page_alloc.c revision 54114994f4de7e8076fc250e44501e55e19b75b5
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77	 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80	 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83	 32
84#endif
85};
86
87EXPORT_SYMBOL(totalram_pages);
88
89static char * const zone_names[MAX_NR_ZONES] = {
90#ifdef CONFIG_ZONE_DMA
91	 "DMA",
92#endif
93#ifdef CONFIG_ZONE_DMA32
94	 "DMA32",
95#endif
96	 "Normal",
97#ifdef CONFIG_HIGHMEM
98	 "HighMem"
99#endif
100};
101
102int min_free_kbytes = 1024;
103
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
106static unsigned long __meminitdata dma_reserve;
107
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109  /*
110   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111   * ranges of memory (RAM) that may be registered with add_active_range().
112   * Ranges passed to add_active_range() will be merged if possible
113   * so the number of times add_active_range() can be called is
114   * related to the number of nodes and the number of holes
115   */
116  #ifdef CONFIG_MAX_ACTIVE_REGIONS
117    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119  #else
120    #if MAX_NUMNODES >= 32
121      /* If there can be many nodes, allow up to 50 holes per node */
122      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123    #else
124      /* By default, allow up to 256 distinct regions */
125      #define MAX_ACTIVE_REGIONS 256
126    #endif
127  #endif
128
129  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130  static int __meminitdata nr_nodemap_entries;
131  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
135  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139#if MAX_NUMNODES > 1
140int nr_node_ids __read_mostly = MAX_NUMNODES;
141EXPORT_SYMBOL(nr_node_ids);
142#endif
143
144#ifdef CONFIG_DEBUG_VM
145static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
146{
147	int ret = 0;
148	unsigned seq;
149	unsigned long pfn = page_to_pfn(page);
150
151	do {
152		seq = zone_span_seqbegin(zone);
153		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
154			ret = 1;
155		else if (pfn < zone->zone_start_pfn)
156			ret = 1;
157	} while (zone_span_seqretry(zone, seq));
158
159	return ret;
160}
161
162static int page_is_consistent(struct zone *zone, struct page *page)
163{
164	if (!pfn_valid_within(page_to_pfn(page)))
165		return 0;
166	if (zone != page_zone(page))
167		return 0;
168
169	return 1;
170}
171/*
172 * Temporary debugging check for pages not lying within a given zone.
173 */
174static int bad_range(struct zone *zone, struct page *page)
175{
176	if (page_outside_zone_boundaries(zone, page))
177		return 1;
178	if (!page_is_consistent(zone, page))
179		return 1;
180
181	return 0;
182}
183#else
184static inline int bad_range(struct zone *zone, struct page *page)
185{
186	return 0;
187}
188#endif
189
190static void bad_page(struct page *page)
191{
192	printk(KERN_EMERG "Bad page state in process '%s'\n"
193		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
194		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
195		KERN_EMERG "Backtrace:\n",
196		current->comm, page, (int)(2*sizeof(unsigned long)),
197		(unsigned long)page->flags, page->mapping,
198		page_mapcount(page), page_count(page));
199	dump_stack();
200	page->flags &= ~(1 << PG_lru	|
201			1 << PG_private |
202			1 << PG_locked	|
203			1 << PG_active	|
204			1 << PG_dirty	|
205			1 << PG_reclaim |
206			1 << PG_slab    |
207			1 << PG_swapcache |
208			1 << PG_writeback |
209			1 << PG_buddy );
210	set_page_count(page, 0);
211	reset_page_mapcount(page);
212	page->mapping = NULL;
213	add_taint(TAINT_BAD_PAGE);
214}
215
216/*
217 * Higher-order pages are called "compound pages".  They are structured thusly:
218 *
219 * The first PAGE_SIZE page is called the "head page".
220 *
221 * The remaining PAGE_SIZE pages are called "tail pages".
222 *
223 * All pages have PG_compound set.  All pages have their ->private pointing at
224 * the head page (even the head page has this).
225 *
226 * The first tail page's ->lru.next holds the address of the compound page's
227 * put_page() function.  Its ->lru.prev holds the order of allocation.
228 * This usage means that zero-order pages may not be compound.
229 */
230
231static void free_compound_page(struct page *page)
232{
233	__free_pages_ok(page, compound_order(page));
234}
235
236static void prep_compound_page(struct page *page, unsigned long order)
237{
238	int i;
239	int nr_pages = 1 << order;
240
241	set_compound_page_dtor(page, free_compound_page);
242	set_compound_order(page, order);
243	__SetPageHead(page);
244	for (i = 1; i < nr_pages; i++) {
245		struct page *p = page + i;
246
247		__SetPageTail(p);
248		p->first_page = page;
249	}
250}
251
252static void destroy_compound_page(struct page *page, unsigned long order)
253{
254	int i;
255	int nr_pages = 1 << order;
256
257	if (unlikely(compound_order(page) != order))
258		bad_page(page);
259
260	if (unlikely(!PageHead(page)))
261			bad_page(page);
262	__ClearPageHead(page);
263	for (i = 1; i < nr_pages; i++) {
264		struct page *p = page + i;
265
266		if (unlikely(!PageTail(p) |
267				(p->first_page != page)))
268			bad_page(page);
269		__ClearPageTail(p);
270	}
271}
272
273static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
274{
275	int i;
276
277	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
278	/*
279	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
280	 * and __GFP_HIGHMEM from hard or soft interrupt context.
281	 */
282	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
283	for (i = 0; i < (1 << order); i++)
284		clear_highpage(page + i);
285}
286
287/*
288 * function for dealing with page's order in buddy system.
289 * zone->lock is already acquired when we use these.
290 * So, we don't need atomic page->flags operations here.
291 */
292static inline unsigned long page_order(struct page *page)
293{
294	return page_private(page);
295}
296
297static inline void set_page_order(struct page *page, int order)
298{
299	set_page_private(page, order);
300	__SetPageBuddy(page);
301}
302
303static inline void rmv_page_order(struct page *page)
304{
305	__ClearPageBuddy(page);
306	set_page_private(page, 0);
307}
308
309/*
310 * Locate the struct page for both the matching buddy in our
311 * pair (buddy1) and the combined O(n+1) page they form (page).
312 *
313 * 1) Any buddy B1 will have an order O twin B2 which satisfies
314 * the following equation:
315 *     B2 = B1 ^ (1 << O)
316 * For example, if the starting buddy (buddy2) is #8 its order
317 * 1 buddy is #10:
318 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
319 *
320 * 2) Any buddy B will have an order O+1 parent P which
321 * satisfies the following equation:
322 *     P = B & ~(1 << O)
323 *
324 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
325 */
326static inline struct page *
327__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
328{
329	unsigned long buddy_idx = page_idx ^ (1 << order);
330
331	return page + (buddy_idx - page_idx);
332}
333
334static inline unsigned long
335__find_combined_index(unsigned long page_idx, unsigned int order)
336{
337	return (page_idx & ~(1 << order));
338}
339
340/*
341 * This function checks whether a page is free && is the buddy
342 * we can do coalesce a page and its buddy if
343 * (a) the buddy is not in a hole &&
344 * (b) the buddy is in the buddy system &&
345 * (c) a page and its buddy have the same order &&
346 * (d) a page and its buddy are in the same zone.
347 *
348 * For recording whether a page is in the buddy system, we use PG_buddy.
349 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
350 *
351 * For recording page's order, we use page_private(page).
352 */
353static inline int page_is_buddy(struct page *page, struct page *buddy,
354								int order)
355{
356	if (!pfn_valid_within(page_to_pfn(buddy)))
357		return 0;
358
359	if (page_zone_id(page) != page_zone_id(buddy))
360		return 0;
361
362	if (PageBuddy(buddy) && page_order(buddy) == order) {
363		BUG_ON(page_count(buddy) != 0);
364		return 1;
365	}
366	return 0;
367}
368
369/*
370 * Freeing function for a buddy system allocator.
371 *
372 * The concept of a buddy system is to maintain direct-mapped table
373 * (containing bit values) for memory blocks of various "orders".
374 * The bottom level table contains the map for the smallest allocatable
375 * units of memory (here, pages), and each level above it describes
376 * pairs of units from the levels below, hence, "buddies".
377 * At a high level, all that happens here is marking the table entry
378 * at the bottom level available, and propagating the changes upward
379 * as necessary, plus some accounting needed to play nicely with other
380 * parts of the VM system.
381 * At each level, we keep a list of pages, which are heads of continuous
382 * free pages of length of (1 << order) and marked with PG_buddy. Page's
383 * order is recorded in page_private(page) field.
384 * So when we are allocating or freeing one, we can derive the state of the
385 * other.  That is, if we allocate a small block, and both were
386 * free, the remainder of the region must be split into blocks.
387 * If a block is freed, and its buddy is also free, then this
388 * triggers coalescing into a block of larger size.
389 *
390 * -- wli
391 */
392
393static inline void __free_one_page(struct page *page,
394		struct zone *zone, unsigned int order)
395{
396	unsigned long page_idx;
397	int order_size = 1 << order;
398
399	if (unlikely(PageCompound(page)))
400		destroy_compound_page(page, order);
401
402	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
403
404	VM_BUG_ON(page_idx & (order_size - 1));
405	VM_BUG_ON(bad_range(zone, page));
406
407	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
408	while (order < MAX_ORDER-1) {
409		unsigned long combined_idx;
410		struct free_area *area;
411		struct page *buddy;
412
413		buddy = __page_find_buddy(page, page_idx, order);
414		if (!page_is_buddy(page, buddy, order))
415			break;		/* Move the buddy up one level. */
416
417		list_del(&buddy->lru);
418		area = zone->free_area + order;
419		area->nr_free--;
420		rmv_page_order(buddy);
421		combined_idx = __find_combined_index(page_idx, order);
422		page = page + (combined_idx - page_idx);
423		page_idx = combined_idx;
424		order++;
425	}
426	set_page_order(page, order);
427	list_add(&page->lru, &zone->free_area[order].free_list);
428	zone->free_area[order].nr_free++;
429}
430
431static inline int free_pages_check(struct page *page)
432{
433	if (unlikely(page_mapcount(page) |
434		(page->mapping != NULL)  |
435		(page_count(page) != 0)  |
436		(page->flags & (
437			1 << PG_lru	|
438			1 << PG_private |
439			1 << PG_locked	|
440			1 << PG_active	|
441			1 << PG_slab	|
442			1 << PG_swapcache |
443			1 << PG_writeback |
444			1 << PG_reserved |
445			1 << PG_buddy ))))
446		bad_page(page);
447	/*
448	 * PageReclaim == PageTail. It is only an error
449	 * for PageReclaim to be set if PageCompound is clear.
450	 */
451	if (unlikely(!PageCompound(page) && PageReclaim(page)))
452		bad_page(page);
453	if (PageDirty(page))
454		__ClearPageDirty(page);
455	/*
456	 * For now, we report if PG_reserved was found set, but do not
457	 * clear it, and do not free the page.  But we shall soon need
458	 * to do more, for when the ZERO_PAGE count wraps negative.
459	 */
460	return PageReserved(page);
461}
462
463/*
464 * Frees a list of pages.
465 * Assumes all pages on list are in same zone, and of same order.
466 * count is the number of pages to free.
467 *
468 * If the zone was previously in an "all pages pinned" state then look to
469 * see if this freeing clears that state.
470 *
471 * And clear the zone's pages_scanned counter, to hold off the "all pages are
472 * pinned" detection logic.
473 */
474static void free_pages_bulk(struct zone *zone, int count,
475					struct list_head *list, int order)
476{
477	spin_lock(&zone->lock);
478	zone->all_unreclaimable = 0;
479	zone->pages_scanned = 0;
480	while (count--) {
481		struct page *page;
482
483		VM_BUG_ON(list_empty(list));
484		page = list_entry(list->prev, struct page, lru);
485		/* have to delete it as __free_one_page list manipulates */
486		list_del(&page->lru);
487		__free_one_page(page, zone, order);
488	}
489	spin_unlock(&zone->lock);
490}
491
492static void free_one_page(struct zone *zone, struct page *page, int order)
493{
494	spin_lock(&zone->lock);
495	zone->all_unreclaimable = 0;
496	zone->pages_scanned = 0;
497	__free_one_page(page, zone, order);
498	spin_unlock(&zone->lock);
499}
500
501static void __free_pages_ok(struct page *page, unsigned int order)
502{
503	unsigned long flags;
504	int i;
505	int reserved = 0;
506
507	for (i = 0 ; i < (1 << order) ; ++i)
508		reserved += free_pages_check(page + i);
509	if (reserved)
510		return;
511
512	if (!PageHighMem(page))
513		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
514	arch_free_page(page, order);
515	kernel_map_pages(page, 1 << order, 0);
516
517	local_irq_save(flags);
518	__count_vm_events(PGFREE, 1 << order);
519	free_one_page(page_zone(page), page, order);
520	local_irq_restore(flags);
521}
522
523/*
524 * permit the bootmem allocator to evade page validation on high-order frees
525 */
526void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
527{
528	if (order == 0) {
529		__ClearPageReserved(page);
530		set_page_count(page, 0);
531		set_page_refcounted(page);
532		__free_page(page);
533	} else {
534		int loop;
535
536		prefetchw(page);
537		for (loop = 0; loop < BITS_PER_LONG; loop++) {
538			struct page *p = &page[loop];
539
540			if (loop + 1 < BITS_PER_LONG)
541				prefetchw(p + 1);
542			__ClearPageReserved(p);
543			set_page_count(p, 0);
544		}
545
546		set_page_refcounted(page);
547		__free_pages(page, order);
548	}
549}
550
551
552/*
553 * The order of subdivision here is critical for the IO subsystem.
554 * Please do not alter this order without good reasons and regression
555 * testing. Specifically, as large blocks of memory are subdivided,
556 * the order in which smaller blocks are delivered depends on the order
557 * they're subdivided in this function. This is the primary factor
558 * influencing the order in which pages are delivered to the IO
559 * subsystem according to empirical testing, and this is also justified
560 * by considering the behavior of a buddy system containing a single
561 * large block of memory acted on by a series of small allocations.
562 * This behavior is a critical factor in sglist merging's success.
563 *
564 * -- wli
565 */
566static inline void expand(struct zone *zone, struct page *page,
567 	int low, int high, struct free_area *area)
568{
569	unsigned long size = 1 << high;
570
571	while (high > low) {
572		area--;
573		high--;
574		size >>= 1;
575		VM_BUG_ON(bad_range(zone, &page[size]));
576		list_add(&page[size].lru, &area->free_list);
577		area->nr_free++;
578		set_page_order(&page[size], high);
579	}
580}
581
582/*
583 * This page is about to be returned from the page allocator
584 */
585static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
586{
587	if (unlikely(page_mapcount(page) |
588		(page->mapping != NULL)  |
589		(page_count(page) != 0)  |
590		(page->flags & (
591			1 << PG_lru	|
592			1 << PG_private	|
593			1 << PG_locked	|
594			1 << PG_active	|
595			1 << PG_dirty	|
596			1 << PG_reclaim	|
597			1 << PG_slab    |
598			1 << PG_swapcache |
599			1 << PG_writeback |
600			1 << PG_reserved |
601			1 << PG_buddy ))))
602		bad_page(page);
603
604	/*
605	 * For now, we report if PG_reserved was found set, but do not
606	 * clear it, and do not allocate the page: as a safety net.
607	 */
608	if (PageReserved(page))
609		return 1;
610
611	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
612			1 << PG_referenced | 1 << PG_arch_1 |
613			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614	set_page_private(page, 0);
615	set_page_refcounted(page);
616
617	arch_alloc_page(page, order);
618	kernel_map_pages(page, 1 << order, 1);
619
620	if (gfp_flags & __GFP_ZERO)
621		prep_zero_page(page, order, gfp_flags);
622
623	if (order && (gfp_flags & __GFP_COMP))
624		prep_compound_page(page, order);
625
626	return 0;
627}
628
629/*
630 * Do the hard work of removing an element from the buddy allocator.
631 * Call me with the zone->lock already held.
632 */
633static struct page *__rmqueue(struct zone *zone, unsigned int order)
634{
635	struct free_area * area;
636	unsigned int current_order;
637	struct page *page;
638
639	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
640		area = zone->free_area + current_order;
641		if (list_empty(&area->free_list))
642			continue;
643
644		page = list_entry(area->free_list.next, struct page, lru);
645		list_del(&page->lru);
646		rmv_page_order(page);
647		area->nr_free--;
648		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
649		expand(zone, page, order, current_order, area);
650		return page;
651	}
652
653	return NULL;
654}
655
656/*
657 * Obtain a specified number of elements from the buddy allocator, all under
658 * a single hold of the lock, for efficiency.  Add them to the supplied list.
659 * Returns the number of new pages which were placed at *list.
660 */
661static int rmqueue_bulk(struct zone *zone, unsigned int order,
662			unsigned long count, struct list_head *list)
663{
664	int i;
665
666	spin_lock(&zone->lock);
667	for (i = 0; i < count; ++i) {
668		struct page *page = __rmqueue(zone, order);
669		if (unlikely(page == NULL))
670			break;
671		list_add_tail(&page->lru, list);
672	}
673	spin_unlock(&zone->lock);
674	return i;
675}
676
677#ifdef CONFIG_NUMA
678/*
679 * Called from the vmstat counter updater to drain pagesets of this
680 * currently executing processor on remote nodes after they have
681 * expired.
682 *
683 * Note that this function must be called with the thread pinned to
684 * a single processor.
685 */
686void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
687{
688	unsigned long flags;
689	int to_drain;
690
691	local_irq_save(flags);
692	if (pcp->count >= pcp->batch)
693		to_drain = pcp->batch;
694	else
695		to_drain = pcp->count;
696	free_pages_bulk(zone, to_drain, &pcp->list, 0);
697	pcp->count -= to_drain;
698	local_irq_restore(flags);
699}
700#endif
701
702static void __drain_pages(unsigned int cpu)
703{
704	unsigned long flags;
705	struct zone *zone;
706	int i;
707
708	for_each_zone(zone) {
709		struct per_cpu_pageset *pset;
710
711		if (!populated_zone(zone))
712			continue;
713
714		pset = zone_pcp(zone, cpu);
715		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716			struct per_cpu_pages *pcp;
717
718			pcp = &pset->pcp[i];
719			local_irq_save(flags);
720			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721			pcp->count = 0;
722			local_irq_restore(flags);
723		}
724	}
725}
726
727#ifdef CONFIG_PM
728
729void mark_free_pages(struct zone *zone)
730{
731	unsigned long pfn, max_zone_pfn;
732	unsigned long flags;
733	int order;
734	struct list_head *curr;
735
736	if (!zone->spanned_pages)
737		return;
738
739	spin_lock_irqsave(&zone->lock, flags);
740
741	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743		if (pfn_valid(pfn)) {
744			struct page *page = pfn_to_page(pfn);
745
746			if (!swsusp_page_is_forbidden(page))
747				swsusp_unset_page_free(page);
748		}
749
750	for (order = MAX_ORDER - 1; order >= 0; --order)
751		list_for_each(curr, &zone->free_area[order].free_list) {
752			unsigned long i;
753
754			pfn = page_to_pfn(list_entry(curr, struct page, lru));
755			for (i = 0; i < (1UL << order); i++)
756				swsusp_set_page_free(pfn_to_page(pfn + i));
757		}
758
759	spin_unlock_irqrestore(&zone->lock, flags);
760}
761
762/*
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764 */
765void drain_local_pages(void)
766{
767	unsigned long flags;
768
769	local_irq_save(flags);
770	__drain_pages(smp_processor_id());
771	local_irq_restore(flags);
772}
773#endif /* CONFIG_PM */
774
775/*
776 * Free a 0-order page
777 */
778static void fastcall free_hot_cold_page(struct page *page, int cold)
779{
780	struct zone *zone = page_zone(page);
781	struct per_cpu_pages *pcp;
782	unsigned long flags;
783
784	if (PageAnon(page))
785		page->mapping = NULL;
786	if (free_pages_check(page))
787		return;
788
789	if (!PageHighMem(page))
790		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791	arch_free_page(page, 0);
792	kernel_map_pages(page, 1, 0);
793
794	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795	local_irq_save(flags);
796	__count_vm_event(PGFREE);
797	list_add(&page->lru, &pcp->list);
798	pcp->count++;
799	if (pcp->count >= pcp->high) {
800		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801		pcp->count -= pcp->batch;
802	}
803	local_irq_restore(flags);
804	put_cpu();
805}
806
807void fastcall free_hot_page(struct page *page)
808{
809	free_hot_cold_page(page, 0);
810}
811
812void fastcall free_cold_page(struct page *page)
813{
814	free_hot_cold_page(page, 1);
815}
816
817/*
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
821 *
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
824 */
825void split_page(struct page *page, unsigned int order)
826{
827	int i;
828
829	VM_BUG_ON(PageCompound(page));
830	VM_BUG_ON(!page_count(page));
831	for (i = 1; i < (1 << order); i++)
832		set_page_refcounted(page + i);
833}
834
835/*
836 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
837 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
838 * or two.
839 */
840static struct page *buffered_rmqueue(struct zonelist *zonelist,
841			struct zone *zone, int order, gfp_t gfp_flags)
842{
843	unsigned long flags;
844	struct page *page;
845	int cold = !!(gfp_flags & __GFP_COLD);
846	int cpu;
847
848again:
849	cpu  = get_cpu();
850	if (likely(order == 0)) {
851		struct per_cpu_pages *pcp;
852
853		pcp = &zone_pcp(zone, cpu)->pcp[cold];
854		local_irq_save(flags);
855		if (!pcp->count) {
856			pcp->count = rmqueue_bulk(zone, 0,
857						pcp->batch, &pcp->list);
858			if (unlikely(!pcp->count))
859				goto failed;
860		}
861		page = list_entry(pcp->list.next, struct page, lru);
862		list_del(&page->lru);
863		pcp->count--;
864	} else {
865		spin_lock_irqsave(&zone->lock, flags);
866		page = __rmqueue(zone, order);
867		spin_unlock(&zone->lock);
868		if (!page)
869			goto failed;
870	}
871
872	__count_zone_vm_events(PGALLOC, zone, 1 << order);
873	zone_statistics(zonelist, zone);
874	local_irq_restore(flags);
875	put_cpu();
876
877	VM_BUG_ON(bad_range(zone, page));
878	if (prep_new_page(page, order, gfp_flags))
879		goto again;
880	return page;
881
882failed:
883	local_irq_restore(flags);
884	put_cpu();
885	return NULL;
886}
887
888#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
889#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
890#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
891#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
892#define ALLOC_HARDER		0x10 /* try to alloc harder */
893#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
894#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
895
896#ifdef CONFIG_FAIL_PAGE_ALLOC
897
898static struct fail_page_alloc_attr {
899	struct fault_attr attr;
900
901	u32 ignore_gfp_highmem;
902	u32 ignore_gfp_wait;
903	u32 min_order;
904
905#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
906
907	struct dentry *ignore_gfp_highmem_file;
908	struct dentry *ignore_gfp_wait_file;
909	struct dentry *min_order_file;
910
911#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
912
913} fail_page_alloc = {
914	.attr = FAULT_ATTR_INITIALIZER,
915	.ignore_gfp_wait = 1,
916	.ignore_gfp_highmem = 1,
917	.min_order = 1,
918};
919
920static int __init setup_fail_page_alloc(char *str)
921{
922	return setup_fault_attr(&fail_page_alloc.attr, str);
923}
924__setup("fail_page_alloc=", setup_fail_page_alloc);
925
926static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927{
928	if (order < fail_page_alloc.min_order)
929		return 0;
930	if (gfp_mask & __GFP_NOFAIL)
931		return 0;
932	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
933		return 0;
934	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
935		return 0;
936
937	return should_fail(&fail_page_alloc.attr, 1 << order);
938}
939
940#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
941
942static int __init fail_page_alloc_debugfs(void)
943{
944	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
945	struct dentry *dir;
946	int err;
947
948	err = init_fault_attr_dentries(&fail_page_alloc.attr,
949				       "fail_page_alloc");
950	if (err)
951		return err;
952	dir = fail_page_alloc.attr.dentries.dir;
953
954	fail_page_alloc.ignore_gfp_wait_file =
955		debugfs_create_bool("ignore-gfp-wait", mode, dir,
956				      &fail_page_alloc.ignore_gfp_wait);
957
958	fail_page_alloc.ignore_gfp_highmem_file =
959		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
960				      &fail_page_alloc.ignore_gfp_highmem);
961	fail_page_alloc.min_order_file =
962		debugfs_create_u32("min-order", mode, dir,
963				   &fail_page_alloc.min_order);
964
965	if (!fail_page_alloc.ignore_gfp_wait_file ||
966            !fail_page_alloc.ignore_gfp_highmem_file ||
967            !fail_page_alloc.min_order_file) {
968		err = -ENOMEM;
969		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
970		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
971		debugfs_remove(fail_page_alloc.min_order_file);
972		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
973	}
974
975	return err;
976}
977
978late_initcall(fail_page_alloc_debugfs);
979
980#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
981
982#else /* CONFIG_FAIL_PAGE_ALLOC */
983
984static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
985{
986	return 0;
987}
988
989#endif /* CONFIG_FAIL_PAGE_ALLOC */
990
991/*
992 * Return 1 if free pages are above 'mark'. This takes into account the order
993 * of the allocation.
994 */
995int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
996		      int classzone_idx, int alloc_flags)
997{
998	/* free_pages my go negative - that's OK */
999	long min = mark;
1000	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1001	int o;
1002
1003	if (alloc_flags & ALLOC_HIGH)
1004		min -= min / 2;
1005	if (alloc_flags & ALLOC_HARDER)
1006		min -= min / 4;
1007
1008	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1009		return 0;
1010	for (o = 0; o < order; o++) {
1011		/* At the next order, this order's pages become unavailable */
1012		free_pages -= z->free_area[o].nr_free << o;
1013
1014		/* Require fewer higher order pages to be free */
1015		min >>= 1;
1016
1017		if (free_pages <= min)
1018			return 0;
1019	}
1020	return 1;
1021}
1022
1023#ifdef CONFIG_NUMA
1024/*
1025 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1026 * skip over zones that are not allowed by the cpuset, or that have
1027 * been recently (in last second) found to be nearly full.  See further
1028 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1029 * that have to skip over alot of full or unallowed zones.
1030 *
1031 * If the zonelist cache is present in the passed in zonelist, then
1032 * returns a pointer to the allowed node mask (either the current
1033 * tasks mems_allowed, or node_online_map.)
1034 *
1035 * If the zonelist cache is not available for this zonelist, does
1036 * nothing and returns NULL.
1037 *
1038 * If the fullzones BITMAP in the zonelist cache is stale (more than
1039 * a second since last zap'd) then we zap it out (clear its bits.)
1040 *
1041 * We hold off even calling zlc_setup, until after we've checked the
1042 * first zone in the zonelist, on the theory that most allocations will
1043 * be satisfied from that first zone, so best to examine that zone as
1044 * quickly as we can.
1045 */
1046static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1047{
1048	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1049	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1050
1051	zlc = zonelist->zlcache_ptr;
1052	if (!zlc)
1053		return NULL;
1054
1055	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1056		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1057		zlc->last_full_zap = jiffies;
1058	}
1059
1060	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1061					&cpuset_current_mems_allowed :
1062					&node_online_map;
1063	return allowednodes;
1064}
1065
1066/*
1067 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1068 * if it is worth looking at further for free memory:
1069 *  1) Check that the zone isn't thought to be full (doesn't have its
1070 *     bit set in the zonelist_cache fullzones BITMAP).
1071 *  2) Check that the zones node (obtained from the zonelist_cache
1072 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1073 * Return true (non-zero) if zone is worth looking at further, or
1074 * else return false (zero) if it is not.
1075 *
1076 * This check -ignores- the distinction between various watermarks,
1077 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1078 * found to be full for any variation of these watermarks, it will
1079 * be considered full for up to one second by all requests, unless
1080 * we are so low on memory on all allowed nodes that we are forced
1081 * into the second scan of the zonelist.
1082 *
1083 * In the second scan we ignore this zonelist cache and exactly
1084 * apply the watermarks to all zones, even it is slower to do so.
1085 * We are low on memory in the second scan, and should leave no stone
1086 * unturned looking for a free page.
1087 */
1088static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1089						nodemask_t *allowednodes)
1090{
1091	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1092	int i;				/* index of *z in zonelist zones */
1093	int n;				/* node that zone *z is on */
1094
1095	zlc = zonelist->zlcache_ptr;
1096	if (!zlc)
1097		return 1;
1098
1099	i = z - zonelist->zones;
1100	n = zlc->z_to_n[i];
1101
1102	/* This zone is worth trying if it is allowed but not full */
1103	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1104}
1105
1106/*
1107 * Given 'z' scanning a zonelist, set the corresponding bit in
1108 * zlc->fullzones, so that subsequent attempts to allocate a page
1109 * from that zone don't waste time re-examining it.
1110 */
1111static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1112{
1113	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1114	int i;				/* index of *z in zonelist zones */
1115
1116	zlc = zonelist->zlcache_ptr;
1117	if (!zlc)
1118		return;
1119
1120	i = z - zonelist->zones;
1121
1122	set_bit(i, zlc->fullzones);
1123}
1124
1125#else	/* CONFIG_NUMA */
1126
1127static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1128{
1129	return NULL;
1130}
1131
1132static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1133				nodemask_t *allowednodes)
1134{
1135	return 1;
1136}
1137
1138static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1139{
1140}
1141#endif	/* CONFIG_NUMA */
1142
1143/*
1144 * get_page_from_freelist goes through the zonelist trying to allocate
1145 * a page.
1146 */
1147static struct page *
1148get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1149		struct zonelist *zonelist, int alloc_flags)
1150{
1151	struct zone **z;
1152	struct page *page = NULL;
1153	int classzone_idx = zone_idx(zonelist->zones[0]);
1154	struct zone *zone;
1155	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1156	int zlc_active = 0;		/* set if using zonelist_cache */
1157	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1158
1159zonelist_scan:
1160	/*
1161	 * Scan zonelist, looking for a zone with enough free.
1162	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1163	 */
1164	z = zonelist->zones;
1165
1166	do {
1167		if (NUMA_BUILD && zlc_active &&
1168			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1169				continue;
1170		zone = *z;
1171		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1172			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1173				break;
1174		if ((alloc_flags & ALLOC_CPUSET) &&
1175			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1176				goto try_next_zone;
1177
1178		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1179			unsigned long mark;
1180			if (alloc_flags & ALLOC_WMARK_MIN)
1181				mark = zone->pages_min;
1182			else if (alloc_flags & ALLOC_WMARK_LOW)
1183				mark = zone->pages_low;
1184			else
1185				mark = zone->pages_high;
1186			if (!zone_watermark_ok(zone, order, mark,
1187				    classzone_idx, alloc_flags)) {
1188				if (!zone_reclaim_mode ||
1189				    !zone_reclaim(zone, gfp_mask, order))
1190					goto this_zone_full;
1191			}
1192		}
1193
1194		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1195		if (page)
1196			break;
1197this_zone_full:
1198		if (NUMA_BUILD)
1199			zlc_mark_zone_full(zonelist, z);
1200try_next_zone:
1201		if (NUMA_BUILD && !did_zlc_setup) {
1202			/* we do zlc_setup after the first zone is tried */
1203			allowednodes = zlc_setup(zonelist, alloc_flags);
1204			zlc_active = 1;
1205			did_zlc_setup = 1;
1206		}
1207	} while (*(++z) != NULL);
1208
1209	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1210		/* Disable zlc cache for second zonelist scan */
1211		zlc_active = 0;
1212		goto zonelist_scan;
1213	}
1214	return page;
1215}
1216
1217/*
1218 * This is the 'heart' of the zoned buddy allocator.
1219 */
1220struct page * fastcall
1221__alloc_pages(gfp_t gfp_mask, unsigned int order,
1222		struct zonelist *zonelist)
1223{
1224	const gfp_t wait = gfp_mask & __GFP_WAIT;
1225	struct zone **z;
1226	struct page *page;
1227	struct reclaim_state reclaim_state;
1228	struct task_struct *p = current;
1229	int do_retry;
1230	int alloc_flags;
1231	int did_some_progress;
1232
1233	might_sleep_if(wait);
1234
1235	if (should_fail_alloc_page(gfp_mask, order))
1236		return NULL;
1237
1238restart:
1239	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1240
1241	if (unlikely(*z == NULL)) {
1242		/* Should this ever happen?? */
1243		return NULL;
1244	}
1245
1246	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1247				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1248	if (page)
1249		goto got_pg;
1250
1251	/*
1252	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1253	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1254	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1255	 * using a larger set of nodes after it has established that the
1256	 * allowed per node queues are empty and that nodes are
1257	 * over allocated.
1258	 */
1259	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1260		goto nopage;
1261
1262	for (z = zonelist->zones; *z; z++)
1263		wakeup_kswapd(*z, order);
1264
1265	/*
1266	 * OK, we're below the kswapd watermark and have kicked background
1267	 * reclaim. Now things get more complex, so set up alloc_flags according
1268	 * to how we want to proceed.
1269	 *
1270	 * The caller may dip into page reserves a bit more if the caller
1271	 * cannot run direct reclaim, or if the caller has realtime scheduling
1272	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1273	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1274	 */
1275	alloc_flags = ALLOC_WMARK_MIN;
1276	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1277		alloc_flags |= ALLOC_HARDER;
1278	if (gfp_mask & __GFP_HIGH)
1279		alloc_flags |= ALLOC_HIGH;
1280	if (wait)
1281		alloc_flags |= ALLOC_CPUSET;
1282
1283	/*
1284	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1285	 * coming from realtime tasks go deeper into reserves.
1286	 *
1287	 * This is the last chance, in general, before the goto nopage.
1288	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1289	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1290	 */
1291	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1292	if (page)
1293		goto got_pg;
1294
1295	/* This allocation should allow future memory freeing. */
1296
1297rebalance:
1298	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1299			&& !in_interrupt()) {
1300		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1301nofail_alloc:
1302			/* go through the zonelist yet again, ignoring mins */
1303			page = get_page_from_freelist(gfp_mask, order,
1304				zonelist, ALLOC_NO_WATERMARKS);
1305			if (page)
1306				goto got_pg;
1307			if (gfp_mask & __GFP_NOFAIL) {
1308				congestion_wait(WRITE, HZ/50);
1309				goto nofail_alloc;
1310			}
1311		}
1312		goto nopage;
1313	}
1314
1315	/* Atomic allocations - we can't balance anything */
1316	if (!wait)
1317		goto nopage;
1318
1319	cond_resched();
1320
1321	/* We now go into synchronous reclaim */
1322	cpuset_memory_pressure_bump();
1323	p->flags |= PF_MEMALLOC;
1324	reclaim_state.reclaimed_slab = 0;
1325	p->reclaim_state = &reclaim_state;
1326
1327	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1328
1329	p->reclaim_state = NULL;
1330	p->flags &= ~PF_MEMALLOC;
1331
1332	cond_resched();
1333
1334	if (likely(did_some_progress)) {
1335		page = get_page_from_freelist(gfp_mask, order,
1336						zonelist, alloc_flags);
1337		if (page)
1338			goto got_pg;
1339	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1340		/*
1341		 * Go through the zonelist yet one more time, keep
1342		 * very high watermark here, this is only to catch
1343		 * a parallel oom killing, we must fail if we're still
1344		 * under heavy pressure.
1345		 */
1346		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1347				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1348		if (page)
1349			goto got_pg;
1350
1351		out_of_memory(zonelist, gfp_mask, order);
1352		goto restart;
1353	}
1354
1355	/*
1356	 * Don't let big-order allocations loop unless the caller explicitly
1357	 * requests that.  Wait for some write requests to complete then retry.
1358	 *
1359	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1360	 * <= 3, but that may not be true in other implementations.
1361	 */
1362	do_retry = 0;
1363	if (!(gfp_mask & __GFP_NORETRY)) {
1364		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1365			do_retry = 1;
1366		if (gfp_mask & __GFP_NOFAIL)
1367			do_retry = 1;
1368	}
1369	if (do_retry) {
1370		congestion_wait(WRITE, HZ/50);
1371		goto rebalance;
1372	}
1373
1374nopage:
1375	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1376		printk(KERN_WARNING "%s: page allocation failure."
1377			" order:%d, mode:0x%x\n",
1378			p->comm, order, gfp_mask);
1379		dump_stack();
1380		show_mem();
1381	}
1382got_pg:
1383	return page;
1384}
1385
1386EXPORT_SYMBOL(__alloc_pages);
1387
1388/*
1389 * Common helper functions.
1390 */
1391fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1392{
1393	struct page * page;
1394	page = alloc_pages(gfp_mask, order);
1395	if (!page)
1396		return 0;
1397	return (unsigned long) page_address(page);
1398}
1399
1400EXPORT_SYMBOL(__get_free_pages);
1401
1402fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1403{
1404	struct page * page;
1405
1406	/*
1407	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1408	 * a highmem page
1409	 */
1410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1411
1412	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1413	if (page)
1414		return (unsigned long) page_address(page);
1415	return 0;
1416}
1417
1418EXPORT_SYMBOL(get_zeroed_page);
1419
1420void __pagevec_free(struct pagevec *pvec)
1421{
1422	int i = pagevec_count(pvec);
1423
1424	while (--i >= 0)
1425		free_hot_cold_page(pvec->pages[i], pvec->cold);
1426}
1427
1428fastcall void __free_pages(struct page *page, unsigned int order)
1429{
1430	if (put_page_testzero(page)) {
1431		if (order == 0)
1432			free_hot_page(page);
1433		else
1434			__free_pages_ok(page, order);
1435	}
1436}
1437
1438EXPORT_SYMBOL(__free_pages);
1439
1440fastcall void free_pages(unsigned long addr, unsigned int order)
1441{
1442	if (addr != 0) {
1443		VM_BUG_ON(!virt_addr_valid((void *)addr));
1444		__free_pages(virt_to_page((void *)addr), order);
1445	}
1446}
1447
1448EXPORT_SYMBOL(free_pages);
1449
1450static unsigned int nr_free_zone_pages(int offset)
1451{
1452	/* Just pick one node, since fallback list is circular */
1453	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1454	unsigned int sum = 0;
1455
1456	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1457	struct zone **zonep = zonelist->zones;
1458	struct zone *zone;
1459
1460	for (zone = *zonep++; zone; zone = *zonep++) {
1461		unsigned long size = zone->present_pages;
1462		unsigned long high = zone->pages_high;
1463		if (size > high)
1464			sum += size - high;
1465	}
1466
1467	return sum;
1468}
1469
1470/*
1471 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1472 */
1473unsigned int nr_free_buffer_pages(void)
1474{
1475	return nr_free_zone_pages(gfp_zone(GFP_USER));
1476}
1477
1478/*
1479 * Amount of free RAM allocatable within all zones
1480 */
1481unsigned int nr_free_pagecache_pages(void)
1482{
1483	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1484}
1485
1486static inline void show_node(struct zone *zone)
1487{
1488	if (NUMA_BUILD)
1489		printk("Node %d ", zone_to_nid(zone));
1490}
1491
1492void si_meminfo(struct sysinfo *val)
1493{
1494	val->totalram = totalram_pages;
1495	val->sharedram = 0;
1496	val->freeram = global_page_state(NR_FREE_PAGES);
1497	val->bufferram = nr_blockdev_pages();
1498	val->totalhigh = totalhigh_pages;
1499	val->freehigh = nr_free_highpages();
1500	val->mem_unit = PAGE_SIZE;
1501}
1502
1503EXPORT_SYMBOL(si_meminfo);
1504
1505#ifdef CONFIG_NUMA
1506void si_meminfo_node(struct sysinfo *val, int nid)
1507{
1508	pg_data_t *pgdat = NODE_DATA(nid);
1509
1510	val->totalram = pgdat->node_present_pages;
1511	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1512#ifdef CONFIG_HIGHMEM
1513	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1514	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1515			NR_FREE_PAGES);
1516#else
1517	val->totalhigh = 0;
1518	val->freehigh = 0;
1519#endif
1520	val->mem_unit = PAGE_SIZE;
1521}
1522#endif
1523
1524#define K(x) ((x) << (PAGE_SHIFT-10))
1525
1526/*
1527 * Show free area list (used inside shift_scroll-lock stuff)
1528 * We also calculate the percentage fragmentation. We do this by counting the
1529 * memory on each free list with the exception of the first item on the list.
1530 */
1531void show_free_areas(void)
1532{
1533	int cpu;
1534	struct zone *zone;
1535
1536	for_each_zone(zone) {
1537		if (!populated_zone(zone))
1538			continue;
1539
1540		show_node(zone);
1541		printk("%s per-cpu:\n", zone->name);
1542
1543		for_each_online_cpu(cpu) {
1544			struct per_cpu_pageset *pageset;
1545
1546			pageset = zone_pcp(zone, cpu);
1547
1548			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1549			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1550			       cpu, pageset->pcp[0].high,
1551			       pageset->pcp[0].batch, pageset->pcp[0].count,
1552			       pageset->pcp[1].high, pageset->pcp[1].batch,
1553			       pageset->pcp[1].count);
1554		}
1555	}
1556
1557	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1558		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1559		global_page_state(NR_ACTIVE),
1560		global_page_state(NR_INACTIVE),
1561		global_page_state(NR_FILE_DIRTY),
1562		global_page_state(NR_WRITEBACK),
1563		global_page_state(NR_UNSTABLE_NFS),
1564		global_page_state(NR_FREE_PAGES),
1565		global_page_state(NR_SLAB_RECLAIMABLE) +
1566			global_page_state(NR_SLAB_UNRECLAIMABLE),
1567		global_page_state(NR_FILE_MAPPED),
1568		global_page_state(NR_PAGETABLE),
1569		global_page_state(NR_BOUNCE));
1570
1571	for_each_zone(zone) {
1572		int i;
1573
1574		if (!populated_zone(zone))
1575			continue;
1576
1577		show_node(zone);
1578		printk("%s"
1579			" free:%lukB"
1580			" min:%lukB"
1581			" low:%lukB"
1582			" high:%lukB"
1583			" active:%lukB"
1584			" inactive:%lukB"
1585			" present:%lukB"
1586			" pages_scanned:%lu"
1587			" all_unreclaimable? %s"
1588			"\n",
1589			zone->name,
1590			K(zone_page_state(zone, NR_FREE_PAGES)),
1591			K(zone->pages_min),
1592			K(zone->pages_low),
1593			K(zone->pages_high),
1594			K(zone_page_state(zone, NR_ACTIVE)),
1595			K(zone_page_state(zone, NR_INACTIVE)),
1596			K(zone->present_pages),
1597			zone->pages_scanned,
1598			(zone->all_unreclaimable ? "yes" : "no")
1599			);
1600		printk("lowmem_reserve[]:");
1601		for (i = 0; i < MAX_NR_ZONES; i++)
1602			printk(" %lu", zone->lowmem_reserve[i]);
1603		printk("\n");
1604	}
1605
1606	for_each_zone(zone) {
1607 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1608
1609		if (!populated_zone(zone))
1610			continue;
1611
1612		show_node(zone);
1613		printk("%s: ", zone->name);
1614
1615		spin_lock_irqsave(&zone->lock, flags);
1616		for (order = 0; order < MAX_ORDER; order++) {
1617			nr[order] = zone->free_area[order].nr_free;
1618			total += nr[order] << order;
1619		}
1620		spin_unlock_irqrestore(&zone->lock, flags);
1621		for (order = 0; order < MAX_ORDER; order++)
1622			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1623		printk("= %lukB\n", K(total));
1624	}
1625
1626	show_swap_cache_info();
1627}
1628
1629/*
1630 * Builds allocation fallback zone lists.
1631 *
1632 * Add all populated zones of a node to the zonelist.
1633 */
1634static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1635				int nr_zones, enum zone_type zone_type)
1636{
1637	struct zone *zone;
1638
1639	BUG_ON(zone_type >= MAX_NR_ZONES);
1640	zone_type++;
1641
1642	do {
1643		zone_type--;
1644		zone = pgdat->node_zones + zone_type;
1645		if (populated_zone(zone)) {
1646			zonelist->zones[nr_zones++] = zone;
1647			check_highest_zone(zone_type);
1648		}
1649
1650	} while (zone_type);
1651	return nr_zones;
1652}
1653
1654
1655/*
1656 *  zonelist_order:
1657 *  0 = automatic detection of better ordering.
1658 *  1 = order by ([node] distance, -zonetype)
1659 *  2 = order by (-zonetype, [node] distance)
1660 *
1661 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1662 *  the same zonelist. So only NUMA can configure this param.
1663 */
1664#define ZONELIST_ORDER_DEFAULT  0
1665#define ZONELIST_ORDER_NODE     1
1666#define ZONELIST_ORDER_ZONE     2
1667
1668/* zonelist order in the kernel.
1669 * set_zonelist_order() will set this to NODE or ZONE.
1670 */
1671static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1672static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1673
1674
1675#ifdef CONFIG_NUMA
1676/* The value user specified ....changed by config */
1677static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1678/* string for sysctl */
1679#define NUMA_ZONELIST_ORDER_LEN	16
1680char numa_zonelist_order[16] = "default";
1681
1682/*
1683 * interface for configure zonelist ordering.
1684 * command line option "numa_zonelist_order"
1685 *	= "[dD]efault	- default, automatic configuration.
1686 *	= "[nN]ode 	- order by node locality, then by zone within node
1687 *	= "[zZ]one      - order by zone, then by locality within zone
1688 */
1689
1690static int __parse_numa_zonelist_order(char *s)
1691{
1692	if (*s == 'd' || *s == 'D') {
1693		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1694	} else if (*s == 'n' || *s == 'N') {
1695		user_zonelist_order = ZONELIST_ORDER_NODE;
1696	} else if (*s == 'z' || *s == 'Z') {
1697		user_zonelist_order = ZONELIST_ORDER_ZONE;
1698	} else {
1699		printk(KERN_WARNING
1700			"Ignoring invalid numa_zonelist_order value:  "
1701			"%s\n", s);
1702		return -EINVAL;
1703	}
1704	return 0;
1705}
1706
1707static __init int setup_numa_zonelist_order(char *s)
1708{
1709	if (s)
1710		return __parse_numa_zonelist_order(s);
1711	return 0;
1712}
1713early_param("numa_zonelist_order", setup_numa_zonelist_order);
1714
1715/*
1716 * sysctl handler for numa_zonelist_order
1717 */
1718int numa_zonelist_order_handler(ctl_table *table, int write,
1719		struct file *file, void __user *buffer, size_t *length,
1720		loff_t *ppos)
1721{
1722	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1723	int ret;
1724
1725	if (write)
1726		strncpy(saved_string, (char*)table->data,
1727			NUMA_ZONELIST_ORDER_LEN);
1728	ret = proc_dostring(table, write, file, buffer, length, ppos);
1729	if (ret)
1730		return ret;
1731	if (write) {
1732		int oldval = user_zonelist_order;
1733		if (__parse_numa_zonelist_order((char*)table->data)) {
1734			/*
1735			 * bogus value.  restore saved string
1736			 */
1737			strncpy((char*)table->data, saved_string,
1738				NUMA_ZONELIST_ORDER_LEN);
1739			user_zonelist_order = oldval;
1740		} else if (oldval != user_zonelist_order)
1741			build_all_zonelists();
1742	}
1743	return 0;
1744}
1745
1746
1747#define MAX_NODE_LOAD (num_online_nodes())
1748static int node_load[MAX_NUMNODES];
1749
1750/**
1751 * find_next_best_node - find the next node that should appear in a given node's fallback list
1752 * @node: node whose fallback list we're appending
1753 * @used_node_mask: nodemask_t of already used nodes
1754 *
1755 * We use a number of factors to determine which is the next node that should
1756 * appear on a given node's fallback list.  The node should not have appeared
1757 * already in @node's fallback list, and it should be the next closest node
1758 * according to the distance array (which contains arbitrary distance values
1759 * from each node to each node in the system), and should also prefer nodes
1760 * with no CPUs, since presumably they'll have very little allocation pressure
1761 * on them otherwise.
1762 * It returns -1 if no node is found.
1763 */
1764static int find_next_best_node(int node, nodemask_t *used_node_mask)
1765{
1766	int n, val;
1767	int min_val = INT_MAX;
1768	int best_node = -1;
1769
1770	/* Use the local node if we haven't already */
1771	if (!node_isset(node, *used_node_mask)) {
1772		node_set(node, *used_node_mask);
1773		return node;
1774	}
1775
1776	for_each_online_node(n) {
1777		cpumask_t tmp;
1778
1779		/* Don't want a node to appear more than once */
1780		if (node_isset(n, *used_node_mask))
1781			continue;
1782
1783		/* Use the distance array to find the distance */
1784		val = node_distance(node, n);
1785
1786		/* Penalize nodes under us ("prefer the next node") */
1787		val += (n < node);
1788
1789		/* Give preference to headless and unused nodes */
1790		tmp = node_to_cpumask(n);
1791		if (!cpus_empty(tmp))
1792			val += PENALTY_FOR_NODE_WITH_CPUS;
1793
1794		/* Slight preference for less loaded node */
1795		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1796		val += node_load[n];
1797
1798		if (val < min_val) {
1799			min_val = val;
1800			best_node = n;
1801		}
1802	}
1803
1804	if (best_node >= 0)
1805		node_set(best_node, *used_node_mask);
1806
1807	return best_node;
1808}
1809
1810
1811/*
1812 * Build zonelists ordered by node and zones within node.
1813 * This results in maximum locality--normal zone overflows into local
1814 * DMA zone, if any--but risks exhausting DMA zone.
1815 */
1816static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1817{
1818	enum zone_type i;
1819	int j;
1820	struct zonelist *zonelist;
1821
1822	for (i = 0; i < MAX_NR_ZONES; i++) {
1823		zonelist = pgdat->node_zonelists + i;
1824		for (j = 0; zonelist->zones[j] != NULL; j++)
1825			;
1826 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1827		zonelist->zones[j] = NULL;
1828	}
1829}
1830
1831/*
1832 * Build zonelists ordered by zone and nodes within zones.
1833 * This results in conserving DMA zone[s] until all Normal memory is
1834 * exhausted, but results in overflowing to remote node while memory
1835 * may still exist in local DMA zone.
1836 */
1837static int node_order[MAX_NUMNODES];
1838
1839static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1840{
1841	enum zone_type i;
1842	int pos, j, node;
1843	int zone_type;		/* needs to be signed */
1844	struct zone *z;
1845	struct zonelist *zonelist;
1846
1847	for (i = 0; i < MAX_NR_ZONES; i++) {
1848		zonelist = pgdat->node_zonelists + i;
1849		pos = 0;
1850		for (zone_type = i; zone_type >= 0; zone_type--) {
1851			for (j = 0; j < nr_nodes; j++) {
1852				node = node_order[j];
1853				z = &NODE_DATA(node)->node_zones[zone_type];
1854				if (populated_zone(z)) {
1855					zonelist->zones[pos++] = z;
1856					check_highest_zone(zone_type);
1857				}
1858			}
1859		}
1860		zonelist->zones[pos] = NULL;
1861	}
1862}
1863
1864static int default_zonelist_order(void)
1865{
1866	int nid, zone_type;
1867	unsigned long low_kmem_size,total_size;
1868	struct zone *z;
1869	int average_size;
1870	/*
1871         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1872	 * If they are really small and used heavily, the system can fall
1873	 * into OOM very easily.
1874	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1875	 */
1876	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1877	low_kmem_size = 0;
1878	total_size = 0;
1879	for_each_online_node(nid) {
1880		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1881			z = &NODE_DATA(nid)->node_zones[zone_type];
1882			if (populated_zone(z)) {
1883				if (zone_type < ZONE_NORMAL)
1884					low_kmem_size += z->present_pages;
1885				total_size += z->present_pages;
1886			}
1887		}
1888	}
1889	if (!low_kmem_size ||  /* there are no DMA area. */
1890	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1891		return ZONELIST_ORDER_NODE;
1892	/*
1893	 * look into each node's config.
1894  	 * If there is a node whose DMA/DMA32 memory is very big area on
1895 	 * local memory, NODE_ORDER may be suitable.
1896         */
1897	average_size = total_size / (num_online_nodes() + 1);
1898	for_each_online_node(nid) {
1899		low_kmem_size = 0;
1900		total_size = 0;
1901		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1902			z = &NODE_DATA(nid)->node_zones[zone_type];
1903			if (populated_zone(z)) {
1904				if (zone_type < ZONE_NORMAL)
1905					low_kmem_size += z->present_pages;
1906				total_size += z->present_pages;
1907			}
1908		}
1909		if (low_kmem_size &&
1910		    total_size > average_size && /* ignore small node */
1911		    low_kmem_size > total_size * 70/100)
1912			return ZONELIST_ORDER_NODE;
1913	}
1914	return ZONELIST_ORDER_ZONE;
1915}
1916
1917static void set_zonelist_order(void)
1918{
1919	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1920		current_zonelist_order = default_zonelist_order();
1921	else
1922		current_zonelist_order = user_zonelist_order;
1923}
1924
1925static void build_zonelists(pg_data_t *pgdat)
1926{
1927	int j, node, load;
1928	enum zone_type i;
1929	nodemask_t used_mask;
1930	int local_node, prev_node;
1931	struct zonelist *zonelist;
1932	int order = current_zonelist_order;
1933
1934	/* initialize zonelists */
1935	for (i = 0; i < MAX_NR_ZONES; i++) {
1936		zonelist = pgdat->node_zonelists + i;
1937		zonelist->zones[0] = NULL;
1938	}
1939
1940	/* NUMA-aware ordering of nodes */
1941	local_node = pgdat->node_id;
1942	load = num_online_nodes();
1943	prev_node = local_node;
1944	nodes_clear(used_mask);
1945
1946	memset(node_load, 0, sizeof(node_load));
1947	memset(node_order, 0, sizeof(node_order));
1948	j = 0;
1949
1950	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1951		int distance = node_distance(local_node, node);
1952
1953		/*
1954		 * If another node is sufficiently far away then it is better
1955		 * to reclaim pages in a zone before going off node.
1956		 */
1957		if (distance > RECLAIM_DISTANCE)
1958			zone_reclaim_mode = 1;
1959
1960		/*
1961		 * We don't want to pressure a particular node.
1962		 * So adding penalty to the first node in same
1963		 * distance group to make it round-robin.
1964		 */
1965		if (distance != node_distance(local_node, prev_node))
1966			node_load[node] = load;
1967
1968		prev_node = node;
1969		load--;
1970		if (order == ZONELIST_ORDER_NODE)
1971			build_zonelists_in_node_order(pgdat, node);
1972		else
1973			node_order[j++] = node;	/* remember order */
1974	}
1975
1976	if (order == ZONELIST_ORDER_ZONE) {
1977		/* calculate node order -- i.e., DMA last! */
1978		build_zonelists_in_zone_order(pgdat, j);
1979	}
1980}
1981
1982/* Construct the zonelist performance cache - see further mmzone.h */
1983static void build_zonelist_cache(pg_data_t *pgdat)
1984{
1985	int i;
1986
1987	for (i = 0; i < MAX_NR_ZONES; i++) {
1988		struct zonelist *zonelist;
1989		struct zonelist_cache *zlc;
1990		struct zone **z;
1991
1992		zonelist = pgdat->node_zonelists + i;
1993		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1994		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1995		for (z = zonelist->zones; *z; z++)
1996			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1997	}
1998}
1999
2000
2001#else	/* CONFIG_NUMA */
2002
2003static void set_zonelist_order(void)
2004{
2005	current_zonelist_order = ZONELIST_ORDER_ZONE;
2006}
2007
2008static void build_zonelists(pg_data_t *pgdat)
2009{
2010	int node, local_node;
2011	enum zone_type i,j;
2012
2013	local_node = pgdat->node_id;
2014	for (i = 0; i < MAX_NR_ZONES; i++) {
2015		struct zonelist *zonelist;
2016
2017		zonelist = pgdat->node_zonelists + i;
2018
2019 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2020 		/*
2021 		 * Now we build the zonelist so that it contains the zones
2022 		 * of all the other nodes.
2023 		 * We don't want to pressure a particular node, so when
2024 		 * building the zones for node N, we make sure that the
2025 		 * zones coming right after the local ones are those from
2026 		 * node N+1 (modulo N)
2027 		 */
2028		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2029			if (!node_online(node))
2030				continue;
2031			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2032		}
2033		for (node = 0; node < local_node; node++) {
2034			if (!node_online(node))
2035				continue;
2036			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2037		}
2038
2039		zonelist->zones[j] = NULL;
2040	}
2041}
2042
2043/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2044static void build_zonelist_cache(pg_data_t *pgdat)
2045{
2046	int i;
2047
2048	for (i = 0; i < MAX_NR_ZONES; i++)
2049		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2050}
2051
2052#endif	/* CONFIG_NUMA */
2053
2054/* return values int ....just for stop_machine_run() */
2055static int __build_all_zonelists(void *dummy)
2056{
2057	int nid;
2058
2059	for_each_online_node(nid) {
2060		build_zonelists(NODE_DATA(nid));
2061		build_zonelist_cache(NODE_DATA(nid));
2062	}
2063	return 0;
2064}
2065
2066void build_all_zonelists(void)
2067{
2068	set_zonelist_order();
2069
2070	if (system_state == SYSTEM_BOOTING) {
2071		__build_all_zonelists(NULL);
2072		cpuset_init_current_mems_allowed();
2073	} else {
2074		/* we have to stop all cpus to guaranntee there is no user
2075		   of zonelist */
2076		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2077		/* cpuset refresh routine should be here */
2078	}
2079	vm_total_pages = nr_free_pagecache_pages();
2080	printk("Built %i zonelists in %s order.  Total pages: %ld\n",
2081			num_online_nodes(),
2082			zonelist_order_name[current_zonelist_order],
2083			vm_total_pages);
2084#ifdef CONFIG_NUMA
2085	printk("Policy zone: %s\n", zone_names[policy_zone]);
2086#endif
2087}
2088
2089/*
2090 * Helper functions to size the waitqueue hash table.
2091 * Essentially these want to choose hash table sizes sufficiently
2092 * large so that collisions trying to wait on pages are rare.
2093 * But in fact, the number of active page waitqueues on typical
2094 * systems is ridiculously low, less than 200. So this is even
2095 * conservative, even though it seems large.
2096 *
2097 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2098 * waitqueues, i.e. the size of the waitq table given the number of pages.
2099 */
2100#define PAGES_PER_WAITQUEUE	256
2101
2102#ifndef CONFIG_MEMORY_HOTPLUG
2103static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2104{
2105	unsigned long size = 1;
2106
2107	pages /= PAGES_PER_WAITQUEUE;
2108
2109	while (size < pages)
2110		size <<= 1;
2111
2112	/*
2113	 * Once we have dozens or even hundreds of threads sleeping
2114	 * on IO we've got bigger problems than wait queue collision.
2115	 * Limit the size of the wait table to a reasonable size.
2116	 */
2117	size = min(size, 4096UL);
2118
2119	return max(size, 4UL);
2120}
2121#else
2122/*
2123 * A zone's size might be changed by hot-add, so it is not possible to determine
2124 * a suitable size for its wait_table.  So we use the maximum size now.
2125 *
2126 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2127 *
2128 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2129 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2130 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2131 *
2132 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2133 * or more by the traditional way. (See above).  It equals:
2134 *
2135 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2136 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2137 *    powerpc (64K page size)             : =  (32G +16M)byte.
2138 */
2139static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2140{
2141	return 4096UL;
2142}
2143#endif
2144
2145/*
2146 * This is an integer logarithm so that shifts can be used later
2147 * to extract the more random high bits from the multiplicative
2148 * hash function before the remainder is taken.
2149 */
2150static inline unsigned long wait_table_bits(unsigned long size)
2151{
2152	return ffz(~size);
2153}
2154
2155#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2156
2157/*
2158 * Initially all pages are reserved - free ones are freed
2159 * up by free_all_bootmem() once the early boot process is
2160 * done. Non-atomic initialization, single-pass.
2161 */
2162void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2163		unsigned long start_pfn, enum memmap_context context)
2164{
2165	struct page *page;
2166	unsigned long end_pfn = start_pfn + size;
2167	unsigned long pfn;
2168
2169	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2170		/*
2171		 * There can be holes in boot-time mem_map[]s
2172		 * handed to this function.  They do not
2173		 * exist on hotplugged memory.
2174		 */
2175		if (context == MEMMAP_EARLY) {
2176			if (!early_pfn_valid(pfn))
2177				continue;
2178			if (!early_pfn_in_nid(pfn, nid))
2179				continue;
2180		}
2181		page = pfn_to_page(pfn);
2182		set_page_links(page, zone, nid, pfn);
2183		init_page_count(page);
2184		reset_page_mapcount(page);
2185		SetPageReserved(page);
2186		INIT_LIST_HEAD(&page->lru);
2187#ifdef WANT_PAGE_VIRTUAL
2188		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2189		if (!is_highmem_idx(zone))
2190			set_page_address(page, __va(pfn << PAGE_SHIFT));
2191#endif
2192	}
2193}
2194
2195static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2196				struct zone *zone, unsigned long size)
2197{
2198	int order;
2199	for (order = 0; order < MAX_ORDER ; order++) {
2200		INIT_LIST_HEAD(&zone->free_area[order].free_list);
2201		zone->free_area[order].nr_free = 0;
2202	}
2203}
2204
2205#ifndef __HAVE_ARCH_MEMMAP_INIT
2206#define memmap_init(size, nid, zone, start_pfn) \
2207	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2208#endif
2209
2210static int __devinit zone_batchsize(struct zone *zone)
2211{
2212	int batch;
2213
2214	/*
2215	 * The per-cpu-pages pools are set to around 1000th of the
2216	 * size of the zone.  But no more than 1/2 of a meg.
2217	 *
2218	 * OK, so we don't know how big the cache is.  So guess.
2219	 */
2220	batch = zone->present_pages / 1024;
2221	if (batch * PAGE_SIZE > 512 * 1024)
2222		batch = (512 * 1024) / PAGE_SIZE;
2223	batch /= 4;		/* We effectively *= 4 below */
2224	if (batch < 1)
2225		batch = 1;
2226
2227	/*
2228	 * Clamp the batch to a 2^n - 1 value. Having a power
2229	 * of 2 value was found to be more likely to have
2230	 * suboptimal cache aliasing properties in some cases.
2231	 *
2232	 * For example if 2 tasks are alternately allocating
2233	 * batches of pages, one task can end up with a lot
2234	 * of pages of one half of the possible page colors
2235	 * and the other with pages of the other colors.
2236	 */
2237	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2238
2239	return batch;
2240}
2241
2242inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2243{
2244	struct per_cpu_pages *pcp;
2245
2246	memset(p, 0, sizeof(*p));
2247
2248	pcp = &p->pcp[0];		/* hot */
2249	pcp->count = 0;
2250	pcp->high = 6 * batch;
2251	pcp->batch = max(1UL, 1 * batch);
2252	INIT_LIST_HEAD(&pcp->list);
2253
2254	pcp = &p->pcp[1];		/* cold*/
2255	pcp->count = 0;
2256	pcp->high = 2 * batch;
2257	pcp->batch = max(1UL, batch/2);
2258	INIT_LIST_HEAD(&pcp->list);
2259}
2260
2261/*
2262 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2263 * to the value high for the pageset p.
2264 */
2265
2266static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2267				unsigned long high)
2268{
2269	struct per_cpu_pages *pcp;
2270
2271	pcp = &p->pcp[0]; /* hot list */
2272	pcp->high = high;
2273	pcp->batch = max(1UL, high/4);
2274	if ((high/4) > (PAGE_SHIFT * 8))
2275		pcp->batch = PAGE_SHIFT * 8;
2276}
2277
2278
2279#ifdef CONFIG_NUMA
2280/*
2281 * Boot pageset table. One per cpu which is going to be used for all
2282 * zones and all nodes. The parameters will be set in such a way
2283 * that an item put on a list will immediately be handed over to
2284 * the buddy list. This is safe since pageset manipulation is done
2285 * with interrupts disabled.
2286 *
2287 * Some NUMA counter updates may also be caught by the boot pagesets.
2288 *
2289 * The boot_pagesets must be kept even after bootup is complete for
2290 * unused processors and/or zones. They do play a role for bootstrapping
2291 * hotplugged processors.
2292 *
2293 * zoneinfo_show() and maybe other functions do
2294 * not check if the processor is online before following the pageset pointer.
2295 * Other parts of the kernel may not check if the zone is available.
2296 */
2297static struct per_cpu_pageset boot_pageset[NR_CPUS];
2298
2299/*
2300 * Dynamically allocate memory for the
2301 * per cpu pageset array in struct zone.
2302 */
2303static int __cpuinit process_zones(int cpu)
2304{
2305	struct zone *zone, *dzone;
2306
2307	for_each_zone(zone) {
2308
2309		if (!populated_zone(zone))
2310			continue;
2311
2312		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2313					 GFP_KERNEL, cpu_to_node(cpu));
2314		if (!zone_pcp(zone, cpu))
2315			goto bad;
2316
2317		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2318
2319		if (percpu_pagelist_fraction)
2320			setup_pagelist_highmark(zone_pcp(zone, cpu),
2321			 	(zone->present_pages / percpu_pagelist_fraction));
2322	}
2323
2324	return 0;
2325bad:
2326	for_each_zone(dzone) {
2327		if (dzone == zone)
2328			break;
2329		kfree(zone_pcp(dzone, cpu));
2330		zone_pcp(dzone, cpu) = NULL;
2331	}
2332	return -ENOMEM;
2333}
2334
2335static inline void free_zone_pagesets(int cpu)
2336{
2337	struct zone *zone;
2338
2339	for_each_zone(zone) {
2340		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2341
2342		/* Free per_cpu_pageset if it is slab allocated */
2343		if (pset != &boot_pageset[cpu])
2344			kfree(pset);
2345		zone_pcp(zone, cpu) = NULL;
2346	}
2347}
2348
2349static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2350		unsigned long action,
2351		void *hcpu)
2352{
2353	int cpu = (long)hcpu;
2354	int ret = NOTIFY_OK;
2355
2356	switch (action) {
2357	case CPU_UP_PREPARE:
2358	case CPU_UP_PREPARE_FROZEN:
2359		if (process_zones(cpu))
2360			ret = NOTIFY_BAD;
2361		break;
2362	case CPU_UP_CANCELED:
2363	case CPU_UP_CANCELED_FROZEN:
2364	case CPU_DEAD:
2365	case CPU_DEAD_FROZEN:
2366		free_zone_pagesets(cpu);
2367		break;
2368	default:
2369		break;
2370	}
2371	return ret;
2372}
2373
2374static struct notifier_block __cpuinitdata pageset_notifier =
2375	{ &pageset_cpuup_callback, NULL, 0 };
2376
2377void __init setup_per_cpu_pageset(void)
2378{
2379	int err;
2380
2381	/* Initialize per_cpu_pageset for cpu 0.
2382	 * A cpuup callback will do this for every cpu
2383	 * as it comes online
2384	 */
2385	err = process_zones(smp_processor_id());
2386	BUG_ON(err);
2387	register_cpu_notifier(&pageset_notifier);
2388}
2389
2390#endif
2391
2392static noinline __init_refok
2393int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2394{
2395	int i;
2396	struct pglist_data *pgdat = zone->zone_pgdat;
2397	size_t alloc_size;
2398
2399	/*
2400	 * The per-page waitqueue mechanism uses hashed waitqueues
2401	 * per zone.
2402	 */
2403	zone->wait_table_hash_nr_entries =
2404		 wait_table_hash_nr_entries(zone_size_pages);
2405	zone->wait_table_bits =
2406		wait_table_bits(zone->wait_table_hash_nr_entries);
2407	alloc_size = zone->wait_table_hash_nr_entries
2408					* sizeof(wait_queue_head_t);
2409
2410 	if (system_state == SYSTEM_BOOTING) {
2411		zone->wait_table = (wait_queue_head_t *)
2412			alloc_bootmem_node(pgdat, alloc_size);
2413	} else {
2414		/*
2415		 * This case means that a zone whose size was 0 gets new memory
2416		 * via memory hot-add.
2417		 * But it may be the case that a new node was hot-added.  In
2418		 * this case vmalloc() will not be able to use this new node's
2419		 * memory - this wait_table must be initialized to use this new
2420		 * node itself as well.
2421		 * To use this new node's memory, further consideration will be
2422		 * necessary.
2423		 */
2424		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2425	}
2426	if (!zone->wait_table)
2427		return -ENOMEM;
2428
2429	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2430		init_waitqueue_head(zone->wait_table + i);
2431
2432	return 0;
2433}
2434
2435static __meminit void zone_pcp_init(struct zone *zone)
2436{
2437	int cpu;
2438	unsigned long batch = zone_batchsize(zone);
2439
2440	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2441#ifdef CONFIG_NUMA
2442		/* Early boot. Slab allocator not functional yet */
2443		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2444		setup_pageset(&boot_pageset[cpu],0);
2445#else
2446		setup_pageset(zone_pcp(zone,cpu), batch);
2447#endif
2448	}
2449	if (zone->present_pages)
2450		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2451			zone->name, zone->present_pages, batch);
2452}
2453
2454__meminit int init_currently_empty_zone(struct zone *zone,
2455					unsigned long zone_start_pfn,
2456					unsigned long size,
2457					enum memmap_context context)
2458{
2459	struct pglist_data *pgdat = zone->zone_pgdat;
2460	int ret;
2461	ret = zone_wait_table_init(zone, size);
2462	if (ret)
2463		return ret;
2464	pgdat->nr_zones = zone_idx(zone) + 1;
2465
2466	zone->zone_start_pfn = zone_start_pfn;
2467
2468	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2469
2470	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2471
2472	return 0;
2473}
2474
2475#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2476/*
2477 * Basic iterator support. Return the first range of PFNs for a node
2478 * Note: nid == MAX_NUMNODES returns first region regardless of node
2479 */
2480static int __meminit first_active_region_index_in_nid(int nid)
2481{
2482	int i;
2483
2484	for (i = 0; i < nr_nodemap_entries; i++)
2485		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2486			return i;
2487
2488	return -1;
2489}
2490
2491/*
2492 * Basic iterator support. Return the next active range of PFNs for a node
2493 * Note: nid == MAX_NUMNODES returns next region regardles of node
2494 */
2495static int __meminit next_active_region_index_in_nid(int index, int nid)
2496{
2497	for (index = index + 1; index < nr_nodemap_entries; index++)
2498		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2499			return index;
2500
2501	return -1;
2502}
2503
2504#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2505/*
2506 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2507 * Architectures may implement their own version but if add_active_range()
2508 * was used and there are no special requirements, this is a convenient
2509 * alternative
2510 */
2511int __meminit early_pfn_to_nid(unsigned long pfn)
2512{
2513	int i;
2514
2515	for (i = 0; i < nr_nodemap_entries; i++) {
2516		unsigned long start_pfn = early_node_map[i].start_pfn;
2517		unsigned long end_pfn = early_node_map[i].end_pfn;
2518
2519		if (start_pfn <= pfn && pfn < end_pfn)
2520			return early_node_map[i].nid;
2521	}
2522
2523	return 0;
2524}
2525#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2526
2527/* Basic iterator support to walk early_node_map[] */
2528#define for_each_active_range_index_in_nid(i, nid) \
2529	for (i = first_active_region_index_in_nid(nid); i != -1; \
2530				i = next_active_region_index_in_nid(i, nid))
2531
2532/**
2533 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2534 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2535 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2536 *
2537 * If an architecture guarantees that all ranges registered with
2538 * add_active_ranges() contain no holes and may be freed, this
2539 * this function may be used instead of calling free_bootmem() manually.
2540 */
2541void __init free_bootmem_with_active_regions(int nid,
2542						unsigned long max_low_pfn)
2543{
2544	int i;
2545
2546	for_each_active_range_index_in_nid(i, nid) {
2547		unsigned long size_pages = 0;
2548		unsigned long end_pfn = early_node_map[i].end_pfn;
2549
2550		if (early_node_map[i].start_pfn >= max_low_pfn)
2551			continue;
2552
2553		if (end_pfn > max_low_pfn)
2554			end_pfn = max_low_pfn;
2555
2556		size_pages = end_pfn - early_node_map[i].start_pfn;
2557		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2558				PFN_PHYS(early_node_map[i].start_pfn),
2559				size_pages << PAGE_SHIFT);
2560	}
2561}
2562
2563/**
2564 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2565 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2566 *
2567 * If an architecture guarantees that all ranges registered with
2568 * add_active_ranges() contain no holes and may be freed, this
2569 * function may be used instead of calling memory_present() manually.
2570 */
2571void __init sparse_memory_present_with_active_regions(int nid)
2572{
2573	int i;
2574
2575	for_each_active_range_index_in_nid(i, nid)
2576		memory_present(early_node_map[i].nid,
2577				early_node_map[i].start_pfn,
2578				early_node_map[i].end_pfn);
2579}
2580
2581/**
2582 * push_node_boundaries - Push node boundaries to at least the requested boundary
2583 * @nid: The nid of the node to push the boundary for
2584 * @start_pfn: The start pfn of the node
2585 * @end_pfn: The end pfn of the node
2586 *
2587 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2588 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2589 * be hotplugged even though no physical memory exists. This function allows
2590 * an arch to push out the node boundaries so mem_map is allocated that can
2591 * be used later.
2592 */
2593#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2594void __init push_node_boundaries(unsigned int nid,
2595		unsigned long start_pfn, unsigned long end_pfn)
2596{
2597	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2598			nid, start_pfn, end_pfn);
2599
2600	/* Initialise the boundary for this node if necessary */
2601	if (node_boundary_end_pfn[nid] == 0)
2602		node_boundary_start_pfn[nid] = -1UL;
2603
2604	/* Update the boundaries */
2605	if (node_boundary_start_pfn[nid] > start_pfn)
2606		node_boundary_start_pfn[nid] = start_pfn;
2607	if (node_boundary_end_pfn[nid] < end_pfn)
2608		node_boundary_end_pfn[nid] = end_pfn;
2609}
2610
2611/* If necessary, push the node boundary out for reserve hotadd */
2612static void __meminit account_node_boundary(unsigned int nid,
2613		unsigned long *start_pfn, unsigned long *end_pfn)
2614{
2615	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2616			nid, *start_pfn, *end_pfn);
2617
2618	/* Return if boundary information has not been provided */
2619	if (node_boundary_end_pfn[nid] == 0)
2620		return;
2621
2622	/* Check the boundaries and update if necessary */
2623	if (node_boundary_start_pfn[nid] < *start_pfn)
2624		*start_pfn = node_boundary_start_pfn[nid];
2625	if (node_boundary_end_pfn[nid] > *end_pfn)
2626		*end_pfn = node_boundary_end_pfn[nid];
2627}
2628#else
2629void __init push_node_boundaries(unsigned int nid,
2630		unsigned long start_pfn, unsigned long end_pfn) {}
2631
2632static void __meminit account_node_boundary(unsigned int nid,
2633		unsigned long *start_pfn, unsigned long *end_pfn) {}
2634#endif
2635
2636
2637/**
2638 * get_pfn_range_for_nid - Return the start and end page frames for a node
2639 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2640 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2641 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2642 *
2643 * It returns the start and end page frame of a node based on information
2644 * provided by an arch calling add_active_range(). If called for a node
2645 * with no available memory, a warning is printed and the start and end
2646 * PFNs will be 0.
2647 */
2648void __meminit get_pfn_range_for_nid(unsigned int nid,
2649			unsigned long *start_pfn, unsigned long *end_pfn)
2650{
2651	int i;
2652	*start_pfn = -1UL;
2653	*end_pfn = 0;
2654
2655	for_each_active_range_index_in_nid(i, nid) {
2656		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2657		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2658	}
2659
2660	if (*start_pfn == -1UL) {
2661		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2662		*start_pfn = 0;
2663	}
2664
2665	/* Push the node boundaries out if requested */
2666	account_node_boundary(nid, start_pfn, end_pfn);
2667}
2668
2669/*
2670 * Return the number of pages a zone spans in a node, including holes
2671 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2672 */
2673static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2674					unsigned long zone_type,
2675					unsigned long *ignored)
2676{
2677	unsigned long node_start_pfn, node_end_pfn;
2678	unsigned long zone_start_pfn, zone_end_pfn;
2679
2680	/* Get the start and end of the node and zone */
2681	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2682	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2683	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2684
2685	/* Check that this node has pages within the zone's required range */
2686	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2687		return 0;
2688
2689	/* Move the zone boundaries inside the node if necessary */
2690	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2691	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2692
2693	/* Return the spanned pages */
2694	return zone_end_pfn - zone_start_pfn;
2695}
2696
2697/*
2698 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2699 * then all holes in the requested range will be accounted for.
2700 */
2701unsigned long __meminit __absent_pages_in_range(int nid,
2702				unsigned long range_start_pfn,
2703				unsigned long range_end_pfn)
2704{
2705	int i = 0;
2706	unsigned long prev_end_pfn = 0, hole_pages = 0;
2707	unsigned long start_pfn;
2708
2709	/* Find the end_pfn of the first active range of pfns in the node */
2710	i = first_active_region_index_in_nid(nid);
2711	if (i == -1)
2712		return 0;
2713
2714	/* Account for ranges before physical memory on this node */
2715	if (early_node_map[i].start_pfn > range_start_pfn)
2716		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2717
2718	prev_end_pfn = early_node_map[i].start_pfn;
2719
2720	/* Find all holes for the zone within the node */
2721	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2722
2723		/* No need to continue if prev_end_pfn is outside the zone */
2724		if (prev_end_pfn >= range_end_pfn)
2725			break;
2726
2727		/* Make sure the end of the zone is not within the hole */
2728		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2729		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2730
2731		/* Update the hole size cound and move on */
2732		if (start_pfn > range_start_pfn) {
2733			BUG_ON(prev_end_pfn > start_pfn);
2734			hole_pages += start_pfn - prev_end_pfn;
2735		}
2736		prev_end_pfn = early_node_map[i].end_pfn;
2737	}
2738
2739	/* Account for ranges past physical memory on this node */
2740	if (range_end_pfn > prev_end_pfn)
2741		hole_pages += range_end_pfn -
2742				max(range_start_pfn, prev_end_pfn);
2743
2744	return hole_pages;
2745}
2746
2747/**
2748 * absent_pages_in_range - Return number of page frames in holes within a range
2749 * @start_pfn: The start PFN to start searching for holes
2750 * @end_pfn: The end PFN to stop searching for holes
2751 *
2752 * It returns the number of pages frames in memory holes within a range.
2753 */
2754unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2755							unsigned long end_pfn)
2756{
2757	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2758}
2759
2760/* Return the number of page frames in holes in a zone on a node */
2761static unsigned long __meminit zone_absent_pages_in_node(int nid,
2762					unsigned long zone_type,
2763					unsigned long *ignored)
2764{
2765	unsigned long node_start_pfn, node_end_pfn;
2766	unsigned long zone_start_pfn, zone_end_pfn;
2767
2768	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2769	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2770							node_start_pfn);
2771	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2772							node_end_pfn);
2773
2774	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2775}
2776
2777#else
2778static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2779					unsigned long zone_type,
2780					unsigned long *zones_size)
2781{
2782	return zones_size[zone_type];
2783}
2784
2785static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2786						unsigned long zone_type,
2787						unsigned long *zholes_size)
2788{
2789	if (!zholes_size)
2790		return 0;
2791
2792	return zholes_size[zone_type];
2793}
2794
2795#endif
2796
2797static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2798		unsigned long *zones_size, unsigned long *zholes_size)
2799{
2800	unsigned long realtotalpages, totalpages = 0;
2801	enum zone_type i;
2802
2803	for (i = 0; i < MAX_NR_ZONES; i++)
2804		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2805								zones_size);
2806	pgdat->node_spanned_pages = totalpages;
2807
2808	realtotalpages = totalpages;
2809	for (i = 0; i < MAX_NR_ZONES; i++)
2810		realtotalpages -=
2811			zone_absent_pages_in_node(pgdat->node_id, i,
2812								zholes_size);
2813	pgdat->node_present_pages = realtotalpages;
2814	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2815							realtotalpages);
2816}
2817
2818/*
2819 * Set up the zone data structures:
2820 *   - mark all pages reserved
2821 *   - mark all memory queues empty
2822 *   - clear the memory bitmaps
2823 */
2824static void __meminit free_area_init_core(struct pglist_data *pgdat,
2825		unsigned long *zones_size, unsigned long *zholes_size)
2826{
2827	enum zone_type j;
2828	int nid = pgdat->node_id;
2829	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2830	int ret;
2831
2832	pgdat_resize_init(pgdat);
2833	pgdat->nr_zones = 0;
2834	init_waitqueue_head(&pgdat->kswapd_wait);
2835	pgdat->kswapd_max_order = 0;
2836
2837	for (j = 0; j < MAX_NR_ZONES; j++) {
2838		struct zone *zone = pgdat->node_zones + j;
2839		unsigned long size, realsize, memmap_pages;
2840
2841		size = zone_spanned_pages_in_node(nid, j, zones_size);
2842		realsize = size - zone_absent_pages_in_node(nid, j,
2843								zholes_size);
2844
2845		/*
2846		 * Adjust realsize so that it accounts for how much memory
2847		 * is used by this zone for memmap. This affects the watermark
2848		 * and per-cpu initialisations
2849		 */
2850		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2851		if (realsize >= memmap_pages) {
2852			realsize -= memmap_pages;
2853			printk(KERN_DEBUG
2854				"  %s zone: %lu pages used for memmap\n",
2855				zone_names[j], memmap_pages);
2856		} else
2857			printk(KERN_WARNING
2858				"  %s zone: %lu pages exceeds realsize %lu\n",
2859				zone_names[j], memmap_pages, realsize);
2860
2861		/* Account for reserved pages */
2862		if (j == 0 && realsize > dma_reserve) {
2863			realsize -= dma_reserve;
2864			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2865					zone_names[0], dma_reserve);
2866		}
2867
2868		if (!is_highmem_idx(j))
2869			nr_kernel_pages += realsize;
2870		nr_all_pages += realsize;
2871
2872		zone->spanned_pages = size;
2873		zone->present_pages = realsize;
2874#ifdef CONFIG_NUMA
2875		zone->node = nid;
2876		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2877						/ 100;
2878		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2879#endif
2880		zone->name = zone_names[j];
2881		spin_lock_init(&zone->lock);
2882		spin_lock_init(&zone->lru_lock);
2883		zone_seqlock_init(zone);
2884		zone->zone_pgdat = pgdat;
2885
2886		zone->prev_priority = DEF_PRIORITY;
2887
2888		zone_pcp_init(zone);
2889		INIT_LIST_HEAD(&zone->active_list);
2890		INIT_LIST_HEAD(&zone->inactive_list);
2891		zone->nr_scan_active = 0;
2892		zone->nr_scan_inactive = 0;
2893		zap_zone_vm_stats(zone);
2894		atomic_set(&zone->reclaim_in_progress, 0);
2895		if (!size)
2896			continue;
2897
2898		ret = init_currently_empty_zone(zone, zone_start_pfn,
2899						size, MEMMAP_EARLY);
2900		BUG_ON(ret);
2901		zone_start_pfn += size;
2902	}
2903}
2904
2905static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2906{
2907	/* Skip empty nodes */
2908	if (!pgdat->node_spanned_pages)
2909		return;
2910
2911#ifdef CONFIG_FLAT_NODE_MEM_MAP
2912	/* ia64 gets its own node_mem_map, before this, without bootmem */
2913	if (!pgdat->node_mem_map) {
2914		unsigned long size, start, end;
2915		struct page *map;
2916
2917		/*
2918		 * The zone's endpoints aren't required to be MAX_ORDER
2919		 * aligned but the node_mem_map endpoints must be in order
2920		 * for the buddy allocator to function correctly.
2921		 */
2922		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2923		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2924		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2925		size =  (end - start) * sizeof(struct page);
2926		map = alloc_remap(pgdat->node_id, size);
2927		if (!map)
2928			map = alloc_bootmem_node(pgdat, size);
2929		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2930	}
2931#ifndef CONFIG_NEED_MULTIPLE_NODES
2932	/*
2933	 * With no DISCONTIG, the global mem_map is just set as node 0's
2934	 */
2935	if (pgdat == NODE_DATA(0)) {
2936		mem_map = NODE_DATA(0)->node_mem_map;
2937#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2938		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2939			mem_map -= pgdat->node_start_pfn;
2940#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2941	}
2942#endif
2943#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2944}
2945
2946void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2947		unsigned long *zones_size, unsigned long node_start_pfn,
2948		unsigned long *zholes_size)
2949{
2950	pgdat->node_id = nid;
2951	pgdat->node_start_pfn = node_start_pfn;
2952	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2953
2954	alloc_node_mem_map(pgdat);
2955
2956	free_area_init_core(pgdat, zones_size, zholes_size);
2957}
2958
2959#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2960
2961#if MAX_NUMNODES > 1
2962/*
2963 * Figure out the number of possible node ids.
2964 */
2965static void __init setup_nr_node_ids(void)
2966{
2967	unsigned int node;
2968	unsigned int highest = 0;
2969
2970	for_each_node_mask(node, node_possible_map)
2971		highest = node;
2972	nr_node_ids = highest + 1;
2973}
2974#else
2975static inline void setup_nr_node_ids(void)
2976{
2977}
2978#endif
2979
2980/**
2981 * add_active_range - Register a range of PFNs backed by physical memory
2982 * @nid: The node ID the range resides on
2983 * @start_pfn: The start PFN of the available physical memory
2984 * @end_pfn: The end PFN of the available physical memory
2985 *
2986 * These ranges are stored in an early_node_map[] and later used by
2987 * free_area_init_nodes() to calculate zone sizes and holes. If the
2988 * range spans a memory hole, it is up to the architecture to ensure
2989 * the memory is not freed by the bootmem allocator. If possible
2990 * the range being registered will be merged with existing ranges.
2991 */
2992void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2993						unsigned long end_pfn)
2994{
2995	int i;
2996
2997	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2998			  "%d entries of %d used\n",
2999			  nid, start_pfn, end_pfn,
3000			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3001
3002	/* Merge with existing active regions if possible */
3003	for (i = 0; i < nr_nodemap_entries; i++) {
3004		if (early_node_map[i].nid != nid)
3005			continue;
3006
3007		/* Skip if an existing region covers this new one */
3008		if (start_pfn >= early_node_map[i].start_pfn &&
3009				end_pfn <= early_node_map[i].end_pfn)
3010			return;
3011
3012		/* Merge forward if suitable */
3013		if (start_pfn <= early_node_map[i].end_pfn &&
3014				end_pfn > early_node_map[i].end_pfn) {
3015			early_node_map[i].end_pfn = end_pfn;
3016			return;
3017		}
3018
3019		/* Merge backward if suitable */
3020		if (start_pfn < early_node_map[i].end_pfn &&
3021				end_pfn >= early_node_map[i].start_pfn) {
3022			early_node_map[i].start_pfn = start_pfn;
3023			return;
3024		}
3025	}
3026
3027	/* Check that early_node_map is large enough */
3028	if (i >= MAX_ACTIVE_REGIONS) {
3029		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3030							MAX_ACTIVE_REGIONS);
3031		return;
3032	}
3033
3034	early_node_map[i].nid = nid;
3035	early_node_map[i].start_pfn = start_pfn;
3036	early_node_map[i].end_pfn = end_pfn;
3037	nr_nodemap_entries = i + 1;
3038}
3039
3040/**
3041 * shrink_active_range - Shrink an existing registered range of PFNs
3042 * @nid: The node id the range is on that should be shrunk
3043 * @old_end_pfn: The old end PFN of the range
3044 * @new_end_pfn: The new PFN of the range
3045 *
3046 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3047 * The map is kept at the end physical page range that has already been
3048 * registered with add_active_range(). This function allows an arch to shrink
3049 * an existing registered range.
3050 */
3051void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3052						unsigned long new_end_pfn)
3053{
3054	int i;
3055
3056	/* Find the old active region end and shrink */
3057	for_each_active_range_index_in_nid(i, nid)
3058		if (early_node_map[i].end_pfn == old_end_pfn) {
3059			early_node_map[i].end_pfn = new_end_pfn;
3060			break;
3061		}
3062}
3063
3064/**
3065 * remove_all_active_ranges - Remove all currently registered regions
3066 *
3067 * During discovery, it may be found that a table like SRAT is invalid
3068 * and an alternative discovery method must be used. This function removes
3069 * all currently registered regions.
3070 */
3071void __init remove_all_active_ranges(void)
3072{
3073	memset(early_node_map, 0, sizeof(early_node_map));
3074	nr_nodemap_entries = 0;
3075#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3076	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3077	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3078#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3079}
3080
3081/* Compare two active node_active_regions */
3082static int __init cmp_node_active_region(const void *a, const void *b)
3083{
3084	struct node_active_region *arange = (struct node_active_region *)a;
3085	struct node_active_region *brange = (struct node_active_region *)b;
3086
3087	/* Done this way to avoid overflows */
3088	if (arange->start_pfn > brange->start_pfn)
3089		return 1;
3090	if (arange->start_pfn < brange->start_pfn)
3091		return -1;
3092
3093	return 0;
3094}
3095
3096/* sort the node_map by start_pfn */
3097static void __init sort_node_map(void)
3098{
3099	sort(early_node_map, (size_t)nr_nodemap_entries,
3100			sizeof(struct node_active_region),
3101			cmp_node_active_region, NULL);
3102}
3103
3104/* Find the lowest pfn for a node */
3105unsigned long __init find_min_pfn_for_node(unsigned long nid)
3106{
3107	int i;
3108	unsigned long min_pfn = ULONG_MAX;
3109
3110	/* Assuming a sorted map, the first range found has the starting pfn */
3111	for_each_active_range_index_in_nid(i, nid)
3112		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3113
3114	if (min_pfn == ULONG_MAX) {
3115		printk(KERN_WARNING
3116			"Could not find start_pfn for node %lu\n", nid);
3117		return 0;
3118	}
3119
3120	return min_pfn;
3121}
3122
3123/**
3124 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3125 *
3126 * It returns the minimum PFN based on information provided via
3127 * add_active_range().
3128 */
3129unsigned long __init find_min_pfn_with_active_regions(void)
3130{
3131	return find_min_pfn_for_node(MAX_NUMNODES);
3132}
3133
3134/**
3135 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3136 *
3137 * It returns the maximum PFN based on information provided via
3138 * add_active_range().
3139 */
3140unsigned long __init find_max_pfn_with_active_regions(void)
3141{
3142	int i;
3143	unsigned long max_pfn = 0;
3144
3145	for (i = 0; i < nr_nodemap_entries; i++)
3146		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3147
3148	return max_pfn;
3149}
3150
3151/**
3152 * free_area_init_nodes - Initialise all pg_data_t and zone data
3153 * @max_zone_pfn: an array of max PFNs for each zone
3154 *
3155 * This will call free_area_init_node() for each active node in the system.
3156 * Using the page ranges provided by add_active_range(), the size of each
3157 * zone in each node and their holes is calculated. If the maximum PFN
3158 * between two adjacent zones match, it is assumed that the zone is empty.
3159 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3160 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3161 * starts where the previous one ended. For example, ZONE_DMA32 starts
3162 * at arch_max_dma_pfn.
3163 */
3164void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3165{
3166	unsigned long nid;
3167	enum zone_type i;
3168
3169	/* Sort early_node_map as initialisation assumes it is sorted */
3170	sort_node_map();
3171
3172	/* Record where the zone boundaries are */
3173	memset(arch_zone_lowest_possible_pfn, 0,
3174				sizeof(arch_zone_lowest_possible_pfn));
3175	memset(arch_zone_highest_possible_pfn, 0,
3176				sizeof(arch_zone_highest_possible_pfn));
3177	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3178	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3179	for (i = 1; i < MAX_NR_ZONES; i++) {
3180		arch_zone_lowest_possible_pfn[i] =
3181			arch_zone_highest_possible_pfn[i-1];
3182		arch_zone_highest_possible_pfn[i] =
3183			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3184	}
3185
3186	/* Print out the zone ranges */
3187	printk("Zone PFN ranges:\n");
3188	for (i = 0; i < MAX_NR_ZONES; i++)
3189		printk("  %-8s %8lu -> %8lu\n",
3190				zone_names[i],
3191				arch_zone_lowest_possible_pfn[i],
3192				arch_zone_highest_possible_pfn[i]);
3193
3194	/* Print out the early_node_map[] */
3195	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3196	for (i = 0; i < nr_nodemap_entries; i++)
3197		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3198						early_node_map[i].start_pfn,
3199						early_node_map[i].end_pfn);
3200
3201	/* Initialise every node */
3202	setup_nr_node_ids();
3203	for_each_online_node(nid) {
3204		pg_data_t *pgdat = NODE_DATA(nid);
3205		free_area_init_node(nid, pgdat, NULL,
3206				find_min_pfn_for_node(nid), NULL);
3207	}
3208}
3209#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3210
3211/**
3212 * set_dma_reserve - set the specified number of pages reserved in the first zone
3213 * @new_dma_reserve: The number of pages to mark reserved
3214 *
3215 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3216 * In the DMA zone, a significant percentage may be consumed by kernel image
3217 * and other unfreeable allocations which can skew the watermarks badly. This
3218 * function may optionally be used to account for unfreeable pages in the
3219 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3220 * smaller per-cpu batchsize.
3221 */
3222void __init set_dma_reserve(unsigned long new_dma_reserve)
3223{
3224	dma_reserve = new_dma_reserve;
3225}
3226
3227#ifndef CONFIG_NEED_MULTIPLE_NODES
3228static bootmem_data_t contig_bootmem_data;
3229struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3230
3231EXPORT_SYMBOL(contig_page_data);
3232#endif
3233
3234void __init free_area_init(unsigned long *zones_size)
3235{
3236	free_area_init_node(0, NODE_DATA(0), zones_size,
3237			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3238}
3239
3240static int page_alloc_cpu_notify(struct notifier_block *self,
3241				 unsigned long action, void *hcpu)
3242{
3243	int cpu = (unsigned long)hcpu;
3244
3245	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3246		local_irq_disable();
3247		__drain_pages(cpu);
3248		vm_events_fold_cpu(cpu);
3249		local_irq_enable();
3250		refresh_cpu_vm_stats(cpu);
3251	}
3252	return NOTIFY_OK;
3253}
3254
3255void __init page_alloc_init(void)
3256{
3257	hotcpu_notifier(page_alloc_cpu_notify, 0);
3258}
3259
3260/*
3261 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3262 *	or min_free_kbytes changes.
3263 */
3264static void calculate_totalreserve_pages(void)
3265{
3266	struct pglist_data *pgdat;
3267	unsigned long reserve_pages = 0;
3268	enum zone_type i, j;
3269
3270	for_each_online_pgdat(pgdat) {
3271		for (i = 0; i < MAX_NR_ZONES; i++) {
3272			struct zone *zone = pgdat->node_zones + i;
3273			unsigned long max = 0;
3274
3275			/* Find valid and maximum lowmem_reserve in the zone */
3276			for (j = i; j < MAX_NR_ZONES; j++) {
3277				if (zone->lowmem_reserve[j] > max)
3278					max = zone->lowmem_reserve[j];
3279			}
3280
3281			/* we treat pages_high as reserved pages. */
3282			max += zone->pages_high;
3283
3284			if (max > zone->present_pages)
3285				max = zone->present_pages;
3286			reserve_pages += max;
3287		}
3288	}
3289	totalreserve_pages = reserve_pages;
3290}
3291
3292/*
3293 * setup_per_zone_lowmem_reserve - called whenever
3294 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3295 *	has a correct pages reserved value, so an adequate number of
3296 *	pages are left in the zone after a successful __alloc_pages().
3297 */
3298static void setup_per_zone_lowmem_reserve(void)
3299{
3300	struct pglist_data *pgdat;
3301	enum zone_type j, idx;
3302
3303	for_each_online_pgdat(pgdat) {
3304		for (j = 0; j < MAX_NR_ZONES; j++) {
3305			struct zone *zone = pgdat->node_zones + j;
3306			unsigned long present_pages = zone->present_pages;
3307
3308			zone->lowmem_reserve[j] = 0;
3309
3310			idx = j;
3311			while (idx) {
3312				struct zone *lower_zone;
3313
3314				idx--;
3315
3316				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3317					sysctl_lowmem_reserve_ratio[idx] = 1;
3318
3319				lower_zone = pgdat->node_zones + idx;
3320				lower_zone->lowmem_reserve[j] = present_pages /
3321					sysctl_lowmem_reserve_ratio[idx];
3322				present_pages += lower_zone->present_pages;
3323			}
3324		}
3325	}
3326
3327	/* update totalreserve_pages */
3328	calculate_totalreserve_pages();
3329}
3330
3331/**
3332 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3333 *
3334 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3335 * with respect to min_free_kbytes.
3336 */
3337void setup_per_zone_pages_min(void)
3338{
3339	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3340	unsigned long lowmem_pages = 0;
3341	struct zone *zone;
3342	unsigned long flags;
3343
3344	/* Calculate total number of !ZONE_HIGHMEM pages */
3345	for_each_zone(zone) {
3346		if (!is_highmem(zone))
3347			lowmem_pages += zone->present_pages;
3348	}
3349
3350	for_each_zone(zone) {
3351		u64 tmp;
3352
3353		spin_lock_irqsave(&zone->lru_lock, flags);
3354		tmp = (u64)pages_min * zone->present_pages;
3355		do_div(tmp, lowmem_pages);
3356		if (is_highmem(zone)) {
3357			/*
3358			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3359			 * need highmem pages, so cap pages_min to a small
3360			 * value here.
3361			 *
3362			 * The (pages_high-pages_low) and (pages_low-pages_min)
3363			 * deltas controls asynch page reclaim, and so should
3364			 * not be capped for highmem.
3365			 */
3366			int min_pages;
3367
3368			min_pages = zone->present_pages / 1024;
3369			if (min_pages < SWAP_CLUSTER_MAX)
3370				min_pages = SWAP_CLUSTER_MAX;
3371			if (min_pages > 128)
3372				min_pages = 128;
3373			zone->pages_min = min_pages;
3374		} else {
3375			/*
3376			 * If it's a lowmem zone, reserve a number of pages
3377			 * proportionate to the zone's size.
3378			 */
3379			zone->pages_min = tmp;
3380		}
3381
3382		zone->pages_low   = zone->pages_min + (tmp >> 2);
3383		zone->pages_high  = zone->pages_min + (tmp >> 1);
3384		spin_unlock_irqrestore(&zone->lru_lock, flags);
3385	}
3386
3387	/* update totalreserve_pages */
3388	calculate_totalreserve_pages();
3389}
3390
3391/*
3392 * Initialise min_free_kbytes.
3393 *
3394 * For small machines we want it small (128k min).  For large machines
3395 * we want it large (64MB max).  But it is not linear, because network
3396 * bandwidth does not increase linearly with machine size.  We use
3397 *
3398 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3399 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3400 *
3401 * which yields
3402 *
3403 * 16MB:	512k
3404 * 32MB:	724k
3405 * 64MB:	1024k
3406 * 128MB:	1448k
3407 * 256MB:	2048k
3408 * 512MB:	2896k
3409 * 1024MB:	4096k
3410 * 2048MB:	5792k
3411 * 4096MB:	8192k
3412 * 8192MB:	11584k
3413 * 16384MB:	16384k
3414 */
3415static int __init init_per_zone_pages_min(void)
3416{
3417	unsigned long lowmem_kbytes;
3418
3419	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3420
3421	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3422	if (min_free_kbytes < 128)
3423		min_free_kbytes = 128;
3424	if (min_free_kbytes > 65536)
3425		min_free_kbytes = 65536;
3426	setup_per_zone_pages_min();
3427	setup_per_zone_lowmem_reserve();
3428	return 0;
3429}
3430module_init(init_per_zone_pages_min)
3431
3432/*
3433 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3434 *	that we can call two helper functions whenever min_free_kbytes
3435 *	changes.
3436 */
3437int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3438	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3439{
3440	proc_dointvec(table, write, file, buffer, length, ppos);
3441	if (write)
3442		setup_per_zone_pages_min();
3443	return 0;
3444}
3445
3446#ifdef CONFIG_NUMA
3447int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3448	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3449{
3450	struct zone *zone;
3451	int rc;
3452
3453	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3454	if (rc)
3455		return rc;
3456
3457	for_each_zone(zone)
3458		zone->min_unmapped_pages = (zone->present_pages *
3459				sysctl_min_unmapped_ratio) / 100;
3460	return 0;
3461}
3462
3463int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3464	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3465{
3466	struct zone *zone;
3467	int rc;
3468
3469	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3470	if (rc)
3471		return rc;
3472
3473	for_each_zone(zone)
3474		zone->min_slab_pages = (zone->present_pages *
3475				sysctl_min_slab_ratio) / 100;
3476	return 0;
3477}
3478#endif
3479
3480/*
3481 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3482 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3483 *	whenever sysctl_lowmem_reserve_ratio changes.
3484 *
3485 * The reserve ratio obviously has absolutely no relation with the
3486 * pages_min watermarks. The lowmem reserve ratio can only make sense
3487 * if in function of the boot time zone sizes.
3488 */
3489int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3490	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3491{
3492	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3493	setup_per_zone_lowmem_reserve();
3494	return 0;
3495}
3496
3497/*
3498 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3499 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3500 * can have before it gets flushed back to buddy allocator.
3501 */
3502
3503int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3504	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3505{
3506	struct zone *zone;
3507	unsigned int cpu;
3508	int ret;
3509
3510	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3511	if (!write || (ret == -EINVAL))
3512		return ret;
3513	for_each_zone(zone) {
3514		for_each_online_cpu(cpu) {
3515			unsigned long  high;
3516			high = zone->present_pages / percpu_pagelist_fraction;
3517			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3518		}
3519	}
3520	return 0;
3521}
3522
3523int hashdist = HASHDIST_DEFAULT;
3524
3525#ifdef CONFIG_NUMA
3526static int __init set_hashdist(char *str)
3527{
3528	if (!str)
3529		return 0;
3530	hashdist = simple_strtoul(str, &str, 0);
3531	return 1;
3532}
3533__setup("hashdist=", set_hashdist);
3534#endif
3535
3536/*
3537 * allocate a large system hash table from bootmem
3538 * - it is assumed that the hash table must contain an exact power-of-2
3539 *   quantity of entries
3540 * - limit is the number of hash buckets, not the total allocation size
3541 */
3542void *__init alloc_large_system_hash(const char *tablename,
3543				     unsigned long bucketsize,
3544				     unsigned long numentries,
3545				     int scale,
3546				     int flags,
3547				     unsigned int *_hash_shift,
3548				     unsigned int *_hash_mask,
3549				     unsigned long limit)
3550{
3551	unsigned long long max = limit;
3552	unsigned long log2qty, size;
3553	void *table = NULL;
3554
3555	/* allow the kernel cmdline to have a say */
3556	if (!numentries) {
3557		/* round applicable memory size up to nearest megabyte */
3558		numentries = nr_kernel_pages;
3559		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3560		numentries >>= 20 - PAGE_SHIFT;
3561		numentries <<= 20 - PAGE_SHIFT;
3562
3563		/* limit to 1 bucket per 2^scale bytes of low memory */
3564		if (scale > PAGE_SHIFT)
3565			numentries >>= (scale - PAGE_SHIFT);
3566		else
3567			numentries <<= (PAGE_SHIFT - scale);
3568
3569		/* Make sure we've got at least a 0-order allocation.. */
3570		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3571			numentries = PAGE_SIZE / bucketsize;
3572	}
3573	numentries = roundup_pow_of_two(numentries);
3574
3575	/* limit allocation size to 1/16 total memory by default */
3576	if (max == 0) {
3577		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3578		do_div(max, bucketsize);
3579	}
3580
3581	if (numentries > max)
3582		numentries = max;
3583
3584	log2qty = ilog2(numentries);
3585
3586	do {
3587		size = bucketsize << log2qty;
3588		if (flags & HASH_EARLY)
3589			table = alloc_bootmem(size);
3590		else if (hashdist)
3591			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3592		else {
3593			unsigned long order;
3594			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3595				;
3596			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3597			/*
3598			 * If bucketsize is not a power-of-two, we may free
3599			 * some pages at the end of hash table.
3600			 */
3601			if (table) {
3602				unsigned long alloc_end = (unsigned long)table +
3603						(PAGE_SIZE << order);
3604				unsigned long used = (unsigned long)table +
3605						PAGE_ALIGN(size);
3606				split_page(virt_to_page(table), order);
3607				while (used < alloc_end) {
3608					free_page(used);
3609					used += PAGE_SIZE;
3610				}
3611			}
3612		}
3613	} while (!table && size > PAGE_SIZE && --log2qty);
3614
3615	if (!table)
3616		panic("Failed to allocate %s hash table\n", tablename);
3617
3618	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3619	       tablename,
3620	       (1U << log2qty),
3621	       ilog2(size) - PAGE_SHIFT,
3622	       size);
3623
3624	if (_hash_shift)
3625		*_hash_shift = log2qty;
3626	if (_hash_mask)
3627		*_hash_mask = (1 << log2qty) - 1;
3628
3629	return table;
3630}
3631
3632#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3633struct page *pfn_to_page(unsigned long pfn)
3634{
3635	return __pfn_to_page(pfn);
3636}
3637unsigned long page_to_pfn(struct page *page)
3638{
3639	return __page_to_pfn(page);
3640}
3641EXPORT_SYMBOL(pfn_to_page);
3642EXPORT_SYMBOL(page_to_pfn);
3643#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3644
3645
3646