1308		if (list_empty(list)) {
1309			pcp->count += rmqueue_bulk(zone, 0,
1310					pcp->batch, list,
1311					migratetype, cold);
1312			if (unlikely(list_empty(list)))
1313				goto failed;
1314		}
1315
1316		if (cold)
1317			page = list_entry(list->prev, struct page, lru);
1318		else
1319			page = list_entry(list->next, struct page, lru);
1320
1321		list_del(&page->lru);
1322		pcp->count--;
1323	} else {
1324		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1325			/*
1326			 * __GFP_NOFAIL is not to be used in new code.
1327			 *
1328			 * All __GFP_NOFAIL callers should be fixed so that they
1329			 * properly detect and handle allocation failures.
1330			 *
1331			 * We most definitely don't want callers attempting to
1332			 * allocate greater than order-1 page units with
1333			 * __GFP_NOFAIL.
1334			 */
1335			WARN_ON_ONCE(order > 1);
1336		}
1337		spin_lock_irqsave(&zone->lock, flags);
1338		page = __rmqueue(zone, order, migratetype);
1339		spin_unlock(&zone->lock);
1340		if (!page)
1341			goto failed;
1342		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1343	}
1344
1345	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1346	zone_statistics(preferred_zone, zone, gfp_flags);
1347	local_irq_restore(flags);
1348
1349	VM_BUG_ON(bad_range(zone, page));
1350	if (prep_new_page(page, order, gfp_flags))
1351		goto again;
1352	return page;
1353
1354failed:
1355	local_irq_restore(flags);
1356	return NULL;
1357}
1358
1359/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1360#define ALLOC_WMARK_MIN		WMARK_MIN
1361#define ALLOC_WMARK_LOW		WMARK_LOW
1362#define ALLOC_WMARK_HIGH	WMARK_HIGH
1363#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1364
1365/* Mask to get the watermark bits */
1366#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1367
1368#define ALLOC_HARDER		0x10 /* try to alloc harder */
1369#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1370#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1371
1372#ifdef CONFIG_FAIL_PAGE_ALLOC
1373
1374static struct {
1375	struct fault_attr attr;
1376
1377	u32 ignore_gfp_highmem;
1378	u32 ignore_gfp_wait;
1379	u32 min_order;
1380} fail_page_alloc = {
1381	.attr = FAULT_ATTR_INITIALIZER,
1382	.ignore_gfp_wait = 1,
1383	.ignore_gfp_highmem = 1,
1384	.min_order = 1,
1385};
1386
1387static int __init setup_fail_page_alloc(char *str)
1388{
1389	return setup_fault_attr(&fail_page_alloc.attr, str);
1390}
1391__setup("fail_page_alloc=", setup_fail_page_alloc);
1392
1393static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1394{
1395	if (order < fail_page_alloc.min_order)
1396		return 0;
1397	if (gfp_mask & __GFP_NOFAIL)
1398		return 0;
1399	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1400		return 0;
1401	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1402		return 0;
1403
1404	return should_fail(&fail_page_alloc.attr, 1 << order);
1405}
1406
1407#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408
1409static int __init fail_page_alloc_debugfs(void)
1410{
1411	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1412	struct dentry *dir;
1413
1414	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1415					&fail_page_alloc.attr);
1416	if (IS_ERR(dir))
1417		return PTR_ERR(dir);
1418
1419	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420				&fail_page_alloc.ignore_gfp_wait))
1421		goto fail;
1422	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1423				&fail_page_alloc.ignore_gfp_highmem))
1424		goto fail;
1425	if (!debugfs_create_u32("min-order", mode, dir,
1426				&fail_page_alloc.min_order))
1427		goto fail;
1428
1429	return 0;
1430fail:
1431	debugfs_remove_recursive(dir);
1432
1433	return -ENOMEM;
1434}
1435
1436late_initcall(fail_page_alloc_debugfs);
1437
1438#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1439
1440#else /* CONFIG_FAIL_PAGE_ALLOC */
1441
1442static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1443{
1444	return 0;
1445}
1446
1447#endif /* CONFIG_FAIL_PAGE_ALLOC */
1448
1449/*
1450 * Return true if free pages are above 'mark'. This takes into account the order
1451 * of the allocation.
1452 */
1453static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1454		      int classzone_idx, int alloc_flags, long free_pages)
1455{
1456	/* free_pages my go negative - that's OK */
1457	long min = mark;
1458	int o;
1459
1460	free_pages -= (1 << order) + 1;
1461	if (alloc_flags & ALLOC_HIGH)
1462		min -= min / 2;
1463	if (alloc_flags & ALLOC_HARDER)
1464		min -= min / 4;
1465
1466	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1467		return false;
1468	for (o = 0; o < order; o++) {
1469		/* At the next order, this order's pages become unavailable */
1470		free_pages -= z->free_area[o].nr_free << o;
1471
1472		/* Require fewer higher order pages to be free */
1473		min >>= 1;
1474
1475		if (free_pages <= min)
1476			return false;
1477	}
1478	return true;
1479}
1480
1481bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1482		      int classzone_idx, int alloc_flags)
1483{
1484	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1485					zone_page_state(z, NR_FREE_PAGES));
1486}
1487
1488bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1489		      int classzone_idx, int alloc_flags)
1490{
1491	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1492
1493	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1494		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1495
1496	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1497								free_pages);
1498}
1499
1500#ifdef CONFIG_NUMA
1501/*
1502 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1503 * skip over zones that are not allowed by the cpuset, or that have
1504 * been recently (in last second) found to be nearly full.  See further
1505 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1506 * that have to skip over a lot of full or unallowed zones.
1507 *
1508 * If the zonelist cache is present in the passed in zonelist, then
1509 * returns a pointer to the allowed node mask (either the current
1510 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1511 *
1512 * If the zonelist cache is not available for this zonelist, does
1513 * nothing and returns NULL.
1514 *
1515 * If the fullzones BITMAP in the zonelist cache is stale (more than
1516 * a second since last zap'd) then we zap it out (clear its bits.)
1517 *
1518 * We hold off even calling zlc_setup, until after we've checked the
1519 * first zone in the zonelist, on the theory that most allocations will
1520 * be satisfied from that first zone, so best to examine that zone as
1521 * quickly as we can.
1522 */
1523static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1524{
1525	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1526	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1527
1528	zlc = zonelist->zlcache_ptr;
1529	if (!zlc)
1530		return NULL;
1531
1532	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1533		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1534		zlc->last_full_zap = jiffies;
1535	}
1536
1537	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1538					&cpuset_current_mems_allowed :
1539					&node_states[N_HIGH_MEMORY];
1540	return allowednodes;
1541}
1542
1543/*
1544 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1545 * if it is worth looking at further for free memory:
1546 *  1) Check that the zone isn't thought to be full (doesn't have its
1547 *     bit set in the zonelist_cache fullzones BITMAP).
1548 *  2) Check that the zones node (obtained from the zonelist_cache
1549 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1550 * Return true (non-zero) if zone is worth looking at further, or
1551 * else return false (zero) if it is not.
1552 *
1553 * This check -ignores- the distinction between various watermarks,
1554 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1555 * found to be full for any variation of these watermarks, it will
1556 * be considered full for up to one second by all requests, unless
1557 * we are so low on memory on all allowed nodes that we are forced
1558 * into the second scan of the zonelist.
1559 *
1560 * In the second scan we ignore this zonelist cache and exactly
1561 * apply the watermarks to all zones, even it is slower to do so.
1562 * We are low on memory in the second scan, and should leave no stone
1563 * unturned looking for a free page.
1564 */
1565static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1566						nodemask_t *allowednodes)
1567{
1568	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1569	int i;				/* index of *z in zonelist zones */
1570	int n;				/* node that zone *z is on */
1571
1572	zlc = zonelist->zlcache_ptr;
1573	if (!zlc)
1574		return 1;
1575
1576	i = z - zonelist->_zonerefs;
1577	n = zlc->z_to_n[i];
1578
1579	/* This zone is worth trying if it is allowed but not full */
1580	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1581}
1582
1583/*
1584 * Given 'z' scanning a zonelist, set the corresponding bit in
1585 * zlc->fullzones, so that subsequent attempts to allocate a page
1586 * from that zone don't waste time re-examining it.
1587 */
1588static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1589{
1590	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1591	int i;				/* index of *z in zonelist zones */
1592
1593	zlc = zonelist->zlcache_ptr;
1594	if (!zlc)
1595		return;
1596
1597	i = z - zonelist->_zonerefs;
1598
1599	set_bit(i, zlc->fullzones);
1600}
1601
1602/*
1603 * clear all zones full, called after direct reclaim makes progress so that
1604 * a zone that was recently full is not skipped over for up to a second
1605 */
1606static void zlc_clear_zones_full(struct zonelist *zonelist)
1607{
1608	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1609
1610	zlc = zonelist->zlcache_ptr;
1611	if (!zlc)
1612		return;
1613
1614	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1615}
1616
1617#else	/* CONFIG_NUMA */
1618
1619static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1620{
1621	return NULL;
1622}
1623
1624static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625				nodemask_t *allowednodes)
1626{
1627	return 1;
1628}
1629
1630static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1631{
1632}
1633
1634static void zlc_clear_zones_full(struct zonelist *zonelist)
1635{
1636}
1637#endif	/* CONFIG_NUMA */
1638
1639/*
1640 * get_page_from_freelist goes through the zonelist trying to allocate
1641 * a page.
1642 */
1643static struct page *
1644get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1645		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1646		struct zone *preferred_zone, int migratetype)
1647{
1648	struct zoneref *z;
1649	struct page *page = NULL;
1650	int classzone_idx;
1651	struct zone *zone;
1652	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1653	int zlc_active = 0;		/* set if using zonelist_cache */
1654	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1655
1656	classzone_idx = zone_idx(preferred_zone);
1657zonelist_scan:
1658	/*
1659	 * Scan zonelist, looking for a zone with enough free.
1660	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1661	 */
1662	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1663						high_zoneidx, nodemask) {
1664		if (NUMA_BUILD && zlc_active &&
1665			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1666				continue;
1667		if ((alloc_flags & ALLOC_CPUSET) &&
1668			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1669				continue;
1670
1671		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1672		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1673			unsigned long mark;
1674			int ret;
1675
1676			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1677			if (zone_watermark_ok(zone, order, mark,
1678				    classzone_idx, alloc_flags))
1679				goto try_this_zone;
1680
1681			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1682				/*
1683				 * we do zlc_setup if there are multiple nodes
1684				 * and before considering the first zone allowed
1685				 * by the cpuset.
1686				 */
1687				allowednodes = zlc_setup(zonelist, alloc_flags);
1688				zlc_active = 1;
1689				did_zlc_setup = 1;
1690			}
1691
1692			if (zone_reclaim_mode == 0)
1693				goto this_zone_full;
1694
1695			/*
1696			 * As we may have just activated ZLC, check if the first
1697			 * eligible zone has failed zone_reclaim recently.
1698			 */
1699			if (NUMA_BUILD && zlc_active &&
1700				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1701				continue;
1702
1703			ret = zone_reclaim(zone, gfp_mask, order);
1704			switch (ret) {
1705			case ZONE_RECLAIM_NOSCAN:
1706				/* did not scan */
1707				continue;
1708			case ZONE_RECLAIM_FULL:
1709				/* scanned but unreclaimable */
1710				continue;
1711			default:
1712				/* did we reclaim enough */
1713				if (!zone_watermark_ok(zone, order, mark,
1714						classzone_idx, alloc_flags))
1715					goto this_zone_full;
1716			}
1717		}
1718
1719try_this_zone:
1720		page = buffered_rmqueue(preferred_zone, zone, order,
1721						gfp_mask, migratetype);
1722		if (page)
1723			break;
1724this_zone_full:
1725		if (NUMA_BUILD)
1726			zlc_mark_zone_full(zonelist, z);
1727	}
1728
1729	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1730		/* Disable zlc cache for second zonelist scan */
1731		zlc_active = 0;
1732		goto zonelist_scan;
1733	}
1734	return page;
1735}
1736
1737/*
1738 * Large machines with many possible nodes should not always dump per-node
1739 * meminfo in irq context.
1740 */
1741static inline bool should_suppress_show_mem(void)
1742{
1743	bool ret = false;
1744
1745#if NODES_SHIFT > 8
1746	ret = in_interrupt();
1747#endif
1748	return ret;
1749}
1750
1751static DEFINE_RATELIMIT_STATE(nopage_rs,
1752		DEFAULT_RATELIMIT_INTERVAL,
1753		DEFAULT_RATELIMIT_BURST);
1754
1755void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1756{
1757	unsigned int filter = SHOW_MEM_FILTER_NODES;
1758
1759	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1760		return;
1761
1762	/*
1763	 * This documents exceptions given to allocations in certain
1764	 * contexts that are allowed to allocate outside current's set
1765	 * of allowed nodes.
1766	 */
1767	if (!(gfp_mask & __GFP_NOMEMALLOC))
1768		if (test_thread_flag(TIF_MEMDIE) ||
1769		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1770			filter &= ~SHOW_MEM_FILTER_NODES;
1771	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1772		filter &= ~SHOW_MEM_FILTER_NODES;
1773
1774	if (fmt) {
1775		struct va_format vaf;
1776		va_list args;
1777
1778		va_start(args, fmt);
1779
1780		vaf.fmt = fmt;
1781		vaf.va = &args;
1782
1783		pr_warn("%pV", &vaf);
1784
1785		va_end(args);
1786	}
1787
1788	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1789		current->comm, order, gfp_mask);
1790
1791	dump_stack();
1792	if (!should_suppress_show_mem())
1793		show_mem(filter);
1794}
1795
1796static inline int
1797should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1798				unsigned long pages_reclaimed)
1799{
1800	/* Do not loop if specifically requested */
1801	if (gfp_mask & __GFP_NORETRY)
1802		return 0;
1803
1804	/*
1805	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1806	 * means __GFP_NOFAIL, but that may not be true in other
1807	 * implementations.
1808	 */
1809	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1810		return 1;
1811
1812	/*
1813	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1814	 * specified, then we retry until we no longer reclaim any pages
1815	 * (above), or we've reclaimed an order of pages at least as
1816	 * large as the allocation's order. In both cases, if the
1817	 * allocation still fails, we stop retrying.
1818	 */
1819	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1820		return 1;
1821
1822	/*
1823	 * Don't let big-order allocations loop unless the caller
1824	 * explicitly requests that.
1825	 */
1826	if (gfp_mask & __GFP_NOFAIL)
1827		return 1;
1828
1829	return 0;
1830}
1831
1832static inline struct page *
1833__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1834	struct zonelist *zonelist, enum zone_type high_zoneidx,
1835	nodemask_t *nodemask, struct zone *preferred_zone,
1836	int migratetype)
1837{
1838	struct page *page;
1839
1840	/* Acquire the OOM killer lock for the zones in zonelist */
1841	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1842		schedule_timeout_uninterruptible(1);
1843		return NULL;
1844	}
1845
1846	/*
1847	 * Go through the zonelist yet one more time, keep very high watermark
1848	 * here, this is only to catch a parallel oom killing, we must fail if
1849	 * we're still under heavy pressure.
1850	 */
1851	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1852		order, zonelist, high_zoneidx,
1853		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1854		preferred_zone, migratetype);
1855	if (page)
1856		goto out;
1857
1858	if (!(gfp_mask & __GFP_NOFAIL)) {
1859		/* The OOM killer will not help higher order allocs */
1860		if (order > PAGE_ALLOC_COSTLY_ORDER)
1861			goto out;
1862		/* The OOM killer does not needlessly kill tasks for lowmem */
1863		if (high_zoneidx < ZONE_NORMAL)
1864			goto out;
1865		/*
1866		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1867		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1868		 * The caller should handle page allocation failure by itself if
1869		 * it specifies __GFP_THISNODE.
1870		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1871		 */
1872		if (gfp_mask & __GFP_THISNODE)
1873			goto out;
1874	}
1875	/* Exhausted what can be done so it's blamo time */
1876	out_of_memory(zonelist, gfp_mask, order, nodemask);
1877
1878out:
1879	clear_zonelist_oom(zonelist, gfp_mask);
1880	return page;
1881}
1882
1883#ifdef CONFIG_COMPACTION
1884/* Try memory compaction for high-order allocations before reclaim */
1885static struct page *
1886__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1887	struct zonelist *zonelist, enum zone_type high_zoneidx,
1888	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1889	int migratetype, unsigned long *did_some_progress,
1890	bool sync_migration)
1891{
1892	struct page *page;
1893
1894	if (!order || compaction_deferred(preferred_zone))
1895		return NULL;
1896
1897	current->flags |= PF_MEMALLOC;
1898	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1899						nodemask, sync_migration);
1900	current->flags &= ~PF_MEMALLOC;
1901	if (*did_some_progress != COMPACT_SKIPPED) {
1902
1903		/* Page migration frees to the PCP lists but we want merging */
1904		drain_pages(get_cpu());
1905		put_cpu();
1906
1907		page = get_page_from_freelist(gfp_mask, nodemask,
1908				order, zonelist, high_zoneidx,
1909				alloc_flags, preferred_zone,
1910				migratetype);
1911		if (page) {
1912			preferred_zone->compact_considered = 0;
1913			preferred_zone->compact_defer_shift = 0;
1914			count_vm_event(COMPACTSUCCESS);
1915			return page;
1916		}
1917
1918		/*
1919		 * It's bad if compaction run occurs and fails.
1920		 * The most likely reason is that pages exist,
1921		 * but not enough to satisfy watermarks.
1922		 */
1923		count_vm_event(COMPACTFAIL);
1924		defer_compaction(preferred_zone);
1925
1926		cond_resched();
1927	}
1928
1929	return NULL;
1930}
1931#else
1932static inline struct page *
1933__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1934	struct zonelist *zonelist, enum zone_type high_zoneidx,
1935	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1936	int migratetype, unsigned long *did_some_progress,
1937	bool sync_migration)
1938{
1939	return NULL;
1940}
1941#endif /* CONFIG_COMPACTION */
1942
1943/* The really slow allocator path where we enter direct reclaim */
1944static inline struct page *
1945__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1946	struct zonelist *zonelist, enum zone_type high_zoneidx,
1947	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1948	int migratetype, unsigned long *did_some_progress)
1949{
1950	struct page *page = NULL;
1951	struct reclaim_state reclaim_state;
1952	bool drained = false;
1953
1954	cond_resched();
1955
1956	/* We now go into synchronous reclaim */
1957	cpuset_memory_pressure_bump();
1958	current->flags |= PF_MEMALLOC;
1959	lockdep_set_current_reclaim_state(gfp_mask);
1960	reclaim_state.reclaimed_slab = 0;
1961	current->reclaim_state = &reclaim_state;
1962
1963	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1964
1965	current->reclaim_state = NULL;
1966	lockdep_clear_current_reclaim_state();
1967	current->flags &= ~PF_MEMALLOC;
1968
1969	cond_resched();
1970
1971	if (unlikely(!(*did_some_progress)))
1972		return NULL;
1973
1974	/* After successful reclaim, reconsider all zones for allocation */
1975	if (NUMA_BUILD)
1976		zlc_clear_zones_full(zonelist);
1977
1978retry:
1979	page = get_page_from_freelist(gfp_mask, nodemask, order,
1980					zonelist, high_zoneidx,
1981					alloc_flags, preferred_zone,
1982					migratetype);
1983
1984	/*
1985	 * If an allocation failed after direct reclaim, it could be because
1986	 * pages are pinned on the per-cpu lists. Drain them and try again
1987	 */
1988	if (!page && !drained) {
1989		drain_all_pages();
1990		drained = true;
1991		goto retry;
1992	}
1993
1994	return page;
1995}
1996
1997/*
1998 * This is called in the allocator slow-path if the allocation request is of
1999 * sufficient urgency to ignore watermarks and take other desperate measures
2000 */
2001static inline struct page *
2002__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2003	struct zonelist *zonelist, enum zone_type high_zoneidx,
2004	nodemask_t *nodemask, struct zone *preferred_zone,
2005	int migratetype)
2006{
2007	struct page *page;
2008
2009	do {
2010		page = get_page_from_freelist(gfp_mask, nodemask, order,
2011			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2012			preferred_zone, migratetype);
2013
2014		if (!page && gfp_mask & __GFP_NOFAIL)
2015			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2016	} while (!page && (gfp_mask & __GFP_NOFAIL));
2017
2018	return page;
2019}
2020
2021static inline
2022void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2023						enum zone_type high_zoneidx,
2024						enum zone_type classzone_idx)
2025{
2026	struct zoneref *z;
2027	struct zone *zone;
2028
2029	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2030		wakeup_kswapd(zone, order, classzone_idx);
2031}
2032
2033static inline int
2034gfp_to_alloc_flags(gfp_t gfp_mask)
2035{
2036	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2037	const gfp_t wait = gfp_mask & __GFP_WAIT;
2038
2039	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2040	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2041
2042	/*
2043	 * The caller may dip into page reserves a bit more if the caller
2044	 * cannot run direct reclaim, or if the caller has realtime scheduling
2045	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2046	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2047	 */
2048	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2049
2050	if (!wait) {
2051		/*
2052		 * Not worth trying to allocate harder for
2053		 * __GFP_NOMEMALLOC even if it can't schedule.
2054		 */
2055		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2056			alloc_flags |= ALLOC_HARDER;
2057		/*
2058		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2059		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2060		 */
2061		alloc_flags &= ~ALLOC_CPUSET;
2062	} else if (unlikely(rt_task(current)) && !in_interrupt())
2063		alloc_flags |= ALLOC_HARDER;
2064
2065	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2066		if (!in_interrupt() &&
2067		    ((current->flags & PF_MEMALLOC) ||
2068		     unlikely(test_thread_flag(TIF_MEMDIE))))
2069			alloc_flags |= ALLOC_NO_WATERMARKS;
2070	}
2071
2072	return alloc_flags;
2073}
2074
2075static inline struct page *
2076__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2077	struct zonelist *zonelist, enum zone_type high_zoneidx,
2078	nodemask_t *nodemask, struct zone *preferred_zone,
2079	int migratetype)
2080{
2081	const gfp_t wait = gfp_mask & __GFP_WAIT;
2082	struct page *page = NULL;
2083	int alloc_flags;
2084	unsigned long pages_reclaimed = 0;
2085	unsigned long did_some_progress;
2086	bool sync_migration = false;
2087
2088	/*
2089	 * In the slowpath, we sanity check order to avoid ever trying to
2090	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2091	 * be using allocators in order of preference for an area that is
2092	 * too large.
2093	 */
2094	if (order >= MAX_ORDER) {
2095		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2096		return NULL;
2097	}
2098
2099	/*
2100	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2101	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2102	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2103	 * using a larger set of nodes after it has established that the
2104	 * allowed per node queues are empty and that nodes are
2105	 * over allocated.
2106	 */
2107	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2108		goto nopage;
2109
2110restart:
2111	if (!(gfp_mask & __GFP_NO_KSWAPD))
2112		wake_all_kswapd(order, zonelist, high_zoneidx,
2113						zone_idx(preferred_zone));
2114
2115	/*
2116	 * OK, we're below the kswapd watermark and have kicked background
2117	 * reclaim. Now things get more complex, so set up alloc_flags according
2118	 * to how we want to proceed.
2119	 */
2120	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2121
2122	/*
2123	 * Find the true preferred zone if the allocation is unconstrained by
2124	 * cpusets.
2125	 */
2126	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2127		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2128					&preferred_zone);
2129
2130rebalance:
2131	/* This is the last chance, in general, before the goto nopage. */
2132	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2133			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2134			preferred_zone, migratetype);
2135	if (page)
2136		goto got_pg;
2137
2138	/* Allocate without watermarks if the context allows */
2139	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2140		page = __alloc_pages_high_priority(gfp_mask, order,
2141				zonelist, high_zoneidx, nodemask,
2142				preferred_zone, migratetype);
2143		if (page)
2144			goto got_pg;
2145	}
2146
2147	/* Atomic allocations - we can't balance anything */
2148	if (!wait)
2149		goto nopage;
2150
2151	/* Avoid recursion of direct reclaim */
2152	if (current->flags & PF_MEMALLOC)
2153		goto nopage;
2154
2155	/* Avoid allocations with no watermarks from looping endlessly */
2156	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2157		goto nopage;
2158
2159	/*
2160	 * Try direct compaction. The first pass is asynchronous. Subsequent
2161	 * attempts after direct reclaim are synchronous
2162	 */
2163	page = __alloc_pages_direct_compact(gfp_mask, order,
2164					zonelist, high_zoneidx,
2165					nodemask,
2166					alloc_flags, preferred_zone,
2167					migratetype, &did_some_progress,
2168					sync_migration);
2169	if (page)
2170		goto got_pg;
2171	sync_migration = true;
2172
2173	/* Try direct reclaim and then allocating */
2174	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2175					zonelist, high_zoneidx,
2176					nodemask,
2177					alloc_flags, preferred_zone,
2178					migratetype, &did_some_progress);
2179	if (page)
2180		goto got_pg;
2181
2182	/*
2183	 * If we failed to make any progress reclaiming, then we are
2184	 * running out of options and have to consider going OOM
2185	 */
2186	if (!did_some_progress) {
2187		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2188			if (oom_killer_disabled)
2189				goto nopage;
2190			page = __alloc_pages_may_oom(gfp_mask, order,
2191					zonelist, high_zoneidx,
2192					nodemask, preferred_zone,
2193					migratetype);
2194			if (page)
2195				goto got_pg;
2196
2197			if (!(gfp_mask & __GFP_NOFAIL)) {
2198				/*
2199				 * The oom killer is not called for high-order
2200				 * allocations that may fail, so if no progress
2201				 * is being made, there are no other options and
2202				 * retrying is unlikely to help.
2203				 */
2204				if (order > PAGE_ALLOC_COSTLY_ORDER)
2205					goto nopage;
2206				/*
2207				 * The oom killer is not called for lowmem
2208				 * allocations to prevent needlessly killing
2209				 * innocent tasks.
2210				 */
2211				if (high_zoneidx < ZONE_NORMAL)
2212					goto nopage;
2213			}
2214
2215			goto restart;
2216		}
2217	}
2218
2219	/* Check if we should retry the allocation */
2220	pages_reclaimed += did_some_progress;
2221	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2222		/* Wait for some write requests to complete then retry */
2223		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2224		goto rebalance;
2225	} else {
2226		/*
2227		 * High-order allocations do not necessarily loop after
2228		 * direct reclaim and reclaim/compaction depends on compaction
2229		 * being called after reclaim so call directly if necessary
2230		 */
2231		page = __alloc_pages_direct_compact(gfp_mask, order,
2232					zonelist, high_zoneidx,
2233					nodemask,
2234					alloc_flags, preferred_zone,
2235					migratetype, &did_some_progress,
2236					sync_migration);
2237		if (page)
2238			goto got_pg;
2239	}
2240
2241nopage:
2242	warn_alloc_failed(gfp_mask, order, NULL);
2243	return page;
2244got_pg:
2245	if (kmemcheck_enabled)
2246		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2247	return page;
2248
2249}
2250
2251/*
2252 * This is the 'heart' of the zoned buddy allocator.
2253 */
2254struct page *
2255__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2256			struct zonelist *zonelist, nodemask_t *nodemask)
2257{
2258	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2259	struct zone *preferred_zone;
2260	struct page *page;
2261	int migratetype = allocflags_to_migratetype(gfp_mask);
2262
2263	gfp_mask &= gfp_allowed_mask;
2264
2265	lockdep_trace_alloc(gfp_mask);
2266
2267	might_sleep_if(gfp_mask & __GFP_WAIT);
2268
2269	if (should_fail_alloc_page(gfp_mask, order))
2270		return NULL;
2271
2272	/*
2273	 * Check the zones suitable for the gfp_mask contain at least one
2274	 * valid zone. It's possible to have an empty zonelist as a result
2275	 * of GFP_THISNODE and a memoryless node
2276	 */
2277	if (unlikely(!zonelist->_zonerefs->zone))
2278		return NULL;
2279
2280	get_mems_allowed();
2281	/* The preferred zone is used for statistics later */
2282	first_zones_zonelist(zonelist, high_zoneidx,
2283				nodemask ? : &cpuset_current_mems_allowed,
2284				&preferred_zone);
2285	if (!preferred_zone) {
2286		put_mems_allowed();
2287		return NULL;
2288	}
2289
2290	/* First allocation attempt */
2291	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2292			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2293			preferred_zone, migratetype);
2294	if (unlikely(!page))
2295		page = __alloc_pages_slowpath(gfp_mask, order,
2296				zonelist, high_zoneidx, nodemask,
2297				preferred_zone, migratetype);
2298	put_mems_allowed();
2299
2300	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2301	return page;
2302}
2303EXPORT_SYMBOL(__alloc_pages_nodemask);
2304
2305/*
2306 * Common helper functions.
2307 */
2308unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2309{
2310	struct page *page;
2311
2312	/*
2313	 * __get_free_pages() returns a 32-bit address, which cannot represent
2314	 * a highmem page
2315	 */
2316	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2317
2318	page = alloc_pages(gfp_mask, order);
2319	if (!page)
2320		return 0;
2321	return (unsigned long) page_address(page);
2322}
2323EXPORT_SYMBOL(__get_free_pages);
2324
2325unsigned long get_zeroed_page(gfp_t gfp_mask)
2326{
2327	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2328}
2329EXPORT_SYMBOL(get_zeroed_page);
2330
2331void __pagevec_free(struct pagevec *pvec)
2332{
2333	int i = pagevec_count(pvec);
2334
2335	while (--i >= 0) {
2336		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2337		free_hot_cold_page(pvec->pages[i], pvec->cold);
2338	}
2339}
2340
2341void __free_pages(struct page *page, unsigned int order)
2342{
2343	if (put_page_testzero(page)) {
2344		if (order == 0)
2345			free_hot_cold_page(page, 0);
2346		else
2347			__free_pages_ok(page, order);
2348	}
2349}
2350
2351EXPORT_SYMBOL(__free_pages);
2352
2353void free_pages(unsigned long addr, unsigned int order)
2354{
2355	if (addr != 0) {
2356		VM_BUG_ON(!virt_addr_valid((void *)addr));
2357		__free_pages(virt_to_page((void *)addr), order);
2358	}
2359}
2360
2361EXPORT_SYMBOL(free_pages);
2362
2363static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2364{
2365	if (addr) {
2366		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2367		unsigned long used = addr + PAGE_ALIGN(size);
2368
2369		split_page(virt_to_page((void *)addr), order);
2370		while (used < alloc_end) {
2371			free_page(used);
2372			used += PAGE_SIZE;
2373		}
2374	}
2375	return (void *)addr;
2376}
2377
2378/**
2379 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2380 * @size: the number of bytes to allocate
2381 * @gfp_mask: GFP flags for the allocation
2382 *
2383 * This function is similar to alloc_pages(), except that it allocates the
2384 * minimum number of pages to satisfy the request.  alloc_pages() can only
2385 * allocate memory in power-of-two pages.
2386 *
2387 * This function is also limited by MAX_ORDER.
2388 *
2389 * Memory allocated by this function must be released by free_pages_exact().
2390 */
2391void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2392{
2393	unsigned int order = get_order(size);
2394	unsigned long addr;
2395
2396	addr = __get_free_pages(gfp_mask, order);
2397	return make_alloc_exact(addr, order, size);
2398}
2399EXPORT_SYMBOL(alloc_pages_exact);
2400
2401/**
2402 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2403 *			   pages on a node.
2404 * @nid: the preferred node ID where memory should be allocated
2405 * @size: the number of bytes to allocate
2406 * @gfp_mask: GFP flags for the allocation
2407 *
2408 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2409 * back.
2410 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2411 * but is not exact.
2412 */
2413void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2414{
2415	unsigned order = get_order(size);
2416	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2417	if (!p)
2418		return NULL;
2419	return make_alloc_exact((unsigned long)page_address(p), order, size);
2420}
2421EXPORT_SYMBOL(alloc_pages_exact_nid);
2422
2423/**
2424 * free_pages_exact - release memory allocated via alloc_pages_exact()
2425 * @virt: the value returned by alloc_pages_exact.
2426 * @size: size of allocation, same value as passed to alloc_pages_exact().
2427 *
2428 * Release the memory allocated by a previous call to alloc_pages_exact.
2429 */
2430void free_pages_exact(void *virt, size_t size)
2431{
2432	unsigned long addr = (unsigned long)virt;
2433	unsigned long end = addr + PAGE_ALIGN(size);
2434
2435	while (addr < end) {
2436		free_page(addr);
2437		addr += PAGE_SIZE;
2438	}
2439}
2440EXPORT_SYMBOL(free_pages_exact);
2441
2442static unsigned int nr_free_zone_pages(int offset)
2443{
2444	struct zoneref *z;
2445	struct zone *zone;
2446
2447	/* Just pick one node, since fallback list is circular */
2448	unsigned int sum = 0;
2449
2450	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2451
2452	for_each_zone_zonelist(zone, z, zonelist, offset) {
2453		unsigned long size = zone->present_pages;
2454		unsigned long high = high_wmark_pages(zone);
2455		if (size > high)
2456			sum += size - high;
2457	}
2458
2459	return sum;
2460}
2461
2462/*
2463 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2464 */
2465unsigned int nr_free_buffer_pages(void)
2466{
2467	return nr_free_zone_pages(gfp_zone(GFP_USER));
2468}
2469EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2470
2471/*
2472 * Amount of free RAM allocatable within all zones
2473 */
2474unsigned int nr_free_pagecache_pages(void)
2475{
2476	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2477}
2478
2479static inline void show_node(struct zone *zone)
2480{
2481	if (NUMA_BUILD)
2482		printk("Node %d ", zone_to_nid(zone));
2483}
2484
2485void si_meminfo(struct sysinfo *val)
2486{
2487	val->totalram = totalram_pages;
2488	val->sharedram = 0;
2489	val->freeram = global_page_state(NR_FREE_PAGES);
2490	val->bufferram = nr_blockdev_pages();
2491	val->totalhigh = totalhigh_pages;
2492	val->freehigh = nr_free_highpages();
2493	val->mem_unit = PAGE_SIZE;
2494}
2495
2496EXPORT_SYMBOL(si_meminfo);
2497
2498#ifdef CONFIG_NUMA
2499void si_meminfo_node(struct sysinfo *val, int nid)
2500{
2501	pg_data_t *pgdat = NODE_DATA(nid);
2502
2503	val->totalram = pgdat->node_present_pages;
2504	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2505#ifdef CONFIG_HIGHMEM
2506	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2507	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2508			NR_FREE_PAGES);
2509#else
2510	val->totalhigh = 0;
2511	val->freehigh = 0;
2512#endif
2513	val->mem_unit = PAGE_SIZE;
2514}
2515#endif
2516
2517/*
2518 * Determine whether the node should be displayed or not, depending on whether
2519 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2520 */
2521bool skip_free_areas_node(unsigned int flags, int nid)
2522{
2523	bool ret = false;
2524
2525	if (!(flags & SHOW_MEM_FILTER_NODES))
2526		goto out;
2527
2528	get_mems_allowed();
2529	ret = !node_isset(nid, cpuset_current_mems_allowed);
2530	put_mems_allowed();
2531out:
2532	return ret;
2533}
2534
2535#define K(x) ((x) << (PAGE_SHIFT-10))
2536
2537/*
2538 * Show free area list (used inside shift_scroll-lock stuff)
2539 * We also calculate the percentage fragmentation. We do this by counting the
2540 * memory on each free list with the exception of the first item on the list.
2541 * Suppresses nodes that are not allowed by current's cpuset if
2542 * SHOW_MEM_FILTER_NODES is passed.
2543 */
2544void show_free_areas(unsigned int filter)
2545{
2546	int cpu;
2547	struct zone *zone;
2548
2549	for_each_populated_zone(zone) {
2550		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2551			continue;
2552		show_node(zone);
2553		printk("%s per-cpu:\n", zone->name);
2554
2555		for_each_online_cpu(cpu) {
2556			struct per_cpu_pageset *pageset;
2557
2558			pageset = per_cpu_ptr(zone->pageset, cpu);
2559
2560			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2561			       cpu, pageset->pcp.high,
2562			       pageset->pcp.batch, pageset->pcp.count);
2563		}
2564	}
2565
2566	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2567		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2568		" unevictable:%lu"
2569		" dirty:%lu writeback:%lu unstable:%lu\n"
2570		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2571		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2572		global_page_state(NR_ACTIVE_ANON),
2573		global_page_state(NR_INACTIVE_ANON),
2574		global_page_state(NR_ISOLATED_ANON),
2575		global_page_state(NR_ACTIVE_FILE),
2576		global_page_state(NR_INACTIVE_FILE),
2577		global_page_state(NR_ISOLATED_FILE),
2578		global_page_state(NR_UNEVICTABLE),
2579		global_page_state(NR_FILE_DIRTY),
2580		global_page_state(NR_WRITEBACK),
2581		global_page_state(NR_UNSTABLE_NFS),
2582		global_page_state(NR_FREE_PAGES),
2583		global_page_state(NR_SLAB_RECLAIMABLE),
2584		global_page_state(NR_SLAB_UNRECLAIMABLE),
2585		global_page_state(NR_FILE_MAPPED),
2586		global_page_state(NR_SHMEM),
2587		global_page_state(NR_PAGETABLE),
2588		global_page_state(NR_BOUNCE));
2589
2590	for_each_populated_zone(zone) {
2591		int i;
2592
2593		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2594			continue;
2595		show_node(zone);
2596		printk("%s"
2597			" free:%lukB"
2598			" min:%lukB"
2599			" low:%lukB"
2600			" high:%lukB"
2601			" active_anon:%lukB"
2602			" inactive_anon:%lukB"
2603			" active_file:%lukB"
2604			" inactive_file:%lukB"
2605			" unevictable:%lukB"
2606			" isolated(anon):%lukB"
2607			" isolated(file):%lukB"
2608			" present:%lukB"
2609			" mlocked:%lukB"
2610			" dirty:%lukB"
2611			" writeback:%lukB"
2612			" mapped:%lukB"
2613			" shmem:%lukB"
2614			" slab_reclaimable:%lukB"
2615			" slab_unreclaimable:%lukB"
2616			" kernel_stack:%lukB"
2617			" pagetables:%lukB"
2618			" unstable:%lukB"
2619			" bounce:%lukB"
2620			" writeback_tmp:%lukB"
2621			" pages_scanned:%lu"
2622			" all_unreclaimable? %s"
2623			"\n",
2624			zone->name,
2625			K(zone_page_state(zone, NR_FREE_PAGES)),
2626			K(min_wmark_pages(zone)),
2627			K(low_wmark_pages(zone)),
2628			K(high_wmark_pages(zone)),
2629			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2630			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2631			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2632			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2633			K(zone_page_state(zone, NR_UNEVICTABLE)),
2634			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2635			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2636			K(zone->present_pages),
2637			K(zone_page_state(zone, NR_MLOCK)),
2638			K(zone_page_state(zone, NR_FILE_DIRTY)),
2639			K(zone_page_state(zone, NR_WRITEBACK)),
2640			K(zone_page_state(zone, NR_FILE_MAPPED)),
2641			K(zone_page_state(zone, NR_SHMEM)),
2642			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2643			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2644			zone_page_state(zone, NR_KERNEL_STACK) *
2645				THREAD_SIZE / 1024,
2646			K(zone_page_state(zone, NR_PAGETABLE)),
2647			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2648			K(zone_page_state(zone, NR_BOUNCE)),
2649			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2650			zone->pages_scanned,
2651			(zone->all_unreclaimable ? "yes" : "no")
2652			);
2653		printk("lowmem_reserve[]:");
2654		for (i = 0; i < MAX_NR_ZONES; i++)
2655			printk(" %lu", zone->lowmem_reserve[i]);
2656		printk("\n");
2657	}
2658
2659	for_each_populated_zone(zone) {
2660 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2661
2662		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2663			continue;
2664		show_node(zone);
2665		printk("%s: ", zone->name);
2666
2667		spin_lock_irqsave(&zone->lock, flags);
2668		for (order = 0; order < MAX_ORDER; order++) {
2669			nr[order] = zone->free_area[order].nr_free;
2670			total += nr[order] << order;
2671		}
2672		spin_unlock_irqrestore(&zone->lock, flags);
2673		for (order = 0; order < MAX_ORDER; order++)
2674			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2675		printk("= %lukB\n", K(total));
2676	}
2677
2678	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2679
2680	show_swap_cache_info();
2681}
2682
2683static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2684{
2685	zoneref->zone = zone;
2686	zoneref->zone_idx = zone_idx(zone);
2687}
2688
2689/*
2690 * Builds allocation fallback zone lists.
2691 *
2692 * Add all populated zones of a node to the zonelist.
2693 */
2694static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2695				int nr_zones, enum zone_type zone_type)
2696{
2697	struct zone *zone;
2698
2699	BUG_ON(zone_type >= MAX_NR_ZONES);
2700	zone_type++;
2701
2702	do {
2703		zone_type--;
2704		zone = pgdat->node_zones + zone_type;
2705		if (populated_zone(zone)) {
2706			zoneref_set_zone(zone,
2707				&zonelist->_zonerefs[nr_zones++]);
2708			check_highest_zone(zone_type);
2709		}
2710
2711	} while (zone_type);
2712	return nr_zones;
2713}
2714
2715
2716/*
2717 *  zonelist_order:
2718 *  0 = automatic detection of better ordering.
2719 *  1 = order by ([node] distance, -zonetype)
2720 *  2 = order by (-zonetype, [node] distance)
2721 *
2722 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2723 *  the same zonelist. So only NUMA can configure this param.
2724 */
2725#define ZONELIST_ORDER_DEFAULT  0
2726#define ZONELIST_ORDER_NODE     1
2727#define ZONELIST_ORDER_ZONE     2
2728
2729/* zonelist order in the kernel.
2730 * set_zonelist_order() will set this to NODE or ZONE.
2731 */
2732static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2733static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2734
2735
2736#ifdef CONFIG_NUMA
2737/* The value user specified ....changed by config */
2738static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2739/* string for sysctl */
2740#define NUMA_ZONELIST_ORDER_LEN	16
2741char numa_zonelist_order[16] = "default";
2742
2743/*
2744 * interface for configure zonelist ordering.
2745 * command line option "numa_zonelist_order"
2746 *	= "[dD]efault	- default, automatic configuration.
2747 *	= "[nN]ode 	- order by node locality, then by zone within node
2748 *	= "[zZ]one      - order by zone, then by locality within zone
2749 */
2750
2751static int __parse_numa_zonelist_order(char *s)
2752{
2753	if (*s == 'd' || *s == 'D') {
2754		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2755	} else if (*s == 'n' || *s == 'N') {
2756		user_zonelist_order = ZONELIST_ORDER_NODE;
2757	} else if (*s == 'z' || *s == 'Z') {
2758		user_zonelist_order = ZONELIST_ORDER_ZONE;
2759	} else {
2760		printk(KERN_WARNING
2761			"Ignoring invalid numa_zonelist_order value:  "
2762			"%s\n", s);
2763		return -EINVAL;
2764	}
2765	return 0;
2766}
2767
2768static __init int setup_numa_zonelist_order(char *s)
2769{
2770	int ret;
2771
2772	if (!s)
2773		return 0;
2774
2775	ret = __parse_numa_zonelist_order(s);
2776	if (ret == 0)
2777		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2778
2779	return ret;
2780}
2781early_param("numa_zonelist_order", setup_numa_zonelist_order);
2782
2783/*
2784 * sysctl handler for numa_zonelist_order
2785 */
2786int numa_zonelist_order_handler(ctl_table *table, int write,
2787		void __user *buffer, size_t *length,
2788		loff_t *ppos)
2789{
2790	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2791	int ret;
2792	static DEFINE_MUTEX(zl_order_mutex);
2793
2794	mutex_lock(&zl_order_mutex);
2795	if (write)
2796		strcpy(saved_string, (char*)table->data);
2797	ret = proc_dostring(table, write, buffer, length, ppos);
2798	if (ret)
2799		goto out;
2800	if (write) {
2801		int oldval = user_zonelist_order;
2802		if (__parse_numa_zonelist_order((char*)table->data)) {
2803			/*
2804			 * bogus value.  restore saved string
2805			 */
2806			strncpy((char*)table->data, saved_string,
2807				NUMA_ZONELIST_ORDER_LEN);
2808			user_zonelist_order = oldval;
2809		} else if (oldval != user_zonelist_order) {
2810			mutex_lock(&zonelists_mutex);
2811			build_all_zonelists(NULL);
2812			mutex_unlock(&zonelists_mutex);
2813		}
2814	}
2815out:
2816	mutex_unlock(&zl_order_mutex);
2817	return ret;
2818}
2819
2820
2821#define MAX_NODE_LOAD (nr_online_nodes)
2822static int node_load[MAX_NUMNODES];
2823
2824/**
2825 * find_next_best_node - find the next node that should appear in a given node's fallback list
2826 * @node: node whose fallback list we're appending
2827 * @used_node_mask: nodemask_t of already used nodes
2828 *
2829 * We use a number of factors to determine which is the next node that should
2830 * appear on a given node's fallback list.  The node should not have appeared
2831 * already in @node's fallback list, and it should be the next closest node
2832 * according to the distance array (which contains arbitrary distance values
2833 * from each node to each node in the system), and should also prefer nodes
2834 * with no CPUs, since presumably they'll have very little allocation pressure
2835 * on them otherwise.
2836 * It returns -1 if no node is found.
2837 */
2838static int find_next_best_node(int node, nodemask_t *used_node_mask)
2839{
2840	int n, val;
2841	int min_val = INT_MAX;
2842	int best_node = -1;
2843	const struct cpumask *tmp = cpumask_of_node(0);
2844
2845	/* Use the local node if we haven't already */
2846	if (!node_isset(node, *used_node_mask)) {
2847		node_set(node, *used_node_mask);
2848		return node;
2849	}
2850
2851	for_each_node_state(n, N_HIGH_MEMORY) {
2852
2853		/* Don't want a node to appear more than once */
2854		if (node_isset(n, *used_node_mask))
2855			continue;
2856
2857		/* Use the distance array to find the distance */
2858		val = node_distance(node, n);
2859
2860		/* Penalize nodes under us ("prefer the next node") */
2861		val += (n < node);
2862
2863		/* Give preference to headless and unused nodes */
2864		tmp = cpumask_of_node(n);
2865		if (!cpumask_empty(tmp))
2866			val += PENALTY_FOR_NODE_WITH_CPUS;
2867
2868		/* Slight preference for less loaded node */
2869		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2870		val += node_load[n];
2871
2872		if (val < min_val) {
2873			min_val = val;
2874			best_node = n;
2875		}
2876	}
2877
2878	if (best_node >= 0)
2879		node_set(best_node, *used_node_mask);
2880
2881	return best_node;
2882}
2883
2884
2885/*
2886 * Build zonelists ordered by node and zones within node.
2887 * This results in maximum locality--normal zone overflows into local
2888 * DMA zone, if any--but risks exhausting DMA zone.
2889 */
2890static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2891{
2892	int j;
2893	struct zonelist *zonelist;
2894
2895	zonelist = &pgdat->node_zonelists[0];
2896	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2897		;
2898	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2899							MAX_NR_ZONES - 1);
2900	zonelist->_zonerefs[j].zone = NULL;
2901	zonelist->_zonerefs[j].zone_idx = 0;
2902}
2903
2904/*
2905 * Build gfp_thisnode zonelists
2906 */
2907static void build_thisnode_zonelists(pg_data_t *pgdat)
2908{
2909	int j;
2910	struct zonelist *zonelist;
2911
2912	zonelist = &pgdat->node_zonelists[1];
2913	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2914	zonelist->_zonerefs[j].zone = NULL;
2915	zonelist->_zonerefs[j].zone_idx = 0;
2916}
2917
2918/*
2919 * Build zonelists ordered by zone and nodes within zones.
2920 * This results in conserving DMA zone[s] until all Normal memory is
2921 * exhausted, but results in overflowing to remote node while memory
2922 * may still exist in local DMA zone.
2923 */
2924static int node_order[MAX_NUMNODES];
2925
2926static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2927{
2928	int pos, j, node;
2929	int zone_type;		/* needs to be signed */
2930	struct zone *z;
2931	struct zonelist *zonelist;
2932
2933	zonelist = &pgdat->node_zonelists[0];
2934	pos = 0;
2935	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2936		for (j = 0; j < nr_nodes; j++) {
2937			node = node_order[j];
2938			z = &NODE_DATA(node)->node_zones[zone_type];
2939			if (populated_zone(z)) {
2940				zoneref_set_zone(z,
2941					&zonelist->_zonerefs[pos++]);
2942				check_highest_zone(zone_type);
2943			}
2944		}
2945	}
2946	zonelist->_zonerefs[pos].zone = NULL;
2947	zonelist->_zonerefs[pos].zone_idx = 0;
2948}
2949
2950static int default_zonelist_order(void)
2951{
2952	int nid, zone_type;
2953	unsigned long low_kmem_size,total_size;
2954	struct zone *z;
2955	int average_size;
2956	/*
2957         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2958	 * If they are really small and used heavily, the system can fall
2959	 * into OOM very easily.
2960	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2961	 */
2962	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2963	low_kmem_size = 0;
2964	total_size = 0;
2965	for_each_online_node(nid) {
2966		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2967			z = &NODE_DATA(nid)->node_zones[zone_type];
2968			if (populated_zone(z)) {
2969				if (zone_type < ZONE_NORMAL)
2970					low_kmem_size += z->present_pages;
2971				total_size += z->present_pages;
2972			} else if (zone_type == ZONE_NORMAL) {
2973				/*
2974				 * If any node has only lowmem, then node order
2975				 * is preferred to allow kernel allocations
2976				 * locally; otherwise, they can easily infringe
2977				 * on other nodes when there is an abundance of
2978				 * lowmem available to allocate from.
2979				 */
2980				return ZONELIST_ORDER_NODE;
2981			}
2982		}
2983	}
2984	if (!low_kmem_size ||  /* there are no DMA area. */
2985	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2986		return ZONELIST_ORDER_NODE;
2987	/*
2988	 * look into each node's config.
2989  	 * If there is a node whose DMA/DMA32 memory is very big area on
2990 	 * local memory, NODE_ORDER may be suitable.
2991         */
2992	average_size = total_size /
2993				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2994	for_each_online_node(nid) {
2995		low_kmem_size = 0;
2996		total_size = 0;
2997		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2998			z = &NODE_DATA(nid)->node_zones[zone_type];
2999			if (populated_zone(z)) {
3000				if (zone_type < ZONE_NORMAL)
3001					low_kmem_size += z->present_pages;
3002				total_size += z->present_pages;
3003			}
3004		}
3005		if (low_kmem_size &&
3006		    total_size > average_size && /* ignore small node */
3007		    low_kmem_size > total_size * 70/100)
3008			return ZONELIST_ORDER_NODE;
3009	}
3010	return ZONELIST_ORDER_ZONE;
3011}
3012
3013static void set_zonelist_order(void)
3014{
3015	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3016		current_zonelist_order = default_zonelist_order();
3017	else
3018		current_zonelist_order = user_zonelist_order;
3019}
3020
3021static void build_zonelists(pg_data_t *pgdat)
3022{
3023	int j, node, load;
3024	enum zone_type i;
3025	nodemask_t used_mask;
3026	int local_node, prev_node;
3027	struct zonelist *zonelist;
3028	int order = current_zonelist_order;
3029
3030	/* initialize zonelists */
3031	for (i = 0; i < MAX_ZONELISTS; i++) {
3032		zonelist = pgdat->node_zonelists + i;
3033		zonelist->_zonerefs[0].zone = NULL;
3034		zonelist->_zonerefs[0].zone_idx = 0;
3035	}
3036
3037	/* NUMA-aware ordering of nodes */
3038	local_node = pgdat->node_id;
3039	load = nr_online_nodes;
3040	prev_node = local_node;
3041	nodes_clear(used_mask);
3042
3043	memset(node_order, 0, sizeof(node_order));
3044	j = 0;
3045
3046	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3047		int distance = node_distance(local_node, node);
3048
3049		/*
3050		 * If another node is sufficiently far away then it is better
3051		 * to reclaim pages in a zone before going off node.
3052		 */
3053		if (distance > RECLAIM_DISTANCE)
3054			zone_reclaim_mode = 1;
3055
3056		/*
3057		 * We don't want to pressure a particular node.
3058		 * So adding penalty to the first node in same
3059		 * distance group to make it round-robin.
3060		 */
3061		if (distance != node_distance(local_node, prev_node))
3062			node_load[node] = load;
3063
3064		prev_node = node;
3065		load--;
3066		if (order == ZONELIST_ORDER_NODE)
3067			build_zonelists_in_node_order(pgdat, node);
3068		else
3069			node_order[j++] = node;	/* remember order */
3070	}
3071
3072	if (order == ZONELIST_ORDER_ZONE) {
3073		/* calculate node order -- i.e., DMA last! */
3074		build_zonelists_in_zone_order(pgdat, j);
3075	}
3076
3077	build_thisnode_zonelists(pgdat);
3078}
3079
3080/* Construct the zonelist performance cache - see further mmzone.h */
3081static void build_zonelist_cache(pg_data_t *pgdat)
3082{
3083	struct zonelist *zonelist;
3084	struct zonelist_cache *zlc;
3085	struct zoneref *z;
3086
3087	zonelist = &pgdat->node_zonelists[0];
3088	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3089	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3090	for (z = zonelist->_zonerefs; z->zone; z++)
3091		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3092}
3093
3094#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3095/*
3096 * Return node id of node used for "local" allocations.
3097 * I.e., first node id of first zone in arg node's generic zonelist.
3098 * Used for initializing percpu 'numa_mem', which is used primarily
3099 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3100 */
3101int local_memory_node(int node)
3102{
3103	struct zone *zone;
3104
3105	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3106				   gfp_zone(GFP_KERNEL),
3107				   NULL,
3108				   &zone);
3109	return zone->node;
3110}
3111#endif
3112
3113#else	/* CONFIG_NUMA */
3114
3115static void set_zonelist_order(void)
3116{
3117	current_zonelist_order = ZONELIST_ORDER_ZONE;
3118}
3119
3120static void build_zonelists(pg_data_t *pgdat)
3121{
3122	int node, local_node;
3123	enum zone_type j;
3124	struct zonelist *zonelist;
3125
3126	local_node = pgdat->node_id;
3127
3128	zonelist = &pgdat->node_zonelists[0];
3129	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3130
3131	/*
3132	 * Now we build the zonelist so that it contains the zones
3133	 * of all the other nodes.
3134	 * We don't want to pressure a particular node, so when
3135	 * building the zones for node N, we make sure that the
3136	 * zones coming right after the local ones are those from
3137	 * node N+1 (modulo N)
3138	 */
3139	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3140		if (!node_online(node))
3141			continue;
3142		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3143							MAX_NR_ZONES - 1);
3144	}
3145	for (node = 0; node < local_node; node++) {
3146		if (!node_online(node))
3147			continue;
3148		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3149							MAX_NR_ZONES - 1);
3150	}
3151
3152	zonelist->_zonerefs[j].zone = NULL;
3153	zonelist->_zonerefs[j].zone_idx = 0;
3154}
3155
3156/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3157static void build_zonelist_cache(pg_data_t *pgdat)
3158{
3159	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3160}
3161
3162#endif	/* CONFIG_NUMA */
3163
3164/*
3165 * Boot pageset table. One per cpu which is going to be used for all
3166 * zones and all nodes. The parameters will be set in such a way
3167 * that an item put on a list will immediately be handed over to
3168 * the buddy list. This is safe since pageset manipulation is done
3169 * with interrupts disabled.
3170 *
3171 * The boot_pagesets must be kept even after bootup is complete for
3172 * unused processors and/or zones. They do play a role for bootstrapping
3173 * hotplugged processors.
3174 *
3175 * zoneinfo_show() and maybe other functions do
3176 * not check if the processor is online before following the pageset pointer.
3177 * Other parts of the kernel may not check if the zone is available.
3178 */
3179static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3180static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3181static void setup_zone_pageset(struct zone *zone);
3182
3183/*
3184 * Global mutex to protect against size modification of zonelists
3185 * as well as to serialize pageset setup for the new populated zone.
3186 */
3187DEFINE_MUTEX(zonelists_mutex);
3188
3189/* return values int ....just for stop_machine() */
3190static __init_refok int __build_all_zonelists(void *data)
3191{
3192	int nid;
3193	int cpu;
3194
3195#ifdef CONFIG_NUMA
3196	memset(node_load, 0, sizeof(node_load));
3197#endif
3198	for_each_online_node(nid) {
3199		pg_data_t *pgdat = NODE_DATA(nid);
3200
3201		build_zonelists(pgdat);
3202		build_zonelist_cache(pgdat);
3203	}
3204
3205	/*
3206	 * Initialize the boot_pagesets that are going to be used
3207	 * for bootstrapping processors. The real pagesets for
3208	 * each zone will be allocated later when the per cpu
3209	 * allocator is available.
3210	 *
3211	 * boot_pagesets are used also for bootstrapping offline
3212	 * cpus if the system is already booted because the pagesets
3213	 * are needed to initialize allocators on a specific cpu too.
3214	 * F.e. the percpu allocator needs the page allocator which
3215	 * needs the percpu allocator in order to allocate its pagesets
3216	 * (a chicken-egg dilemma).
3217	 */
3218	for_each_possible_cpu(cpu) {
3219		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3220
3221#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3222		/*
3223		 * We now know the "local memory node" for each node--
3224		 * i.e., the node of the first zone in the generic zonelist.
3225		 * Set up numa_mem percpu variable for on-line cpus.  During
3226		 * boot, only the boot cpu should be on-line;  we'll init the
3227		 * secondary cpus' numa_mem as they come on-line.  During
3228		 * node/memory hotplug, we'll fixup all on-line cpus.
3229		 */
3230		if (cpu_online(cpu))
3231			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3232#endif
3233	}
3234
3235	return 0;
3236}
3237
3238/*
3239 * Called with zonelists_mutex held always
3240 * unless system_state == SYSTEM_BOOTING.
3241 */
3242void __ref build_all_zonelists(void *data)
3243{
3244	set_zonelist_order();
3245
3246	if (system_state == SYSTEM_BOOTING) {
3247		__build_all_zonelists(NULL);
3248		mminit_verify_zonelist();
3249		cpuset_init_current_mems_allowed();
3250	} else {
3251		/* we have to stop all cpus to guarantee there is no user
3252		   of zonelist */
3253#ifdef CONFIG_MEMORY_HOTPLUG
3254		if (data)
3255			setup_zone_pageset((struct zone *)data);
3256#endif
3257		stop_machine(__build_all_zonelists, NULL, NULL);
3258		/* cpuset refresh routine should be here */
3259	}
3260	vm_total_pages = nr_free_pagecache_pages();
3261	/*
3262	 * Disable grouping by mobility if the number of pages in the
3263	 * system is too low to allow the mechanism to work. It would be
3264	 * more accurate, but expensive to check per-zone. This check is
3265	 * made on memory-hotadd so a system can start with mobility
3266	 * disabled and enable it later
3267	 */
3268	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3269		page_group_by_mobility_disabled = 1;
3270	else
3271		page_group_by_mobility_disabled = 0;
3272
3273	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3274		"Total pages: %ld\n",
3275			nr_online_nodes,
3276			zonelist_order_name[current_zonelist_order],
3277			page_group_by_mobility_disabled ? "off" : "on",
3278			vm_total_pages);
3279#ifdef CONFIG_NUMA
3280	printk("Policy zone: %s\n", zone_names[policy_zone]);
3281#endif
3282}
3283
3284/*
3285 * Helper functions to size the waitqueue hash table.
3286 * Essentially these want to choose hash table sizes sufficiently
3287 * large so that collisions trying to wait on pages are rare.
3288 * But in fact, the number of active page waitqueues on typical
3289 * systems is ridiculously low, less than 200. So this is even
3290 * conservative, even though it seems large.
3291 *
3292 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3293 * waitqueues, i.e. the size of the waitq table given the number of pages.
3294 */
3295#define PAGES_PER_WAITQUEUE	256
3296
3297#ifndef CONFIG_MEMORY_HOTPLUG
3298static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3299{
3300	unsigned long size = 1;
3301
3302	pages /= PAGES_PER_WAITQUEUE;
3303
3304	while (size < pages)
3305		size <<= 1;
3306
3307	/*
3308	 * Once we have dozens or even hundreds of threads sleeping
3309	 * on IO we've got bigger problems than wait queue collision.
3310	 * Limit the size of the wait table to a reasonable size.
3311	 */
3312	size = min(size, 4096UL);
3313
3314	return max(size, 4UL);
3315}
3316#else
3317/*
3318 * A zone's size might be changed by hot-add, so it is not possible to determine
3319 * a suitable size for its wait_table.  So we use the maximum size now.
3320 *
3321 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3322 *
3323 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3324 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3325 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3326 *
3327 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3328 * or more by the traditional way. (See above).  It equals:
3329 *
3330 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3331 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3332 *    powerpc (64K page size)             : =  (32G +16M)byte.
3333 */
3334static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3335{
3336	return 4096UL;
3337}
3338#endif
3339
3340/*
3341 * This is an integer logarithm so that shifts can be used later
3342 * to extract the more random high bits from the multiplicative
3343 * hash function before the remainder is taken.
3344 */
3345static inline unsigned long wait_table_bits(unsigned long size)
3346{
3347	return ffz(~size);
3348}
3349
3350#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3351
3352/*
3353 * Check if a pageblock contains reserved pages
3354 */
3355static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3356{
3357	unsigned long pfn;
3358
3359	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3360		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3361			return 1;
3362	}
3363	return 0;
3364}
3365
3366/*
3367 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3368 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3369 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3370 * higher will lead to a bigger reserve which will get freed as contiguous
3371 * blocks as reclaim kicks in
3372 */
3373static void setup_zone_migrate_reserve(struct zone *zone)
3374{
3375	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3376	struct page *page;
3377	unsigned long block_migratetype;
3378	int reserve;
3379
3380	/* Get the start pfn, end pfn and the number of blocks to reserve */
3381	start_pfn = zone->zone_start_pfn;
3382	end_pfn = start_pfn + zone->spanned_pages;
3383	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3384							pageblock_order;
3385
3386	/*
3387	 * Reserve blocks are generally in place to help high-order atomic
3388	 * allocations that are short-lived. A min_free_kbytes value that
3389	 * would result in more than 2 reserve blocks for atomic allocations
3390	 * is assumed to be in place to help anti-fragmentation for the
3391	 * future allocation of hugepages at runtime.
3392	 */
3393	reserve = min(2, reserve);
3394
3395	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3396		if (!pfn_valid(pfn))
3397			continue;
3398		page = pfn_to_page(pfn);
3399
3400		/* Watch out for overlapping nodes */
3401		if (page_to_nid(page) != zone_to_nid(zone))
3402			continue;
3403
3404		/* Blocks with reserved pages will never free, skip them. */
3405		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3406		if (pageblock_is_reserved(pfn, block_end_pfn))
3407			continue;
3408
3409		block_migratetype = get_pageblock_migratetype(page);
3410
3411		/* If this block is reserved, account for it */
3412		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3413			reserve--;
3414			continue;
3415		}
3416
3417		/* Suitable for reserving if this block is movable */
3418		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3419			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3420			move_freepages_block(zone, page, MIGRATE_RESERVE);
3421			reserve--;
3422			continue;
3423		}
3424
3425		/*
3426		 * If the reserve is met and this is a previous reserved block,
3427		 * take it back
3428		 */
3429		if (block_migratetype == MIGRATE_RESERVE) {
3430			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3431			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3432		}
3433	}
3434}
3435
3436/*
3437 * Initially all pages are reserved - free ones are freed
3438 * up by free_all_bootmem() once the early boot process is
3439 * done. Non-atomic initialization, single-pass.
3440 */
3441void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3442		unsigned long start_pfn, enum memmap_context context)
3443{
3444	struct page *page;
3445	unsigned long end_pfn = start_pfn + size;
3446	unsigned long pfn;
3447	struct zone *z;
3448
3449	if (highest_memmap_pfn < end_pfn - 1)
3450		highest_memmap_pfn = end_pfn - 1;
3451
3452	z = &NODE_DATA(nid)->node_zones[zone];
3453	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3454		/*
3455		 * There can be holes in boot-time mem_map[]s
3456		 * handed to this function.  They do not
3457		 * exist on hotplugged memory.
3458		 */
3459		if (context == MEMMAP_EARLY) {
3460			if (!early_pfn_valid(pfn))
3461				continue;
3462			if (!early_pfn_in_nid(pfn, nid))
3463				continue;
3464		}
3465		page = pfn_to_page(pfn);
3466		set_page_links(page, zone, nid, pfn);
3467		mminit_verify_page_links(page, zone, nid, pfn);
3468		init_page_count(page);
3469		reset_page_mapcount(page);
3470		SetPageReserved(page);
3471		/*
3472		 * Mark the block movable so that blocks are reserved for
3473		 * movable at startup. This will force kernel allocations
3474		 * to reserve their blocks rather than leaking throughout
3475		 * the address space during boot when many long-lived
3476		 * kernel allocations are made. Later some blocks near
3477		 * the start are marked MIGRATE_RESERVE by
3478		 * setup_zone_migrate_reserve()
3479		 *
3480		 * bitmap is created for zone's valid pfn range. but memmap
3481		 * can be created for invalid pages (for alignment)
3482		 * check here not to call set_pageblock_migratetype() against
3483		 * pfn out of zone.
3484		 */
3485		if ((z->zone_start_pfn <= pfn)
3486		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3487		    && !(pfn & (pageblock_nr_pages - 1)))
3488			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3489
3490		INIT_LIST_HEAD(&page->lru);
3491#ifdef WANT_PAGE_VIRTUAL
3492		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3493		if (!is_highmem_idx(zone))
3494			set_page_address(page, __va(pfn << PAGE_SHIFT));
3495#endif
3496	}
3497}
3498
3499static void __meminit zone_init_free_lists(struct zone *zone)
3500{
3501	int order, t;
3502	for_each_migratetype_order(order, t) {
3503		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3504		zone->free_area[order].nr_free = 0;
3505	}
3506}
3507
3508#ifndef __HAVE_ARCH_MEMMAP_INIT
3509#define memmap_init(size, nid, zone, start_pfn) \
3510	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3511#endif
3512
3513static int zone_batchsize(struct zone *zone)
3514{
3515#ifdef CONFIG_MMU
3516	int batch;
3517
3518	/*
3519	 * The per-cpu-pages pools are set to around 1000th of the
3520	 * size of the zone.  But no more than 1/2 of a meg.
3521	 *
3522	 * OK, so we don't know how big the cache is.  So guess.
3523	 */
3524	batch = zone->present_pages / 1024;
3525	if (batch * PAGE_SIZE > 512 * 1024)
3526		batch = (512 * 1024) / PAGE_SIZE;
3527	batch /= 4;		/* We effectively *= 4 below */
3528	if (batch < 1)
3529		batch = 1;
3530
3531	/*
3532	 * Clamp the batch to a 2^n - 1 value. Having a power
3533	 * of 2 value was found to be more likely to have
3534	 * suboptimal cache aliasing properties in some cases.
3535	 *
3536	 * For example if 2 tasks are alternately allocating
3537	 * batches of pages, one task can end up with a lot
3538	 * of pages of one half of the possible page colors
3539	 * and the other with pages of the other colors.
3540	 */
3541	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3542
3543	return batch;
3544
3545#else
3546	/* The deferral and batching of frees should be suppressed under NOMMU
3547	 * conditions.
3548	 *
3549	 * The problem is that NOMMU needs to be able to allocate large chunks
3550	 * of contiguous memory as there's no hardware page translation to
3551	 * assemble apparent contiguous memory from discontiguous pages.
3552	 *
3553	 * Queueing large contiguous runs of pages for batching, however,
3554	 * causes the pages to actually be freed in smaller chunks.  As there
3555	 * can be a significant delay between the individual batches being
3556	 * recycled, this leads to the once large chunks of space being
3557	 * fragmented and becoming unavailable for high-order allocations.
3558	 */
3559	return 0;
3560#endif
3561}
3562
3563static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3564{
3565	struct per_cpu_pages *pcp;
3566	int migratetype;
3567
3568	memset(p, 0, sizeof(*p));
3569
3570	pcp = &p->pcp;
3571	pcp->count = 0;
3572	pcp->high = 6 * batch;
3573	pcp->batch = max(1UL, 1 * batch);
3574	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3575		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3576}
3577
3578/*
3579 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3580 * to the value high for the pageset p.
3581 */
3582
3583static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3584				unsigned long high)
3585{
3586	struct per_cpu_pages *pcp;
3587
3588	pcp = &p->pcp;
3589	pcp->high = high;
3590	pcp->batch = max(1UL, high/4);
3591	if ((high/4) > (PAGE_SHIFT * 8))
3592		pcp->batch = PAGE_SHIFT * 8;
3593}
3594
3595static void setup_zone_pageset(struct zone *zone)
3596{
3597	int cpu;
3598
3599	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3600
3601	for_each_possible_cpu(cpu) {
3602		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3603
3604		setup_pageset(pcp, zone_batchsize(zone));
3605
3606		if (percpu_pagelist_fraction)
3607			setup_pagelist_highmark(pcp,
3608				(zone->present_pages /
3609					percpu_pagelist_fraction));
3610	}
3611}
3612
3613/*
3614 * Allocate per cpu pagesets and initialize them.
3615 * Before this call only boot pagesets were available.
3616 */
3617void __init setup_per_cpu_pageset(void)
3618{
3619	struct zone *zone;
3620
3621	for_each_populated_zone(zone)
3622		setup_zone_pageset(zone);
3623}
3624
3625static noinline __init_refok
3626int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3627{
3628	int i;
3629	struct pglist_data *pgdat = zone->zone_pgdat;
3630	size_t alloc_size;
3631
3632	/*
3633	 * The per-page waitqueue mechanism uses hashed waitqueues
3634	 * per zone.
3635	 */
3636	zone->wait_table_hash_nr_entries =
3637		 wait_table_hash_nr_entries(zone_size_pages);
3638	zone->wait_table_bits =
3639		wait_table_bits(zone->wait_table_hash_nr_entries);
3640	alloc_size = zone->wait_table_hash_nr_entries
3641					* sizeof(wait_queue_head_t);
3642
3643	if (!slab_is_available()) {
3644		zone->wait_table = (wait_queue_head_t *)
3645			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3646	} else {
3647		/*
3648		 * This case means that a zone whose size was 0 gets new memory
3649		 * via memory hot-add.
3650		 * But it may be the case that a new node was hot-added.  In
3651		 * this case vmalloc() will not be able to use this new node's
3652		 * memory - this wait_table must be initialized to use this new
3653		 * node itself as well.
3654		 * To use this new node's memory, further consideration will be
3655		 * necessary.
3656		 */
3657		zone->wait_table = vmalloc(alloc_size);
3658	}
3659	if (!zone->wait_table)
3660		return -ENOMEM;
3661
3662	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3663		init_waitqueue_head(zone->wait_table + i);
3664
3665	return 0;
3666}
3667
3668static int __zone_pcp_update(void *data)
3669{
3670	struct zone *zone = data;
3671	int cpu;
3672	unsigned long batch = zone_batchsize(zone), flags;
3673
3674	for_each_possible_cpu(cpu) {
3675		struct per_cpu_pageset *pset;
3676		struct per_cpu_pages *pcp;
3677
3678		pset = per_cpu_ptr(zone->pageset, cpu);
3679		pcp = &pset->pcp;
3680
3681		local_irq_save(flags);
3682		free_pcppages_bulk(zone, pcp->count, pcp);
3683		setup_pageset(pset, batch);
3684		local_irq_restore(flags);
3685	}
3686	return 0;
3687}
3688
3689void zone_pcp_update(struct zone *zone)
3690{
3691	stop_machine(__zone_pcp_update, zone, NULL);
3692}
3693
3694static __meminit void zone_pcp_init(struct zone *zone)
3695{
3696	/*
3697	 * per cpu subsystem is not up at this point. The following code
3698	 * relies on the ability of the linker to provide the
3699	 * offset of a (static) per cpu variable into the per cpu area.
3700	 */
3701	zone->pageset = &boot_pageset;
3702
3703	if (zone->present_pages)
3704		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3705			zone->name, zone->present_pages,
3706					 zone_batchsize(zone));
3707}
3708
3709__meminit int init_currently_empty_zone(struct zone *zone,
3710					unsigned long zone_start_pfn,
3711					unsigned long size,
3712					enum memmap_context context)
3713{
3714	struct pglist_data *pgdat = zone->zone_pgdat;
3715	int ret;
3716	ret = zone_wait_table_init(zone, size);
3717	if (ret)
3718		return ret;
3719	pgdat->nr_zones = zone_idx(zone) + 1;
3720
3721	zone->zone_start_pfn = zone_start_pfn;
3722
3723	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3724			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3725			pgdat->node_id,
3726			(unsigned long)zone_idx(zone),
3727			zone_start_pfn, (zone_start_pfn + size));
3728
3729	zone_init_free_lists(zone);
3730
3731	return 0;
3732}
3733
3734#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3735/*
3736 * Basic iterator support. Return the first range of PFNs for a node
3737 * Note: nid == MAX_NUMNODES returns first region regardless of node
3738 */
3739static int __meminit first_active_region_index_in_nid(int nid)
3740{
3741	int i;
3742
3743	for (i = 0; i < nr_nodemap_entries; i++)
3744		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3745			return i;
3746
3747	return -1;
3748}
3749
3750/*
3751 * Basic iterator support. Return the next active range of PFNs for a node
3752 * Note: nid == MAX_NUMNODES returns next region regardless of node
3753 */
3754static int __meminit next_active_region_index_in_nid(int index, int nid)
3755{
3756	for (index = index + 1; index < nr_nodemap_entries; index++)
3757		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3758			return index;
3759
3760	return -1;
3761}
3762
3763#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3764/*
3765 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3766 * Architectures may implement their own version but if add_active_range()
3767 * was used and there are no special requirements, this is a convenient
3768 * alternative
3769 */
3770int __meminit __early_pfn_to_nid(unsigned long pfn)
3771{
3772	int i;
3773
3774	for (i = 0; i < nr_nodemap_entries; i++) {
3775		unsigned long start_pfn = early_node_map[i].start_pfn;
3776		unsigned long end_pfn = early_node_map[i].end_pfn;
3777
3778		if (start_pfn <= pfn && pfn < end_pfn)
3779			return early_node_map[i].nid;
3780	}
3781	/* This is a memory hole */
3782	return -1;
3783}
3784#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3785
3786int __meminit early_pfn_to_nid(unsigned long pfn)
3787{
3788	int nid;
3789
3790	nid = __early_pfn_to_nid(pfn);
3791	if (nid >= 0)
3792		return nid;
3793	/* just returns 0 */
3794	return 0;
3795}
3796
3797#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3798bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3799{
3800	int nid;
3801
3802	nid = __early_pfn_to_nid(pfn);
3803	if (nid >= 0 && nid != node)
3804		return false;
3805	return true;
3806}
3807#endif
3808
3809/* Basic iterator support to walk early_node_map[] */
3810#define for_each_active_range_index_in_nid(i, nid) \
3811	for (i = first_active_region_index_in_nid(nid); i != -1; \
3812				i = next_active_region_index_in_nid(i, nid))
3813
3814/**
3815 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3816 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3817 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3818 *
3819 * If an architecture guarantees that all ranges registered with
3820 * add_active_ranges() contain no holes and may be freed, this
3821 * this function may be used instead of calling free_bootmem() manually.
3822 */
3823void __init free_bootmem_with_active_regions(int nid,
3824						unsigned long max_low_pfn)
3825{
3826	int i;
3827
3828	for_each_active_range_index_in_nid(i, nid) {
3829		unsigned long size_pages = 0;
3830		unsigned long end_pfn = early_node_map[i].end_pfn;
3831
3832		if (early_node_map[i].start_pfn >= max_low_pfn)
3833			continue;
3834
3835		if (end_pfn > max_low_pfn)
3836			end_pfn = max_low_pfn;
3837
3838		size_pages = end_pfn - early_node_map[i].start_pfn;
3839		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3840				PFN_PHYS(early_node_map[i].start_pfn),
3841				size_pages << PAGE_SHIFT);
3842	}
3843}
3844
3845#ifdef CONFIG_HAVE_MEMBLOCK
3846/*
3847 * Basic iterator support. Return the last range of PFNs for a node
3848 * Note: nid == MAX_NUMNODES returns last region regardless of node
3849 */
3850static int __meminit last_active_region_index_in_nid(int nid)
3851{
3852	int i;
3853
3854	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3855		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3856			return i;
3857
3858	return -1;
3859}
3860
3861/*
3862 * Basic iterator support. Return the previous active range of PFNs for a node
3863 * Note: nid == MAX_NUMNODES returns next region regardless of node
3864 */
3865static int __meminit previous_active_region_index_in_nid(int index, int nid)
3866{
3867	for (index = index - 1; index >= 0; index--)
3868		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3869			return index;
3870
3871	return -1;
3872}
3873
3874#define for_each_active_range_index_in_nid_reverse(i, nid) \
3875	for (i = last_active_region_index_in_nid(nid); i != -1; \
3876				i = previous_active_region_index_in_nid(i, nid))
3877
3878u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3879					u64 goal, u64 limit)
3880{
3881	int i;
3882
3883	/* Need to go over early_node_map to find out good range for node */
3884	for_each_active_range_index_in_nid_reverse(i, nid) {
3885		u64 addr;
3886		u64 ei_start, ei_last;
3887		u64 final_start, final_end;
3888
3889		ei_last = early_node_map[i].end_pfn;
3890		ei_last <<= PAGE_SHIFT;
3891		ei_start = early_node_map[i].start_pfn;
3892		ei_start <<= PAGE_SHIFT;
3893
3894		final_start = max(ei_start, goal);
3895		final_end = min(ei_last, limit);
3896
3897		if (final_start >= final_end)
3898			continue;
3899
3900		addr = memblock_find_in_range(final_start, final_end, size, align);
3901
3902		if (addr == MEMBLOCK_ERROR)
3903			continue;
3904
3905		return addr;
3906	}
3907
3908	return MEMBLOCK_ERROR;
3909}
3910#endif
3911
3912int __init add_from_early_node_map(struct range *range, int az,
3913				   int nr_range, int nid)
3914{
3915	int i;
3916	u64 start, end;
3917
3918	/* need to go over early_node_map to find out good range for node */
3919	for_each_active_range_index_in_nid(i, nid) {
3920		start = early_node_map[i].start_pfn;
3921		end = early_node_map[i].end_pfn;
3922		nr_range = add_range(range, az, nr_range, start, end);
3923	}
3924	return nr_range;
3925}
3926
3927void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3928{
3929	int i;
3930	int ret;
3931
3932	for_each_active_range_index_in_nid(i, nid) {
3933		ret = work_fn(early_node_map[i].start_pfn,
3934			      early_node_map[i].end_pfn, data);
3935		if (ret)
3936			break;
3937	}
3938}
3939/**
3940 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3941 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3942 *
3943 * If an architecture guarantees that all ranges registered with
3944 * add_active_ranges() contain no holes and may be freed, this
3945 * function may be used instead of calling memory_present() manually.
3946 */
3947void __init sparse_memory_present_with_active_regions(int nid)
3948{
3949	int i;
3950
3951	for_each_active_range_index_in_nid(i, nid)
3952		memory_present(early_node_map[i].nid,
3953				early_node_map[i].start_pfn,
3954				early_node_map[i].end_pfn);
3955}
3956
3957/**
3958 * get_pfn_range_for_nid - Return the start and end page frames for a node
3959 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3960 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3961 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3962 *
3963 * It returns the start and end page frame of a node based on information
3964 * provided by an arch calling add_active_range(). If called for a node
3965 * with no available memory, a warning is printed and the start and end
3966 * PFNs will be 0.
3967 */
3968void __meminit get_pfn_range_for_nid(unsigned int nid,
3969			unsigned long *start_pfn, unsigned long *end_pfn)
3970{
3971	int i;
3972	*start_pfn = -1UL;
3973	*end_pfn = 0;
3974
3975	for_each_active_range_index_in_nid(i, nid) {
3976		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3977		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3978	}
3979
3980	if (*start_pfn == -1UL)
3981		*start_pfn = 0;
3982}
3983
3984/*
3985 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3986 * assumption is made that zones within a node are ordered in monotonic
3987 * increasing memory addresses so that the "highest" populated zone is used
3988 */
3989static void __init find_usable_zone_for_movable(void)
3990{
3991	int zone_index;
3992	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3993		if (zone_index == ZONE_MOVABLE)
3994			continue;
3995
3996		if (arch_zone_highest_possible_pfn[zone_index] >
3997				arch_zone_lowest_possible_pfn[zone_index])
3998			break;
3999	}
4000
4001	VM_BUG_ON(zone_index == -1);
4002	movable_zone = zone_index;
4003}
4004
4005/*
4006 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4007 * because it is sized independent of architecture. Unlike the other zones,
4008 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4009 * in each node depending on the size of each node and how evenly kernelcore
4010 * is distributed. This helper function adjusts the zone ranges
4011 * provided by the architecture for a given node by using the end of the
4012 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4013 * zones within a node are in order of monotonic increases memory addresses
4014 */
4015static void __meminit adjust_zone_range_for_zone_movable(int nid,
4016					unsigned long zone_type,
4017					unsigned long node_start_pfn,
4018					unsigned long node_end_pfn,
4019					unsigned long *zone_start_pfn,
4020					unsigned long *zone_end_pfn)
4021{
4022	/* Only adjust if ZONE_MOVABLE is on this node */
4023	if (zone_movable_pfn[nid]) {
4024		/* Size ZONE_MOVABLE */
4025		if (zone_type == ZONE_MOVABLE) {
4026			*zone_start_pfn = zone_movable_pfn[nid];
4027			*zone_end_pfn = min(node_end_pfn,
4028				arch_zone_highest_possible_pfn[movable_zone]);
4029
4030		/* Adjust for ZONE_MOVABLE starting within this range */
4031		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4032				*zone_end_pfn > zone_movable_pfn[nid]) {
4033			*zone_end_pfn = zone_movable_pfn[nid];
4034
4035		/* Check if this whole range is within ZONE_MOVABLE */
4036		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4037			*zone_start_pfn = *zone_end_pfn;
4038	}
4039}
4040
4041/*
4042 * Return the number of pages a zone spans in a node, including holes
4043 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4044 */
4045static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4046					unsigned long zone_type,
4047					unsigned long *ignored)
4048{
4049	unsigned long node_start_pfn, node_end_pfn;
4050	unsigned long zone_start_pfn, zone_end_pfn;
4051
4052	/* Get the start and end of the node and zone */
4053	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4054	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4055	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4056	adjust_zone_range_for_zone_movable(nid, zone_type,
4057				node_start_pfn, node_end_pfn,
4058				&zone_start_pfn, &zone_end_pfn);
4059
4060	/* Check that this node has pages within the zone's required range */
4061	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4062		return 0;
4063
4064	/* Move the zone boundaries inside the node if necessary */
4065	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4066	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4067
4068	/* Return the spanned pages */
4069	return zone_end_pfn - zone_start_pfn;
4070}
4071
4072/*
4073 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4074 * then all holes in the requested range will be accounted for.
4075 */
4076unsigned long __meminit __absent_pages_in_range(int nid,
4077				unsigned long range_start_pfn,
4078				unsigned long range_end_pfn)
4079{
4080	int i = 0;
4081	unsigned long prev_end_pfn = 0, hole_pages = 0;
4082	unsigned long start_pfn;
4083
4084	/* Find the end_pfn of the first active range of pfns in the node */
4085	i = first_active_region_index_in_nid(nid);
4086	if (i == -1)
4087		return 0;
4088
4089	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4090
4091	/* Account for ranges before physical memory on this node */
4092	if (early_node_map[i].start_pfn > range_start_pfn)
4093		hole_pages = prev_end_pfn - range_start_pfn;
4094
4095	/* Find all holes for the zone within the node */
4096	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4097
4098		/* No need to continue if prev_end_pfn is outside the zone */
4099		if (prev_end_pfn >= range_end_pfn)
4100			break;
4101
4102		/* Make sure the end of the zone is not within the hole */
4103		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4104		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4105
4106		/* Update the hole size cound and move on */
4107		if (start_pfn > range_start_pfn) {
4108			BUG_ON(prev_end_pfn > start_pfn);
4109			hole_pages += start_pfn - prev_end_pfn;
4110		}
4111		prev_end_pfn = early_node_map[i].end_pfn;
4112	}
4113
4114	/* Account for ranges past physical memory on this node */
4115	if (range_end_pfn > prev_end_pfn)
4116		hole_pages += range_end_pfn -
4117				max(range_start_pfn, prev_end_pfn);
4118
4119	return hole_pages;
4120}
4121
4122/**
4123 * absent_pages_in_range - Return number of page frames in holes within a range
4124 * @start_pfn: The start PFN to start searching for holes
4125 * @end_pfn: The end PFN to stop searching for holes
4126 *
4127 * It returns the number of pages frames in memory holes within a range.
4128 */
4129unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4130							unsigned long end_pfn)
4131{
4132	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4133}
4134
4135/* Return the number of page frames in holes in a zone on a node */
4136static unsigned long __meminit zone_absent_pages_in_node(int nid,
4137					unsigned long zone_type,
4138					unsigned long *ignored)
4139{
4140	unsigned long node_start_pfn, node_end_pfn;
4141	unsigned long zone_start_pfn, zone_end_pfn;
4142
4143	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4144	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4145							node_start_pfn);
4146	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4147							node_end_pfn);
4148
4149	adjust_zone_range_for_zone_movable(nid, zone_type,
4150			node_start_pfn, node_end_pfn,
4151			&zone_start_pfn, &zone_end_pfn);
4152	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4153}
4154
4155#else
4156static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4157					unsigned long zone_type,
4158					unsigned long *zones_size)
4159{
4160	return zones_size[zone_type];
4161}
4162
4163static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4164						unsigned long zone_type,
4165						unsigned long *zholes_size)
4166{
4167	if (!zholes_size)
4168		return 0;
4169
4170	return zholes_size[zone_type];
4171}
4172
4173#endif
4174
4175static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4176		unsigned long *zones_size, unsigned long *zholes_size)
4177{
4178	unsigned long realtotalpages, totalpages = 0;
4179	enum zone_type i;
4180
4181	for (i = 0; i < MAX_NR_ZONES; i++)
4182		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4183								zones_size);
4184	pgdat->node_spanned_pages = totalpages;
4185
4186	realtotalpages = totalpages;
4187	for (i = 0; i < MAX_NR_ZONES; i++)
4188		realtotalpages -=
4189			zone_absent_pages_in_node(pgdat->node_id, i,
4190								zholes_size);
4191	pgdat->node_present_pages = realtotalpages;
4192	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4193							realtotalpages);
4194}
4195
4196#ifndef CONFIG_SPARSEMEM
4197/*
4198 * Calculate the size of the zone->blockflags rounded to an unsigned long
4199 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4200 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4201 * round what is now in bits to nearest long in bits, then return it in
4202 * bytes.
4203 */
4204static unsigned long __init usemap_size(unsigned long zonesize)
4205{
4206	unsigned long usemapsize;
4207
4208	usemapsize = roundup(zonesize, pageblock_nr_pages);
4209	usemapsize = usemapsize >> pageblock_order;
4210	usemapsize *= NR_PAGEBLOCK_BITS;
4211	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4212
4213	return usemapsize / 8;
4214}
4215
4216static void __init setup_usemap(struct pglist_data *pgdat,
4217				struct zone *zone, unsigned long zonesize)
4218{
4219	unsigned long usemapsize = usemap_size(zonesize);
4220	zone->pageblock_flags = NULL;
4221	if (usemapsize)
4222		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4223								   usemapsize);
4224}
4225#else
4226static inline void setup_usemap(struct pglist_data *pgdat,
4227				struct zone *zone, unsigned long zonesize) {}
4228#endif /* CONFIG_SPARSEMEM */
4229
4230#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4231
4232/* Return a sensible default order for the pageblock size. */
4233static inline int pageblock_default_order(void)
4234{
4235	if (HPAGE_SHIFT > PAGE_SHIFT)
4236		return HUGETLB_PAGE_ORDER;
4237
4238	return MAX_ORDER-1;
4239}
4240
4241/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4242static inline void __init set_pageblock_order(unsigned int order)
4243{
4244	/* Check that pageblock_nr_pages has not already been setup */
4245	if (pageblock_order)
4246		return;
4247
4248	/*
4249	 * Assume the largest contiguous order of interest is a huge page.
4250	 * This value may be variable depending on boot parameters on IA64
4251	 */
4252	pageblock_order = order;
4253}
4254#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4255
4256/*
4257 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4258 * and pageblock_default_order() are unused as pageblock_order is set
4259 * at compile-time. See include/linux/pageblock-flags.h for the values of
4260 * pageblock_order based on the kernel config
4261 */
4262static inline int pageblock_default_order(unsigned int order)
4263{
4264	return MAX_ORDER-1;
4265}
4266#define set_pageblock_order(x)	do {} while (0)
4267
4268#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4269
4270/*
4271 * Set up the zone data structures:
4272 *   - mark all pages reserved
4273 *   - mark all memory queues empty
4274 *   - clear the memory bitmaps
4275 */
4276static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4277		unsigned long *zones_size, unsigned long *zholes_size)
4278{
4279	enum zone_type j;
4280	int nid = pgdat->node_id;
4281	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4282	int ret;
4283
4284	pgdat_resize_init(pgdat);
4285	pgdat->nr_zones = 0;
4286	init_waitqueue_head(&pgdat->kswapd_wait);
4287	pgdat->kswapd_max_order = 0;
4288	pgdat_page_cgroup_init(pgdat);
4289
4290	for (j = 0; j < MAX_NR_ZONES; j++) {
4291		struct zone *zone = pgdat->node_zones + j;
4292		unsigned long size, realsize, memmap_pages;
4293		enum lru_list l;
4294
4295		size = zone_spanned_pages_in_node(nid, j, zones_size);
4296		realsize = size - zone_absent_pages_in_node(nid, j,
4297								zholes_size);
4298
4299		/*
4300		 * Adjust realsize so that it accounts for how much memory
4301		 * is used by this zone for memmap. This affects the watermark
4302		 * and per-cpu initialisations
4303		 */
4304		memmap_pages =
4305			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4306		if (realsize >= memmap_pages) {
4307			realsize -= memmap_pages;
4308			if (memmap_pages)
4309				printk(KERN_DEBUG
4310				       "  %s zone: %lu pages used for memmap\n",
4311				       zone_names[j], memmap_pages);
4312		} else
4313			printk(KERN_WARNING
4314				"  %s zone: %lu pages exceeds realsize %lu\n",
4315				zone_names[j], memmap_pages, realsize);
4316
4317		/* Account for reserved pages */
4318		if (j == 0 && realsize > dma_reserve) {
4319			realsize -= dma_reserve;
4320			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4321					zone_names[0], dma_reserve);
4322		}
4323
4324		if (!is_highmem_idx(j))
4325			nr_kernel_pages += realsize;
4326		nr_all_pages += realsize;
4327
4328		zone->spanned_pages = size;
4329		zone->present_pages = realsize;
4330#ifdef CONFIG_NUMA
4331		zone->node = nid;
4332		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4333						/ 100;
4334		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4335#endif
4336		zone->name = zone_names[j];
4337		spin_lock_init(&zone->lock);
4338		spin_lock_init(&zone->lru_lock);
4339		zone_seqlock_init(zone);
4340		zone->zone_pgdat = pgdat;
4341
4342		zone_pcp_init(zone);
4343		for_each_lru(l)
4344			INIT_LIST_HEAD(&zone->lru[l].list);
4345		zone->reclaim_stat.recent_rotated[0] = 0;
4346		zone->reclaim_stat.recent_rotated[1] = 0;
4347		zone->reclaim_stat.recent_scanned[0] = 0;
4348		zone->reclaim_stat.recent_scanned[1] = 0;
4349		zap_zone_vm_stats(zone);
4350		zone->flags = 0;
4351		if (!size)
4352			continue;
4353
4354		set_pageblock_order(pageblock_default_order());
4355		setup_usemap(pgdat, zone, size);
4356		ret = init_currently_empty_zone(zone, zone_start_pfn,
4357						size, MEMMAP_EARLY);
4358		BUG_ON(ret);
4359		memmap_init(size, nid, j, zone_start_pfn);
4360		zone_start_pfn += size;
4361	}
4362}
4363
4364static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4365{
4366	/* Skip empty nodes */
4367	if (!pgdat->node_spanned_pages)
4368		return;
4369
4370#ifdef CONFIG_FLAT_NODE_MEM_MAP
4371	/* ia64 gets its own node_mem_map, before this, without bootmem */
4372	if (!pgdat->node_mem_map) {
4373		unsigned long size, start, end;
4374		struct page *map;
4375
4376		/*
4377		 * The zone's endpoints aren't required to be MAX_ORDER
4378		 * aligned but the node_mem_map endpoints must be in order
4379		 * for the buddy allocator to function correctly.
4380		 */
4381		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4382		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4383		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4384		size =  (end - start) * sizeof(struct page);
4385		map = alloc_remap(pgdat->node_id, size);
4386		if (!map)
4387			map = alloc_bootmem_node_nopanic(pgdat, size);
4388		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4389	}
4390#ifndef CONFIG_NEED_MULTIPLE_NODES
4391	/*
4392	 * With no DISCONTIG, the global mem_map is just set as node 0's
4393	 */
4394	if (pgdat == NODE_DATA(0)) {
4395		mem_map = NODE_DATA(0)->node_mem_map;
4396#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4397		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4398			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4399#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4400	}
4401#endif
4402#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4403}
4404
4405void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4406		unsigned long node_start_pfn, unsigned long *zholes_size)
4407{
4408	pg_data_t *pgdat = NODE_DATA(nid);
4409
4410	pgdat->node_id = nid;
4411	pgdat->node_start_pfn = node_start_pfn;
4412	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4413
4414	alloc_node_mem_map(pgdat);
4415#ifdef CONFIG_FLAT_NODE_MEM_MAP
4416	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4417		nid, (unsigned long)pgdat,
4418		(unsigned long)pgdat->node_mem_map);
4419#endif
4420
4421	free_area_init_core(pgdat, zones_size, zholes_size);
4422}
4423
4424#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4425
4426#if MAX_NUMNODES > 1
4427/*
4428 * Figure out the number of possible node ids.
4429 */
4430static void __init setup_nr_node_ids(void)
4431{
4432	unsigned int node;
4433	unsigned int highest = 0;
4434
4435	for_each_node_mask(node, node_possible_map)
4436		highest = node;
4437	nr_node_ids = highest + 1;
4438}
4439#else
4440static inline void setup_nr_node_ids(void)
4441{
4442}
4443#endif
4444
4445/**
4446 * add_active_range - Register a range of PFNs backed by physical memory
4447 * @nid: The node ID the range resides on
4448 * @start_pfn: The start PFN of the available physical memory
4449 * @end_pfn: The end PFN of the available physical memory
4450 *
4451 * These ranges are stored in an early_node_map[] and later used by
4452 * free_area_init_nodes() to calculate zone sizes and holes. If the
4453 * range spans a memory hole, it is up to the architecture to ensure
4454 * the memory is not freed by the bootmem allocator. If possible
4455 * the range being registered will be merged with existing ranges.
4456 */
4457void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4458						unsigned long end_pfn)
4459{
4460	int i;
4461
4462	mminit_dprintk(MMINIT_TRACE, "memory_register",
4463			"Entering add_active_range(%d, %#lx, %#lx) "
4464			"%d entries of %d used\n",
4465			nid, start_pfn, end_pfn,
4466			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4467
4468	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4469
4470	/* Merge with existing active regions if possible */
4471	for (i = 0; i < nr_nodemap_entries; i++) {
4472		if (early_node_map[i].nid != nid)
4473			continue;
4474
4475		/* Skip if an existing region covers this new one */
4476		if (start_pfn >= early_node_map[i].start_pfn &&
4477				end_pfn <= early_node_map[i].end_pfn)
4478			return;
4479
4480		/* Merge forward if suitable */
4481		if (start_pfn <= early_node_map[i].end_pfn &&
4482				end_pfn > early_node_map[i].end_pfn) {
4483			early_node_map[i].end_pfn = end_pfn;
4484			return;
4485		}
4486
4487		/* Merge backward if suitable */
4488		if (start_pfn < early_node_map[i].start_pfn &&
4489				end_pfn >= early_node_map[i].start_pfn) {
4490			early_node_map[i].start_pfn = start_pfn;
4491			return;
4492		}
4493	}
4494
4495	/* Check that early_node_map is large enough */
4496	if (i >= MAX_ACTIVE_REGIONS) {
4497		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4498							MAX_ACTIVE_REGIONS);
4499		return;
4500	}
4501
4502	early_node_map[i].nid = nid;
4503	early_node_map[i].start_pfn = start_pfn;
4504	early_node_map[i].end_pfn = end_pfn;
4505	nr_nodemap_entries = i + 1;
4506}
4507
4508/**
4509 * remove_active_range - Shrink an existing registered range of PFNs
4510 * @nid: The node id the range is on that should be shrunk
4511 * @start_pfn: The new PFN of the range
4512 * @end_pfn: The new PFN of the range
4513 *
4514 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4515 * The map is kept near the end physical page range that has already been
4516 * registered. This function allows an arch to shrink an existing registered
4517 * range.
4518 */
4519void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4520				unsigned long end_pfn)
4521{
4522	int i, j;
4523	int removed = 0;
4524
4525	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4526			  nid, start_pfn, end_pfn);
4527
4528	/* Find the old active region end and shrink */
4529	for_each_active_range_index_in_nid(i, nid) {
4530		if (early_node_map[i].start_pfn >= start_pfn &&
4531		    early_node_map[i].end_pfn <= end_pfn) {
4532			/* clear it */
4533			early_node_map[i].start_pfn = 0;
4534			early_node_map[i].end_pfn = 0;
4535			removed = 1;
4536			continue;
4537		}
4538		if (early_node_map[i].start_pfn < start_pfn &&
4539		    early_node_map[i].end_pfn > start_pfn) {
4540			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4541			early_node_map[i].end_pfn = start_pfn;
4542			if (temp_end_pfn > end_pfn)
4543				add_active_range(nid, end_pfn, temp_end_pfn);
4544			continue;
4545		}
4546		if (early_node_map[i].start_pfn >= start_pfn &&
4547		    early_node_map[i].end_pfn > end_pfn &&
4548		    early_node_map[i].start_pfn < end_pfn) {
4549			early_node_map[i].start_pfn = end_pfn;
4550			continue;
4551		}
4552	}
4553
4554	if (!removed)
4555		return;
4556
4557	/* remove the blank ones */
4558	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4559		if (early_node_map[i].nid != nid)
4560			continue;
4561		if (early_node_map[i].end_pfn)
4562			continue;
4563		/* we found it, get rid of it */
4564		for (j = i; j < nr_nodemap_entries - 1; j++)
4565			memcpy(&early_node_map[j], &early_node_map[j+1],
4566				sizeof(early_node_map[j]));
4567		j = nr_nodemap_entries - 1;
4568		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4569		nr_nodemap_entries--;
4570	}
4571}
4572
4573/**
4574 * remove_all_active_ranges - Remove all currently registered regions
4575 *
4576 * During discovery, it may be found that a table like SRAT is invalid
4577 * and an alternative discovery method must be used. This function removes
4578 * all currently registered regions.
4579 */
4580void __init remove_all_active_ranges(void)
4581{
4582	memset(early_node_map, 0, sizeof(early_node_map));
4583	nr_nodemap_entries = 0;
4584}
4585
4586/* Compare two active node_active_regions */
4587static int __init cmp_node_active_region(const void *a, const void *b)
4588{
4589	struct node_active_region *arange = (struct node_active_region *)a;
4590	struct node_active_region *brange = (struct node_active_region *)b;
4591
4592	/* Done this way to avoid overflows */
4593	if (arange->start_pfn > brange->start_pfn)
4594		return 1;
4595	if (arange->start_pfn < brange->start_pfn)
4596		return -1;
4597
4598	return 0;
4599}
4600
4601/* sort the node_map by start_pfn */
4602void __init sort_node_map(void)
4603{
4604	sort(early_node_map, (size_t)nr_nodemap_entries,
4605			sizeof(struct node_active_region),
4606			cmp_node_active_region, NULL);
4607}
4608
4609/**
4610 * node_map_pfn_alignment - determine the maximum internode alignment
4611 *
4612 * This function should be called after node map is populated and sorted.
4613 * It calculates the maximum power of two alignment which can distinguish
4614 * all the nodes.
4615 *
4616 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4617 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4618 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4619 * shifted, 1GiB is enough and this function will indicate so.
4620 *
4621 * This is used to test whether pfn -> nid mapping of the chosen memory
4622 * model has fine enough granularity to avoid incorrect mapping for the
4623 * populated node map.
4624 *
4625 * Returns the determined alignment in pfn's.  0 if there is no alignment
4626 * requirement (single node).
4627 */
4628unsigned long __init node_map_pfn_alignment(void)
4629{
4630	unsigned long accl_mask = 0, last_end = 0;
4631	int last_nid = -1;
4632	int i;
4633
4634	for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4635		int nid = early_node_map[i].nid;
4636		unsigned long start = early_node_map[i].start_pfn;
4637		unsigned long end = early_node_map[i].end_pfn;
4638		unsigned long mask;
4639
4640		if (!start || last_nid < 0 || last_nid == nid) {
4641			last_nid = nid;
4642			last_end = end;
4643			continue;
4644		}
4645
4646		/*
4647		 * Start with a mask granular enough to pin-point to the
4648		 * start pfn and tick off bits one-by-one until it becomes
4649		 * too coarse to separate the current node from the last.
4650		 */
4651		mask = ~((1 << __ffs(start)) - 1);
4652		while (mask && last_end <= (start & (mask << 1)))
4653			mask <<= 1;
4654
4655		/* accumulate all internode masks */
4656		accl_mask |= mask;
4657	}
4658
4659	/* convert mask to number of pages */
4660	return ~accl_mask + 1;
4661}
4662
4663/* Find the lowest pfn for a node */
4664static unsigned long __init find_min_pfn_for_node(int nid)
4665{
4666	int i;
4667	unsigned long min_pfn = ULONG_MAX;
4668
4669	/* Assuming a sorted map, the first range found has the starting pfn */
4670	for_each_active_range_index_in_nid(i, nid)
4671		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4672
4673	if (min_pfn == ULONG_MAX) {
4674		printk(KERN_WARNING
4675			"Could not find start_pfn for node %d\n", nid);
4676		return 0;
4677	}
4678
4679	return min_pfn;
4680}
4681
4682/**
4683 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4684 *
4685 * It returns the minimum PFN based on information provided via
4686 * add_active_range().
4687 */
4688unsigned long __init find_min_pfn_with_active_regions(void)
4689{
4690	return find_min_pfn_for_node(MAX_NUMNODES);
4691}
4692
4693/*
4694 * early_calculate_totalpages()
4695 * Sum pages in active regions for movable zone.
4696 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4697 */
4698static unsigned long __init early_calculate_totalpages(void)
4699{
4700	int i;
4701	unsigned long totalpages = 0;
4702
4703	for (i = 0; i < nr_nodemap_entries; i++) {
4704		unsigned long pages = early_node_map[i].end_pfn -
4705						early_node_map[i].start_pfn;
4706		totalpages += pages;
4707		if (pages)
4708			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4709	}
4710  	return totalpages;
4711}
4712
4713/*
4714 * Find the PFN the Movable zone begins in each node. Kernel memory
4715 * is spread evenly between nodes as long as the nodes have enough
4716 * memory. When they don't, some nodes will have more kernelcore than
4717 * others
4718 */
4719static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4720{
4721	int i, nid;
4722	unsigned long usable_startpfn;
4723	unsigned long kernelcore_node, kernelcore_remaining;
4724	/* save the state before borrow the nodemask */
4725	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4726	unsigned long totalpages = early_calculate_totalpages();
4727	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4728
4729	/*
4730	 * If movablecore was specified, calculate what size of
4731	 * kernelcore that corresponds so that memory usable for
4732	 * any allocation type is evenly spread. If both kernelcore
4733	 * and movablecore are specified, then the value of kernelcore
4734	 * will be used for required_kernelcore if it's greater than
4735	 * what movablecore would have allowed.
4736	 */
4737	if (required_movablecore) {
4738		unsigned long corepages;
4739
4740		/*
4741		 * Round-up so that ZONE_MOVABLE is at least as large as what
4742		 * was requested by the user
4743		 */
4744		required_movablecore =
4745			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4746		corepages = totalpages - required_movablecore;
4747
4748		required_kernelcore = max(required_kernelcore, corepages);
4749	}
4750
4751	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4752	if (!required_kernelcore)
4753		goto out;
4754
4755	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4756	find_usable_zone_for_movable();
4757	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4758
4759restart:
4760	/* Spread kernelcore memory as evenly as possible throughout nodes */
4761	kernelcore_node = required_kernelcore / usable_nodes;
4762	for_each_node_state(nid, N_HIGH_MEMORY) {
4763		/*
4764		 * Recalculate kernelcore_node if the division per node
4765		 * now exceeds what is necessary to satisfy the requested
4766		 * amount of memory for the kernel
4767		 */
4768		if (required_kernelcore < kernelcore_node)
4769			kernelcore_node = required_kernelcore / usable_nodes;
4770
4771		/*
4772		 * As the map is walked, we track how much memory is usable
4773		 * by the kernel using kernelcore_remaining. When it is
4774		 * 0, the rest of the node is usable by ZONE_MOVABLE
4775		 */
4776		kernelcore_remaining = kernelcore_node;
4777
4778		/* Go through each range of PFNs within this node */
4779		for_each_active_range_index_in_nid(i, nid) {
4780			unsigned long start_pfn, end_pfn;
4781			unsigned long size_pages;
4782
4783			start_pfn = max(early_node_map[i].start_pfn,
4784						zone_movable_pfn[nid]);
4785			end_pfn = early_node_map[i].end_pfn;
4786			if (start_pfn >= end_pfn)
4787				continue;
4788
4789			/* Account for what is only usable for kernelcore */
4790			if (start_pfn < usable_startpfn) {
4791				unsigned long kernel_pages;
4792				kernel_pages = min(end_pfn, usable_startpfn)
4793								- start_pfn;
4794
4795				kernelcore_remaining -= min(kernel_pages,
4796							kernelcore_remaining);
4797				required_kernelcore -= min(kernel_pages,
4798							required_kernelcore);
4799
4800				/* Continue if range is now fully accounted */
4801				if (end_pfn <= usable_startpfn) {
4802
4803					/*
4804					 * Push zone_movable_pfn to the end so
4805					 * that if we have to rebalance
4806					 * kernelcore across nodes, we will
4807					 * not double account here
4808					 */
4809					zone_movable_pfn[nid] = end_pfn;
4810					continue;
4811				}
4812				start_pfn = usable_startpfn;
4813			}
4814
4815			/*
4816			 * The usable PFN range for ZONE_MOVABLE is from
4817			 * start_pfn->end_pfn. Calculate size_pages as the
4818			 * number of pages used as kernelcore
4819			 */
4820			size_pages = end_pfn - start_pfn;
4821			if (size_pages > kernelcore_remaining)
4822				size_pages = kernelcore_remaining;
4823			zone_movable_pfn[nid] = start_pfn + size_pages;
4824
4825			/*
4826			 * Some kernelcore has been met, update counts and
4827			 * break if the kernelcore for this node has been
4828			 * satisified
4829			 */
4830			required_kernelcore -= min(required_kernelcore,
4831								size_pages);
4832			kernelcore_remaining -= size_pages;
4833			if (!kernelcore_remaining)
4834				break;
4835		}
4836	}
4837
4838	/*
4839	 * If there is still required_kernelcore, we do another pass with one
4840	 * less node in the count. This will push zone_movable_pfn[nid] further
4841	 * along on the nodes that still have memory until kernelcore is
4842	 * satisified
4843	 */
4844	usable_nodes--;
4845	if (usable_nodes && required_kernelcore > usable_nodes)
4846		goto restart;
4847
4848	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4849	for (nid = 0; nid < MAX_NUMNODES; nid++)
4850		zone_movable_pfn[nid] =
4851			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4852
4853out:
4854	/* restore the node_state */
4855	node_states[N_HIGH_MEMORY] = saved_node_state;
4856}
4857
4858/* Any regular memory on that node ? */
4859static void check_for_regular_memory(pg_data_t *pgdat)
4860{
4861#ifdef CONFIG_HIGHMEM
4862	enum zone_type zone_type;
4863
4864	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4865		struct zone *zone = &pgdat->node_zones[zone_type];
4866		if (zone->present_pages)
4867			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4868	}
4869#endif
4870}
4871
4872/**
4873 * free_area_init_nodes - Initialise all pg_data_t and zone data
4874 * @max_zone_pfn: an array of max PFNs for each zone
4875 *
4876 * This will call free_area_init_node() for each active node in the system.
4877 * Using the page ranges provided by add_active_range(), the size of each
4878 * zone in each node and their holes is calculated. If the maximum PFN
4879 * between two adjacent zones match, it is assumed that the zone is empty.
4880 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4881 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4882 * starts where the previous one ended. For example, ZONE_DMA32 starts
4883 * at arch_max_dma_pfn.
4884 */
4885void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4886{
4887	unsigned long nid;
4888	int i;
4889
4890	/* Sort early_node_map as initialisation assumes it is sorted */
4891	sort_node_map();
4892
4893	/* Record where the zone boundaries are */
4894	memset(arch_zone_lowest_possible_pfn, 0,
4895				sizeof(arch_zone_lowest_possible_pfn));
4896	memset(arch_zone_highest_possible_pfn, 0,
4897				sizeof(arch_zone_highest_possible_pfn));
4898	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4899	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4900	for (i = 1; i < MAX_NR_ZONES; i++) {
4901		if (i == ZONE_MOVABLE)
4902			continue;
4903		arch_zone_lowest_possible_pfn[i] =
4904			arch_zone_highest_possible_pfn[i-1];
4905		arch_zone_highest_possible_pfn[i] =
4906			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4907	}
4908	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4909	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4910
4911	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4912	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4913	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4914
4915	/* Print out the zone ranges */
4916	printk("Zone PFN ranges:\n");
4917	for (i = 0; i < MAX_NR_ZONES; i++) {
4918		if (i == ZONE_MOVABLE)
4919			continue;
4920		printk("  %-8s ", zone_names[i]);
4921		if (arch_zone_lowest_possible_pfn[i] ==
4922				arch_zone_highest_possible_pfn[i])
4923			printk("empty\n");
4924		else
4925			printk("%0#10lx -> %0#10lx\n",
4926				arch_zone_lowest_possible_pfn[i],
4927				arch_zone_highest_possible_pfn[i]);
4928	}
4929
4930	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4931	printk("Movable zone start PFN for each node\n");
4932	for (i = 0; i < MAX_NUMNODES; i++) {
4933		if (zone_movable_pfn[i])
4934			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4935	}
4936
4937	/* Print out the early_node_map[] */
4938	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4939	for (i = 0; i < nr_nodemap_entries; i++)
4940		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4941						early_node_map[i].start_pfn,
4942						early_node_map[i].end_pfn);
4943
4944	/* Initialise every node */
4945	mminit_verify_pageflags_layout();
4946	setup_nr_node_ids();
4947	for_each_online_node(nid) {
4948		pg_data_t *pgdat = NODE_DATA(nid);
4949		free_area_init_node(nid, NULL,
4950				find_min_pfn_for_node(nid), NULL);
4951
4952		/* Any memory on that node */
4953		if (pgdat->node_present_pages)
4954			node_set_state(nid, N_HIGH_MEMORY);
4955		check_for_regular_memory(pgdat);
4956	}
4957}
4958
4959static int __init cmdline_parse_core(char *p, unsigned long *core)
4960{
4961	unsigned long long coremem;
4962	if (!p)
4963		return -EINVAL;
4964
4965	coremem = memparse(p, &p);
4966	*core = coremem >> PAGE_SHIFT;
4967
4968	/* Paranoid check that UL is enough for the coremem value */
4969	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4970
4971	return 0;
4972}
4973
4974/*
4975 * kernelcore=size sets the amount of memory for use for allocations that
4976 * cannot be reclaimed or migrated.
4977 */
4978static int __init cmdline_parse_kernelcore(char *p)
4979{
4980	return cmdline_parse_core(p, &required_kernelcore);
4981}
4982
4983/*
4984 * movablecore=size sets the amount of memory for use for allocations that
4985 * can be reclaimed or migrated.
4986 */
4987static int __init cmdline_parse_movablecore(char *p)
4988{
4989	return cmdline_parse_core(p, &required_movablecore);
4990}
4991
4992early_param("kernelcore", cmdline_parse_kernelcore);
4993early_param("movablecore", cmdline_parse_movablecore);
4994
4995#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4996
4997/**
4998 * set_dma_reserve - set the specified number of pages reserved in the first zone
4999 * @new_dma_reserve: The number of pages to mark reserved
5000 *
5001 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5002 * In the DMA zone, a significant percentage may be consumed by kernel image
5003 * and other unfreeable allocations which can skew the watermarks badly. This
5004 * function may optionally be used to account for unfreeable pages in the
5005 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5006 * smaller per-cpu batchsize.
5007 */
5008void __init set_dma_reserve(unsigned long new_dma_reserve)
5009{
5010	dma_reserve = new_dma_reserve;
5011}
5012
5013void __init free_area_init(unsigned long *zones_size)
5014{
5015	free_area_init_node(0, zones_size,
5016			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5017}
5018
5019static int page_alloc_cpu_notify(struct notifier_block *self,
5020				 unsigned long action, void *hcpu)
5021{
5022	int cpu = (unsigned long)hcpu;
5023
5024	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5025		drain_pages(cpu);
5026
5027		/*
5028		 * Spill the event counters of the dead processor
5029		 * into the current processors event counters.
5030		 * This artificially elevates the count of the current
5031		 * processor.
5032		 */
5033		vm_events_fold_cpu(cpu);
5034
5035		/*
5036		 * Zero the differential counters of the dead processor
5037		 * so that the vm statistics are consistent.
5038		 *
5039		 * This is only okay since the processor is dead and cannot
5040		 * race with what we are doing.
5041		 */
5042		refresh_cpu_vm_stats(cpu);
5043	}
5044	return NOTIFY_OK;
5045}
5046
5047void __init page_alloc_init(void)
5048{
5049	hotcpu_notifier(page_alloc_cpu_notify, 0);
5050}
5051
5052/*
5053 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5054 *	or min_free_kbytes changes.
5055 */
5056static void calculate_totalreserve_pages(void)
5057{
5058	struct pglist_data *pgdat;
5059	unsigned long reserve_pages = 0;
5060	enum zone_type i, j;
5061
5062	for_each_online_pgdat(pgdat) {
5063		for (i = 0; i < MAX_NR_ZONES; i++) {
5064			struct zone *zone = pgdat->node_zones + i;
5065			unsigned long max = 0;
5066
5067			/* Find valid and maximum lowmem_reserve in the zone */
5068			for (j = i; j < MAX_NR_ZONES; j++) {
5069				if (zone->lowmem_reserve[j] > max)
5070					max = zone->lowmem_reserve[j];
5071			}
5072
5073			/* we treat the high watermark as reserved pages. */
5074			max += high_wmark_pages(zone);
5075
5076			if (max > zone->present_pages)
5077				max = zone->present_pages;
5078			reserve_pages += max;
5079		}
5080	}
5081	totalreserve_pages = reserve_pages;
5082}
5083
5084/*
5085 * setup_per_zone_lowmem_reserve - called whenever
5086 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5087 *	has a correct pages reserved value, so an adequate number of
5088 *	pages are left in the zone after a successful __alloc_pages().
5089 */
5090static void setup_per_zone_lowmem_reserve(void)
5091{
5092	struct pglist_data *pgdat;
5093	enum zone_type j, idx;
5094
5095	for_each_online_pgdat(pgdat) {
5096		for (j = 0; j < MAX_NR_ZONES; j++) {
5097			struct zone *zone = pgdat->node_zones + j;
5098			unsigned long present_pages = zone->present_pages;
5099
5100			zone->lowmem_reserve[j] = 0;
5101
5102			idx = j;
5103			while (idx) {
5104				struct zone *lower_zone;
5105
5106				idx--;
5107
5108				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5109					sysctl_lowmem_reserve_ratio[idx] = 1;
5110
5111				lower_zone = pgdat->node_zones + idx;
5112				lower_zone->lowmem_reserve[j] = present_pages /
5113					sysctl_lowmem_reserve_ratio[idx];
5114				present_pages += lower_zone->present_pages;
5115			}
5116		}
5117	}
5118
5119	/* update totalreserve_pages */
5120	calculate_totalreserve_pages();
5121}
5122
5123/**
5124 * setup_per_zone_wmarks - called when min_free_kbytes changes
5125 * or when memory is hot-{added|removed}
5126 *
5127 * Ensures that the watermark[min,low,high] values for each zone are set
5128 * correctly with respect to min_free_kbytes.
5129 */
5130void setup_per_zone_wmarks(void)
5131{
5132	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5133	unsigned long lowmem_pages = 0;
5134	struct zone *zone;
5135	unsigned long flags;
5136
5137	/* Calculate total number of !ZONE_HIGHMEM pages */
5138	for_each_zone(zone) {
5139		if (!is_highmem(zone))
5140			lowmem_pages += zone->present_pages;
5141	}
5142
5143	for_each_zone(zone) {
5144		u64 tmp;
5145
5146		spin_lock_irqsave(&zone->lock, flags);
5147		tmp = (u64)pages_min * zone->present_pages;
5148		do_div(tmp, lowmem_pages);
5149		if (is_highmem(zone)) {
5150			/*
5151			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5152			 * need highmem pages, so cap pages_min to a small
5153			 * value here.
5154			 *
5155			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5156			 * deltas controls asynch page reclaim, and so should
5157			 * not be capped for highmem.
5158			 */
5159			int min_pages;
5160
5161			min_pages = zone->present_pages / 1024;
5162			if (min_pages < SWAP_CLUSTER_MAX)
5163				min_pages = SWAP_CLUSTER_MAX;
5164			if (min_pages > 128)
5165				min_pages = 128;
5166			zone->watermark[WMARK_MIN] = min_pages;
5167		} else {
5168			/*
5169			 * If it's a lowmem zone, reserve a number of pages
5170			 * proportionate to the zone's size.
5171			 */
5172			zone->watermark[WMARK_MIN] = tmp;
5173		}
5174
5175		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5176		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5177		setup_zone_migrate_reserve(zone);
5178		spin_unlock_irqrestore(&zone->lock, flags);
5179	}
5180
5181	/* update totalreserve_pages */
5182	calculate_totalreserve_pages();
5183}
5184
5185/*
5186 * The inactive anon list should be small enough that the VM never has to
5187 * do too much work, but large enough that each inactive page has a chance
5188 * to be referenced again before it is swapped out.
5189 *
5190 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5191 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5192 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5193 * the anonymous pages are kept on the inactive list.
5194 *
5195 * total     target    max
5196 * memory    ratio     inactive anon
5197 * -------------------------------------
5198 *   10MB       1         5MB
5199 *  100MB       1        50MB
5200 *    1GB       3       250MB
5201 *   10GB      10       0.9GB
5202 *  100GB      31         3GB
5203 *    1TB     101        10GB
5204 *   10TB     320        32GB
5205 */
5206static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5207{
5208	unsigned int gb, ratio;
5209
5210	/* Zone size in gigabytes */
5211	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5212	if (gb)
5213		ratio = int_sqrt(10 * gb);
5214	else
5215		ratio = 1;
5216
5217	zone->inactive_ratio = ratio;
5218}
5219
5220static void __meminit setup_per_zone_inactive_ratio(void)
5221{
5222	struct zone *zone;
5223
5224	for_each_zone(zone)
5225		calculate_zone_inactive_ratio(zone);
5226}
5227
5228/*
5229 * Initialise min_free_kbytes.
5230 *
5231 * For small machines we want it small (128k min).  For large machines
5232 * we want it large (64MB max).  But it is not linear, because network
5233 * bandwidth does not increase linearly with machine size.  We use
5234 *
5235 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5236 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5237 *
5238 * which yields
5239 *
5240 * 16MB:	512k
5241 * 32MB:	724k
5242 * 64MB:	1024k
5243 * 128MB:	1448k
5244 * 256MB:	2048k
5245 * 512MB:	2896k
5246 * 1024MB:	4096k
5247 * 2048MB:	5792k
5248 * 4096MB:	8192k
5249 * 8192MB:	11584k
5250 * 16384MB:	16384k
5251 */
5252int __meminit init_per_zone_wmark_min(void)
5253{
5254	unsigned long lowmem_kbytes;
5255
5256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5257
5258	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5259	if (min_free_kbytes < 128)
5260		min_free_kbytes = 128;
5261	if (min_free_kbytes > 65536)
5262		min_free_kbytes = 65536;
5263	setup_per_zone_wmarks();
5264	refresh_zone_stat_thresholds();
5265	setup_per_zone_lowmem_reserve();
5266	setup_per_zone_inactive_ratio();
5267	return 0;
5268}
5269module_init(init_per_zone_wmark_min)
5270
5271/*
5272 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5273 *	that we can call two helper functions whenever min_free_kbytes
5274 *	changes.
5275 */
5276int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5277	void __user *buffer, size_t *length, loff_t *ppos)
5278{
5279	proc_dointvec(table, write, buffer, length, ppos);
5280	if (write)
5281		setup_per_zone_wmarks();
5282	return 0;
5283}
5284
5285#ifdef CONFIG_NUMA
5286int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5287	void __user *buffer, size_t *length, loff_t *ppos)
5288{
5289	struct zone *zone;
5290	int rc;
5291
5292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5293	if (rc)
5294		return rc;
5295
5296	for_each_zone(zone)
5297		zone->min_unmapped_pages = (zone->present_pages *
5298				sysctl_min_unmapped_ratio) / 100;
5299	return 0;
5300}
5301
5302int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5303	void __user *buffer, size_t *length, loff_t *ppos)
5304{
5305	struct zone *zone;
5306	int rc;
5307
5308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5309	if (rc)
5310		return rc;
5311
5312	for_each_zone(zone)
5313		zone->min_slab_pages = (zone->present_pages *
5314				sysctl_min_slab_ratio) / 100;
5315	return 0;
5316}
5317#endif
5318
5319/*
5320 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5321 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5322 *	whenever sysctl_lowmem_reserve_ratio changes.
5323 *
5324 * The reserve ratio obviously has absolutely no relation with the
5325 * minimum watermarks. The lowmem reserve ratio can only make sense
5326 * if in function of the boot time zone sizes.
5327 */
5328int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5329	void __user *buffer, size_t *length, loff_t *ppos)
5330{
5331	proc_dointvec_minmax(table, write, buffer, length, ppos);
5332	setup_per_zone_lowmem_reserve();
5333	return 0;
5334}
5335
5336/*
5337 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5338 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5339 * can have before it gets flushed back to buddy allocator.
5340 */
5341
5342int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5343	void __user *buffer, size_t *length, loff_t *ppos)
5344{
5345	struct zone *zone;
5346	unsigned int cpu;
5347	int ret;
5348
5349	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5350	if (!write || (ret == -EINVAL))
5351		return ret;
5352	for_each_populated_zone(zone) {
5353		for_each_possible_cpu(cpu) {
5354			unsigned long  high;
5355			high = zone->present_pages / percpu_pagelist_fraction;
5356			setup_pagelist_highmark(
5357				per_cpu_ptr(zone->pageset, cpu), high);
5358		}
5359	}
5360	return 0;
5361}
5362
5363int hashdist = HASHDIST_DEFAULT;
5364
5365#ifdef CONFIG_NUMA
5366static int __init set_hashdist(char *str)
5367{
5368	if (!str)
5369		return 0;
5370	hashdist = simple_strtoul(str, &str, 0);
5371	return 1;
5372}
5373__setup("hashdist=", set_hashdist);
5374#endif
5375
5376/*
5377 * allocate a large system hash table from bootmem
5378 * - it is assumed that the hash table must contain an exact power-of-2
5379 *   quantity of entries
5380 * - limit is the number of hash buckets, not the total allocation size
5381 */
5382void *__init alloc_large_system_hash(const char *tablename,
5383				     unsigned long bucketsize,
5384				     unsigned long numentries,
5385				     int scale,
5386				     int flags,
5387				     unsigned int *_hash_shift,
5388				     unsigned int *_hash_mask,
5389				     unsigned long limit)
5390{
5391	unsigned long long max = limit;
5392	unsigned long log2qty, size;
5393	void *table = NULL;
5394
5395	/* allow the kernel cmdline to have a say */
5396	if (!numentries) {
5397		/* round applicable memory size up to nearest megabyte */
5398		numentries = nr_kernel_pages;
5399		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5400		numentries >>= 20 - PAGE_SHIFT;
5401		numentries <<= 20 - PAGE_SHIFT;
5402
5403		/* limit to 1 bucket per 2^scale bytes of low memory */
5404		if (scale > PAGE_SHIFT)
5405			numentries >>= (scale - PAGE_SHIFT);
5406		else
5407			numentries <<= (PAGE_SHIFT - scale);
5408
5409		/* Make sure we've got at least a 0-order allocation.. */
5410		if (unlikely(flags & HASH_SMALL)) {
5411			/* Makes no sense without HASH_EARLY */
5412			WARN_ON(!(flags & HASH_EARLY));
5413			if (!(numentries >> *_hash_shift)) {
5414				numentries = 1UL << *_hash_shift;
5415				BUG_ON(!numentries);
5416			}
5417		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5418			numentries = PAGE_SIZE / bucketsize;
5419	}
5420	numentries = roundup_pow_of_two(numentries);
5421
5422	/* limit allocation size to 1/16 total memory by default */
5423	if (max == 0) {
5424		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5425		do_div(max, bucketsize);
5426	}
5427
5428	if (numentries > max)
5429		numentries = max;
5430
5431	log2qty = ilog2(numentries);
5432
5433	do {
5434		size = bucketsize << log2qty;
5435		if (flags & HASH_EARLY)
5436			table = alloc_bootmem_nopanic(size);
5437		else if (hashdist)
5438			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5439		else {
5440			/*
5441			 * If bucketsize is not a power-of-two, we may free
5442			 * some pages at the end of hash table which
5443			 * alloc_pages_exact() automatically does
5444			 */
5445			if (get_order(size) < MAX_ORDER) {
5446				table = alloc_pages_exact(size, GFP_ATOMIC);
5447				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5448			}
5449		}
5450	} while (!table && size > PAGE_SIZE && --log2qty);
5451
5452	if (!table)
5453		panic("Failed to allocate %s hash table\n", tablename);
5454
5455	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5456	       tablename,
5457	       (1UL << log2qty),
5458	       ilog2(size) - PAGE_SHIFT,
5459	       size);
5460
5461	if (_hash_shift)
5462		*_hash_shift = log2qty;
5463	if (_hash_mask)
5464		*_hash_mask = (1 << log2qty) - 1;
5465
5466	return table;
5467}
5468
5469/* Return a pointer to the bitmap storing bits affecting a block of pages */
5470static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5471							unsigned long pfn)
5472{
5473#ifdef CONFIG_SPARSEMEM
5474	return __pfn_to_section(pfn)->pageblock_flags;
5475#else
5476	return zone->pageblock_flags;
5477#endif /* CONFIG_SPARSEMEM */
5478}
5479
5480static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5481{
5482#ifdef CONFIG_SPARSEMEM
5483	pfn &= (PAGES_PER_SECTION-1);
5484	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5485#else
5486	pfn = pfn - zone->zone_start_pfn;
5487	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5488#endif /* CONFIG_SPARSEMEM */
5489}
5490
5491/**
5492 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5493 * @page: The page within the block of interest
5494 * @start_bitidx: The first bit of interest to retrieve
5495 * @end_bitidx: The last bit of interest
5496 * returns pageblock_bits flags
5497 */
5498unsigned long get_pageblock_flags_group(struct page *page,
5499					int start_bitidx, int end_bitidx)
5500{
5501	struct zone *zone;
5502	unsigned long *bitmap;
5503	unsigned long pfn, bitidx;
5504	unsigned long flags = 0;
5505	unsigned long value = 1;
5506
5507	zone = page_zone(page);
5508	pfn = page_to_pfn(page);
5509	bitmap = get_pageblock_bitmap(zone, pfn);
5510	bitidx = pfn_to_bitidx(zone, pfn);
5511
5512	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5513		if (test_bit(bitidx + start_bitidx, bitmap))
5514			flags |= value;
5515
5516	return flags;
5517}
5518
5519/**
5520 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5521 * @page: The page within the block of interest
5522 * @start_bitidx: The first bit of interest
5523 * @end_bitidx: The last bit of interest
5524 * @flags: The flags to set
5525 */
5526void set_pageblock_flags_group(struct page *page, unsigned long flags,
5527					int start_bitidx, int end_bitidx)
5528{
5529	struct zone *zone;
5530	unsigned long *bitmap;
5531	unsigned long pfn, bitidx;
5532	unsigned long value = 1;
5533
5534	zone = page_zone(page);
5535	pfn = page_to_pfn(page);
5536	bitmap = get_pageblock_bitmap(zone, pfn);
5537	bitidx = pfn_to_bitidx(zone, pfn);
5538	VM_BUG_ON(pfn < zone->zone_start_pfn);
5539	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5540
5541	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5542		if (flags & value)
5543			__set_bit(bitidx + start_bitidx, bitmap);
5544		else
5545			__clear_bit(bitidx + start_bitidx, bitmap);
5546}
5547
5548/*
5549 * This is designed as sub function...plz see page_isolation.c also.
5550 * set/clear page block's type to be ISOLATE.
5551 * page allocater never alloc memory from ISOLATE block.
5552 */
5553
5554static int
5555__count_immobile_pages(struct zone *zone, struct page *page, int count)
5556{
5557	unsigned long pfn, iter, found;
5558	/*
5559	 * For avoiding noise data, lru_add_drain_all() should be called
5560	 * If ZONE_MOVABLE, the zone never contains immobile pages
5561	 */
5562	if (zone_idx(zone) == ZONE_MOVABLE)
5563		return true;
5564
5565	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5566		return true;
5567
5568	pfn = page_to_pfn(page);
5569	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5570		unsigned long check = pfn + iter;
5571
5572		if (!pfn_valid_within(check))
5573			continue;
5574
5575		page = pfn_to_page(check);
5576		if (!page_count(page)) {
5577			if (PageBuddy(page))
5578				iter += (1 << page_order(page)) - 1;
5579			continue;
5580		}
5581		if (!PageLRU(page))
5582			found++;
5583		/*
5584		 * If there are RECLAIMABLE pages, we need to check it.
5585		 * But now, memory offline itself doesn't call shrink_slab()
5586		 * and it still to be fixed.
5587		 */
5588		/*
5589		 * If the page is not RAM, page_count()should be 0.
5590		 * we don't need more check. This is an _used_ not-movable page.
5591		 *
5592		 * The problematic thing here is PG_reserved pages. PG_reserved
5593		 * is set to both of a memory hole page and a _used_ kernel
5594		 * page at boot.
5595		 */
5596		if (found > count)
5597			return false;
5598	}
5599	return true;
5600}
5601
5602bool is_pageblock_removable_nolock(struct page *page)
5603{
5604	struct zone *zone = page_zone(page);
5605	return __count_immobile_pages(zone, page, 0);
5606}
5607
5608int set_migratetype_isolate(struct page *page)
5609{
5610	struct zone *zone;
5611	unsigned long flags, pfn;
5612	struct memory_isolate_notify arg;
5613	int notifier_ret;
5614	int ret = -EBUSY;
5615
5616	zone = page_zone(page);
5617
5618	spin_lock_irqsave(&zone->lock, flags);
5619
5620	pfn = page_to_pfn(page);
5621	arg.start_pfn = pfn;
5622	arg.nr_pages = pageblock_nr_pages;
5623	arg.pages_found = 0;
5624
5625	/*
5626	 * It may be possible to isolate a pageblock even if the
5627	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5628	 * notifier chain is used by balloon drivers to return the
5629	 * number of pages in a range that are held by the balloon
5630	 * driver to shrink memory. If all the pages are accounted for
5631	 * by balloons, are free, or on the LRU, isolation can continue.
5632	 * Later, for example, when memory hotplug notifier runs, these
5633	 * pages reported as "can be isolated" should be isolated(freed)
5634	 * by the balloon driver through the memory notifier chain.
5635	 */
5636	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5637	notifier_ret = notifier_to_errno(notifier_ret);
5638	if (notifier_ret)
5639		goto out;
5640	/*
5641	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5642	 * We just check MOVABLE pages.
5643	 */
5644	if (__count_immobile_pages(zone, page, arg.pages_found))
5645		ret = 0;
5646
5647	/*
5648	 * immobile means "not-on-lru" paes. If immobile is larger than
5649	 * removable-by-driver pages reported by notifier, we'll fail.
5650	 */
5651
5652out:
5653	if (!ret) {
5654		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5655		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5656	}
5657
5658	spin_unlock_irqrestore(&zone->lock, flags);
5659	if (!ret)
5660		drain_all_pages();
5661	return ret;
5662}
5663
5664void unset_migratetype_isolate(struct page *page)
5665{
5666	struct zone *zone;
5667	unsigned long flags;
5668	zone = page_zone(page);
5669	spin_lock_irqsave(&zone->lock, flags);
5670	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5671		goto out;
5672	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5673	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5674out:
5675	spin_unlock_irqrestore(&zone->lock, flags);
5676}
5677
5678#ifdef CONFIG_MEMORY_HOTREMOVE
5679/*
5680 * All pages in the range must be isolated before calling this.
5681 */
5682void
5683__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5684{
5685	struct page *page;
5686	struct zone *zone;
5687	int order, i;
5688	unsigned long pfn;
5689	unsigned long flags;
5690	/* find the first valid pfn */
5691	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5692		if (pfn_valid(pfn))
5693			break;
5694	if (pfn == end_pfn)
5695		return;
5696	zone = page_zone(pfn_to_page(pfn));
5697	spin_lock_irqsave(&zone->lock, flags);
5698	pfn = start_pfn;
5699	while (pfn < end_pfn) {
5700		if (!pfn_valid(pfn)) {
5701			pfn++;
5702			continue;
5703		}
5704		page = pfn_to_page(pfn);
5705		BUG_ON(page_count(page));
5706		BUG_ON(!PageBuddy(page));
5707		order = page_order(page);
5708#ifdef CONFIG_DEBUG_VM
5709		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5710		       pfn, 1 << order, end_pfn);
5711#endif
5712		list_del(&page->lru);
5713		rmv_page_order(page);
5714		zone->free_area[order].nr_free--;
5715		__mod_zone_page_state(zone, NR_FREE_PAGES,
5716				      - (1UL << order));
5717		for (i = 0; i < (1 << order); i++)
5718			SetPageReserved((page+i));
5719		pfn += (1 << order);
5720	}
5721	spin_unlock_irqrestore(&zone->lock, flags);
5722}
5723#endif
5724
5725#ifdef CONFIG_MEMORY_FAILURE
5726bool is_free_buddy_page(struct page *page)
5727{
5728	struct zone *zone = page_zone(page);
5729	unsigned long pfn = page_to_pfn(page);
5730	unsigned long flags;
5731	int order;
5732
5733	spin_lock_irqsave(&zone->lock, flags);
5734	for (order = 0; order < MAX_ORDER; order++) {
5735		struct page *page_head = page - (pfn & ((1 << order) - 1));
5736
5737		if (PageBuddy(page_head) && page_order(page_head) >= order)
5738			break;
5739	}
5740	spin_unlock_irqrestore(&zone->lock, flags);
5741
5742	return order < MAX_ORDER;
5743}
5744#endif
5745
5746static struct trace_print_flags pageflag_names[] = {
5747	{1UL << PG_locked,		"locked"	},
5748	{1UL << PG_error,		"error"		},
5749	{1UL << PG_referenced,		"referenced"	},
5750	{1UL << PG_uptodate,		"uptodate"	},
5751	{1UL << PG_dirty,		"dirty"		},
5752	{1UL << PG_lru,			"lru"		},
5753	{1UL << PG_active,		"active"	},
5754	{1UL << PG_slab,		"slab"		},
5755	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5756	{1UL << PG_arch_1,		"arch_1"	},
5757	{1UL << PG_reserved,		"reserved"	},
5758	{1UL << PG_private,		"private"	},
5759	{1UL << PG_private_2,		"private_2"	},
5760	{1UL << PG_writeback,		"writeback"	},
5761#ifdef CONFIG_PAGEFLAGS_EXTENDED
5762	{1UL << PG_head,		"head"		},
5763	{1UL << PG_tail,		"tail"		},
5764#else
5765	{1UL << PG_compound,		"compound"	},
5766#endif
5767	{1UL << PG_swapcache,		"swapcache"	},
5768	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5769	{1UL << PG_reclaim,		"reclaim"	},
5770	{1UL << PG_swapbacked,		"swapbacked"	},
5771	{1UL << PG_unevictable,		"unevictable"	},
5772#ifdef CONFIG_MMU
5773	{1UL << PG_mlocked,		"mlocked"	},
5774#endif
5775#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5776	{1UL << PG_uncached,		"uncached"	},
5777#endif
5778#ifdef CONFIG_MEMORY_FAILURE
5779	{1UL << PG_hwpoison,		"hwpoison"	},
5780#endif
5781	{-1UL,				NULL		},
5782};
5783
5784static void dump_page_flags(unsigned long flags)
5785{
5786	const char *delim = "";
5787	unsigned long mask;
5788	int i;
5789
5790	printk(KERN_ALERT "page flags: %#lx(", flags);
5791
5792	/* remove zone id */
5793	flags &= (1UL << NR_PAGEFLAGS) - 1;
5794
5795	for (i = 0; pageflag_names[i].name && flags; i++) {
5796
5797		mask = pageflag_names[i].mask;
5798		if ((flags & mask) != mask)
5799			continue;
5800
5801		flags &= ~mask;
5802		printk("%s%s", delim, pageflag_names[i].name);
5803		delim = "|";
5804	}
5805
5806	/* check for left over flags */
5807	if (flags)
5808		printk("%s%#lx", delim, flags);
5809
5810	printk(")\n");
5811}
5812
5813void dump_page(struct page *page)
5814{
5815	printk(KERN_ALERT
5816	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5817		page, atomic_read(&page->_count), page_mapcount(page),
5818		page->mapping, page->index);
5819	dump_page_flags(page->flags);
5820	mem_cgroup_print_bad_page(page);
5821}
5822