page_alloc.c revision 4f92e2586b43a2402e116055d4edda704f911b5b
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51#include <linux/memory.h>
52#include <linux/compaction.h>
53#include <trace/events/kmem.h>
54#include <linux/ftrace_event.h>
55
56#include <asm/tlbflush.h>
57#include <asm/div64.h>
58#include "internal.h"
59
60/*
61 * Array of node states.
62 */
63nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
64	[N_POSSIBLE] = NODE_MASK_ALL,
65	[N_ONLINE] = { { [0] = 1UL } },
66#ifndef CONFIG_NUMA
67	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
68#ifdef CONFIG_HIGHMEM
69	[N_HIGH_MEMORY] = { { [0] = 1UL } },
70#endif
71	[N_CPU] = { { [0] = 1UL } },
72#endif	/* NUMA */
73};
74EXPORT_SYMBOL(node_states);
75
76unsigned long totalram_pages __read_mostly;
77unsigned long totalreserve_pages __read_mostly;
78int percpu_pagelist_fraction;
79gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
80
81#ifdef CONFIG_PM_SLEEP
82/*
83 * The following functions are used by the suspend/hibernate code to temporarily
84 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
85 * while devices are suspended.  To avoid races with the suspend/hibernate code,
86 * they should always be called with pm_mutex held (gfp_allowed_mask also should
87 * only be modified with pm_mutex held, unless the suspend/hibernate code is
88 * guaranteed not to run in parallel with that modification).
89 */
90void set_gfp_allowed_mask(gfp_t mask)
91{
92	WARN_ON(!mutex_is_locked(&pm_mutex));
93	gfp_allowed_mask = mask;
94}
95
96gfp_t clear_gfp_allowed_mask(gfp_t mask)
97{
98	gfp_t ret = gfp_allowed_mask;
99
100	WARN_ON(!mutex_is_locked(&pm_mutex));
101	gfp_allowed_mask &= ~mask;
102	return ret;
103}
104#endif /* CONFIG_PM_SLEEP */
105
106#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
107int pageblock_order __read_mostly;
108#endif
109
110static void __free_pages_ok(struct page *page, unsigned int order);
111
112/*
113 * results with 256, 32 in the lowmem_reserve sysctl:
114 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
115 *	1G machine -> (16M dma, 784M normal, 224M high)
116 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
117 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
118 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
119 *
120 * TBD: should special case ZONE_DMA32 machines here - in those we normally
121 * don't need any ZONE_NORMAL reservation
122 */
123int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
124#ifdef CONFIG_ZONE_DMA
125	 256,
126#endif
127#ifdef CONFIG_ZONE_DMA32
128	 256,
129#endif
130#ifdef CONFIG_HIGHMEM
131	 32,
132#endif
133	 32,
134};
135
136EXPORT_SYMBOL(totalram_pages);
137
138static char * const zone_names[MAX_NR_ZONES] = {
139#ifdef CONFIG_ZONE_DMA
140	 "DMA",
141#endif
142#ifdef CONFIG_ZONE_DMA32
143	 "DMA32",
144#endif
145	 "Normal",
146#ifdef CONFIG_HIGHMEM
147	 "HighMem",
148#endif
149	 "Movable",
150};
151
152int min_free_kbytes = 1024;
153
154static unsigned long __meminitdata nr_kernel_pages;
155static unsigned long __meminitdata nr_all_pages;
156static unsigned long __meminitdata dma_reserve;
157
158#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
159  /*
160   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
161   * ranges of memory (RAM) that may be registered with add_active_range().
162   * Ranges passed to add_active_range() will be merged if possible
163   * so the number of times add_active_range() can be called is
164   * related to the number of nodes and the number of holes
165   */
166  #ifdef CONFIG_MAX_ACTIVE_REGIONS
167    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
168    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
169  #else
170    #if MAX_NUMNODES >= 32
171      /* If there can be many nodes, allow up to 50 holes per node */
172      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
173    #else
174      /* By default, allow up to 256 distinct regions */
175      #define MAX_ACTIVE_REGIONS 256
176    #endif
177  #endif
178
179  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
180  static int __meminitdata nr_nodemap_entries;
181  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
182  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
183  static unsigned long __initdata required_kernelcore;
184  static unsigned long __initdata required_movablecore;
185  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
186
187  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
188  int movable_zone;
189  EXPORT_SYMBOL(movable_zone);
190#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
191
192#if MAX_NUMNODES > 1
193int nr_node_ids __read_mostly = MAX_NUMNODES;
194int nr_online_nodes __read_mostly = 1;
195EXPORT_SYMBOL(nr_node_ids);
196EXPORT_SYMBOL(nr_online_nodes);
197#endif
198
199int page_group_by_mobility_disabled __read_mostly;
200
201static void set_pageblock_migratetype(struct page *page, int migratetype)
202{
203
204	if (unlikely(page_group_by_mobility_disabled))
205		migratetype = MIGRATE_UNMOVABLE;
206
207	set_pageblock_flags_group(page, (unsigned long)migratetype,
208					PB_migrate, PB_migrate_end);
209}
210
211bool oom_killer_disabled __read_mostly;
212
213#ifdef CONFIG_DEBUG_VM
214static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
215{
216	int ret = 0;
217	unsigned seq;
218	unsigned long pfn = page_to_pfn(page);
219
220	do {
221		seq = zone_span_seqbegin(zone);
222		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
223			ret = 1;
224		else if (pfn < zone->zone_start_pfn)
225			ret = 1;
226	} while (zone_span_seqretry(zone, seq));
227
228	return ret;
229}
230
231static int page_is_consistent(struct zone *zone, struct page *page)
232{
233	if (!pfn_valid_within(page_to_pfn(page)))
234		return 0;
235	if (zone != page_zone(page))
236		return 0;
237
238	return 1;
239}
240/*
241 * Temporary debugging check for pages not lying within a given zone.
242 */
243static int bad_range(struct zone *zone, struct page *page)
244{
245	if (page_outside_zone_boundaries(zone, page))
246		return 1;
247	if (!page_is_consistent(zone, page))
248		return 1;
249
250	return 0;
251}
252#else
253static inline int bad_range(struct zone *zone, struct page *page)
254{
255	return 0;
256}
257#endif
258
259static void bad_page(struct page *page)
260{
261	static unsigned long resume;
262	static unsigned long nr_shown;
263	static unsigned long nr_unshown;
264
265	/* Don't complain about poisoned pages */
266	if (PageHWPoison(page)) {
267		__ClearPageBuddy(page);
268		return;
269	}
270
271	/*
272	 * Allow a burst of 60 reports, then keep quiet for that minute;
273	 * or allow a steady drip of one report per second.
274	 */
275	if (nr_shown == 60) {
276		if (time_before(jiffies, resume)) {
277			nr_unshown++;
278			goto out;
279		}
280		if (nr_unshown) {
281			printk(KERN_ALERT
282			      "BUG: Bad page state: %lu messages suppressed\n",
283				nr_unshown);
284			nr_unshown = 0;
285		}
286		nr_shown = 0;
287	}
288	if (nr_shown++ == 0)
289		resume = jiffies + 60 * HZ;
290
291	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
292		current->comm, page_to_pfn(page));
293	dump_page(page);
294
295	dump_stack();
296out:
297	/* Leave bad fields for debug, except PageBuddy could make trouble */
298	__ClearPageBuddy(page);
299	add_taint(TAINT_BAD_PAGE);
300}
301
302/*
303 * Higher-order pages are called "compound pages".  They are structured thusly:
304 *
305 * The first PAGE_SIZE page is called the "head page".
306 *
307 * The remaining PAGE_SIZE pages are called "tail pages".
308 *
309 * All pages have PG_compound set.  All pages have their ->private pointing at
310 * the head page (even the head page has this).
311 *
312 * The first tail page's ->lru.next holds the address of the compound page's
313 * put_page() function.  Its ->lru.prev holds the order of allocation.
314 * This usage means that zero-order pages may not be compound.
315 */
316
317static void free_compound_page(struct page *page)
318{
319	__free_pages_ok(page, compound_order(page));
320}
321
322void prep_compound_page(struct page *page, unsigned long order)
323{
324	int i;
325	int nr_pages = 1 << order;
326
327	set_compound_page_dtor(page, free_compound_page);
328	set_compound_order(page, order);
329	__SetPageHead(page);
330	for (i = 1; i < nr_pages; i++) {
331		struct page *p = page + i;
332
333		__SetPageTail(p);
334		p->first_page = page;
335	}
336}
337
338static int destroy_compound_page(struct page *page, unsigned long order)
339{
340	int i;
341	int nr_pages = 1 << order;
342	int bad = 0;
343
344	if (unlikely(compound_order(page) != order) ||
345	    unlikely(!PageHead(page))) {
346		bad_page(page);
347		bad++;
348	}
349
350	__ClearPageHead(page);
351
352	for (i = 1; i < nr_pages; i++) {
353		struct page *p = page + i;
354
355		if (unlikely(!PageTail(p) || (p->first_page != page))) {
356			bad_page(page);
357			bad++;
358		}
359		__ClearPageTail(p);
360	}
361
362	return bad;
363}
364
365static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
366{
367	int i;
368
369	/*
370	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
371	 * and __GFP_HIGHMEM from hard or soft interrupt context.
372	 */
373	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
374	for (i = 0; i < (1 << order); i++)
375		clear_highpage(page + i);
376}
377
378static inline void set_page_order(struct page *page, int order)
379{
380	set_page_private(page, order);
381	__SetPageBuddy(page);
382}
383
384static inline void rmv_page_order(struct page *page)
385{
386	__ClearPageBuddy(page);
387	set_page_private(page, 0);
388}
389
390/*
391 * Locate the struct page for both the matching buddy in our
392 * pair (buddy1) and the combined O(n+1) page they form (page).
393 *
394 * 1) Any buddy B1 will have an order O twin B2 which satisfies
395 * the following equation:
396 *     B2 = B1 ^ (1 << O)
397 * For example, if the starting buddy (buddy2) is #8 its order
398 * 1 buddy is #10:
399 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
400 *
401 * 2) Any buddy B will have an order O+1 parent P which
402 * satisfies the following equation:
403 *     P = B & ~(1 << O)
404 *
405 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
406 */
407static inline struct page *
408__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
409{
410	unsigned long buddy_idx = page_idx ^ (1 << order);
411
412	return page + (buddy_idx - page_idx);
413}
414
415static inline unsigned long
416__find_combined_index(unsigned long page_idx, unsigned int order)
417{
418	return (page_idx & ~(1 << order));
419}
420
421/*
422 * This function checks whether a page is free && is the buddy
423 * we can do coalesce a page and its buddy if
424 * (a) the buddy is not in a hole &&
425 * (b) the buddy is in the buddy system &&
426 * (c) a page and its buddy have the same order &&
427 * (d) a page and its buddy are in the same zone.
428 *
429 * For recording whether a page is in the buddy system, we use PG_buddy.
430 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
431 *
432 * For recording page's order, we use page_private(page).
433 */
434static inline int page_is_buddy(struct page *page, struct page *buddy,
435								int order)
436{
437	if (!pfn_valid_within(page_to_pfn(buddy)))
438		return 0;
439
440	if (page_zone_id(page) != page_zone_id(buddy))
441		return 0;
442
443	if (PageBuddy(buddy) && page_order(buddy) == order) {
444		VM_BUG_ON(page_count(buddy) != 0);
445		return 1;
446	}
447	return 0;
448}
449
450/*
451 * Freeing function for a buddy system allocator.
452 *
453 * The concept of a buddy system is to maintain direct-mapped table
454 * (containing bit values) for memory blocks of various "orders".
455 * The bottom level table contains the map for the smallest allocatable
456 * units of memory (here, pages), and each level above it describes
457 * pairs of units from the levels below, hence, "buddies".
458 * At a high level, all that happens here is marking the table entry
459 * at the bottom level available, and propagating the changes upward
460 * as necessary, plus some accounting needed to play nicely with other
461 * parts of the VM system.
462 * At each level, we keep a list of pages, which are heads of continuous
463 * free pages of length of (1 << order) and marked with PG_buddy. Page's
464 * order is recorded in page_private(page) field.
465 * So when we are allocating or freeing one, we can derive the state of the
466 * other.  That is, if we allocate a small block, and both were
467 * free, the remainder of the region must be split into blocks.
468 * If a block is freed, and its buddy is also free, then this
469 * triggers coalescing into a block of larger size.
470 *
471 * -- wli
472 */
473
474static inline void __free_one_page(struct page *page,
475		struct zone *zone, unsigned int order,
476		int migratetype)
477{
478	unsigned long page_idx;
479	unsigned long combined_idx;
480	struct page *buddy;
481
482	if (unlikely(PageCompound(page)))
483		if (unlikely(destroy_compound_page(page, order)))
484			return;
485
486	VM_BUG_ON(migratetype == -1);
487
488	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
489
490	VM_BUG_ON(page_idx & ((1 << order) - 1));
491	VM_BUG_ON(bad_range(zone, page));
492
493	while (order < MAX_ORDER-1) {
494		buddy = __page_find_buddy(page, page_idx, order);
495		if (!page_is_buddy(page, buddy, order))
496			break;
497
498		/* Our buddy is free, merge with it and move up one order. */
499		list_del(&buddy->lru);
500		zone->free_area[order].nr_free--;
501		rmv_page_order(buddy);
502		combined_idx = __find_combined_index(page_idx, order);
503		page = page + (combined_idx - page_idx);
504		page_idx = combined_idx;
505		order++;
506	}
507	set_page_order(page, order);
508
509	/*
510	 * If this is not the largest possible page, check if the buddy
511	 * of the next-highest order is free. If it is, it's possible
512	 * that pages are being freed that will coalesce soon. In case,
513	 * that is happening, add the free page to the tail of the list
514	 * so it's less likely to be used soon and more likely to be merged
515	 * as a higher order page
516	 */
517	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
518		struct page *higher_page, *higher_buddy;
519		combined_idx = __find_combined_index(page_idx, order);
520		higher_page = page + combined_idx - page_idx;
521		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
522		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
523			list_add_tail(&page->lru,
524				&zone->free_area[order].free_list[migratetype]);
525			goto out;
526		}
527	}
528
529	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
530out:
531	zone->free_area[order].nr_free++;
532}
533
534/*
535 * free_page_mlock() -- clean up attempts to free and mlocked() page.
536 * Page should not be on lru, so no need to fix that up.
537 * free_pages_check() will verify...
538 */
539static inline void free_page_mlock(struct page *page)
540{
541	__dec_zone_page_state(page, NR_MLOCK);
542	__count_vm_event(UNEVICTABLE_MLOCKFREED);
543}
544
545static inline int free_pages_check(struct page *page)
546{
547	if (unlikely(page_mapcount(page) |
548		(page->mapping != NULL)  |
549		(atomic_read(&page->_count) != 0) |
550		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
551		bad_page(page);
552		return 1;
553	}
554	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
555		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
556	return 0;
557}
558
559/*
560 * Frees a number of pages from the PCP lists
561 * Assumes all pages on list are in same zone, and of same order.
562 * count is the number of pages to free.
563 *
564 * If the zone was previously in an "all pages pinned" state then look to
565 * see if this freeing clears that state.
566 *
567 * And clear the zone's pages_scanned counter, to hold off the "all pages are
568 * pinned" detection logic.
569 */
570static void free_pcppages_bulk(struct zone *zone, int count,
571					struct per_cpu_pages *pcp)
572{
573	int migratetype = 0;
574	int batch_free = 0;
575
576	spin_lock(&zone->lock);
577	zone->all_unreclaimable = 0;
578	zone->pages_scanned = 0;
579
580	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
581	while (count) {
582		struct page *page;
583		struct list_head *list;
584
585		/*
586		 * Remove pages from lists in a round-robin fashion. A
587		 * batch_free count is maintained that is incremented when an
588		 * empty list is encountered.  This is so more pages are freed
589		 * off fuller lists instead of spinning excessively around empty
590		 * lists
591		 */
592		do {
593			batch_free++;
594			if (++migratetype == MIGRATE_PCPTYPES)
595				migratetype = 0;
596			list = &pcp->lists[migratetype];
597		} while (list_empty(list));
598
599		do {
600			page = list_entry(list->prev, struct page, lru);
601			/* must delete as __free_one_page list manipulates */
602			list_del(&page->lru);
603			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
604			__free_one_page(page, zone, 0, page_private(page));
605			trace_mm_page_pcpu_drain(page, 0, page_private(page));
606		} while (--count && --batch_free && !list_empty(list));
607	}
608	spin_unlock(&zone->lock);
609}
610
611static void free_one_page(struct zone *zone, struct page *page, int order,
612				int migratetype)
613{
614	spin_lock(&zone->lock);
615	zone->all_unreclaimable = 0;
616	zone->pages_scanned = 0;
617
618	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
619	__free_one_page(page, zone, order, migratetype);
620	spin_unlock(&zone->lock);
621}
622
623static void __free_pages_ok(struct page *page, unsigned int order)
624{
625	unsigned long flags;
626	int i;
627	int bad = 0;
628	int wasMlocked = __TestClearPageMlocked(page);
629
630	trace_mm_page_free_direct(page, order);
631	kmemcheck_free_shadow(page, order);
632
633	for (i = 0 ; i < (1 << order) ; ++i)
634		bad += free_pages_check(page + i);
635	if (bad)
636		return;
637
638	if (!PageHighMem(page)) {
639		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
640		debug_check_no_obj_freed(page_address(page),
641					   PAGE_SIZE << order);
642	}
643	arch_free_page(page, order);
644	kernel_map_pages(page, 1 << order, 0);
645
646	local_irq_save(flags);
647	if (unlikely(wasMlocked))
648		free_page_mlock(page);
649	__count_vm_events(PGFREE, 1 << order);
650	free_one_page(page_zone(page), page, order,
651					get_pageblock_migratetype(page));
652	local_irq_restore(flags);
653}
654
655/*
656 * permit the bootmem allocator to evade page validation on high-order frees
657 */
658void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
659{
660	if (order == 0) {
661		__ClearPageReserved(page);
662		set_page_count(page, 0);
663		set_page_refcounted(page);
664		__free_page(page);
665	} else {
666		int loop;
667
668		prefetchw(page);
669		for (loop = 0; loop < BITS_PER_LONG; loop++) {
670			struct page *p = &page[loop];
671
672			if (loop + 1 < BITS_PER_LONG)
673				prefetchw(p + 1);
674			__ClearPageReserved(p);
675			set_page_count(p, 0);
676		}
677
678		set_page_refcounted(page);
679		__free_pages(page, order);
680	}
681}
682
683
684/*
685 * The order of subdivision here is critical for the IO subsystem.
686 * Please do not alter this order without good reasons and regression
687 * testing. Specifically, as large blocks of memory are subdivided,
688 * the order in which smaller blocks are delivered depends on the order
689 * they're subdivided in this function. This is the primary factor
690 * influencing the order in which pages are delivered to the IO
691 * subsystem according to empirical testing, and this is also justified
692 * by considering the behavior of a buddy system containing a single
693 * large block of memory acted on by a series of small allocations.
694 * This behavior is a critical factor in sglist merging's success.
695 *
696 * -- wli
697 */
698static inline void expand(struct zone *zone, struct page *page,
699	int low, int high, struct free_area *area,
700	int migratetype)
701{
702	unsigned long size = 1 << high;
703
704	while (high > low) {
705		area--;
706		high--;
707		size >>= 1;
708		VM_BUG_ON(bad_range(zone, &page[size]));
709		list_add(&page[size].lru, &area->free_list[migratetype]);
710		area->nr_free++;
711		set_page_order(&page[size], high);
712	}
713}
714
715/*
716 * This page is about to be returned from the page allocator
717 */
718static inline int check_new_page(struct page *page)
719{
720	if (unlikely(page_mapcount(page) |
721		(page->mapping != NULL)  |
722		(atomic_read(&page->_count) != 0)  |
723		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
724		bad_page(page);
725		return 1;
726	}
727	return 0;
728}
729
730static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
731{
732	int i;
733
734	for (i = 0; i < (1 << order); i++) {
735		struct page *p = page + i;
736		if (unlikely(check_new_page(p)))
737			return 1;
738	}
739
740	set_page_private(page, 0);
741	set_page_refcounted(page);
742
743	arch_alloc_page(page, order);
744	kernel_map_pages(page, 1 << order, 1);
745
746	if (gfp_flags & __GFP_ZERO)
747		prep_zero_page(page, order, gfp_flags);
748
749	if (order && (gfp_flags & __GFP_COMP))
750		prep_compound_page(page, order);
751
752	return 0;
753}
754
755/*
756 * Go through the free lists for the given migratetype and remove
757 * the smallest available page from the freelists
758 */
759static inline
760struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
761						int migratetype)
762{
763	unsigned int current_order;
764	struct free_area * area;
765	struct page *page;
766
767	/* Find a page of the appropriate size in the preferred list */
768	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
769		area = &(zone->free_area[current_order]);
770		if (list_empty(&area->free_list[migratetype]))
771			continue;
772
773		page = list_entry(area->free_list[migratetype].next,
774							struct page, lru);
775		list_del(&page->lru);
776		rmv_page_order(page);
777		area->nr_free--;
778		expand(zone, page, order, current_order, area, migratetype);
779		return page;
780	}
781
782	return NULL;
783}
784
785
786/*
787 * This array describes the order lists are fallen back to when
788 * the free lists for the desirable migrate type are depleted
789 */
790static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
791	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
792	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
793	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
794	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
795};
796
797/*
798 * Move the free pages in a range to the free lists of the requested type.
799 * Note that start_page and end_pages are not aligned on a pageblock
800 * boundary. If alignment is required, use move_freepages_block()
801 */
802static int move_freepages(struct zone *zone,
803			  struct page *start_page, struct page *end_page,
804			  int migratetype)
805{
806	struct page *page;
807	unsigned long order;
808	int pages_moved = 0;
809
810#ifndef CONFIG_HOLES_IN_ZONE
811	/*
812	 * page_zone is not safe to call in this context when
813	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
814	 * anyway as we check zone boundaries in move_freepages_block().
815	 * Remove at a later date when no bug reports exist related to
816	 * grouping pages by mobility
817	 */
818	BUG_ON(page_zone(start_page) != page_zone(end_page));
819#endif
820
821	for (page = start_page; page <= end_page;) {
822		/* Make sure we are not inadvertently changing nodes */
823		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
824
825		if (!pfn_valid_within(page_to_pfn(page))) {
826			page++;
827			continue;
828		}
829
830		if (!PageBuddy(page)) {
831			page++;
832			continue;
833		}
834
835		order = page_order(page);
836		list_del(&page->lru);
837		list_add(&page->lru,
838			&zone->free_area[order].free_list[migratetype]);
839		page += 1 << order;
840		pages_moved += 1 << order;
841	}
842
843	return pages_moved;
844}
845
846static int move_freepages_block(struct zone *zone, struct page *page,
847				int migratetype)
848{
849	unsigned long start_pfn, end_pfn;
850	struct page *start_page, *end_page;
851
852	start_pfn = page_to_pfn(page);
853	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
854	start_page = pfn_to_page(start_pfn);
855	end_page = start_page + pageblock_nr_pages - 1;
856	end_pfn = start_pfn + pageblock_nr_pages - 1;
857
858	/* Do not cross zone boundaries */
859	if (start_pfn < zone->zone_start_pfn)
860		start_page = page;
861	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
862		return 0;
863
864	return move_freepages(zone, start_page, end_page, migratetype);
865}
866
867static void change_pageblock_range(struct page *pageblock_page,
868					int start_order, int migratetype)
869{
870	int nr_pageblocks = 1 << (start_order - pageblock_order);
871
872	while (nr_pageblocks--) {
873		set_pageblock_migratetype(pageblock_page, migratetype);
874		pageblock_page += pageblock_nr_pages;
875	}
876}
877
878/* Remove an element from the buddy allocator from the fallback list */
879static inline struct page *
880__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
881{
882	struct free_area * area;
883	int current_order;
884	struct page *page;
885	int migratetype, i;
886
887	/* Find the largest possible block of pages in the other list */
888	for (current_order = MAX_ORDER-1; current_order >= order;
889						--current_order) {
890		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
891			migratetype = fallbacks[start_migratetype][i];
892
893			/* MIGRATE_RESERVE handled later if necessary */
894			if (migratetype == MIGRATE_RESERVE)
895				continue;
896
897			area = &(zone->free_area[current_order]);
898			if (list_empty(&area->free_list[migratetype]))
899				continue;
900
901			page = list_entry(area->free_list[migratetype].next,
902					struct page, lru);
903			area->nr_free--;
904
905			/*
906			 * If breaking a large block of pages, move all free
907			 * pages to the preferred allocation list. If falling
908			 * back for a reclaimable kernel allocation, be more
909			 * agressive about taking ownership of free pages
910			 */
911			if (unlikely(current_order >= (pageblock_order >> 1)) ||
912					start_migratetype == MIGRATE_RECLAIMABLE ||
913					page_group_by_mobility_disabled) {
914				unsigned long pages;
915				pages = move_freepages_block(zone, page,
916								start_migratetype);
917
918				/* Claim the whole block if over half of it is free */
919				if (pages >= (1 << (pageblock_order-1)) ||
920						page_group_by_mobility_disabled)
921					set_pageblock_migratetype(page,
922								start_migratetype);
923
924				migratetype = start_migratetype;
925			}
926
927			/* Remove the page from the freelists */
928			list_del(&page->lru);
929			rmv_page_order(page);
930
931			/* Take ownership for orders >= pageblock_order */
932			if (current_order >= pageblock_order)
933				change_pageblock_range(page, current_order,
934							start_migratetype);
935
936			expand(zone, page, order, current_order, area, migratetype);
937
938			trace_mm_page_alloc_extfrag(page, order, current_order,
939				start_migratetype, migratetype);
940
941			return page;
942		}
943	}
944
945	return NULL;
946}
947
948/*
949 * Do the hard work of removing an element from the buddy allocator.
950 * Call me with the zone->lock already held.
951 */
952static struct page *__rmqueue(struct zone *zone, unsigned int order,
953						int migratetype)
954{
955	struct page *page;
956
957retry_reserve:
958	page = __rmqueue_smallest(zone, order, migratetype);
959
960	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
961		page = __rmqueue_fallback(zone, order, migratetype);
962
963		/*
964		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
965		 * is used because __rmqueue_smallest is an inline function
966		 * and we want just one call site
967		 */
968		if (!page) {
969			migratetype = MIGRATE_RESERVE;
970			goto retry_reserve;
971		}
972	}
973
974	trace_mm_page_alloc_zone_locked(page, order, migratetype);
975	return page;
976}
977
978/*
979 * Obtain a specified number of elements from the buddy allocator, all under
980 * a single hold of the lock, for efficiency.  Add them to the supplied list.
981 * Returns the number of new pages which were placed at *list.
982 */
983static int rmqueue_bulk(struct zone *zone, unsigned int order,
984			unsigned long count, struct list_head *list,
985			int migratetype, int cold)
986{
987	int i;
988
989	spin_lock(&zone->lock);
990	for (i = 0; i < count; ++i) {
991		struct page *page = __rmqueue(zone, order, migratetype);
992		if (unlikely(page == NULL))
993			break;
994
995		/*
996		 * Split buddy pages returned by expand() are received here
997		 * in physical page order. The page is added to the callers and
998		 * list and the list head then moves forward. From the callers
999		 * perspective, the linked list is ordered by page number in
1000		 * some conditions. This is useful for IO devices that can
1001		 * merge IO requests if the physical pages are ordered
1002		 * properly.
1003		 */
1004		if (likely(cold == 0))
1005			list_add(&page->lru, list);
1006		else
1007			list_add_tail(&page->lru, list);
1008		set_page_private(page, migratetype);
1009		list = &page->lru;
1010	}
1011	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1012	spin_unlock(&zone->lock);
1013	return i;
1014}
1015
1016#ifdef CONFIG_NUMA
1017/*
1018 * Called from the vmstat counter updater to drain pagesets of this
1019 * currently executing processor on remote nodes after they have
1020 * expired.
1021 *
1022 * Note that this function must be called with the thread pinned to
1023 * a single processor.
1024 */
1025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1026{
1027	unsigned long flags;
1028	int to_drain;
1029
1030	local_irq_save(flags);
1031	if (pcp->count >= pcp->batch)
1032		to_drain = pcp->batch;
1033	else
1034		to_drain = pcp->count;
1035	free_pcppages_bulk(zone, to_drain, pcp);
1036	pcp->count -= to_drain;
1037	local_irq_restore(flags);
1038}
1039#endif
1040
1041/*
1042 * Drain pages of the indicated processor.
1043 *
1044 * The processor must either be the current processor and the
1045 * thread pinned to the current processor or a processor that
1046 * is not online.
1047 */
1048static void drain_pages(unsigned int cpu)
1049{
1050	unsigned long flags;
1051	struct zone *zone;
1052
1053	for_each_populated_zone(zone) {
1054		struct per_cpu_pageset *pset;
1055		struct per_cpu_pages *pcp;
1056
1057		local_irq_save(flags);
1058		pset = per_cpu_ptr(zone->pageset, cpu);
1059
1060		pcp = &pset->pcp;
1061		free_pcppages_bulk(zone, pcp->count, pcp);
1062		pcp->count = 0;
1063		local_irq_restore(flags);
1064	}
1065}
1066
1067/*
1068 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1069 */
1070void drain_local_pages(void *arg)
1071{
1072	drain_pages(smp_processor_id());
1073}
1074
1075/*
1076 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1077 */
1078void drain_all_pages(void)
1079{
1080	on_each_cpu(drain_local_pages, NULL, 1);
1081}
1082
1083#ifdef CONFIG_HIBERNATION
1084
1085void mark_free_pages(struct zone *zone)
1086{
1087	unsigned long pfn, max_zone_pfn;
1088	unsigned long flags;
1089	int order, t;
1090	struct list_head *curr;
1091
1092	if (!zone->spanned_pages)
1093		return;
1094
1095	spin_lock_irqsave(&zone->lock, flags);
1096
1097	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1098	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1099		if (pfn_valid(pfn)) {
1100			struct page *page = pfn_to_page(pfn);
1101
1102			if (!swsusp_page_is_forbidden(page))
1103				swsusp_unset_page_free(page);
1104		}
1105
1106	for_each_migratetype_order(order, t) {
1107		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1108			unsigned long i;
1109
1110			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1111			for (i = 0; i < (1UL << order); i++)
1112				swsusp_set_page_free(pfn_to_page(pfn + i));
1113		}
1114	}
1115	spin_unlock_irqrestore(&zone->lock, flags);
1116}
1117#endif /* CONFIG_PM */
1118
1119/*
1120 * Free a 0-order page
1121 * cold == 1 ? free a cold page : free a hot page
1122 */
1123void free_hot_cold_page(struct page *page, int cold)
1124{
1125	struct zone *zone = page_zone(page);
1126	struct per_cpu_pages *pcp;
1127	unsigned long flags;
1128	int migratetype;
1129	int wasMlocked = __TestClearPageMlocked(page);
1130
1131	trace_mm_page_free_direct(page, 0);
1132	kmemcheck_free_shadow(page, 0);
1133
1134	if (PageAnon(page))
1135		page->mapping = NULL;
1136	if (free_pages_check(page))
1137		return;
1138
1139	if (!PageHighMem(page)) {
1140		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1141		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1142	}
1143	arch_free_page(page, 0);
1144	kernel_map_pages(page, 1, 0);
1145
1146	migratetype = get_pageblock_migratetype(page);
1147	set_page_private(page, migratetype);
1148	local_irq_save(flags);
1149	if (unlikely(wasMlocked))
1150		free_page_mlock(page);
1151	__count_vm_event(PGFREE);
1152
1153	/*
1154	 * We only track unmovable, reclaimable and movable on pcp lists.
1155	 * Free ISOLATE pages back to the allocator because they are being
1156	 * offlined but treat RESERVE as movable pages so we can get those
1157	 * areas back if necessary. Otherwise, we may have to free
1158	 * excessively into the page allocator
1159	 */
1160	if (migratetype >= MIGRATE_PCPTYPES) {
1161		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1162			free_one_page(zone, page, 0, migratetype);
1163			goto out;
1164		}
1165		migratetype = MIGRATE_MOVABLE;
1166	}
1167
1168	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1169	if (cold)
1170		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1171	else
1172		list_add(&page->lru, &pcp->lists[migratetype]);
1173	pcp->count++;
1174	if (pcp->count >= pcp->high) {
1175		free_pcppages_bulk(zone, pcp->batch, pcp);
1176		pcp->count -= pcp->batch;
1177	}
1178
1179out:
1180	local_irq_restore(flags);
1181}
1182
1183/*
1184 * split_page takes a non-compound higher-order page, and splits it into
1185 * n (1<<order) sub-pages: page[0..n]
1186 * Each sub-page must be freed individually.
1187 *
1188 * Note: this is probably too low level an operation for use in drivers.
1189 * Please consult with lkml before using this in your driver.
1190 */
1191void split_page(struct page *page, unsigned int order)
1192{
1193	int i;
1194
1195	VM_BUG_ON(PageCompound(page));
1196	VM_BUG_ON(!page_count(page));
1197
1198#ifdef CONFIG_KMEMCHECK
1199	/*
1200	 * Split shadow pages too, because free(page[0]) would
1201	 * otherwise free the whole shadow.
1202	 */
1203	if (kmemcheck_page_is_tracked(page))
1204		split_page(virt_to_page(page[0].shadow), order);
1205#endif
1206
1207	for (i = 1; i < (1 << order); i++)
1208		set_page_refcounted(page + i);
1209}
1210
1211/*
1212 * Similar to split_page except the page is already free. As this is only
1213 * being used for migration, the migratetype of the block also changes.
1214 * As this is called with interrupts disabled, the caller is responsible
1215 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1216 * are enabled.
1217 *
1218 * Note: this is probably too low level an operation for use in drivers.
1219 * Please consult with lkml before using this in your driver.
1220 */
1221int split_free_page(struct page *page)
1222{
1223	unsigned int order;
1224	unsigned long watermark;
1225	struct zone *zone;
1226
1227	BUG_ON(!PageBuddy(page));
1228
1229	zone = page_zone(page);
1230	order = page_order(page);
1231
1232	/* Obey watermarks as if the page was being allocated */
1233	watermark = low_wmark_pages(zone) + (1 << order);
1234	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1235		return 0;
1236
1237	/* Remove page from free list */
1238	list_del(&page->lru);
1239	zone->free_area[order].nr_free--;
1240	rmv_page_order(page);
1241	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1242
1243	/* Split into individual pages */
1244	set_page_refcounted(page);
1245	split_page(page, order);
1246
1247	if (order >= pageblock_order - 1) {
1248		struct page *endpage = page + (1 << order) - 1;
1249		for (; page < endpage; page += pageblock_nr_pages)
1250			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1251	}
1252
1253	return 1 << order;
1254}
1255
1256/*
1257 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1258 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1259 * or two.
1260 */
1261static inline
1262struct page *buffered_rmqueue(struct zone *preferred_zone,
1263			struct zone *zone, int order, gfp_t gfp_flags,
1264			int migratetype)
1265{
1266	unsigned long flags;
1267	struct page *page;
1268	int cold = !!(gfp_flags & __GFP_COLD);
1269
1270again:
1271	if (likely(order == 0)) {
1272		struct per_cpu_pages *pcp;
1273		struct list_head *list;
1274
1275		local_irq_save(flags);
1276		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1277		list = &pcp->lists[migratetype];
1278		if (list_empty(list)) {
1279			pcp->count += rmqueue_bulk(zone, 0,
1280					pcp->batch, list,
1281					migratetype, cold);
1282			if (unlikely(list_empty(list)))
1283				goto failed;
1284		}
1285
1286		if (cold)
1287			page = list_entry(list->prev, struct page, lru);
1288		else
1289			page = list_entry(list->next, struct page, lru);
1290
1291		list_del(&page->lru);
1292		pcp->count--;
1293	} else {
1294		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1295			/*
1296			 * __GFP_NOFAIL is not to be used in new code.
1297			 *
1298			 * All __GFP_NOFAIL callers should be fixed so that they
1299			 * properly detect and handle allocation failures.
1300			 *
1301			 * We most definitely don't want callers attempting to
1302			 * allocate greater than order-1 page units with
1303			 * __GFP_NOFAIL.
1304			 */
1305			WARN_ON_ONCE(order > 1);
1306		}
1307		spin_lock_irqsave(&zone->lock, flags);
1308		page = __rmqueue(zone, order, migratetype);
1309		spin_unlock(&zone->lock);
1310		if (!page)
1311			goto failed;
1312		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1313	}
1314
1315	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1316	zone_statistics(preferred_zone, zone);
1317	local_irq_restore(flags);
1318
1319	VM_BUG_ON(bad_range(zone, page));
1320	if (prep_new_page(page, order, gfp_flags))
1321		goto again;
1322	return page;
1323
1324failed:
1325	local_irq_restore(flags);
1326	return NULL;
1327}
1328
1329/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1330#define ALLOC_WMARK_MIN		WMARK_MIN
1331#define ALLOC_WMARK_LOW		WMARK_LOW
1332#define ALLOC_WMARK_HIGH	WMARK_HIGH
1333#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1334
1335/* Mask to get the watermark bits */
1336#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1337
1338#define ALLOC_HARDER		0x10 /* try to alloc harder */
1339#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1340#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1341
1342#ifdef CONFIG_FAIL_PAGE_ALLOC
1343
1344static struct fail_page_alloc_attr {
1345	struct fault_attr attr;
1346
1347	u32 ignore_gfp_highmem;
1348	u32 ignore_gfp_wait;
1349	u32 min_order;
1350
1351#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1352
1353	struct dentry *ignore_gfp_highmem_file;
1354	struct dentry *ignore_gfp_wait_file;
1355	struct dentry *min_order_file;
1356
1357#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1358
1359} fail_page_alloc = {
1360	.attr = FAULT_ATTR_INITIALIZER,
1361	.ignore_gfp_wait = 1,
1362	.ignore_gfp_highmem = 1,
1363	.min_order = 1,
1364};
1365
1366static int __init setup_fail_page_alloc(char *str)
1367{
1368	return setup_fault_attr(&fail_page_alloc.attr, str);
1369}
1370__setup("fail_page_alloc=", setup_fail_page_alloc);
1371
1372static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1373{
1374	if (order < fail_page_alloc.min_order)
1375		return 0;
1376	if (gfp_mask & __GFP_NOFAIL)
1377		return 0;
1378	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1379		return 0;
1380	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1381		return 0;
1382
1383	return should_fail(&fail_page_alloc.attr, 1 << order);
1384}
1385
1386#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1387
1388static int __init fail_page_alloc_debugfs(void)
1389{
1390	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1391	struct dentry *dir;
1392	int err;
1393
1394	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1395				       "fail_page_alloc");
1396	if (err)
1397		return err;
1398	dir = fail_page_alloc.attr.dentries.dir;
1399
1400	fail_page_alloc.ignore_gfp_wait_file =
1401		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1402				      &fail_page_alloc.ignore_gfp_wait);
1403
1404	fail_page_alloc.ignore_gfp_highmem_file =
1405		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1406				      &fail_page_alloc.ignore_gfp_highmem);
1407	fail_page_alloc.min_order_file =
1408		debugfs_create_u32("min-order", mode, dir,
1409				   &fail_page_alloc.min_order);
1410
1411	if (!fail_page_alloc.ignore_gfp_wait_file ||
1412            !fail_page_alloc.ignore_gfp_highmem_file ||
1413            !fail_page_alloc.min_order_file) {
1414		err = -ENOMEM;
1415		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1416		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1417		debugfs_remove(fail_page_alloc.min_order_file);
1418		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1419	}
1420
1421	return err;
1422}
1423
1424late_initcall(fail_page_alloc_debugfs);
1425
1426#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1427
1428#else /* CONFIG_FAIL_PAGE_ALLOC */
1429
1430static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1431{
1432	return 0;
1433}
1434
1435#endif /* CONFIG_FAIL_PAGE_ALLOC */
1436
1437/*
1438 * Return 1 if free pages are above 'mark'. This takes into account the order
1439 * of the allocation.
1440 */
1441int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1442		      int classzone_idx, int alloc_flags)
1443{
1444	/* free_pages my go negative - that's OK */
1445	long min = mark;
1446	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1447	int o;
1448
1449	if (alloc_flags & ALLOC_HIGH)
1450		min -= min / 2;
1451	if (alloc_flags & ALLOC_HARDER)
1452		min -= min / 4;
1453
1454	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1455		return 0;
1456	for (o = 0; o < order; o++) {
1457		/* At the next order, this order's pages become unavailable */
1458		free_pages -= z->free_area[o].nr_free << o;
1459
1460		/* Require fewer higher order pages to be free */
1461		min >>= 1;
1462
1463		if (free_pages <= min)
1464			return 0;
1465	}
1466	return 1;
1467}
1468
1469#ifdef CONFIG_NUMA
1470/*
1471 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1472 * skip over zones that are not allowed by the cpuset, or that have
1473 * been recently (in last second) found to be nearly full.  See further
1474 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1475 * that have to skip over a lot of full or unallowed zones.
1476 *
1477 * If the zonelist cache is present in the passed in zonelist, then
1478 * returns a pointer to the allowed node mask (either the current
1479 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1480 *
1481 * If the zonelist cache is not available for this zonelist, does
1482 * nothing and returns NULL.
1483 *
1484 * If the fullzones BITMAP in the zonelist cache is stale (more than
1485 * a second since last zap'd) then we zap it out (clear its bits.)
1486 *
1487 * We hold off even calling zlc_setup, until after we've checked the
1488 * first zone in the zonelist, on the theory that most allocations will
1489 * be satisfied from that first zone, so best to examine that zone as
1490 * quickly as we can.
1491 */
1492static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1493{
1494	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1495	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1496
1497	zlc = zonelist->zlcache_ptr;
1498	if (!zlc)
1499		return NULL;
1500
1501	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1502		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1503		zlc->last_full_zap = jiffies;
1504	}
1505
1506	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1507					&cpuset_current_mems_allowed :
1508					&node_states[N_HIGH_MEMORY];
1509	return allowednodes;
1510}
1511
1512/*
1513 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1514 * if it is worth looking at further for free memory:
1515 *  1) Check that the zone isn't thought to be full (doesn't have its
1516 *     bit set in the zonelist_cache fullzones BITMAP).
1517 *  2) Check that the zones node (obtained from the zonelist_cache
1518 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1519 * Return true (non-zero) if zone is worth looking at further, or
1520 * else return false (zero) if it is not.
1521 *
1522 * This check -ignores- the distinction between various watermarks,
1523 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1524 * found to be full for any variation of these watermarks, it will
1525 * be considered full for up to one second by all requests, unless
1526 * we are so low on memory on all allowed nodes that we are forced
1527 * into the second scan of the zonelist.
1528 *
1529 * In the second scan we ignore this zonelist cache and exactly
1530 * apply the watermarks to all zones, even it is slower to do so.
1531 * We are low on memory in the second scan, and should leave no stone
1532 * unturned looking for a free page.
1533 */
1534static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1535						nodemask_t *allowednodes)
1536{
1537	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1538	int i;				/* index of *z in zonelist zones */
1539	int n;				/* node that zone *z is on */
1540
1541	zlc = zonelist->zlcache_ptr;
1542	if (!zlc)
1543		return 1;
1544
1545	i = z - zonelist->_zonerefs;
1546	n = zlc->z_to_n[i];
1547
1548	/* This zone is worth trying if it is allowed but not full */
1549	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1550}
1551
1552/*
1553 * Given 'z' scanning a zonelist, set the corresponding bit in
1554 * zlc->fullzones, so that subsequent attempts to allocate a page
1555 * from that zone don't waste time re-examining it.
1556 */
1557static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1558{
1559	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1560	int i;				/* index of *z in zonelist zones */
1561
1562	zlc = zonelist->zlcache_ptr;
1563	if (!zlc)
1564		return;
1565
1566	i = z - zonelist->_zonerefs;
1567
1568	set_bit(i, zlc->fullzones);
1569}
1570
1571#else	/* CONFIG_NUMA */
1572
1573static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1574{
1575	return NULL;
1576}
1577
1578static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1579				nodemask_t *allowednodes)
1580{
1581	return 1;
1582}
1583
1584static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1585{
1586}
1587#endif	/* CONFIG_NUMA */
1588
1589/*
1590 * get_page_from_freelist goes through the zonelist trying to allocate
1591 * a page.
1592 */
1593static struct page *
1594get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1595		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1596		struct zone *preferred_zone, int migratetype)
1597{
1598	struct zoneref *z;
1599	struct page *page = NULL;
1600	int classzone_idx;
1601	struct zone *zone;
1602	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1603	int zlc_active = 0;		/* set if using zonelist_cache */
1604	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1605
1606	classzone_idx = zone_idx(preferred_zone);
1607zonelist_scan:
1608	/*
1609	 * Scan zonelist, looking for a zone with enough free.
1610	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1611	 */
1612	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1613						high_zoneidx, nodemask) {
1614		if (NUMA_BUILD && zlc_active &&
1615			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1616				continue;
1617		if ((alloc_flags & ALLOC_CPUSET) &&
1618			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1619				goto try_next_zone;
1620
1621		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1622		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1623			unsigned long mark;
1624			int ret;
1625
1626			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1627			if (zone_watermark_ok(zone, order, mark,
1628				    classzone_idx, alloc_flags))
1629				goto try_this_zone;
1630
1631			if (zone_reclaim_mode == 0)
1632				goto this_zone_full;
1633
1634			ret = zone_reclaim(zone, gfp_mask, order);
1635			switch (ret) {
1636			case ZONE_RECLAIM_NOSCAN:
1637				/* did not scan */
1638				goto try_next_zone;
1639			case ZONE_RECLAIM_FULL:
1640				/* scanned but unreclaimable */
1641				goto this_zone_full;
1642			default:
1643				/* did we reclaim enough */
1644				if (!zone_watermark_ok(zone, order, mark,
1645						classzone_idx, alloc_flags))
1646					goto this_zone_full;
1647			}
1648		}
1649
1650try_this_zone:
1651		page = buffered_rmqueue(preferred_zone, zone, order,
1652						gfp_mask, migratetype);
1653		if (page)
1654			break;
1655this_zone_full:
1656		if (NUMA_BUILD)
1657			zlc_mark_zone_full(zonelist, z);
1658try_next_zone:
1659		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1660			/*
1661			 * we do zlc_setup after the first zone is tried but only
1662			 * if there are multiple nodes make it worthwhile
1663			 */
1664			allowednodes = zlc_setup(zonelist, alloc_flags);
1665			zlc_active = 1;
1666			did_zlc_setup = 1;
1667		}
1668	}
1669
1670	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1671		/* Disable zlc cache for second zonelist scan */
1672		zlc_active = 0;
1673		goto zonelist_scan;
1674	}
1675	return page;
1676}
1677
1678static inline int
1679should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1680				unsigned long pages_reclaimed)
1681{
1682	/* Do not loop if specifically requested */
1683	if (gfp_mask & __GFP_NORETRY)
1684		return 0;
1685
1686	/*
1687	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1688	 * means __GFP_NOFAIL, but that may not be true in other
1689	 * implementations.
1690	 */
1691	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1692		return 1;
1693
1694	/*
1695	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1696	 * specified, then we retry until we no longer reclaim any pages
1697	 * (above), or we've reclaimed an order of pages at least as
1698	 * large as the allocation's order. In both cases, if the
1699	 * allocation still fails, we stop retrying.
1700	 */
1701	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1702		return 1;
1703
1704	/*
1705	 * Don't let big-order allocations loop unless the caller
1706	 * explicitly requests that.
1707	 */
1708	if (gfp_mask & __GFP_NOFAIL)
1709		return 1;
1710
1711	return 0;
1712}
1713
1714static inline struct page *
1715__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1716	struct zonelist *zonelist, enum zone_type high_zoneidx,
1717	nodemask_t *nodemask, struct zone *preferred_zone,
1718	int migratetype)
1719{
1720	struct page *page;
1721
1722	/* Acquire the OOM killer lock for the zones in zonelist */
1723	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1724		schedule_timeout_uninterruptible(1);
1725		return NULL;
1726	}
1727
1728	/*
1729	 * Go through the zonelist yet one more time, keep very high watermark
1730	 * here, this is only to catch a parallel oom killing, we must fail if
1731	 * we're still under heavy pressure.
1732	 */
1733	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1734		order, zonelist, high_zoneidx,
1735		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1736		preferred_zone, migratetype);
1737	if (page)
1738		goto out;
1739
1740	if (!(gfp_mask & __GFP_NOFAIL)) {
1741		/* The OOM killer will not help higher order allocs */
1742		if (order > PAGE_ALLOC_COSTLY_ORDER)
1743			goto out;
1744		/*
1745		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1746		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1747		 * The caller should handle page allocation failure by itself if
1748		 * it specifies __GFP_THISNODE.
1749		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1750		 */
1751		if (gfp_mask & __GFP_THISNODE)
1752			goto out;
1753	}
1754	/* Exhausted what can be done so it's blamo time */
1755	out_of_memory(zonelist, gfp_mask, order, nodemask);
1756
1757out:
1758	clear_zonelist_oom(zonelist, gfp_mask);
1759	return page;
1760}
1761
1762#ifdef CONFIG_COMPACTION
1763/* Try memory compaction for high-order allocations before reclaim */
1764static struct page *
1765__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1766	struct zonelist *zonelist, enum zone_type high_zoneidx,
1767	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1768	int migratetype, unsigned long *did_some_progress)
1769{
1770	struct page *page;
1771
1772	if (!order || compaction_deferred(preferred_zone))
1773		return NULL;
1774
1775	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1776								nodemask);
1777	if (*did_some_progress != COMPACT_SKIPPED) {
1778
1779		/* Page migration frees to the PCP lists but we want merging */
1780		drain_pages(get_cpu());
1781		put_cpu();
1782
1783		page = get_page_from_freelist(gfp_mask, nodemask,
1784				order, zonelist, high_zoneidx,
1785				alloc_flags, preferred_zone,
1786				migratetype);
1787		if (page) {
1788			preferred_zone->compact_considered = 0;
1789			preferred_zone->compact_defer_shift = 0;
1790			count_vm_event(COMPACTSUCCESS);
1791			return page;
1792		}
1793
1794		/*
1795		 * It's bad if compaction run occurs and fails.
1796		 * The most likely reason is that pages exist,
1797		 * but not enough to satisfy watermarks.
1798		 */
1799		count_vm_event(COMPACTFAIL);
1800		defer_compaction(preferred_zone);
1801
1802		cond_resched();
1803	}
1804
1805	return NULL;
1806}
1807#else
1808static inline struct page *
1809__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1810	struct zonelist *zonelist, enum zone_type high_zoneidx,
1811	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1812	int migratetype, unsigned long *did_some_progress)
1813{
1814	return NULL;
1815}
1816#endif /* CONFIG_COMPACTION */
1817
1818/* The really slow allocator path where we enter direct reclaim */
1819static inline struct page *
1820__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1821	struct zonelist *zonelist, enum zone_type high_zoneidx,
1822	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1823	int migratetype, unsigned long *did_some_progress)
1824{
1825	struct page *page = NULL;
1826	struct reclaim_state reclaim_state;
1827	struct task_struct *p = current;
1828
1829	cond_resched();
1830
1831	/* We now go into synchronous reclaim */
1832	cpuset_memory_pressure_bump();
1833	p->flags |= PF_MEMALLOC;
1834	lockdep_set_current_reclaim_state(gfp_mask);
1835	reclaim_state.reclaimed_slab = 0;
1836	p->reclaim_state = &reclaim_state;
1837
1838	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1839
1840	p->reclaim_state = NULL;
1841	lockdep_clear_current_reclaim_state();
1842	p->flags &= ~PF_MEMALLOC;
1843
1844	cond_resched();
1845
1846	if (order != 0)
1847		drain_all_pages();
1848
1849	if (likely(*did_some_progress))
1850		page = get_page_from_freelist(gfp_mask, nodemask, order,
1851					zonelist, high_zoneidx,
1852					alloc_flags, preferred_zone,
1853					migratetype);
1854	return page;
1855}
1856
1857/*
1858 * This is called in the allocator slow-path if the allocation request is of
1859 * sufficient urgency to ignore watermarks and take other desperate measures
1860 */
1861static inline struct page *
1862__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1863	struct zonelist *zonelist, enum zone_type high_zoneidx,
1864	nodemask_t *nodemask, struct zone *preferred_zone,
1865	int migratetype)
1866{
1867	struct page *page;
1868
1869	do {
1870		page = get_page_from_freelist(gfp_mask, nodemask, order,
1871			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1872			preferred_zone, migratetype);
1873
1874		if (!page && gfp_mask & __GFP_NOFAIL)
1875			congestion_wait(BLK_RW_ASYNC, HZ/50);
1876	} while (!page && (gfp_mask & __GFP_NOFAIL));
1877
1878	return page;
1879}
1880
1881static inline
1882void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1883						enum zone_type high_zoneidx)
1884{
1885	struct zoneref *z;
1886	struct zone *zone;
1887
1888	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1889		wakeup_kswapd(zone, order);
1890}
1891
1892static inline int
1893gfp_to_alloc_flags(gfp_t gfp_mask)
1894{
1895	struct task_struct *p = current;
1896	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1897	const gfp_t wait = gfp_mask & __GFP_WAIT;
1898
1899	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1900	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1901
1902	/*
1903	 * The caller may dip into page reserves a bit more if the caller
1904	 * cannot run direct reclaim, or if the caller has realtime scheduling
1905	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1906	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1907	 */
1908	alloc_flags |= (gfp_mask & __GFP_HIGH);
1909
1910	if (!wait) {
1911		alloc_flags |= ALLOC_HARDER;
1912		/*
1913		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1914		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1915		 */
1916		alloc_flags &= ~ALLOC_CPUSET;
1917	} else if (unlikely(rt_task(p)) && !in_interrupt())
1918		alloc_flags |= ALLOC_HARDER;
1919
1920	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1921		if (!in_interrupt() &&
1922		    ((p->flags & PF_MEMALLOC) ||
1923		     unlikely(test_thread_flag(TIF_MEMDIE))))
1924			alloc_flags |= ALLOC_NO_WATERMARKS;
1925	}
1926
1927	return alloc_flags;
1928}
1929
1930static inline struct page *
1931__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1932	struct zonelist *zonelist, enum zone_type high_zoneidx,
1933	nodemask_t *nodemask, struct zone *preferred_zone,
1934	int migratetype)
1935{
1936	const gfp_t wait = gfp_mask & __GFP_WAIT;
1937	struct page *page = NULL;
1938	int alloc_flags;
1939	unsigned long pages_reclaimed = 0;
1940	unsigned long did_some_progress;
1941	struct task_struct *p = current;
1942
1943	/*
1944	 * In the slowpath, we sanity check order to avoid ever trying to
1945	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1946	 * be using allocators in order of preference for an area that is
1947	 * too large.
1948	 */
1949	if (order >= MAX_ORDER) {
1950		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1951		return NULL;
1952	}
1953
1954	/*
1955	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1956	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1957	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1958	 * using a larger set of nodes after it has established that the
1959	 * allowed per node queues are empty and that nodes are
1960	 * over allocated.
1961	 */
1962	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1963		goto nopage;
1964
1965restart:
1966	wake_all_kswapd(order, zonelist, high_zoneidx);
1967
1968	/*
1969	 * OK, we're below the kswapd watermark and have kicked background
1970	 * reclaim. Now things get more complex, so set up alloc_flags according
1971	 * to how we want to proceed.
1972	 */
1973	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1974
1975	/* This is the last chance, in general, before the goto nopage. */
1976	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1977			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1978			preferred_zone, migratetype);
1979	if (page)
1980		goto got_pg;
1981
1982rebalance:
1983	/* Allocate without watermarks if the context allows */
1984	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1985		page = __alloc_pages_high_priority(gfp_mask, order,
1986				zonelist, high_zoneidx, nodemask,
1987				preferred_zone, migratetype);
1988		if (page)
1989			goto got_pg;
1990	}
1991
1992	/* Atomic allocations - we can't balance anything */
1993	if (!wait)
1994		goto nopage;
1995
1996	/* Avoid recursion of direct reclaim */
1997	if (p->flags & PF_MEMALLOC)
1998		goto nopage;
1999
2000	/* Avoid allocations with no watermarks from looping endlessly */
2001	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2002		goto nopage;
2003
2004	/* Try direct compaction */
2005	page = __alloc_pages_direct_compact(gfp_mask, order,
2006					zonelist, high_zoneidx,
2007					nodemask,
2008					alloc_flags, preferred_zone,
2009					migratetype, &did_some_progress);
2010	if (page)
2011		goto got_pg;
2012
2013	/* Try direct reclaim and then allocating */
2014	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2015					zonelist, high_zoneidx,
2016					nodemask,
2017					alloc_flags, preferred_zone,
2018					migratetype, &did_some_progress);
2019	if (page)
2020		goto got_pg;
2021
2022	/*
2023	 * If we failed to make any progress reclaiming, then we are
2024	 * running out of options and have to consider going OOM
2025	 */
2026	if (!did_some_progress) {
2027		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2028			if (oom_killer_disabled)
2029				goto nopage;
2030			page = __alloc_pages_may_oom(gfp_mask, order,
2031					zonelist, high_zoneidx,
2032					nodemask, preferred_zone,
2033					migratetype);
2034			if (page)
2035				goto got_pg;
2036
2037			/*
2038			 * The OOM killer does not trigger for high-order
2039			 * ~__GFP_NOFAIL allocations so if no progress is being
2040			 * made, there are no other options and retrying is
2041			 * unlikely to help.
2042			 */
2043			if (order > PAGE_ALLOC_COSTLY_ORDER &&
2044						!(gfp_mask & __GFP_NOFAIL))
2045				goto nopage;
2046
2047			goto restart;
2048		}
2049	}
2050
2051	/* Check if we should retry the allocation */
2052	pages_reclaimed += did_some_progress;
2053	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2054		/* Wait for some write requests to complete then retry */
2055		congestion_wait(BLK_RW_ASYNC, HZ/50);
2056		goto rebalance;
2057	}
2058
2059nopage:
2060	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2061		printk(KERN_WARNING "%s: page allocation failure."
2062			" order:%d, mode:0x%x\n",
2063			p->comm, order, gfp_mask);
2064		dump_stack();
2065		show_mem();
2066	}
2067	return page;
2068got_pg:
2069	if (kmemcheck_enabled)
2070		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2071	return page;
2072
2073}
2074
2075/*
2076 * This is the 'heart' of the zoned buddy allocator.
2077 */
2078struct page *
2079__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2080			struct zonelist *zonelist, nodemask_t *nodemask)
2081{
2082	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2083	struct zone *preferred_zone;
2084	struct page *page;
2085	int migratetype = allocflags_to_migratetype(gfp_mask);
2086
2087	gfp_mask &= gfp_allowed_mask;
2088
2089	lockdep_trace_alloc(gfp_mask);
2090
2091	might_sleep_if(gfp_mask & __GFP_WAIT);
2092
2093	if (should_fail_alloc_page(gfp_mask, order))
2094		return NULL;
2095
2096	/*
2097	 * Check the zones suitable for the gfp_mask contain at least one
2098	 * valid zone. It's possible to have an empty zonelist as a result
2099	 * of GFP_THISNODE and a memoryless node
2100	 */
2101	if (unlikely(!zonelist->_zonerefs->zone))
2102		return NULL;
2103
2104	get_mems_allowed();
2105	/* The preferred zone is used for statistics later */
2106	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2107	if (!preferred_zone) {
2108		put_mems_allowed();
2109		return NULL;
2110	}
2111
2112	/* First allocation attempt */
2113	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2114			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2115			preferred_zone, migratetype);
2116	if (unlikely(!page))
2117		page = __alloc_pages_slowpath(gfp_mask, order,
2118				zonelist, high_zoneidx, nodemask,
2119				preferred_zone, migratetype);
2120	put_mems_allowed();
2121
2122	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2123	return page;
2124}
2125EXPORT_SYMBOL(__alloc_pages_nodemask);
2126
2127/*
2128 * Common helper functions.
2129 */
2130unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2131{
2132	struct page *page;
2133
2134	/*
2135	 * __get_free_pages() returns a 32-bit address, which cannot represent
2136	 * a highmem page
2137	 */
2138	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2139
2140	page = alloc_pages(gfp_mask, order);
2141	if (!page)
2142		return 0;
2143	return (unsigned long) page_address(page);
2144}
2145EXPORT_SYMBOL(__get_free_pages);
2146
2147unsigned long get_zeroed_page(gfp_t gfp_mask)
2148{
2149	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2150}
2151EXPORT_SYMBOL(get_zeroed_page);
2152
2153void __pagevec_free(struct pagevec *pvec)
2154{
2155	int i = pagevec_count(pvec);
2156
2157	while (--i >= 0) {
2158		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2159		free_hot_cold_page(pvec->pages[i], pvec->cold);
2160	}
2161}
2162
2163void __free_pages(struct page *page, unsigned int order)
2164{
2165	if (put_page_testzero(page)) {
2166		if (order == 0)
2167			free_hot_cold_page(page, 0);
2168		else
2169			__free_pages_ok(page, order);
2170	}
2171}
2172
2173EXPORT_SYMBOL(__free_pages);
2174
2175void free_pages(unsigned long addr, unsigned int order)
2176{
2177	if (addr != 0) {
2178		VM_BUG_ON(!virt_addr_valid((void *)addr));
2179		__free_pages(virt_to_page((void *)addr), order);
2180	}
2181}
2182
2183EXPORT_SYMBOL(free_pages);
2184
2185/**
2186 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2187 * @size: the number of bytes to allocate
2188 * @gfp_mask: GFP flags for the allocation
2189 *
2190 * This function is similar to alloc_pages(), except that it allocates the
2191 * minimum number of pages to satisfy the request.  alloc_pages() can only
2192 * allocate memory in power-of-two pages.
2193 *
2194 * This function is also limited by MAX_ORDER.
2195 *
2196 * Memory allocated by this function must be released by free_pages_exact().
2197 */
2198void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2199{
2200	unsigned int order = get_order(size);
2201	unsigned long addr;
2202
2203	addr = __get_free_pages(gfp_mask, order);
2204	if (addr) {
2205		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2206		unsigned long used = addr + PAGE_ALIGN(size);
2207
2208		split_page(virt_to_page((void *)addr), order);
2209		while (used < alloc_end) {
2210			free_page(used);
2211			used += PAGE_SIZE;
2212		}
2213	}
2214
2215	return (void *)addr;
2216}
2217EXPORT_SYMBOL(alloc_pages_exact);
2218
2219/**
2220 * free_pages_exact - release memory allocated via alloc_pages_exact()
2221 * @virt: the value returned by alloc_pages_exact.
2222 * @size: size of allocation, same value as passed to alloc_pages_exact().
2223 *
2224 * Release the memory allocated by a previous call to alloc_pages_exact.
2225 */
2226void free_pages_exact(void *virt, size_t size)
2227{
2228	unsigned long addr = (unsigned long)virt;
2229	unsigned long end = addr + PAGE_ALIGN(size);
2230
2231	while (addr < end) {
2232		free_page(addr);
2233		addr += PAGE_SIZE;
2234	}
2235}
2236EXPORT_SYMBOL(free_pages_exact);
2237
2238static unsigned int nr_free_zone_pages(int offset)
2239{
2240	struct zoneref *z;
2241	struct zone *zone;
2242
2243	/* Just pick one node, since fallback list is circular */
2244	unsigned int sum = 0;
2245
2246	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2247
2248	for_each_zone_zonelist(zone, z, zonelist, offset) {
2249		unsigned long size = zone->present_pages;
2250		unsigned long high = high_wmark_pages(zone);
2251		if (size > high)
2252			sum += size - high;
2253	}
2254
2255	return sum;
2256}
2257
2258/*
2259 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2260 */
2261unsigned int nr_free_buffer_pages(void)
2262{
2263	return nr_free_zone_pages(gfp_zone(GFP_USER));
2264}
2265EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2266
2267/*
2268 * Amount of free RAM allocatable within all zones
2269 */
2270unsigned int nr_free_pagecache_pages(void)
2271{
2272	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2273}
2274
2275static inline void show_node(struct zone *zone)
2276{
2277	if (NUMA_BUILD)
2278		printk("Node %d ", zone_to_nid(zone));
2279}
2280
2281void si_meminfo(struct sysinfo *val)
2282{
2283	val->totalram = totalram_pages;
2284	val->sharedram = 0;
2285	val->freeram = global_page_state(NR_FREE_PAGES);
2286	val->bufferram = nr_blockdev_pages();
2287	val->totalhigh = totalhigh_pages;
2288	val->freehigh = nr_free_highpages();
2289	val->mem_unit = PAGE_SIZE;
2290}
2291
2292EXPORT_SYMBOL(si_meminfo);
2293
2294#ifdef CONFIG_NUMA
2295void si_meminfo_node(struct sysinfo *val, int nid)
2296{
2297	pg_data_t *pgdat = NODE_DATA(nid);
2298
2299	val->totalram = pgdat->node_present_pages;
2300	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2301#ifdef CONFIG_HIGHMEM
2302	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2303	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2304			NR_FREE_PAGES);
2305#else
2306	val->totalhigh = 0;
2307	val->freehigh = 0;
2308#endif
2309	val->mem_unit = PAGE_SIZE;
2310}
2311#endif
2312
2313#define K(x) ((x) << (PAGE_SHIFT-10))
2314
2315/*
2316 * Show free area list (used inside shift_scroll-lock stuff)
2317 * We also calculate the percentage fragmentation. We do this by counting the
2318 * memory on each free list with the exception of the first item on the list.
2319 */
2320void show_free_areas(void)
2321{
2322	int cpu;
2323	struct zone *zone;
2324
2325	for_each_populated_zone(zone) {
2326		show_node(zone);
2327		printk("%s per-cpu:\n", zone->name);
2328
2329		for_each_online_cpu(cpu) {
2330			struct per_cpu_pageset *pageset;
2331
2332			pageset = per_cpu_ptr(zone->pageset, cpu);
2333
2334			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2335			       cpu, pageset->pcp.high,
2336			       pageset->pcp.batch, pageset->pcp.count);
2337		}
2338	}
2339
2340	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2341		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2342		" unevictable:%lu"
2343		" dirty:%lu writeback:%lu unstable:%lu\n"
2344		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2345		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2346		global_page_state(NR_ACTIVE_ANON),
2347		global_page_state(NR_INACTIVE_ANON),
2348		global_page_state(NR_ISOLATED_ANON),
2349		global_page_state(NR_ACTIVE_FILE),
2350		global_page_state(NR_INACTIVE_FILE),
2351		global_page_state(NR_ISOLATED_FILE),
2352		global_page_state(NR_UNEVICTABLE),
2353		global_page_state(NR_FILE_DIRTY),
2354		global_page_state(NR_WRITEBACK),
2355		global_page_state(NR_UNSTABLE_NFS),
2356		global_page_state(NR_FREE_PAGES),
2357		global_page_state(NR_SLAB_RECLAIMABLE),
2358		global_page_state(NR_SLAB_UNRECLAIMABLE),
2359		global_page_state(NR_FILE_MAPPED),
2360		global_page_state(NR_SHMEM),
2361		global_page_state(NR_PAGETABLE),
2362		global_page_state(NR_BOUNCE));
2363
2364	for_each_populated_zone(zone) {
2365		int i;
2366
2367		show_node(zone);
2368		printk("%s"
2369			" free:%lukB"
2370			" min:%lukB"
2371			" low:%lukB"
2372			" high:%lukB"
2373			" active_anon:%lukB"
2374			" inactive_anon:%lukB"
2375			" active_file:%lukB"
2376			" inactive_file:%lukB"
2377			" unevictable:%lukB"
2378			" isolated(anon):%lukB"
2379			" isolated(file):%lukB"
2380			" present:%lukB"
2381			" mlocked:%lukB"
2382			" dirty:%lukB"
2383			" writeback:%lukB"
2384			" mapped:%lukB"
2385			" shmem:%lukB"
2386			" slab_reclaimable:%lukB"
2387			" slab_unreclaimable:%lukB"
2388			" kernel_stack:%lukB"
2389			" pagetables:%lukB"
2390			" unstable:%lukB"
2391			" bounce:%lukB"
2392			" writeback_tmp:%lukB"
2393			" pages_scanned:%lu"
2394			" all_unreclaimable? %s"
2395			"\n",
2396			zone->name,
2397			K(zone_page_state(zone, NR_FREE_PAGES)),
2398			K(min_wmark_pages(zone)),
2399			K(low_wmark_pages(zone)),
2400			K(high_wmark_pages(zone)),
2401			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2402			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2403			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2404			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2405			K(zone_page_state(zone, NR_UNEVICTABLE)),
2406			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2407			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2408			K(zone->present_pages),
2409			K(zone_page_state(zone, NR_MLOCK)),
2410			K(zone_page_state(zone, NR_FILE_DIRTY)),
2411			K(zone_page_state(zone, NR_WRITEBACK)),
2412			K(zone_page_state(zone, NR_FILE_MAPPED)),
2413			K(zone_page_state(zone, NR_SHMEM)),
2414			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2415			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2416			zone_page_state(zone, NR_KERNEL_STACK) *
2417				THREAD_SIZE / 1024,
2418			K(zone_page_state(zone, NR_PAGETABLE)),
2419			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2420			K(zone_page_state(zone, NR_BOUNCE)),
2421			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2422			zone->pages_scanned,
2423			(zone->all_unreclaimable ? "yes" : "no")
2424			);
2425		printk("lowmem_reserve[]:");
2426		for (i = 0; i < MAX_NR_ZONES; i++)
2427			printk(" %lu", zone->lowmem_reserve[i]);
2428		printk("\n");
2429	}
2430
2431	for_each_populated_zone(zone) {
2432 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2433
2434		show_node(zone);
2435		printk("%s: ", zone->name);
2436
2437		spin_lock_irqsave(&zone->lock, flags);
2438		for (order = 0; order < MAX_ORDER; order++) {
2439			nr[order] = zone->free_area[order].nr_free;
2440			total += nr[order] << order;
2441		}
2442		spin_unlock_irqrestore(&zone->lock, flags);
2443		for (order = 0; order < MAX_ORDER; order++)
2444			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2445		printk("= %lukB\n", K(total));
2446	}
2447
2448	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2449
2450	show_swap_cache_info();
2451}
2452
2453static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2454{
2455	zoneref->zone = zone;
2456	zoneref->zone_idx = zone_idx(zone);
2457}
2458
2459/*
2460 * Builds allocation fallback zone lists.
2461 *
2462 * Add all populated zones of a node to the zonelist.
2463 */
2464static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2465				int nr_zones, enum zone_type zone_type)
2466{
2467	struct zone *zone;
2468
2469	BUG_ON(zone_type >= MAX_NR_ZONES);
2470	zone_type++;
2471
2472	do {
2473		zone_type--;
2474		zone = pgdat->node_zones + zone_type;
2475		if (populated_zone(zone)) {
2476			zoneref_set_zone(zone,
2477				&zonelist->_zonerefs[nr_zones++]);
2478			check_highest_zone(zone_type);
2479		}
2480
2481	} while (zone_type);
2482	return nr_zones;
2483}
2484
2485
2486/*
2487 *  zonelist_order:
2488 *  0 = automatic detection of better ordering.
2489 *  1 = order by ([node] distance, -zonetype)
2490 *  2 = order by (-zonetype, [node] distance)
2491 *
2492 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2493 *  the same zonelist. So only NUMA can configure this param.
2494 */
2495#define ZONELIST_ORDER_DEFAULT  0
2496#define ZONELIST_ORDER_NODE     1
2497#define ZONELIST_ORDER_ZONE     2
2498
2499/* zonelist order in the kernel.
2500 * set_zonelist_order() will set this to NODE or ZONE.
2501 */
2502static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2503static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2504
2505
2506#ifdef CONFIG_NUMA
2507/* The value user specified ....changed by config */
2508static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2509/* string for sysctl */
2510#define NUMA_ZONELIST_ORDER_LEN	16
2511char numa_zonelist_order[16] = "default";
2512
2513/*
2514 * interface for configure zonelist ordering.
2515 * command line option "numa_zonelist_order"
2516 *	= "[dD]efault	- default, automatic configuration.
2517 *	= "[nN]ode 	- order by node locality, then by zone within node
2518 *	= "[zZ]one      - order by zone, then by locality within zone
2519 */
2520
2521static int __parse_numa_zonelist_order(char *s)
2522{
2523	if (*s == 'd' || *s == 'D') {
2524		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2525	} else if (*s == 'n' || *s == 'N') {
2526		user_zonelist_order = ZONELIST_ORDER_NODE;
2527	} else if (*s == 'z' || *s == 'Z') {
2528		user_zonelist_order = ZONELIST_ORDER_ZONE;
2529	} else {
2530		printk(KERN_WARNING
2531			"Ignoring invalid numa_zonelist_order value:  "
2532			"%s\n", s);
2533		return -EINVAL;
2534	}
2535	return 0;
2536}
2537
2538static __init int setup_numa_zonelist_order(char *s)
2539{
2540	if (s)
2541		return __parse_numa_zonelist_order(s);
2542	return 0;
2543}
2544early_param("numa_zonelist_order", setup_numa_zonelist_order);
2545
2546/*
2547 * sysctl handler for numa_zonelist_order
2548 */
2549int numa_zonelist_order_handler(ctl_table *table, int write,
2550		void __user *buffer, size_t *length,
2551		loff_t *ppos)
2552{
2553	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2554	int ret;
2555	static DEFINE_MUTEX(zl_order_mutex);
2556
2557	mutex_lock(&zl_order_mutex);
2558	if (write)
2559		strcpy(saved_string, (char*)table->data);
2560	ret = proc_dostring(table, write, buffer, length, ppos);
2561	if (ret)
2562		goto out;
2563	if (write) {
2564		int oldval = user_zonelist_order;
2565		if (__parse_numa_zonelist_order((char*)table->data)) {
2566			/*
2567			 * bogus value.  restore saved string
2568			 */
2569			strncpy((char*)table->data, saved_string,
2570				NUMA_ZONELIST_ORDER_LEN);
2571			user_zonelist_order = oldval;
2572		} else if (oldval != user_zonelist_order)
2573			build_all_zonelists();
2574	}
2575out:
2576	mutex_unlock(&zl_order_mutex);
2577	return ret;
2578}
2579
2580
2581#define MAX_NODE_LOAD (nr_online_nodes)
2582static int node_load[MAX_NUMNODES];
2583
2584/**
2585 * find_next_best_node - find the next node that should appear in a given node's fallback list
2586 * @node: node whose fallback list we're appending
2587 * @used_node_mask: nodemask_t of already used nodes
2588 *
2589 * We use a number of factors to determine which is the next node that should
2590 * appear on a given node's fallback list.  The node should not have appeared
2591 * already in @node's fallback list, and it should be the next closest node
2592 * according to the distance array (which contains arbitrary distance values
2593 * from each node to each node in the system), and should also prefer nodes
2594 * with no CPUs, since presumably they'll have very little allocation pressure
2595 * on them otherwise.
2596 * It returns -1 if no node is found.
2597 */
2598static int find_next_best_node(int node, nodemask_t *used_node_mask)
2599{
2600	int n, val;
2601	int min_val = INT_MAX;
2602	int best_node = -1;
2603	const struct cpumask *tmp = cpumask_of_node(0);
2604
2605	/* Use the local node if we haven't already */
2606	if (!node_isset(node, *used_node_mask)) {
2607		node_set(node, *used_node_mask);
2608		return node;
2609	}
2610
2611	for_each_node_state(n, N_HIGH_MEMORY) {
2612
2613		/* Don't want a node to appear more than once */
2614		if (node_isset(n, *used_node_mask))
2615			continue;
2616
2617		/* Use the distance array to find the distance */
2618		val = node_distance(node, n);
2619
2620		/* Penalize nodes under us ("prefer the next node") */
2621		val += (n < node);
2622
2623		/* Give preference to headless and unused nodes */
2624		tmp = cpumask_of_node(n);
2625		if (!cpumask_empty(tmp))
2626			val += PENALTY_FOR_NODE_WITH_CPUS;
2627
2628		/* Slight preference for less loaded node */
2629		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2630		val += node_load[n];
2631
2632		if (val < min_val) {
2633			min_val = val;
2634			best_node = n;
2635		}
2636	}
2637
2638	if (best_node >= 0)
2639		node_set(best_node, *used_node_mask);
2640
2641	return best_node;
2642}
2643
2644
2645/*
2646 * Build zonelists ordered by node and zones within node.
2647 * This results in maximum locality--normal zone overflows into local
2648 * DMA zone, if any--but risks exhausting DMA zone.
2649 */
2650static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2651{
2652	int j;
2653	struct zonelist *zonelist;
2654
2655	zonelist = &pgdat->node_zonelists[0];
2656	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2657		;
2658	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2659							MAX_NR_ZONES - 1);
2660	zonelist->_zonerefs[j].zone = NULL;
2661	zonelist->_zonerefs[j].zone_idx = 0;
2662}
2663
2664/*
2665 * Build gfp_thisnode zonelists
2666 */
2667static void build_thisnode_zonelists(pg_data_t *pgdat)
2668{
2669	int j;
2670	struct zonelist *zonelist;
2671
2672	zonelist = &pgdat->node_zonelists[1];
2673	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2674	zonelist->_zonerefs[j].zone = NULL;
2675	zonelist->_zonerefs[j].zone_idx = 0;
2676}
2677
2678/*
2679 * Build zonelists ordered by zone and nodes within zones.
2680 * This results in conserving DMA zone[s] until all Normal memory is
2681 * exhausted, but results in overflowing to remote node while memory
2682 * may still exist in local DMA zone.
2683 */
2684static int node_order[MAX_NUMNODES];
2685
2686static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2687{
2688	int pos, j, node;
2689	int zone_type;		/* needs to be signed */
2690	struct zone *z;
2691	struct zonelist *zonelist;
2692
2693	zonelist = &pgdat->node_zonelists[0];
2694	pos = 0;
2695	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2696		for (j = 0; j < nr_nodes; j++) {
2697			node = node_order[j];
2698			z = &NODE_DATA(node)->node_zones[zone_type];
2699			if (populated_zone(z)) {
2700				zoneref_set_zone(z,
2701					&zonelist->_zonerefs[pos++]);
2702				check_highest_zone(zone_type);
2703			}
2704		}
2705	}
2706	zonelist->_zonerefs[pos].zone = NULL;
2707	zonelist->_zonerefs[pos].zone_idx = 0;
2708}
2709
2710static int default_zonelist_order(void)
2711{
2712	int nid, zone_type;
2713	unsigned long low_kmem_size,total_size;
2714	struct zone *z;
2715	int average_size;
2716	/*
2717         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2718	 * If they are really small and used heavily, the system can fall
2719	 * into OOM very easily.
2720	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2721	 */
2722	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2723	low_kmem_size = 0;
2724	total_size = 0;
2725	for_each_online_node(nid) {
2726		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2727			z = &NODE_DATA(nid)->node_zones[zone_type];
2728			if (populated_zone(z)) {
2729				if (zone_type < ZONE_NORMAL)
2730					low_kmem_size += z->present_pages;
2731				total_size += z->present_pages;
2732			} else if (zone_type == ZONE_NORMAL) {
2733				/*
2734				 * If any node has only lowmem, then node order
2735				 * is preferred to allow kernel allocations
2736				 * locally; otherwise, they can easily infringe
2737				 * on other nodes when there is an abundance of
2738				 * lowmem available to allocate from.
2739				 */
2740				return ZONELIST_ORDER_NODE;
2741			}
2742		}
2743	}
2744	if (!low_kmem_size ||  /* there are no DMA area. */
2745	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2746		return ZONELIST_ORDER_NODE;
2747	/*
2748	 * look into each node's config.
2749  	 * If there is a node whose DMA/DMA32 memory is very big area on
2750 	 * local memory, NODE_ORDER may be suitable.
2751         */
2752	average_size = total_size /
2753				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2754	for_each_online_node(nid) {
2755		low_kmem_size = 0;
2756		total_size = 0;
2757		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2758			z = &NODE_DATA(nid)->node_zones[zone_type];
2759			if (populated_zone(z)) {
2760				if (zone_type < ZONE_NORMAL)
2761					low_kmem_size += z->present_pages;
2762				total_size += z->present_pages;
2763			}
2764		}
2765		if (low_kmem_size &&
2766		    total_size > average_size && /* ignore small node */
2767		    low_kmem_size > total_size * 70/100)
2768			return ZONELIST_ORDER_NODE;
2769	}
2770	return ZONELIST_ORDER_ZONE;
2771}
2772
2773static void set_zonelist_order(void)
2774{
2775	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2776		current_zonelist_order = default_zonelist_order();
2777	else
2778		current_zonelist_order = user_zonelist_order;
2779}
2780
2781static void build_zonelists(pg_data_t *pgdat)
2782{
2783	int j, node, load;
2784	enum zone_type i;
2785	nodemask_t used_mask;
2786	int local_node, prev_node;
2787	struct zonelist *zonelist;
2788	int order = current_zonelist_order;
2789
2790	/* initialize zonelists */
2791	for (i = 0; i < MAX_ZONELISTS; i++) {
2792		zonelist = pgdat->node_zonelists + i;
2793		zonelist->_zonerefs[0].zone = NULL;
2794		zonelist->_zonerefs[0].zone_idx = 0;
2795	}
2796
2797	/* NUMA-aware ordering of nodes */
2798	local_node = pgdat->node_id;
2799	load = nr_online_nodes;
2800	prev_node = local_node;
2801	nodes_clear(used_mask);
2802
2803	memset(node_order, 0, sizeof(node_order));
2804	j = 0;
2805
2806	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2807		int distance = node_distance(local_node, node);
2808
2809		/*
2810		 * If another node is sufficiently far away then it is better
2811		 * to reclaim pages in a zone before going off node.
2812		 */
2813		if (distance > RECLAIM_DISTANCE)
2814			zone_reclaim_mode = 1;
2815
2816		/*
2817		 * We don't want to pressure a particular node.
2818		 * So adding penalty to the first node in same
2819		 * distance group to make it round-robin.
2820		 */
2821		if (distance != node_distance(local_node, prev_node))
2822			node_load[node] = load;
2823
2824		prev_node = node;
2825		load--;
2826		if (order == ZONELIST_ORDER_NODE)
2827			build_zonelists_in_node_order(pgdat, node);
2828		else
2829			node_order[j++] = node;	/* remember order */
2830	}
2831
2832	if (order == ZONELIST_ORDER_ZONE) {
2833		/* calculate node order -- i.e., DMA last! */
2834		build_zonelists_in_zone_order(pgdat, j);
2835	}
2836
2837	build_thisnode_zonelists(pgdat);
2838}
2839
2840/* Construct the zonelist performance cache - see further mmzone.h */
2841static void build_zonelist_cache(pg_data_t *pgdat)
2842{
2843	struct zonelist *zonelist;
2844	struct zonelist_cache *zlc;
2845	struct zoneref *z;
2846
2847	zonelist = &pgdat->node_zonelists[0];
2848	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2849	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2850	for (z = zonelist->_zonerefs; z->zone; z++)
2851		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2852}
2853
2854
2855#else	/* CONFIG_NUMA */
2856
2857static void set_zonelist_order(void)
2858{
2859	current_zonelist_order = ZONELIST_ORDER_ZONE;
2860}
2861
2862static void build_zonelists(pg_data_t *pgdat)
2863{
2864	int node, local_node;
2865	enum zone_type j;
2866	struct zonelist *zonelist;
2867
2868	local_node = pgdat->node_id;
2869
2870	zonelist = &pgdat->node_zonelists[0];
2871	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2872
2873	/*
2874	 * Now we build the zonelist so that it contains the zones
2875	 * of all the other nodes.
2876	 * We don't want to pressure a particular node, so when
2877	 * building the zones for node N, we make sure that the
2878	 * zones coming right after the local ones are those from
2879	 * node N+1 (modulo N)
2880	 */
2881	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2882		if (!node_online(node))
2883			continue;
2884		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2885							MAX_NR_ZONES - 1);
2886	}
2887	for (node = 0; node < local_node; node++) {
2888		if (!node_online(node))
2889			continue;
2890		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2891							MAX_NR_ZONES - 1);
2892	}
2893
2894	zonelist->_zonerefs[j].zone = NULL;
2895	zonelist->_zonerefs[j].zone_idx = 0;
2896}
2897
2898/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2899static void build_zonelist_cache(pg_data_t *pgdat)
2900{
2901	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2902}
2903
2904#endif	/* CONFIG_NUMA */
2905
2906/*
2907 * Boot pageset table. One per cpu which is going to be used for all
2908 * zones and all nodes. The parameters will be set in such a way
2909 * that an item put on a list will immediately be handed over to
2910 * the buddy list. This is safe since pageset manipulation is done
2911 * with interrupts disabled.
2912 *
2913 * The boot_pagesets must be kept even after bootup is complete for
2914 * unused processors and/or zones. They do play a role for bootstrapping
2915 * hotplugged processors.
2916 *
2917 * zoneinfo_show() and maybe other functions do
2918 * not check if the processor is online before following the pageset pointer.
2919 * Other parts of the kernel may not check if the zone is available.
2920 */
2921static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2922static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2923
2924/* return values int ....just for stop_machine() */
2925static int __build_all_zonelists(void *dummy)
2926{
2927	int nid;
2928	int cpu;
2929
2930#ifdef CONFIG_NUMA
2931	memset(node_load, 0, sizeof(node_load));
2932#endif
2933	for_each_online_node(nid) {
2934		pg_data_t *pgdat = NODE_DATA(nid);
2935
2936		build_zonelists(pgdat);
2937		build_zonelist_cache(pgdat);
2938	}
2939
2940	/*
2941	 * Initialize the boot_pagesets that are going to be used
2942	 * for bootstrapping processors. The real pagesets for
2943	 * each zone will be allocated later when the per cpu
2944	 * allocator is available.
2945	 *
2946	 * boot_pagesets are used also for bootstrapping offline
2947	 * cpus if the system is already booted because the pagesets
2948	 * are needed to initialize allocators on a specific cpu too.
2949	 * F.e. the percpu allocator needs the page allocator which
2950	 * needs the percpu allocator in order to allocate its pagesets
2951	 * (a chicken-egg dilemma).
2952	 */
2953	for_each_possible_cpu(cpu)
2954		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2955
2956	return 0;
2957}
2958
2959void build_all_zonelists(void)
2960{
2961	set_zonelist_order();
2962
2963	if (system_state == SYSTEM_BOOTING) {
2964		__build_all_zonelists(NULL);
2965		mminit_verify_zonelist();
2966		cpuset_init_current_mems_allowed();
2967	} else {
2968		/* we have to stop all cpus to guarantee there is no user
2969		   of zonelist */
2970		stop_machine(__build_all_zonelists, NULL, NULL);
2971		/* cpuset refresh routine should be here */
2972	}
2973	vm_total_pages = nr_free_pagecache_pages();
2974	/*
2975	 * Disable grouping by mobility if the number of pages in the
2976	 * system is too low to allow the mechanism to work. It would be
2977	 * more accurate, but expensive to check per-zone. This check is
2978	 * made on memory-hotadd so a system can start with mobility
2979	 * disabled and enable it later
2980	 */
2981	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2982		page_group_by_mobility_disabled = 1;
2983	else
2984		page_group_by_mobility_disabled = 0;
2985
2986	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2987		"Total pages: %ld\n",
2988			nr_online_nodes,
2989			zonelist_order_name[current_zonelist_order],
2990			page_group_by_mobility_disabled ? "off" : "on",
2991			vm_total_pages);
2992#ifdef CONFIG_NUMA
2993	printk("Policy zone: %s\n", zone_names[policy_zone]);
2994#endif
2995}
2996
2997/*
2998 * Helper functions to size the waitqueue hash table.
2999 * Essentially these want to choose hash table sizes sufficiently
3000 * large so that collisions trying to wait on pages are rare.
3001 * But in fact, the number of active page waitqueues on typical
3002 * systems is ridiculously low, less than 200. So this is even
3003 * conservative, even though it seems large.
3004 *
3005 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3006 * waitqueues, i.e. the size of the waitq table given the number of pages.
3007 */
3008#define PAGES_PER_WAITQUEUE	256
3009
3010#ifndef CONFIG_MEMORY_HOTPLUG
3011static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3012{
3013	unsigned long size = 1;
3014
3015	pages /= PAGES_PER_WAITQUEUE;
3016
3017	while (size < pages)
3018		size <<= 1;
3019
3020	/*
3021	 * Once we have dozens or even hundreds of threads sleeping
3022	 * on IO we've got bigger problems than wait queue collision.
3023	 * Limit the size of the wait table to a reasonable size.
3024	 */
3025	size = min(size, 4096UL);
3026
3027	return max(size, 4UL);
3028}
3029#else
3030/*
3031 * A zone's size might be changed by hot-add, so it is not possible to determine
3032 * a suitable size for its wait_table.  So we use the maximum size now.
3033 *
3034 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3035 *
3036 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3037 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3038 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3039 *
3040 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3041 * or more by the traditional way. (See above).  It equals:
3042 *
3043 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3044 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3045 *    powerpc (64K page size)             : =  (32G +16M)byte.
3046 */
3047static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3048{
3049	return 4096UL;
3050}
3051#endif
3052
3053/*
3054 * This is an integer logarithm so that shifts can be used later
3055 * to extract the more random high bits from the multiplicative
3056 * hash function before the remainder is taken.
3057 */
3058static inline unsigned long wait_table_bits(unsigned long size)
3059{
3060	return ffz(~size);
3061}
3062
3063#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3064
3065/*
3066 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3067 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3068 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3069 * higher will lead to a bigger reserve which will get freed as contiguous
3070 * blocks as reclaim kicks in
3071 */
3072static void setup_zone_migrate_reserve(struct zone *zone)
3073{
3074	unsigned long start_pfn, pfn, end_pfn;
3075	struct page *page;
3076	unsigned long block_migratetype;
3077	int reserve;
3078
3079	/* Get the start pfn, end pfn and the number of blocks to reserve */
3080	start_pfn = zone->zone_start_pfn;
3081	end_pfn = start_pfn + zone->spanned_pages;
3082	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3083							pageblock_order;
3084
3085	/*
3086	 * Reserve blocks are generally in place to help high-order atomic
3087	 * allocations that are short-lived. A min_free_kbytes value that
3088	 * would result in more than 2 reserve blocks for atomic allocations
3089	 * is assumed to be in place to help anti-fragmentation for the
3090	 * future allocation of hugepages at runtime.
3091	 */
3092	reserve = min(2, reserve);
3093
3094	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3095		if (!pfn_valid(pfn))
3096			continue;
3097		page = pfn_to_page(pfn);
3098
3099		/* Watch out for overlapping nodes */
3100		if (page_to_nid(page) != zone_to_nid(zone))
3101			continue;
3102
3103		/* Blocks with reserved pages will never free, skip them. */
3104		if (PageReserved(page))
3105			continue;
3106
3107		block_migratetype = get_pageblock_migratetype(page);
3108
3109		/* If this block is reserved, account for it */
3110		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3111			reserve--;
3112			continue;
3113		}
3114
3115		/* Suitable for reserving if this block is movable */
3116		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3117			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3118			move_freepages_block(zone, page, MIGRATE_RESERVE);
3119			reserve--;
3120			continue;
3121		}
3122
3123		/*
3124		 * If the reserve is met and this is a previous reserved block,
3125		 * take it back
3126		 */
3127		if (block_migratetype == MIGRATE_RESERVE) {
3128			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3129			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3130		}
3131	}
3132}
3133
3134/*
3135 * Initially all pages are reserved - free ones are freed
3136 * up by free_all_bootmem() once the early boot process is
3137 * done. Non-atomic initialization, single-pass.
3138 */
3139void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3140		unsigned long start_pfn, enum memmap_context context)
3141{
3142	struct page *page;
3143	unsigned long end_pfn = start_pfn + size;
3144	unsigned long pfn;
3145	struct zone *z;
3146
3147	if (highest_memmap_pfn < end_pfn - 1)
3148		highest_memmap_pfn = end_pfn - 1;
3149
3150	z = &NODE_DATA(nid)->node_zones[zone];
3151	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3152		/*
3153		 * There can be holes in boot-time mem_map[]s
3154		 * handed to this function.  They do not
3155		 * exist on hotplugged memory.
3156		 */
3157		if (context == MEMMAP_EARLY) {
3158			if (!early_pfn_valid(pfn))
3159				continue;
3160			if (!early_pfn_in_nid(pfn, nid))
3161				continue;
3162		}
3163		page = pfn_to_page(pfn);
3164		set_page_links(page, zone, nid, pfn);
3165		mminit_verify_page_links(page, zone, nid, pfn);
3166		init_page_count(page);
3167		reset_page_mapcount(page);
3168		SetPageReserved(page);
3169		/*
3170		 * Mark the block movable so that blocks are reserved for
3171		 * movable at startup. This will force kernel allocations
3172		 * to reserve their blocks rather than leaking throughout
3173		 * the address space during boot when many long-lived
3174		 * kernel allocations are made. Later some blocks near
3175		 * the start are marked MIGRATE_RESERVE by
3176		 * setup_zone_migrate_reserve()
3177		 *
3178		 * bitmap is created for zone's valid pfn range. but memmap
3179		 * can be created for invalid pages (for alignment)
3180		 * check here not to call set_pageblock_migratetype() against
3181		 * pfn out of zone.
3182		 */
3183		if ((z->zone_start_pfn <= pfn)
3184		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3185		    && !(pfn & (pageblock_nr_pages - 1)))
3186			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3187
3188		INIT_LIST_HEAD(&page->lru);
3189#ifdef WANT_PAGE_VIRTUAL
3190		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3191		if (!is_highmem_idx(zone))
3192			set_page_address(page, __va(pfn << PAGE_SHIFT));
3193#endif
3194	}
3195}
3196
3197static void __meminit zone_init_free_lists(struct zone *zone)
3198{
3199	int order, t;
3200	for_each_migratetype_order(order, t) {
3201		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3202		zone->free_area[order].nr_free = 0;
3203	}
3204}
3205
3206#ifndef __HAVE_ARCH_MEMMAP_INIT
3207#define memmap_init(size, nid, zone, start_pfn) \
3208	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3209#endif
3210
3211static int zone_batchsize(struct zone *zone)
3212{
3213#ifdef CONFIG_MMU
3214	int batch;
3215
3216	/*
3217	 * The per-cpu-pages pools are set to around 1000th of the
3218	 * size of the zone.  But no more than 1/2 of a meg.
3219	 *
3220	 * OK, so we don't know how big the cache is.  So guess.
3221	 */
3222	batch = zone->present_pages / 1024;
3223	if (batch * PAGE_SIZE > 512 * 1024)
3224		batch = (512 * 1024) / PAGE_SIZE;
3225	batch /= 4;		/* We effectively *= 4 below */
3226	if (batch < 1)
3227		batch = 1;
3228
3229	/*
3230	 * Clamp the batch to a 2^n - 1 value. Having a power
3231	 * of 2 value was found to be more likely to have
3232	 * suboptimal cache aliasing properties in some cases.
3233	 *
3234	 * For example if 2 tasks are alternately allocating
3235	 * batches of pages, one task can end up with a lot
3236	 * of pages of one half of the possible page colors
3237	 * and the other with pages of the other colors.
3238	 */
3239	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3240
3241	return batch;
3242
3243#else
3244	/* The deferral and batching of frees should be suppressed under NOMMU
3245	 * conditions.
3246	 *
3247	 * The problem is that NOMMU needs to be able to allocate large chunks
3248	 * of contiguous memory as there's no hardware page translation to
3249	 * assemble apparent contiguous memory from discontiguous pages.
3250	 *
3251	 * Queueing large contiguous runs of pages for batching, however,
3252	 * causes the pages to actually be freed in smaller chunks.  As there
3253	 * can be a significant delay between the individual batches being
3254	 * recycled, this leads to the once large chunks of space being
3255	 * fragmented and becoming unavailable for high-order allocations.
3256	 */
3257	return 0;
3258#endif
3259}
3260
3261static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3262{
3263	struct per_cpu_pages *pcp;
3264	int migratetype;
3265
3266	memset(p, 0, sizeof(*p));
3267
3268	pcp = &p->pcp;
3269	pcp->count = 0;
3270	pcp->high = 6 * batch;
3271	pcp->batch = max(1UL, 1 * batch);
3272	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3273		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3274}
3275
3276/*
3277 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3278 * to the value high for the pageset p.
3279 */
3280
3281static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3282				unsigned long high)
3283{
3284	struct per_cpu_pages *pcp;
3285
3286	pcp = &p->pcp;
3287	pcp->high = high;
3288	pcp->batch = max(1UL, high/4);
3289	if ((high/4) > (PAGE_SHIFT * 8))
3290		pcp->batch = PAGE_SHIFT * 8;
3291}
3292
3293/*
3294 * Allocate per cpu pagesets and initialize them.
3295 * Before this call only boot pagesets were available.
3296 * Boot pagesets will no longer be used by this processorr
3297 * after setup_per_cpu_pageset().
3298 */
3299void __init setup_per_cpu_pageset(void)
3300{
3301	struct zone *zone;
3302	int cpu;
3303
3304	for_each_populated_zone(zone) {
3305		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3306
3307		for_each_possible_cpu(cpu) {
3308			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3309
3310			setup_pageset(pcp, zone_batchsize(zone));
3311
3312			if (percpu_pagelist_fraction)
3313				setup_pagelist_highmark(pcp,
3314					(zone->present_pages /
3315						percpu_pagelist_fraction));
3316		}
3317	}
3318}
3319
3320static noinline __init_refok
3321int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3322{
3323	int i;
3324	struct pglist_data *pgdat = zone->zone_pgdat;
3325	size_t alloc_size;
3326
3327	/*
3328	 * The per-page waitqueue mechanism uses hashed waitqueues
3329	 * per zone.
3330	 */
3331	zone->wait_table_hash_nr_entries =
3332		 wait_table_hash_nr_entries(zone_size_pages);
3333	zone->wait_table_bits =
3334		wait_table_bits(zone->wait_table_hash_nr_entries);
3335	alloc_size = zone->wait_table_hash_nr_entries
3336					* sizeof(wait_queue_head_t);
3337
3338	if (!slab_is_available()) {
3339		zone->wait_table = (wait_queue_head_t *)
3340			alloc_bootmem_node(pgdat, alloc_size);
3341	} else {
3342		/*
3343		 * This case means that a zone whose size was 0 gets new memory
3344		 * via memory hot-add.
3345		 * But it may be the case that a new node was hot-added.  In
3346		 * this case vmalloc() will not be able to use this new node's
3347		 * memory - this wait_table must be initialized to use this new
3348		 * node itself as well.
3349		 * To use this new node's memory, further consideration will be
3350		 * necessary.
3351		 */
3352		zone->wait_table = vmalloc(alloc_size);
3353	}
3354	if (!zone->wait_table)
3355		return -ENOMEM;
3356
3357	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3358		init_waitqueue_head(zone->wait_table + i);
3359
3360	return 0;
3361}
3362
3363static int __zone_pcp_update(void *data)
3364{
3365	struct zone *zone = data;
3366	int cpu;
3367	unsigned long batch = zone_batchsize(zone), flags;
3368
3369	for_each_possible_cpu(cpu) {
3370		struct per_cpu_pageset *pset;
3371		struct per_cpu_pages *pcp;
3372
3373		pset = per_cpu_ptr(zone->pageset, cpu);
3374		pcp = &pset->pcp;
3375
3376		local_irq_save(flags);
3377		free_pcppages_bulk(zone, pcp->count, pcp);
3378		setup_pageset(pset, batch);
3379		local_irq_restore(flags);
3380	}
3381	return 0;
3382}
3383
3384void zone_pcp_update(struct zone *zone)
3385{
3386	stop_machine(__zone_pcp_update, zone, NULL);
3387}
3388
3389static __meminit void zone_pcp_init(struct zone *zone)
3390{
3391	/*
3392	 * per cpu subsystem is not up at this point. The following code
3393	 * relies on the ability of the linker to provide the
3394	 * offset of a (static) per cpu variable into the per cpu area.
3395	 */
3396	zone->pageset = &boot_pageset;
3397
3398	if (zone->present_pages)
3399		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3400			zone->name, zone->present_pages,
3401					 zone_batchsize(zone));
3402}
3403
3404__meminit int init_currently_empty_zone(struct zone *zone,
3405					unsigned long zone_start_pfn,
3406					unsigned long size,
3407					enum memmap_context context)
3408{
3409	struct pglist_data *pgdat = zone->zone_pgdat;
3410	int ret;
3411	ret = zone_wait_table_init(zone, size);
3412	if (ret)
3413		return ret;
3414	pgdat->nr_zones = zone_idx(zone) + 1;
3415
3416	zone->zone_start_pfn = zone_start_pfn;
3417
3418	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3419			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3420			pgdat->node_id,
3421			(unsigned long)zone_idx(zone),
3422			zone_start_pfn, (zone_start_pfn + size));
3423
3424	zone_init_free_lists(zone);
3425
3426	return 0;
3427}
3428
3429#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3430/*
3431 * Basic iterator support. Return the first range of PFNs for a node
3432 * Note: nid == MAX_NUMNODES returns first region regardless of node
3433 */
3434static int __meminit first_active_region_index_in_nid(int nid)
3435{
3436	int i;
3437
3438	for (i = 0; i < nr_nodemap_entries; i++)
3439		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3440			return i;
3441
3442	return -1;
3443}
3444
3445/*
3446 * Basic iterator support. Return the next active range of PFNs for a node
3447 * Note: nid == MAX_NUMNODES returns next region regardless of node
3448 */
3449static int __meminit next_active_region_index_in_nid(int index, int nid)
3450{
3451	for (index = index + 1; index < nr_nodemap_entries; index++)
3452		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3453			return index;
3454
3455	return -1;
3456}
3457
3458#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3459/*
3460 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3461 * Architectures may implement their own version but if add_active_range()
3462 * was used and there are no special requirements, this is a convenient
3463 * alternative
3464 */
3465int __meminit __early_pfn_to_nid(unsigned long pfn)
3466{
3467	int i;
3468
3469	for (i = 0; i < nr_nodemap_entries; i++) {
3470		unsigned long start_pfn = early_node_map[i].start_pfn;
3471		unsigned long end_pfn = early_node_map[i].end_pfn;
3472
3473		if (start_pfn <= pfn && pfn < end_pfn)
3474			return early_node_map[i].nid;
3475	}
3476	/* This is a memory hole */
3477	return -1;
3478}
3479#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3480
3481int __meminit early_pfn_to_nid(unsigned long pfn)
3482{
3483	int nid;
3484
3485	nid = __early_pfn_to_nid(pfn);
3486	if (nid >= 0)
3487		return nid;
3488	/* just returns 0 */
3489	return 0;
3490}
3491
3492#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3493bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3494{
3495	int nid;
3496
3497	nid = __early_pfn_to_nid(pfn);
3498	if (nid >= 0 && nid != node)
3499		return false;
3500	return true;
3501}
3502#endif
3503
3504/* Basic iterator support to walk early_node_map[] */
3505#define for_each_active_range_index_in_nid(i, nid) \
3506	for (i = first_active_region_index_in_nid(nid); i != -1; \
3507				i = next_active_region_index_in_nid(i, nid))
3508
3509/**
3510 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3511 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3512 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3513 *
3514 * If an architecture guarantees that all ranges registered with
3515 * add_active_ranges() contain no holes and may be freed, this
3516 * this function may be used instead of calling free_bootmem() manually.
3517 */
3518void __init free_bootmem_with_active_regions(int nid,
3519						unsigned long max_low_pfn)
3520{
3521	int i;
3522
3523	for_each_active_range_index_in_nid(i, nid) {
3524		unsigned long size_pages = 0;
3525		unsigned long end_pfn = early_node_map[i].end_pfn;
3526
3527		if (early_node_map[i].start_pfn >= max_low_pfn)
3528			continue;
3529
3530		if (end_pfn > max_low_pfn)
3531			end_pfn = max_low_pfn;
3532
3533		size_pages = end_pfn - early_node_map[i].start_pfn;
3534		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3535				PFN_PHYS(early_node_map[i].start_pfn),
3536				size_pages << PAGE_SHIFT);
3537	}
3538}
3539
3540int __init add_from_early_node_map(struct range *range, int az,
3541				   int nr_range, int nid)
3542{
3543	int i;
3544	u64 start, end;
3545
3546	/* need to go over early_node_map to find out good range for node */
3547	for_each_active_range_index_in_nid(i, nid) {
3548		start = early_node_map[i].start_pfn;
3549		end = early_node_map[i].end_pfn;
3550		nr_range = add_range(range, az, nr_range, start, end);
3551	}
3552	return nr_range;
3553}
3554
3555#ifdef CONFIG_NO_BOOTMEM
3556void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3557					u64 goal, u64 limit)
3558{
3559	int i;
3560	void *ptr;
3561
3562	/* need to go over early_node_map to find out good range for node */
3563	for_each_active_range_index_in_nid(i, nid) {
3564		u64 addr;
3565		u64 ei_start, ei_last;
3566
3567		ei_last = early_node_map[i].end_pfn;
3568		ei_last <<= PAGE_SHIFT;
3569		ei_start = early_node_map[i].start_pfn;
3570		ei_start <<= PAGE_SHIFT;
3571		addr = find_early_area(ei_start, ei_last,
3572					 goal, limit, size, align);
3573
3574		if (addr == -1ULL)
3575			continue;
3576
3577#if 0
3578		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3579				nid,
3580				ei_start, ei_last, goal, limit, size,
3581				align, addr);
3582#endif
3583
3584		ptr = phys_to_virt(addr);
3585		memset(ptr, 0, size);
3586		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3587		return ptr;
3588	}
3589
3590	return NULL;
3591}
3592#endif
3593
3594
3595void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3596{
3597	int i;
3598	int ret;
3599
3600	for_each_active_range_index_in_nid(i, nid) {
3601		ret = work_fn(early_node_map[i].start_pfn,
3602			      early_node_map[i].end_pfn, data);
3603		if (ret)
3604			break;
3605	}
3606}
3607/**
3608 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3609 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3610 *
3611 * If an architecture guarantees that all ranges registered with
3612 * add_active_ranges() contain no holes and may be freed, this
3613 * function may be used instead of calling memory_present() manually.
3614 */
3615void __init sparse_memory_present_with_active_regions(int nid)
3616{
3617	int i;
3618
3619	for_each_active_range_index_in_nid(i, nid)
3620		memory_present(early_node_map[i].nid,
3621				early_node_map[i].start_pfn,
3622				early_node_map[i].end_pfn);
3623}
3624
3625/**
3626 * get_pfn_range_for_nid - Return the start and end page frames for a node
3627 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3628 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3629 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3630 *
3631 * It returns the start and end page frame of a node based on information
3632 * provided by an arch calling add_active_range(). If called for a node
3633 * with no available memory, a warning is printed and the start and end
3634 * PFNs will be 0.
3635 */
3636void __meminit get_pfn_range_for_nid(unsigned int nid,
3637			unsigned long *start_pfn, unsigned long *end_pfn)
3638{
3639	int i;
3640	*start_pfn = -1UL;
3641	*end_pfn = 0;
3642
3643	for_each_active_range_index_in_nid(i, nid) {
3644		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3645		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3646	}
3647
3648	if (*start_pfn == -1UL)
3649		*start_pfn = 0;
3650}
3651
3652/*
3653 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3654 * assumption is made that zones within a node are ordered in monotonic
3655 * increasing memory addresses so that the "highest" populated zone is used
3656 */
3657static void __init find_usable_zone_for_movable(void)
3658{
3659	int zone_index;
3660	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3661		if (zone_index == ZONE_MOVABLE)
3662			continue;
3663
3664		if (arch_zone_highest_possible_pfn[zone_index] >
3665				arch_zone_lowest_possible_pfn[zone_index])
3666			break;
3667	}
3668
3669	VM_BUG_ON(zone_index == -1);
3670	movable_zone = zone_index;
3671}
3672
3673/*
3674 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3675 * because it is sized independant of architecture. Unlike the other zones,
3676 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3677 * in each node depending on the size of each node and how evenly kernelcore
3678 * is distributed. This helper function adjusts the zone ranges
3679 * provided by the architecture for a given node by using the end of the
3680 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3681 * zones within a node are in order of monotonic increases memory addresses
3682 */
3683static void __meminit adjust_zone_range_for_zone_movable(int nid,
3684					unsigned long zone_type,
3685					unsigned long node_start_pfn,
3686					unsigned long node_end_pfn,
3687					unsigned long *zone_start_pfn,
3688					unsigned long *zone_end_pfn)
3689{
3690	/* Only adjust if ZONE_MOVABLE is on this node */
3691	if (zone_movable_pfn[nid]) {
3692		/* Size ZONE_MOVABLE */
3693		if (zone_type == ZONE_MOVABLE) {
3694			*zone_start_pfn = zone_movable_pfn[nid];
3695			*zone_end_pfn = min(node_end_pfn,
3696				arch_zone_highest_possible_pfn[movable_zone]);
3697
3698		/* Adjust for ZONE_MOVABLE starting within this range */
3699		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3700				*zone_end_pfn > zone_movable_pfn[nid]) {
3701			*zone_end_pfn = zone_movable_pfn[nid];
3702
3703		/* Check if this whole range is within ZONE_MOVABLE */
3704		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3705			*zone_start_pfn = *zone_end_pfn;
3706	}
3707}
3708
3709/*
3710 * Return the number of pages a zone spans in a node, including holes
3711 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3712 */
3713static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3714					unsigned long zone_type,
3715					unsigned long *ignored)
3716{
3717	unsigned long node_start_pfn, node_end_pfn;
3718	unsigned long zone_start_pfn, zone_end_pfn;
3719
3720	/* Get the start and end of the node and zone */
3721	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3722	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3723	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3724	adjust_zone_range_for_zone_movable(nid, zone_type,
3725				node_start_pfn, node_end_pfn,
3726				&zone_start_pfn, &zone_end_pfn);
3727
3728	/* Check that this node has pages within the zone's required range */
3729	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3730		return 0;
3731
3732	/* Move the zone boundaries inside the node if necessary */
3733	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3734	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3735
3736	/* Return the spanned pages */
3737	return zone_end_pfn - zone_start_pfn;
3738}
3739
3740/*
3741 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3742 * then all holes in the requested range will be accounted for.
3743 */
3744unsigned long __meminit __absent_pages_in_range(int nid,
3745				unsigned long range_start_pfn,
3746				unsigned long range_end_pfn)
3747{
3748	int i = 0;
3749	unsigned long prev_end_pfn = 0, hole_pages = 0;
3750	unsigned long start_pfn;
3751
3752	/* Find the end_pfn of the first active range of pfns in the node */
3753	i = first_active_region_index_in_nid(nid);
3754	if (i == -1)
3755		return 0;
3756
3757	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3758
3759	/* Account for ranges before physical memory on this node */
3760	if (early_node_map[i].start_pfn > range_start_pfn)
3761		hole_pages = prev_end_pfn - range_start_pfn;
3762
3763	/* Find all holes for the zone within the node */
3764	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3765
3766		/* No need to continue if prev_end_pfn is outside the zone */
3767		if (prev_end_pfn >= range_end_pfn)
3768			break;
3769
3770		/* Make sure the end of the zone is not within the hole */
3771		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3772		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3773
3774		/* Update the hole size cound and move on */
3775		if (start_pfn > range_start_pfn) {
3776			BUG_ON(prev_end_pfn > start_pfn);
3777			hole_pages += start_pfn - prev_end_pfn;
3778		}
3779		prev_end_pfn = early_node_map[i].end_pfn;
3780	}
3781
3782	/* Account for ranges past physical memory on this node */
3783	if (range_end_pfn > prev_end_pfn)
3784		hole_pages += range_end_pfn -
3785				max(range_start_pfn, prev_end_pfn);
3786
3787	return hole_pages;
3788}
3789
3790/**
3791 * absent_pages_in_range - Return number of page frames in holes within a range
3792 * @start_pfn: The start PFN to start searching for holes
3793 * @end_pfn: The end PFN to stop searching for holes
3794 *
3795 * It returns the number of pages frames in memory holes within a range.
3796 */
3797unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3798							unsigned long end_pfn)
3799{
3800	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3801}
3802
3803/* Return the number of page frames in holes in a zone on a node */
3804static unsigned long __meminit zone_absent_pages_in_node(int nid,
3805					unsigned long zone_type,
3806					unsigned long *ignored)
3807{
3808	unsigned long node_start_pfn, node_end_pfn;
3809	unsigned long zone_start_pfn, zone_end_pfn;
3810
3811	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3812	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3813							node_start_pfn);
3814	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3815							node_end_pfn);
3816
3817	adjust_zone_range_for_zone_movable(nid, zone_type,
3818			node_start_pfn, node_end_pfn,
3819			&zone_start_pfn, &zone_end_pfn);
3820	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3821}
3822
3823#else
3824static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3825					unsigned long zone_type,
3826					unsigned long *zones_size)
3827{
3828	return zones_size[zone_type];
3829}
3830
3831static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3832						unsigned long zone_type,
3833						unsigned long *zholes_size)
3834{
3835	if (!zholes_size)
3836		return 0;
3837
3838	return zholes_size[zone_type];
3839}
3840
3841#endif
3842
3843static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3844		unsigned long *zones_size, unsigned long *zholes_size)
3845{
3846	unsigned long realtotalpages, totalpages = 0;
3847	enum zone_type i;
3848
3849	for (i = 0; i < MAX_NR_ZONES; i++)
3850		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3851								zones_size);
3852	pgdat->node_spanned_pages = totalpages;
3853
3854	realtotalpages = totalpages;
3855	for (i = 0; i < MAX_NR_ZONES; i++)
3856		realtotalpages -=
3857			zone_absent_pages_in_node(pgdat->node_id, i,
3858								zholes_size);
3859	pgdat->node_present_pages = realtotalpages;
3860	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3861							realtotalpages);
3862}
3863
3864#ifndef CONFIG_SPARSEMEM
3865/*
3866 * Calculate the size of the zone->blockflags rounded to an unsigned long
3867 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3868 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3869 * round what is now in bits to nearest long in bits, then return it in
3870 * bytes.
3871 */
3872static unsigned long __init usemap_size(unsigned long zonesize)
3873{
3874	unsigned long usemapsize;
3875
3876	usemapsize = roundup(zonesize, pageblock_nr_pages);
3877	usemapsize = usemapsize >> pageblock_order;
3878	usemapsize *= NR_PAGEBLOCK_BITS;
3879	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3880
3881	return usemapsize / 8;
3882}
3883
3884static void __init setup_usemap(struct pglist_data *pgdat,
3885				struct zone *zone, unsigned long zonesize)
3886{
3887	unsigned long usemapsize = usemap_size(zonesize);
3888	zone->pageblock_flags = NULL;
3889	if (usemapsize)
3890		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3891}
3892#else
3893static void inline setup_usemap(struct pglist_data *pgdat,
3894				struct zone *zone, unsigned long zonesize) {}
3895#endif /* CONFIG_SPARSEMEM */
3896
3897#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3898
3899/* Return a sensible default order for the pageblock size. */
3900static inline int pageblock_default_order(void)
3901{
3902	if (HPAGE_SHIFT > PAGE_SHIFT)
3903		return HUGETLB_PAGE_ORDER;
3904
3905	return MAX_ORDER-1;
3906}
3907
3908/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3909static inline void __init set_pageblock_order(unsigned int order)
3910{
3911	/* Check that pageblock_nr_pages has not already been setup */
3912	if (pageblock_order)
3913		return;
3914
3915	/*
3916	 * Assume the largest contiguous order of interest is a huge page.
3917	 * This value may be variable depending on boot parameters on IA64
3918	 */
3919	pageblock_order = order;
3920}
3921#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3922
3923/*
3924 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3925 * and pageblock_default_order() are unused as pageblock_order is set
3926 * at compile-time. See include/linux/pageblock-flags.h for the values of
3927 * pageblock_order based on the kernel config
3928 */
3929static inline int pageblock_default_order(unsigned int order)
3930{
3931	return MAX_ORDER-1;
3932}
3933#define set_pageblock_order(x)	do {} while (0)
3934
3935#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3936
3937/*
3938 * Set up the zone data structures:
3939 *   - mark all pages reserved
3940 *   - mark all memory queues empty
3941 *   - clear the memory bitmaps
3942 */
3943static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3944		unsigned long *zones_size, unsigned long *zholes_size)
3945{
3946	enum zone_type j;
3947	int nid = pgdat->node_id;
3948	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3949	int ret;
3950
3951	pgdat_resize_init(pgdat);
3952	pgdat->nr_zones = 0;
3953	init_waitqueue_head(&pgdat->kswapd_wait);
3954	pgdat->kswapd_max_order = 0;
3955	pgdat_page_cgroup_init(pgdat);
3956
3957	for (j = 0; j < MAX_NR_ZONES; j++) {
3958		struct zone *zone = pgdat->node_zones + j;
3959		unsigned long size, realsize, memmap_pages;
3960		enum lru_list l;
3961
3962		size = zone_spanned_pages_in_node(nid, j, zones_size);
3963		realsize = size - zone_absent_pages_in_node(nid, j,
3964								zholes_size);
3965
3966		/*
3967		 * Adjust realsize so that it accounts for how much memory
3968		 * is used by this zone for memmap. This affects the watermark
3969		 * and per-cpu initialisations
3970		 */
3971		memmap_pages =
3972			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3973		if (realsize >= memmap_pages) {
3974			realsize -= memmap_pages;
3975			if (memmap_pages)
3976				printk(KERN_DEBUG
3977				       "  %s zone: %lu pages used for memmap\n",
3978				       zone_names[j], memmap_pages);
3979		} else
3980			printk(KERN_WARNING
3981				"  %s zone: %lu pages exceeds realsize %lu\n",
3982				zone_names[j], memmap_pages, realsize);
3983
3984		/* Account for reserved pages */
3985		if (j == 0 && realsize > dma_reserve) {
3986			realsize -= dma_reserve;
3987			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3988					zone_names[0], dma_reserve);
3989		}
3990
3991		if (!is_highmem_idx(j))
3992			nr_kernel_pages += realsize;
3993		nr_all_pages += realsize;
3994
3995		zone->spanned_pages = size;
3996		zone->present_pages = realsize;
3997#ifdef CONFIG_NUMA
3998		zone->node = nid;
3999		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4000						/ 100;
4001		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4002#endif
4003		zone->name = zone_names[j];
4004		spin_lock_init(&zone->lock);
4005		spin_lock_init(&zone->lru_lock);
4006		zone_seqlock_init(zone);
4007		zone->zone_pgdat = pgdat;
4008
4009		zone->prev_priority = DEF_PRIORITY;
4010
4011		zone_pcp_init(zone);
4012		for_each_lru(l) {
4013			INIT_LIST_HEAD(&zone->lru[l].list);
4014			zone->reclaim_stat.nr_saved_scan[l] = 0;
4015		}
4016		zone->reclaim_stat.recent_rotated[0] = 0;
4017		zone->reclaim_stat.recent_rotated[1] = 0;
4018		zone->reclaim_stat.recent_scanned[0] = 0;
4019		zone->reclaim_stat.recent_scanned[1] = 0;
4020		zap_zone_vm_stats(zone);
4021		zone->flags = 0;
4022		if (!size)
4023			continue;
4024
4025		set_pageblock_order(pageblock_default_order());
4026		setup_usemap(pgdat, zone, size);
4027		ret = init_currently_empty_zone(zone, zone_start_pfn,
4028						size, MEMMAP_EARLY);
4029		BUG_ON(ret);
4030		memmap_init(size, nid, j, zone_start_pfn);
4031		zone_start_pfn += size;
4032	}
4033}
4034
4035static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4036{
4037	/* Skip empty nodes */
4038	if (!pgdat->node_spanned_pages)
4039		return;
4040
4041#ifdef CONFIG_FLAT_NODE_MEM_MAP
4042	/* ia64 gets its own node_mem_map, before this, without bootmem */
4043	if (!pgdat->node_mem_map) {
4044		unsigned long size, start, end;
4045		struct page *map;
4046
4047		/*
4048		 * The zone's endpoints aren't required to be MAX_ORDER
4049		 * aligned but the node_mem_map endpoints must be in order
4050		 * for the buddy allocator to function correctly.
4051		 */
4052		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4053		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4054		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4055		size =  (end - start) * sizeof(struct page);
4056		map = alloc_remap(pgdat->node_id, size);
4057		if (!map)
4058			map = alloc_bootmem_node(pgdat, size);
4059		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4060	}
4061#ifndef CONFIG_NEED_MULTIPLE_NODES
4062	/*
4063	 * With no DISCONTIG, the global mem_map is just set as node 0's
4064	 */
4065	if (pgdat == NODE_DATA(0)) {
4066		mem_map = NODE_DATA(0)->node_mem_map;
4067#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4068		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4069			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4070#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4071	}
4072#endif
4073#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4074}
4075
4076void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4077		unsigned long node_start_pfn, unsigned long *zholes_size)
4078{
4079	pg_data_t *pgdat = NODE_DATA(nid);
4080
4081	pgdat->node_id = nid;
4082	pgdat->node_start_pfn = node_start_pfn;
4083	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4084
4085	alloc_node_mem_map(pgdat);
4086#ifdef CONFIG_FLAT_NODE_MEM_MAP
4087	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4088		nid, (unsigned long)pgdat,
4089		(unsigned long)pgdat->node_mem_map);
4090#endif
4091
4092	free_area_init_core(pgdat, zones_size, zholes_size);
4093}
4094
4095#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4096
4097#if MAX_NUMNODES > 1
4098/*
4099 * Figure out the number of possible node ids.
4100 */
4101static void __init setup_nr_node_ids(void)
4102{
4103	unsigned int node;
4104	unsigned int highest = 0;
4105
4106	for_each_node_mask(node, node_possible_map)
4107		highest = node;
4108	nr_node_ids = highest + 1;
4109}
4110#else
4111static inline void setup_nr_node_ids(void)
4112{
4113}
4114#endif
4115
4116/**
4117 * add_active_range - Register a range of PFNs backed by physical memory
4118 * @nid: The node ID the range resides on
4119 * @start_pfn: The start PFN of the available physical memory
4120 * @end_pfn: The end PFN of the available physical memory
4121 *
4122 * These ranges are stored in an early_node_map[] and later used by
4123 * free_area_init_nodes() to calculate zone sizes and holes. If the
4124 * range spans a memory hole, it is up to the architecture to ensure
4125 * the memory is not freed by the bootmem allocator. If possible
4126 * the range being registered will be merged with existing ranges.
4127 */
4128void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4129						unsigned long end_pfn)
4130{
4131	int i;
4132
4133	mminit_dprintk(MMINIT_TRACE, "memory_register",
4134			"Entering add_active_range(%d, %#lx, %#lx) "
4135			"%d entries of %d used\n",
4136			nid, start_pfn, end_pfn,
4137			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4138
4139	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4140
4141	/* Merge with existing active regions if possible */
4142	for (i = 0; i < nr_nodemap_entries; i++) {
4143		if (early_node_map[i].nid != nid)
4144			continue;
4145
4146		/* Skip if an existing region covers this new one */
4147		if (start_pfn >= early_node_map[i].start_pfn &&
4148				end_pfn <= early_node_map[i].end_pfn)
4149			return;
4150
4151		/* Merge forward if suitable */
4152		if (start_pfn <= early_node_map[i].end_pfn &&
4153				end_pfn > early_node_map[i].end_pfn) {
4154			early_node_map[i].end_pfn = end_pfn;
4155			return;
4156		}
4157
4158		/* Merge backward if suitable */
4159		if (start_pfn < early_node_map[i].start_pfn &&
4160				end_pfn >= early_node_map[i].start_pfn) {
4161			early_node_map[i].start_pfn = start_pfn;
4162			return;
4163		}
4164	}
4165
4166	/* Check that early_node_map is large enough */
4167	if (i >= MAX_ACTIVE_REGIONS) {
4168		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4169							MAX_ACTIVE_REGIONS);
4170		return;
4171	}
4172
4173	early_node_map[i].nid = nid;
4174	early_node_map[i].start_pfn = start_pfn;
4175	early_node_map[i].end_pfn = end_pfn;
4176	nr_nodemap_entries = i + 1;
4177}
4178
4179/**
4180 * remove_active_range - Shrink an existing registered range of PFNs
4181 * @nid: The node id the range is on that should be shrunk
4182 * @start_pfn: The new PFN of the range
4183 * @end_pfn: The new PFN of the range
4184 *
4185 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4186 * The map is kept near the end physical page range that has already been
4187 * registered. This function allows an arch to shrink an existing registered
4188 * range.
4189 */
4190void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4191				unsigned long end_pfn)
4192{
4193	int i, j;
4194	int removed = 0;
4195
4196	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4197			  nid, start_pfn, end_pfn);
4198
4199	/* Find the old active region end and shrink */
4200	for_each_active_range_index_in_nid(i, nid) {
4201		if (early_node_map[i].start_pfn >= start_pfn &&
4202		    early_node_map[i].end_pfn <= end_pfn) {
4203			/* clear it */
4204			early_node_map[i].start_pfn = 0;
4205			early_node_map[i].end_pfn = 0;
4206			removed = 1;
4207			continue;
4208		}
4209		if (early_node_map[i].start_pfn < start_pfn &&
4210		    early_node_map[i].end_pfn > start_pfn) {
4211			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4212			early_node_map[i].end_pfn = start_pfn;
4213			if (temp_end_pfn > end_pfn)
4214				add_active_range(nid, end_pfn, temp_end_pfn);
4215			continue;
4216		}
4217		if (early_node_map[i].start_pfn >= start_pfn &&
4218		    early_node_map[i].end_pfn > end_pfn &&
4219		    early_node_map[i].start_pfn < end_pfn) {
4220			early_node_map[i].start_pfn = end_pfn;
4221			continue;
4222		}
4223	}
4224
4225	if (!removed)
4226		return;
4227
4228	/* remove the blank ones */
4229	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4230		if (early_node_map[i].nid != nid)
4231			continue;
4232		if (early_node_map[i].end_pfn)
4233			continue;
4234		/* we found it, get rid of it */
4235		for (j = i; j < nr_nodemap_entries - 1; j++)
4236			memcpy(&early_node_map[j], &early_node_map[j+1],
4237				sizeof(early_node_map[j]));
4238		j = nr_nodemap_entries - 1;
4239		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4240		nr_nodemap_entries--;
4241	}
4242}
4243
4244/**
4245 * remove_all_active_ranges - Remove all currently registered regions
4246 *
4247 * During discovery, it may be found that a table like SRAT is invalid
4248 * and an alternative discovery method must be used. This function removes
4249 * all currently registered regions.
4250 */
4251void __init remove_all_active_ranges(void)
4252{
4253	memset(early_node_map, 0, sizeof(early_node_map));
4254	nr_nodemap_entries = 0;
4255}
4256
4257/* Compare two active node_active_regions */
4258static int __init cmp_node_active_region(const void *a, const void *b)
4259{
4260	struct node_active_region *arange = (struct node_active_region *)a;
4261	struct node_active_region *brange = (struct node_active_region *)b;
4262
4263	/* Done this way to avoid overflows */
4264	if (arange->start_pfn > brange->start_pfn)
4265		return 1;
4266	if (arange->start_pfn < brange->start_pfn)
4267		return -1;
4268
4269	return 0;
4270}
4271
4272/* sort the node_map by start_pfn */
4273void __init sort_node_map(void)
4274{
4275	sort(early_node_map, (size_t)nr_nodemap_entries,
4276			sizeof(struct node_active_region),
4277			cmp_node_active_region, NULL);
4278}
4279
4280/* Find the lowest pfn for a node */
4281static unsigned long __init find_min_pfn_for_node(int nid)
4282{
4283	int i;
4284	unsigned long min_pfn = ULONG_MAX;
4285
4286	/* Assuming a sorted map, the first range found has the starting pfn */
4287	for_each_active_range_index_in_nid(i, nid)
4288		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4289
4290	if (min_pfn == ULONG_MAX) {
4291		printk(KERN_WARNING
4292			"Could not find start_pfn for node %d\n", nid);
4293		return 0;
4294	}
4295
4296	return min_pfn;
4297}
4298
4299/**
4300 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4301 *
4302 * It returns the minimum PFN based on information provided via
4303 * add_active_range().
4304 */
4305unsigned long __init find_min_pfn_with_active_regions(void)
4306{
4307	return find_min_pfn_for_node(MAX_NUMNODES);
4308}
4309
4310/*
4311 * early_calculate_totalpages()
4312 * Sum pages in active regions for movable zone.
4313 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4314 */
4315static unsigned long __init early_calculate_totalpages(void)
4316{
4317	int i;
4318	unsigned long totalpages = 0;
4319
4320	for (i = 0; i < nr_nodemap_entries; i++) {
4321		unsigned long pages = early_node_map[i].end_pfn -
4322						early_node_map[i].start_pfn;
4323		totalpages += pages;
4324		if (pages)
4325			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4326	}
4327  	return totalpages;
4328}
4329
4330/*
4331 * Find the PFN the Movable zone begins in each node. Kernel memory
4332 * is spread evenly between nodes as long as the nodes have enough
4333 * memory. When they don't, some nodes will have more kernelcore than
4334 * others
4335 */
4336static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4337{
4338	int i, nid;
4339	unsigned long usable_startpfn;
4340	unsigned long kernelcore_node, kernelcore_remaining;
4341	/* save the state before borrow the nodemask */
4342	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4343	unsigned long totalpages = early_calculate_totalpages();
4344	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4345
4346	/*
4347	 * If movablecore was specified, calculate what size of
4348	 * kernelcore that corresponds so that memory usable for
4349	 * any allocation type is evenly spread. If both kernelcore
4350	 * and movablecore are specified, then the value of kernelcore
4351	 * will be used for required_kernelcore if it's greater than
4352	 * what movablecore would have allowed.
4353	 */
4354	if (required_movablecore) {
4355		unsigned long corepages;
4356
4357		/*
4358		 * Round-up so that ZONE_MOVABLE is at least as large as what
4359		 * was requested by the user
4360		 */
4361		required_movablecore =
4362			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4363		corepages = totalpages - required_movablecore;
4364
4365		required_kernelcore = max(required_kernelcore, corepages);
4366	}
4367
4368	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4369	if (!required_kernelcore)
4370		goto out;
4371
4372	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4373	find_usable_zone_for_movable();
4374	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4375
4376restart:
4377	/* Spread kernelcore memory as evenly as possible throughout nodes */
4378	kernelcore_node = required_kernelcore / usable_nodes;
4379	for_each_node_state(nid, N_HIGH_MEMORY) {
4380		/*
4381		 * Recalculate kernelcore_node if the division per node
4382		 * now exceeds what is necessary to satisfy the requested
4383		 * amount of memory for the kernel
4384		 */
4385		if (required_kernelcore < kernelcore_node)
4386			kernelcore_node = required_kernelcore / usable_nodes;
4387
4388		/*
4389		 * As the map is walked, we track how much memory is usable
4390		 * by the kernel using kernelcore_remaining. When it is
4391		 * 0, the rest of the node is usable by ZONE_MOVABLE
4392		 */
4393		kernelcore_remaining = kernelcore_node;
4394
4395		/* Go through each range of PFNs within this node */
4396		for_each_active_range_index_in_nid(i, nid) {
4397			unsigned long start_pfn, end_pfn;
4398			unsigned long size_pages;
4399
4400			start_pfn = max(early_node_map[i].start_pfn,
4401						zone_movable_pfn[nid]);
4402			end_pfn = early_node_map[i].end_pfn;
4403			if (start_pfn >= end_pfn)
4404				continue;
4405
4406			/* Account for what is only usable for kernelcore */
4407			if (start_pfn < usable_startpfn) {
4408				unsigned long kernel_pages;
4409				kernel_pages = min(end_pfn, usable_startpfn)
4410								- start_pfn;
4411
4412				kernelcore_remaining -= min(kernel_pages,
4413							kernelcore_remaining);
4414				required_kernelcore -= min(kernel_pages,
4415							required_kernelcore);
4416
4417				/* Continue if range is now fully accounted */
4418				if (end_pfn <= usable_startpfn) {
4419
4420					/*
4421					 * Push zone_movable_pfn to the end so
4422					 * that if we have to rebalance
4423					 * kernelcore across nodes, we will
4424					 * not double account here
4425					 */
4426					zone_movable_pfn[nid] = end_pfn;
4427					continue;
4428				}
4429				start_pfn = usable_startpfn;
4430			}
4431
4432			/*
4433			 * The usable PFN range for ZONE_MOVABLE is from
4434			 * start_pfn->end_pfn. Calculate size_pages as the
4435			 * number of pages used as kernelcore
4436			 */
4437			size_pages = end_pfn - start_pfn;
4438			if (size_pages > kernelcore_remaining)
4439				size_pages = kernelcore_remaining;
4440			zone_movable_pfn[nid] = start_pfn + size_pages;
4441
4442			/*
4443			 * Some kernelcore has been met, update counts and
4444			 * break if the kernelcore for this node has been
4445			 * satisified
4446			 */
4447			required_kernelcore -= min(required_kernelcore,
4448								size_pages);
4449			kernelcore_remaining -= size_pages;
4450			if (!kernelcore_remaining)
4451				break;
4452		}
4453	}
4454
4455	/*
4456	 * If there is still required_kernelcore, we do another pass with one
4457	 * less node in the count. This will push zone_movable_pfn[nid] further
4458	 * along on the nodes that still have memory until kernelcore is
4459	 * satisified
4460	 */
4461	usable_nodes--;
4462	if (usable_nodes && required_kernelcore > usable_nodes)
4463		goto restart;
4464
4465	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4466	for (nid = 0; nid < MAX_NUMNODES; nid++)
4467		zone_movable_pfn[nid] =
4468			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4469
4470out:
4471	/* restore the node_state */
4472	node_states[N_HIGH_MEMORY] = saved_node_state;
4473}
4474
4475/* Any regular memory on that node ? */
4476static void check_for_regular_memory(pg_data_t *pgdat)
4477{
4478#ifdef CONFIG_HIGHMEM
4479	enum zone_type zone_type;
4480
4481	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4482		struct zone *zone = &pgdat->node_zones[zone_type];
4483		if (zone->present_pages)
4484			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4485	}
4486#endif
4487}
4488
4489/**
4490 * free_area_init_nodes - Initialise all pg_data_t and zone data
4491 * @max_zone_pfn: an array of max PFNs for each zone
4492 *
4493 * This will call free_area_init_node() for each active node in the system.
4494 * Using the page ranges provided by add_active_range(), the size of each
4495 * zone in each node and their holes is calculated. If the maximum PFN
4496 * between two adjacent zones match, it is assumed that the zone is empty.
4497 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4498 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4499 * starts where the previous one ended. For example, ZONE_DMA32 starts
4500 * at arch_max_dma_pfn.
4501 */
4502void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4503{
4504	unsigned long nid;
4505	int i;
4506
4507	/* Sort early_node_map as initialisation assumes it is sorted */
4508	sort_node_map();
4509
4510	/* Record where the zone boundaries are */
4511	memset(arch_zone_lowest_possible_pfn, 0,
4512				sizeof(arch_zone_lowest_possible_pfn));
4513	memset(arch_zone_highest_possible_pfn, 0,
4514				sizeof(arch_zone_highest_possible_pfn));
4515	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4516	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4517	for (i = 1; i < MAX_NR_ZONES; i++) {
4518		if (i == ZONE_MOVABLE)
4519			continue;
4520		arch_zone_lowest_possible_pfn[i] =
4521			arch_zone_highest_possible_pfn[i-1];
4522		arch_zone_highest_possible_pfn[i] =
4523			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4524	}
4525	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4526	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4527
4528	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4529	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4530	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4531
4532	/* Print out the zone ranges */
4533	printk("Zone PFN ranges:\n");
4534	for (i = 0; i < MAX_NR_ZONES; i++) {
4535		if (i == ZONE_MOVABLE)
4536			continue;
4537		printk("  %-8s ", zone_names[i]);
4538		if (arch_zone_lowest_possible_pfn[i] ==
4539				arch_zone_highest_possible_pfn[i])
4540			printk("empty\n");
4541		else
4542			printk("%0#10lx -> %0#10lx\n",
4543				arch_zone_lowest_possible_pfn[i],
4544				arch_zone_highest_possible_pfn[i]);
4545	}
4546
4547	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4548	printk("Movable zone start PFN for each node\n");
4549	for (i = 0; i < MAX_NUMNODES; i++) {
4550		if (zone_movable_pfn[i])
4551			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4552	}
4553
4554	/* Print out the early_node_map[] */
4555	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4556	for (i = 0; i < nr_nodemap_entries; i++)
4557		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4558						early_node_map[i].start_pfn,
4559						early_node_map[i].end_pfn);
4560
4561	/* Initialise every node */
4562	mminit_verify_pageflags_layout();
4563	setup_nr_node_ids();
4564	for_each_online_node(nid) {
4565		pg_data_t *pgdat = NODE_DATA(nid);
4566		free_area_init_node(nid, NULL,
4567				find_min_pfn_for_node(nid), NULL);
4568
4569		/* Any memory on that node */
4570		if (pgdat->node_present_pages)
4571			node_set_state(nid, N_HIGH_MEMORY);
4572		check_for_regular_memory(pgdat);
4573	}
4574}
4575
4576static int __init cmdline_parse_core(char *p, unsigned long *core)
4577{
4578	unsigned long long coremem;
4579	if (!p)
4580		return -EINVAL;
4581
4582	coremem = memparse(p, &p);
4583	*core = coremem >> PAGE_SHIFT;
4584
4585	/* Paranoid check that UL is enough for the coremem value */
4586	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4587
4588	return 0;
4589}
4590
4591/*
4592 * kernelcore=size sets the amount of memory for use for allocations that
4593 * cannot be reclaimed or migrated.
4594 */
4595static int __init cmdline_parse_kernelcore(char *p)
4596{
4597	return cmdline_parse_core(p, &required_kernelcore);
4598}
4599
4600/*
4601 * movablecore=size sets the amount of memory for use for allocations that
4602 * can be reclaimed or migrated.
4603 */
4604static int __init cmdline_parse_movablecore(char *p)
4605{
4606	return cmdline_parse_core(p, &required_movablecore);
4607}
4608
4609early_param("kernelcore", cmdline_parse_kernelcore);
4610early_param("movablecore", cmdline_parse_movablecore);
4611
4612#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4613
4614/**
4615 * set_dma_reserve - set the specified number of pages reserved in the first zone
4616 * @new_dma_reserve: The number of pages to mark reserved
4617 *
4618 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4619 * In the DMA zone, a significant percentage may be consumed by kernel image
4620 * and other unfreeable allocations which can skew the watermarks badly. This
4621 * function may optionally be used to account for unfreeable pages in the
4622 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4623 * smaller per-cpu batchsize.
4624 */
4625void __init set_dma_reserve(unsigned long new_dma_reserve)
4626{
4627	dma_reserve = new_dma_reserve;
4628}
4629
4630#ifndef CONFIG_NEED_MULTIPLE_NODES
4631struct pglist_data __refdata contig_page_data = {
4632#ifndef CONFIG_NO_BOOTMEM
4633 .bdata = &bootmem_node_data[0]
4634#endif
4635 };
4636EXPORT_SYMBOL(contig_page_data);
4637#endif
4638
4639void __init free_area_init(unsigned long *zones_size)
4640{
4641	free_area_init_node(0, zones_size,
4642			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4643}
4644
4645static int page_alloc_cpu_notify(struct notifier_block *self,
4646				 unsigned long action, void *hcpu)
4647{
4648	int cpu = (unsigned long)hcpu;
4649
4650	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4651		drain_pages(cpu);
4652
4653		/*
4654		 * Spill the event counters of the dead processor
4655		 * into the current processors event counters.
4656		 * This artificially elevates the count of the current
4657		 * processor.
4658		 */
4659		vm_events_fold_cpu(cpu);
4660
4661		/*
4662		 * Zero the differential counters of the dead processor
4663		 * so that the vm statistics are consistent.
4664		 *
4665		 * This is only okay since the processor is dead and cannot
4666		 * race with what we are doing.
4667		 */
4668		refresh_cpu_vm_stats(cpu);
4669	}
4670	return NOTIFY_OK;
4671}
4672
4673void __init page_alloc_init(void)
4674{
4675	hotcpu_notifier(page_alloc_cpu_notify, 0);
4676}
4677
4678/*
4679 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4680 *	or min_free_kbytes changes.
4681 */
4682static void calculate_totalreserve_pages(void)
4683{
4684	struct pglist_data *pgdat;
4685	unsigned long reserve_pages = 0;
4686	enum zone_type i, j;
4687
4688	for_each_online_pgdat(pgdat) {
4689		for (i = 0; i < MAX_NR_ZONES; i++) {
4690			struct zone *zone = pgdat->node_zones + i;
4691			unsigned long max = 0;
4692
4693			/* Find valid and maximum lowmem_reserve in the zone */
4694			for (j = i; j < MAX_NR_ZONES; j++) {
4695				if (zone->lowmem_reserve[j] > max)
4696					max = zone->lowmem_reserve[j];
4697			}
4698
4699			/* we treat the high watermark as reserved pages. */
4700			max += high_wmark_pages(zone);
4701
4702			if (max > zone->present_pages)
4703				max = zone->present_pages;
4704			reserve_pages += max;
4705		}
4706	}
4707	totalreserve_pages = reserve_pages;
4708}
4709
4710/*
4711 * setup_per_zone_lowmem_reserve - called whenever
4712 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4713 *	has a correct pages reserved value, so an adequate number of
4714 *	pages are left in the zone after a successful __alloc_pages().
4715 */
4716static void setup_per_zone_lowmem_reserve(void)
4717{
4718	struct pglist_data *pgdat;
4719	enum zone_type j, idx;
4720
4721	for_each_online_pgdat(pgdat) {
4722		for (j = 0; j < MAX_NR_ZONES; j++) {
4723			struct zone *zone = pgdat->node_zones + j;
4724			unsigned long present_pages = zone->present_pages;
4725
4726			zone->lowmem_reserve[j] = 0;
4727
4728			idx = j;
4729			while (idx) {
4730				struct zone *lower_zone;
4731
4732				idx--;
4733
4734				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4735					sysctl_lowmem_reserve_ratio[idx] = 1;
4736
4737				lower_zone = pgdat->node_zones + idx;
4738				lower_zone->lowmem_reserve[j] = present_pages /
4739					sysctl_lowmem_reserve_ratio[idx];
4740				present_pages += lower_zone->present_pages;
4741			}
4742		}
4743	}
4744
4745	/* update totalreserve_pages */
4746	calculate_totalreserve_pages();
4747}
4748
4749/**
4750 * setup_per_zone_wmarks - called when min_free_kbytes changes
4751 * or when memory is hot-{added|removed}
4752 *
4753 * Ensures that the watermark[min,low,high] values for each zone are set
4754 * correctly with respect to min_free_kbytes.
4755 */
4756void setup_per_zone_wmarks(void)
4757{
4758	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4759	unsigned long lowmem_pages = 0;
4760	struct zone *zone;
4761	unsigned long flags;
4762
4763	/* Calculate total number of !ZONE_HIGHMEM pages */
4764	for_each_zone(zone) {
4765		if (!is_highmem(zone))
4766			lowmem_pages += zone->present_pages;
4767	}
4768
4769	for_each_zone(zone) {
4770		u64 tmp;
4771
4772		spin_lock_irqsave(&zone->lock, flags);
4773		tmp = (u64)pages_min * zone->present_pages;
4774		do_div(tmp, lowmem_pages);
4775		if (is_highmem(zone)) {
4776			/*
4777			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4778			 * need highmem pages, so cap pages_min to a small
4779			 * value here.
4780			 *
4781			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4782			 * deltas controls asynch page reclaim, and so should
4783			 * not be capped for highmem.
4784			 */
4785			int min_pages;
4786
4787			min_pages = zone->present_pages / 1024;
4788			if (min_pages < SWAP_CLUSTER_MAX)
4789				min_pages = SWAP_CLUSTER_MAX;
4790			if (min_pages > 128)
4791				min_pages = 128;
4792			zone->watermark[WMARK_MIN] = min_pages;
4793		} else {
4794			/*
4795			 * If it's a lowmem zone, reserve a number of pages
4796			 * proportionate to the zone's size.
4797			 */
4798			zone->watermark[WMARK_MIN] = tmp;
4799		}
4800
4801		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4802		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4803		setup_zone_migrate_reserve(zone);
4804		spin_unlock_irqrestore(&zone->lock, flags);
4805	}
4806
4807	/* update totalreserve_pages */
4808	calculate_totalreserve_pages();
4809}
4810
4811/*
4812 * The inactive anon list should be small enough that the VM never has to
4813 * do too much work, but large enough that each inactive page has a chance
4814 * to be referenced again before it is swapped out.
4815 *
4816 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4817 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4818 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4819 * the anonymous pages are kept on the inactive list.
4820 *
4821 * total     target    max
4822 * memory    ratio     inactive anon
4823 * -------------------------------------
4824 *   10MB       1         5MB
4825 *  100MB       1        50MB
4826 *    1GB       3       250MB
4827 *   10GB      10       0.9GB
4828 *  100GB      31         3GB
4829 *    1TB     101        10GB
4830 *   10TB     320        32GB
4831 */
4832void calculate_zone_inactive_ratio(struct zone *zone)
4833{
4834	unsigned int gb, ratio;
4835
4836	/* Zone size in gigabytes */
4837	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4838	if (gb)
4839		ratio = int_sqrt(10 * gb);
4840	else
4841		ratio = 1;
4842
4843	zone->inactive_ratio = ratio;
4844}
4845
4846static void __init setup_per_zone_inactive_ratio(void)
4847{
4848	struct zone *zone;
4849
4850	for_each_zone(zone)
4851		calculate_zone_inactive_ratio(zone);
4852}
4853
4854/*
4855 * Initialise min_free_kbytes.
4856 *
4857 * For small machines we want it small (128k min).  For large machines
4858 * we want it large (64MB max).  But it is not linear, because network
4859 * bandwidth does not increase linearly with machine size.  We use
4860 *
4861 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4862 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4863 *
4864 * which yields
4865 *
4866 * 16MB:	512k
4867 * 32MB:	724k
4868 * 64MB:	1024k
4869 * 128MB:	1448k
4870 * 256MB:	2048k
4871 * 512MB:	2896k
4872 * 1024MB:	4096k
4873 * 2048MB:	5792k
4874 * 4096MB:	8192k
4875 * 8192MB:	11584k
4876 * 16384MB:	16384k
4877 */
4878static int __init init_per_zone_wmark_min(void)
4879{
4880	unsigned long lowmem_kbytes;
4881
4882	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4883
4884	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4885	if (min_free_kbytes < 128)
4886		min_free_kbytes = 128;
4887	if (min_free_kbytes > 65536)
4888		min_free_kbytes = 65536;
4889	setup_per_zone_wmarks();
4890	setup_per_zone_lowmem_reserve();
4891	setup_per_zone_inactive_ratio();
4892	return 0;
4893}
4894module_init(init_per_zone_wmark_min)
4895
4896/*
4897 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4898 *	that we can call two helper functions whenever min_free_kbytes
4899 *	changes.
4900 */
4901int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4902	void __user *buffer, size_t *length, loff_t *ppos)
4903{
4904	proc_dointvec(table, write, buffer, length, ppos);
4905	if (write)
4906		setup_per_zone_wmarks();
4907	return 0;
4908}
4909
4910#ifdef CONFIG_NUMA
4911int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4912	void __user *buffer, size_t *length, loff_t *ppos)
4913{
4914	struct zone *zone;
4915	int rc;
4916
4917	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4918	if (rc)
4919		return rc;
4920
4921	for_each_zone(zone)
4922		zone->min_unmapped_pages = (zone->present_pages *
4923				sysctl_min_unmapped_ratio) / 100;
4924	return 0;
4925}
4926
4927int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4928	void __user *buffer, size_t *length, loff_t *ppos)
4929{
4930	struct zone *zone;
4931	int rc;
4932
4933	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4934	if (rc)
4935		return rc;
4936
4937	for_each_zone(zone)
4938		zone->min_slab_pages = (zone->present_pages *
4939				sysctl_min_slab_ratio) / 100;
4940	return 0;
4941}
4942#endif
4943
4944/*
4945 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4946 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4947 *	whenever sysctl_lowmem_reserve_ratio changes.
4948 *
4949 * The reserve ratio obviously has absolutely no relation with the
4950 * minimum watermarks. The lowmem reserve ratio can only make sense
4951 * if in function of the boot time zone sizes.
4952 */
4953int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4954	void __user *buffer, size_t *length, loff_t *ppos)
4955{
4956	proc_dointvec_minmax(table, write, buffer, length, ppos);
4957	setup_per_zone_lowmem_reserve();
4958	return 0;
4959}
4960
4961/*
4962 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4963 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4964 * can have before it gets flushed back to buddy allocator.
4965 */
4966
4967int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4968	void __user *buffer, size_t *length, loff_t *ppos)
4969{
4970	struct zone *zone;
4971	unsigned int cpu;
4972	int ret;
4973
4974	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4975	if (!write || (ret == -EINVAL))
4976		return ret;
4977	for_each_populated_zone(zone) {
4978		for_each_possible_cpu(cpu) {
4979			unsigned long  high;
4980			high = zone->present_pages / percpu_pagelist_fraction;
4981			setup_pagelist_highmark(
4982				per_cpu_ptr(zone->pageset, cpu), high);
4983		}
4984	}
4985	return 0;
4986}
4987
4988int hashdist = HASHDIST_DEFAULT;
4989
4990#ifdef CONFIG_NUMA
4991static int __init set_hashdist(char *str)
4992{
4993	if (!str)
4994		return 0;
4995	hashdist = simple_strtoul(str, &str, 0);
4996	return 1;
4997}
4998__setup("hashdist=", set_hashdist);
4999#endif
5000
5001/*
5002 * allocate a large system hash table from bootmem
5003 * - it is assumed that the hash table must contain an exact power-of-2
5004 *   quantity of entries
5005 * - limit is the number of hash buckets, not the total allocation size
5006 */
5007void *__init alloc_large_system_hash(const char *tablename,
5008				     unsigned long bucketsize,
5009				     unsigned long numentries,
5010				     int scale,
5011				     int flags,
5012				     unsigned int *_hash_shift,
5013				     unsigned int *_hash_mask,
5014				     unsigned long limit)
5015{
5016	unsigned long long max = limit;
5017	unsigned long log2qty, size;
5018	void *table = NULL;
5019
5020	/* allow the kernel cmdline to have a say */
5021	if (!numentries) {
5022		/* round applicable memory size up to nearest megabyte */
5023		numentries = nr_kernel_pages;
5024		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5025		numentries >>= 20 - PAGE_SHIFT;
5026		numentries <<= 20 - PAGE_SHIFT;
5027
5028		/* limit to 1 bucket per 2^scale bytes of low memory */
5029		if (scale > PAGE_SHIFT)
5030			numentries >>= (scale - PAGE_SHIFT);
5031		else
5032			numentries <<= (PAGE_SHIFT - scale);
5033
5034		/* Make sure we've got at least a 0-order allocation.. */
5035		if (unlikely(flags & HASH_SMALL)) {
5036			/* Makes no sense without HASH_EARLY */
5037			WARN_ON(!(flags & HASH_EARLY));
5038			if (!(numentries >> *_hash_shift)) {
5039				numentries = 1UL << *_hash_shift;
5040				BUG_ON(!numentries);
5041			}
5042		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5043			numentries = PAGE_SIZE / bucketsize;
5044	}
5045	numentries = roundup_pow_of_two(numentries);
5046
5047	/* limit allocation size to 1/16 total memory by default */
5048	if (max == 0) {
5049		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5050		do_div(max, bucketsize);
5051	}
5052
5053	if (numentries > max)
5054		numentries = max;
5055
5056	log2qty = ilog2(numentries);
5057
5058	do {
5059		size = bucketsize << log2qty;
5060		if (flags & HASH_EARLY)
5061			table = alloc_bootmem_nopanic(size);
5062		else if (hashdist)
5063			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5064		else {
5065			/*
5066			 * If bucketsize is not a power-of-two, we may free
5067			 * some pages at the end of hash table which
5068			 * alloc_pages_exact() automatically does
5069			 */
5070			if (get_order(size) < MAX_ORDER) {
5071				table = alloc_pages_exact(size, GFP_ATOMIC);
5072				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5073			}
5074		}
5075	} while (!table && size > PAGE_SIZE && --log2qty);
5076
5077	if (!table)
5078		panic("Failed to allocate %s hash table\n", tablename);
5079
5080	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5081	       tablename,
5082	       (1U << log2qty),
5083	       ilog2(size) - PAGE_SHIFT,
5084	       size);
5085
5086	if (_hash_shift)
5087		*_hash_shift = log2qty;
5088	if (_hash_mask)
5089		*_hash_mask = (1 << log2qty) - 1;
5090
5091	return table;
5092}
5093
5094/* Return a pointer to the bitmap storing bits affecting a block of pages */
5095static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5096							unsigned long pfn)
5097{
5098#ifdef CONFIG_SPARSEMEM
5099	return __pfn_to_section(pfn)->pageblock_flags;
5100#else
5101	return zone->pageblock_flags;
5102#endif /* CONFIG_SPARSEMEM */
5103}
5104
5105static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5106{
5107#ifdef CONFIG_SPARSEMEM
5108	pfn &= (PAGES_PER_SECTION-1);
5109	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5110#else
5111	pfn = pfn - zone->zone_start_pfn;
5112	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5113#endif /* CONFIG_SPARSEMEM */
5114}
5115
5116/**
5117 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5118 * @page: The page within the block of interest
5119 * @start_bitidx: The first bit of interest to retrieve
5120 * @end_bitidx: The last bit of interest
5121 * returns pageblock_bits flags
5122 */
5123unsigned long get_pageblock_flags_group(struct page *page,
5124					int start_bitidx, int end_bitidx)
5125{
5126	struct zone *zone;
5127	unsigned long *bitmap;
5128	unsigned long pfn, bitidx;
5129	unsigned long flags = 0;
5130	unsigned long value = 1;
5131
5132	zone = page_zone(page);
5133	pfn = page_to_pfn(page);
5134	bitmap = get_pageblock_bitmap(zone, pfn);
5135	bitidx = pfn_to_bitidx(zone, pfn);
5136
5137	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5138		if (test_bit(bitidx + start_bitidx, bitmap))
5139			flags |= value;
5140
5141	return flags;
5142}
5143
5144/**
5145 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5146 * @page: The page within the block of interest
5147 * @start_bitidx: The first bit of interest
5148 * @end_bitidx: The last bit of interest
5149 * @flags: The flags to set
5150 */
5151void set_pageblock_flags_group(struct page *page, unsigned long flags,
5152					int start_bitidx, int end_bitidx)
5153{
5154	struct zone *zone;
5155	unsigned long *bitmap;
5156	unsigned long pfn, bitidx;
5157	unsigned long value = 1;
5158
5159	zone = page_zone(page);
5160	pfn = page_to_pfn(page);
5161	bitmap = get_pageblock_bitmap(zone, pfn);
5162	bitidx = pfn_to_bitidx(zone, pfn);
5163	VM_BUG_ON(pfn < zone->zone_start_pfn);
5164	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5165
5166	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5167		if (flags & value)
5168			__set_bit(bitidx + start_bitidx, bitmap);
5169		else
5170			__clear_bit(bitidx + start_bitidx, bitmap);
5171}
5172
5173/*
5174 * This is designed as sub function...plz see page_isolation.c also.
5175 * set/clear page block's type to be ISOLATE.
5176 * page allocater never alloc memory from ISOLATE block.
5177 */
5178
5179int set_migratetype_isolate(struct page *page)
5180{
5181	struct zone *zone;
5182	struct page *curr_page;
5183	unsigned long flags, pfn, iter;
5184	unsigned long immobile = 0;
5185	struct memory_isolate_notify arg;
5186	int notifier_ret;
5187	int ret = -EBUSY;
5188	int zone_idx;
5189
5190	zone = page_zone(page);
5191	zone_idx = zone_idx(zone);
5192
5193	spin_lock_irqsave(&zone->lock, flags);
5194	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5195	    zone_idx == ZONE_MOVABLE) {
5196		ret = 0;
5197		goto out;
5198	}
5199
5200	pfn = page_to_pfn(page);
5201	arg.start_pfn = pfn;
5202	arg.nr_pages = pageblock_nr_pages;
5203	arg.pages_found = 0;
5204
5205	/*
5206	 * It may be possible to isolate a pageblock even if the
5207	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5208	 * notifier chain is used by balloon drivers to return the
5209	 * number of pages in a range that are held by the balloon
5210	 * driver to shrink memory. If all the pages are accounted for
5211	 * by balloons, are free, or on the LRU, isolation can continue.
5212	 * Later, for example, when memory hotplug notifier runs, these
5213	 * pages reported as "can be isolated" should be isolated(freed)
5214	 * by the balloon driver through the memory notifier chain.
5215	 */
5216	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5217	notifier_ret = notifier_to_errno(notifier_ret);
5218	if (notifier_ret || !arg.pages_found)
5219		goto out;
5220
5221	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5222		if (!pfn_valid_within(pfn))
5223			continue;
5224
5225		curr_page = pfn_to_page(iter);
5226		if (!page_count(curr_page) || PageLRU(curr_page))
5227			continue;
5228
5229		immobile++;
5230	}
5231
5232	if (arg.pages_found == immobile)
5233		ret = 0;
5234
5235out:
5236	if (!ret) {
5237		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5238		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5239	}
5240
5241	spin_unlock_irqrestore(&zone->lock, flags);
5242	if (!ret)
5243		drain_all_pages();
5244	return ret;
5245}
5246
5247void unset_migratetype_isolate(struct page *page)
5248{
5249	struct zone *zone;
5250	unsigned long flags;
5251	zone = page_zone(page);
5252	spin_lock_irqsave(&zone->lock, flags);
5253	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5254		goto out;
5255	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5256	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5257out:
5258	spin_unlock_irqrestore(&zone->lock, flags);
5259}
5260
5261#ifdef CONFIG_MEMORY_HOTREMOVE
5262/*
5263 * All pages in the range must be isolated before calling this.
5264 */
5265void
5266__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5267{
5268	struct page *page;
5269	struct zone *zone;
5270	int order, i;
5271	unsigned long pfn;
5272	unsigned long flags;
5273	/* find the first valid pfn */
5274	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5275		if (pfn_valid(pfn))
5276			break;
5277	if (pfn == end_pfn)
5278		return;
5279	zone = page_zone(pfn_to_page(pfn));
5280	spin_lock_irqsave(&zone->lock, flags);
5281	pfn = start_pfn;
5282	while (pfn < end_pfn) {
5283		if (!pfn_valid(pfn)) {
5284			pfn++;
5285			continue;
5286		}
5287		page = pfn_to_page(pfn);
5288		BUG_ON(page_count(page));
5289		BUG_ON(!PageBuddy(page));
5290		order = page_order(page);
5291#ifdef CONFIG_DEBUG_VM
5292		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5293		       pfn, 1 << order, end_pfn);
5294#endif
5295		list_del(&page->lru);
5296		rmv_page_order(page);
5297		zone->free_area[order].nr_free--;
5298		__mod_zone_page_state(zone, NR_FREE_PAGES,
5299				      - (1UL << order));
5300		for (i = 0; i < (1 << order); i++)
5301			SetPageReserved((page+i));
5302		pfn += (1 << order);
5303	}
5304	spin_unlock_irqrestore(&zone->lock, flags);
5305}
5306#endif
5307
5308#ifdef CONFIG_MEMORY_FAILURE
5309bool is_free_buddy_page(struct page *page)
5310{
5311	struct zone *zone = page_zone(page);
5312	unsigned long pfn = page_to_pfn(page);
5313	unsigned long flags;
5314	int order;
5315
5316	spin_lock_irqsave(&zone->lock, flags);
5317	for (order = 0; order < MAX_ORDER; order++) {
5318		struct page *page_head = page - (pfn & ((1 << order) - 1));
5319
5320		if (PageBuddy(page_head) && page_order(page_head) >= order)
5321			break;
5322	}
5323	spin_unlock_irqrestore(&zone->lock, flags);
5324
5325	return order < MAX_ORDER;
5326}
5327#endif
5328
5329static struct trace_print_flags pageflag_names[] = {
5330	{1UL << PG_locked,		"locked"	},
5331	{1UL << PG_error,		"error"		},
5332	{1UL << PG_referenced,		"referenced"	},
5333	{1UL << PG_uptodate,		"uptodate"	},
5334	{1UL << PG_dirty,		"dirty"		},
5335	{1UL << PG_lru,			"lru"		},
5336	{1UL << PG_active,		"active"	},
5337	{1UL << PG_slab,		"slab"		},
5338	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5339	{1UL << PG_arch_1,		"arch_1"	},
5340	{1UL << PG_reserved,		"reserved"	},
5341	{1UL << PG_private,		"private"	},
5342	{1UL << PG_private_2,		"private_2"	},
5343	{1UL << PG_writeback,		"writeback"	},
5344#ifdef CONFIG_PAGEFLAGS_EXTENDED
5345	{1UL << PG_head,		"head"		},
5346	{1UL << PG_tail,		"tail"		},
5347#else
5348	{1UL << PG_compound,		"compound"	},
5349#endif
5350	{1UL << PG_swapcache,		"swapcache"	},
5351	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5352	{1UL << PG_reclaim,		"reclaim"	},
5353	{1UL << PG_buddy,		"buddy"		},
5354	{1UL << PG_swapbacked,		"swapbacked"	},
5355	{1UL << PG_unevictable,		"unevictable"	},
5356#ifdef CONFIG_MMU
5357	{1UL << PG_mlocked,		"mlocked"	},
5358#endif
5359#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5360	{1UL << PG_uncached,		"uncached"	},
5361#endif
5362#ifdef CONFIG_MEMORY_FAILURE
5363	{1UL << PG_hwpoison,		"hwpoison"	},
5364#endif
5365	{-1UL,				NULL		},
5366};
5367
5368static void dump_page_flags(unsigned long flags)
5369{
5370	const char *delim = "";
5371	unsigned long mask;
5372	int i;
5373
5374	printk(KERN_ALERT "page flags: %#lx(", flags);
5375
5376	/* remove zone id */
5377	flags &= (1UL << NR_PAGEFLAGS) - 1;
5378
5379	for (i = 0; pageflag_names[i].name && flags; i++) {
5380
5381		mask = pageflag_names[i].mask;
5382		if ((flags & mask) != mask)
5383			continue;
5384
5385		flags &= ~mask;
5386		printk("%s%s", delim, pageflag_names[i].name);
5387		delim = "|";
5388	}
5389
5390	/* check for left over flags */
5391	if (flags)
5392		printk("%s%#lx", delim, flags);
5393
5394	printk(")\n");
5395}
5396
5397void dump_page(struct page *page)
5398{
5399	printk(KERN_ALERT
5400	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5401		page, page_count(page), page_mapcount(page),
5402		page->mapping, page->index);
5403	dump_page_flags(page->flags);
5404}
5405