page_alloc.c revision 53348f27168534561c0c814843bbf181314374f4
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/memory.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <linux/ftrace_event.h>
58#include <linux/memcontrol.h>
59#include <linux/prefetch.h>
60
61#include <asm/tlbflush.h>
62#include <asm/div64.h>
63#include "internal.h"
64
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
81/*
82 * Array of node states.
83 */
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85	[N_POSSIBLE] = NODE_MASK_ALL,
86	[N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90	[N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92	[N_CPU] = { { [0] = 1UL } },
93#endif	/* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
97unsigned long totalram_pages __read_mostly;
98unsigned long totalreserve_pages __read_mostly;
99int percpu_pagelist_fraction;
100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended.  To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
115{
116	WARN_ON(!mutex_is_locked(&pm_mutex));
117	if (saved_gfp_mask) {
118		gfp_allowed_mask = saved_gfp_mask;
119		saved_gfp_mask = 0;
120	}
121}
122
123void pm_restrict_gfp_mask(void)
124{
125	WARN_ON(!mutex_is_locked(&pm_mutex));
126	WARN_ON(saved_gfp_mask);
127	saved_gfp_mask = gfp_allowed_mask;
128	gfp_allowed_mask &= ~GFP_IOFS;
129}
130#endif /* CONFIG_PM_SLEEP */
131
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
136static void __free_pages_ok(struct page *page, unsigned int order);
137
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 *	1G machine -> (16M dma, 784M normal, 224M high)
142 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
148 */
149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150#ifdef CONFIG_ZONE_DMA
151	 256,
152#endif
153#ifdef CONFIG_ZONE_DMA32
154	 256,
155#endif
156#ifdef CONFIG_HIGHMEM
157	 32,
158#endif
159	 32,
160};
161
162EXPORT_SYMBOL(totalram_pages);
163
164static char * const zone_names[MAX_NR_ZONES] = {
165#ifdef CONFIG_ZONE_DMA
166	 "DMA",
167#endif
168#ifdef CONFIG_ZONE_DMA32
169	 "DMA32",
170#endif
171	 "Normal",
172#ifdef CONFIG_HIGHMEM
173	 "HighMem",
174#endif
175	 "Movable",
176};
177
178int min_free_kbytes = 1024;
179
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
182static unsigned long __meminitdata dma_reserve;
183
184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185  /*
186   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187   * ranges of memory (RAM) that may be registered with add_active_range().
188   * Ranges passed to add_active_range() will be merged if possible
189   * so the number of times add_active_range() can be called is
190   * related to the number of nodes and the number of holes
191   */
192  #ifdef CONFIG_MAX_ACTIVE_REGIONS
193    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195  #else
196    #if MAX_NUMNODES >= 32
197      /* If there can be many nodes, allow up to 50 holes per node */
198      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199    #else
200      /* By default, allow up to 256 distinct regions */
201      #define MAX_ACTIVE_REGIONS 256
202    #endif
203  #endif
204
205  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206  static int __meminitdata nr_nodemap_entries;
207  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209  static unsigned long __initdata required_kernelcore;
210  static unsigned long __initdata required_movablecore;
211  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212
213  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214  int movable_zone;
215  EXPORT_SYMBOL(movable_zone);
216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
218#if MAX_NUMNODES > 1
219int nr_node_ids __read_mostly = MAX_NUMNODES;
220int nr_online_nodes __read_mostly = 1;
221EXPORT_SYMBOL(nr_node_ids);
222EXPORT_SYMBOL(nr_online_nodes);
223#endif
224
225int page_group_by_mobility_disabled __read_mostly;
226
227static void set_pageblock_migratetype(struct page *page, int migratetype)
228{
229
230	if (unlikely(page_group_by_mobility_disabled))
231		migratetype = MIGRATE_UNMOVABLE;
232
233	set_pageblock_flags_group(page, (unsigned long)migratetype,
234					PB_migrate, PB_migrate_end);
235}
236
237bool oom_killer_disabled __read_mostly;
238
239#ifdef CONFIG_DEBUG_VM
240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241{
242	int ret = 0;
243	unsigned seq;
244	unsigned long pfn = page_to_pfn(page);
245
246	do {
247		seq = zone_span_seqbegin(zone);
248		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249			ret = 1;
250		else if (pfn < zone->zone_start_pfn)
251			ret = 1;
252	} while (zone_span_seqretry(zone, seq));
253
254	return ret;
255}
256
257static int page_is_consistent(struct zone *zone, struct page *page)
258{
259	if (!pfn_valid_within(page_to_pfn(page)))
260		return 0;
261	if (zone != page_zone(page))
262		return 0;
263
264	return 1;
265}
266/*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269static int bad_range(struct zone *zone, struct page *page)
270{
271	if (page_outside_zone_boundaries(zone, page))
272		return 1;
273	if (!page_is_consistent(zone, page))
274		return 1;
275
276	return 0;
277}
278#else
279static inline int bad_range(struct zone *zone, struct page *page)
280{
281	return 0;
282}
283#endif
284
285static void bad_page(struct page *page)
286{
287	static unsigned long resume;
288	static unsigned long nr_shown;
289	static unsigned long nr_unshown;
290
291	/* Don't complain about poisoned pages */
292	if (PageHWPoison(page)) {
293		reset_page_mapcount(page); /* remove PageBuddy */
294		return;
295	}
296
297	/*
298	 * Allow a burst of 60 reports, then keep quiet for that minute;
299	 * or allow a steady drip of one report per second.
300	 */
301	if (nr_shown == 60) {
302		if (time_before(jiffies, resume)) {
303			nr_unshown++;
304			goto out;
305		}
306		if (nr_unshown) {
307			printk(KERN_ALERT
308			      "BUG: Bad page state: %lu messages suppressed\n",
309				nr_unshown);
310			nr_unshown = 0;
311		}
312		nr_shown = 0;
313	}
314	if (nr_shown++ == 0)
315		resume = jiffies + 60 * HZ;
316
317	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
318		current->comm, page_to_pfn(page));
319	dump_page(page);
320
321	dump_stack();
322out:
323	/* Leave bad fields for debug, except PageBuddy could make trouble */
324	reset_page_mapcount(page); /* remove PageBuddy */
325	add_taint(TAINT_BAD_PAGE);
326}
327
328/*
329 * Higher-order pages are called "compound pages".  They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set.  All pages have their ->private pointing at
336 * the head page (even the head page has this).
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function.  Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343static void free_compound_page(struct page *page)
344{
345	__free_pages_ok(page, compound_order(page));
346}
347
348void prep_compound_page(struct page *page, unsigned long order)
349{
350	int i;
351	int nr_pages = 1 << order;
352
353	set_compound_page_dtor(page, free_compound_page);
354	set_compound_order(page, order);
355	__SetPageHead(page);
356	for (i = 1; i < nr_pages; i++) {
357		struct page *p = page + i;
358
359		__SetPageTail(p);
360		p->first_page = page;
361	}
362}
363
364/* update __split_huge_page_refcount if you change this function */
365static int destroy_compound_page(struct page *page, unsigned long order)
366{
367	int i;
368	int nr_pages = 1 << order;
369	int bad = 0;
370
371	if (unlikely(compound_order(page) != order) ||
372	    unlikely(!PageHead(page))) {
373		bad_page(page);
374		bad++;
375	}
376
377	__ClearPageHead(page);
378
379	for (i = 1; i < nr_pages; i++) {
380		struct page *p = page + i;
381
382		if (unlikely(!PageTail(p) || (p->first_page != page))) {
383			bad_page(page);
384			bad++;
385		}
386		__ClearPageTail(p);
387	}
388
389	return bad;
390}
391
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394	int i;
395
396	/*
397	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398	 * and __GFP_HIGHMEM from hard or soft interrupt context.
399	 */
400	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401	for (i = 0; i < (1 << order); i++)
402		clear_highpage(page + i);
403}
404
405static inline void set_page_order(struct page *page, int order)
406{
407	set_page_private(page, order);
408	__SetPageBuddy(page);
409}
410
411static inline void rmv_page_order(struct page *page)
412{
413	__ClearPageBuddy(page);
414	set_page_private(page, 0);
415}
416
417/*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 *     B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 *     P = B & ~(1 << O)
431 *
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
433 */
434static inline unsigned long
435__find_buddy_index(unsigned long page_idx, unsigned int order)
436{
437	return page_idx ^ (1 << order);
438}
439
440/*
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
447 *
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
450 *
451 * For recording page's order, we use page_private(page).
452 */
453static inline int page_is_buddy(struct page *page, struct page *buddy,
454								int order)
455{
456	if (!pfn_valid_within(page_to_pfn(buddy)))
457		return 0;
458
459	if (page_zone_id(page) != page_zone_id(buddy))
460		return 0;
461
462	if (PageBuddy(buddy) && page_order(buddy) == order) {
463		VM_BUG_ON(page_count(buddy) != 0);
464		return 1;
465	}
466	return 0;
467}
468
469/*
470 * Freeing function for a buddy system allocator.
471 *
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other.  That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
489 *
490 * -- wli
491 */
492
493static inline void __free_one_page(struct page *page,
494		struct zone *zone, unsigned int order,
495		int migratetype)
496{
497	unsigned long page_idx;
498	unsigned long combined_idx;
499	unsigned long uninitialized_var(buddy_idx);
500	struct page *buddy;
501
502	if (unlikely(PageCompound(page)))
503		if (unlikely(destroy_compound_page(page, order)))
504			return;
505
506	VM_BUG_ON(migratetype == -1);
507
508	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
510	VM_BUG_ON(page_idx & ((1 << order) - 1));
511	VM_BUG_ON(bad_range(zone, page));
512
513	while (order < MAX_ORDER-1) {
514		buddy_idx = __find_buddy_index(page_idx, order);
515		buddy = page + (buddy_idx - page_idx);
516		if (!page_is_buddy(page, buddy, order))
517			break;
518
519		/* Our buddy is free, merge with it and move up one order. */
520		list_del(&buddy->lru);
521		zone->free_area[order].nr_free--;
522		rmv_page_order(buddy);
523		combined_idx = buddy_idx & page_idx;
524		page = page + (combined_idx - page_idx);
525		page_idx = combined_idx;
526		order++;
527	}
528	set_page_order(page, order);
529
530	/*
531	 * If this is not the largest possible page, check if the buddy
532	 * of the next-highest order is free. If it is, it's possible
533	 * that pages are being freed that will coalesce soon. In case,
534	 * that is happening, add the free page to the tail of the list
535	 * so it's less likely to be used soon and more likely to be merged
536	 * as a higher order page
537	 */
538	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539		struct page *higher_page, *higher_buddy;
540		combined_idx = buddy_idx & page_idx;
541		higher_page = page + (combined_idx - page_idx);
542		buddy_idx = __find_buddy_index(combined_idx, order + 1);
543		higher_buddy = page + (buddy_idx - combined_idx);
544		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545			list_add_tail(&page->lru,
546				&zone->free_area[order].free_list[migratetype]);
547			goto out;
548		}
549	}
550
551	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
553	zone->free_area[order].nr_free++;
554}
555
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
563	__dec_zone_page_state(page, NR_MLOCK);
564	__count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
566
567static inline int free_pages_check(struct page *page)
568{
569	if (unlikely(page_mapcount(page) |
570		(page->mapping != NULL)  |
571		(atomic_read(&page->_count) != 0) |
572		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573		(mem_cgroup_bad_page_check(page)))) {
574		bad_page(page);
575		return 1;
576	}
577	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579	return 0;
580}
581
582/*
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
593static void free_pcppages_bulk(struct zone *zone, int count,
594					struct per_cpu_pages *pcp)
595{
596	int migratetype = 0;
597	int batch_free = 0;
598	int to_free = count;
599
600	spin_lock(&zone->lock);
601	zone->all_unreclaimable = 0;
602	zone->pages_scanned = 0;
603
604	while (to_free) {
605		struct page *page;
606		struct list_head *list;
607
608		/*
609		 * Remove pages from lists in a round-robin fashion. A
610		 * batch_free count is maintained that is incremented when an
611		 * empty list is encountered.  This is so more pages are freed
612		 * off fuller lists instead of spinning excessively around empty
613		 * lists
614		 */
615		do {
616			batch_free++;
617			if (++migratetype == MIGRATE_PCPTYPES)
618				migratetype = 0;
619			list = &pcp->lists[migratetype];
620		} while (list_empty(list));
621
622		/* This is the only non-empty list. Free them all. */
623		if (batch_free == MIGRATE_PCPTYPES)
624			batch_free = to_free;
625
626		do {
627			page = list_entry(list->prev, struct page, lru);
628			/* must delete as __free_one_page list manipulates */
629			list_del(&page->lru);
630			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631			__free_one_page(page, zone, 0, page_private(page));
632			trace_mm_page_pcpu_drain(page, 0, page_private(page));
633		} while (--to_free && --batch_free && !list_empty(list));
634	}
635	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
636	spin_unlock(&zone->lock);
637}
638
639static void free_one_page(struct zone *zone, struct page *page, int order,
640				int migratetype)
641{
642	spin_lock(&zone->lock);
643	zone->all_unreclaimable = 0;
644	zone->pages_scanned = 0;
645
646	__free_one_page(page, zone, order, migratetype);
647	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648	spin_unlock(&zone->lock);
649}
650
651static bool free_pages_prepare(struct page *page, unsigned int order)
652{
653	int i;
654	int bad = 0;
655
656	trace_mm_page_free_direct(page, order);
657	kmemcheck_free_shadow(page, order);
658
659	if (PageAnon(page))
660		page->mapping = NULL;
661	for (i = 0; i < (1 << order); i++)
662		bad += free_pages_check(page + i);
663	if (bad)
664		return false;
665
666	if (!PageHighMem(page)) {
667		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668		debug_check_no_obj_freed(page_address(page),
669					   PAGE_SIZE << order);
670	}
671	arch_free_page(page, order);
672	kernel_map_pages(page, 1 << order, 0);
673
674	return true;
675}
676
677static void __free_pages_ok(struct page *page, unsigned int order)
678{
679	unsigned long flags;
680	int wasMlocked = __TestClearPageMlocked(page);
681
682	if (!free_pages_prepare(page, order))
683		return;
684
685	local_irq_save(flags);
686	if (unlikely(wasMlocked))
687		free_page_mlock(page);
688	__count_vm_events(PGFREE, 1 << order);
689	free_one_page(page_zone(page), page, order,
690					get_pageblock_migratetype(page));
691	local_irq_restore(flags);
692}
693
694/*
695 * permit the bootmem allocator to evade page validation on high-order frees
696 */
697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
698{
699	if (order == 0) {
700		__ClearPageReserved(page);
701		set_page_count(page, 0);
702		set_page_refcounted(page);
703		__free_page(page);
704	} else {
705		int loop;
706
707		prefetchw(page);
708		for (loop = 0; loop < (1 << order); loop++) {
709			struct page *p = &page[loop];
710
711			if (loop + 1 < (1 << order))
712				prefetchw(p + 1);
713			__ClearPageReserved(p);
714			set_page_count(p, 0);
715		}
716
717		set_page_refcounted(page);
718		__free_pages(page, order);
719	}
720}
721
722
723/*
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
734 *
735 * -- wli
736 */
737static inline void expand(struct zone *zone, struct page *page,
738	int low, int high, struct free_area *area,
739	int migratetype)
740{
741	unsigned long size = 1 << high;
742
743	while (high > low) {
744		area--;
745		high--;
746		size >>= 1;
747		VM_BUG_ON(bad_range(zone, &page[size]));
748		list_add(&page[size].lru, &area->free_list[migratetype]);
749		area->nr_free++;
750		set_page_order(&page[size], high);
751	}
752}
753
754/*
755 * This page is about to be returned from the page allocator
756 */
757static inline int check_new_page(struct page *page)
758{
759	if (unlikely(page_mapcount(page) |
760		(page->mapping != NULL)  |
761		(atomic_read(&page->_count) != 0)  |
762		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763		(mem_cgroup_bad_page_check(page)))) {
764		bad_page(page);
765		return 1;
766	}
767	return 0;
768}
769
770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771{
772	int i;
773
774	for (i = 0; i < (1 << order); i++) {
775		struct page *p = page + i;
776		if (unlikely(check_new_page(p)))
777			return 1;
778	}
779
780	set_page_private(page, 0);
781	set_page_refcounted(page);
782
783	arch_alloc_page(page, order);
784	kernel_map_pages(page, 1 << order, 1);
785
786	if (gfp_flags & __GFP_ZERO)
787		prep_zero_page(page, order, gfp_flags);
788
789	if (order && (gfp_flags & __GFP_COMP))
790		prep_compound_page(page, order);
791
792	return 0;
793}
794
795/*
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
798 */
799static inline
800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
801						int migratetype)
802{
803	unsigned int current_order;
804	struct free_area * area;
805	struct page *page;
806
807	/* Find a page of the appropriate size in the preferred list */
808	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809		area = &(zone->free_area[current_order]);
810		if (list_empty(&area->free_list[migratetype]))
811			continue;
812
813		page = list_entry(area->free_list[migratetype].next,
814							struct page, lru);
815		list_del(&page->lru);
816		rmv_page_order(page);
817		area->nr_free--;
818		expand(zone, page, order, current_order, area, migratetype);
819		return page;
820	}
821
822	return NULL;
823}
824
825
826/*
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
829 */
830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
832	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
833	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
835};
836
837/*
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
841 */
842static int move_freepages(struct zone *zone,
843			  struct page *start_page, struct page *end_page,
844			  int migratetype)
845{
846	struct page *page;
847	unsigned long order;
848	int pages_moved = 0;
849
850#ifndef CONFIG_HOLES_IN_ZONE
851	/*
852	 * page_zone is not safe to call in this context when
853	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854	 * anyway as we check zone boundaries in move_freepages_block().
855	 * Remove at a later date when no bug reports exist related to
856	 * grouping pages by mobility
857	 */
858	BUG_ON(page_zone(start_page) != page_zone(end_page));
859#endif
860
861	for (page = start_page; page <= end_page;) {
862		/* Make sure we are not inadvertently changing nodes */
863		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
865		if (!pfn_valid_within(page_to_pfn(page))) {
866			page++;
867			continue;
868		}
869
870		if (!PageBuddy(page)) {
871			page++;
872			continue;
873		}
874
875		order = page_order(page);
876		list_move(&page->lru,
877			  &zone->free_area[order].free_list[migratetype]);
878		page += 1 << order;
879		pages_moved += 1 << order;
880	}
881
882	return pages_moved;
883}
884
885static int move_freepages_block(struct zone *zone, struct page *page,
886				int migratetype)
887{
888	unsigned long start_pfn, end_pfn;
889	struct page *start_page, *end_page;
890
891	start_pfn = page_to_pfn(page);
892	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893	start_page = pfn_to_page(start_pfn);
894	end_page = start_page + pageblock_nr_pages - 1;
895	end_pfn = start_pfn + pageblock_nr_pages - 1;
896
897	/* Do not cross zone boundaries */
898	if (start_pfn < zone->zone_start_pfn)
899		start_page = page;
900	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901		return 0;
902
903	return move_freepages(zone, start_page, end_page, migratetype);
904}
905
906static void change_pageblock_range(struct page *pageblock_page,
907					int start_order, int migratetype)
908{
909	int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911	while (nr_pageblocks--) {
912		set_pageblock_migratetype(pageblock_page, migratetype);
913		pageblock_page += pageblock_nr_pages;
914	}
915}
916
917/* Remove an element from the buddy allocator from the fallback list */
918static inline struct page *
919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
920{
921	struct free_area * area;
922	int current_order;
923	struct page *page;
924	int migratetype, i;
925
926	/* Find the largest possible block of pages in the other list */
927	for (current_order = MAX_ORDER-1; current_order >= order;
928						--current_order) {
929		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930			migratetype = fallbacks[start_migratetype][i];
931
932			/* MIGRATE_RESERVE handled later if necessary */
933			if (migratetype == MIGRATE_RESERVE)
934				continue;
935
936			area = &(zone->free_area[current_order]);
937			if (list_empty(&area->free_list[migratetype]))
938				continue;
939
940			page = list_entry(area->free_list[migratetype].next,
941					struct page, lru);
942			area->nr_free--;
943
944			/*
945			 * If breaking a large block of pages, move all free
946			 * pages to the preferred allocation list. If falling
947			 * back for a reclaimable kernel allocation, be more
948			 * aggressive about taking ownership of free pages
949			 */
950			if (unlikely(current_order >= (pageblock_order >> 1)) ||
951					start_migratetype == MIGRATE_RECLAIMABLE ||
952					page_group_by_mobility_disabled) {
953				unsigned long pages;
954				pages = move_freepages_block(zone, page,
955								start_migratetype);
956
957				/* Claim the whole block if over half of it is free */
958				if (pages >= (1 << (pageblock_order-1)) ||
959						page_group_by_mobility_disabled)
960					set_pageblock_migratetype(page,
961								start_migratetype);
962
963				migratetype = start_migratetype;
964			}
965
966			/* Remove the page from the freelists */
967			list_del(&page->lru);
968			rmv_page_order(page);
969
970			/* Take ownership for orders >= pageblock_order */
971			if (current_order >= pageblock_order)
972				change_pageblock_range(page, current_order,
973							start_migratetype);
974
975			expand(zone, page, order, current_order, area, migratetype);
976
977			trace_mm_page_alloc_extfrag(page, order, current_order,
978				start_migratetype, migratetype);
979
980			return page;
981		}
982	}
983
984	return NULL;
985}
986
987/*
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
990 */
991static struct page *__rmqueue(struct zone *zone, unsigned int order,
992						int migratetype)
993{
994	struct page *page;
995
996retry_reserve:
997	page = __rmqueue_smallest(zone, order, migratetype);
998
999	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000		page = __rmqueue_fallback(zone, order, migratetype);
1001
1002		/*
1003		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004		 * is used because __rmqueue_smallest is an inline function
1005		 * and we want just one call site
1006		 */
1007		if (!page) {
1008			migratetype = MIGRATE_RESERVE;
1009			goto retry_reserve;
1010		}
1011	}
1012
1013	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1014	return page;
1015}
1016
1017/*
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023			unsigned long count, struct list_head *list,
1024			int migratetype, int cold)
1025{
1026	int i;
1027
1028	spin_lock(&zone->lock);
1029	for (i = 0; i < count; ++i) {
1030		struct page *page = __rmqueue(zone, order, migratetype);
1031		if (unlikely(page == NULL))
1032			break;
1033
1034		/*
1035		 * Split buddy pages returned by expand() are received here
1036		 * in physical page order. The page is added to the callers and
1037		 * list and the list head then moves forward. From the callers
1038		 * perspective, the linked list is ordered by page number in
1039		 * some conditions. This is useful for IO devices that can
1040		 * merge IO requests if the physical pages are ordered
1041		 * properly.
1042		 */
1043		if (likely(cold == 0))
1044			list_add(&page->lru, list);
1045		else
1046			list_add_tail(&page->lru, list);
1047		set_page_private(page, migratetype);
1048		list = &page->lru;
1049	}
1050	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051	spin_unlock(&zone->lock);
1052	return i;
1053}
1054
1055#ifdef CONFIG_NUMA
1056/*
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1063 */
1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1065{
1066	unsigned long flags;
1067	int to_drain;
1068
1069	local_irq_save(flags);
1070	if (pcp->count >= pcp->batch)
1071		to_drain = pcp->batch;
1072	else
1073		to_drain = pcp->count;
1074	free_pcppages_bulk(zone, to_drain, pcp);
1075	pcp->count -= to_drain;
1076	local_irq_restore(flags);
1077}
1078#endif
1079
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087static void drain_pages(unsigned int cpu)
1088{
1089	unsigned long flags;
1090	struct zone *zone;
1091
1092	for_each_populated_zone(zone) {
1093		struct per_cpu_pageset *pset;
1094		struct per_cpu_pages *pcp;
1095
1096		local_irq_save(flags);
1097		pset = per_cpu_ptr(zone->pageset, cpu);
1098
1099		pcp = &pset->pcp;
1100		if (pcp->count) {
1101			free_pcppages_bulk(zone, pcp->count, pcp);
1102			pcp->count = 0;
1103		}
1104		local_irq_restore(flags);
1105	}
1106}
1107
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111void drain_local_pages(void *arg)
1112{
1113	drain_pages(smp_processor_id());
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118 */
1119void drain_all_pages(void)
1120{
1121	on_each_cpu(drain_local_pages, NULL, 1);
1122}
1123
1124#ifdef CONFIG_HIBERNATION
1125
1126void mark_free_pages(struct zone *zone)
1127{
1128	unsigned long pfn, max_zone_pfn;
1129	unsigned long flags;
1130	int order, t;
1131	struct list_head *curr;
1132
1133	if (!zone->spanned_pages)
1134		return;
1135
1136	spin_lock_irqsave(&zone->lock, flags);
1137
1138	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140		if (pfn_valid(pfn)) {
1141			struct page *page = pfn_to_page(pfn);
1142
1143			if (!swsusp_page_is_forbidden(page))
1144				swsusp_unset_page_free(page);
1145		}
1146
1147	for_each_migratetype_order(order, t) {
1148		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149			unsigned long i;
1150
1151			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152			for (i = 0; i < (1UL << order); i++)
1153				swsusp_set_page_free(pfn_to_page(pfn + i));
1154		}
1155	}
1156	spin_unlock_irqrestore(&zone->lock, flags);
1157}
1158#endif /* CONFIG_PM */
1159
1160/*
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1163 */
1164void free_hot_cold_page(struct page *page, int cold)
1165{
1166	struct zone *zone = page_zone(page);
1167	struct per_cpu_pages *pcp;
1168	unsigned long flags;
1169	int migratetype;
1170	int wasMlocked = __TestClearPageMlocked(page);
1171
1172	if (!free_pages_prepare(page, 0))
1173		return;
1174
1175	migratetype = get_pageblock_migratetype(page);
1176	set_page_private(page, migratetype);
1177	local_irq_save(flags);
1178	if (unlikely(wasMlocked))
1179		free_page_mlock(page);
1180	__count_vm_event(PGFREE);
1181
1182	/*
1183	 * We only track unmovable, reclaimable and movable on pcp lists.
1184	 * Free ISOLATE pages back to the allocator because they are being
1185	 * offlined but treat RESERVE as movable pages so we can get those
1186	 * areas back if necessary. Otherwise, we may have to free
1187	 * excessively into the page allocator
1188	 */
1189	if (migratetype >= MIGRATE_PCPTYPES) {
1190		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191			free_one_page(zone, page, 0, migratetype);
1192			goto out;
1193		}
1194		migratetype = MIGRATE_MOVABLE;
1195	}
1196
1197	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198	if (cold)
1199		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200	else
1201		list_add(&page->lru, &pcp->lists[migratetype]);
1202	pcp->count++;
1203	if (pcp->count >= pcp->high) {
1204		free_pcppages_bulk(zone, pcp->batch, pcp);
1205		pcp->count -= pcp->batch;
1206	}
1207
1208out:
1209	local_irq_restore(flags);
1210}
1211
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222	int i;
1223
1224	VM_BUG_ON(PageCompound(page));
1225	VM_BUG_ON(!page_count(page));
1226
1227#ifdef CONFIG_KMEMCHECK
1228	/*
1229	 * Split shadow pages too, because free(page[0]) would
1230	 * otherwise free the whole shadow.
1231	 */
1232	if (kmemcheck_page_is_tracked(page))
1233		split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
1236	for (i = 1; i < (1 << order); i++)
1237		set_page_refcounted(page + i);
1238}
1239
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252	unsigned int order;
1253	unsigned long watermark;
1254	struct zone *zone;
1255
1256	BUG_ON(!PageBuddy(page));
1257
1258	zone = page_zone(page);
1259	order = page_order(page);
1260
1261	/* Obey watermarks as if the page was being allocated */
1262	watermark = low_wmark_pages(zone) + (1 << order);
1263	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264		return 0;
1265
1266	/* Remove page from free list */
1267	list_del(&page->lru);
1268	zone->free_area[order].nr_free--;
1269	rmv_page_order(page);
1270	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272	/* Split into individual pages */
1273	set_page_refcounted(page);
1274	split_page(page, order);
1275
1276	if (order >= pageblock_order - 1) {
1277		struct page *endpage = page + (1 << order) - 1;
1278		for (; page < endpage; page += pageblock_nr_pages)
1279			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280	}
1281
1282	return 1 << order;
1283}
1284
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1287 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1288 * or two.
1289 */
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
1292			struct zone *zone, int order, gfp_t gfp_flags,
1293			int migratetype)
1294{
1295	unsigned long flags;
1296	struct page *page;
1297	int cold = !!(gfp_flags & __GFP_COLD);
1298
1299again:
1300	if (likely(order == 0)) {
1301		struct per_cpu_pages *pcp;
1302		struct list_head *list;
1303
1304		local_irq_save(flags);
1305		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306		list = &pcp->lists[migratetype];
1307		if (list_empty(list)) {
1308			pcp->count += rmqueue_bulk(zone, 0,
1309					pcp->batch, list,
1310					migratetype, cold);
1311			if (unlikely(list_empty(list)))
1312				goto failed;
1313		}
1314
1315		if (cold)
1316			page = list_entry(list->prev, struct page, lru);
1317		else
1318			page = list_entry(list->next, struct page, lru);
1319
1320		list_del(&page->lru);
1321		pcp->count--;
1322	} else {
1323		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324			/*
1325			 * __GFP_NOFAIL is not to be used in new code.
1326			 *
1327			 * All __GFP_NOFAIL callers should be fixed so that they
1328			 * properly detect and handle allocation failures.
1329			 *
1330			 * We most definitely don't want callers attempting to
1331			 * allocate greater than order-1 page units with
1332			 * __GFP_NOFAIL.
1333			 */
1334			WARN_ON_ONCE(order > 1);
1335		}
1336		spin_lock_irqsave(&zone->lock, flags);
1337		page = __rmqueue(zone, order, migratetype);
1338		spin_unlock(&zone->lock);
1339		if (!page)
1340			goto failed;
1341		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1342	}
1343
1344	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1345	zone_statistics(preferred_zone, zone, gfp_flags);
1346	local_irq_restore(flags);
1347
1348	VM_BUG_ON(bad_range(zone, page));
1349	if (prep_new_page(page, order, gfp_flags))
1350		goto again;
1351	return page;
1352
1353failed:
1354	local_irq_restore(flags);
1355	return NULL;
1356}
1357
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN		WMARK_MIN
1360#define ALLOC_WMARK_LOW		WMARK_LOW
1361#define ALLOC_WMARK_HIGH	WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1366
1367#define ALLOC_HARDER		0x10 /* try to alloc harder */
1368#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1370
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373static struct fail_page_alloc_attr {
1374	struct fault_attr attr;
1375
1376	u32 ignore_gfp_highmem;
1377	u32 ignore_gfp_wait;
1378	u32 min_order;
1379
1380#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1381
1382	struct dentry *ignore_gfp_highmem_file;
1383	struct dentry *ignore_gfp_wait_file;
1384	struct dentry *min_order_file;
1385
1386#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1387
1388} fail_page_alloc = {
1389	.attr = FAULT_ATTR_INITIALIZER,
1390	.ignore_gfp_wait = 1,
1391	.ignore_gfp_highmem = 1,
1392	.min_order = 1,
1393};
1394
1395static int __init setup_fail_page_alloc(char *str)
1396{
1397	return setup_fault_attr(&fail_page_alloc.attr, str);
1398}
1399__setup("fail_page_alloc=", setup_fail_page_alloc);
1400
1401static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1402{
1403	if (order < fail_page_alloc.min_order)
1404		return 0;
1405	if (gfp_mask & __GFP_NOFAIL)
1406		return 0;
1407	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408		return 0;
1409	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410		return 0;
1411
1412	return should_fail(&fail_page_alloc.attr, 1 << order);
1413}
1414
1415#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1416
1417static int __init fail_page_alloc_debugfs(void)
1418{
1419	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420	struct dentry *dir;
1421	int err;
1422
1423	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424				       "fail_page_alloc");
1425	if (err)
1426		return err;
1427	dir = fail_page_alloc.attr.dentries.dir;
1428
1429	fail_page_alloc.ignore_gfp_wait_file =
1430		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431				      &fail_page_alloc.ignore_gfp_wait);
1432
1433	fail_page_alloc.ignore_gfp_highmem_file =
1434		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435				      &fail_page_alloc.ignore_gfp_highmem);
1436	fail_page_alloc.min_order_file =
1437		debugfs_create_u32("min-order", mode, dir,
1438				   &fail_page_alloc.min_order);
1439
1440	if (!fail_page_alloc.ignore_gfp_wait_file ||
1441            !fail_page_alloc.ignore_gfp_highmem_file ||
1442            !fail_page_alloc.min_order_file) {
1443		err = -ENOMEM;
1444		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1446		debugfs_remove(fail_page_alloc.min_order_file);
1447		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1448	}
1449
1450	return err;
1451}
1452
1453late_initcall(fail_page_alloc_debugfs);
1454
1455#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1456
1457#else /* CONFIG_FAIL_PAGE_ALLOC */
1458
1459static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1460{
1461	return 0;
1462}
1463
1464#endif /* CONFIG_FAIL_PAGE_ALLOC */
1465
1466/*
1467 * Return true if free pages are above 'mark'. This takes into account the order
1468 * of the allocation.
1469 */
1470static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471		      int classzone_idx, int alloc_flags, long free_pages)
1472{
1473	/* free_pages my go negative - that's OK */
1474	long min = mark;
1475	int o;
1476
1477	free_pages -= (1 << order) + 1;
1478	if (alloc_flags & ALLOC_HIGH)
1479		min -= min / 2;
1480	if (alloc_flags & ALLOC_HARDER)
1481		min -= min / 4;
1482
1483	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1484		return false;
1485	for (o = 0; o < order; o++) {
1486		/* At the next order, this order's pages become unavailable */
1487		free_pages -= z->free_area[o].nr_free << o;
1488
1489		/* Require fewer higher order pages to be free */
1490		min >>= 1;
1491
1492		if (free_pages <= min)
1493			return false;
1494	}
1495	return true;
1496}
1497
1498bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499		      int classzone_idx, int alloc_flags)
1500{
1501	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502					zone_page_state(z, NR_FREE_PAGES));
1503}
1504
1505bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506		      int classzone_idx, int alloc_flags)
1507{
1508	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1509
1510	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1512
1513	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514								free_pages);
1515}
1516
1517#ifdef CONFIG_NUMA
1518/*
1519 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full.  See further
1522 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1523 * that have to skip over a lot of full or unallowed zones.
1524 *
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1528 *
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1531 *
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1534 *
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1539 */
1540static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1541{
1542	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1543	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1544
1545	zlc = zonelist->zlcache_ptr;
1546	if (!zlc)
1547		return NULL;
1548
1549	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1550		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551		zlc->last_full_zap = jiffies;
1552	}
1553
1554	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555					&cpuset_current_mems_allowed :
1556					&node_states[N_HIGH_MEMORY];
1557	return allowednodes;
1558}
1559
1560/*
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 *  1) Check that the zone isn't thought to be full (doesn't have its
1564 *     bit set in the zonelist_cache fullzones BITMAP).
1565 *  2) Check that the zones node (obtained from the zonelist_cache
1566 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1569 *
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1576 *
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1581 */
1582static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1583						nodemask_t *allowednodes)
1584{
1585	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1586	int i;				/* index of *z in zonelist zones */
1587	int n;				/* node that zone *z is on */
1588
1589	zlc = zonelist->zlcache_ptr;
1590	if (!zlc)
1591		return 1;
1592
1593	i = z - zonelist->_zonerefs;
1594	n = zlc->z_to_n[i];
1595
1596	/* This zone is worth trying if it is allowed but not full */
1597	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1598}
1599
1600/*
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1604 */
1605static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1606{
1607	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1608	int i;				/* index of *z in zonelist zones */
1609
1610	zlc = zonelist->zlcache_ptr;
1611	if (!zlc)
1612		return;
1613
1614	i = z - zonelist->_zonerefs;
1615
1616	set_bit(i, zlc->fullzones);
1617}
1618
1619#else	/* CONFIG_NUMA */
1620
1621static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622{
1623	return NULL;
1624}
1625
1626static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1627				nodemask_t *allowednodes)
1628{
1629	return 1;
1630}
1631
1632static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1633{
1634}
1635#endif	/* CONFIG_NUMA */
1636
1637/*
1638 * get_page_from_freelist goes through the zonelist trying to allocate
1639 * a page.
1640 */
1641static struct page *
1642get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1643		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1644		struct zone *preferred_zone, int migratetype)
1645{
1646	struct zoneref *z;
1647	struct page *page = NULL;
1648	int classzone_idx;
1649	struct zone *zone;
1650	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1651	int zlc_active = 0;		/* set if using zonelist_cache */
1652	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1653
1654	classzone_idx = zone_idx(preferred_zone);
1655zonelist_scan:
1656	/*
1657	 * Scan zonelist, looking for a zone with enough free.
1658	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1659	 */
1660	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1661						high_zoneidx, nodemask) {
1662		if (NUMA_BUILD && zlc_active &&
1663			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1664				continue;
1665		if ((alloc_flags & ALLOC_CPUSET) &&
1666			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1667				goto try_next_zone;
1668
1669		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1670		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1671			unsigned long mark;
1672			int ret;
1673
1674			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1675			if (zone_watermark_ok(zone, order, mark,
1676				    classzone_idx, alloc_flags))
1677				goto try_this_zone;
1678
1679			if (zone_reclaim_mode == 0)
1680				goto this_zone_full;
1681
1682			ret = zone_reclaim(zone, gfp_mask, order);
1683			switch (ret) {
1684			case ZONE_RECLAIM_NOSCAN:
1685				/* did not scan */
1686				goto try_next_zone;
1687			case ZONE_RECLAIM_FULL:
1688				/* scanned but unreclaimable */
1689				goto this_zone_full;
1690			default:
1691				/* did we reclaim enough */
1692				if (!zone_watermark_ok(zone, order, mark,
1693						classzone_idx, alloc_flags))
1694					goto this_zone_full;
1695			}
1696		}
1697
1698try_this_zone:
1699		page = buffered_rmqueue(preferred_zone, zone, order,
1700						gfp_mask, migratetype);
1701		if (page)
1702			break;
1703this_zone_full:
1704		if (NUMA_BUILD)
1705			zlc_mark_zone_full(zonelist, z);
1706try_next_zone:
1707		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1708			/*
1709			 * we do zlc_setup after the first zone is tried but only
1710			 * if there are multiple nodes make it worthwhile
1711			 */
1712			allowednodes = zlc_setup(zonelist, alloc_flags);
1713			zlc_active = 1;
1714			did_zlc_setup = 1;
1715		}
1716	}
1717
1718	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1719		/* Disable zlc cache for second zonelist scan */
1720		zlc_active = 0;
1721		goto zonelist_scan;
1722	}
1723	return page;
1724}
1725
1726/*
1727 * Large machines with many possible nodes should not always dump per-node
1728 * meminfo in irq context.
1729 */
1730static inline bool should_suppress_show_mem(void)
1731{
1732	bool ret = false;
1733
1734#if NODES_SHIFT > 8
1735	ret = in_interrupt();
1736#endif
1737	return ret;
1738}
1739
1740static DEFINE_RATELIMIT_STATE(nopage_rs,
1741		DEFAULT_RATELIMIT_INTERVAL,
1742		DEFAULT_RATELIMIT_BURST);
1743
1744void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1745{
1746	va_list args;
1747	unsigned int filter = SHOW_MEM_FILTER_NODES;
1748
1749	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1750		return;
1751
1752	/*
1753	 * This documents exceptions given to allocations in certain
1754	 * contexts that are allowed to allocate outside current's set
1755	 * of allowed nodes.
1756	 */
1757	if (!(gfp_mask & __GFP_NOMEMALLOC))
1758		if (test_thread_flag(TIF_MEMDIE) ||
1759		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1760			filter &= ~SHOW_MEM_FILTER_NODES;
1761	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1762		filter &= ~SHOW_MEM_FILTER_NODES;
1763
1764	if (fmt) {
1765		printk(KERN_WARNING);
1766		va_start(args, fmt);
1767		vprintk(fmt, args);
1768		va_end(args);
1769	}
1770
1771	pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1772		   current->comm, order, gfp_mask);
1773
1774	dump_stack();
1775	if (!should_suppress_show_mem())
1776		show_mem(filter);
1777}
1778
1779static inline int
1780should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1781				unsigned long pages_reclaimed)
1782{
1783	/* Do not loop if specifically requested */
1784	if (gfp_mask & __GFP_NORETRY)
1785		return 0;
1786
1787	/*
1788	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1789	 * means __GFP_NOFAIL, but that may not be true in other
1790	 * implementations.
1791	 */
1792	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1793		return 1;
1794
1795	/*
1796	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1797	 * specified, then we retry until we no longer reclaim any pages
1798	 * (above), or we've reclaimed an order of pages at least as
1799	 * large as the allocation's order. In both cases, if the
1800	 * allocation still fails, we stop retrying.
1801	 */
1802	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1803		return 1;
1804
1805	/*
1806	 * Don't let big-order allocations loop unless the caller
1807	 * explicitly requests that.
1808	 */
1809	if (gfp_mask & __GFP_NOFAIL)
1810		return 1;
1811
1812	return 0;
1813}
1814
1815static inline struct page *
1816__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1817	struct zonelist *zonelist, enum zone_type high_zoneidx,
1818	nodemask_t *nodemask, struct zone *preferred_zone,
1819	int migratetype)
1820{
1821	struct page *page;
1822
1823	/* Acquire the OOM killer lock for the zones in zonelist */
1824	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1825		schedule_timeout_uninterruptible(1);
1826		return NULL;
1827	}
1828
1829	/*
1830	 * Go through the zonelist yet one more time, keep very high watermark
1831	 * here, this is only to catch a parallel oom killing, we must fail if
1832	 * we're still under heavy pressure.
1833	 */
1834	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1835		order, zonelist, high_zoneidx,
1836		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1837		preferred_zone, migratetype);
1838	if (page)
1839		goto out;
1840
1841	if (!(gfp_mask & __GFP_NOFAIL)) {
1842		/* The OOM killer will not help higher order allocs */
1843		if (order > PAGE_ALLOC_COSTLY_ORDER)
1844			goto out;
1845		/* The OOM killer does not needlessly kill tasks for lowmem */
1846		if (high_zoneidx < ZONE_NORMAL)
1847			goto out;
1848		/*
1849		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1850		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1851		 * The caller should handle page allocation failure by itself if
1852		 * it specifies __GFP_THISNODE.
1853		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1854		 */
1855		if (gfp_mask & __GFP_THISNODE)
1856			goto out;
1857	}
1858	/* Exhausted what can be done so it's blamo time */
1859	out_of_memory(zonelist, gfp_mask, order, nodemask);
1860
1861out:
1862	clear_zonelist_oom(zonelist, gfp_mask);
1863	return page;
1864}
1865
1866#ifdef CONFIG_COMPACTION
1867/* Try memory compaction for high-order allocations before reclaim */
1868static struct page *
1869__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1870	struct zonelist *zonelist, enum zone_type high_zoneidx,
1871	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1872	int migratetype, unsigned long *did_some_progress,
1873	bool sync_migration)
1874{
1875	struct page *page;
1876
1877	if (!order || compaction_deferred(preferred_zone))
1878		return NULL;
1879
1880	current->flags |= PF_MEMALLOC;
1881	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1882						nodemask, sync_migration);
1883	current->flags &= ~PF_MEMALLOC;
1884	if (*did_some_progress != COMPACT_SKIPPED) {
1885
1886		/* Page migration frees to the PCP lists but we want merging */
1887		drain_pages(get_cpu());
1888		put_cpu();
1889
1890		page = get_page_from_freelist(gfp_mask, nodemask,
1891				order, zonelist, high_zoneidx,
1892				alloc_flags, preferred_zone,
1893				migratetype);
1894		if (page) {
1895			preferred_zone->compact_considered = 0;
1896			preferred_zone->compact_defer_shift = 0;
1897			count_vm_event(COMPACTSUCCESS);
1898			return page;
1899		}
1900
1901		/*
1902		 * It's bad if compaction run occurs and fails.
1903		 * The most likely reason is that pages exist,
1904		 * but not enough to satisfy watermarks.
1905		 */
1906		count_vm_event(COMPACTFAIL);
1907		defer_compaction(preferred_zone);
1908
1909		cond_resched();
1910	}
1911
1912	return NULL;
1913}
1914#else
1915static inline struct page *
1916__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1917	struct zonelist *zonelist, enum zone_type high_zoneidx,
1918	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1919	int migratetype, unsigned long *did_some_progress,
1920	bool sync_migration)
1921{
1922	return NULL;
1923}
1924#endif /* CONFIG_COMPACTION */
1925
1926/* The really slow allocator path where we enter direct reclaim */
1927static inline struct page *
1928__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1929	struct zonelist *zonelist, enum zone_type high_zoneidx,
1930	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1931	int migratetype, unsigned long *did_some_progress)
1932{
1933	struct page *page = NULL;
1934	struct reclaim_state reclaim_state;
1935	bool drained = false;
1936
1937	cond_resched();
1938
1939	/* We now go into synchronous reclaim */
1940	cpuset_memory_pressure_bump();
1941	current->flags |= PF_MEMALLOC;
1942	lockdep_set_current_reclaim_state(gfp_mask);
1943	reclaim_state.reclaimed_slab = 0;
1944	current->reclaim_state = &reclaim_state;
1945
1946	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1947
1948	current->reclaim_state = NULL;
1949	lockdep_clear_current_reclaim_state();
1950	current->flags &= ~PF_MEMALLOC;
1951
1952	cond_resched();
1953
1954	if (unlikely(!(*did_some_progress)))
1955		return NULL;
1956
1957retry:
1958	page = get_page_from_freelist(gfp_mask, nodemask, order,
1959					zonelist, high_zoneidx,
1960					alloc_flags, preferred_zone,
1961					migratetype);
1962
1963	/*
1964	 * If an allocation failed after direct reclaim, it could be because
1965	 * pages are pinned on the per-cpu lists. Drain them and try again
1966	 */
1967	if (!page && !drained) {
1968		drain_all_pages();
1969		drained = true;
1970		goto retry;
1971	}
1972
1973	return page;
1974}
1975
1976/*
1977 * This is called in the allocator slow-path if the allocation request is of
1978 * sufficient urgency to ignore watermarks and take other desperate measures
1979 */
1980static inline struct page *
1981__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1982	struct zonelist *zonelist, enum zone_type high_zoneidx,
1983	nodemask_t *nodemask, struct zone *preferred_zone,
1984	int migratetype)
1985{
1986	struct page *page;
1987
1988	do {
1989		page = get_page_from_freelist(gfp_mask, nodemask, order,
1990			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1991			preferred_zone, migratetype);
1992
1993		if (!page && gfp_mask & __GFP_NOFAIL)
1994			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1995	} while (!page && (gfp_mask & __GFP_NOFAIL));
1996
1997	return page;
1998}
1999
2000static inline
2001void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2002						enum zone_type high_zoneidx,
2003						enum zone_type classzone_idx)
2004{
2005	struct zoneref *z;
2006	struct zone *zone;
2007
2008	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2009		wakeup_kswapd(zone, order, classzone_idx);
2010}
2011
2012static inline int
2013gfp_to_alloc_flags(gfp_t gfp_mask)
2014{
2015	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2016	const gfp_t wait = gfp_mask & __GFP_WAIT;
2017
2018	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2019	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2020
2021	/*
2022	 * The caller may dip into page reserves a bit more if the caller
2023	 * cannot run direct reclaim, or if the caller has realtime scheduling
2024	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2025	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2026	 */
2027	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2028
2029	if (!wait) {
2030		/*
2031		 * Not worth trying to allocate harder for
2032		 * __GFP_NOMEMALLOC even if it can't schedule.
2033		 */
2034		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2035			alloc_flags |= ALLOC_HARDER;
2036		/*
2037		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2038		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2039		 */
2040		alloc_flags &= ~ALLOC_CPUSET;
2041	} else if (unlikely(rt_task(current)) && !in_interrupt())
2042		alloc_flags |= ALLOC_HARDER;
2043
2044	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2045		if (!in_interrupt() &&
2046		    ((current->flags & PF_MEMALLOC) ||
2047		     unlikely(test_thread_flag(TIF_MEMDIE))))
2048			alloc_flags |= ALLOC_NO_WATERMARKS;
2049	}
2050
2051	return alloc_flags;
2052}
2053
2054static inline struct page *
2055__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2056	struct zonelist *zonelist, enum zone_type high_zoneidx,
2057	nodemask_t *nodemask, struct zone *preferred_zone,
2058	int migratetype)
2059{
2060	const gfp_t wait = gfp_mask & __GFP_WAIT;
2061	struct page *page = NULL;
2062	int alloc_flags;
2063	unsigned long pages_reclaimed = 0;
2064	unsigned long did_some_progress;
2065	bool sync_migration = false;
2066
2067	/*
2068	 * In the slowpath, we sanity check order to avoid ever trying to
2069	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2070	 * be using allocators in order of preference for an area that is
2071	 * too large.
2072	 */
2073	if (order >= MAX_ORDER) {
2074		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2075		return NULL;
2076	}
2077
2078	/*
2079	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2080	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2081	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2082	 * using a larger set of nodes after it has established that the
2083	 * allowed per node queues are empty and that nodes are
2084	 * over allocated.
2085	 */
2086	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2087		goto nopage;
2088
2089restart:
2090	if (!(gfp_mask & __GFP_NO_KSWAPD))
2091		wake_all_kswapd(order, zonelist, high_zoneidx,
2092						zone_idx(preferred_zone));
2093
2094	/*
2095	 * OK, we're below the kswapd watermark and have kicked background
2096	 * reclaim. Now things get more complex, so set up alloc_flags according
2097	 * to how we want to proceed.
2098	 */
2099	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2100
2101	/*
2102	 * Find the true preferred zone if the allocation is unconstrained by
2103	 * cpusets.
2104	 */
2105	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2106		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2107					&preferred_zone);
2108
2109rebalance:
2110	/* This is the last chance, in general, before the goto nopage. */
2111	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2112			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2113			preferred_zone, migratetype);
2114	if (page)
2115		goto got_pg;
2116
2117	/* Allocate without watermarks if the context allows */
2118	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2119		page = __alloc_pages_high_priority(gfp_mask, order,
2120				zonelist, high_zoneidx, nodemask,
2121				preferred_zone, migratetype);
2122		if (page)
2123			goto got_pg;
2124	}
2125
2126	/* Atomic allocations - we can't balance anything */
2127	if (!wait)
2128		goto nopage;
2129
2130	/* Avoid recursion of direct reclaim */
2131	if (current->flags & PF_MEMALLOC)
2132		goto nopage;
2133
2134	/* Avoid allocations with no watermarks from looping endlessly */
2135	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2136		goto nopage;
2137
2138	/*
2139	 * Try direct compaction. The first pass is asynchronous. Subsequent
2140	 * attempts after direct reclaim are synchronous
2141	 */
2142	page = __alloc_pages_direct_compact(gfp_mask, order,
2143					zonelist, high_zoneidx,
2144					nodemask,
2145					alloc_flags, preferred_zone,
2146					migratetype, &did_some_progress,
2147					sync_migration);
2148	if (page)
2149		goto got_pg;
2150	sync_migration = true;
2151
2152	/* Try direct reclaim and then allocating */
2153	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2154					zonelist, high_zoneidx,
2155					nodemask,
2156					alloc_flags, preferred_zone,
2157					migratetype, &did_some_progress);
2158	if (page)
2159		goto got_pg;
2160
2161	/*
2162	 * If we failed to make any progress reclaiming, then we are
2163	 * running out of options and have to consider going OOM
2164	 */
2165	if (!did_some_progress) {
2166		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2167			if (oom_killer_disabled)
2168				goto nopage;
2169			page = __alloc_pages_may_oom(gfp_mask, order,
2170					zonelist, high_zoneidx,
2171					nodemask, preferred_zone,
2172					migratetype);
2173			if (page)
2174				goto got_pg;
2175
2176			if (!(gfp_mask & __GFP_NOFAIL)) {
2177				/*
2178				 * The oom killer is not called for high-order
2179				 * allocations that may fail, so if no progress
2180				 * is being made, there are no other options and
2181				 * retrying is unlikely to help.
2182				 */
2183				if (order > PAGE_ALLOC_COSTLY_ORDER)
2184					goto nopage;
2185				/*
2186				 * The oom killer is not called for lowmem
2187				 * allocations to prevent needlessly killing
2188				 * innocent tasks.
2189				 */
2190				if (high_zoneidx < ZONE_NORMAL)
2191					goto nopage;
2192			}
2193
2194			goto restart;
2195		}
2196	}
2197
2198	/* Check if we should retry the allocation */
2199	pages_reclaimed += did_some_progress;
2200	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2201		/* Wait for some write requests to complete then retry */
2202		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2203		goto rebalance;
2204	} else {
2205		/*
2206		 * High-order allocations do not necessarily loop after
2207		 * direct reclaim and reclaim/compaction depends on compaction
2208		 * being called after reclaim so call directly if necessary
2209		 */
2210		page = __alloc_pages_direct_compact(gfp_mask, order,
2211					zonelist, high_zoneidx,
2212					nodemask,
2213					alloc_flags, preferred_zone,
2214					migratetype, &did_some_progress,
2215					sync_migration);
2216		if (page)
2217			goto got_pg;
2218	}
2219
2220nopage:
2221	warn_alloc_failed(gfp_mask, order, NULL);
2222	return page;
2223got_pg:
2224	if (kmemcheck_enabled)
2225		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2226	return page;
2227
2228}
2229
2230/*
2231 * This is the 'heart' of the zoned buddy allocator.
2232 */
2233struct page *
2234__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2235			struct zonelist *zonelist, nodemask_t *nodemask)
2236{
2237	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2238	struct zone *preferred_zone;
2239	struct page *page;
2240	int migratetype = allocflags_to_migratetype(gfp_mask);
2241
2242	gfp_mask &= gfp_allowed_mask;
2243
2244	lockdep_trace_alloc(gfp_mask);
2245
2246	might_sleep_if(gfp_mask & __GFP_WAIT);
2247
2248	if (should_fail_alloc_page(gfp_mask, order))
2249		return NULL;
2250
2251	/*
2252	 * Check the zones suitable for the gfp_mask contain at least one
2253	 * valid zone. It's possible to have an empty zonelist as a result
2254	 * of GFP_THISNODE and a memoryless node
2255	 */
2256	if (unlikely(!zonelist->_zonerefs->zone))
2257		return NULL;
2258
2259	get_mems_allowed();
2260	/* The preferred zone is used for statistics later */
2261	first_zones_zonelist(zonelist, high_zoneidx,
2262				nodemask ? : &cpuset_current_mems_allowed,
2263				&preferred_zone);
2264	if (!preferred_zone) {
2265		put_mems_allowed();
2266		return NULL;
2267	}
2268
2269	/* First allocation attempt */
2270	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2271			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2272			preferred_zone, migratetype);
2273	if (unlikely(!page))
2274		page = __alloc_pages_slowpath(gfp_mask, order,
2275				zonelist, high_zoneidx, nodemask,
2276				preferred_zone, migratetype);
2277	put_mems_allowed();
2278
2279	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2280	return page;
2281}
2282EXPORT_SYMBOL(__alloc_pages_nodemask);
2283
2284/*
2285 * Common helper functions.
2286 */
2287unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2288{
2289	struct page *page;
2290
2291	/*
2292	 * __get_free_pages() returns a 32-bit address, which cannot represent
2293	 * a highmem page
2294	 */
2295	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2296
2297	page = alloc_pages(gfp_mask, order);
2298	if (!page)
2299		return 0;
2300	return (unsigned long) page_address(page);
2301}
2302EXPORT_SYMBOL(__get_free_pages);
2303
2304unsigned long get_zeroed_page(gfp_t gfp_mask)
2305{
2306	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2307}
2308EXPORT_SYMBOL(get_zeroed_page);
2309
2310void __pagevec_free(struct pagevec *pvec)
2311{
2312	int i = pagevec_count(pvec);
2313
2314	while (--i >= 0) {
2315		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2316		free_hot_cold_page(pvec->pages[i], pvec->cold);
2317	}
2318}
2319
2320void __free_pages(struct page *page, unsigned int order)
2321{
2322	if (put_page_testzero(page)) {
2323		if (order == 0)
2324			free_hot_cold_page(page, 0);
2325		else
2326			__free_pages_ok(page, order);
2327	}
2328}
2329
2330EXPORT_SYMBOL(__free_pages);
2331
2332void free_pages(unsigned long addr, unsigned int order)
2333{
2334	if (addr != 0) {
2335		VM_BUG_ON(!virt_addr_valid((void *)addr));
2336		__free_pages(virt_to_page((void *)addr), order);
2337	}
2338}
2339
2340EXPORT_SYMBOL(free_pages);
2341
2342static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2343{
2344	if (addr) {
2345		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2346		unsigned long used = addr + PAGE_ALIGN(size);
2347
2348		split_page(virt_to_page((void *)addr), order);
2349		while (used < alloc_end) {
2350			free_page(used);
2351			used += PAGE_SIZE;
2352		}
2353	}
2354	return (void *)addr;
2355}
2356
2357/**
2358 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2359 * @size: the number of bytes to allocate
2360 * @gfp_mask: GFP flags for the allocation
2361 *
2362 * This function is similar to alloc_pages(), except that it allocates the
2363 * minimum number of pages to satisfy the request.  alloc_pages() can only
2364 * allocate memory in power-of-two pages.
2365 *
2366 * This function is also limited by MAX_ORDER.
2367 *
2368 * Memory allocated by this function must be released by free_pages_exact().
2369 */
2370void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2371{
2372	unsigned int order = get_order(size);
2373	unsigned long addr;
2374
2375	addr = __get_free_pages(gfp_mask, order);
2376	return make_alloc_exact(addr, order, size);
2377}
2378EXPORT_SYMBOL(alloc_pages_exact);
2379
2380/**
2381 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2382 *			   pages on a node.
2383 * @nid: the preferred node ID where memory should be allocated
2384 * @size: the number of bytes to allocate
2385 * @gfp_mask: GFP flags for the allocation
2386 *
2387 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2388 * back.
2389 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2390 * but is not exact.
2391 */
2392void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2393{
2394	unsigned order = get_order(size);
2395	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2396	if (!p)
2397		return NULL;
2398	return make_alloc_exact((unsigned long)page_address(p), order, size);
2399}
2400EXPORT_SYMBOL(alloc_pages_exact_nid);
2401
2402/**
2403 * free_pages_exact - release memory allocated via alloc_pages_exact()
2404 * @virt: the value returned by alloc_pages_exact.
2405 * @size: size of allocation, same value as passed to alloc_pages_exact().
2406 *
2407 * Release the memory allocated by a previous call to alloc_pages_exact.
2408 */
2409void free_pages_exact(void *virt, size_t size)
2410{
2411	unsigned long addr = (unsigned long)virt;
2412	unsigned long end = addr + PAGE_ALIGN(size);
2413
2414	while (addr < end) {
2415		free_page(addr);
2416		addr += PAGE_SIZE;
2417	}
2418}
2419EXPORT_SYMBOL(free_pages_exact);
2420
2421static unsigned int nr_free_zone_pages(int offset)
2422{
2423	struct zoneref *z;
2424	struct zone *zone;
2425
2426	/* Just pick one node, since fallback list is circular */
2427	unsigned int sum = 0;
2428
2429	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2430
2431	for_each_zone_zonelist(zone, z, zonelist, offset) {
2432		unsigned long size = zone->present_pages;
2433		unsigned long high = high_wmark_pages(zone);
2434		if (size > high)
2435			sum += size - high;
2436	}
2437
2438	return sum;
2439}
2440
2441/*
2442 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2443 */
2444unsigned int nr_free_buffer_pages(void)
2445{
2446	return nr_free_zone_pages(gfp_zone(GFP_USER));
2447}
2448EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2449
2450/*
2451 * Amount of free RAM allocatable within all zones
2452 */
2453unsigned int nr_free_pagecache_pages(void)
2454{
2455	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2456}
2457
2458static inline void show_node(struct zone *zone)
2459{
2460	if (NUMA_BUILD)
2461		printk("Node %d ", zone_to_nid(zone));
2462}
2463
2464void si_meminfo(struct sysinfo *val)
2465{
2466	val->totalram = totalram_pages;
2467	val->sharedram = 0;
2468	val->freeram = global_page_state(NR_FREE_PAGES);
2469	val->bufferram = nr_blockdev_pages();
2470	val->totalhigh = totalhigh_pages;
2471	val->freehigh = nr_free_highpages();
2472	val->mem_unit = PAGE_SIZE;
2473}
2474
2475EXPORT_SYMBOL(si_meminfo);
2476
2477#ifdef CONFIG_NUMA
2478void si_meminfo_node(struct sysinfo *val, int nid)
2479{
2480	pg_data_t *pgdat = NODE_DATA(nid);
2481
2482	val->totalram = pgdat->node_present_pages;
2483	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2484#ifdef CONFIG_HIGHMEM
2485	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2486	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2487			NR_FREE_PAGES);
2488#else
2489	val->totalhigh = 0;
2490	val->freehigh = 0;
2491#endif
2492	val->mem_unit = PAGE_SIZE;
2493}
2494#endif
2495
2496/*
2497 * Determine whether the node should be displayed or not, depending on whether
2498 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2499 */
2500bool skip_free_areas_node(unsigned int flags, int nid)
2501{
2502	bool ret = false;
2503
2504	if (!(flags & SHOW_MEM_FILTER_NODES))
2505		goto out;
2506
2507	get_mems_allowed();
2508	ret = !node_isset(nid, cpuset_current_mems_allowed);
2509	put_mems_allowed();
2510out:
2511	return ret;
2512}
2513
2514#define K(x) ((x) << (PAGE_SHIFT-10))
2515
2516/*
2517 * Show free area list (used inside shift_scroll-lock stuff)
2518 * We also calculate the percentage fragmentation. We do this by counting the
2519 * memory on each free list with the exception of the first item on the list.
2520 * Suppresses nodes that are not allowed by current's cpuset if
2521 * SHOW_MEM_FILTER_NODES is passed.
2522 */
2523void show_free_areas(unsigned int filter)
2524{
2525	int cpu;
2526	struct zone *zone;
2527
2528	for_each_populated_zone(zone) {
2529		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2530			continue;
2531		show_node(zone);
2532		printk("%s per-cpu:\n", zone->name);
2533
2534		for_each_online_cpu(cpu) {
2535			struct per_cpu_pageset *pageset;
2536
2537			pageset = per_cpu_ptr(zone->pageset, cpu);
2538
2539			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2540			       cpu, pageset->pcp.high,
2541			       pageset->pcp.batch, pageset->pcp.count);
2542		}
2543	}
2544
2545	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2546		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2547		" unevictable:%lu"
2548		" dirty:%lu writeback:%lu unstable:%lu\n"
2549		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2550		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2551		global_page_state(NR_ACTIVE_ANON),
2552		global_page_state(NR_INACTIVE_ANON),
2553		global_page_state(NR_ISOLATED_ANON),
2554		global_page_state(NR_ACTIVE_FILE),
2555		global_page_state(NR_INACTIVE_FILE),
2556		global_page_state(NR_ISOLATED_FILE),
2557		global_page_state(NR_UNEVICTABLE),
2558		global_page_state(NR_FILE_DIRTY),
2559		global_page_state(NR_WRITEBACK),
2560		global_page_state(NR_UNSTABLE_NFS),
2561		global_page_state(NR_FREE_PAGES),
2562		global_page_state(NR_SLAB_RECLAIMABLE),
2563		global_page_state(NR_SLAB_UNRECLAIMABLE),
2564		global_page_state(NR_FILE_MAPPED),
2565		global_page_state(NR_SHMEM),
2566		global_page_state(NR_PAGETABLE),
2567		global_page_state(NR_BOUNCE));
2568
2569	for_each_populated_zone(zone) {
2570		int i;
2571
2572		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2573			continue;
2574		show_node(zone);
2575		printk("%s"
2576			" free:%lukB"
2577			" min:%lukB"
2578			" low:%lukB"
2579			" high:%lukB"
2580			" active_anon:%lukB"
2581			" inactive_anon:%lukB"
2582			" active_file:%lukB"
2583			" inactive_file:%lukB"
2584			" unevictable:%lukB"
2585			" isolated(anon):%lukB"
2586			" isolated(file):%lukB"
2587			" present:%lukB"
2588			" mlocked:%lukB"
2589			" dirty:%lukB"
2590			" writeback:%lukB"
2591			" mapped:%lukB"
2592			" shmem:%lukB"
2593			" slab_reclaimable:%lukB"
2594			" slab_unreclaimable:%lukB"
2595			" kernel_stack:%lukB"
2596			" pagetables:%lukB"
2597			" unstable:%lukB"
2598			" bounce:%lukB"
2599			" writeback_tmp:%lukB"
2600			" pages_scanned:%lu"
2601			" all_unreclaimable? %s"
2602			"\n",
2603			zone->name,
2604			K(zone_page_state(zone, NR_FREE_PAGES)),
2605			K(min_wmark_pages(zone)),
2606			K(low_wmark_pages(zone)),
2607			K(high_wmark_pages(zone)),
2608			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2609			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2610			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2611			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2612			K(zone_page_state(zone, NR_UNEVICTABLE)),
2613			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2614			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2615			K(zone->present_pages),
2616			K(zone_page_state(zone, NR_MLOCK)),
2617			K(zone_page_state(zone, NR_FILE_DIRTY)),
2618			K(zone_page_state(zone, NR_WRITEBACK)),
2619			K(zone_page_state(zone, NR_FILE_MAPPED)),
2620			K(zone_page_state(zone, NR_SHMEM)),
2621			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2622			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2623			zone_page_state(zone, NR_KERNEL_STACK) *
2624				THREAD_SIZE / 1024,
2625			K(zone_page_state(zone, NR_PAGETABLE)),
2626			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2627			K(zone_page_state(zone, NR_BOUNCE)),
2628			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2629			zone->pages_scanned,
2630			(zone->all_unreclaimable ? "yes" : "no")
2631			);
2632		printk("lowmem_reserve[]:");
2633		for (i = 0; i < MAX_NR_ZONES; i++)
2634			printk(" %lu", zone->lowmem_reserve[i]);
2635		printk("\n");
2636	}
2637
2638	for_each_populated_zone(zone) {
2639 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2640
2641		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2642			continue;
2643		show_node(zone);
2644		printk("%s: ", zone->name);
2645
2646		spin_lock_irqsave(&zone->lock, flags);
2647		for (order = 0; order < MAX_ORDER; order++) {
2648			nr[order] = zone->free_area[order].nr_free;
2649			total += nr[order] << order;
2650		}
2651		spin_unlock_irqrestore(&zone->lock, flags);
2652		for (order = 0; order < MAX_ORDER; order++)
2653			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2654		printk("= %lukB\n", K(total));
2655	}
2656
2657	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2658
2659	show_swap_cache_info();
2660}
2661
2662static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2663{
2664	zoneref->zone = zone;
2665	zoneref->zone_idx = zone_idx(zone);
2666}
2667
2668/*
2669 * Builds allocation fallback zone lists.
2670 *
2671 * Add all populated zones of a node to the zonelist.
2672 */
2673static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2674				int nr_zones, enum zone_type zone_type)
2675{
2676	struct zone *zone;
2677
2678	BUG_ON(zone_type >= MAX_NR_ZONES);
2679	zone_type++;
2680
2681	do {
2682		zone_type--;
2683		zone = pgdat->node_zones + zone_type;
2684		if (populated_zone(zone)) {
2685			zoneref_set_zone(zone,
2686				&zonelist->_zonerefs[nr_zones++]);
2687			check_highest_zone(zone_type);
2688		}
2689
2690	} while (zone_type);
2691	return nr_zones;
2692}
2693
2694
2695/*
2696 *  zonelist_order:
2697 *  0 = automatic detection of better ordering.
2698 *  1 = order by ([node] distance, -zonetype)
2699 *  2 = order by (-zonetype, [node] distance)
2700 *
2701 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2702 *  the same zonelist. So only NUMA can configure this param.
2703 */
2704#define ZONELIST_ORDER_DEFAULT  0
2705#define ZONELIST_ORDER_NODE     1
2706#define ZONELIST_ORDER_ZONE     2
2707
2708/* zonelist order in the kernel.
2709 * set_zonelist_order() will set this to NODE or ZONE.
2710 */
2711static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2712static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2713
2714
2715#ifdef CONFIG_NUMA
2716/* The value user specified ....changed by config */
2717static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2718/* string for sysctl */
2719#define NUMA_ZONELIST_ORDER_LEN	16
2720char numa_zonelist_order[16] = "default";
2721
2722/*
2723 * interface for configure zonelist ordering.
2724 * command line option "numa_zonelist_order"
2725 *	= "[dD]efault	- default, automatic configuration.
2726 *	= "[nN]ode 	- order by node locality, then by zone within node
2727 *	= "[zZ]one      - order by zone, then by locality within zone
2728 */
2729
2730static int __parse_numa_zonelist_order(char *s)
2731{
2732	if (*s == 'd' || *s == 'D') {
2733		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2734	} else if (*s == 'n' || *s == 'N') {
2735		user_zonelist_order = ZONELIST_ORDER_NODE;
2736	} else if (*s == 'z' || *s == 'Z') {
2737		user_zonelist_order = ZONELIST_ORDER_ZONE;
2738	} else {
2739		printk(KERN_WARNING
2740			"Ignoring invalid numa_zonelist_order value:  "
2741			"%s\n", s);
2742		return -EINVAL;
2743	}
2744	return 0;
2745}
2746
2747static __init int setup_numa_zonelist_order(char *s)
2748{
2749	int ret;
2750
2751	if (!s)
2752		return 0;
2753
2754	ret = __parse_numa_zonelist_order(s);
2755	if (ret == 0)
2756		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2757
2758	return ret;
2759}
2760early_param("numa_zonelist_order", setup_numa_zonelist_order);
2761
2762/*
2763 * sysctl handler for numa_zonelist_order
2764 */
2765int numa_zonelist_order_handler(ctl_table *table, int write,
2766		void __user *buffer, size_t *length,
2767		loff_t *ppos)
2768{
2769	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2770	int ret;
2771	static DEFINE_MUTEX(zl_order_mutex);
2772
2773	mutex_lock(&zl_order_mutex);
2774	if (write)
2775		strcpy(saved_string, (char*)table->data);
2776	ret = proc_dostring(table, write, buffer, length, ppos);
2777	if (ret)
2778		goto out;
2779	if (write) {
2780		int oldval = user_zonelist_order;
2781		if (__parse_numa_zonelist_order((char*)table->data)) {
2782			/*
2783			 * bogus value.  restore saved string
2784			 */
2785			strncpy((char*)table->data, saved_string,
2786				NUMA_ZONELIST_ORDER_LEN);
2787			user_zonelist_order = oldval;
2788		} else if (oldval != user_zonelist_order) {
2789			mutex_lock(&zonelists_mutex);
2790			build_all_zonelists(NULL);
2791			mutex_unlock(&zonelists_mutex);
2792		}
2793	}
2794out:
2795	mutex_unlock(&zl_order_mutex);
2796	return ret;
2797}
2798
2799
2800#define MAX_NODE_LOAD (nr_online_nodes)
2801static int node_load[MAX_NUMNODES];
2802
2803/**
2804 * find_next_best_node - find the next node that should appear in a given node's fallback list
2805 * @node: node whose fallback list we're appending
2806 * @used_node_mask: nodemask_t of already used nodes
2807 *
2808 * We use a number of factors to determine which is the next node that should
2809 * appear on a given node's fallback list.  The node should not have appeared
2810 * already in @node's fallback list, and it should be the next closest node
2811 * according to the distance array (which contains arbitrary distance values
2812 * from each node to each node in the system), and should also prefer nodes
2813 * with no CPUs, since presumably they'll have very little allocation pressure
2814 * on them otherwise.
2815 * It returns -1 if no node is found.
2816 */
2817static int find_next_best_node(int node, nodemask_t *used_node_mask)
2818{
2819	int n, val;
2820	int min_val = INT_MAX;
2821	int best_node = -1;
2822	const struct cpumask *tmp = cpumask_of_node(0);
2823
2824	/* Use the local node if we haven't already */
2825	if (!node_isset(node, *used_node_mask)) {
2826		node_set(node, *used_node_mask);
2827		return node;
2828	}
2829
2830	for_each_node_state(n, N_HIGH_MEMORY) {
2831
2832		/* Don't want a node to appear more than once */
2833		if (node_isset(n, *used_node_mask))
2834			continue;
2835
2836		/* Use the distance array to find the distance */
2837		val = node_distance(node, n);
2838
2839		/* Penalize nodes under us ("prefer the next node") */
2840		val += (n < node);
2841
2842		/* Give preference to headless and unused nodes */
2843		tmp = cpumask_of_node(n);
2844		if (!cpumask_empty(tmp))
2845			val += PENALTY_FOR_NODE_WITH_CPUS;
2846
2847		/* Slight preference for less loaded node */
2848		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2849		val += node_load[n];
2850
2851		if (val < min_val) {
2852			min_val = val;
2853			best_node = n;
2854		}
2855	}
2856
2857	if (best_node >= 0)
2858		node_set(best_node, *used_node_mask);
2859
2860	return best_node;
2861}
2862
2863
2864/*
2865 * Build zonelists ordered by node and zones within node.
2866 * This results in maximum locality--normal zone overflows into local
2867 * DMA zone, if any--but risks exhausting DMA zone.
2868 */
2869static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2870{
2871	int j;
2872	struct zonelist *zonelist;
2873
2874	zonelist = &pgdat->node_zonelists[0];
2875	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2876		;
2877	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2878							MAX_NR_ZONES - 1);
2879	zonelist->_zonerefs[j].zone = NULL;
2880	zonelist->_zonerefs[j].zone_idx = 0;
2881}
2882
2883/*
2884 * Build gfp_thisnode zonelists
2885 */
2886static void build_thisnode_zonelists(pg_data_t *pgdat)
2887{
2888	int j;
2889	struct zonelist *zonelist;
2890
2891	zonelist = &pgdat->node_zonelists[1];
2892	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2893	zonelist->_zonerefs[j].zone = NULL;
2894	zonelist->_zonerefs[j].zone_idx = 0;
2895}
2896
2897/*
2898 * Build zonelists ordered by zone and nodes within zones.
2899 * This results in conserving DMA zone[s] until all Normal memory is
2900 * exhausted, but results in overflowing to remote node while memory
2901 * may still exist in local DMA zone.
2902 */
2903static int node_order[MAX_NUMNODES];
2904
2905static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2906{
2907	int pos, j, node;
2908	int zone_type;		/* needs to be signed */
2909	struct zone *z;
2910	struct zonelist *zonelist;
2911
2912	zonelist = &pgdat->node_zonelists[0];
2913	pos = 0;
2914	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2915		for (j = 0; j < nr_nodes; j++) {
2916			node = node_order[j];
2917			z = &NODE_DATA(node)->node_zones[zone_type];
2918			if (populated_zone(z)) {
2919				zoneref_set_zone(z,
2920					&zonelist->_zonerefs[pos++]);
2921				check_highest_zone(zone_type);
2922			}
2923		}
2924	}
2925	zonelist->_zonerefs[pos].zone = NULL;
2926	zonelist->_zonerefs[pos].zone_idx = 0;
2927}
2928
2929static int default_zonelist_order(void)
2930{
2931	int nid, zone_type;
2932	unsigned long low_kmem_size,total_size;
2933	struct zone *z;
2934	int average_size;
2935	/*
2936         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2937	 * If they are really small and used heavily, the system can fall
2938	 * into OOM very easily.
2939	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2940	 */
2941	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2942	low_kmem_size = 0;
2943	total_size = 0;
2944	for_each_online_node(nid) {
2945		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2946			z = &NODE_DATA(nid)->node_zones[zone_type];
2947			if (populated_zone(z)) {
2948				if (zone_type < ZONE_NORMAL)
2949					low_kmem_size += z->present_pages;
2950				total_size += z->present_pages;
2951			} else if (zone_type == ZONE_NORMAL) {
2952				/*
2953				 * If any node has only lowmem, then node order
2954				 * is preferred to allow kernel allocations
2955				 * locally; otherwise, they can easily infringe
2956				 * on other nodes when there is an abundance of
2957				 * lowmem available to allocate from.
2958				 */
2959				return ZONELIST_ORDER_NODE;
2960			}
2961		}
2962	}
2963	if (!low_kmem_size ||  /* there are no DMA area. */
2964	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2965		return ZONELIST_ORDER_NODE;
2966	/*
2967	 * look into each node's config.
2968  	 * If there is a node whose DMA/DMA32 memory is very big area on
2969 	 * local memory, NODE_ORDER may be suitable.
2970         */
2971	average_size = total_size /
2972				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2973	for_each_online_node(nid) {
2974		low_kmem_size = 0;
2975		total_size = 0;
2976		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2977			z = &NODE_DATA(nid)->node_zones[zone_type];
2978			if (populated_zone(z)) {
2979				if (zone_type < ZONE_NORMAL)
2980					low_kmem_size += z->present_pages;
2981				total_size += z->present_pages;
2982			}
2983		}
2984		if (low_kmem_size &&
2985		    total_size > average_size && /* ignore small node */
2986		    low_kmem_size > total_size * 70/100)
2987			return ZONELIST_ORDER_NODE;
2988	}
2989	return ZONELIST_ORDER_ZONE;
2990}
2991
2992static void set_zonelist_order(void)
2993{
2994	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2995		current_zonelist_order = default_zonelist_order();
2996	else
2997		current_zonelist_order = user_zonelist_order;
2998}
2999
3000static void build_zonelists(pg_data_t *pgdat)
3001{
3002	int j, node, load;
3003	enum zone_type i;
3004	nodemask_t used_mask;
3005	int local_node, prev_node;
3006	struct zonelist *zonelist;
3007	int order = current_zonelist_order;
3008
3009	/* initialize zonelists */
3010	for (i = 0; i < MAX_ZONELISTS; i++) {
3011		zonelist = pgdat->node_zonelists + i;
3012		zonelist->_zonerefs[0].zone = NULL;
3013		zonelist->_zonerefs[0].zone_idx = 0;
3014	}
3015
3016	/* NUMA-aware ordering of nodes */
3017	local_node = pgdat->node_id;
3018	load = nr_online_nodes;
3019	prev_node = local_node;
3020	nodes_clear(used_mask);
3021
3022	memset(node_order, 0, sizeof(node_order));
3023	j = 0;
3024
3025	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3026		int distance = node_distance(local_node, node);
3027
3028		/*
3029		 * If another node is sufficiently far away then it is better
3030		 * to reclaim pages in a zone before going off node.
3031		 */
3032		if (distance > RECLAIM_DISTANCE)
3033			zone_reclaim_mode = 1;
3034
3035		/*
3036		 * We don't want to pressure a particular node.
3037		 * So adding penalty to the first node in same
3038		 * distance group to make it round-robin.
3039		 */
3040		if (distance != node_distance(local_node, prev_node))
3041			node_load[node] = load;
3042
3043		prev_node = node;
3044		load--;
3045		if (order == ZONELIST_ORDER_NODE)
3046			build_zonelists_in_node_order(pgdat, node);
3047		else
3048			node_order[j++] = node;	/* remember order */
3049	}
3050
3051	if (order == ZONELIST_ORDER_ZONE) {
3052		/* calculate node order -- i.e., DMA last! */
3053		build_zonelists_in_zone_order(pgdat, j);
3054	}
3055
3056	build_thisnode_zonelists(pgdat);
3057}
3058
3059/* Construct the zonelist performance cache - see further mmzone.h */
3060static void build_zonelist_cache(pg_data_t *pgdat)
3061{
3062	struct zonelist *zonelist;
3063	struct zonelist_cache *zlc;
3064	struct zoneref *z;
3065
3066	zonelist = &pgdat->node_zonelists[0];
3067	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3068	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3069	for (z = zonelist->_zonerefs; z->zone; z++)
3070		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3071}
3072
3073#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3074/*
3075 * Return node id of node used for "local" allocations.
3076 * I.e., first node id of first zone in arg node's generic zonelist.
3077 * Used for initializing percpu 'numa_mem', which is used primarily
3078 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3079 */
3080int local_memory_node(int node)
3081{
3082	struct zone *zone;
3083
3084	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3085				   gfp_zone(GFP_KERNEL),
3086				   NULL,
3087				   &zone);
3088	return zone->node;
3089}
3090#endif
3091
3092#else	/* CONFIG_NUMA */
3093
3094static void set_zonelist_order(void)
3095{
3096	current_zonelist_order = ZONELIST_ORDER_ZONE;
3097}
3098
3099static void build_zonelists(pg_data_t *pgdat)
3100{
3101	int node, local_node;
3102	enum zone_type j;
3103	struct zonelist *zonelist;
3104
3105	local_node = pgdat->node_id;
3106
3107	zonelist = &pgdat->node_zonelists[0];
3108	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3109
3110	/*
3111	 * Now we build the zonelist so that it contains the zones
3112	 * of all the other nodes.
3113	 * We don't want to pressure a particular node, so when
3114	 * building the zones for node N, we make sure that the
3115	 * zones coming right after the local ones are those from
3116	 * node N+1 (modulo N)
3117	 */
3118	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3119		if (!node_online(node))
3120			continue;
3121		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3122							MAX_NR_ZONES - 1);
3123	}
3124	for (node = 0; node < local_node; node++) {
3125		if (!node_online(node))
3126			continue;
3127		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3128							MAX_NR_ZONES - 1);
3129	}
3130
3131	zonelist->_zonerefs[j].zone = NULL;
3132	zonelist->_zonerefs[j].zone_idx = 0;
3133}
3134
3135/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3136static void build_zonelist_cache(pg_data_t *pgdat)
3137{
3138	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3139}
3140
3141#endif	/* CONFIG_NUMA */
3142
3143/*
3144 * Boot pageset table. One per cpu which is going to be used for all
3145 * zones and all nodes. The parameters will be set in such a way
3146 * that an item put on a list will immediately be handed over to
3147 * the buddy list. This is safe since pageset manipulation is done
3148 * with interrupts disabled.
3149 *
3150 * The boot_pagesets must be kept even after bootup is complete for
3151 * unused processors and/or zones. They do play a role for bootstrapping
3152 * hotplugged processors.
3153 *
3154 * zoneinfo_show() and maybe other functions do
3155 * not check if the processor is online before following the pageset pointer.
3156 * Other parts of the kernel may not check if the zone is available.
3157 */
3158static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3159static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3160static void setup_zone_pageset(struct zone *zone);
3161
3162/*
3163 * Global mutex to protect against size modification of zonelists
3164 * as well as to serialize pageset setup for the new populated zone.
3165 */
3166DEFINE_MUTEX(zonelists_mutex);
3167
3168/* return values int ....just for stop_machine() */
3169static __init_refok int __build_all_zonelists(void *data)
3170{
3171	int nid;
3172	int cpu;
3173
3174#ifdef CONFIG_NUMA
3175	memset(node_load, 0, sizeof(node_load));
3176#endif
3177	for_each_online_node(nid) {
3178		pg_data_t *pgdat = NODE_DATA(nid);
3179
3180		build_zonelists(pgdat);
3181		build_zonelist_cache(pgdat);
3182	}
3183
3184	/*
3185	 * Initialize the boot_pagesets that are going to be used
3186	 * for bootstrapping processors. The real pagesets for
3187	 * each zone will be allocated later when the per cpu
3188	 * allocator is available.
3189	 *
3190	 * boot_pagesets are used also for bootstrapping offline
3191	 * cpus if the system is already booted because the pagesets
3192	 * are needed to initialize allocators on a specific cpu too.
3193	 * F.e. the percpu allocator needs the page allocator which
3194	 * needs the percpu allocator in order to allocate its pagesets
3195	 * (a chicken-egg dilemma).
3196	 */
3197	for_each_possible_cpu(cpu) {
3198		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3199
3200#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3201		/*
3202		 * We now know the "local memory node" for each node--
3203		 * i.e., the node of the first zone in the generic zonelist.
3204		 * Set up numa_mem percpu variable for on-line cpus.  During
3205		 * boot, only the boot cpu should be on-line;  we'll init the
3206		 * secondary cpus' numa_mem as they come on-line.  During
3207		 * node/memory hotplug, we'll fixup all on-line cpus.
3208		 */
3209		if (cpu_online(cpu))
3210			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3211#endif
3212	}
3213
3214	return 0;
3215}
3216
3217/*
3218 * Called with zonelists_mutex held always
3219 * unless system_state == SYSTEM_BOOTING.
3220 */
3221void __ref build_all_zonelists(void *data)
3222{
3223	set_zonelist_order();
3224
3225	if (system_state == SYSTEM_BOOTING) {
3226		__build_all_zonelists(NULL);
3227		mminit_verify_zonelist();
3228		cpuset_init_current_mems_allowed();
3229	} else {
3230		/* we have to stop all cpus to guarantee there is no user
3231		   of zonelist */
3232#ifdef CONFIG_MEMORY_HOTPLUG
3233		if (data)
3234			setup_zone_pageset((struct zone *)data);
3235#endif
3236		stop_machine(__build_all_zonelists, NULL, NULL);
3237		/* cpuset refresh routine should be here */
3238	}
3239	vm_total_pages = nr_free_pagecache_pages();
3240	/*
3241	 * Disable grouping by mobility if the number of pages in the
3242	 * system is too low to allow the mechanism to work. It would be
3243	 * more accurate, but expensive to check per-zone. This check is
3244	 * made on memory-hotadd so a system can start with mobility
3245	 * disabled and enable it later
3246	 */
3247	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3248		page_group_by_mobility_disabled = 1;
3249	else
3250		page_group_by_mobility_disabled = 0;
3251
3252	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3253		"Total pages: %ld\n",
3254			nr_online_nodes,
3255			zonelist_order_name[current_zonelist_order],
3256			page_group_by_mobility_disabled ? "off" : "on",
3257			vm_total_pages);
3258#ifdef CONFIG_NUMA
3259	printk("Policy zone: %s\n", zone_names[policy_zone]);
3260#endif
3261}
3262
3263/*
3264 * Helper functions to size the waitqueue hash table.
3265 * Essentially these want to choose hash table sizes sufficiently
3266 * large so that collisions trying to wait on pages are rare.
3267 * But in fact, the number of active page waitqueues on typical
3268 * systems is ridiculously low, less than 200. So this is even
3269 * conservative, even though it seems large.
3270 *
3271 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3272 * waitqueues, i.e. the size of the waitq table given the number of pages.
3273 */
3274#define PAGES_PER_WAITQUEUE	256
3275
3276#ifndef CONFIG_MEMORY_HOTPLUG
3277static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3278{
3279	unsigned long size = 1;
3280
3281	pages /= PAGES_PER_WAITQUEUE;
3282
3283	while (size < pages)
3284		size <<= 1;
3285
3286	/*
3287	 * Once we have dozens or even hundreds of threads sleeping
3288	 * on IO we've got bigger problems than wait queue collision.
3289	 * Limit the size of the wait table to a reasonable size.
3290	 */
3291	size = min(size, 4096UL);
3292
3293	return max(size, 4UL);
3294}
3295#else
3296/*
3297 * A zone's size might be changed by hot-add, so it is not possible to determine
3298 * a suitable size for its wait_table.  So we use the maximum size now.
3299 *
3300 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3301 *
3302 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3303 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3304 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3305 *
3306 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3307 * or more by the traditional way. (See above).  It equals:
3308 *
3309 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3310 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3311 *    powerpc (64K page size)             : =  (32G +16M)byte.
3312 */
3313static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3314{
3315	return 4096UL;
3316}
3317#endif
3318
3319/*
3320 * This is an integer logarithm so that shifts can be used later
3321 * to extract the more random high bits from the multiplicative
3322 * hash function before the remainder is taken.
3323 */
3324static inline unsigned long wait_table_bits(unsigned long size)
3325{
3326	return ffz(~size);
3327}
3328
3329#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3330
3331/*
3332 * Check if a pageblock contains reserved pages
3333 */
3334static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3335{
3336	unsigned long pfn;
3337
3338	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3339		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3340			return 1;
3341	}
3342	return 0;
3343}
3344
3345/*
3346 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3347 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3348 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3349 * higher will lead to a bigger reserve which will get freed as contiguous
3350 * blocks as reclaim kicks in
3351 */
3352static void setup_zone_migrate_reserve(struct zone *zone)
3353{
3354	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3355	struct page *page;
3356	unsigned long block_migratetype;
3357	int reserve;
3358
3359	/* Get the start pfn, end pfn and the number of blocks to reserve */
3360	start_pfn = zone->zone_start_pfn;
3361	end_pfn = start_pfn + zone->spanned_pages;
3362	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3363							pageblock_order;
3364
3365	/*
3366	 * Reserve blocks are generally in place to help high-order atomic
3367	 * allocations that are short-lived. A min_free_kbytes value that
3368	 * would result in more than 2 reserve blocks for atomic allocations
3369	 * is assumed to be in place to help anti-fragmentation for the
3370	 * future allocation of hugepages at runtime.
3371	 */
3372	reserve = min(2, reserve);
3373
3374	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3375		if (!pfn_valid(pfn))
3376			continue;
3377		page = pfn_to_page(pfn);
3378
3379		/* Watch out for overlapping nodes */
3380		if (page_to_nid(page) != zone_to_nid(zone))
3381			continue;
3382
3383		/* Blocks with reserved pages will never free, skip them. */
3384		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3385		if (pageblock_is_reserved(pfn, block_end_pfn))
3386			continue;
3387
3388		block_migratetype = get_pageblock_migratetype(page);
3389
3390		/* If this block is reserved, account for it */
3391		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3392			reserve--;
3393			continue;
3394		}
3395
3396		/* Suitable for reserving if this block is movable */
3397		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3398			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3399			move_freepages_block(zone, page, MIGRATE_RESERVE);
3400			reserve--;
3401			continue;
3402		}
3403
3404		/*
3405		 * If the reserve is met and this is a previous reserved block,
3406		 * take it back
3407		 */
3408		if (block_migratetype == MIGRATE_RESERVE) {
3409			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3410			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3411		}
3412	}
3413}
3414
3415/*
3416 * Initially all pages are reserved - free ones are freed
3417 * up by free_all_bootmem() once the early boot process is
3418 * done. Non-atomic initialization, single-pass.
3419 */
3420void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3421		unsigned long start_pfn, enum memmap_context context)
3422{
3423	struct page *page;
3424	unsigned long end_pfn = start_pfn + size;
3425	unsigned long pfn;
3426	struct zone *z;
3427
3428	if (highest_memmap_pfn < end_pfn - 1)
3429		highest_memmap_pfn = end_pfn - 1;
3430
3431	z = &NODE_DATA(nid)->node_zones[zone];
3432	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3433		/*
3434		 * There can be holes in boot-time mem_map[]s
3435		 * handed to this function.  They do not
3436		 * exist on hotplugged memory.
3437		 */
3438		if (context == MEMMAP_EARLY) {
3439			if (!early_pfn_valid(pfn))
3440				continue;
3441			if (!early_pfn_in_nid(pfn, nid))
3442				continue;
3443		}
3444		page = pfn_to_page(pfn);
3445		set_page_links(page, zone, nid, pfn);
3446		mminit_verify_page_links(page, zone, nid, pfn);
3447		init_page_count(page);
3448		reset_page_mapcount(page);
3449		SetPageReserved(page);
3450		/*
3451		 * Mark the block movable so that blocks are reserved for
3452		 * movable at startup. This will force kernel allocations
3453		 * to reserve their blocks rather than leaking throughout
3454		 * the address space during boot when many long-lived
3455		 * kernel allocations are made. Later some blocks near
3456		 * the start are marked MIGRATE_RESERVE by
3457		 * setup_zone_migrate_reserve()
3458		 *
3459		 * bitmap is created for zone's valid pfn range. but memmap
3460		 * can be created for invalid pages (for alignment)
3461		 * check here not to call set_pageblock_migratetype() against
3462		 * pfn out of zone.
3463		 */
3464		if ((z->zone_start_pfn <= pfn)
3465		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3466		    && !(pfn & (pageblock_nr_pages - 1)))
3467			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3468
3469		INIT_LIST_HEAD(&page->lru);
3470#ifdef WANT_PAGE_VIRTUAL
3471		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3472		if (!is_highmem_idx(zone))
3473			set_page_address(page, __va(pfn << PAGE_SHIFT));
3474#endif
3475	}
3476}
3477
3478static void __meminit zone_init_free_lists(struct zone *zone)
3479{
3480	int order, t;
3481	for_each_migratetype_order(order, t) {
3482		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3483		zone->free_area[order].nr_free = 0;
3484	}
3485}
3486
3487#ifndef __HAVE_ARCH_MEMMAP_INIT
3488#define memmap_init(size, nid, zone, start_pfn) \
3489	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3490#endif
3491
3492static int zone_batchsize(struct zone *zone)
3493{
3494#ifdef CONFIG_MMU
3495	int batch;
3496
3497	/*
3498	 * The per-cpu-pages pools are set to around 1000th of the
3499	 * size of the zone.  But no more than 1/2 of a meg.
3500	 *
3501	 * OK, so we don't know how big the cache is.  So guess.
3502	 */
3503	batch = zone->present_pages / 1024;
3504	if (batch * PAGE_SIZE > 512 * 1024)
3505		batch = (512 * 1024) / PAGE_SIZE;
3506	batch /= 4;		/* We effectively *= 4 below */
3507	if (batch < 1)
3508		batch = 1;
3509
3510	/*
3511	 * Clamp the batch to a 2^n - 1 value. Having a power
3512	 * of 2 value was found to be more likely to have
3513	 * suboptimal cache aliasing properties in some cases.
3514	 *
3515	 * For example if 2 tasks are alternately allocating
3516	 * batches of pages, one task can end up with a lot
3517	 * of pages of one half of the possible page colors
3518	 * and the other with pages of the other colors.
3519	 */
3520	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3521
3522	return batch;
3523
3524#else
3525	/* The deferral and batching of frees should be suppressed under NOMMU
3526	 * conditions.
3527	 *
3528	 * The problem is that NOMMU needs to be able to allocate large chunks
3529	 * of contiguous memory as there's no hardware page translation to
3530	 * assemble apparent contiguous memory from discontiguous pages.
3531	 *
3532	 * Queueing large contiguous runs of pages for batching, however,
3533	 * causes the pages to actually be freed in smaller chunks.  As there
3534	 * can be a significant delay between the individual batches being
3535	 * recycled, this leads to the once large chunks of space being
3536	 * fragmented and becoming unavailable for high-order allocations.
3537	 */
3538	return 0;
3539#endif
3540}
3541
3542static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3543{
3544	struct per_cpu_pages *pcp;
3545	int migratetype;
3546
3547	memset(p, 0, sizeof(*p));
3548
3549	pcp = &p->pcp;
3550	pcp->count = 0;
3551	pcp->high = 6 * batch;
3552	pcp->batch = max(1UL, 1 * batch);
3553	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3554		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3555}
3556
3557/*
3558 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3559 * to the value high for the pageset p.
3560 */
3561
3562static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3563				unsigned long high)
3564{
3565	struct per_cpu_pages *pcp;
3566
3567	pcp = &p->pcp;
3568	pcp->high = high;
3569	pcp->batch = max(1UL, high/4);
3570	if ((high/4) > (PAGE_SHIFT * 8))
3571		pcp->batch = PAGE_SHIFT * 8;
3572}
3573
3574static void setup_zone_pageset(struct zone *zone)
3575{
3576	int cpu;
3577
3578	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3579
3580	for_each_possible_cpu(cpu) {
3581		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3582
3583		setup_pageset(pcp, zone_batchsize(zone));
3584
3585		if (percpu_pagelist_fraction)
3586			setup_pagelist_highmark(pcp,
3587				(zone->present_pages /
3588					percpu_pagelist_fraction));
3589	}
3590}
3591
3592/*
3593 * Allocate per cpu pagesets and initialize them.
3594 * Before this call only boot pagesets were available.
3595 */
3596void __init setup_per_cpu_pageset(void)
3597{
3598	struct zone *zone;
3599
3600	for_each_populated_zone(zone)
3601		setup_zone_pageset(zone);
3602}
3603
3604static noinline __init_refok
3605int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3606{
3607	int i;
3608	struct pglist_data *pgdat = zone->zone_pgdat;
3609	size_t alloc_size;
3610
3611	/*
3612	 * The per-page waitqueue mechanism uses hashed waitqueues
3613	 * per zone.
3614	 */
3615	zone->wait_table_hash_nr_entries =
3616		 wait_table_hash_nr_entries(zone_size_pages);
3617	zone->wait_table_bits =
3618		wait_table_bits(zone->wait_table_hash_nr_entries);
3619	alloc_size = zone->wait_table_hash_nr_entries
3620					* sizeof(wait_queue_head_t);
3621
3622	if (!slab_is_available()) {
3623		zone->wait_table = (wait_queue_head_t *)
3624			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3625	} else {
3626		/*
3627		 * This case means that a zone whose size was 0 gets new memory
3628		 * via memory hot-add.
3629		 * But it may be the case that a new node was hot-added.  In
3630		 * this case vmalloc() will not be able to use this new node's
3631		 * memory - this wait_table must be initialized to use this new
3632		 * node itself as well.
3633		 * To use this new node's memory, further consideration will be
3634		 * necessary.
3635		 */
3636		zone->wait_table = vmalloc(alloc_size);
3637	}
3638	if (!zone->wait_table)
3639		return -ENOMEM;
3640
3641	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3642		init_waitqueue_head(zone->wait_table + i);
3643
3644	return 0;
3645}
3646
3647static int __zone_pcp_update(void *data)
3648{
3649	struct zone *zone = data;
3650	int cpu;
3651	unsigned long batch = zone_batchsize(zone), flags;
3652
3653	for_each_possible_cpu(cpu) {
3654		struct per_cpu_pageset *pset;
3655		struct per_cpu_pages *pcp;
3656
3657		pset = per_cpu_ptr(zone->pageset, cpu);
3658		pcp = &pset->pcp;
3659
3660		local_irq_save(flags);
3661		free_pcppages_bulk(zone, pcp->count, pcp);
3662		setup_pageset(pset, batch);
3663		local_irq_restore(flags);
3664	}
3665	return 0;
3666}
3667
3668void zone_pcp_update(struct zone *zone)
3669{
3670	stop_machine(__zone_pcp_update, zone, NULL);
3671}
3672
3673static __meminit void zone_pcp_init(struct zone *zone)
3674{
3675	/*
3676	 * per cpu subsystem is not up at this point. The following code
3677	 * relies on the ability of the linker to provide the
3678	 * offset of a (static) per cpu variable into the per cpu area.
3679	 */
3680	zone->pageset = &boot_pageset;
3681
3682	if (zone->present_pages)
3683		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3684			zone->name, zone->present_pages,
3685					 zone_batchsize(zone));
3686}
3687
3688__meminit int init_currently_empty_zone(struct zone *zone,
3689					unsigned long zone_start_pfn,
3690					unsigned long size,
3691					enum memmap_context context)
3692{
3693	struct pglist_data *pgdat = zone->zone_pgdat;
3694	int ret;
3695	ret = zone_wait_table_init(zone, size);
3696	if (ret)
3697		return ret;
3698	pgdat->nr_zones = zone_idx(zone) + 1;
3699
3700	zone->zone_start_pfn = zone_start_pfn;
3701
3702	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3703			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3704			pgdat->node_id,
3705			(unsigned long)zone_idx(zone),
3706			zone_start_pfn, (zone_start_pfn + size));
3707
3708	zone_init_free_lists(zone);
3709
3710	return 0;
3711}
3712
3713#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3714/*
3715 * Basic iterator support. Return the first range of PFNs for a node
3716 * Note: nid == MAX_NUMNODES returns first region regardless of node
3717 */
3718static int __meminit first_active_region_index_in_nid(int nid)
3719{
3720	int i;
3721
3722	for (i = 0; i < nr_nodemap_entries; i++)
3723		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3724			return i;
3725
3726	return -1;
3727}
3728
3729/*
3730 * Basic iterator support. Return the next active range of PFNs for a node
3731 * Note: nid == MAX_NUMNODES returns next region regardless of node
3732 */
3733static int __meminit next_active_region_index_in_nid(int index, int nid)
3734{
3735	for (index = index + 1; index < nr_nodemap_entries; index++)
3736		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3737			return index;
3738
3739	return -1;
3740}
3741
3742#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3743/*
3744 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3745 * Architectures may implement their own version but if add_active_range()
3746 * was used and there are no special requirements, this is a convenient
3747 * alternative
3748 */
3749int __meminit __early_pfn_to_nid(unsigned long pfn)
3750{
3751	int i;
3752
3753	for (i = 0; i < nr_nodemap_entries; i++) {
3754		unsigned long start_pfn = early_node_map[i].start_pfn;
3755		unsigned long end_pfn = early_node_map[i].end_pfn;
3756
3757		if (start_pfn <= pfn && pfn < end_pfn)
3758			return early_node_map[i].nid;
3759	}
3760	/* This is a memory hole */
3761	return -1;
3762}
3763#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3764
3765int __meminit early_pfn_to_nid(unsigned long pfn)
3766{
3767	int nid;
3768
3769	nid = __early_pfn_to_nid(pfn);
3770	if (nid >= 0)
3771		return nid;
3772	/* just returns 0 */
3773	return 0;
3774}
3775
3776#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3777bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3778{
3779	int nid;
3780
3781	nid = __early_pfn_to_nid(pfn);
3782	if (nid >= 0 && nid != node)
3783		return false;
3784	return true;
3785}
3786#endif
3787
3788/* Basic iterator support to walk early_node_map[] */
3789#define for_each_active_range_index_in_nid(i, nid) \
3790	for (i = first_active_region_index_in_nid(nid); i != -1; \
3791				i = next_active_region_index_in_nid(i, nid))
3792
3793/**
3794 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3795 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3796 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3797 *
3798 * If an architecture guarantees that all ranges registered with
3799 * add_active_ranges() contain no holes and may be freed, this
3800 * this function may be used instead of calling free_bootmem() manually.
3801 */
3802void __init free_bootmem_with_active_regions(int nid,
3803						unsigned long max_low_pfn)
3804{
3805	int i;
3806
3807	for_each_active_range_index_in_nid(i, nid) {
3808		unsigned long size_pages = 0;
3809		unsigned long end_pfn = early_node_map[i].end_pfn;
3810
3811		if (early_node_map[i].start_pfn >= max_low_pfn)
3812			continue;
3813
3814		if (end_pfn > max_low_pfn)
3815			end_pfn = max_low_pfn;
3816
3817		size_pages = end_pfn - early_node_map[i].start_pfn;
3818		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3819				PFN_PHYS(early_node_map[i].start_pfn),
3820				size_pages << PAGE_SHIFT);
3821	}
3822}
3823
3824#ifdef CONFIG_HAVE_MEMBLOCK
3825/*
3826 * Basic iterator support. Return the last range of PFNs for a node
3827 * Note: nid == MAX_NUMNODES returns last region regardless of node
3828 */
3829static int __meminit last_active_region_index_in_nid(int nid)
3830{
3831	int i;
3832
3833	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3834		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3835			return i;
3836
3837	return -1;
3838}
3839
3840/*
3841 * Basic iterator support. Return the previous active range of PFNs for a node
3842 * Note: nid == MAX_NUMNODES returns next region regardless of node
3843 */
3844static int __meminit previous_active_region_index_in_nid(int index, int nid)
3845{
3846	for (index = index - 1; index >= 0; index--)
3847		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3848			return index;
3849
3850	return -1;
3851}
3852
3853#define for_each_active_range_index_in_nid_reverse(i, nid) \
3854	for (i = last_active_region_index_in_nid(nid); i != -1; \
3855				i = previous_active_region_index_in_nid(i, nid))
3856
3857u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3858					u64 goal, u64 limit)
3859{
3860	int i;
3861
3862	/* Need to go over early_node_map to find out good range for node */
3863	for_each_active_range_index_in_nid_reverse(i, nid) {
3864		u64 addr;
3865		u64 ei_start, ei_last;
3866		u64 final_start, final_end;
3867
3868		ei_last = early_node_map[i].end_pfn;
3869		ei_last <<= PAGE_SHIFT;
3870		ei_start = early_node_map[i].start_pfn;
3871		ei_start <<= PAGE_SHIFT;
3872
3873		final_start = max(ei_start, goal);
3874		final_end = min(ei_last, limit);
3875
3876		if (final_start >= final_end)
3877			continue;
3878
3879		addr = memblock_find_in_range(final_start, final_end, size, align);
3880
3881		if (addr == MEMBLOCK_ERROR)
3882			continue;
3883
3884		return addr;
3885	}
3886
3887	return MEMBLOCK_ERROR;
3888}
3889#endif
3890
3891int __init add_from_early_node_map(struct range *range, int az,
3892				   int nr_range, int nid)
3893{
3894	int i;
3895	u64 start, end;
3896
3897	/* need to go over early_node_map to find out good range for node */
3898	for_each_active_range_index_in_nid(i, nid) {
3899		start = early_node_map[i].start_pfn;
3900		end = early_node_map[i].end_pfn;
3901		nr_range = add_range(range, az, nr_range, start, end);
3902	}
3903	return nr_range;
3904}
3905
3906void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3907{
3908	int i;
3909	int ret;
3910
3911	for_each_active_range_index_in_nid(i, nid) {
3912		ret = work_fn(early_node_map[i].start_pfn,
3913			      early_node_map[i].end_pfn, data);
3914		if (ret)
3915			break;
3916	}
3917}
3918/**
3919 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3920 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3921 *
3922 * If an architecture guarantees that all ranges registered with
3923 * add_active_ranges() contain no holes and may be freed, this
3924 * function may be used instead of calling memory_present() manually.
3925 */
3926void __init sparse_memory_present_with_active_regions(int nid)
3927{
3928	int i;
3929
3930	for_each_active_range_index_in_nid(i, nid)
3931		memory_present(early_node_map[i].nid,
3932				early_node_map[i].start_pfn,
3933				early_node_map[i].end_pfn);
3934}
3935
3936/**
3937 * get_pfn_range_for_nid - Return the start and end page frames for a node
3938 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3939 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3940 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3941 *
3942 * It returns the start and end page frame of a node based on information
3943 * provided by an arch calling add_active_range(). If called for a node
3944 * with no available memory, a warning is printed and the start and end
3945 * PFNs will be 0.
3946 */
3947void __meminit get_pfn_range_for_nid(unsigned int nid,
3948			unsigned long *start_pfn, unsigned long *end_pfn)
3949{
3950	int i;
3951	*start_pfn = -1UL;
3952	*end_pfn = 0;
3953
3954	for_each_active_range_index_in_nid(i, nid) {
3955		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3956		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3957	}
3958
3959	if (*start_pfn == -1UL)
3960		*start_pfn = 0;
3961}
3962
3963/*
3964 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3965 * assumption is made that zones within a node are ordered in monotonic
3966 * increasing memory addresses so that the "highest" populated zone is used
3967 */
3968static void __init find_usable_zone_for_movable(void)
3969{
3970	int zone_index;
3971	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3972		if (zone_index == ZONE_MOVABLE)
3973			continue;
3974
3975		if (arch_zone_highest_possible_pfn[zone_index] >
3976				arch_zone_lowest_possible_pfn[zone_index])
3977			break;
3978	}
3979
3980	VM_BUG_ON(zone_index == -1);
3981	movable_zone = zone_index;
3982}
3983
3984/*
3985 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3986 * because it is sized independent of architecture. Unlike the other zones,
3987 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3988 * in each node depending on the size of each node and how evenly kernelcore
3989 * is distributed. This helper function adjusts the zone ranges
3990 * provided by the architecture for a given node by using the end of the
3991 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3992 * zones within a node are in order of monotonic increases memory addresses
3993 */
3994static void __meminit adjust_zone_range_for_zone_movable(int nid,
3995					unsigned long zone_type,
3996					unsigned long node_start_pfn,
3997					unsigned long node_end_pfn,
3998					unsigned long *zone_start_pfn,
3999					unsigned long *zone_end_pfn)
4000{
4001	/* Only adjust if ZONE_MOVABLE is on this node */
4002	if (zone_movable_pfn[nid]) {
4003		/* Size ZONE_MOVABLE */
4004		if (zone_type == ZONE_MOVABLE) {
4005			*zone_start_pfn = zone_movable_pfn[nid];
4006			*zone_end_pfn = min(node_end_pfn,
4007				arch_zone_highest_possible_pfn[movable_zone]);
4008
4009		/* Adjust for ZONE_MOVABLE starting within this range */
4010		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4011				*zone_end_pfn > zone_movable_pfn[nid]) {
4012			*zone_end_pfn = zone_movable_pfn[nid];
4013
4014		/* Check if this whole range is within ZONE_MOVABLE */
4015		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4016			*zone_start_pfn = *zone_end_pfn;
4017	}
4018}
4019
4020/*
4021 * Return the number of pages a zone spans in a node, including holes
4022 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4023 */
4024static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4025					unsigned long zone_type,
4026					unsigned long *ignored)
4027{
4028	unsigned long node_start_pfn, node_end_pfn;
4029	unsigned long zone_start_pfn, zone_end_pfn;
4030
4031	/* Get the start and end of the node and zone */
4032	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4033	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4034	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4035	adjust_zone_range_for_zone_movable(nid, zone_type,
4036				node_start_pfn, node_end_pfn,
4037				&zone_start_pfn, &zone_end_pfn);
4038
4039	/* Check that this node has pages within the zone's required range */
4040	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4041		return 0;
4042
4043	/* Move the zone boundaries inside the node if necessary */
4044	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4045	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4046
4047	/* Return the spanned pages */
4048	return zone_end_pfn - zone_start_pfn;
4049}
4050
4051/*
4052 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4053 * then all holes in the requested range will be accounted for.
4054 */
4055unsigned long __meminit __absent_pages_in_range(int nid,
4056				unsigned long range_start_pfn,
4057				unsigned long range_end_pfn)
4058{
4059	int i = 0;
4060	unsigned long prev_end_pfn = 0, hole_pages = 0;
4061	unsigned long start_pfn;
4062
4063	/* Find the end_pfn of the first active range of pfns in the node */
4064	i = first_active_region_index_in_nid(nid);
4065	if (i == -1)
4066		return 0;
4067
4068	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4069
4070	/* Account for ranges before physical memory on this node */
4071	if (early_node_map[i].start_pfn > range_start_pfn)
4072		hole_pages = prev_end_pfn - range_start_pfn;
4073
4074	/* Find all holes for the zone within the node */
4075	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4076
4077		/* No need to continue if prev_end_pfn is outside the zone */
4078		if (prev_end_pfn >= range_end_pfn)
4079			break;
4080
4081		/* Make sure the end of the zone is not within the hole */
4082		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4083		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4084
4085		/* Update the hole size cound and move on */
4086		if (start_pfn > range_start_pfn) {
4087			BUG_ON(prev_end_pfn > start_pfn);
4088			hole_pages += start_pfn - prev_end_pfn;
4089		}
4090		prev_end_pfn = early_node_map[i].end_pfn;
4091	}
4092
4093	/* Account for ranges past physical memory on this node */
4094	if (range_end_pfn > prev_end_pfn)
4095		hole_pages += range_end_pfn -
4096				max(range_start_pfn, prev_end_pfn);
4097
4098	return hole_pages;
4099}
4100
4101/**
4102 * absent_pages_in_range - Return number of page frames in holes within a range
4103 * @start_pfn: The start PFN to start searching for holes
4104 * @end_pfn: The end PFN to stop searching for holes
4105 *
4106 * It returns the number of pages frames in memory holes within a range.
4107 */
4108unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4109							unsigned long end_pfn)
4110{
4111	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4112}
4113
4114/* Return the number of page frames in holes in a zone on a node */
4115static unsigned long __meminit zone_absent_pages_in_node(int nid,
4116					unsigned long zone_type,
4117					unsigned long *ignored)
4118{
4119	unsigned long node_start_pfn, node_end_pfn;
4120	unsigned long zone_start_pfn, zone_end_pfn;
4121
4122	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4123	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4124							node_start_pfn);
4125	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4126							node_end_pfn);
4127
4128	adjust_zone_range_for_zone_movable(nid, zone_type,
4129			node_start_pfn, node_end_pfn,
4130			&zone_start_pfn, &zone_end_pfn);
4131	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4132}
4133
4134#else
4135static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4136					unsigned long zone_type,
4137					unsigned long *zones_size)
4138{
4139	return zones_size[zone_type];
4140}
4141
4142static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4143						unsigned long zone_type,
4144						unsigned long *zholes_size)
4145{
4146	if (!zholes_size)
4147		return 0;
4148
4149	return zholes_size[zone_type];
4150}
4151
4152#endif
4153
4154static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4155		unsigned long *zones_size, unsigned long *zholes_size)
4156{
4157	unsigned long realtotalpages, totalpages = 0;
4158	enum zone_type i;
4159
4160	for (i = 0; i < MAX_NR_ZONES; i++)
4161		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4162								zones_size);
4163	pgdat->node_spanned_pages = totalpages;
4164
4165	realtotalpages = totalpages;
4166	for (i = 0; i < MAX_NR_ZONES; i++)
4167		realtotalpages -=
4168			zone_absent_pages_in_node(pgdat->node_id, i,
4169								zholes_size);
4170	pgdat->node_present_pages = realtotalpages;
4171	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4172							realtotalpages);
4173}
4174
4175#ifndef CONFIG_SPARSEMEM
4176/*
4177 * Calculate the size of the zone->blockflags rounded to an unsigned long
4178 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4179 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4180 * round what is now in bits to nearest long in bits, then return it in
4181 * bytes.
4182 */
4183static unsigned long __init usemap_size(unsigned long zonesize)
4184{
4185	unsigned long usemapsize;
4186
4187	usemapsize = roundup(zonesize, pageblock_nr_pages);
4188	usemapsize = usemapsize >> pageblock_order;
4189	usemapsize *= NR_PAGEBLOCK_BITS;
4190	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4191
4192	return usemapsize / 8;
4193}
4194
4195static void __init setup_usemap(struct pglist_data *pgdat,
4196				struct zone *zone, unsigned long zonesize)
4197{
4198	unsigned long usemapsize = usemap_size(zonesize);
4199	zone->pageblock_flags = NULL;
4200	if (usemapsize)
4201		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4202								   usemapsize);
4203}
4204#else
4205static inline void setup_usemap(struct pglist_data *pgdat,
4206				struct zone *zone, unsigned long zonesize) {}
4207#endif /* CONFIG_SPARSEMEM */
4208
4209#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4210
4211/* Return a sensible default order for the pageblock size. */
4212static inline int pageblock_default_order(void)
4213{
4214	if (HPAGE_SHIFT > PAGE_SHIFT)
4215		return HUGETLB_PAGE_ORDER;
4216
4217	return MAX_ORDER-1;
4218}
4219
4220/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4221static inline void __init set_pageblock_order(unsigned int order)
4222{
4223	/* Check that pageblock_nr_pages has not already been setup */
4224	if (pageblock_order)
4225		return;
4226
4227	/*
4228	 * Assume the largest contiguous order of interest is a huge page.
4229	 * This value may be variable depending on boot parameters on IA64
4230	 */
4231	pageblock_order = order;
4232}
4233#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4234
4235/*
4236 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4237 * and pageblock_default_order() are unused as pageblock_order is set
4238 * at compile-time. See include/linux/pageblock-flags.h for the values of
4239 * pageblock_order based on the kernel config
4240 */
4241static inline int pageblock_default_order(unsigned int order)
4242{
4243	return MAX_ORDER-1;
4244}
4245#define set_pageblock_order(x)	do {} while (0)
4246
4247#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4248
4249/*
4250 * Set up the zone data structures:
4251 *   - mark all pages reserved
4252 *   - mark all memory queues empty
4253 *   - clear the memory bitmaps
4254 */
4255static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4256		unsigned long *zones_size, unsigned long *zholes_size)
4257{
4258	enum zone_type j;
4259	int nid = pgdat->node_id;
4260	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4261	int ret;
4262
4263	pgdat_resize_init(pgdat);
4264	pgdat->nr_zones = 0;
4265	init_waitqueue_head(&pgdat->kswapd_wait);
4266	pgdat->kswapd_max_order = 0;
4267	pgdat_page_cgroup_init(pgdat);
4268
4269	for (j = 0; j < MAX_NR_ZONES; j++) {
4270		struct zone *zone = pgdat->node_zones + j;
4271		unsigned long size, realsize, memmap_pages;
4272		enum lru_list l;
4273
4274		size = zone_spanned_pages_in_node(nid, j, zones_size);
4275		realsize = size - zone_absent_pages_in_node(nid, j,
4276								zholes_size);
4277
4278		/*
4279		 * Adjust realsize so that it accounts for how much memory
4280		 * is used by this zone for memmap. This affects the watermark
4281		 * and per-cpu initialisations
4282		 */
4283		memmap_pages =
4284			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4285		if (realsize >= memmap_pages) {
4286			realsize -= memmap_pages;
4287			if (memmap_pages)
4288				printk(KERN_DEBUG
4289				       "  %s zone: %lu pages used for memmap\n",
4290				       zone_names[j], memmap_pages);
4291		} else
4292			printk(KERN_WARNING
4293				"  %s zone: %lu pages exceeds realsize %lu\n",
4294				zone_names[j], memmap_pages, realsize);
4295
4296		/* Account for reserved pages */
4297		if (j == 0 && realsize > dma_reserve) {
4298			realsize -= dma_reserve;
4299			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4300					zone_names[0], dma_reserve);
4301		}
4302
4303		if (!is_highmem_idx(j))
4304			nr_kernel_pages += realsize;
4305		nr_all_pages += realsize;
4306
4307		zone->spanned_pages = size;
4308		zone->present_pages = realsize;
4309#ifdef CONFIG_NUMA
4310		zone->node = nid;
4311		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4312						/ 100;
4313		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4314#endif
4315		zone->name = zone_names[j];
4316		spin_lock_init(&zone->lock);
4317		spin_lock_init(&zone->lru_lock);
4318		zone_seqlock_init(zone);
4319		zone->zone_pgdat = pgdat;
4320
4321		zone_pcp_init(zone);
4322		for_each_lru(l)
4323			INIT_LIST_HEAD(&zone->lru[l].list);
4324		zone->reclaim_stat.recent_rotated[0] = 0;
4325		zone->reclaim_stat.recent_rotated[1] = 0;
4326		zone->reclaim_stat.recent_scanned[0] = 0;
4327		zone->reclaim_stat.recent_scanned[1] = 0;
4328		zap_zone_vm_stats(zone);
4329		zone->flags = 0;
4330		if (!size)
4331			continue;
4332
4333		set_pageblock_order(pageblock_default_order());
4334		setup_usemap(pgdat, zone, size);
4335		ret = init_currently_empty_zone(zone, zone_start_pfn,
4336						size, MEMMAP_EARLY);
4337		BUG_ON(ret);
4338		memmap_init(size, nid, j, zone_start_pfn);
4339		zone_start_pfn += size;
4340	}
4341}
4342
4343static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4344{
4345	/* Skip empty nodes */
4346	if (!pgdat->node_spanned_pages)
4347		return;
4348
4349#ifdef CONFIG_FLAT_NODE_MEM_MAP
4350	/* ia64 gets its own node_mem_map, before this, without bootmem */
4351	if (!pgdat->node_mem_map) {
4352		unsigned long size, start, end;
4353		struct page *map;
4354
4355		/*
4356		 * The zone's endpoints aren't required to be MAX_ORDER
4357		 * aligned but the node_mem_map endpoints must be in order
4358		 * for the buddy allocator to function correctly.
4359		 */
4360		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4361		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4362		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4363		size =  (end - start) * sizeof(struct page);
4364		map = alloc_remap(pgdat->node_id, size);
4365		if (!map)
4366			map = alloc_bootmem_node_nopanic(pgdat, size);
4367		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4368	}
4369#ifndef CONFIG_NEED_MULTIPLE_NODES
4370	/*
4371	 * With no DISCONTIG, the global mem_map is just set as node 0's
4372	 */
4373	if (pgdat == NODE_DATA(0)) {
4374		mem_map = NODE_DATA(0)->node_mem_map;
4375#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4376		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4377			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4378#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4379	}
4380#endif
4381#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4382}
4383
4384void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4385		unsigned long node_start_pfn, unsigned long *zholes_size)
4386{
4387	pg_data_t *pgdat = NODE_DATA(nid);
4388
4389	pgdat->node_id = nid;
4390	pgdat->node_start_pfn = node_start_pfn;
4391	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4392
4393	alloc_node_mem_map(pgdat);
4394#ifdef CONFIG_FLAT_NODE_MEM_MAP
4395	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4396		nid, (unsigned long)pgdat,
4397		(unsigned long)pgdat->node_mem_map);
4398#endif
4399
4400	free_area_init_core(pgdat, zones_size, zholes_size);
4401}
4402
4403#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4404
4405#if MAX_NUMNODES > 1
4406/*
4407 * Figure out the number of possible node ids.
4408 */
4409static void __init setup_nr_node_ids(void)
4410{
4411	unsigned int node;
4412	unsigned int highest = 0;
4413
4414	for_each_node_mask(node, node_possible_map)
4415		highest = node;
4416	nr_node_ids = highest + 1;
4417}
4418#else
4419static inline void setup_nr_node_ids(void)
4420{
4421}
4422#endif
4423
4424/**
4425 * add_active_range - Register a range of PFNs backed by physical memory
4426 * @nid: The node ID the range resides on
4427 * @start_pfn: The start PFN of the available physical memory
4428 * @end_pfn: The end PFN of the available physical memory
4429 *
4430 * These ranges are stored in an early_node_map[] and later used by
4431 * free_area_init_nodes() to calculate zone sizes and holes. If the
4432 * range spans a memory hole, it is up to the architecture to ensure
4433 * the memory is not freed by the bootmem allocator. If possible
4434 * the range being registered will be merged with existing ranges.
4435 */
4436void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4437						unsigned long end_pfn)
4438{
4439	int i;
4440
4441	mminit_dprintk(MMINIT_TRACE, "memory_register",
4442			"Entering add_active_range(%d, %#lx, %#lx) "
4443			"%d entries of %d used\n",
4444			nid, start_pfn, end_pfn,
4445			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4446
4447	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4448
4449	/* Merge with existing active regions if possible */
4450	for (i = 0; i < nr_nodemap_entries; i++) {
4451		if (early_node_map[i].nid != nid)
4452			continue;
4453
4454		/* Skip if an existing region covers this new one */
4455		if (start_pfn >= early_node_map[i].start_pfn &&
4456				end_pfn <= early_node_map[i].end_pfn)
4457			return;
4458
4459		/* Merge forward if suitable */
4460		if (start_pfn <= early_node_map[i].end_pfn &&
4461				end_pfn > early_node_map[i].end_pfn) {
4462			early_node_map[i].end_pfn = end_pfn;
4463			return;
4464		}
4465
4466		/* Merge backward if suitable */
4467		if (start_pfn < early_node_map[i].start_pfn &&
4468				end_pfn >= early_node_map[i].start_pfn) {
4469			early_node_map[i].start_pfn = start_pfn;
4470			return;
4471		}
4472	}
4473
4474	/* Check that early_node_map is large enough */
4475	if (i >= MAX_ACTIVE_REGIONS) {
4476		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4477							MAX_ACTIVE_REGIONS);
4478		return;
4479	}
4480
4481	early_node_map[i].nid = nid;
4482	early_node_map[i].start_pfn = start_pfn;
4483	early_node_map[i].end_pfn = end_pfn;
4484	nr_nodemap_entries = i + 1;
4485}
4486
4487/**
4488 * remove_active_range - Shrink an existing registered range of PFNs
4489 * @nid: The node id the range is on that should be shrunk
4490 * @start_pfn: The new PFN of the range
4491 * @end_pfn: The new PFN of the range
4492 *
4493 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4494 * The map is kept near the end physical page range that has already been
4495 * registered. This function allows an arch to shrink an existing registered
4496 * range.
4497 */
4498void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4499				unsigned long end_pfn)
4500{
4501	int i, j;
4502	int removed = 0;
4503
4504	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4505			  nid, start_pfn, end_pfn);
4506
4507	/* Find the old active region end and shrink */
4508	for_each_active_range_index_in_nid(i, nid) {
4509		if (early_node_map[i].start_pfn >= start_pfn &&
4510		    early_node_map[i].end_pfn <= end_pfn) {
4511			/* clear it */
4512			early_node_map[i].start_pfn = 0;
4513			early_node_map[i].end_pfn = 0;
4514			removed = 1;
4515			continue;
4516		}
4517		if (early_node_map[i].start_pfn < start_pfn &&
4518		    early_node_map[i].end_pfn > start_pfn) {
4519			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4520			early_node_map[i].end_pfn = start_pfn;
4521			if (temp_end_pfn > end_pfn)
4522				add_active_range(nid, end_pfn, temp_end_pfn);
4523			continue;
4524		}
4525		if (early_node_map[i].start_pfn >= start_pfn &&
4526		    early_node_map[i].end_pfn > end_pfn &&
4527		    early_node_map[i].start_pfn < end_pfn) {
4528			early_node_map[i].start_pfn = end_pfn;
4529			continue;
4530		}
4531	}
4532
4533	if (!removed)
4534		return;
4535
4536	/* remove the blank ones */
4537	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4538		if (early_node_map[i].nid != nid)
4539			continue;
4540		if (early_node_map[i].end_pfn)
4541			continue;
4542		/* we found it, get rid of it */
4543		for (j = i; j < nr_nodemap_entries - 1; j++)
4544			memcpy(&early_node_map[j], &early_node_map[j+1],
4545				sizeof(early_node_map[j]));
4546		j = nr_nodemap_entries - 1;
4547		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4548		nr_nodemap_entries--;
4549	}
4550}
4551
4552/**
4553 * remove_all_active_ranges - Remove all currently registered regions
4554 *
4555 * During discovery, it may be found that a table like SRAT is invalid
4556 * and an alternative discovery method must be used. This function removes
4557 * all currently registered regions.
4558 */
4559void __init remove_all_active_ranges(void)
4560{
4561	memset(early_node_map, 0, sizeof(early_node_map));
4562	nr_nodemap_entries = 0;
4563}
4564
4565/* Compare two active node_active_regions */
4566static int __init cmp_node_active_region(const void *a, const void *b)
4567{
4568	struct node_active_region *arange = (struct node_active_region *)a;
4569	struct node_active_region *brange = (struct node_active_region *)b;
4570
4571	/* Done this way to avoid overflows */
4572	if (arange->start_pfn > brange->start_pfn)
4573		return 1;
4574	if (arange->start_pfn < brange->start_pfn)
4575		return -1;
4576
4577	return 0;
4578}
4579
4580/* sort the node_map by start_pfn */
4581void __init sort_node_map(void)
4582{
4583	sort(early_node_map, (size_t)nr_nodemap_entries,
4584			sizeof(struct node_active_region),
4585			cmp_node_active_region, NULL);
4586}
4587
4588/**
4589 * node_map_pfn_alignment - determine the maximum internode alignment
4590 *
4591 * This function should be called after node map is populated and sorted.
4592 * It calculates the maximum power of two alignment which can distinguish
4593 * all the nodes.
4594 *
4595 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4596 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4597 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4598 * shifted, 1GiB is enough and this function will indicate so.
4599 *
4600 * This is used to test whether pfn -> nid mapping of the chosen memory
4601 * model has fine enough granularity to avoid incorrect mapping for the
4602 * populated node map.
4603 *
4604 * Returns the determined alignment in pfn's.  0 if there is no alignment
4605 * requirement (single node).
4606 */
4607unsigned long __init node_map_pfn_alignment(void)
4608{
4609	unsigned long accl_mask = 0, last_end = 0;
4610	int last_nid = -1;
4611	int i;
4612
4613	for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4614		int nid = early_node_map[i].nid;
4615		unsigned long start = early_node_map[i].start_pfn;
4616		unsigned long end = early_node_map[i].end_pfn;
4617		unsigned long mask;
4618
4619		if (!start || last_nid < 0 || last_nid == nid) {
4620			last_nid = nid;
4621			last_end = end;
4622			continue;
4623		}
4624
4625		/*
4626		 * Start with a mask granular enough to pin-point to the
4627		 * start pfn and tick off bits one-by-one until it becomes
4628		 * too coarse to separate the current node from the last.
4629		 */
4630		mask = ~((1 << __ffs(start)) - 1);
4631		while (mask && last_end <= (start & (mask << 1)))
4632			mask <<= 1;
4633
4634		/* accumulate all internode masks */
4635		accl_mask |= mask;
4636	}
4637
4638	/* convert mask to number of pages */
4639	return ~accl_mask + 1;
4640}
4641
4642/* Find the lowest pfn for a node */
4643static unsigned long __init find_min_pfn_for_node(int nid)
4644{
4645	int i;
4646	unsigned long min_pfn = ULONG_MAX;
4647
4648	/* Assuming a sorted map, the first range found has the starting pfn */
4649	for_each_active_range_index_in_nid(i, nid)
4650		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4651
4652	if (min_pfn == ULONG_MAX) {
4653		printk(KERN_WARNING
4654			"Could not find start_pfn for node %d\n", nid);
4655		return 0;
4656	}
4657
4658	return min_pfn;
4659}
4660
4661/**
4662 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4663 *
4664 * It returns the minimum PFN based on information provided via
4665 * add_active_range().
4666 */
4667unsigned long __init find_min_pfn_with_active_regions(void)
4668{
4669	return find_min_pfn_for_node(MAX_NUMNODES);
4670}
4671
4672/*
4673 * early_calculate_totalpages()
4674 * Sum pages in active regions for movable zone.
4675 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4676 */
4677static unsigned long __init early_calculate_totalpages(void)
4678{
4679	int i;
4680	unsigned long totalpages = 0;
4681
4682	for (i = 0; i < nr_nodemap_entries; i++) {
4683		unsigned long pages = early_node_map[i].end_pfn -
4684						early_node_map[i].start_pfn;
4685		totalpages += pages;
4686		if (pages)
4687			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4688	}
4689  	return totalpages;
4690}
4691
4692/*
4693 * Find the PFN the Movable zone begins in each node. Kernel memory
4694 * is spread evenly between nodes as long as the nodes have enough
4695 * memory. When they don't, some nodes will have more kernelcore than
4696 * others
4697 */
4698static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4699{
4700	int i, nid;
4701	unsigned long usable_startpfn;
4702	unsigned long kernelcore_node, kernelcore_remaining;
4703	/* save the state before borrow the nodemask */
4704	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4705	unsigned long totalpages = early_calculate_totalpages();
4706	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4707
4708	/*
4709	 * If movablecore was specified, calculate what size of
4710	 * kernelcore that corresponds so that memory usable for
4711	 * any allocation type is evenly spread. If both kernelcore
4712	 * and movablecore are specified, then the value of kernelcore
4713	 * will be used for required_kernelcore if it's greater than
4714	 * what movablecore would have allowed.
4715	 */
4716	if (required_movablecore) {
4717		unsigned long corepages;
4718
4719		/*
4720		 * Round-up so that ZONE_MOVABLE is at least as large as what
4721		 * was requested by the user
4722		 */
4723		required_movablecore =
4724			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4725		corepages = totalpages - required_movablecore;
4726
4727		required_kernelcore = max(required_kernelcore, corepages);
4728	}
4729
4730	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4731	if (!required_kernelcore)
4732		goto out;
4733
4734	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4735	find_usable_zone_for_movable();
4736	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4737
4738restart:
4739	/* Spread kernelcore memory as evenly as possible throughout nodes */
4740	kernelcore_node = required_kernelcore / usable_nodes;
4741	for_each_node_state(nid, N_HIGH_MEMORY) {
4742		/*
4743		 * Recalculate kernelcore_node if the division per node
4744		 * now exceeds what is necessary to satisfy the requested
4745		 * amount of memory for the kernel
4746		 */
4747		if (required_kernelcore < kernelcore_node)
4748			kernelcore_node = required_kernelcore / usable_nodes;
4749
4750		/*
4751		 * As the map is walked, we track how much memory is usable
4752		 * by the kernel using kernelcore_remaining. When it is
4753		 * 0, the rest of the node is usable by ZONE_MOVABLE
4754		 */
4755		kernelcore_remaining = kernelcore_node;
4756
4757		/* Go through each range of PFNs within this node */
4758		for_each_active_range_index_in_nid(i, nid) {
4759			unsigned long start_pfn, end_pfn;
4760			unsigned long size_pages;
4761
4762			start_pfn = max(early_node_map[i].start_pfn,
4763						zone_movable_pfn[nid]);
4764			end_pfn = early_node_map[i].end_pfn;
4765			if (start_pfn >= end_pfn)
4766				continue;
4767
4768			/* Account for what is only usable for kernelcore */
4769			if (start_pfn < usable_startpfn) {
4770				unsigned long kernel_pages;
4771				kernel_pages = min(end_pfn, usable_startpfn)
4772								- start_pfn;
4773
4774				kernelcore_remaining -= min(kernel_pages,
4775							kernelcore_remaining);
4776				required_kernelcore -= min(kernel_pages,
4777							required_kernelcore);
4778
4779				/* Continue if range is now fully accounted */
4780				if (end_pfn <= usable_startpfn) {
4781
4782					/*
4783					 * Push zone_movable_pfn to the end so
4784					 * that if we have to rebalance
4785					 * kernelcore across nodes, we will
4786					 * not double account here
4787					 */
4788					zone_movable_pfn[nid] = end_pfn;
4789					continue;
4790				}
4791				start_pfn = usable_startpfn;
4792			}
4793
4794			/*
4795			 * The usable PFN range for ZONE_MOVABLE is from
4796			 * start_pfn->end_pfn. Calculate size_pages as the
4797			 * number of pages used as kernelcore
4798			 */
4799			size_pages = end_pfn - start_pfn;
4800			if (size_pages > kernelcore_remaining)
4801				size_pages = kernelcore_remaining;
4802			zone_movable_pfn[nid] = start_pfn + size_pages;
4803
4804			/*
4805			 * Some kernelcore has been met, update counts and
4806			 * break if the kernelcore for this node has been
4807			 * satisified
4808			 */
4809			required_kernelcore -= min(required_kernelcore,
4810								size_pages);
4811			kernelcore_remaining -= size_pages;
4812			if (!kernelcore_remaining)
4813				break;
4814		}
4815	}
4816
4817	/*
4818	 * If there is still required_kernelcore, we do another pass with one
4819	 * less node in the count. This will push zone_movable_pfn[nid] further
4820	 * along on the nodes that still have memory until kernelcore is
4821	 * satisified
4822	 */
4823	usable_nodes--;
4824	if (usable_nodes && required_kernelcore > usable_nodes)
4825		goto restart;
4826
4827	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4828	for (nid = 0; nid < MAX_NUMNODES; nid++)
4829		zone_movable_pfn[nid] =
4830			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4831
4832out:
4833	/* restore the node_state */
4834	node_states[N_HIGH_MEMORY] = saved_node_state;
4835}
4836
4837/* Any regular memory on that node ? */
4838static void check_for_regular_memory(pg_data_t *pgdat)
4839{
4840#ifdef CONFIG_HIGHMEM
4841	enum zone_type zone_type;
4842
4843	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4844		struct zone *zone = &pgdat->node_zones[zone_type];
4845		if (zone->present_pages)
4846			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4847	}
4848#endif
4849}
4850
4851/**
4852 * free_area_init_nodes - Initialise all pg_data_t and zone data
4853 * @max_zone_pfn: an array of max PFNs for each zone
4854 *
4855 * This will call free_area_init_node() for each active node in the system.
4856 * Using the page ranges provided by add_active_range(), the size of each
4857 * zone in each node and their holes is calculated. If the maximum PFN
4858 * between two adjacent zones match, it is assumed that the zone is empty.
4859 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4860 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4861 * starts where the previous one ended. For example, ZONE_DMA32 starts
4862 * at arch_max_dma_pfn.
4863 */
4864void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4865{
4866	unsigned long nid;
4867	int i;
4868
4869	/* Sort early_node_map as initialisation assumes it is sorted */
4870	sort_node_map();
4871
4872	/* Record where the zone boundaries are */
4873	memset(arch_zone_lowest_possible_pfn, 0,
4874				sizeof(arch_zone_lowest_possible_pfn));
4875	memset(arch_zone_highest_possible_pfn, 0,
4876				sizeof(arch_zone_highest_possible_pfn));
4877	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4878	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4879	for (i = 1; i < MAX_NR_ZONES; i++) {
4880		if (i == ZONE_MOVABLE)
4881			continue;
4882		arch_zone_lowest_possible_pfn[i] =
4883			arch_zone_highest_possible_pfn[i-1];
4884		arch_zone_highest_possible_pfn[i] =
4885			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4886	}
4887	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4888	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4889
4890	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4891	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4892	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4893
4894	/* Print out the zone ranges */
4895	printk("Zone PFN ranges:\n");
4896	for (i = 0; i < MAX_NR_ZONES; i++) {
4897		if (i == ZONE_MOVABLE)
4898			continue;
4899		printk("  %-8s ", zone_names[i]);
4900		if (arch_zone_lowest_possible_pfn[i] ==
4901				arch_zone_highest_possible_pfn[i])
4902			printk("empty\n");
4903		else
4904			printk("%0#10lx -> %0#10lx\n",
4905				arch_zone_lowest_possible_pfn[i],
4906				arch_zone_highest_possible_pfn[i]);
4907	}
4908
4909	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4910	printk("Movable zone start PFN for each node\n");
4911	for (i = 0; i < MAX_NUMNODES; i++) {
4912		if (zone_movable_pfn[i])
4913			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4914	}
4915
4916	/* Print out the early_node_map[] */
4917	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4918	for (i = 0; i < nr_nodemap_entries; i++)
4919		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4920						early_node_map[i].start_pfn,
4921						early_node_map[i].end_pfn);
4922
4923	/* Initialise every node */
4924	mminit_verify_pageflags_layout();
4925	setup_nr_node_ids();
4926	for_each_online_node(nid) {
4927		pg_data_t *pgdat = NODE_DATA(nid);
4928		free_area_init_node(nid, NULL,
4929				find_min_pfn_for_node(nid), NULL);
4930
4931		/* Any memory on that node */
4932		if (pgdat->node_present_pages)
4933			node_set_state(nid, N_HIGH_MEMORY);
4934		check_for_regular_memory(pgdat);
4935	}
4936}
4937
4938static int __init cmdline_parse_core(char *p, unsigned long *core)
4939{
4940	unsigned long long coremem;
4941	if (!p)
4942		return -EINVAL;
4943
4944	coremem = memparse(p, &p);
4945	*core = coremem >> PAGE_SHIFT;
4946
4947	/* Paranoid check that UL is enough for the coremem value */
4948	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4949
4950	return 0;
4951}
4952
4953/*
4954 * kernelcore=size sets the amount of memory for use for allocations that
4955 * cannot be reclaimed or migrated.
4956 */
4957static int __init cmdline_parse_kernelcore(char *p)
4958{
4959	return cmdline_parse_core(p, &required_kernelcore);
4960}
4961
4962/*
4963 * movablecore=size sets the amount of memory for use for allocations that
4964 * can be reclaimed or migrated.
4965 */
4966static int __init cmdline_parse_movablecore(char *p)
4967{
4968	return cmdline_parse_core(p, &required_movablecore);
4969}
4970
4971early_param("kernelcore", cmdline_parse_kernelcore);
4972early_param("movablecore", cmdline_parse_movablecore);
4973
4974#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4975
4976/**
4977 * set_dma_reserve - set the specified number of pages reserved in the first zone
4978 * @new_dma_reserve: The number of pages to mark reserved
4979 *
4980 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4981 * In the DMA zone, a significant percentage may be consumed by kernel image
4982 * and other unfreeable allocations which can skew the watermarks badly. This
4983 * function may optionally be used to account for unfreeable pages in the
4984 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4985 * smaller per-cpu batchsize.
4986 */
4987void __init set_dma_reserve(unsigned long new_dma_reserve)
4988{
4989	dma_reserve = new_dma_reserve;
4990}
4991
4992void __init free_area_init(unsigned long *zones_size)
4993{
4994	free_area_init_node(0, zones_size,
4995			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4996}
4997
4998static int page_alloc_cpu_notify(struct notifier_block *self,
4999				 unsigned long action, void *hcpu)
5000{
5001	int cpu = (unsigned long)hcpu;
5002
5003	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5004		drain_pages(cpu);
5005
5006		/*
5007		 * Spill the event counters of the dead processor
5008		 * into the current processors event counters.
5009		 * This artificially elevates the count of the current
5010		 * processor.
5011		 */
5012		vm_events_fold_cpu(cpu);
5013
5014		/*
5015		 * Zero the differential counters of the dead processor
5016		 * so that the vm statistics are consistent.
5017		 *
5018		 * This is only okay since the processor is dead and cannot
5019		 * race with what we are doing.
5020		 */
5021		refresh_cpu_vm_stats(cpu);
5022	}
5023	return NOTIFY_OK;
5024}
5025
5026void __init page_alloc_init(void)
5027{
5028	hotcpu_notifier(page_alloc_cpu_notify, 0);
5029}
5030
5031/*
5032 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5033 *	or min_free_kbytes changes.
5034 */
5035static void calculate_totalreserve_pages(void)
5036{
5037	struct pglist_data *pgdat;
5038	unsigned long reserve_pages = 0;
5039	enum zone_type i, j;
5040
5041	for_each_online_pgdat(pgdat) {
5042		for (i = 0; i < MAX_NR_ZONES; i++) {
5043			struct zone *zone = pgdat->node_zones + i;
5044			unsigned long max = 0;
5045
5046			/* Find valid and maximum lowmem_reserve in the zone */
5047			for (j = i; j < MAX_NR_ZONES; j++) {
5048				if (zone->lowmem_reserve[j] > max)
5049					max = zone->lowmem_reserve[j];
5050			}
5051
5052			/* we treat the high watermark as reserved pages. */
5053			max += high_wmark_pages(zone);
5054
5055			if (max > zone->present_pages)
5056				max = zone->present_pages;
5057			reserve_pages += max;
5058		}
5059	}
5060	totalreserve_pages = reserve_pages;
5061}
5062
5063/*
5064 * setup_per_zone_lowmem_reserve - called whenever
5065 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5066 *	has a correct pages reserved value, so an adequate number of
5067 *	pages are left in the zone after a successful __alloc_pages().
5068 */
5069static void setup_per_zone_lowmem_reserve(void)
5070{
5071	struct pglist_data *pgdat;
5072	enum zone_type j, idx;
5073
5074	for_each_online_pgdat(pgdat) {
5075		for (j = 0; j < MAX_NR_ZONES; j++) {
5076			struct zone *zone = pgdat->node_zones + j;
5077			unsigned long present_pages = zone->present_pages;
5078
5079			zone->lowmem_reserve[j] = 0;
5080
5081			idx = j;
5082			while (idx) {
5083				struct zone *lower_zone;
5084
5085				idx--;
5086
5087				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5088					sysctl_lowmem_reserve_ratio[idx] = 1;
5089
5090				lower_zone = pgdat->node_zones + idx;
5091				lower_zone->lowmem_reserve[j] = present_pages /
5092					sysctl_lowmem_reserve_ratio[idx];
5093				present_pages += lower_zone->present_pages;
5094			}
5095		}
5096	}
5097
5098	/* update totalreserve_pages */
5099	calculate_totalreserve_pages();
5100}
5101
5102/**
5103 * setup_per_zone_wmarks - called when min_free_kbytes changes
5104 * or when memory is hot-{added|removed}
5105 *
5106 * Ensures that the watermark[min,low,high] values for each zone are set
5107 * correctly with respect to min_free_kbytes.
5108 */
5109void setup_per_zone_wmarks(void)
5110{
5111	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5112	unsigned long lowmem_pages = 0;
5113	struct zone *zone;
5114	unsigned long flags;
5115
5116	/* Calculate total number of !ZONE_HIGHMEM pages */
5117	for_each_zone(zone) {
5118		if (!is_highmem(zone))
5119			lowmem_pages += zone->present_pages;
5120	}
5121
5122	for_each_zone(zone) {
5123		u64 tmp;
5124
5125		spin_lock_irqsave(&zone->lock, flags);
5126		tmp = (u64)pages_min * zone->present_pages;
5127		do_div(tmp, lowmem_pages);
5128		if (is_highmem(zone)) {
5129			/*
5130			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5131			 * need highmem pages, so cap pages_min to a small
5132			 * value here.
5133			 *
5134			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5135			 * deltas controls asynch page reclaim, and so should
5136			 * not be capped for highmem.
5137			 */
5138			int min_pages;
5139
5140			min_pages = zone->present_pages / 1024;
5141			if (min_pages < SWAP_CLUSTER_MAX)
5142				min_pages = SWAP_CLUSTER_MAX;
5143			if (min_pages > 128)
5144				min_pages = 128;
5145			zone->watermark[WMARK_MIN] = min_pages;
5146		} else {
5147			/*
5148			 * If it's a lowmem zone, reserve a number of pages
5149			 * proportionate to the zone's size.
5150			 */
5151			zone->watermark[WMARK_MIN] = tmp;
5152		}
5153
5154		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5155		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5156		setup_zone_migrate_reserve(zone);
5157		spin_unlock_irqrestore(&zone->lock, flags);
5158	}
5159
5160	/* update totalreserve_pages */
5161	calculate_totalreserve_pages();
5162}
5163
5164/*
5165 * The inactive anon list should be small enough that the VM never has to
5166 * do too much work, but large enough that each inactive page has a chance
5167 * to be referenced again before it is swapped out.
5168 *
5169 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5170 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5171 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5172 * the anonymous pages are kept on the inactive list.
5173 *
5174 * total     target    max
5175 * memory    ratio     inactive anon
5176 * -------------------------------------
5177 *   10MB       1         5MB
5178 *  100MB       1        50MB
5179 *    1GB       3       250MB
5180 *   10GB      10       0.9GB
5181 *  100GB      31         3GB
5182 *    1TB     101        10GB
5183 *   10TB     320        32GB
5184 */
5185static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5186{
5187	unsigned int gb, ratio;
5188
5189	/* Zone size in gigabytes */
5190	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5191	if (gb)
5192		ratio = int_sqrt(10 * gb);
5193	else
5194		ratio = 1;
5195
5196	zone->inactive_ratio = ratio;
5197}
5198
5199static void __meminit setup_per_zone_inactive_ratio(void)
5200{
5201	struct zone *zone;
5202
5203	for_each_zone(zone)
5204		calculate_zone_inactive_ratio(zone);
5205}
5206
5207/*
5208 * Initialise min_free_kbytes.
5209 *
5210 * For small machines we want it small (128k min).  For large machines
5211 * we want it large (64MB max).  But it is not linear, because network
5212 * bandwidth does not increase linearly with machine size.  We use
5213 *
5214 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5215 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5216 *
5217 * which yields
5218 *
5219 * 16MB:	512k
5220 * 32MB:	724k
5221 * 64MB:	1024k
5222 * 128MB:	1448k
5223 * 256MB:	2048k
5224 * 512MB:	2896k
5225 * 1024MB:	4096k
5226 * 2048MB:	5792k
5227 * 4096MB:	8192k
5228 * 8192MB:	11584k
5229 * 16384MB:	16384k
5230 */
5231int __meminit init_per_zone_wmark_min(void)
5232{
5233	unsigned long lowmem_kbytes;
5234
5235	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5236
5237	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5238	if (min_free_kbytes < 128)
5239		min_free_kbytes = 128;
5240	if (min_free_kbytes > 65536)
5241		min_free_kbytes = 65536;
5242	setup_per_zone_wmarks();
5243	refresh_zone_stat_thresholds();
5244	setup_per_zone_lowmem_reserve();
5245	setup_per_zone_inactive_ratio();
5246	return 0;
5247}
5248module_init(init_per_zone_wmark_min)
5249
5250/*
5251 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5252 *	that we can call two helper functions whenever min_free_kbytes
5253 *	changes.
5254 */
5255int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5256	void __user *buffer, size_t *length, loff_t *ppos)
5257{
5258	proc_dointvec(table, write, buffer, length, ppos);
5259	if (write)
5260		setup_per_zone_wmarks();
5261	return 0;
5262}
5263
5264#ifdef CONFIG_NUMA
5265int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5266	void __user *buffer, size_t *length, loff_t *ppos)
5267{
5268	struct zone *zone;
5269	int rc;
5270
5271	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5272	if (rc)
5273		return rc;
5274
5275	for_each_zone(zone)
5276		zone->min_unmapped_pages = (zone->present_pages *
5277				sysctl_min_unmapped_ratio) / 100;
5278	return 0;
5279}
5280
5281int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5282	void __user *buffer, size_t *length, loff_t *ppos)
5283{
5284	struct zone *zone;
5285	int rc;
5286
5287	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5288	if (rc)
5289		return rc;
5290
5291	for_each_zone(zone)
5292		zone->min_slab_pages = (zone->present_pages *
5293				sysctl_min_slab_ratio) / 100;
5294	return 0;
5295}
5296#endif
5297
5298/*
5299 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5300 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5301 *	whenever sysctl_lowmem_reserve_ratio changes.
5302 *
5303 * The reserve ratio obviously has absolutely no relation with the
5304 * minimum watermarks. The lowmem reserve ratio can only make sense
5305 * if in function of the boot time zone sizes.
5306 */
5307int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5308	void __user *buffer, size_t *length, loff_t *ppos)
5309{
5310	proc_dointvec_minmax(table, write, buffer, length, ppos);
5311	setup_per_zone_lowmem_reserve();
5312	return 0;
5313}
5314
5315/*
5316 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5317 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5318 * can have before it gets flushed back to buddy allocator.
5319 */
5320
5321int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5322	void __user *buffer, size_t *length, loff_t *ppos)
5323{
5324	struct zone *zone;
5325	unsigned int cpu;
5326	int ret;
5327
5328	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5329	if (!write || (ret == -EINVAL))
5330		return ret;
5331	for_each_populated_zone(zone) {
5332		for_each_possible_cpu(cpu) {
5333			unsigned long  high;
5334			high = zone->present_pages / percpu_pagelist_fraction;
5335			setup_pagelist_highmark(
5336				per_cpu_ptr(zone->pageset, cpu), high);
5337		}
5338	}
5339	return 0;
5340}
5341
5342int hashdist = HASHDIST_DEFAULT;
5343
5344#ifdef CONFIG_NUMA
5345static int __init set_hashdist(char *str)
5346{
5347	if (!str)
5348		return 0;
5349	hashdist = simple_strtoul(str, &str, 0);
5350	return 1;
5351}
5352__setup("hashdist=", set_hashdist);
5353#endif
5354
5355/*
5356 * allocate a large system hash table from bootmem
5357 * - it is assumed that the hash table must contain an exact power-of-2
5358 *   quantity of entries
5359 * - limit is the number of hash buckets, not the total allocation size
5360 */
5361void *__init alloc_large_system_hash(const char *tablename,
5362				     unsigned long bucketsize,
5363				     unsigned long numentries,
5364				     int scale,
5365				     int flags,
5366				     unsigned int *_hash_shift,
5367				     unsigned int *_hash_mask,
5368				     unsigned long limit)
5369{
5370	unsigned long long max = limit;
5371	unsigned long log2qty, size;
5372	void *table = NULL;
5373
5374	/* allow the kernel cmdline to have a say */
5375	if (!numentries) {
5376		/* round applicable memory size up to nearest megabyte */
5377		numentries = nr_kernel_pages;
5378		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5379		numentries >>= 20 - PAGE_SHIFT;
5380		numentries <<= 20 - PAGE_SHIFT;
5381
5382		/* limit to 1 bucket per 2^scale bytes of low memory */
5383		if (scale > PAGE_SHIFT)
5384			numentries >>= (scale - PAGE_SHIFT);
5385		else
5386			numentries <<= (PAGE_SHIFT - scale);
5387
5388		/* Make sure we've got at least a 0-order allocation.. */
5389		if (unlikely(flags & HASH_SMALL)) {
5390			/* Makes no sense without HASH_EARLY */
5391			WARN_ON(!(flags & HASH_EARLY));
5392			if (!(numentries >> *_hash_shift)) {
5393				numentries = 1UL << *_hash_shift;
5394				BUG_ON(!numentries);
5395			}
5396		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5397			numentries = PAGE_SIZE / bucketsize;
5398	}
5399	numentries = roundup_pow_of_two(numentries);
5400
5401	/* limit allocation size to 1/16 total memory by default */
5402	if (max == 0) {
5403		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5404		do_div(max, bucketsize);
5405	}
5406
5407	if (numentries > max)
5408		numentries = max;
5409
5410	log2qty = ilog2(numentries);
5411
5412	do {
5413		size = bucketsize << log2qty;
5414		if (flags & HASH_EARLY)
5415			table = alloc_bootmem_nopanic(size);
5416		else if (hashdist)
5417			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5418		else {
5419			/*
5420			 * If bucketsize is not a power-of-two, we may free
5421			 * some pages at the end of hash table which
5422			 * alloc_pages_exact() automatically does
5423			 */
5424			if (get_order(size) < MAX_ORDER) {
5425				table = alloc_pages_exact(size, GFP_ATOMIC);
5426				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5427			}
5428		}
5429	} while (!table && size > PAGE_SIZE && --log2qty);
5430
5431	if (!table)
5432		panic("Failed to allocate %s hash table\n", tablename);
5433
5434	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5435	       tablename,
5436	       (1UL << log2qty),
5437	       ilog2(size) - PAGE_SHIFT,
5438	       size);
5439
5440	if (_hash_shift)
5441		*_hash_shift = log2qty;
5442	if (_hash_mask)
5443		*_hash_mask = (1 << log2qty) - 1;
5444
5445	return table;
5446}
5447
5448/* Return a pointer to the bitmap storing bits affecting a block of pages */
5449static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5450							unsigned long pfn)
5451{
5452#ifdef CONFIG_SPARSEMEM
5453	return __pfn_to_section(pfn)->pageblock_flags;
5454#else
5455	return zone->pageblock_flags;
5456#endif /* CONFIG_SPARSEMEM */
5457}
5458
5459static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5460{
5461#ifdef CONFIG_SPARSEMEM
5462	pfn &= (PAGES_PER_SECTION-1);
5463	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5464#else
5465	pfn = pfn - zone->zone_start_pfn;
5466	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5467#endif /* CONFIG_SPARSEMEM */
5468}
5469
5470/**
5471 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5472 * @page: The page within the block of interest
5473 * @start_bitidx: The first bit of interest to retrieve
5474 * @end_bitidx: The last bit of interest
5475 * returns pageblock_bits flags
5476 */
5477unsigned long get_pageblock_flags_group(struct page *page,
5478					int start_bitidx, int end_bitidx)
5479{
5480	struct zone *zone;
5481	unsigned long *bitmap;
5482	unsigned long pfn, bitidx;
5483	unsigned long flags = 0;
5484	unsigned long value = 1;
5485
5486	zone = page_zone(page);
5487	pfn = page_to_pfn(page);
5488	bitmap = get_pageblock_bitmap(zone, pfn);
5489	bitidx = pfn_to_bitidx(zone, pfn);
5490
5491	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5492		if (test_bit(bitidx + start_bitidx, bitmap))
5493			flags |= value;
5494
5495	return flags;
5496}
5497
5498/**
5499 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5500 * @page: The page within the block of interest
5501 * @start_bitidx: The first bit of interest
5502 * @end_bitidx: The last bit of interest
5503 * @flags: The flags to set
5504 */
5505void set_pageblock_flags_group(struct page *page, unsigned long flags,
5506					int start_bitidx, int end_bitidx)
5507{
5508	struct zone *zone;
5509	unsigned long *bitmap;
5510	unsigned long pfn, bitidx;
5511	unsigned long value = 1;
5512
5513	zone = page_zone(page);
5514	pfn = page_to_pfn(page);
5515	bitmap = get_pageblock_bitmap(zone, pfn);
5516	bitidx = pfn_to_bitidx(zone, pfn);
5517	VM_BUG_ON(pfn < zone->zone_start_pfn);
5518	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5519
5520	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5521		if (flags & value)
5522			__set_bit(bitidx + start_bitidx, bitmap);
5523		else
5524			__clear_bit(bitidx + start_bitidx, bitmap);
5525}
5526
5527/*
5528 * This is designed as sub function...plz see page_isolation.c also.
5529 * set/clear page block's type to be ISOLATE.
5530 * page allocater never alloc memory from ISOLATE block.
5531 */
5532
5533static int
5534__count_immobile_pages(struct zone *zone, struct page *page, int count)
5535{
5536	unsigned long pfn, iter, found;
5537	/*
5538	 * For avoiding noise data, lru_add_drain_all() should be called
5539	 * If ZONE_MOVABLE, the zone never contains immobile pages
5540	 */
5541	if (zone_idx(zone) == ZONE_MOVABLE)
5542		return true;
5543
5544	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5545		return true;
5546
5547	pfn = page_to_pfn(page);
5548	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5549		unsigned long check = pfn + iter;
5550
5551		if (!pfn_valid_within(check))
5552			continue;
5553
5554		page = pfn_to_page(check);
5555		if (!page_count(page)) {
5556			if (PageBuddy(page))
5557				iter += (1 << page_order(page)) - 1;
5558			continue;
5559		}
5560		if (!PageLRU(page))
5561			found++;
5562		/*
5563		 * If there are RECLAIMABLE pages, we need to check it.
5564		 * But now, memory offline itself doesn't call shrink_slab()
5565		 * and it still to be fixed.
5566		 */
5567		/*
5568		 * If the page is not RAM, page_count()should be 0.
5569		 * we don't need more check. This is an _used_ not-movable page.
5570		 *
5571		 * The problematic thing here is PG_reserved pages. PG_reserved
5572		 * is set to both of a memory hole page and a _used_ kernel
5573		 * page at boot.
5574		 */
5575		if (found > count)
5576			return false;
5577	}
5578	return true;
5579}
5580
5581bool is_pageblock_removable_nolock(struct page *page)
5582{
5583	struct zone *zone = page_zone(page);
5584	return __count_immobile_pages(zone, page, 0);
5585}
5586
5587int set_migratetype_isolate(struct page *page)
5588{
5589	struct zone *zone;
5590	unsigned long flags, pfn;
5591	struct memory_isolate_notify arg;
5592	int notifier_ret;
5593	int ret = -EBUSY;
5594
5595	zone = page_zone(page);
5596
5597	spin_lock_irqsave(&zone->lock, flags);
5598
5599	pfn = page_to_pfn(page);
5600	arg.start_pfn = pfn;
5601	arg.nr_pages = pageblock_nr_pages;
5602	arg.pages_found = 0;
5603
5604	/*
5605	 * It may be possible to isolate a pageblock even if the
5606	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5607	 * notifier chain is used by balloon drivers to return the
5608	 * number of pages in a range that are held by the balloon
5609	 * driver to shrink memory. If all the pages are accounted for
5610	 * by balloons, are free, or on the LRU, isolation can continue.
5611	 * Later, for example, when memory hotplug notifier runs, these
5612	 * pages reported as "can be isolated" should be isolated(freed)
5613	 * by the balloon driver through the memory notifier chain.
5614	 */
5615	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5616	notifier_ret = notifier_to_errno(notifier_ret);
5617	if (notifier_ret)
5618		goto out;
5619	/*
5620	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5621	 * We just check MOVABLE pages.
5622	 */
5623	if (__count_immobile_pages(zone, page, arg.pages_found))
5624		ret = 0;
5625
5626	/*
5627	 * immobile means "not-on-lru" paes. If immobile is larger than
5628	 * removable-by-driver pages reported by notifier, we'll fail.
5629	 */
5630
5631out:
5632	if (!ret) {
5633		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5634		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5635	}
5636
5637	spin_unlock_irqrestore(&zone->lock, flags);
5638	if (!ret)
5639		drain_all_pages();
5640	return ret;
5641}
5642
5643void unset_migratetype_isolate(struct page *page)
5644{
5645	struct zone *zone;
5646	unsigned long flags;
5647	zone = page_zone(page);
5648	spin_lock_irqsave(&zone->lock, flags);
5649	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5650		goto out;
5651	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5652	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5653out:
5654	spin_unlock_irqrestore(&zone->lock, flags);
5655}
5656
5657#ifdef CONFIG_MEMORY_HOTREMOVE
5658/*
5659 * All pages in the range must be isolated before calling this.
5660 */
5661void
5662__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5663{
5664	struct page *page;
5665	struct zone *zone;
5666	int order, i;
5667	unsigned long pfn;
5668	unsigned long flags;
5669	/* find the first valid pfn */
5670	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5671		if (pfn_valid(pfn))
5672			break;
5673	if (pfn == end_pfn)
5674		return;
5675	zone = page_zone(pfn_to_page(pfn));
5676	spin_lock_irqsave(&zone->lock, flags);
5677	pfn = start_pfn;
5678	while (pfn < end_pfn) {
5679		if (!pfn_valid(pfn)) {
5680			pfn++;
5681			continue;
5682		}
5683		page = pfn_to_page(pfn);
5684		BUG_ON(page_count(page));
5685		BUG_ON(!PageBuddy(page));
5686		order = page_order(page);
5687#ifdef CONFIG_DEBUG_VM
5688		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5689		       pfn, 1 << order, end_pfn);
5690#endif
5691		list_del(&page->lru);
5692		rmv_page_order(page);
5693		zone->free_area[order].nr_free--;
5694		__mod_zone_page_state(zone, NR_FREE_PAGES,
5695				      - (1UL << order));
5696		for (i = 0; i < (1 << order); i++)
5697			SetPageReserved((page+i));
5698		pfn += (1 << order);
5699	}
5700	spin_unlock_irqrestore(&zone->lock, flags);
5701}
5702#endif
5703
5704#ifdef CONFIG_MEMORY_FAILURE
5705bool is_free_buddy_page(struct page *page)
5706{
5707	struct zone *zone = page_zone(page);
5708	unsigned long pfn = page_to_pfn(page);
5709	unsigned long flags;
5710	int order;
5711
5712	spin_lock_irqsave(&zone->lock, flags);
5713	for (order = 0; order < MAX_ORDER; order++) {
5714		struct page *page_head = page - (pfn & ((1 << order) - 1));
5715
5716		if (PageBuddy(page_head) && page_order(page_head) >= order)
5717			break;
5718	}
5719	spin_unlock_irqrestore(&zone->lock, flags);
5720
5721	return order < MAX_ORDER;
5722}
5723#endif
5724
5725static struct trace_print_flags pageflag_names[] = {
5726	{1UL << PG_locked,		"locked"	},
5727	{1UL << PG_error,		"error"		},
5728	{1UL << PG_referenced,		"referenced"	},
5729	{1UL << PG_uptodate,		"uptodate"	},
5730	{1UL << PG_dirty,		"dirty"		},
5731	{1UL << PG_lru,			"lru"		},
5732	{1UL << PG_active,		"active"	},
5733	{1UL << PG_slab,		"slab"		},
5734	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5735	{1UL << PG_arch_1,		"arch_1"	},
5736	{1UL << PG_reserved,		"reserved"	},
5737	{1UL << PG_private,		"private"	},
5738	{1UL << PG_private_2,		"private_2"	},
5739	{1UL << PG_writeback,		"writeback"	},
5740#ifdef CONFIG_PAGEFLAGS_EXTENDED
5741	{1UL << PG_head,		"head"		},
5742	{1UL << PG_tail,		"tail"		},
5743#else
5744	{1UL << PG_compound,		"compound"	},
5745#endif
5746	{1UL << PG_swapcache,		"swapcache"	},
5747	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5748	{1UL << PG_reclaim,		"reclaim"	},
5749	{1UL << PG_swapbacked,		"swapbacked"	},
5750	{1UL << PG_unevictable,		"unevictable"	},
5751#ifdef CONFIG_MMU
5752	{1UL << PG_mlocked,		"mlocked"	},
5753#endif
5754#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5755	{1UL << PG_uncached,		"uncached"	},
5756#endif
5757#ifdef CONFIG_MEMORY_FAILURE
5758	{1UL << PG_hwpoison,		"hwpoison"	},
5759#endif
5760	{-1UL,				NULL		},
5761};
5762
5763static void dump_page_flags(unsigned long flags)
5764{
5765	const char *delim = "";
5766	unsigned long mask;
5767	int i;
5768
5769	printk(KERN_ALERT "page flags: %#lx(", flags);
5770
5771	/* remove zone id */
5772	flags &= (1UL << NR_PAGEFLAGS) - 1;
5773
5774	for (i = 0; pageflag_names[i].name && flags; i++) {
5775
5776		mask = pageflag_names[i].mask;
5777		if ((flags & mask) != mask)
5778			continue;
5779
5780		flags &= ~mask;
5781		printk("%s%s", delim, pageflag_names[i].name);
5782		delim = "|";
5783	}
5784
5785	/* check for left over flags */
5786	if (flags)
5787		printk("%s%#lx", delim, flags);
5788
5789	printk(")\n");
5790}
5791
5792void dump_page(struct page *page)
5793{
5794	printk(KERN_ALERT
5795	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5796		page, atomic_read(&page->_count), page_mapcount(page),
5797		page->mapping, page->index);
5798	dump_page_flags(page->flags);
5799	mem_cgroup_print_bad_page(page);
5800}
5801