page_alloc.c revision 4b4f278c030aa4b6ee0915f396e9a9478d92d610
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54#include "internal.h"
55
56/*
57 * Array of node states.
58 */
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60	[N_POSSIBLE] = NODE_MASK_ALL,
61	[N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65	[N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67	[N_CPU] = { { [0] = 1UL } },
68#endif	/* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
72unsigned long totalram_pages __read_mostly;
73unsigned long totalreserve_pages __read_mostly;
74unsigned long highest_memmap_pfn __read_mostly;
75int percpu_pagelist_fraction;
76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
82static void __free_pages_ok(struct page *page, unsigned int order);
83
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 *	1G machine -> (16M dma, 784M normal, 224M high)
88 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96#ifdef CONFIG_ZONE_DMA
97	 256,
98#endif
99#ifdef CONFIG_ZONE_DMA32
100	 256,
101#endif
102#ifdef CONFIG_HIGHMEM
103	 32,
104#endif
105	 32,
106};
107
108EXPORT_SYMBOL(totalram_pages);
109
110static char * const zone_names[MAX_NR_ZONES] = {
111#ifdef CONFIG_ZONE_DMA
112	 "DMA",
113#endif
114#ifdef CONFIG_ZONE_DMA32
115	 "DMA32",
116#endif
117	 "Normal",
118#ifdef CONFIG_HIGHMEM
119	 "HighMem",
120#endif
121	 "Movable",
122};
123
124int min_free_kbytes = 1024;
125
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
128static unsigned long __meminitdata dma_reserve;
129
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131  /*
132   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133   * ranges of memory (RAM) that may be registered with add_active_range().
134   * Ranges passed to add_active_range() will be merged if possible
135   * so the number of times add_active_range() can be called is
136   * related to the number of nodes and the number of holes
137   */
138  #ifdef CONFIG_MAX_ACTIVE_REGIONS
139    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141  #else
142    #if MAX_NUMNODES >= 32
143      /* If there can be many nodes, allow up to 50 holes per node */
144      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145    #else
146      /* By default, allow up to 256 distinct regions */
147      #define MAX_ACTIVE_REGIONS 256
148    #endif
149  #endif
150
151  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152  static int __meminitdata nr_nodemap_entries;
153  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155  static unsigned long __initdata required_kernelcore;
156  static unsigned long __initdata required_movablecore;
157  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160  int movable_zone;
161  EXPORT_SYMBOL(movable_zone);
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166int nr_online_nodes __read_mostly = 1;
167EXPORT_SYMBOL(nr_node_ids);
168EXPORT_SYMBOL(nr_online_nodes);
169#endif
170
171int page_group_by_mobility_disabled __read_mostly;
172
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
175
176	if (unlikely(page_group_by_mobility_disabled))
177		migratetype = MIGRATE_UNMOVABLE;
178
179	set_pageblock_flags_group(page, (unsigned long)migratetype,
180					PB_migrate, PB_migrate_end);
181}
182
183bool oom_killer_disabled __read_mostly;
184
185#ifdef CONFIG_DEBUG_VM
186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187{
188	int ret = 0;
189	unsigned seq;
190	unsigned long pfn = page_to_pfn(page);
191
192	do {
193		seq = zone_span_seqbegin(zone);
194		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195			ret = 1;
196		else if (pfn < zone->zone_start_pfn)
197			ret = 1;
198	} while (zone_span_seqretry(zone, seq));
199
200	return ret;
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
205	if (!pfn_valid_within(page_to_pfn(page)))
206		return 0;
207	if (zone != page_zone(page))
208		return 0;
209
210	return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217	if (page_outside_zone_boundaries(zone, page))
218		return 1;
219	if (!page_is_consistent(zone, page))
220		return 1;
221
222	return 0;
223}
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227	return 0;
228}
229#endif
230
231static void bad_page(struct page *page)
232{
233	static unsigned long resume;
234	static unsigned long nr_shown;
235	static unsigned long nr_unshown;
236
237	/*
238	 * Allow a burst of 60 reports, then keep quiet for that minute;
239	 * or allow a steady drip of one report per second.
240	 */
241	if (nr_shown == 60) {
242		if (time_before(jiffies, resume)) {
243			nr_unshown++;
244			goto out;
245		}
246		if (nr_unshown) {
247			printk(KERN_ALERT
248			      "BUG: Bad page state: %lu messages suppressed\n",
249				nr_unshown);
250			nr_unshown = 0;
251		}
252		nr_shown = 0;
253	}
254	if (nr_shown++ == 0)
255		resume = jiffies + 60 * HZ;
256
257	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
258		current->comm, page_to_pfn(page));
259	printk(KERN_ALERT
260		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261		page, (void *)page->flags, page_count(page),
262		page_mapcount(page), page->mapping, page->index);
263
264	dump_stack();
265out:
266	/* Leave bad fields for debug, except PageBuddy could make trouble */
267	__ClearPageBuddy(page);
268	add_taint(TAINT_BAD_PAGE);
269}
270
271/*
272 * Higher-order pages are called "compound pages".  They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set.  All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function.  Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286static void free_compound_page(struct page *page)
287{
288	__free_pages_ok(page, compound_order(page));
289}
290
291void prep_compound_page(struct page *page, unsigned long order)
292{
293	int i;
294	int nr_pages = 1 << order;
295
296	set_compound_page_dtor(page, free_compound_page);
297	set_compound_order(page, order);
298	__SetPageHead(page);
299	for (i = 1; i < nr_pages; i++) {
300		struct page *p = page + i;
301
302		__SetPageTail(p);
303		p->first_page = page;
304	}
305}
306
307static int destroy_compound_page(struct page *page, unsigned long order)
308{
309	int i;
310	int nr_pages = 1 << order;
311	int bad = 0;
312
313	if (unlikely(compound_order(page) != order) ||
314	    unlikely(!PageHead(page))) {
315		bad_page(page);
316		bad++;
317	}
318
319	__ClearPageHead(page);
320
321	for (i = 1; i < nr_pages; i++) {
322		struct page *p = page + i;
323
324		if (unlikely(!PageTail(p) || (p->first_page != page))) {
325			bad_page(page);
326			bad++;
327		}
328		__ClearPageTail(p);
329	}
330
331	return bad;
332}
333
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336	int i;
337
338	/*
339	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340	 * and __GFP_HIGHMEM from hard or soft interrupt context.
341	 */
342	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343	for (i = 0; i < (1 << order); i++)
344		clear_highpage(page + i);
345}
346
347static inline void set_page_order(struct page *page, int order)
348{
349	set_page_private(page, order);
350	__SetPageBuddy(page);
351}
352
353static inline void rmv_page_order(struct page *page)
354{
355	__ClearPageBuddy(page);
356	set_page_private(page, 0);
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 *     B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 *     P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379	unsigned long buddy_idx = page_idx ^ (1 << order);
380
381	return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387	return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404								int order)
405{
406	if (!pfn_valid_within(page_to_pfn(buddy)))
407		return 0;
408
409	if (page_zone_id(page) != page_zone_id(buddy))
410		return 0;
411
412	if (PageBuddy(buddy) && page_order(buddy) == order) {
413		VM_BUG_ON(page_count(buddy) != 0);
414		return 1;
415	}
416	return 0;
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other.  That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443static inline void __free_one_page(struct page *page,
444		struct zone *zone, unsigned int order,
445		int migratetype)
446{
447	unsigned long page_idx;
448
449	if (unlikely(PageCompound(page)))
450		if (unlikely(destroy_compound_page(page, order)))
451			return;
452
453	VM_BUG_ON(migratetype == -1);
454
455	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457	VM_BUG_ON(page_idx & ((1 << order) - 1));
458	VM_BUG_ON(bad_range(zone, page));
459
460	while (order < MAX_ORDER-1) {
461		unsigned long combined_idx;
462		struct page *buddy;
463
464		buddy = __page_find_buddy(page, page_idx, order);
465		if (!page_is_buddy(page, buddy, order))
466			break;
467
468		/* Our buddy is free, merge with it and move up one order. */
469		list_del(&buddy->lru);
470		zone->free_area[order].nr_free--;
471		rmv_page_order(buddy);
472		combined_idx = __find_combined_index(page_idx, order);
473		page = page + (combined_idx - page_idx);
474		page_idx = combined_idx;
475		order++;
476	}
477	set_page_order(page, order);
478	list_add(&page->lru,
479		&zone->free_area[order].free_list[migratetype]);
480	zone->free_area[order].nr_free++;
481}
482
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
491	__dec_zone_page_state(page, NR_MLOCK);
492	__count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
498static inline int free_pages_check(struct page *page)
499{
500	if (unlikely(page_mapcount(page) |
501		(page->mapping != NULL)  |
502		(atomic_read(&page->_count) != 0) |
503		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504		bad_page(page);
505		return 1;
506	}
507	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509	return 0;
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
523static void free_pages_bulk(struct zone *zone, int count,
524					struct list_head *list, int order)
525{
526	spin_lock(&zone->lock);
527	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528	zone->pages_scanned = 0;
529
530	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531	while (count--) {
532		struct page *page;
533
534		VM_BUG_ON(list_empty(list));
535		page = list_entry(list->prev, struct page, lru);
536		/* have to delete it as __free_one_page list manipulates */
537		list_del(&page->lru);
538		__free_one_page(page, zone, order, page_private(page));
539	}
540	spin_unlock(&zone->lock);
541}
542
543static void free_one_page(struct zone *zone, struct page *page, int order,
544				int migratetype)
545{
546	spin_lock(&zone->lock);
547	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548	zone->pages_scanned = 0;
549
550	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551	__free_one_page(page, zone, order, migratetype);
552	spin_unlock(&zone->lock);
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557	unsigned long flags;
558	int i;
559	int bad = 0;
560	int wasMlocked = __TestClearPageMlocked(page);
561
562	kmemcheck_free_shadow(page, order);
563
564	for (i = 0 ; i < (1 << order) ; ++i)
565		bad += free_pages_check(page + i);
566	if (bad)
567		return;
568
569	if (!PageHighMem(page)) {
570		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571		debug_check_no_obj_freed(page_address(page),
572					   PAGE_SIZE << order);
573	}
574	arch_free_page(page, order);
575	kernel_map_pages(page, 1 << order, 0);
576
577	local_irq_save(flags);
578	if (unlikely(wasMlocked))
579		free_page_mlock(page);
580	__count_vm_events(PGFREE, 1 << order);
581	free_one_page(page_zone(page), page, order,
582					get_pageblock_migratetype(page));
583	local_irq_restore(flags);
584}
585
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590{
591	if (order == 0) {
592		__ClearPageReserved(page);
593		set_page_count(page, 0);
594		set_page_refcounted(page);
595		__free_page(page);
596	} else {
597		int loop;
598
599		prefetchw(page);
600		for (loop = 0; loop < BITS_PER_LONG; loop++) {
601			struct page *p = &page[loop];
602
603			if (loop + 1 < BITS_PER_LONG)
604				prefetchw(p + 1);
605			__ClearPageReserved(p);
606			set_page_count(p, 0);
607		}
608
609		set_page_refcounted(page);
610		__free_pages(page, order);
611	}
612}
613
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
629static inline void expand(struct zone *zone, struct page *page,
630	int low, int high, struct free_area *area,
631	int migratetype)
632{
633	unsigned long size = 1 << high;
634
635	while (high > low) {
636		area--;
637		high--;
638		size >>= 1;
639		VM_BUG_ON(bad_range(zone, &page[size]));
640		list_add(&page[size].lru, &area->free_list[migratetype]);
641		area->nr_free++;
642		set_page_order(&page[size], high);
643	}
644}
645
646/*
647 * This page is about to be returned from the page allocator
648 */
649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650{
651	if (unlikely(page_mapcount(page) |
652		(page->mapping != NULL)  |
653		(atomic_read(&page->_count) != 0)  |
654		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655		bad_page(page);
656		return 1;
657	}
658
659	set_page_private(page, 0);
660	set_page_refcounted(page);
661
662	arch_alloc_page(page, order);
663	kernel_map_pages(page, 1 << order, 1);
664
665	if (gfp_flags & __GFP_ZERO)
666		prep_zero_page(page, order, gfp_flags);
667
668	if (order && (gfp_flags & __GFP_COMP))
669		prep_compound_page(page, order);
670
671	return 0;
672}
673
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680						int migratetype)
681{
682	unsigned int current_order;
683	struct free_area * area;
684	struct page *page;
685
686	/* Find a page of the appropriate size in the preferred list */
687	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688		area = &(zone->free_area[current_order]);
689		if (list_empty(&area->free_list[migratetype]))
690			continue;
691
692		page = list_entry(area->free_list[migratetype].next,
693							struct page, lru);
694		list_del(&page->lru);
695		rmv_page_order(page);
696		area->nr_free--;
697		expand(zone, page, order, current_order, area, migratetype);
698		return page;
699	}
700
701	return NULL;
702}
703
704
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
711	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
712	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
714};
715
716/*
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
720 */
721static int move_freepages(struct zone *zone,
722			  struct page *start_page, struct page *end_page,
723			  int migratetype)
724{
725	struct page *page;
726	unsigned long order;
727	int pages_moved = 0;
728
729#ifndef CONFIG_HOLES_IN_ZONE
730	/*
731	 * page_zone is not safe to call in this context when
732	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733	 * anyway as we check zone boundaries in move_freepages_block().
734	 * Remove at a later date when no bug reports exist related to
735	 * grouping pages by mobility
736	 */
737	BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740	for (page = start_page; page <= end_page;) {
741		/* Make sure we are not inadvertently changing nodes */
742		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
744		if (!pfn_valid_within(page_to_pfn(page))) {
745			page++;
746			continue;
747		}
748
749		if (!PageBuddy(page)) {
750			page++;
751			continue;
752		}
753
754		order = page_order(page);
755		list_del(&page->lru);
756		list_add(&page->lru,
757			&zone->free_area[order].free_list[migratetype]);
758		page += 1 << order;
759		pages_moved += 1 << order;
760	}
761
762	return pages_moved;
763}
764
765static int move_freepages_block(struct zone *zone, struct page *page,
766				int migratetype)
767{
768	unsigned long start_pfn, end_pfn;
769	struct page *start_page, *end_page;
770
771	start_pfn = page_to_pfn(page);
772	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773	start_page = pfn_to_page(start_pfn);
774	end_page = start_page + pageblock_nr_pages - 1;
775	end_pfn = start_pfn + pageblock_nr_pages - 1;
776
777	/* Do not cross zone boundaries */
778	if (start_pfn < zone->zone_start_pfn)
779		start_page = page;
780	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781		return 0;
782
783	return move_freepages(zone, start_page, end_page, migratetype);
784}
785
786static void change_pageblock_range(struct page *pageblock_page,
787					int start_order, int migratetype)
788{
789	int nr_pageblocks = 1 << (start_order - pageblock_order);
790
791	while (nr_pageblocks--) {
792		set_pageblock_migratetype(pageblock_page, migratetype);
793		pageblock_page += pageblock_nr_pages;
794	}
795}
796
797/* Remove an element from the buddy allocator from the fallback list */
798static inline struct page *
799__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
800{
801	struct free_area * area;
802	int current_order;
803	struct page *page;
804	int migratetype, i;
805
806	/* Find the largest possible block of pages in the other list */
807	for (current_order = MAX_ORDER-1; current_order >= order;
808						--current_order) {
809		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
810			migratetype = fallbacks[start_migratetype][i];
811
812			/* MIGRATE_RESERVE handled later if necessary */
813			if (migratetype == MIGRATE_RESERVE)
814				continue;
815
816			area = &(zone->free_area[current_order]);
817			if (list_empty(&area->free_list[migratetype]))
818				continue;
819
820			page = list_entry(area->free_list[migratetype].next,
821					struct page, lru);
822			area->nr_free--;
823
824			/*
825			 * If breaking a large block of pages, move all free
826			 * pages to the preferred allocation list. If falling
827			 * back for a reclaimable kernel allocation, be more
828			 * agressive about taking ownership of free pages
829			 */
830			if (unlikely(current_order >= (pageblock_order >> 1)) ||
831					start_migratetype == MIGRATE_RECLAIMABLE ||
832					page_group_by_mobility_disabled) {
833				unsigned long pages;
834				pages = move_freepages_block(zone, page,
835								start_migratetype);
836
837				/* Claim the whole block if over half of it is free */
838				if (pages >= (1 << (pageblock_order-1)) ||
839						page_group_by_mobility_disabled)
840					set_pageblock_migratetype(page,
841								start_migratetype);
842
843				migratetype = start_migratetype;
844			}
845
846			/* Remove the page from the freelists */
847			list_del(&page->lru);
848			rmv_page_order(page);
849
850			/* Take ownership for orders >= pageblock_order */
851			if (current_order >= pageblock_order)
852				change_pageblock_range(page, current_order,
853							start_migratetype);
854
855			expand(zone, page, order, current_order, area, migratetype);
856			return page;
857		}
858	}
859
860	return NULL;
861}
862
863/*
864 * Do the hard work of removing an element from the buddy allocator.
865 * Call me with the zone->lock already held.
866 */
867static struct page *__rmqueue(struct zone *zone, unsigned int order,
868						int migratetype)
869{
870	struct page *page;
871
872retry_reserve:
873	page = __rmqueue_smallest(zone, order, migratetype);
874
875	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
876		page = __rmqueue_fallback(zone, order, migratetype);
877
878		/*
879		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
880		 * is used because __rmqueue_smallest is an inline function
881		 * and we want just one call site
882		 */
883		if (!page) {
884			migratetype = MIGRATE_RESERVE;
885			goto retry_reserve;
886		}
887	}
888
889	return page;
890}
891
892/*
893 * Obtain a specified number of elements from the buddy allocator, all under
894 * a single hold of the lock, for efficiency.  Add them to the supplied list.
895 * Returns the number of new pages which were placed at *list.
896 */
897static int rmqueue_bulk(struct zone *zone, unsigned int order,
898			unsigned long count, struct list_head *list,
899			int migratetype, int cold)
900{
901	int i;
902
903	spin_lock(&zone->lock);
904	for (i = 0; i < count; ++i) {
905		struct page *page = __rmqueue(zone, order, migratetype);
906		if (unlikely(page == NULL))
907			break;
908
909		/*
910		 * Split buddy pages returned by expand() are received here
911		 * in physical page order. The page is added to the callers and
912		 * list and the list head then moves forward. From the callers
913		 * perspective, the linked list is ordered by page number in
914		 * some conditions. This is useful for IO devices that can
915		 * merge IO requests if the physical pages are ordered
916		 * properly.
917		 */
918		if (likely(cold == 0))
919			list_add(&page->lru, list);
920		else
921			list_add_tail(&page->lru, list);
922		set_page_private(page, migratetype);
923		list = &page->lru;
924	}
925	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
926	spin_unlock(&zone->lock);
927	return i;
928}
929
930#ifdef CONFIG_NUMA
931/*
932 * Called from the vmstat counter updater to drain pagesets of this
933 * currently executing processor on remote nodes after they have
934 * expired.
935 *
936 * Note that this function must be called with the thread pinned to
937 * a single processor.
938 */
939void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
940{
941	unsigned long flags;
942	int to_drain;
943
944	local_irq_save(flags);
945	if (pcp->count >= pcp->batch)
946		to_drain = pcp->batch;
947	else
948		to_drain = pcp->count;
949	free_pages_bulk(zone, to_drain, &pcp->list, 0);
950	pcp->count -= to_drain;
951	local_irq_restore(flags);
952}
953#endif
954
955/*
956 * Drain pages of the indicated processor.
957 *
958 * The processor must either be the current processor and the
959 * thread pinned to the current processor or a processor that
960 * is not online.
961 */
962static void drain_pages(unsigned int cpu)
963{
964	unsigned long flags;
965	struct zone *zone;
966
967	for_each_populated_zone(zone) {
968		struct per_cpu_pageset *pset;
969		struct per_cpu_pages *pcp;
970
971		pset = zone_pcp(zone, cpu);
972
973		pcp = &pset->pcp;
974		local_irq_save(flags);
975		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
976		pcp->count = 0;
977		local_irq_restore(flags);
978	}
979}
980
981/*
982 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
983 */
984void drain_local_pages(void *arg)
985{
986	drain_pages(smp_processor_id());
987}
988
989/*
990 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
991 */
992void drain_all_pages(void)
993{
994	on_each_cpu(drain_local_pages, NULL, 1);
995}
996
997#ifdef CONFIG_HIBERNATION
998
999void mark_free_pages(struct zone *zone)
1000{
1001	unsigned long pfn, max_zone_pfn;
1002	unsigned long flags;
1003	int order, t;
1004	struct list_head *curr;
1005
1006	if (!zone->spanned_pages)
1007		return;
1008
1009	spin_lock_irqsave(&zone->lock, flags);
1010
1011	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1012	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1013		if (pfn_valid(pfn)) {
1014			struct page *page = pfn_to_page(pfn);
1015
1016			if (!swsusp_page_is_forbidden(page))
1017				swsusp_unset_page_free(page);
1018		}
1019
1020	for_each_migratetype_order(order, t) {
1021		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1022			unsigned long i;
1023
1024			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1025			for (i = 0; i < (1UL << order); i++)
1026				swsusp_set_page_free(pfn_to_page(pfn + i));
1027		}
1028	}
1029	spin_unlock_irqrestore(&zone->lock, flags);
1030}
1031#endif /* CONFIG_PM */
1032
1033/*
1034 * Free a 0-order page
1035 */
1036static void free_hot_cold_page(struct page *page, int cold)
1037{
1038	struct zone *zone = page_zone(page);
1039	struct per_cpu_pages *pcp;
1040	unsigned long flags;
1041	int wasMlocked = __TestClearPageMlocked(page);
1042
1043	kmemcheck_free_shadow(page, 0);
1044
1045	if (PageAnon(page))
1046		page->mapping = NULL;
1047	if (free_pages_check(page))
1048		return;
1049
1050	if (!PageHighMem(page)) {
1051		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1052		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1053	}
1054	arch_free_page(page, 0);
1055	kernel_map_pages(page, 1, 0);
1056
1057	pcp = &zone_pcp(zone, get_cpu())->pcp;
1058	set_page_private(page, get_pageblock_migratetype(page));
1059	local_irq_save(flags);
1060	if (unlikely(wasMlocked))
1061		free_page_mlock(page);
1062	__count_vm_event(PGFREE);
1063
1064	if (cold)
1065		list_add_tail(&page->lru, &pcp->list);
1066	else
1067		list_add(&page->lru, &pcp->list);
1068	pcp->count++;
1069	if (pcp->count >= pcp->high) {
1070		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1071		pcp->count -= pcp->batch;
1072	}
1073	local_irq_restore(flags);
1074	put_cpu();
1075}
1076
1077void free_hot_page(struct page *page)
1078{
1079	trace_mm_page_free_direct(page, 0);
1080	free_hot_cold_page(page, 0);
1081}
1082
1083/*
1084 * split_page takes a non-compound higher-order page, and splits it into
1085 * n (1<<order) sub-pages: page[0..n]
1086 * Each sub-page must be freed individually.
1087 *
1088 * Note: this is probably too low level an operation for use in drivers.
1089 * Please consult with lkml before using this in your driver.
1090 */
1091void split_page(struct page *page, unsigned int order)
1092{
1093	int i;
1094
1095	VM_BUG_ON(PageCompound(page));
1096	VM_BUG_ON(!page_count(page));
1097
1098#ifdef CONFIG_KMEMCHECK
1099	/*
1100	 * Split shadow pages too, because free(page[0]) would
1101	 * otherwise free the whole shadow.
1102	 */
1103	if (kmemcheck_page_is_tracked(page))
1104		split_page(virt_to_page(page[0].shadow), order);
1105#endif
1106
1107	for (i = 1; i < (1 << order); i++)
1108		set_page_refcounted(page + i);
1109}
1110
1111/*
1112 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1113 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1114 * or two.
1115 */
1116static inline
1117struct page *buffered_rmqueue(struct zone *preferred_zone,
1118			struct zone *zone, int order, gfp_t gfp_flags,
1119			int migratetype)
1120{
1121	unsigned long flags;
1122	struct page *page;
1123	int cold = !!(gfp_flags & __GFP_COLD);
1124	int cpu;
1125
1126again:
1127	cpu  = get_cpu();
1128	if (likely(order == 0)) {
1129		struct per_cpu_pages *pcp;
1130
1131		pcp = &zone_pcp(zone, cpu)->pcp;
1132		local_irq_save(flags);
1133		if (!pcp->count) {
1134			pcp->count = rmqueue_bulk(zone, 0,
1135					pcp->batch, &pcp->list,
1136					migratetype, cold);
1137			if (unlikely(!pcp->count))
1138				goto failed;
1139		}
1140
1141		/* Find a page of the appropriate migrate type */
1142		if (cold) {
1143			list_for_each_entry_reverse(page, &pcp->list, lru)
1144				if (page_private(page) == migratetype)
1145					break;
1146		} else {
1147			list_for_each_entry(page, &pcp->list, lru)
1148				if (page_private(page) == migratetype)
1149					break;
1150		}
1151
1152		/* Allocate more to the pcp list if necessary */
1153		if (unlikely(&page->lru == &pcp->list)) {
1154			int get_one_page = 0;
1155
1156			pcp->count += rmqueue_bulk(zone, 0,
1157					pcp->batch, &pcp->list,
1158					migratetype, cold);
1159			list_for_each_entry(page, &pcp->list, lru) {
1160				if (get_pageblock_migratetype(page) !=
1161					    MIGRATE_ISOLATE) {
1162					get_one_page = 1;
1163					break;
1164				}
1165			}
1166			if (!get_one_page)
1167				goto failed;
1168		}
1169
1170		list_del(&page->lru);
1171		pcp->count--;
1172	} else {
1173		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1174			/*
1175			 * __GFP_NOFAIL is not to be used in new code.
1176			 *
1177			 * All __GFP_NOFAIL callers should be fixed so that they
1178			 * properly detect and handle allocation failures.
1179			 *
1180			 * We most definitely don't want callers attempting to
1181			 * allocate greater than order-1 page units with
1182			 * __GFP_NOFAIL.
1183			 */
1184			WARN_ON_ONCE(order > 1);
1185		}
1186		spin_lock_irqsave(&zone->lock, flags);
1187		page = __rmqueue(zone, order, migratetype);
1188		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1189		spin_unlock(&zone->lock);
1190		if (!page)
1191			goto failed;
1192	}
1193
1194	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1195	zone_statistics(preferred_zone, zone);
1196	local_irq_restore(flags);
1197	put_cpu();
1198
1199	VM_BUG_ON(bad_range(zone, page));
1200	if (prep_new_page(page, order, gfp_flags))
1201		goto again;
1202	return page;
1203
1204failed:
1205	local_irq_restore(flags);
1206	put_cpu();
1207	return NULL;
1208}
1209
1210/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1211#define ALLOC_WMARK_MIN		WMARK_MIN
1212#define ALLOC_WMARK_LOW		WMARK_LOW
1213#define ALLOC_WMARK_HIGH	WMARK_HIGH
1214#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1215
1216/* Mask to get the watermark bits */
1217#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1218
1219#define ALLOC_HARDER		0x10 /* try to alloc harder */
1220#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1221#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1222
1223#ifdef CONFIG_FAIL_PAGE_ALLOC
1224
1225static struct fail_page_alloc_attr {
1226	struct fault_attr attr;
1227
1228	u32 ignore_gfp_highmem;
1229	u32 ignore_gfp_wait;
1230	u32 min_order;
1231
1232#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1233
1234	struct dentry *ignore_gfp_highmem_file;
1235	struct dentry *ignore_gfp_wait_file;
1236	struct dentry *min_order_file;
1237
1238#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1239
1240} fail_page_alloc = {
1241	.attr = FAULT_ATTR_INITIALIZER,
1242	.ignore_gfp_wait = 1,
1243	.ignore_gfp_highmem = 1,
1244	.min_order = 1,
1245};
1246
1247static int __init setup_fail_page_alloc(char *str)
1248{
1249	return setup_fault_attr(&fail_page_alloc.attr, str);
1250}
1251__setup("fail_page_alloc=", setup_fail_page_alloc);
1252
1253static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1254{
1255	if (order < fail_page_alloc.min_order)
1256		return 0;
1257	if (gfp_mask & __GFP_NOFAIL)
1258		return 0;
1259	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1260		return 0;
1261	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1262		return 0;
1263
1264	return should_fail(&fail_page_alloc.attr, 1 << order);
1265}
1266
1267#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1268
1269static int __init fail_page_alloc_debugfs(void)
1270{
1271	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1272	struct dentry *dir;
1273	int err;
1274
1275	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1276				       "fail_page_alloc");
1277	if (err)
1278		return err;
1279	dir = fail_page_alloc.attr.dentries.dir;
1280
1281	fail_page_alloc.ignore_gfp_wait_file =
1282		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1283				      &fail_page_alloc.ignore_gfp_wait);
1284
1285	fail_page_alloc.ignore_gfp_highmem_file =
1286		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1287				      &fail_page_alloc.ignore_gfp_highmem);
1288	fail_page_alloc.min_order_file =
1289		debugfs_create_u32("min-order", mode, dir,
1290				   &fail_page_alloc.min_order);
1291
1292	if (!fail_page_alloc.ignore_gfp_wait_file ||
1293            !fail_page_alloc.ignore_gfp_highmem_file ||
1294            !fail_page_alloc.min_order_file) {
1295		err = -ENOMEM;
1296		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1297		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1298		debugfs_remove(fail_page_alloc.min_order_file);
1299		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1300	}
1301
1302	return err;
1303}
1304
1305late_initcall(fail_page_alloc_debugfs);
1306
1307#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1308
1309#else /* CONFIG_FAIL_PAGE_ALLOC */
1310
1311static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1312{
1313	return 0;
1314}
1315
1316#endif /* CONFIG_FAIL_PAGE_ALLOC */
1317
1318/*
1319 * Return 1 if free pages are above 'mark'. This takes into account the order
1320 * of the allocation.
1321 */
1322int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1323		      int classzone_idx, int alloc_flags)
1324{
1325	/* free_pages my go negative - that's OK */
1326	long min = mark;
1327	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1328	int o;
1329
1330	if (alloc_flags & ALLOC_HIGH)
1331		min -= min / 2;
1332	if (alloc_flags & ALLOC_HARDER)
1333		min -= min / 4;
1334
1335	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1336		return 0;
1337	for (o = 0; o < order; o++) {
1338		/* At the next order, this order's pages become unavailable */
1339		free_pages -= z->free_area[o].nr_free << o;
1340
1341		/* Require fewer higher order pages to be free */
1342		min >>= 1;
1343
1344		if (free_pages <= min)
1345			return 0;
1346	}
1347	return 1;
1348}
1349
1350#ifdef CONFIG_NUMA
1351/*
1352 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1353 * skip over zones that are not allowed by the cpuset, or that have
1354 * been recently (in last second) found to be nearly full.  See further
1355 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1356 * that have to skip over a lot of full or unallowed zones.
1357 *
1358 * If the zonelist cache is present in the passed in zonelist, then
1359 * returns a pointer to the allowed node mask (either the current
1360 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1361 *
1362 * If the zonelist cache is not available for this zonelist, does
1363 * nothing and returns NULL.
1364 *
1365 * If the fullzones BITMAP in the zonelist cache is stale (more than
1366 * a second since last zap'd) then we zap it out (clear its bits.)
1367 *
1368 * We hold off even calling zlc_setup, until after we've checked the
1369 * first zone in the zonelist, on the theory that most allocations will
1370 * be satisfied from that first zone, so best to examine that zone as
1371 * quickly as we can.
1372 */
1373static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1374{
1375	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1376	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1377
1378	zlc = zonelist->zlcache_ptr;
1379	if (!zlc)
1380		return NULL;
1381
1382	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1383		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1384		zlc->last_full_zap = jiffies;
1385	}
1386
1387	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1388					&cpuset_current_mems_allowed :
1389					&node_states[N_HIGH_MEMORY];
1390	return allowednodes;
1391}
1392
1393/*
1394 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1395 * if it is worth looking at further for free memory:
1396 *  1) Check that the zone isn't thought to be full (doesn't have its
1397 *     bit set in the zonelist_cache fullzones BITMAP).
1398 *  2) Check that the zones node (obtained from the zonelist_cache
1399 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1400 * Return true (non-zero) if zone is worth looking at further, or
1401 * else return false (zero) if it is not.
1402 *
1403 * This check -ignores- the distinction between various watermarks,
1404 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1405 * found to be full for any variation of these watermarks, it will
1406 * be considered full for up to one second by all requests, unless
1407 * we are so low on memory on all allowed nodes that we are forced
1408 * into the second scan of the zonelist.
1409 *
1410 * In the second scan we ignore this zonelist cache and exactly
1411 * apply the watermarks to all zones, even it is slower to do so.
1412 * We are low on memory in the second scan, and should leave no stone
1413 * unturned looking for a free page.
1414 */
1415static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1416						nodemask_t *allowednodes)
1417{
1418	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1419	int i;				/* index of *z in zonelist zones */
1420	int n;				/* node that zone *z is on */
1421
1422	zlc = zonelist->zlcache_ptr;
1423	if (!zlc)
1424		return 1;
1425
1426	i = z - zonelist->_zonerefs;
1427	n = zlc->z_to_n[i];
1428
1429	/* This zone is worth trying if it is allowed but not full */
1430	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1431}
1432
1433/*
1434 * Given 'z' scanning a zonelist, set the corresponding bit in
1435 * zlc->fullzones, so that subsequent attempts to allocate a page
1436 * from that zone don't waste time re-examining it.
1437 */
1438static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1439{
1440	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1441	int i;				/* index of *z in zonelist zones */
1442
1443	zlc = zonelist->zlcache_ptr;
1444	if (!zlc)
1445		return;
1446
1447	i = z - zonelist->_zonerefs;
1448
1449	set_bit(i, zlc->fullzones);
1450}
1451
1452#else	/* CONFIG_NUMA */
1453
1454static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1455{
1456	return NULL;
1457}
1458
1459static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1460				nodemask_t *allowednodes)
1461{
1462	return 1;
1463}
1464
1465static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1466{
1467}
1468#endif	/* CONFIG_NUMA */
1469
1470/*
1471 * get_page_from_freelist goes through the zonelist trying to allocate
1472 * a page.
1473 */
1474static struct page *
1475get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1476		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1477		struct zone *preferred_zone, int migratetype)
1478{
1479	struct zoneref *z;
1480	struct page *page = NULL;
1481	int classzone_idx;
1482	struct zone *zone;
1483	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1484	int zlc_active = 0;		/* set if using zonelist_cache */
1485	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1486
1487	classzone_idx = zone_idx(preferred_zone);
1488zonelist_scan:
1489	/*
1490	 * Scan zonelist, looking for a zone with enough free.
1491	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1492	 */
1493	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1494						high_zoneidx, nodemask) {
1495		if (NUMA_BUILD && zlc_active &&
1496			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1497				continue;
1498		if ((alloc_flags & ALLOC_CPUSET) &&
1499			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1500				goto try_next_zone;
1501
1502		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1503		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1504			unsigned long mark;
1505			int ret;
1506
1507			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1508			if (zone_watermark_ok(zone, order, mark,
1509				    classzone_idx, alloc_flags))
1510				goto try_this_zone;
1511
1512			if (zone_reclaim_mode == 0)
1513				goto this_zone_full;
1514
1515			ret = zone_reclaim(zone, gfp_mask, order);
1516			switch (ret) {
1517			case ZONE_RECLAIM_NOSCAN:
1518				/* did not scan */
1519				goto try_next_zone;
1520			case ZONE_RECLAIM_FULL:
1521				/* scanned but unreclaimable */
1522				goto this_zone_full;
1523			default:
1524				/* did we reclaim enough */
1525				if (!zone_watermark_ok(zone, order, mark,
1526						classzone_idx, alloc_flags))
1527					goto this_zone_full;
1528			}
1529		}
1530
1531try_this_zone:
1532		page = buffered_rmqueue(preferred_zone, zone, order,
1533						gfp_mask, migratetype);
1534		if (page)
1535			break;
1536this_zone_full:
1537		if (NUMA_BUILD)
1538			zlc_mark_zone_full(zonelist, z);
1539try_next_zone:
1540		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1541			/*
1542			 * we do zlc_setup after the first zone is tried but only
1543			 * if there are multiple nodes make it worthwhile
1544			 */
1545			allowednodes = zlc_setup(zonelist, alloc_flags);
1546			zlc_active = 1;
1547			did_zlc_setup = 1;
1548		}
1549	}
1550
1551	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1552		/* Disable zlc cache for second zonelist scan */
1553		zlc_active = 0;
1554		goto zonelist_scan;
1555	}
1556	return page;
1557}
1558
1559static inline int
1560should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1561				unsigned long pages_reclaimed)
1562{
1563	/* Do not loop if specifically requested */
1564	if (gfp_mask & __GFP_NORETRY)
1565		return 0;
1566
1567	/*
1568	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1569	 * means __GFP_NOFAIL, but that may not be true in other
1570	 * implementations.
1571	 */
1572	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1573		return 1;
1574
1575	/*
1576	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1577	 * specified, then we retry until we no longer reclaim any pages
1578	 * (above), or we've reclaimed an order of pages at least as
1579	 * large as the allocation's order. In both cases, if the
1580	 * allocation still fails, we stop retrying.
1581	 */
1582	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1583		return 1;
1584
1585	/*
1586	 * Don't let big-order allocations loop unless the caller
1587	 * explicitly requests that.
1588	 */
1589	if (gfp_mask & __GFP_NOFAIL)
1590		return 1;
1591
1592	return 0;
1593}
1594
1595static inline struct page *
1596__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1597	struct zonelist *zonelist, enum zone_type high_zoneidx,
1598	nodemask_t *nodemask, struct zone *preferred_zone,
1599	int migratetype)
1600{
1601	struct page *page;
1602
1603	/* Acquire the OOM killer lock for the zones in zonelist */
1604	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1605		schedule_timeout_uninterruptible(1);
1606		return NULL;
1607	}
1608
1609	/*
1610	 * Go through the zonelist yet one more time, keep very high watermark
1611	 * here, this is only to catch a parallel oom killing, we must fail if
1612	 * we're still under heavy pressure.
1613	 */
1614	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1615		order, zonelist, high_zoneidx,
1616		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1617		preferred_zone, migratetype);
1618	if (page)
1619		goto out;
1620
1621	/* The OOM killer will not help higher order allocs */
1622	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1623		goto out;
1624
1625	/* Exhausted what can be done so it's blamo time */
1626	out_of_memory(zonelist, gfp_mask, order);
1627
1628out:
1629	clear_zonelist_oom(zonelist, gfp_mask);
1630	return page;
1631}
1632
1633/* The really slow allocator path where we enter direct reclaim */
1634static inline struct page *
1635__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1636	struct zonelist *zonelist, enum zone_type high_zoneidx,
1637	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1638	int migratetype, unsigned long *did_some_progress)
1639{
1640	struct page *page = NULL;
1641	struct reclaim_state reclaim_state;
1642	struct task_struct *p = current;
1643
1644	cond_resched();
1645
1646	/* We now go into synchronous reclaim */
1647	cpuset_memory_pressure_bump();
1648	p->flags |= PF_MEMALLOC;
1649	lockdep_set_current_reclaim_state(gfp_mask);
1650	reclaim_state.reclaimed_slab = 0;
1651	p->reclaim_state = &reclaim_state;
1652
1653	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1654
1655	p->reclaim_state = NULL;
1656	lockdep_clear_current_reclaim_state();
1657	p->flags &= ~PF_MEMALLOC;
1658
1659	cond_resched();
1660
1661	if (order != 0)
1662		drain_all_pages();
1663
1664	if (likely(*did_some_progress))
1665		page = get_page_from_freelist(gfp_mask, nodemask, order,
1666					zonelist, high_zoneidx,
1667					alloc_flags, preferred_zone,
1668					migratetype);
1669	return page;
1670}
1671
1672/*
1673 * This is called in the allocator slow-path if the allocation request is of
1674 * sufficient urgency to ignore watermarks and take other desperate measures
1675 */
1676static inline struct page *
1677__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1678	struct zonelist *zonelist, enum zone_type high_zoneidx,
1679	nodemask_t *nodemask, struct zone *preferred_zone,
1680	int migratetype)
1681{
1682	struct page *page;
1683
1684	do {
1685		page = get_page_from_freelist(gfp_mask, nodemask, order,
1686			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1687			preferred_zone, migratetype);
1688
1689		if (!page && gfp_mask & __GFP_NOFAIL)
1690			congestion_wait(BLK_RW_ASYNC, HZ/50);
1691	} while (!page && (gfp_mask & __GFP_NOFAIL));
1692
1693	return page;
1694}
1695
1696static inline
1697void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1698						enum zone_type high_zoneidx)
1699{
1700	struct zoneref *z;
1701	struct zone *zone;
1702
1703	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1704		wakeup_kswapd(zone, order);
1705}
1706
1707static inline int
1708gfp_to_alloc_flags(gfp_t gfp_mask)
1709{
1710	struct task_struct *p = current;
1711	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1712	const gfp_t wait = gfp_mask & __GFP_WAIT;
1713
1714	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1715	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1716
1717	/*
1718	 * The caller may dip into page reserves a bit more if the caller
1719	 * cannot run direct reclaim, or if the caller has realtime scheduling
1720	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1721	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1722	 */
1723	alloc_flags |= (gfp_mask & __GFP_HIGH);
1724
1725	if (!wait) {
1726		alloc_flags |= ALLOC_HARDER;
1727		/*
1728		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1729		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1730		 */
1731		alloc_flags &= ~ALLOC_CPUSET;
1732	} else if (unlikely(rt_task(p)))
1733		alloc_flags |= ALLOC_HARDER;
1734
1735	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1736		if (!in_interrupt() &&
1737		    ((p->flags & PF_MEMALLOC) ||
1738		     unlikely(test_thread_flag(TIF_MEMDIE))))
1739			alloc_flags |= ALLOC_NO_WATERMARKS;
1740	}
1741
1742	return alloc_flags;
1743}
1744
1745static inline struct page *
1746__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1747	struct zonelist *zonelist, enum zone_type high_zoneidx,
1748	nodemask_t *nodemask, struct zone *preferred_zone,
1749	int migratetype)
1750{
1751	const gfp_t wait = gfp_mask & __GFP_WAIT;
1752	struct page *page = NULL;
1753	int alloc_flags;
1754	unsigned long pages_reclaimed = 0;
1755	unsigned long did_some_progress;
1756	struct task_struct *p = current;
1757
1758	/*
1759	 * In the slowpath, we sanity check order to avoid ever trying to
1760	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1761	 * be using allocators in order of preference for an area that is
1762	 * too large.
1763	 */
1764	if (order >= MAX_ORDER) {
1765		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1766		return NULL;
1767	}
1768
1769	/*
1770	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1771	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1772	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1773	 * using a larger set of nodes after it has established that the
1774	 * allowed per node queues are empty and that nodes are
1775	 * over allocated.
1776	 */
1777	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1778		goto nopage;
1779
1780	wake_all_kswapd(order, zonelist, high_zoneidx);
1781
1782restart:
1783	/*
1784	 * OK, we're below the kswapd watermark and have kicked background
1785	 * reclaim. Now things get more complex, so set up alloc_flags according
1786	 * to how we want to proceed.
1787	 */
1788	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1789
1790	/* This is the last chance, in general, before the goto nopage. */
1791	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1792			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1793			preferred_zone, migratetype);
1794	if (page)
1795		goto got_pg;
1796
1797rebalance:
1798	/* Allocate without watermarks if the context allows */
1799	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1800		page = __alloc_pages_high_priority(gfp_mask, order,
1801				zonelist, high_zoneidx, nodemask,
1802				preferred_zone, migratetype);
1803		if (page)
1804			goto got_pg;
1805	}
1806
1807	/* Atomic allocations - we can't balance anything */
1808	if (!wait)
1809		goto nopage;
1810
1811	/* Avoid recursion of direct reclaim */
1812	if (p->flags & PF_MEMALLOC)
1813		goto nopage;
1814
1815	/* Avoid allocations with no watermarks from looping endlessly */
1816	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1817		goto nopage;
1818
1819	/* Try direct reclaim and then allocating */
1820	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1821					zonelist, high_zoneidx,
1822					nodemask,
1823					alloc_flags, preferred_zone,
1824					migratetype, &did_some_progress);
1825	if (page)
1826		goto got_pg;
1827
1828	/*
1829	 * If we failed to make any progress reclaiming, then we are
1830	 * running out of options and have to consider going OOM
1831	 */
1832	if (!did_some_progress) {
1833		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1834			if (oom_killer_disabled)
1835				goto nopage;
1836			page = __alloc_pages_may_oom(gfp_mask, order,
1837					zonelist, high_zoneidx,
1838					nodemask, preferred_zone,
1839					migratetype);
1840			if (page)
1841				goto got_pg;
1842
1843			/*
1844			 * The OOM killer does not trigger for high-order
1845			 * ~__GFP_NOFAIL allocations so if no progress is being
1846			 * made, there are no other options and retrying is
1847			 * unlikely to help.
1848			 */
1849			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1850						!(gfp_mask & __GFP_NOFAIL))
1851				goto nopage;
1852
1853			goto restart;
1854		}
1855	}
1856
1857	/* Check if we should retry the allocation */
1858	pages_reclaimed += did_some_progress;
1859	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1860		/* Wait for some write requests to complete then retry */
1861		congestion_wait(BLK_RW_ASYNC, HZ/50);
1862		goto rebalance;
1863	}
1864
1865nopage:
1866	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1867		printk(KERN_WARNING "%s: page allocation failure."
1868			" order:%d, mode:0x%x\n",
1869			p->comm, order, gfp_mask);
1870		dump_stack();
1871		show_mem();
1872	}
1873	return page;
1874got_pg:
1875	if (kmemcheck_enabled)
1876		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1877	return page;
1878
1879}
1880
1881/*
1882 * This is the 'heart' of the zoned buddy allocator.
1883 */
1884struct page *
1885__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1886			struct zonelist *zonelist, nodemask_t *nodemask)
1887{
1888	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1889	struct zone *preferred_zone;
1890	struct page *page;
1891	int migratetype = allocflags_to_migratetype(gfp_mask);
1892
1893	gfp_mask &= gfp_allowed_mask;
1894
1895	lockdep_trace_alloc(gfp_mask);
1896
1897	might_sleep_if(gfp_mask & __GFP_WAIT);
1898
1899	if (should_fail_alloc_page(gfp_mask, order))
1900		return NULL;
1901
1902	/*
1903	 * Check the zones suitable for the gfp_mask contain at least one
1904	 * valid zone. It's possible to have an empty zonelist as a result
1905	 * of GFP_THISNODE and a memoryless node
1906	 */
1907	if (unlikely(!zonelist->_zonerefs->zone))
1908		return NULL;
1909
1910	/* The preferred zone is used for statistics later */
1911	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1912	if (!preferred_zone)
1913		return NULL;
1914
1915	/* First allocation attempt */
1916	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1917			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1918			preferred_zone, migratetype);
1919	if (unlikely(!page))
1920		page = __alloc_pages_slowpath(gfp_mask, order,
1921				zonelist, high_zoneidx, nodemask,
1922				preferred_zone, migratetype);
1923
1924	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1925	return page;
1926}
1927EXPORT_SYMBOL(__alloc_pages_nodemask);
1928
1929/*
1930 * Common helper functions.
1931 */
1932unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1933{
1934	struct page *page;
1935
1936	/*
1937	 * __get_free_pages() returns a 32-bit address, which cannot represent
1938	 * a highmem page
1939	 */
1940	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1941
1942	page = alloc_pages(gfp_mask, order);
1943	if (!page)
1944		return 0;
1945	return (unsigned long) page_address(page);
1946}
1947EXPORT_SYMBOL(__get_free_pages);
1948
1949unsigned long get_zeroed_page(gfp_t gfp_mask)
1950{
1951	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1952}
1953EXPORT_SYMBOL(get_zeroed_page);
1954
1955void __pagevec_free(struct pagevec *pvec)
1956{
1957	int i = pagevec_count(pvec);
1958
1959	while (--i >= 0) {
1960		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1961		free_hot_cold_page(pvec->pages[i], pvec->cold);
1962	}
1963}
1964
1965void __free_pages(struct page *page, unsigned int order)
1966{
1967	if (put_page_testzero(page)) {
1968		trace_mm_page_free_direct(page, order);
1969		if (order == 0)
1970			free_hot_page(page);
1971		else
1972			__free_pages_ok(page, order);
1973	}
1974}
1975
1976EXPORT_SYMBOL(__free_pages);
1977
1978void free_pages(unsigned long addr, unsigned int order)
1979{
1980	if (addr != 0) {
1981		VM_BUG_ON(!virt_addr_valid((void *)addr));
1982		__free_pages(virt_to_page((void *)addr), order);
1983	}
1984}
1985
1986EXPORT_SYMBOL(free_pages);
1987
1988/**
1989 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1990 * @size: the number of bytes to allocate
1991 * @gfp_mask: GFP flags for the allocation
1992 *
1993 * This function is similar to alloc_pages(), except that it allocates the
1994 * minimum number of pages to satisfy the request.  alloc_pages() can only
1995 * allocate memory in power-of-two pages.
1996 *
1997 * This function is also limited by MAX_ORDER.
1998 *
1999 * Memory allocated by this function must be released by free_pages_exact().
2000 */
2001void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2002{
2003	unsigned int order = get_order(size);
2004	unsigned long addr;
2005
2006	addr = __get_free_pages(gfp_mask, order);
2007	if (addr) {
2008		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2009		unsigned long used = addr + PAGE_ALIGN(size);
2010
2011		split_page(virt_to_page((void *)addr), order);
2012		while (used < alloc_end) {
2013			free_page(used);
2014			used += PAGE_SIZE;
2015		}
2016	}
2017
2018	return (void *)addr;
2019}
2020EXPORT_SYMBOL(alloc_pages_exact);
2021
2022/**
2023 * free_pages_exact - release memory allocated via alloc_pages_exact()
2024 * @virt: the value returned by alloc_pages_exact.
2025 * @size: size of allocation, same value as passed to alloc_pages_exact().
2026 *
2027 * Release the memory allocated by a previous call to alloc_pages_exact.
2028 */
2029void free_pages_exact(void *virt, size_t size)
2030{
2031	unsigned long addr = (unsigned long)virt;
2032	unsigned long end = addr + PAGE_ALIGN(size);
2033
2034	while (addr < end) {
2035		free_page(addr);
2036		addr += PAGE_SIZE;
2037	}
2038}
2039EXPORT_SYMBOL(free_pages_exact);
2040
2041static unsigned int nr_free_zone_pages(int offset)
2042{
2043	struct zoneref *z;
2044	struct zone *zone;
2045
2046	/* Just pick one node, since fallback list is circular */
2047	unsigned int sum = 0;
2048
2049	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2050
2051	for_each_zone_zonelist(zone, z, zonelist, offset) {
2052		unsigned long size = zone->present_pages;
2053		unsigned long high = high_wmark_pages(zone);
2054		if (size > high)
2055			sum += size - high;
2056	}
2057
2058	return sum;
2059}
2060
2061/*
2062 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2063 */
2064unsigned int nr_free_buffer_pages(void)
2065{
2066	return nr_free_zone_pages(gfp_zone(GFP_USER));
2067}
2068EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2069
2070/*
2071 * Amount of free RAM allocatable within all zones
2072 */
2073unsigned int nr_free_pagecache_pages(void)
2074{
2075	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2076}
2077
2078static inline void show_node(struct zone *zone)
2079{
2080	if (NUMA_BUILD)
2081		printk("Node %d ", zone_to_nid(zone));
2082}
2083
2084void si_meminfo(struct sysinfo *val)
2085{
2086	val->totalram = totalram_pages;
2087	val->sharedram = 0;
2088	val->freeram = global_page_state(NR_FREE_PAGES);
2089	val->bufferram = nr_blockdev_pages();
2090	val->totalhigh = totalhigh_pages;
2091	val->freehigh = nr_free_highpages();
2092	val->mem_unit = PAGE_SIZE;
2093}
2094
2095EXPORT_SYMBOL(si_meminfo);
2096
2097#ifdef CONFIG_NUMA
2098void si_meminfo_node(struct sysinfo *val, int nid)
2099{
2100	pg_data_t *pgdat = NODE_DATA(nid);
2101
2102	val->totalram = pgdat->node_present_pages;
2103	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2104#ifdef CONFIG_HIGHMEM
2105	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2106	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2107			NR_FREE_PAGES);
2108#else
2109	val->totalhigh = 0;
2110	val->freehigh = 0;
2111#endif
2112	val->mem_unit = PAGE_SIZE;
2113}
2114#endif
2115
2116#define K(x) ((x) << (PAGE_SHIFT-10))
2117
2118/*
2119 * Show free area list (used inside shift_scroll-lock stuff)
2120 * We also calculate the percentage fragmentation. We do this by counting the
2121 * memory on each free list with the exception of the first item on the list.
2122 */
2123void show_free_areas(void)
2124{
2125	int cpu;
2126	struct zone *zone;
2127
2128	for_each_populated_zone(zone) {
2129		show_node(zone);
2130		printk("%s per-cpu:\n", zone->name);
2131
2132		for_each_online_cpu(cpu) {
2133			struct per_cpu_pageset *pageset;
2134
2135			pageset = zone_pcp(zone, cpu);
2136
2137			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2138			       cpu, pageset->pcp.high,
2139			       pageset->pcp.batch, pageset->pcp.count);
2140		}
2141	}
2142
2143	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2144		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2145		" unevictable:%lu"
2146		" dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2147		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2148		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2149		global_page_state(NR_ACTIVE_ANON),
2150		global_page_state(NR_INACTIVE_ANON),
2151		global_page_state(NR_ISOLATED_ANON),
2152		global_page_state(NR_ACTIVE_FILE),
2153		global_page_state(NR_INACTIVE_FILE),
2154		global_page_state(NR_ISOLATED_FILE),
2155		global_page_state(NR_UNEVICTABLE),
2156		global_page_state(NR_FILE_DIRTY),
2157		global_page_state(NR_WRITEBACK),
2158		global_page_state(NR_UNSTABLE_NFS),
2159		nr_blockdev_pages(),
2160		global_page_state(NR_FREE_PAGES),
2161		global_page_state(NR_SLAB_RECLAIMABLE),
2162		global_page_state(NR_SLAB_UNRECLAIMABLE),
2163		global_page_state(NR_FILE_MAPPED),
2164		global_page_state(NR_SHMEM),
2165		global_page_state(NR_PAGETABLE),
2166		global_page_state(NR_BOUNCE));
2167
2168	for_each_populated_zone(zone) {
2169		int i;
2170
2171		show_node(zone);
2172		printk("%s"
2173			" free:%lukB"
2174			" min:%lukB"
2175			" low:%lukB"
2176			" high:%lukB"
2177			" active_anon:%lukB"
2178			" inactive_anon:%lukB"
2179			" active_file:%lukB"
2180			" inactive_file:%lukB"
2181			" unevictable:%lukB"
2182			" isolated(anon):%lukB"
2183			" isolated(file):%lukB"
2184			" present:%lukB"
2185			" mlocked:%lukB"
2186			" dirty:%lukB"
2187			" writeback:%lukB"
2188			" mapped:%lukB"
2189			" shmem:%lukB"
2190			" slab_reclaimable:%lukB"
2191			" slab_unreclaimable:%lukB"
2192			" kernel_stack:%lukB"
2193			" pagetables:%lukB"
2194			" unstable:%lukB"
2195			" bounce:%lukB"
2196			" writeback_tmp:%lukB"
2197			" pages_scanned:%lu"
2198			" all_unreclaimable? %s"
2199			"\n",
2200			zone->name,
2201			K(zone_page_state(zone, NR_FREE_PAGES)),
2202			K(min_wmark_pages(zone)),
2203			K(low_wmark_pages(zone)),
2204			K(high_wmark_pages(zone)),
2205			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2206			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2207			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2208			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2209			K(zone_page_state(zone, NR_UNEVICTABLE)),
2210			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2211			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2212			K(zone->present_pages),
2213			K(zone_page_state(zone, NR_MLOCK)),
2214			K(zone_page_state(zone, NR_FILE_DIRTY)),
2215			K(zone_page_state(zone, NR_WRITEBACK)),
2216			K(zone_page_state(zone, NR_FILE_MAPPED)),
2217			K(zone_page_state(zone, NR_SHMEM)),
2218			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2219			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2220			zone_page_state(zone, NR_KERNEL_STACK) *
2221				THREAD_SIZE / 1024,
2222			K(zone_page_state(zone, NR_PAGETABLE)),
2223			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2224			K(zone_page_state(zone, NR_BOUNCE)),
2225			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2226			zone->pages_scanned,
2227			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2228			);
2229		printk("lowmem_reserve[]:");
2230		for (i = 0; i < MAX_NR_ZONES; i++)
2231			printk(" %lu", zone->lowmem_reserve[i]);
2232		printk("\n");
2233	}
2234
2235	for_each_populated_zone(zone) {
2236 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2237
2238		show_node(zone);
2239		printk("%s: ", zone->name);
2240
2241		spin_lock_irqsave(&zone->lock, flags);
2242		for (order = 0; order < MAX_ORDER; order++) {
2243			nr[order] = zone->free_area[order].nr_free;
2244			total += nr[order] << order;
2245		}
2246		spin_unlock_irqrestore(&zone->lock, flags);
2247		for (order = 0; order < MAX_ORDER; order++)
2248			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2249		printk("= %lukB\n", K(total));
2250	}
2251
2252	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2253
2254	show_swap_cache_info();
2255}
2256
2257static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2258{
2259	zoneref->zone = zone;
2260	zoneref->zone_idx = zone_idx(zone);
2261}
2262
2263/*
2264 * Builds allocation fallback zone lists.
2265 *
2266 * Add all populated zones of a node to the zonelist.
2267 */
2268static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2269				int nr_zones, enum zone_type zone_type)
2270{
2271	struct zone *zone;
2272
2273	BUG_ON(zone_type >= MAX_NR_ZONES);
2274	zone_type++;
2275
2276	do {
2277		zone_type--;
2278		zone = pgdat->node_zones + zone_type;
2279		if (populated_zone(zone)) {
2280			zoneref_set_zone(zone,
2281				&zonelist->_zonerefs[nr_zones++]);
2282			check_highest_zone(zone_type);
2283		}
2284
2285	} while (zone_type);
2286	return nr_zones;
2287}
2288
2289
2290/*
2291 *  zonelist_order:
2292 *  0 = automatic detection of better ordering.
2293 *  1 = order by ([node] distance, -zonetype)
2294 *  2 = order by (-zonetype, [node] distance)
2295 *
2296 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2297 *  the same zonelist. So only NUMA can configure this param.
2298 */
2299#define ZONELIST_ORDER_DEFAULT  0
2300#define ZONELIST_ORDER_NODE     1
2301#define ZONELIST_ORDER_ZONE     2
2302
2303/* zonelist order in the kernel.
2304 * set_zonelist_order() will set this to NODE or ZONE.
2305 */
2306static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2307static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2308
2309
2310#ifdef CONFIG_NUMA
2311/* The value user specified ....changed by config */
2312static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2313/* string for sysctl */
2314#define NUMA_ZONELIST_ORDER_LEN	16
2315char numa_zonelist_order[16] = "default";
2316
2317/*
2318 * interface for configure zonelist ordering.
2319 * command line option "numa_zonelist_order"
2320 *	= "[dD]efault	- default, automatic configuration.
2321 *	= "[nN]ode 	- order by node locality, then by zone within node
2322 *	= "[zZ]one      - order by zone, then by locality within zone
2323 */
2324
2325static int __parse_numa_zonelist_order(char *s)
2326{
2327	if (*s == 'd' || *s == 'D') {
2328		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2329	} else if (*s == 'n' || *s == 'N') {
2330		user_zonelist_order = ZONELIST_ORDER_NODE;
2331	} else if (*s == 'z' || *s == 'Z') {
2332		user_zonelist_order = ZONELIST_ORDER_ZONE;
2333	} else {
2334		printk(KERN_WARNING
2335			"Ignoring invalid numa_zonelist_order value:  "
2336			"%s\n", s);
2337		return -EINVAL;
2338	}
2339	return 0;
2340}
2341
2342static __init int setup_numa_zonelist_order(char *s)
2343{
2344	if (s)
2345		return __parse_numa_zonelist_order(s);
2346	return 0;
2347}
2348early_param("numa_zonelist_order", setup_numa_zonelist_order);
2349
2350/*
2351 * sysctl handler for numa_zonelist_order
2352 */
2353int numa_zonelist_order_handler(ctl_table *table, int write,
2354		struct file *file, void __user *buffer, size_t *length,
2355		loff_t *ppos)
2356{
2357	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2358	int ret;
2359
2360	if (write)
2361		strncpy(saved_string, (char*)table->data,
2362			NUMA_ZONELIST_ORDER_LEN);
2363	ret = proc_dostring(table, write, file, buffer, length, ppos);
2364	if (ret)
2365		return ret;
2366	if (write) {
2367		int oldval = user_zonelist_order;
2368		if (__parse_numa_zonelist_order((char*)table->data)) {
2369			/*
2370			 * bogus value.  restore saved string
2371			 */
2372			strncpy((char*)table->data, saved_string,
2373				NUMA_ZONELIST_ORDER_LEN);
2374			user_zonelist_order = oldval;
2375		} else if (oldval != user_zonelist_order)
2376			build_all_zonelists();
2377	}
2378	return 0;
2379}
2380
2381
2382#define MAX_NODE_LOAD (nr_online_nodes)
2383static int node_load[MAX_NUMNODES];
2384
2385/**
2386 * find_next_best_node - find the next node that should appear in a given node's fallback list
2387 * @node: node whose fallback list we're appending
2388 * @used_node_mask: nodemask_t of already used nodes
2389 *
2390 * We use a number of factors to determine which is the next node that should
2391 * appear on a given node's fallback list.  The node should not have appeared
2392 * already in @node's fallback list, and it should be the next closest node
2393 * according to the distance array (which contains arbitrary distance values
2394 * from each node to each node in the system), and should also prefer nodes
2395 * with no CPUs, since presumably they'll have very little allocation pressure
2396 * on them otherwise.
2397 * It returns -1 if no node is found.
2398 */
2399static int find_next_best_node(int node, nodemask_t *used_node_mask)
2400{
2401	int n, val;
2402	int min_val = INT_MAX;
2403	int best_node = -1;
2404	const struct cpumask *tmp = cpumask_of_node(0);
2405
2406	/* Use the local node if we haven't already */
2407	if (!node_isset(node, *used_node_mask)) {
2408		node_set(node, *used_node_mask);
2409		return node;
2410	}
2411
2412	for_each_node_state(n, N_HIGH_MEMORY) {
2413
2414		/* Don't want a node to appear more than once */
2415		if (node_isset(n, *used_node_mask))
2416			continue;
2417
2418		/* Use the distance array to find the distance */
2419		val = node_distance(node, n);
2420
2421		/* Penalize nodes under us ("prefer the next node") */
2422		val += (n < node);
2423
2424		/* Give preference to headless and unused nodes */
2425		tmp = cpumask_of_node(n);
2426		if (!cpumask_empty(tmp))
2427			val += PENALTY_FOR_NODE_WITH_CPUS;
2428
2429		/* Slight preference for less loaded node */
2430		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2431		val += node_load[n];
2432
2433		if (val < min_val) {
2434			min_val = val;
2435			best_node = n;
2436		}
2437	}
2438
2439	if (best_node >= 0)
2440		node_set(best_node, *used_node_mask);
2441
2442	return best_node;
2443}
2444
2445
2446/*
2447 * Build zonelists ordered by node and zones within node.
2448 * This results in maximum locality--normal zone overflows into local
2449 * DMA zone, if any--but risks exhausting DMA zone.
2450 */
2451static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2452{
2453	int j;
2454	struct zonelist *zonelist;
2455
2456	zonelist = &pgdat->node_zonelists[0];
2457	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2458		;
2459	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2460							MAX_NR_ZONES - 1);
2461	zonelist->_zonerefs[j].zone = NULL;
2462	zonelist->_zonerefs[j].zone_idx = 0;
2463}
2464
2465/*
2466 * Build gfp_thisnode zonelists
2467 */
2468static void build_thisnode_zonelists(pg_data_t *pgdat)
2469{
2470	int j;
2471	struct zonelist *zonelist;
2472
2473	zonelist = &pgdat->node_zonelists[1];
2474	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2475	zonelist->_zonerefs[j].zone = NULL;
2476	zonelist->_zonerefs[j].zone_idx = 0;
2477}
2478
2479/*
2480 * Build zonelists ordered by zone and nodes within zones.
2481 * This results in conserving DMA zone[s] until all Normal memory is
2482 * exhausted, but results in overflowing to remote node while memory
2483 * may still exist in local DMA zone.
2484 */
2485static int node_order[MAX_NUMNODES];
2486
2487static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2488{
2489	int pos, j, node;
2490	int zone_type;		/* needs to be signed */
2491	struct zone *z;
2492	struct zonelist *zonelist;
2493
2494	zonelist = &pgdat->node_zonelists[0];
2495	pos = 0;
2496	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2497		for (j = 0; j < nr_nodes; j++) {
2498			node = node_order[j];
2499			z = &NODE_DATA(node)->node_zones[zone_type];
2500			if (populated_zone(z)) {
2501				zoneref_set_zone(z,
2502					&zonelist->_zonerefs[pos++]);
2503				check_highest_zone(zone_type);
2504			}
2505		}
2506	}
2507	zonelist->_zonerefs[pos].zone = NULL;
2508	zonelist->_zonerefs[pos].zone_idx = 0;
2509}
2510
2511static int default_zonelist_order(void)
2512{
2513	int nid, zone_type;
2514	unsigned long low_kmem_size,total_size;
2515	struct zone *z;
2516	int average_size;
2517	/*
2518         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2519	 * If they are really small and used heavily, the system can fall
2520	 * into OOM very easily.
2521	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2522	 */
2523	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2524	low_kmem_size = 0;
2525	total_size = 0;
2526	for_each_online_node(nid) {
2527		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2528			z = &NODE_DATA(nid)->node_zones[zone_type];
2529			if (populated_zone(z)) {
2530				if (zone_type < ZONE_NORMAL)
2531					low_kmem_size += z->present_pages;
2532				total_size += z->present_pages;
2533			}
2534		}
2535	}
2536	if (!low_kmem_size ||  /* there are no DMA area. */
2537	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2538		return ZONELIST_ORDER_NODE;
2539	/*
2540	 * look into each node's config.
2541  	 * If there is a node whose DMA/DMA32 memory is very big area on
2542 	 * local memory, NODE_ORDER may be suitable.
2543         */
2544	average_size = total_size /
2545				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2546	for_each_online_node(nid) {
2547		low_kmem_size = 0;
2548		total_size = 0;
2549		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2550			z = &NODE_DATA(nid)->node_zones[zone_type];
2551			if (populated_zone(z)) {
2552				if (zone_type < ZONE_NORMAL)
2553					low_kmem_size += z->present_pages;
2554				total_size += z->present_pages;
2555			}
2556		}
2557		if (low_kmem_size &&
2558		    total_size > average_size && /* ignore small node */
2559		    low_kmem_size > total_size * 70/100)
2560			return ZONELIST_ORDER_NODE;
2561	}
2562	return ZONELIST_ORDER_ZONE;
2563}
2564
2565static void set_zonelist_order(void)
2566{
2567	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2568		current_zonelist_order = default_zonelist_order();
2569	else
2570		current_zonelist_order = user_zonelist_order;
2571}
2572
2573static void build_zonelists(pg_data_t *pgdat)
2574{
2575	int j, node, load;
2576	enum zone_type i;
2577	nodemask_t used_mask;
2578	int local_node, prev_node;
2579	struct zonelist *zonelist;
2580	int order = current_zonelist_order;
2581
2582	/* initialize zonelists */
2583	for (i = 0; i < MAX_ZONELISTS; i++) {
2584		zonelist = pgdat->node_zonelists + i;
2585		zonelist->_zonerefs[0].zone = NULL;
2586		zonelist->_zonerefs[0].zone_idx = 0;
2587	}
2588
2589	/* NUMA-aware ordering of nodes */
2590	local_node = pgdat->node_id;
2591	load = nr_online_nodes;
2592	prev_node = local_node;
2593	nodes_clear(used_mask);
2594
2595	memset(node_order, 0, sizeof(node_order));
2596	j = 0;
2597
2598	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2599		int distance = node_distance(local_node, node);
2600
2601		/*
2602		 * If another node is sufficiently far away then it is better
2603		 * to reclaim pages in a zone before going off node.
2604		 */
2605		if (distance > RECLAIM_DISTANCE)
2606			zone_reclaim_mode = 1;
2607
2608		/*
2609		 * We don't want to pressure a particular node.
2610		 * So adding penalty to the first node in same
2611		 * distance group to make it round-robin.
2612		 */
2613		if (distance != node_distance(local_node, prev_node))
2614			node_load[node] = load;
2615
2616		prev_node = node;
2617		load--;
2618		if (order == ZONELIST_ORDER_NODE)
2619			build_zonelists_in_node_order(pgdat, node);
2620		else
2621			node_order[j++] = node;	/* remember order */
2622	}
2623
2624	if (order == ZONELIST_ORDER_ZONE) {
2625		/* calculate node order -- i.e., DMA last! */
2626		build_zonelists_in_zone_order(pgdat, j);
2627	}
2628
2629	build_thisnode_zonelists(pgdat);
2630}
2631
2632/* Construct the zonelist performance cache - see further mmzone.h */
2633static void build_zonelist_cache(pg_data_t *pgdat)
2634{
2635	struct zonelist *zonelist;
2636	struct zonelist_cache *zlc;
2637	struct zoneref *z;
2638
2639	zonelist = &pgdat->node_zonelists[0];
2640	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2641	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2642	for (z = zonelist->_zonerefs; z->zone; z++)
2643		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2644}
2645
2646
2647#else	/* CONFIG_NUMA */
2648
2649static void set_zonelist_order(void)
2650{
2651	current_zonelist_order = ZONELIST_ORDER_ZONE;
2652}
2653
2654static void build_zonelists(pg_data_t *pgdat)
2655{
2656	int node, local_node;
2657	enum zone_type j;
2658	struct zonelist *zonelist;
2659
2660	local_node = pgdat->node_id;
2661
2662	zonelist = &pgdat->node_zonelists[0];
2663	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2664
2665	/*
2666	 * Now we build the zonelist so that it contains the zones
2667	 * of all the other nodes.
2668	 * We don't want to pressure a particular node, so when
2669	 * building the zones for node N, we make sure that the
2670	 * zones coming right after the local ones are those from
2671	 * node N+1 (modulo N)
2672	 */
2673	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2674		if (!node_online(node))
2675			continue;
2676		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2677							MAX_NR_ZONES - 1);
2678	}
2679	for (node = 0; node < local_node; node++) {
2680		if (!node_online(node))
2681			continue;
2682		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2683							MAX_NR_ZONES - 1);
2684	}
2685
2686	zonelist->_zonerefs[j].zone = NULL;
2687	zonelist->_zonerefs[j].zone_idx = 0;
2688}
2689
2690/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2691static void build_zonelist_cache(pg_data_t *pgdat)
2692{
2693	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2694}
2695
2696#endif	/* CONFIG_NUMA */
2697
2698/* return values int ....just for stop_machine() */
2699static int __build_all_zonelists(void *dummy)
2700{
2701	int nid;
2702
2703#ifdef CONFIG_NUMA
2704	memset(node_load, 0, sizeof(node_load));
2705#endif
2706	for_each_online_node(nid) {
2707		pg_data_t *pgdat = NODE_DATA(nid);
2708
2709		build_zonelists(pgdat);
2710		build_zonelist_cache(pgdat);
2711	}
2712	return 0;
2713}
2714
2715void build_all_zonelists(void)
2716{
2717	set_zonelist_order();
2718
2719	if (system_state == SYSTEM_BOOTING) {
2720		__build_all_zonelists(NULL);
2721		mminit_verify_zonelist();
2722		cpuset_init_current_mems_allowed();
2723	} else {
2724		/* we have to stop all cpus to guarantee there is no user
2725		   of zonelist */
2726		stop_machine(__build_all_zonelists, NULL, NULL);
2727		/* cpuset refresh routine should be here */
2728	}
2729	vm_total_pages = nr_free_pagecache_pages();
2730	/*
2731	 * Disable grouping by mobility if the number of pages in the
2732	 * system is too low to allow the mechanism to work. It would be
2733	 * more accurate, but expensive to check per-zone. This check is
2734	 * made on memory-hotadd so a system can start with mobility
2735	 * disabled and enable it later
2736	 */
2737	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2738		page_group_by_mobility_disabled = 1;
2739	else
2740		page_group_by_mobility_disabled = 0;
2741
2742	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2743		"Total pages: %ld\n",
2744			nr_online_nodes,
2745			zonelist_order_name[current_zonelist_order],
2746			page_group_by_mobility_disabled ? "off" : "on",
2747			vm_total_pages);
2748#ifdef CONFIG_NUMA
2749	printk("Policy zone: %s\n", zone_names[policy_zone]);
2750#endif
2751}
2752
2753/*
2754 * Helper functions to size the waitqueue hash table.
2755 * Essentially these want to choose hash table sizes sufficiently
2756 * large so that collisions trying to wait on pages are rare.
2757 * But in fact, the number of active page waitqueues on typical
2758 * systems is ridiculously low, less than 200. So this is even
2759 * conservative, even though it seems large.
2760 *
2761 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2762 * waitqueues, i.e. the size of the waitq table given the number of pages.
2763 */
2764#define PAGES_PER_WAITQUEUE	256
2765
2766#ifndef CONFIG_MEMORY_HOTPLUG
2767static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2768{
2769	unsigned long size = 1;
2770
2771	pages /= PAGES_PER_WAITQUEUE;
2772
2773	while (size < pages)
2774		size <<= 1;
2775
2776	/*
2777	 * Once we have dozens or even hundreds of threads sleeping
2778	 * on IO we've got bigger problems than wait queue collision.
2779	 * Limit the size of the wait table to a reasonable size.
2780	 */
2781	size = min(size, 4096UL);
2782
2783	return max(size, 4UL);
2784}
2785#else
2786/*
2787 * A zone's size might be changed by hot-add, so it is not possible to determine
2788 * a suitable size for its wait_table.  So we use the maximum size now.
2789 *
2790 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2791 *
2792 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2793 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2794 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2795 *
2796 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2797 * or more by the traditional way. (See above).  It equals:
2798 *
2799 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2800 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2801 *    powerpc (64K page size)             : =  (32G +16M)byte.
2802 */
2803static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2804{
2805	return 4096UL;
2806}
2807#endif
2808
2809/*
2810 * This is an integer logarithm so that shifts can be used later
2811 * to extract the more random high bits from the multiplicative
2812 * hash function before the remainder is taken.
2813 */
2814static inline unsigned long wait_table_bits(unsigned long size)
2815{
2816	return ffz(~size);
2817}
2818
2819#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2820
2821/*
2822 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2823 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2824 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2825 * higher will lead to a bigger reserve which will get freed as contiguous
2826 * blocks as reclaim kicks in
2827 */
2828static void setup_zone_migrate_reserve(struct zone *zone)
2829{
2830	unsigned long start_pfn, pfn, end_pfn;
2831	struct page *page;
2832	unsigned long reserve, block_migratetype;
2833
2834	/* Get the start pfn, end pfn and the number of blocks to reserve */
2835	start_pfn = zone->zone_start_pfn;
2836	end_pfn = start_pfn + zone->spanned_pages;
2837	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2838							pageblock_order;
2839
2840	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2841		if (!pfn_valid(pfn))
2842			continue;
2843		page = pfn_to_page(pfn);
2844
2845		/* Watch out for overlapping nodes */
2846		if (page_to_nid(page) != zone_to_nid(zone))
2847			continue;
2848
2849		/* Blocks with reserved pages will never free, skip them. */
2850		if (PageReserved(page))
2851			continue;
2852
2853		block_migratetype = get_pageblock_migratetype(page);
2854
2855		/* If this block is reserved, account for it */
2856		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2857			reserve--;
2858			continue;
2859		}
2860
2861		/* Suitable for reserving if this block is movable */
2862		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2863			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2864			move_freepages_block(zone, page, MIGRATE_RESERVE);
2865			reserve--;
2866			continue;
2867		}
2868
2869		/*
2870		 * If the reserve is met and this is a previous reserved block,
2871		 * take it back
2872		 */
2873		if (block_migratetype == MIGRATE_RESERVE) {
2874			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2875			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2876		}
2877	}
2878}
2879
2880/*
2881 * Initially all pages are reserved - free ones are freed
2882 * up by free_all_bootmem() once the early boot process is
2883 * done. Non-atomic initialization, single-pass.
2884 */
2885void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2886		unsigned long start_pfn, enum memmap_context context)
2887{
2888	struct page *page;
2889	unsigned long end_pfn = start_pfn + size;
2890	unsigned long pfn;
2891	struct zone *z;
2892
2893	if (highest_memmap_pfn < end_pfn - 1)
2894		highest_memmap_pfn = end_pfn - 1;
2895
2896	z = &NODE_DATA(nid)->node_zones[zone];
2897	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2898		/*
2899		 * There can be holes in boot-time mem_map[]s
2900		 * handed to this function.  They do not
2901		 * exist on hotplugged memory.
2902		 */
2903		if (context == MEMMAP_EARLY) {
2904			if (!early_pfn_valid(pfn))
2905				continue;
2906			if (!early_pfn_in_nid(pfn, nid))
2907				continue;
2908		}
2909		page = pfn_to_page(pfn);
2910		set_page_links(page, zone, nid, pfn);
2911		mminit_verify_page_links(page, zone, nid, pfn);
2912		init_page_count(page);
2913		reset_page_mapcount(page);
2914		SetPageReserved(page);
2915		/*
2916		 * Mark the block movable so that blocks are reserved for
2917		 * movable at startup. This will force kernel allocations
2918		 * to reserve their blocks rather than leaking throughout
2919		 * the address space during boot when many long-lived
2920		 * kernel allocations are made. Later some blocks near
2921		 * the start are marked MIGRATE_RESERVE by
2922		 * setup_zone_migrate_reserve()
2923		 *
2924		 * bitmap is created for zone's valid pfn range. but memmap
2925		 * can be created for invalid pages (for alignment)
2926		 * check here not to call set_pageblock_migratetype() against
2927		 * pfn out of zone.
2928		 */
2929		if ((z->zone_start_pfn <= pfn)
2930		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2931		    && !(pfn & (pageblock_nr_pages - 1)))
2932			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2933
2934		INIT_LIST_HEAD(&page->lru);
2935#ifdef WANT_PAGE_VIRTUAL
2936		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2937		if (!is_highmem_idx(zone))
2938			set_page_address(page, __va(pfn << PAGE_SHIFT));
2939#endif
2940	}
2941}
2942
2943static void __meminit zone_init_free_lists(struct zone *zone)
2944{
2945	int order, t;
2946	for_each_migratetype_order(order, t) {
2947		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2948		zone->free_area[order].nr_free = 0;
2949	}
2950}
2951
2952#ifndef __HAVE_ARCH_MEMMAP_INIT
2953#define memmap_init(size, nid, zone, start_pfn) \
2954	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2955#endif
2956
2957static int zone_batchsize(struct zone *zone)
2958{
2959#ifdef CONFIG_MMU
2960	int batch;
2961
2962	/*
2963	 * The per-cpu-pages pools are set to around 1000th of the
2964	 * size of the zone.  But no more than 1/2 of a meg.
2965	 *
2966	 * OK, so we don't know how big the cache is.  So guess.
2967	 */
2968	batch = zone->present_pages / 1024;
2969	if (batch * PAGE_SIZE > 512 * 1024)
2970		batch = (512 * 1024) / PAGE_SIZE;
2971	batch /= 4;		/* We effectively *= 4 below */
2972	if (batch < 1)
2973		batch = 1;
2974
2975	/*
2976	 * Clamp the batch to a 2^n - 1 value. Having a power
2977	 * of 2 value was found to be more likely to have
2978	 * suboptimal cache aliasing properties in some cases.
2979	 *
2980	 * For example if 2 tasks are alternately allocating
2981	 * batches of pages, one task can end up with a lot
2982	 * of pages of one half of the possible page colors
2983	 * and the other with pages of the other colors.
2984	 */
2985	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2986
2987	return batch;
2988
2989#else
2990	/* The deferral and batching of frees should be suppressed under NOMMU
2991	 * conditions.
2992	 *
2993	 * The problem is that NOMMU needs to be able to allocate large chunks
2994	 * of contiguous memory as there's no hardware page translation to
2995	 * assemble apparent contiguous memory from discontiguous pages.
2996	 *
2997	 * Queueing large contiguous runs of pages for batching, however,
2998	 * causes the pages to actually be freed in smaller chunks.  As there
2999	 * can be a significant delay between the individual batches being
3000	 * recycled, this leads to the once large chunks of space being
3001	 * fragmented and becoming unavailable for high-order allocations.
3002	 */
3003	return 0;
3004#endif
3005}
3006
3007static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3008{
3009	struct per_cpu_pages *pcp;
3010
3011	memset(p, 0, sizeof(*p));
3012
3013	pcp = &p->pcp;
3014	pcp->count = 0;
3015	pcp->high = 6 * batch;
3016	pcp->batch = max(1UL, 1 * batch);
3017	INIT_LIST_HEAD(&pcp->list);
3018}
3019
3020/*
3021 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3022 * to the value high for the pageset p.
3023 */
3024
3025static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3026				unsigned long high)
3027{
3028	struct per_cpu_pages *pcp;
3029
3030	pcp = &p->pcp;
3031	pcp->high = high;
3032	pcp->batch = max(1UL, high/4);
3033	if ((high/4) > (PAGE_SHIFT * 8))
3034		pcp->batch = PAGE_SHIFT * 8;
3035}
3036
3037
3038#ifdef CONFIG_NUMA
3039/*
3040 * Boot pageset table. One per cpu which is going to be used for all
3041 * zones and all nodes. The parameters will be set in such a way
3042 * that an item put on a list will immediately be handed over to
3043 * the buddy list. This is safe since pageset manipulation is done
3044 * with interrupts disabled.
3045 *
3046 * Some NUMA counter updates may also be caught by the boot pagesets.
3047 *
3048 * The boot_pagesets must be kept even after bootup is complete for
3049 * unused processors and/or zones. They do play a role for bootstrapping
3050 * hotplugged processors.
3051 *
3052 * zoneinfo_show() and maybe other functions do
3053 * not check if the processor is online before following the pageset pointer.
3054 * Other parts of the kernel may not check if the zone is available.
3055 */
3056static struct per_cpu_pageset boot_pageset[NR_CPUS];
3057
3058/*
3059 * Dynamically allocate memory for the
3060 * per cpu pageset array in struct zone.
3061 */
3062static int __cpuinit process_zones(int cpu)
3063{
3064	struct zone *zone, *dzone;
3065	int node = cpu_to_node(cpu);
3066
3067	node_set_state(node, N_CPU);	/* this node has a cpu */
3068
3069	for_each_populated_zone(zone) {
3070		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3071					 GFP_KERNEL, node);
3072		if (!zone_pcp(zone, cpu))
3073			goto bad;
3074
3075		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3076
3077		if (percpu_pagelist_fraction)
3078			setup_pagelist_highmark(zone_pcp(zone, cpu),
3079			 	(zone->present_pages / percpu_pagelist_fraction));
3080	}
3081
3082	return 0;
3083bad:
3084	for_each_zone(dzone) {
3085		if (!populated_zone(dzone))
3086			continue;
3087		if (dzone == zone)
3088			break;
3089		kfree(zone_pcp(dzone, cpu));
3090		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3091	}
3092	return -ENOMEM;
3093}
3094
3095static inline void free_zone_pagesets(int cpu)
3096{
3097	struct zone *zone;
3098
3099	for_each_zone(zone) {
3100		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3101
3102		/* Free per_cpu_pageset if it is slab allocated */
3103		if (pset != &boot_pageset[cpu])
3104			kfree(pset);
3105		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3106	}
3107}
3108
3109static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3110		unsigned long action,
3111		void *hcpu)
3112{
3113	int cpu = (long)hcpu;
3114	int ret = NOTIFY_OK;
3115
3116	switch (action) {
3117	case CPU_UP_PREPARE:
3118	case CPU_UP_PREPARE_FROZEN:
3119		if (process_zones(cpu))
3120			ret = NOTIFY_BAD;
3121		break;
3122	case CPU_UP_CANCELED:
3123	case CPU_UP_CANCELED_FROZEN:
3124	case CPU_DEAD:
3125	case CPU_DEAD_FROZEN:
3126		free_zone_pagesets(cpu);
3127		break;
3128	default:
3129		break;
3130	}
3131	return ret;
3132}
3133
3134static struct notifier_block __cpuinitdata pageset_notifier =
3135	{ &pageset_cpuup_callback, NULL, 0 };
3136
3137void __init setup_per_cpu_pageset(void)
3138{
3139	int err;
3140
3141	/* Initialize per_cpu_pageset for cpu 0.
3142	 * A cpuup callback will do this for every cpu
3143	 * as it comes online
3144	 */
3145	err = process_zones(smp_processor_id());
3146	BUG_ON(err);
3147	register_cpu_notifier(&pageset_notifier);
3148}
3149
3150#endif
3151
3152static noinline __init_refok
3153int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3154{
3155	int i;
3156	struct pglist_data *pgdat = zone->zone_pgdat;
3157	size_t alloc_size;
3158
3159	/*
3160	 * The per-page waitqueue mechanism uses hashed waitqueues
3161	 * per zone.
3162	 */
3163	zone->wait_table_hash_nr_entries =
3164		 wait_table_hash_nr_entries(zone_size_pages);
3165	zone->wait_table_bits =
3166		wait_table_bits(zone->wait_table_hash_nr_entries);
3167	alloc_size = zone->wait_table_hash_nr_entries
3168					* sizeof(wait_queue_head_t);
3169
3170	if (!slab_is_available()) {
3171		zone->wait_table = (wait_queue_head_t *)
3172			alloc_bootmem_node(pgdat, alloc_size);
3173	} else {
3174		/*
3175		 * This case means that a zone whose size was 0 gets new memory
3176		 * via memory hot-add.
3177		 * But it may be the case that a new node was hot-added.  In
3178		 * this case vmalloc() will not be able to use this new node's
3179		 * memory - this wait_table must be initialized to use this new
3180		 * node itself as well.
3181		 * To use this new node's memory, further consideration will be
3182		 * necessary.
3183		 */
3184		zone->wait_table = vmalloc(alloc_size);
3185	}
3186	if (!zone->wait_table)
3187		return -ENOMEM;
3188
3189	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3190		init_waitqueue_head(zone->wait_table + i);
3191
3192	return 0;
3193}
3194
3195static int __zone_pcp_update(void *data)
3196{
3197	struct zone *zone = data;
3198	int cpu;
3199	unsigned long batch = zone_batchsize(zone), flags;
3200
3201	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3202		struct per_cpu_pageset *pset;
3203		struct per_cpu_pages *pcp;
3204
3205		pset = zone_pcp(zone, cpu);
3206		pcp = &pset->pcp;
3207
3208		local_irq_save(flags);
3209		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3210		setup_pageset(pset, batch);
3211		local_irq_restore(flags);
3212	}
3213	return 0;
3214}
3215
3216void zone_pcp_update(struct zone *zone)
3217{
3218	stop_machine(__zone_pcp_update, zone, NULL);
3219}
3220
3221static __meminit void zone_pcp_init(struct zone *zone)
3222{
3223	int cpu;
3224	unsigned long batch = zone_batchsize(zone);
3225
3226	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3227#ifdef CONFIG_NUMA
3228		/* Early boot. Slab allocator not functional yet */
3229		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3230		setup_pageset(&boot_pageset[cpu],0);
3231#else
3232		setup_pageset(zone_pcp(zone,cpu), batch);
3233#endif
3234	}
3235	if (zone->present_pages)
3236		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3237			zone->name, zone->present_pages, batch);
3238}
3239
3240__meminit int init_currently_empty_zone(struct zone *zone,
3241					unsigned long zone_start_pfn,
3242					unsigned long size,
3243					enum memmap_context context)
3244{
3245	struct pglist_data *pgdat = zone->zone_pgdat;
3246	int ret;
3247	ret = zone_wait_table_init(zone, size);
3248	if (ret)
3249		return ret;
3250	pgdat->nr_zones = zone_idx(zone) + 1;
3251
3252	zone->zone_start_pfn = zone_start_pfn;
3253
3254	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3255			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3256			pgdat->node_id,
3257			(unsigned long)zone_idx(zone),
3258			zone_start_pfn, (zone_start_pfn + size));
3259
3260	zone_init_free_lists(zone);
3261
3262	return 0;
3263}
3264
3265#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3266/*
3267 * Basic iterator support. Return the first range of PFNs for a node
3268 * Note: nid == MAX_NUMNODES returns first region regardless of node
3269 */
3270static int __meminit first_active_region_index_in_nid(int nid)
3271{
3272	int i;
3273
3274	for (i = 0; i < nr_nodemap_entries; i++)
3275		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3276			return i;
3277
3278	return -1;
3279}
3280
3281/*
3282 * Basic iterator support. Return the next active range of PFNs for a node
3283 * Note: nid == MAX_NUMNODES returns next region regardless of node
3284 */
3285static int __meminit next_active_region_index_in_nid(int index, int nid)
3286{
3287	for (index = index + 1; index < nr_nodemap_entries; index++)
3288		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3289			return index;
3290
3291	return -1;
3292}
3293
3294#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3295/*
3296 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3297 * Architectures may implement their own version but if add_active_range()
3298 * was used and there are no special requirements, this is a convenient
3299 * alternative
3300 */
3301int __meminit __early_pfn_to_nid(unsigned long pfn)
3302{
3303	int i;
3304
3305	for (i = 0; i < nr_nodemap_entries; i++) {
3306		unsigned long start_pfn = early_node_map[i].start_pfn;
3307		unsigned long end_pfn = early_node_map[i].end_pfn;
3308
3309		if (start_pfn <= pfn && pfn < end_pfn)
3310			return early_node_map[i].nid;
3311	}
3312	/* This is a memory hole */
3313	return -1;
3314}
3315#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3316
3317int __meminit early_pfn_to_nid(unsigned long pfn)
3318{
3319	int nid;
3320
3321	nid = __early_pfn_to_nid(pfn);
3322	if (nid >= 0)
3323		return nid;
3324	/* just returns 0 */
3325	return 0;
3326}
3327
3328#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3329bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3330{
3331	int nid;
3332
3333	nid = __early_pfn_to_nid(pfn);
3334	if (nid >= 0 && nid != node)
3335		return false;
3336	return true;
3337}
3338#endif
3339
3340/* Basic iterator support to walk early_node_map[] */
3341#define for_each_active_range_index_in_nid(i, nid) \
3342	for (i = first_active_region_index_in_nid(nid); i != -1; \
3343				i = next_active_region_index_in_nid(i, nid))
3344
3345/**
3346 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3347 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3348 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3349 *
3350 * If an architecture guarantees that all ranges registered with
3351 * add_active_ranges() contain no holes and may be freed, this
3352 * this function may be used instead of calling free_bootmem() manually.
3353 */
3354void __init free_bootmem_with_active_regions(int nid,
3355						unsigned long max_low_pfn)
3356{
3357	int i;
3358
3359	for_each_active_range_index_in_nid(i, nid) {
3360		unsigned long size_pages = 0;
3361		unsigned long end_pfn = early_node_map[i].end_pfn;
3362
3363		if (early_node_map[i].start_pfn >= max_low_pfn)
3364			continue;
3365
3366		if (end_pfn > max_low_pfn)
3367			end_pfn = max_low_pfn;
3368
3369		size_pages = end_pfn - early_node_map[i].start_pfn;
3370		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3371				PFN_PHYS(early_node_map[i].start_pfn),
3372				size_pages << PAGE_SHIFT);
3373	}
3374}
3375
3376void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3377{
3378	int i;
3379	int ret;
3380
3381	for_each_active_range_index_in_nid(i, nid) {
3382		ret = work_fn(early_node_map[i].start_pfn,
3383			      early_node_map[i].end_pfn, data);
3384		if (ret)
3385			break;
3386	}
3387}
3388/**
3389 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3390 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3391 *
3392 * If an architecture guarantees that all ranges registered with
3393 * add_active_ranges() contain no holes and may be freed, this
3394 * function may be used instead of calling memory_present() manually.
3395 */
3396void __init sparse_memory_present_with_active_regions(int nid)
3397{
3398	int i;
3399
3400	for_each_active_range_index_in_nid(i, nid)
3401		memory_present(early_node_map[i].nid,
3402				early_node_map[i].start_pfn,
3403				early_node_map[i].end_pfn);
3404}
3405
3406/**
3407 * get_pfn_range_for_nid - Return the start and end page frames for a node
3408 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3409 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3410 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3411 *
3412 * It returns the start and end page frame of a node based on information
3413 * provided by an arch calling add_active_range(). If called for a node
3414 * with no available memory, a warning is printed and the start and end
3415 * PFNs will be 0.
3416 */
3417void __meminit get_pfn_range_for_nid(unsigned int nid,
3418			unsigned long *start_pfn, unsigned long *end_pfn)
3419{
3420	int i;
3421	*start_pfn = -1UL;
3422	*end_pfn = 0;
3423
3424	for_each_active_range_index_in_nid(i, nid) {
3425		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3426		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3427	}
3428
3429	if (*start_pfn == -1UL)
3430		*start_pfn = 0;
3431}
3432
3433/*
3434 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3435 * assumption is made that zones within a node are ordered in monotonic
3436 * increasing memory addresses so that the "highest" populated zone is used
3437 */
3438static void __init find_usable_zone_for_movable(void)
3439{
3440	int zone_index;
3441	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3442		if (zone_index == ZONE_MOVABLE)
3443			continue;
3444
3445		if (arch_zone_highest_possible_pfn[zone_index] >
3446				arch_zone_lowest_possible_pfn[zone_index])
3447			break;
3448	}
3449
3450	VM_BUG_ON(zone_index == -1);
3451	movable_zone = zone_index;
3452}
3453
3454/*
3455 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3456 * because it is sized independant of architecture. Unlike the other zones,
3457 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3458 * in each node depending on the size of each node and how evenly kernelcore
3459 * is distributed. This helper function adjusts the zone ranges
3460 * provided by the architecture for a given node by using the end of the
3461 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3462 * zones within a node are in order of monotonic increases memory addresses
3463 */
3464static void __meminit adjust_zone_range_for_zone_movable(int nid,
3465					unsigned long zone_type,
3466					unsigned long node_start_pfn,
3467					unsigned long node_end_pfn,
3468					unsigned long *zone_start_pfn,
3469					unsigned long *zone_end_pfn)
3470{
3471	/* Only adjust if ZONE_MOVABLE is on this node */
3472	if (zone_movable_pfn[nid]) {
3473		/* Size ZONE_MOVABLE */
3474		if (zone_type == ZONE_MOVABLE) {
3475			*zone_start_pfn = zone_movable_pfn[nid];
3476			*zone_end_pfn = min(node_end_pfn,
3477				arch_zone_highest_possible_pfn[movable_zone]);
3478
3479		/* Adjust for ZONE_MOVABLE starting within this range */
3480		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3481				*zone_end_pfn > zone_movable_pfn[nid]) {
3482			*zone_end_pfn = zone_movable_pfn[nid];
3483
3484		/* Check if this whole range is within ZONE_MOVABLE */
3485		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3486			*zone_start_pfn = *zone_end_pfn;
3487	}
3488}
3489
3490/*
3491 * Return the number of pages a zone spans in a node, including holes
3492 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3493 */
3494static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3495					unsigned long zone_type,
3496					unsigned long *ignored)
3497{
3498	unsigned long node_start_pfn, node_end_pfn;
3499	unsigned long zone_start_pfn, zone_end_pfn;
3500
3501	/* Get the start and end of the node and zone */
3502	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3503	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3504	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3505	adjust_zone_range_for_zone_movable(nid, zone_type,
3506				node_start_pfn, node_end_pfn,
3507				&zone_start_pfn, &zone_end_pfn);
3508
3509	/* Check that this node has pages within the zone's required range */
3510	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3511		return 0;
3512
3513	/* Move the zone boundaries inside the node if necessary */
3514	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3515	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3516
3517	/* Return the spanned pages */
3518	return zone_end_pfn - zone_start_pfn;
3519}
3520
3521/*
3522 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3523 * then all holes in the requested range will be accounted for.
3524 */
3525static unsigned long __meminit __absent_pages_in_range(int nid,
3526				unsigned long range_start_pfn,
3527				unsigned long range_end_pfn)
3528{
3529	int i = 0;
3530	unsigned long prev_end_pfn = 0, hole_pages = 0;
3531	unsigned long start_pfn;
3532
3533	/* Find the end_pfn of the first active range of pfns in the node */
3534	i = first_active_region_index_in_nid(nid);
3535	if (i == -1)
3536		return 0;
3537
3538	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3539
3540	/* Account for ranges before physical memory on this node */
3541	if (early_node_map[i].start_pfn > range_start_pfn)
3542		hole_pages = prev_end_pfn - range_start_pfn;
3543
3544	/* Find all holes for the zone within the node */
3545	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3546
3547		/* No need to continue if prev_end_pfn is outside the zone */
3548		if (prev_end_pfn >= range_end_pfn)
3549			break;
3550
3551		/* Make sure the end of the zone is not within the hole */
3552		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3553		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3554
3555		/* Update the hole size cound and move on */
3556		if (start_pfn > range_start_pfn) {
3557			BUG_ON(prev_end_pfn > start_pfn);
3558			hole_pages += start_pfn - prev_end_pfn;
3559		}
3560		prev_end_pfn = early_node_map[i].end_pfn;
3561	}
3562
3563	/* Account for ranges past physical memory on this node */
3564	if (range_end_pfn > prev_end_pfn)
3565		hole_pages += range_end_pfn -
3566				max(range_start_pfn, prev_end_pfn);
3567
3568	return hole_pages;
3569}
3570
3571/**
3572 * absent_pages_in_range - Return number of page frames in holes within a range
3573 * @start_pfn: The start PFN to start searching for holes
3574 * @end_pfn: The end PFN to stop searching for holes
3575 *
3576 * It returns the number of pages frames in memory holes within a range.
3577 */
3578unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3579							unsigned long end_pfn)
3580{
3581	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3582}
3583
3584/* Return the number of page frames in holes in a zone on a node */
3585static unsigned long __meminit zone_absent_pages_in_node(int nid,
3586					unsigned long zone_type,
3587					unsigned long *ignored)
3588{
3589	unsigned long node_start_pfn, node_end_pfn;
3590	unsigned long zone_start_pfn, zone_end_pfn;
3591
3592	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3593	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3594							node_start_pfn);
3595	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3596							node_end_pfn);
3597
3598	adjust_zone_range_for_zone_movable(nid, zone_type,
3599			node_start_pfn, node_end_pfn,
3600			&zone_start_pfn, &zone_end_pfn);
3601	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3602}
3603
3604#else
3605static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3606					unsigned long zone_type,
3607					unsigned long *zones_size)
3608{
3609	return zones_size[zone_type];
3610}
3611
3612static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3613						unsigned long zone_type,
3614						unsigned long *zholes_size)
3615{
3616	if (!zholes_size)
3617		return 0;
3618
3619	return zholes_size[zone_type];
3620}
3621
3622#endif
3623
3624static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3625		unsigned long *zones_size, unsigned long *zholes_size)
3626{
3627	unsigned long realtotalpages, totalpages = 0;
3628	enum zone_type i;
3629
3630	for (i = 0; i < MAX_NR_ZONES; i++)
3631		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3632								zones_size);
3633	pgdat->node_spanned_pages = totalpages;
3634
3635	realtotalpages = totalpages;
3636	for (i = 0; i < MAX_NR_ZONES; i++)
3637		realtotalpages -=
3638			zone_absent_pages_in_node(pgdat->node_id, i,
3639								zholes_size);
3640	pgdat->node_present_pages = realtotalpages;
3641	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3642							realtotalpages);
3643}
3644
3645#ifndef CONFIG_SPARSEMEM
3646/*
3647 * Calculate the size of the zone->blockflags rounded to an unsigned long
3648 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3649 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3650 * round what is now in bits to nearest long in bits, then return it in
3651 * bytes.
3652 */
3653static unsigned long __init usemap_size(unsigned long zonesize)
3654{
3655	unsigned long usemapsize;
3656
3657	usemapsize = roundup(zonesize, pageblock_nr_pages);
3658	usemapsize = usemapsize >> pageblock_order;
3659	usemapsize *= NR_PAGEBLOCK_BITS;
3660	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3661
3662	return usemapsize / 8;
3663}
3664
3665static void __init setup_usemap(struct pglist_data *pgdat,
3666				struct zone *zone, unsigned long zonesize)
3667{
3668	unsigned long usemapsize = usemap_size(zonesize);
3669	zone->pageblock_flags = NULL;
3670	if (usemapsize)
3671		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3672}
3673#else
3674static void inline setup_usemap(struct pglist_data *pgdat,
3675				struct zone *zone, unsigned long zonesize) {}
3676#endif /* CONFIG_SPARSEMEM */
3677
3678#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3679
3680/* Return a sensible default order for the pageblock size. */
3681static inline int pageblock_default_order(void)
3682{
3683	if (HPAGE_SHIFT > PAGE_SHIFT)
3684		return HUGETLB_PAGE_ORDER;
3685
3686	return MAX_ORDER-1;
3687}
3688
3689/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3690static inline void __init set_pageblock_order(unsigned int order)
3691{
3692	/* Check that pageblock_nr_pages has not already been setup */
3693	if (pageblock_order)
3694		return;
3695
3696	/*
3697	 * Assume the largest contiguous order of interest is a huge page.
3698	 * This value may be variable depending on boot parameters on IA64
3699	 */
3700	pageblock_order = order;
3701}
3702#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3703
3704/*
3705 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3706 * and pageblock_default_order() are unused as pageblock_order is set
3707 * at compile-time. See include/linux/pageblock-flags.h for the values of
3708 * pageblock_order based on the kernel config
3709 */
3710static inline int pageblock_default_order(unsigned int order)
3711{
3712	return MAX_ORDER-1;
3713}
3714#define set_pageblock_order(x)	do {} while (0)
3715
3716#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3717
3718/*
3719 * Set up the zone data structures:
3720 *   - mark all pages reserved
3721 *   - mark all memory queues empty
3722 *   - clear the memory bitmaps
3723 */
3724static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3725		unsigned long *zones_size, unsigned long *zholes_size)
3726{
3727	enum zone_type j;
3728	int nid = pgdat->node_id;
3729	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3730	int ret;
3731
3732	pgdat_resize_init(pgdat);
3733	pgdat->nr_zones = 0;
3734	init_waitqueue_head(&pgdat->kswapd_wait);
3735	pgdat->kswapd_max_order = 0;
3736	pgdat_page_cgroup_init(pgdat);
3737
3738	for (j = 0; j < MAX_NR_ZONES; j++) {
3739		struct zone *zone = pgdat->node_zones + j;
3740		unsigned long size, realsize, memmap_pages;
3741		enum lru_list l;
3742
3743		size = zone_spanned_pages_in_node(nid, j, zones_size);
3744		realsize = size - zone_absent_pages_in_node(nid, j,
3745								zholes_size);
3746
3747		/*
3748		 * Adjust realsize so that it accounts for how much memory
3749		 * is used by this zone for memmap. This affects the watermark
3750		 * and per-cpu initialisations
3751		 */
3752		memmap_pages =
3753			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3754		if (realsize >= memmap_pages) {
3755			realsize -= memmap_pages;
3756			if (memmap_pages)
3757				printk(KERN_DEBUG
3758				       "  %s zone: %lu pages used for memmap\n",
3759				       zone_names[j], memmap_pages);
3760		} else
3761			printk(KERN_WARNING
3762				"  %s zone: %lu pages exceeds realsize %lu\n",
3763				zone_names[j], memmap_pages, realsize);
3764
3765		/* Account for reserved pages */
3766		if (j == 0 && realsize > dma_reserve) {
3767			realsize -= dma_reserve;
3768			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3769					zone_names[0], dma_reserve);
3770		}
3771
3772		if (!is_highmem_idx(j))
3773			nr_kernel_pages += realsize;
3774		nr_all_pages += realsize;
3775
3776		zone->spanned_pages = size;
3777		zone->present_pages = realsize;
3778#ifdef CONFIG_NUMA
3779		zone->node = nid;
3780		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3781						/ 100;
3782		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3783#endif
3784		zone->name = zone_names[j];
3785		spin_lock_init(&zone->lock);
3786		spin_lock_init(&zone->lru_lock);
3787		zone_seqlock_init(zone);
3788		zone->zone_pgdat = pgdat;
3789
3790		zone->prev_priority = DEF_PRIORITY;
3791
3792		zone_pcp_init(zone);
3793		for_each_lru(l) {
3794			INIT_LIST_HEAD(&zone->lru[l].list);
3795			zone->lru[l].nr_saved_scan = 0;
3796		}
3797		zone->reclaim_stat.recent_rotated[0] = 0;
3798		zone->reclaim_stat.recent_rotated[1] = 0;
3799		zone->reclaim_stat.recent_scanned[0] = 0;
3800		zone->reclaim_stat.recent_scanned[1] = 0;
3801		zap_zone_vm_stats(zone);
3802		zone->flags = 0;
3803		if (!size)
3804			continue;
3805
3806		set_pageblock_order(pageblock_default_order());
3807		setup_usemap(pgdat, zone, size);
3808		ret = init_currently_empty_zone(zone, zone_start_pfn,
3809						size, MEMMAP_EARLY);
3810		BUG_ON(ret);
3811		memmap_init(size, nid, j, zone_start_pfn);
3812		zone_start_pfn += size;
3813	}
3814}
3815
3816static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3817{
3818	/* Skip empty nodes */
3819	if (!pgdat->node_spanned_pages)
3820		return;
3821
3822#ifdef CONFIG_FLAT_NODE_MEM_MAP
3823	/* ia64 gets its own node_mem_map, before this, without bootmem */
3824	if (!pgdat->node_mem_map) {
3825		unsigned long size, start, end;
3826		struct page *map;
3827
3828		/*
3829		 * The zone's endpoints aren't required to be MAX_ORDER
3830		 * aligned but the node_mem_map endpoints must be in order
3831		 * for the buddy allocator to function correctly.
3832		 */
3833		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3834		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3835		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3836		size =  (end - start) * sizeof(struct page);
3837		map = alloc_remap(pgdat->node_id, size);
3838		if (!map)
3839			map = alloc_bootmem_node(pgdat, size);
3840		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3841	}
3842#ifndef CONFIG_NEED_MULTIPLE_NODES
3843	/*
3844	 * With no DISCONTIG, the global mem_map is just set as node 0's
3845	 */
3846	if (pgdat == NODE_DATA(0)) {
3847		mem_map = NODE_DATA(0)->node_mem_map;
3848#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3849		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3850			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3851#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3852	}
3853#endif
3854#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3855}
3856
3857void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3858		unsigned long node_start_pfn, unsigned long *zholes_size)
3859{
3860	pg_data_t *pgdat = NODE_DATA(nid);
3861
3862	pgdat->node_id = nid;
3863	pgdat->node_start_pfn = node_start_pfn;
3864	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3865
3866	alloc_node_mem_map(pgdat);
3867#ifdef CONFIG_FLAT_NODE_MEM_MAP
3868	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3869		nid, (unsigned long)pgdat,
3870		(unsigned long)pgdat->node_mem_map);
3871#endif
3872
3873	free_area_init_core(pgdat, zones_size, zholes_size);
3874}
3875
3876#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3877
3878#if MAX_NUMNODES > 1
3879/*
3880 * Figure out the number of possible node ids.
3881 */
3882static void __init setup_nr_node_ids(void)
3883{
3884	unsigned int node;
3885	unsigned int highest = 0;
3886
3887	for_each_node_mask(node, node_possible_map)
3888		highest = node;
3889	nr_node_ids = highest + 1;
3890}
3891#else
3892static inline void setup_nr_node_ids(void)
3893{
3894}
3895#endif
3896
3897/**
3898 * add_active_range - Register a range of PFNs backed by physical memory
3899 * @nid: The node ID the range resides on
3900 * @start_pfn: The start PFN of the available physical memory
3901 * @end_pfn: The end PFN of the available physical memory
3902 *
3903 * These ranges are stored in an early_node_map[] and later used by
3904 * free_area_init_nodes() to calculate zone sizes and holes. If the
3905 * range spans a memory hole, it is up to the architecture to ensure
3906 * the memory is not freed by the bootmem allocator. If possible
3907 * the range being registered will be merged with existing ranges.
3908 */
3909void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3910						unsigned long end_pfn)
3911{
3912	int i;
3913
3914	mminit_dprintk(MMINIT_TRACE, "memory_register",
3915			"Entering add_active_range(%d, %#lx, %#lx) "
3916			"%d entries of %d used\n",
3917			nid, start_pfn, end_pfn,
3918			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3919
3920	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3921
3922	/* Merge with existing active regions if possible */
3923	for (i = 0; i < nr_nodemap_entries; i++) {
3924		if (early_node_map[i].nid != nid)
3925			continue;
3926
3927		/* Skip if an existing region covers this new one */
3928		if (start_pfn >= early_node_map[i].start_pfn &&
3929				end_pfn <= early_node_map[i].end_pfn)
3930			return;
3931
3932		/* Merge forward if suitable */
3933		if (start_pfn <= early_node_map[i].end_pfn &&
3934				end_pfn > early_node_map[i].end_pfn) {
3935			early_node_map[i].end_pfn = end_pfn;
3936			return;
3937		}
3938
3939		/* Merge backward if suitable */
3940		if (start_pfn < early_node_map[i].end_pfn &&
3941				end_pfn >= early_node_map[i].start_pfn) {
3942			early_node_map[i].start_pfn = start_pfn;
3943			return;
3944		}
3945	}
3946
3947	/* Check that early_node_map is large enough */
3948	if (i >= MAX_ACTIVE_REGIONS) {
3949		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3950							MAX_ACTIVE_REGIONS);
3951		return;
3952	}
3953
3954	early_node_map[i].nid = nid;
3955	early_node_map[i].start_pfn = start_pfn;
3956	early_node_map[i].end_pfn = end_pfn;
3957	nr_nodemap_entries = i + 1;
3958}
3959
3960/**
3961 * remove_active_range - Shrink an existing registered range of PFNs
3962 * @nid: The node id the range is on that should be shrunk
3963 * @start_pfn: The new PFN of the range
3964 * @end_pfn: The new PFN of the range
3965 *
3966 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3967 * The map is kept near the end physical page range that has already been
3968 * registered. This function allows an arch to shrink an existing registered
3969 * range.
3970 */
3971void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3972				unsigned long end_pfn)
3973{
3974	int i, j;
3975	int removed = 0;
3976
3977	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3978			  nid, start_pfn, end_pfn);
3979
3980	/* Find the old active region end and shrink */
3981	for_each_active_range_index_in_nid(i, nid) {
3982		if (early_node_map[i].start_pfn >= start_pfn &&
3983		    early_node_map[i].end_pfn <= end_pfn) {
3984			/* clear it */
3985			early_node_map[i].start_pfn = 0;
3986			early_node_map[i].end_pfn = 0;
3987			removed = 1;
3988			continue;
3989		}
3990		if (early_node_map[i].start_pfn < start_pfn &&
3991		    early_node_map[i].end_pfn > start_pfn) {
3992			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3993			early_node_map[i].end_pfn = start_pfn;
3994			if (temp_end_pfn > end_pfn)
3995				add_active_range(nid, end_pfn, temp_end_pfn);
3996			continue;
3997		}
3998		if (early_node_map[i].start_pfn >= start_pfn &&
3999		    early_node_map[i].end_pfn > end_pfn &&
4000		    early_node_map[i].start_pfn < end_pfn) {
4001			early_node_map[i].start_pfn = end_pfn;
4002			continue;
4003		}
4004	}
4005
4006	if (!removed)
4007		return;
4008
4009	/* remove the blank ones */
4010	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4011		if (early_node_map[i].nid != nid)
4012			continue;
4013		if (early_node_map[i].end_pfn)
4014			continue;
4015		/* we found it, get rid of it */
4016		for (j = i; j < nr_nodemap_entries - 1; j++)
4017			memcpy(&early_node_map[j], &early_node_map[j+1],
4018				sizeof(early_node_map[j]));
4019		j = nr_nodemap_entries - 1;
4020		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4021		nr_nodemap_entries--;
4022	}
4023}
4024
4025/**
4026 * remove_all_active_ranges - Remove all currently registered regions
4027 *
4028 * During discovery, it may be found that a table like SRAT is invalid
4029 * and an alternative discovery method must be used. This function removes
4030 * all currently registered regions.
4031 */
4032void __init remove_all_active_ranges(void)
4033{
4034	memset(early_node_map, 0, sizeof(early_node_map));
4035	nr_nodemap_entries = 0;
4036}
4037
4038/* Compare two active node_active_regions */
4039static int __init cmp_node_active_region(const void *a, const void *b)
4040{
4041	struct node_active_region *arange = (struct node_active_region *)a;
4042	struct node_active_region *brange = (struct node_active_region *)b;
4043
4044	/* Done this way to avoid overflows */
4045	if (arange->start_pfn > brange->start_pfn)
4046		return 1;
4047	if (arange->start_pfn < brange->start_pfn)
4048		return -1;
4049
4050	return 0;
4051}
4052
4053/* sort the node_map by start_pfn */
4054static void __init sort_node_map(void)
4055{
4056	sort(early_node_map, (size_t)nr_nodemap_entries,
4057			sizeof(struct node_active_region),
4058			cmp_node_active_region, NULL);
4059}
4060
4061/* Find the lowest pfn for a node */
4062static unsigned long __init find_min_pfn_for_node(int nid)
4063{
4064	int i;
4065	unsigned long min_pfn = ULONG_MAX;
4066
4067	/* Assuming a sorted map, the first range found has the starting pfn */
4068	for_each_active_range_index_in_nid(i, nid)
4069		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4070
4071	if (min_pfn == ULONG_MAX) {
4072		printk(KERN_WARNING
4073			"Could not find start_pfn for node %d\n", nid);
4074		return 0;
4075	}
4076
4077	return min_pfn;
4078}
4079
4080/**
4081 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4082 *
4083 * It returns the minimum PFN based on information provided via
4084 * add_active_range().
4085 */
4086unsigned long __init find_min_pfn_with_active_regions(void)
4087{
4088	return find_min_pfn_for_node(MAX_NUMNODES);
4089}
4090
4091/*
4092 * early_calculate_totalpages()
4093 * Sum pages in active regions for movable zone.
4094 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4095 */
4096static unsigned long __init early_calculate_totalpages(void)
4097{
4098	int i;
4099	unsigned long totalpages = 0;
4100
4101	for (i = 0; i < nr_nodemap_entries; i++) {
4102		unsigned long pages = early_node_map[i].end_pfn -
4103						early_node_map[i].start_pfn;
4104		totalpages += pages;
4105		if (pages)
4106			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4107	}
4108  	return totalpages;
4109}
4110
4111/*
4112 * Find the PFN the Movable zone begins in each node. Kernel memory
4113 * is spread evenly between nodes as long as the nodes have enough
4114 * memory. When they don't, some nodes will have more kernelcore than
4115 * others
4116 */
4117static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4118{
4119	int i, nid;
4120	unsigned long usable_startpfn;
4121	unsigned long kernelcore_node, kernelcore_remaining;
4122	/* save the state before borrow the nodemask */
4123	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4124	unsigned long totalpages = early_calculate_totalpages();
4125	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4126
4127	/*
4128	 * If movablecore was specified, calculate what size of
4129	 * kernelcore that corresponds so that memory usable for
4130	 * any allocation type is evenly spread. If both kernelcore
4131	 * and movablecore are specified, then the value of kernelcore
4132	 * will be used for required_kernelcore if it's greater than
4133	 * what movablecore would have allowed.
4134	 */
4135	if (required_movablecore) {
4136		unsigned long corepages;
4137
4138		/*
4139		 * Round-up so that ZONE_MOVABLE is at least as large as what
4140		 * was requested by the user
4141		 */
4142		required_movablecore =
4143			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4144		corepages = totalpages - required_movablecore;
4145
4146		required_kernelcore = max(required_kernelcore, corepages);
4147	}
4148
4149	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4150	if (!required_kernelcore)
4151		goto out;
4152
4153	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4154	find_usable_zone_for_movable();
4155	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4156
4157restart:
4158	/* Spread kernelcore memory as evenly as possible throughout nodes */
4159	kernelcore_node = required_kernelcore / usable_nodes;
4160	for_each_node_state(nid, N_HIGH_MEMORY) {
4161		/*
4162		 * Recalculate kernelcore_node if the division per node
4163		 * now exceeds what is necessary to satisfy the requested
4164		 * amount of memory for the kernel
4165		 */
4166		if (required_kernelcore < kernelcore_node)
4167			kernelcore_node = required_kernelcore / usable_nodes;
4168
4169		/*
4170		 * As the map is walked, we track how much memory is usable
4171		 * by the kernel using kernelcore_remaining. When it is
4172		 * 0, the rest of the node is usable by ZONE_MOVABLE
4173		 */
4174		kernelcore_remaining = kernelcore_node;
4175
4176		/* Go through each range of PFNs within this node */
4177		for_each_active_range_index_in_nid(i, nid) {
4178			unsigned long start_pfn, end_pfn;
4179			unsigned long size_pages;
4180
4181			start_pfn = max(early_node_map[i].start_pfn,
4182						zone_movable_pfn[nid]);
4183			end_pfn = early_node_map[i].end_pfn;
4184			if (start_pfn >= end_pfn)
4185				continue;
4186
4187			/* Account for what is only usable for kernelcore */
4188			if (start_pfn < usable_startpfn) {
4189				unsigned long kernel_pages;
4190				kernel_pages = min(end_pfn, usable_startpfn)
4191								- start_pfn;
4192
4193				kernelcore_remaining -= min(kernel_pages,
4194							kernelcore_remaining);
4195				required_kernelcore -= min(kernel_pages,
4196							required_kernelcore);
4197
4198				/* Continue if range is now fully accounted */
4199				if (end_pfn <= usable_startpfn) {
4200
4201					/*
4202					 * Push zone_movable_pfn to the end so
4203					 * that if we have to rebalance
4204					 * kernelcore across nodes, we will
4205					 * not double account here
4206					 */
4207					zone_movable_pfn[nid] = end_pfn;
4208					continue;
4209				}
4210				start_pfn = usable_startpfn;
4211			}
4212
4213			/*
4214			 * The usable PFN range for ZONE_MOVABLE is from
4215			 * start_pfn->end_pfn. Calculate size_pages as the
4216			 * number of pages used as kernelcore
4217			 */
4218			size_pages = end_pfn - start_pfn;
4219			if (size_pages > kernelcore_remaining)
4220				size_pages = kernelcore_remaining;
4221			zone_movable_pfn[nid] = start_pfn + size_pages;
4222
4223			/*
4224			 * Some kernelcore has been met, update counts and
4225			 * break if the kernelcore for this node has been
4226			 * satisified
4227			 */
4228			required_kernelcore -= min(required_kernelcore,
4229								size_pages);
4230			kernelcore_remaining -= size_pages;
4231			if (!kernelcore_remaining)
4232				break;
4233		}
4234	}
4235
4236	/*
4237	 * If there is still required_kernelcore, we do another pass with one
4238	 * less node in the count. This will push zone_movable_pfn[nid] further
4239	 * along on the nodes that still have memory until kernelcore is
4240	 * satisified
4241	 */
4242	usable_nodes--;
4243	if (usable_nodes && required_kernelcore > usable_nodes)
4244		goto restart;
4245
4246	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4247	for (nid = 0; nid < MAX_NUMNODES; nid++)
4248		zone_movable_pfn[nid] =
4249			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4250
4251out:
4252	/* restore the node_state */
4253	node_states[N_HIGH_MEMORY] = saved_node_state;
4254}
4255
4256/* Any regular memory on that node ? */
4257static void check_for_regular_memory(pg_data_t *pgdat)
4258{
4259#ifdef CONFIG_HIGHMEM
4260	enum zone_type zone_type;
4261
4262	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4263		struct zone *zone = &pgdat->node_zones[zone_type];
4264		if (zone->present_pages)
4265			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4266	}
4267#endif
4268}
4269
4270/**
4271 * free_area_init_nodes - Initialise all pg_data_t and zone data
4272 * @max_zone_pfn: an array of max PFNs for each zone
4273 *
4274 * This will call free_area_init_node() for each active node in the system.
4275 * Using the page ranges provided by add_active_range(), the size of each
4276 * zone in each node and their holes is calculated. If the maximum PFN
4277 * between two adjacent zones match, it is assumed that the zone is empty.
4278 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4279 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4280 * starts where the previous one ended. For example, ZONE_DMA32 starts
4281 * at arch_max_dma_pfn.
4282 */
4283void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4284{
4285	unsigned long nid;
4286	int i;
4287
4288	/* Sort early_node_map as initialisation assumes it is sorted */
4289	sort_node_map();
4290
4291	/* Record where the zone boundaries are */
4292	memset(arch_zone_lowest_possible_pfn, 0,
4293				sizeof(arch_zone_lowest_possible_pfn));
4294	memset(arch_zone_highest_possible_pfn, 0,
4295				sizeof(arch_zone_highest_possible_pfn));
4296	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4297	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4298	for (i = 1; i < MAX_NR_ZONES; i++) {
4299		if (i == ZONE_MOVABLE)
4300			continue;
4301		arch_zone_lowest_possible_pfn[i] =
4302			arch_zone_highest_possible_pfn[i-1];
4303		arch_zone_highest_possible_pfn[i] =
4304			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4305	}
4306	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4307	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4308
4309	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4310	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4311	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4312
4313	/* Print out the zone ranges */
4314	printk("Zone PFN ranges:\n");
4315	for (i = 0; i < MAX_NR_ZONES; i++) {
4316		if (i == ZONE_MOVABLE)
4317			continue;
4318		printk("  %-8s %0#10lx -> %0#10lx\n",
4319				zone_names[i],
4320				arch_zone_lowest_possible_pfn[i],
4321				arch_zone_highest_possible_pfn[i]);
4322	}
4323
4324	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4325	printk("Movable zone start PFN for each node\n");
4326	for (i = 0; i < MAX_NUMNODES; i++) {
4327		if (zone_movable_pfn[i])
4328			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4329	}
4330
4331	/* Print out the early_node_map[] */
4332	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4333	for (i = 0; i < nr_nodemap_entries; i++)
4334		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4335						early_node_map[i].start_pfn,
4336						early_node_map[i].end_pfn);
4337
4338	/* Initialise every node */
4339	mminit_verify_pageflags_layout();
4340	setup_nr_node_ids();
4341	for_each_online_node(nid) {
4342		pg_data_t *pgdat = NODE_DATA(nid);
4343		free_area_init_node(nid, NULL,
4344				find_min_pfn_for_node(nid), NULL);
4345
4346		/* Any memory on that node */
4347		if (pgdat->node_present_pages)
4348			node_set_state(nid, N_HIGH_MEMORY);
4349		check_for_regular_memory(pgdat);
4350	}
4351}
4352
4353static int __init cmdline_parse_core(char *p, unsigned long *core)
4354{
4355	unsigned long long coremem;
4356	if (!p)
4357		return -EINVAL;
4358
4359	coremem = memparse(p, &p);
4360	*core = coremem >> PAGE_SHIFT;
4361
4362	/* Paranoid check that UL is enough for the coremem value */
4363	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4364
4365	return 0;
4366}
4367
4368/*
4369 * kernelcore=size sets the amount of memory for use for allocations that
4370 * cannot be reclaimed or migrated.
4371 */
4372static int __init cmdline_parse_kernelcore(char *p)
4373{
4374	return cmdline_parse_core(p, &required_kernelcore);
4375}
4376
4377/*
4378 * movablecore=size sets the amount of memory for use for allocations that
4379 * can be reclaimed or migrated.
4380 */
4381static int __init cmdline_parse_movablecore(char *p)
4382{
4383	return cmdline_parse_core(p, &required_movablecore);
4384}
4385
4386early_param("kernelcore", cmdline_parse_kernelcore);
4387early_param("movablecore", cmdline_parse_movablecore);
4388
4389#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4390
4391/**
4392 * set_dma_reserve - set the specified number of pages reserved in the first zone
4393 * @new_dma_reserve: The number of pages to mark reserved
4394 *
4395 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4396 * In the DMA zone, a significant percentage may be consumed by kernel image
4397 * and other unfreeable allocations which can skew the watermarks badly. This
4398 * function may optionally be used to account for unfreeable pages in the
4399 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4400 * smaller per-cpu batchsize.
4401 */
4402void __init set_dma_reserve(unsigned long new_dma_reserve)
4403{
4404	dma_reserve = new_dma_reserve;
4405}
4406
4407#ifndef CONFIG_NEED_MULTIPLE_NODES
4408struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4409EXPORT_SYMBOL(contig_page_data);
4410#endif
4411
4412void __init free_area_init(unsigned long *zones_size)
4413{
4414	free_area_init_node(0, zones_size,
4415			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4416}
4417
4418static int page_alloc_cpu_notify(struct notifier_block *self,
4419				 unsigned long action, void *hcpu)
4420{
4421	int cpu = (unsigned long)hcpu;
4422
4423	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4424		drain_pages(cpu);
4425
4426		/*
4427		 * Spill the event counters of the dead processor
4428		 * into the current processors event counters.
4429		 * This artificially elevates the count of the current
4430		 * processor.
4431		 */
4432		vm_events_fold_cpu(cpu);
4433
4434		/*
4435		 * Zero the differential counters of the dead processor
4436		 * so that the vm statistics are consistent.
4437		 *
4438		 * This is only okay since the processor is dead and cannot
4439		 * race with what we are doing.
4440		 */
4441		refresh_cpu_vm_stats(cpu);
4442	}
4443	return NOTIFY_OK;
4444}
4445
4446void __init page_alloc_init(void)
4447{
4448	hotcpu_notifier(page_alloc_cpu_notify, 0);
4449}
4450
4451/*
4452 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4453 *	or min_free_kbytes changes.
4454 */
4455static void calculate_totalreserve_pages(void)
4456{
4457	struct pglist_data *pgdat;
4458	unsigned long reserve_pages = 0;
4459	enum zone_type i, j;
4460
4461	for_each_online_pgdat(pgdat) {
4462		for (i = 0; i < MAX_NR_ZONES; i++) {
4463			struct zone *zone = pgdat->node_zones + i;
4464			unsigned long max = 0;
4465
4466			/* Find valid and maximum lowmem_reserve in the zone */
4467			for (j = i; j < MAX_NR_ZONES; j++) {
4468				if (zone->lowmem_reserve[j] > max)
4469					max = zone->lowmem_reserve[j];
4470			}
4471
4472			/* we treat the high watermark as reserved pages. */
4473			max += high_wmark_pages(zone);
4474
4475			if (max > zone->present_pages)
4476				max = zone->present_pages;
4477			reserve_pages += max;
4478		}
4479	}
4480	totalreserve_pages = reserve_pages;
4481}
4482
4483/*
4484 * setup_per_zone_lowmem_reserve - called whenever
4485 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4486 *	has a correct pages reserved value, so an adequate number of
4487 *	pages are left in the zone after a successful __alloc_pages().
4488 */
4489static void setup_per_zone_lowmem_reserve(void)
4490{
4491	struct pglist_data *pgdat;
4492	enum zone_type j, idx;
4493
4494	for_each_online_pgdat(pgdat) {
4495		for (j = 0; j < MAX_NR_ZONES; j++) {
4496			struct zone *zone = pgdat->node_zones + j;
4497			unsigned long present_pages = zone->present_pages;
4498
4499			zone->lowmem_reserve[j] = 0;
4500
4501			idx = j;
4502			while (idx) {
4503				struct zone *lower_zone;
4504
4505				idx--;
4506
4507				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4508					sysctl_lowmem_reserve_ratio[idx] = 1;
4509
4510				lower_zone = pgdat->node_zones + idx;
4511				lower_zone->lowmem_reserve[j] = present_pages /
4512					sysctl_lowmem_reserve_ratio[idx];
4513				present_pages += lower_zone->present_pages;
4514			}
4515		}
4516	}
4517
4518	/* update totalreserve_pages */
4519	calculate_totalreserve_pages();
4520}
4521
4522/**
4523 * setup_per_zone_wmarks - called when min_free_kbytes changes
4524 * or when memory is hot-{added|removed}
4525 *
4526 * Ensures that the watermark[min,low,high] values for each zone are set
4527 * correctly with respect to min_free_kbytes.
4528 */
4529void setup_per_zone_wmarks(void)
4530{
4531	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4532	unsigned long lowmem_pages = 0;
4533	struct zone *zone;
4534	unsigned long flags;
4535
4536	/* Calculate total number of !ZONE_HIGHMEM pages */
4537	for_each_zone(zone) {
4538		if (!is_highmem(zone))
4539			lowmem_pages += zone->present_pages;
4540	}
4541
4542	for_each_zone(zone) {
4543		u64 tmp;
4544
4545		spin_lock_irqsave(&zone->lock, flags);
4546		tmp = (u64)pages_min * zone->present_pages;
4547		do_div(tmp, lowmem_pages);
4548		if (is_highmem(zone)) {
4549			/*
4550			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4551			 * need highmem pages, so cap pages_min to a small
4552			 * value here.
4553			 *
4554			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4555			 * deltas controls asynch page reclaim, and so should
4556			 * not be capped for highmem.
4557			 */
4558			int min_pages;
4559
4560			min_pages = zone->present_pages / 1024;
4561			if (min_pages < SWAP_CLUSTER_MAX)
4562				min_pages = SWAP_CLUSTER_MAX;
4563			if (min_pages > 128)
4564				min_pages = 128;
4565			zone->watermark[WMARK_MIN] = min_pages;
4566		} else {
4567			/*
4568			 * If it's a lowmem zone, reserve a number of pages
4569			 * proportionate to the zone's size.
4570			 */
4571			zone->watermark[WMARK_MIN] = tmp;
4572		}
4573
4574		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4575		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4576		setup_zone_migrate_reserve(zone);
4577		spin_unlock_irqrestore(&zone->lock, flags);
4578	}
4579
4580	/* update totalreserve_pages */
4581	calculate_totalreserve_pages();
4582}
4583
4584/*
4585 * The inactive anon list should be small enough that the VM never has to
4586 * do too much work, but large enough that each inactive page has a chance
4587 * to be referenced again before it is swapped out.
4588 *
4589 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4590 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4591 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4592 * the anonymous pages are kept on the inactive list.
4593 *
4594 * total     target    max
4595 * memory    ratio     inactive anon
4596 * -------------------------------------
4597 *   10MB       1         5MB
4598 *  100MB       1        50MB
4599 *    1GB       3       250MB
4600 *   10GB      10       0.9GB
4601 *  100GB      31         3GB
4602 *    1TB     101        10GB
4603 *   10TB     320        32GB
4604 */
4605void calculate_zone_inactive_ratio(struct zone *zone)
4606{
4607	unsigned int gb, ratio;
4608
4609	/* Zone size in gigabytes */
4610	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4611	if (gb)
4612		ratio = int_sqrt(10 * gb);
4613	else
4614		ratio = 1;
4615
4616	zone->inactive_ratio = ratio;
4617}
4618
4619static void __init setup_per_zone_inactive_ratio(void)
4620{
4621	struct zone *zone;
4622
4623	for_each_zone(zone)
4624		calculate_zone_inactive_ratio(zone);
4625}
4626
4627/*
4628 * Initialise min_free_kbytes.
4629 *
4630 * For small machines we want it small (128k min).  For large machines
4631 * we want it large (64MB max).  But it is not linear, because network
4632 * bandwidth does not increase linearly with machine size.  We use
4633 *
4634 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4635 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4636 *
4637 * which yields
4638 *
4639 * 16MB:	512k
4640 * 32MB:	724k
4641 * 64MB:	1024k
4642 * 128MB:	1448k
4643 * 256MB:	2048k
4644 * 512MB:	2896k
4645 * 1024MB:	4096k
4646 * 2048MB:	5792k
4647 * 4096MB:	8192k
4648 * 8192MB:	11584k
4649 * 16384MB:	16384k
4650 */
4651static int __init init_per_zone_wmark_min(void)
4652{
4653	unsigned long lowmem_kbytes;
4654
4655	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4656
4657	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4658	if (min_free_kbytes < 128)
4659		min_free_kbytes = 128;
4660	if (min_free_kbytes > 65536)
4661		min_free_kbytes = 65536;
4662	setup_per_zone_wmarks();
4663	setup_per_zone_lowmem_reserve();
4664	setup_per_zone_inactive_ratio();
4665	return 0;
4666}
4667module_init(init_per_zone_wmark_min)
4668
4669/*
4670 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4671 *	that we can call two helper functions whenever min_free_kbytes
4672 *	changes.
4673 */
4674int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4675	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4676{
4677	proc_dointvec(table, write, file, buffer, length, ppos);
4678	if (write)
4679		setup_per_zone_wmarks();
4680	return 0;
4681}
4682
4683#ifdef CONFIG_NUMA
4684int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4685	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4686{
4687	struct zone *zone;
4688	int rc;
4689
4690	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4691	if (rc)
4692		return rc;
4693
4694	for_each_zone(zone)
4695		zone->min_unmapped_pages = (zone->present_pages *
4696				sysctl_min_unmapped_ratio) / 100;
4697	return 0;
4698}
4699
4700int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4701	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4702{
4703	struct zone *zone;
4704	int rc;
4705
4706	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4707	if (rc)
4708		return rc;
4709
4710	for_each_zone(zone)
4711		zone->min_slab_pages = (zone->present_pages *
4712				sysctl_min_slab_ratio) / 100;
4713	return 0;
4714}
4715#endif
4716
4717/*
4718 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4719 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4720 *	whenever sysctl_lowmem_reserve_ratio changes.
4721 *
4722 * The reserve ratio obviously has absolutely no relation with the
4723 * minimum watermarks. The lowmem reserve ratio can only make sense
4724 * if in function of the boot time zone sizes.
4725 */
4726int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4727	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4728{
4729	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4730	setup_per_zone_lowmem_reserve();
4731	return 0;
4732}
4733
4734/*
4735 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4736 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4737 * can have before it gets flushed back to buddy allocator.
4738 */
4739
4740int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4741	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4742{
4743	struct zone *zone;
4744	unsigned int cpu;
4745	int ret;
4746
4747	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4748	if (!write || (ret == -EINVAL))
4749		return ret;
4750	for_each_populated_zone(zone) {
4751		for_each_online_cpu(cpu) {
4752			unsigned long  high;
4753			high = zone->present_pages / percpu_pagelist_fraction;
4754			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4755		}
4756	}
4757	return 0;
4758}
4759
4760int hashdist = HASHDIST_DEFAULT;
4761
4762#ifdef CONFIG_NUMA
4763static int __init set_hashdist(char *str)
4764{
4765	if (!str)
4766		return 0;
4767	hashdist = simple_strtoul(str, &str, 0);
4768	return 1;
4769}
4770__setup("hashdist=", set_hashdist);
4771#endif
4772
4773/*
4774 * allocate a large system hash table from bootmem
4775 * - it is assumed that the hash table must contain an exact power-of-2
4776 *   quantity of entries
4777 * - limit is the number of hash buckets, not the total allocation size
4778 */
4779void *__init alloc_large_system_hash(const char *tablename,
4780				     unsigned long bucketsize,
4781				     unsigned long numentries,
4782				     int scale,
4783				     int flags,
4784				     unsigned int *_hash_shift,
4785				     unsigned int *_hash_mask,
4786				     unsigned long limit)
4787{
4788	unsigned long long max = limit;
4789	unsigned long log2qty, size;
4790	void *table = NULL;
4791
4792	/* allow the kernel cmdline to have a say */
4793	if (!numentries) {
4794		/* round applicable memory size up to nearest megabyte */
4795		numentries = nr_kernel_pages;
4796		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4797		numentries >>= 20 - PAGE_SHIFT;
4798		numentries <<= 20 - PAGE_SHIFT;
4799
4800		/* limit to 1 bucket per 2^scale bytes of low memory */
4801		if (scale > PAGE_SHIFT)
4802			numentries >>= (scale - PAGE_SHIFT);
4803		else
4804			numentries <<= (PAGE_SHIFT - scale);
4805
4806		/* Make sure we've got at least a 0-order allocation.. */
4807		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4808			numentries = PAGE_SIZE / bucketsize;
4809	}
4810	numentries = roundup_pow_of_two(numentries);
4811
4812	/* limit allocation size to 1/16 total memory by default */
4813	if (max == 0) {
4814		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4815		do_div(max, bucketsize);
4816	}
4817
4818	if (numentries > max)
4819		numentries = max;
4820
4821	log2qty = ilog2(numentries);
4822
4823	do {
4824		size = bucketsize << log2qty;
4825		if (flags & HASH_EARLY)
4826			table = alloc_bootmem_nopanic(size);
4827		else if (hashdist)
4828			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4829		else {
4830			/*
4831			 * If bucketsize is not a power-of-two, we may free
4832			 * some pages at the end of hash table which
4833			 * alloc_pages_exact() automatically does
4834			 */
4835			if (get_order(size) < MAX_ORDER) {
4836				table = alloc_pages_exact(size, GFP_ATOMIC);
4837				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4838			}
4839		}
4840	} while (!table && size > PAGE_SIZE && --log2qty);
4841
4842	if (!table)
4843		panic("Failed to allocate %s hash table\n", tablename);
4844
4845	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4846	       tablename,
4847	       (1U << log2qty),
4848	       ilog2(size) - PAGE_SHIFT,
4849	       size);
4850
4851	if (_hash_shift)
4852		*_hash_shift = log2qty;
4853	if (_hash_mask)
4854		*_hash_mask = (1 << log2qty) - 1;
4855
4856	return table;
4857}
4858
4859/* Return a pointer to the bitmap storing bits affecting a block of pages */
4860static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4861							unsigned long pfn)
4862{
4863#ifdef CONFIG_SPARSEMEM
4864	return __pfn_to_section(pfn)->pageblock_flags;
4865#else
4866	return zone->pageblock_flags;
4867#endif /* CONFIG_SPARSEMEM */
4868}
4869
4870static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4871{
4872#ifdef CONFIG_SPARSEMEM
4873	pfn &= (PAGES_PER_SECTION-1);
4874	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4875#else
4876	pfn = pfn - zone->zone_start_pfn;
4877	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4878#endif /* CONFIG_SPARSEMEM */
4879}
4880
4881/**
4882 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4883 * @page: The page within the block of interest
4884 * @start_bitidx: The first bit of interest to retrieve
4885 * @end_bitidx: The last bit of interest
4886 * returns pageblock_bits flags
4887 */
4888unsigned long get_pageblock_flags_group(struct page *page,
4889					int start_bitidx, int end_bitidx)
4890{
4891	struct zone *zone;
4892	unsigned long *bitmap;
4893	unsigned long pfn, bitidx;
4894	unsigned long flags = 0;
4895	unsigned long value = 1;
4896
4897	zone = page_zone(page);
4898	pfn = page_to_pfn(page);
4899	bitmap = get_pageblock_bitmap(zone, pfn);
4900	bitidx = pfn_to_bitidx(zone, pfn);
4901
4902	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4903		if (test_bit(bitidx + start_bitidx, bitmap))
4904			flags |= value;
4905
4906	return flags;
4907}
4908
4909/**
4910 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4911 * @page: The page within the block of interest
4912 * @start_bitidx: The first bit of interest
4913 * @end_bitidx: The last bit of interest
4914 * @flags: The flags to set
4915 */
4916void set_pageblock_flags_group(struct page *page, unsigned long flags,
4917					int start_bitidx, int end_bitidx)
4918{
4919	struct zone *zone;
4920	unsigned long *bitmap;
4921	unsigned long pfn, bitidx;
4922	unsigned long value = 1;
4923
4924	zone = page_zone(page);
4925	pfn = page_to_pfn(page);
4926	bitmap = get_pageblock_bitmap(zone, pfn);
4927	bitidx = pfn_to_bitidx(zone, pfn);
4928	VM_BUG_ON(pfn < zone->zone_start_pfn);
4929	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4930
4931	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4932		if (flags & value)
4933			__set_bit(bitidx + start_bitidx, bitmap);
4934		else
4935			__clear_bit(bitidx + start_bitidx, bitmap);
4936}
4937
4938/*
4939 * This is designed as sub function...plz see page_isolation.c also.
4940 * set/clear page block's type to be ISOLATE.
4941 * page allocater never alloc memory from ISOLATE block.
4942 */
4943
4944int set_migratetype_isolate(struct page *page)
4945{
4946	struct zone *zone;
4947	unsigned long flags;
4948	int ret = -EBUSY;
4949	int zone_idx;
4950
4951	zone = page_zone(page);
4952	zone_idx = zone_idx(zone);
4953	spin_lock_irqsave(&zone->lock, flags);
4954	/*
4955	 * In future, more migrate types will be able to be isolation target.
4956	 */
4957	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4958	    zone_idx != ZONE_MOVABLE)
4959		goto out;
4960	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4961	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4962	ret = 0;
4963out:
4964	spin_unlock_irqrestore(&zone->lock, flags);
4965	if (!ret)
4966		drain_all_pages();
4967	return ret;
4968}
4969
4970void unset_migratetype_isolate(struct page *page)
4971{
4972	struct zone *zone;
4973	unsigned long flags;
4974	zone = page_zone(page);
4975	spin_lock_irqsave(&zone->lock, flags);
4976	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4977		goto out;
4978	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4979	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4980out:
4981	spin_unlock_irqrestore(&zone->lock, flags);
4982}
4983
4984#ifdef CONFIG_MEMORY_HOTREMOVE
4985/*
4986 * All pages in the range must be isolated before calling this.
4987 */
4988void
4989__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4990{
4991	struct page *page;
4992	struct zone *zone;
4993	int order, i;
4994	unsigned long pfn;
4995	unsigned long flags;
4996	/* find the first valid pfn */
4997	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4998		if (pfn_valid(pfn))
4999			break;
5000	if (pfn == end_pfn)
5001		return;
5002	zone = page_zone(pfn_to_page(pfn));
5003	spin_lock_irqsave(&zone->lock, flags);
5004	pfn = start_pfn;
5005	while (pfn < end_pfn) {
5006		if (!pfn_valid(pfn)) {
5007			pfn++;
5008			continue;
5009		}
5010		page = pfn_to_page(pfn);
5011		BUG_ON(page_count(page));
5012		BUG_ON(!PageBuddy(page));
5013		order = page_order(page);
5014#ifdef CONFIG_DEBUG_VM
5015		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5016		       pfn, 1 << order, end_pfn);
5017#endif
5018		list_del(&page->lru);
5019		rmv_page_order(page);
5020		zone->free_area[order].nr_free--;
5021		__mod_zone_page_state(zone, NR_FREE_PAGES,
5022				      - (1UL << order));
5023		for (i = 0; i < (1 << order); i++)
5024			SetPageReserved((page+i));
5025		pfn += (1 << order);
5026	}
5027	spin_unlock_irqrestore(&zone->lock, flags);
5028}
5029#endif
5030