page_alloc.c revision 56de7263fcf3eb10c8dcdf8d59a9cec831795f3f
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51#include <linux/memory.h>
52#include <linux/compaction.h>
53#include <trace/events/kmem.h>
54#include <linux/ftrace_event.h>
55
56#include <asm/tlbflush.h>
57#include <asm/div64.h>
58#include "internal.h"
59
60/*
61 * Array of node states.
62 */
63nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
64	[N_POSSIBLE] = NODE_MASK_ALL,
65	[N_ONLINE] = { { [0] = 1UL } },
66#ifndef CONFIG_NUMA
67	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
68#ifdef CONFIG_HIGHMEM
69	[N_HIGH_MEMORY] = { { [0] = 1UL } },
70#endif
71	[N_CPU] = { { [0] = 1UL } },
72#endif	/* NUMA */
73};
74EXPORT_SYMBOL(node_states);
75
76unsigned long totalram_pages __read_mostly;
77unsigned long totalreserve_pages __read_mostly;
78int percpu_pagelist_fraction;
79gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
80
81#ifdef CONFIG_PM_SLEEP
82/*
83 * The following functions are used by the suspend/hibernate code to temporarily
84 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
85 * while devices are suspended.  To avoid races with the suspend/hibernate code,
86 * they should always be called with pm_mutex held (gfp_allowed_mask also should
87 * only be modified with pm_mutex held, unless the suspend/hibernate code is
88 * guaranteed not to run in parallel with that modification).
89 */
90void set_gfp_allowed_mask(gfp_t mask)
91{
92	WARN_ON(!mutex_is_locked(&pm_mutex));
93	gfp_allowed_mask = mask;
94}
95
96gfp_t clear_gfp_allowed_mask(gfp_t mask)
97{
98	gfp_t ret = gfp_allowed_mask;
99
100	WARN_ON(!mutex_is_locked(&pm_mutex));
101	gfp_allowed_mask &= ~mask;
102	return ret;
103}
104#endif /* CONFIG_PM_SLEEP */
105
106#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
107int pageblock_order __read_mostly;
108#endif
109
110static void __free_pages_ok(struct page *page, unsigned int order);
111
112/*
113 * results with 256, 32 in the lowmem_reserve sysctl:
114 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
115 *	1G machine -> (16M dma, 784M normal, 224M high)
116 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
117 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
118 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
119 *
120 * TBD: should special case ZONE_DMA32 machines here - in those we normally
121 * don't need any ZONE_NORMAL reservation
122 */
123int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
124#ifdef CONFIG_ZONE_DMA
125	 256,
126#endif
127#ifdef CONFIG_ZONE_DMA32
128	 256,
129#endif
130#ifdef CONFIG_HIGHMEM
131	 32,
132#endif
133	 32,
134};
135
136EXPORT_SYMBOL(totalram_pages);
137
138static char * const zone_names[MAX_NR_ZONES] = {
139#ifdef CONFIG_ZONE_DMA
140	 "DMA",
141#endif
142#ifdef CONFIG_ZONE_DMA32
143	 "DMA32",
144#endif
145	 "Normal",
146#ifdef CONFIG_HIGHMEM
147	 "HighMem",
148#endif
149	 "Movable",
150};
151
152int min_free_kbytes = 1024;
153
154static unsigned long __meminitdata nr_kernel_pages;
155static unsigned long __meminitdata nr_all_pages;
156static unsigned long __meminitdata dma_reserve;
157
158#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
159  /*
160   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
161   * ranges of memory (RAM) that may be registered with add_active_range().
162   * Ranges passed to add_active_range() will be merged if possible
163   * so the number of times add_active_range() can be called is
164   * related to the number of nodes and the number of holes
165   */
166  #ifdef CONFIG_MAX_ACTIVE_REGIONS
167    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
168    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
169  #else
170    #if MAX_NUMNODES >= 32
171      /* If there can be many nodes, allow up to 50 holes per node */
172      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
173    #else
174      /* By default, allow up to 256 distinct regions */
175      #define MAX_ACTIVE_REGIONS 256
176    #endif
177  #endif
178
179  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
180  static int __meminitdata nr_nodemap_entries;
181  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
182  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
183  static unsigned long __initdata required_kernelcore;
184  static unsigned long __initdata required_movablecore;
185  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
186
187  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
188  int movable_zone;
189  EXPORT_SYMBOL(movable_zone);
190#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
191
192#if MAX_NUMNODES > 1
193int nr_node_ids __read_mostly = MAX_NUMNODES;
194int nr_online_nodes __read_mostly = 1;
195EXPORT_SYMBOL(nr_node_ids);
196EXPORT_SYMBOL(nr_online_nodes);
197#endif
198
199int page_group_by_mobility_disabled __read_mostly;
200
201static void set_pageblock_migratetype(struct page *page, int migratetype)
202{
203
204	if (unlikely(page_group_by_mobility_disabled))
205		migratetype = MIGRATE_UNMOVABLE;
206
207	set_pageblock_flags_group(page, (unsigned long)migratetype,
208					PB_migrate, PB_migrate_end);
209}
210
211bool oom_killer_disabled __read_mostly;
212
213#ifdef CONFIG_DEBUG_VM
214static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
215{
216	int ret = 0;
217	unsigned seq;
218	unsigned long pfn = page_to_pfn(page);
219
220	do {
221		seq = zone_span_seqbegin(zone);
222		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
223			ret = 1;
224		else if (pfn < zone->zone_start_pfn)
225			ret = 1;
226	} while (zone_span_seqretry(zone, seq));
227
228	return ret;
229}
230
231static int page_is_consistent(struct zone *zone, struct page *page)
232{
233	if (!pfn_valid_within(page_to_pfn(page)))
234		return 0;
235	if (zone != page_zone(page))
236		return 0;
237
238	return 1;
239}
240/*
241 * Temporary debugging check for pages not lying within a given zone.
242 */
243static int bad_range(struct zone *zone, struct page *page)
244{
245	if (page_outside_zone_boundaries(zone, page))
246		return 1;
247	if (!page_is_consistent(zone, page))
248		return 1;
249
250	return 0;
251}
252#else
253static inline int bad_range(struct zone *zone, struct page *page)
254{
255	return 0;
256}
257#endif
258
259static void bad_page(struct page *page)
260{
261	static unsigned long resume;
262	static unsigned long nr_shown;
263	static unsigned long nr_unshown;
264
265	/* Don't complain about poisoned pages */
266	if (PageHWPoison(page)) {
267		__ClearPageBuddy(page);
268		return;
269	}
270
271	/*
272	 * Allow a burst of 60 reports, then keep quiet for that minute;
273	 * or allow a steady drip of one report per second.
274	 */
275	if (nr_shown == 60) {
276		if (time_before(jiffies, resume)) {
277			nr_unshown++;
278			goto out;
279		}
280		if (nr_unshown) {
281			printk(KERN_ALERT
282			      "BUG: Bad page state: %lu messages suppressed\n",
283				nr_unshown);
284			nr_unshown = 0;
285		}
286		nr_shown = 0;
287	}
288	if (nr_shown++ == 0)
289		resume = jiffies + 60 * HZ;
290
291	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
292		current->comm, page_to_pfn(page));
293	dump_page(page);
294
295	dump_stack();
296out:
297	/* Leave bad fields for debug, except PageBuddy could make trouble */
298	__ClearPageBuddy(page);
299	add_taint(TAINT_BAD_PAGE);
300}
301
302/*
303 * Higher-order pages are called "compound pages".  They are structured thusly:
304 *
305 * The first PAGE_SIZE page is called the "head page".
306 *
307 * The remaining PAGE_SIZE pages are called "tail pages".
308 *
309 * All pages have PG_compound set.  All pages have their ->private pointing at
310 * the head page (even the head page has this).
311 *
312 * The first tail page's ->lru.next holds the address of the compound page's
313 * put_page() function.  Its ->lru.prev holds the order of allocation.
314 * This usage means that zero-order pages may not be compound.
315 */
316
317static void free_compound_page(struct page *page)
318{
319	__free_pages_ok(page, compound_order(page));
320}
321
322void prep_compound_page(struct page *page, unsigned long order)
323{
324	int i;
325	int nr_pages = 1 << order;
326
327	set_compound_page_dtor(page, free_compound_page);
328	set_compound_order(page, order);
329	__SetPageHead(page);
330	for (i = 1; i < nr_pages; i++) {
331		struct page *p = page + i;
332
333		__SetPageTail(p);
334		p->first_page = page;
335	}
336}
337
338static int destroy_compound_page(struct page *page, unsigned long order)
339{
340	int i;
341	int nr_pages = 1 << order;
342	int bad = 0;
343
344	if (unlikely(compound_order(page) != order) ||
345	    unlikely(!PageHead(page))) {
346		bad_page(page);
347		bad++;
348	}
349
350	__ClearPageHead(page);
351
352	for (i = 1; i < nr_pages; i++) {
353		struct page *p = page + i;
354
355		if (unlikely(!PageTail(p) || (p->first_page != page))) {
356			bad_page(page);
357			bad++;
358		}
359		__ClearPageTail(p);
360	}
361
362	return bad;
363}
364
365static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
366{
367	int i;
368
369	/*
370	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
371	 * and __GFP_HIGHMEM from hard or soft interrupt context.
372	 */
373	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
374	for (i = 0; i < (1 << order); i++)
375		clear_highpage(page + i);
376}
377
378static inline void set_page_order(struct page *page, int order)
379{
380	set_page_private(page, order);
381	__SetPageBuddy(page);
382}
383
384static inline void rmv_page_order(struct page *page)
385{
386	__ClearPageBuddy(page);
387	set_page_private(page, 0);
388}
389
390/*
391 * Locate the struct page for both the matching buddy in our
392 * pair (buddy1) and the combined O(n+1) page they form (page).
393 *
394 * 1) Any buddy B1 will have an order O twin B2 which satisfies
395 * the following equation:
396 *     B2 = B1 ^ (1 << O)
397 * For example, if the starting buddy (buddy2) is #8 its order
398 * 1 buddy is #10:
399 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
400 *
401 * 2) Any buddy B will have an order O+1 parent P which
402 * satisfies the following equation:
403 *     P = B & ~(1 << O)
404 *
405 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
406 */
407static inline struct page *
408__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
409{
410	unsigned long buddy_idx = page_idx ^ (1 << order);
411
412	return page + (buddy_idx - page_idx);
413}
414
415static inline unsigned long
416__find_combined_index(unsigned long page_idx, unsigned int order)
417{
418	return (page_idx & ~(1 << order));
419}
420
421/*
422 * This function checks whether a page is free && is the buddy
423 * we can do coalesce a page and its buddy if
424 * (a) the buddy is not in a hole &&
425 * (b) the buddy is in the buddy system &&
426 * (c) a page and its buddy have the same order &&
427 * (d) a page and its buddy are in the same zone.
428 *
429 * For recording whether a page is in the buddy system, we use PG_buddy.
430 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
431 *
432 * For recording page's order, we use page_private(page).
433 */
434static inline int page_is_buddy(struct page *page, struct page *buddy,
435								int order)
436{
437	if (!pfn_valid_within(page_to_pfn(buddy)))
438		return 0;
439
440	if (page_zone_id(page) != page_zone_id(buddy))
441		return 0;
442
443	if (PageBuddy(buddy) && page_order(buddy) == order) {
444		VM_BUG_ON(page_count(buddy) != 0);
445		return 1;
446	}
447	return 0;
448}
449
450/*
451 * Freeing function for a buddy system allocator.
452 *
453 * The concept of a buddy system is to maintain direct-mapped table
454 * (containing bit values) for memory blocks of various "orders".
455 * The bottom level table contains the map for the smallest allocatable
456 * units of memory (here, pages), and each level above it describes
457 * pairs of units from the levels below, hence, "buddies".
458 * At a high level, all that happens here is marking the table entry
459 * at the bottom level available, and propagating the changes upward
460 * as necessary, plus some accounting needed to play nicely with other
461 * parts of the VM system.
462 * At each level, we keep a list of pages, which are heads of continuous
463 * free pages of length of (1 << order) and marked with PG_buddy. Page's
464 * order is recorded in page_private(page) field.
465 * So when we are allocating or freeing one, we can derive the state of the
466 * other.  That is, if we allocate a small block, and both were
467 * free, the remainder of the region must be split into blocks.
468 * If a block is freed, and its buddy is also free, then this
469 * triggers coalescing into a block of larger size.
470 *
471 * -- wli
472 */
473
474static inline void __free_one_page(struct page *page,
475		struct zone *zone, unsigned int order,
476		int migratetype)
477{
478	unsigned long page_idx;
479	unsigned long combined_idx;
480	struct page *buddy;
481
482	if (unlikely(PageCompound(page)))
483		if (unlikely(destroy_compound_page(page, order)))
484			return;
485
486	VM_BUG_ON(migratetype == -1);
487
488	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
489
490	VM_BUG_ON(page_idx & ((1 << order) - 1));
491	VM_BUG_ON(bad_range(zone, page));
492
493	while (order < MAX_ORDER-1) {
494		buddy = __page_find_buddy(page, page_idx, order);
495		if (!page_is_buddy(page, buddy, order))
496			break;
497
498		/* Our buddy is free, merge with it and move up one order. */
499		list_del(&buddy->lru);
500		zone->free_area[order].nr_free--;
501		rmv_page_order(buddy);
502		combined_idx = __find_combined_index(page_idx, order);
503		page = page + (combined_idx - page_idx);
504		page_idx = combined_idx;
505		order++;
506	}
507	set_page_order(page, order);
508
509	/*
510	 * If this is not the largest possible page, check if the buddy
511	 * of the next-highest order is free. If it is, it's possible
512	 * that pages are being freed that will coalesce soon. In case,
513	 * that is happening, add the free page to the tail of the list
514	 * so it's less likely to be used soon and more likely to be merged
515	 * as a higher order page
516	 */
517	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
518		struct page *higher_page, *higher_buddy;
519		combined_idx = __find_combined_index(page_idx, order);
520		higher_page = page + combined_idx - page_idx;
521		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
522		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
523			list_add_tail(&page->lru,
524				&zone->free_area[order].free_list[migratetype]);
525			goto out;
526		}
527	}
528
529	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
530out:
531	zone->free_area[order].nr_free++;
532}
533
534/*
535 * free_page_mlock() -- clean up attempts to free and mlocked() page.
536 * Page should not be on lru, so no need to fix that up.
537 * free_pages_check() will verify...
538 */
539static inline void free_page_mlock(struct page *page)
540{
541	__dec_zone_page_state(page, NR_MLOCK);
542	__count_vm_event(UNEVICTABLE_MLOCKFREED);
543}
544
545static inline int free_pages_check(struct page *page)
546{
547	if (unlikely(page_mapcount(page) |
548		(page->mapping != NULL)  |
549		(atomic_read(&page->_count) != 0) |
550		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
551		bad_page(page);
552		return 1;
553	}
554	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
555		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
556	return 0;
557}
558
559/*
560 * Frees a number of pages from the PCP lists
561 * Assumes all pages on list are in same zone, and of same order.
562 * count is the number of pages to free.
563 *
564 * If the zone was previously in an "all pages pinned" state then look to
565 * see if this freeing clears that state.
566 *
567 * And clear the zone's pages_scanned counter, to hold off the "all pages are
568 * pinned" detection logic.
569 */
570static void free_pcppages_bulk(struct zone *zone, int count,
571					struct per_cpu_pages *pcp)
572{
573	int migratetype = 0;
574	int batch_free = 0;
575
576	spin_lock(&zone->lock);
577	zone->all_unreclaimable = 0;
578	zone->pages_scanned = 0;
579
580	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
581	while (count) {
582		struct page *page;
583		struct list_head *list;
584
585		/*
586		 * Remove pages from lists in a round-robin fashion. A
587		 * batch_free count is maintained that is incremented when an
588		 * empty list is encountered.  This is so more pages are freed
589		 * off fuller lists instead of spinning excessively around empty
590		 * lists
591		 */
592		do {
593			batch_free++;
594			if (++migratetype == MIGRATE_PCPTYPES)
595				migratetype = 0;
596			list = &pcp->lists[migratetype];
597		} while (list_empty(list));
598
599		do {
600			page = list_entry(list->prev, struct page, lru);
601			/* must delete as __free_one_page list manipulates */
602			list_del(&page->lru);
603			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
604			__free_one_page(page, zone, 0, page_private(page));
605			trace_mm_page_pcpu_drain(page, 0, page_private(page));
606		} while (--count && --batch_free && !list_empty(list));
607	}
608	spin_unlock(&zone->lock);
609}
610
611static void free_one_page(struct zone *zone, struct page *page, int order,
612				int migratetype)
613{
614	spin_lock(&zone->lock);
615	zone->all_unreclaimable = 0;
616	zone->pages_scanned = 0;
617
618	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
619	__free_one_page(page, zone, order, migratetype);
620	spin_unlock(&zone->lock);
621}
622
623static void __free_pages_ok(struct page *page, unsigned int order)
624{
625	unsigned long flags;
626	int i;
627	int bad = 0;
628	int wasMlocked = __TestClearPageMlocked(page);
629
630	trace_mm_page_free_direct(page, order);
631	kmemcheck_free_shadow(page, order);
632
633	for (i = 0 ; i < (1 << order) ; ++i)
634		bad += free_pages_check(page + i);
635	if (bad)
636		return;
637
638	if (!PageHighMem(page)) {
639		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
640		debug_check_no_obj_freed(page_address(page),
641					   PAGE_SIZE << order);
642	}
643	arch_free_page(page, order);
644	kernel_map_pages(page, 1 << order, 0);
645
646	local_irq_save(flags);
647	if (unlikely(wasMlocked))
648		free_page_mlock(page);
649	__count_vm_events(PGFREE, 1 << order);
650	free_one_page(page_zone(page), page, order,
651					get_pageblock_migratetype(page));
652	local_irq_restore(flags);
653}
654
655/*
656 * permit the bootmem allocator to evade page validation on high-order frees
657 */
658void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
659{
660	if (order == 0) {
661		__ClearPageReserved(page);
662		set_page_count(page, 0);
663		set_page_refcounted(page);
664		__free_page(page);
665	} else {
666		int loop;
667
668		prefetchw(page);
669		for (loop = 0; loop < BITS_PER_LONG; loop++) {
670			struct page *p = &page[loop];
671
672			if (loop + 1 < BITS_PER_LONG)
673				prefetchw(p + 1);
674			__ClearPageReserved(p);
675			set_page_count(p, 0);
676		}
677
678		set_page_refcounted(page);
679		__free_pages(page, order);
680	}
681}
682
683
684/*
685 * The order of subdivision here is critical for the IO subsystem.
686 * Please do not alter this order without good reasons and regression
687 * testing. Specifically, as large blocks of memory are subdivided,
688 * the order in which smaller blocks are delivered depends on the order
689 * they're subdivided in this function. This is the primary factor
690 * influencing the order in which pages are delivered to the IO
691 * subsystem according to empirical testing, and this is also justified
692 * by considering the behavior of a buddy system containing a single
693 * large block of memory acted on by a series of small allocations.
694 * This behavior is a critical factor in sglist merging's success.
695 *
696 * -- wli
697 */
698static inline void expand(struct zone *zone, struct page *page,
699	int low, int high, struct free_area *area,
700	int migratetype)
701{
702	unsigned long size = 1 << high;
703
704	while (high > low) {
705		area--;
706		high--;
707		size >>= 1;
708		VM_BUG_ON(bad_range(zone, &page[size]));
709		list_add(&page[size].lru, &area->free_list[migratetype]);
710		area->nr_free++;
711		set_page_order(&page[size], high);
712	}
713}
714
715/*
716 * This page is about to be returned from the page allocator
717 */
718static inline int check_new_page(struct page *page)
719{
720	if (unlikely(page_mapcount(page) |
721		(page->mapping != NULL)  |
722		(atomic_read(&page->_count) != 0)  |
723		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
724		bad_page(page);
725		return 1;
726	}
727	return 0;
728}
729
730static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
731{
732	int i;
733
734	for (i = 0; i < (1 << order); i++) {
735		struct page *p = page + i;
736		if (unlikely(check_new_page(p)))
737			return 1;
738	}
739
740	set_page_private(page, 0);
741	set_page_refcounted(page);
742
743	arch_alloc_page(page, order);
744	kernel_map_pages(page, 1 << order, 1);
745
746	if (gfp_flags & __GFP_ZERO)
747		prep_zero_page(page, order, gfp_flags);
748
749	if (order && (gfp_flags & __GFP_COMP))
750		prep_compound_page(page, order);
751
752	return 0;
753}
754
755/*
756 * Go through the free lists for the given migratetype and remove
757 * the smallest available page from the freelists
758 */
759static inline
760struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
761						int migratetype)
762{
763	unsigned int current_order;
764	struct free_area * area;
765	struct page *page;
766
767	/* Find a page of the appropriate size in the preferred list */
768	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
769		area = &(zone->free_area[current_order]);
770		if (list_empty(&area->free_list[migratetype]))
771			continue;
772
773		page = list_entry(area->free_list[migratetype].next,
774							struct page, lru);
775		list_del(&page->lru);
776		rmv_page_order(page);
777		area->nr_free--;
778		expand(zone, page, order, current_order, area, migratetype);
779		return page;
780	}
781
782	return NULL;
783}
784
785
786/*
787 * This array describes the order lists are fallen back to when
788 * the free lists for the desirable migrate type are depleted
789 */
790static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
791	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
792	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
793	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
794	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
795};
796
797/*
798 * Move the free pages in a range to the free lists of the requested type.
799 * Note that start_page and end_pages are not aligned on a pageblock
800 * boundary. If alignment is required, use move_freepages_block()
801 */
802static int move_freepages(struct zone *zone,
803			  struct page *start_page, struct page *end_page,
804			  int migratetype)
805{
806	struct page *page;
807	unsigned long order;
808	int pages_moved = 0;
809
810#ifndef CONFIG_HOLES_IN_ZONE
811	/*
812	 * page_zone is not safe to call in this context when
813	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
814	 * anyway as we check zone boundaries in move_freepages_block().
815	 * Remove at a later date when no bug reports exist related to
816	 * grouping pages by mobility
817	 */
818	BUG_ON(page_zone(start_page) != page_zone(end_page));
819#endif
820
821	for (page = start_page; page <= end_page;) {
822		/* Make sure we are not inadvertently changing nodes */
823		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
824
825		if (!pfn_valid_within(page_to_pfn(page))) {
826			page++;
827			continue;
828		}
829
830		if (!PageBuddy(page)) {
831			page++;
832			continue;
833		}
834
835		order = page_order(page);
836		list_del(&page->lru);
837		list_add(&page->lru,
838			&zone->free_area[order].free_list[migratetype]);
839		page += 1 << order;
840		pages_moved += 1 << order;
841	}
842
843	return pages_moved;
844}
845
846static int move_freepages_block(struct zone *zone, struct page *page,
847				int migratetype)
848{
849	unsigned long start_pfn, end_pfn;
850	struct page *start_page, *end_page;
851
852	start_pfn = page_to_pfn(page);
853	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
854	start_page = pfn_to_page(start_pfn);
855	end_page = start_page + pageblock_nr_pages - 1;
856	end_pfn = start_pfn + pageblock_nr_pages - 1;
857
858	/* Do not cross zone boundaries */
859	if (start_pfn < zone->zone_start_pfn)
860		start_page = page;
861	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
862		return 0;
863
864	return move_freepages(zone, start_page, end_page, migratetype);
865}
866
867static void change_pageblock_range(struct page *pageblock_page,
868					int start_order, int migratetype)
869{
870	int nr_pageblocks = 1 << (start_order - pageblock_order);
871
872	while (nr_pageblocks--) {
873		set_pageblock_migratetype(pageblock_page, migratetype);
874		pageblock_page += pageblock_nr_pages;
875	}
876}
877
878/* Remove an element from the buddy allocator from the fallback list */
879static inline struct page *
880__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
881{
882	struct free_area * area;
883	int current_order;
884	struct page *page;
885	int migratetype, i;
886
887	/* Find the largest possible block of pages in the other list */
888	for (current_order = MAX_ORDER-1; current_order >= order;
889						--current_order) {
890		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
891			migratetype = fallbacks[start_migratetype][i];
892
893			/* MIGRATE_RESERVE handled later if necessary */
894			if (migratetype == MIGRATE_RESERVE)
895				continue;
896
897			area = &(zone->free_area[current_order]);
898			if (list_empty(&area->free_list[migratetype]))
899				continue;
900
901			page = list_entry(area->free_list[migratetype].next,
902					struct page, lru);
903			area->nr_free--;
904
905			/*
906			 * If breaking a large block of pages, move all free
907			 * pages to the preferred allocation list. If falling
908			 * back for a reclaimable kernel allocation, be more
909			 * agressive about taking ownership of free pages
910			 */
911			if (unlikely(current_order >= (pageblock_order >> 1)) ||
912					start_migratetype == MIGRATE_RECLAIMABLE ||
913					page_group_by_mobility_disabled) {
914				unsigned long pages;
915				pages = move_freepages_block(zone, page,
916								start_migratetype);
917
918				/* Claim the whole block if over half of it is free */
919				if (pages >= (1 << (pageblock_order-1)) ||
920						page_group_by_mobility_disabled)
921					set_pageblock_migratetype(page,
922								start_migratetype);
923
924				migratetype = start_migratetype;
925			}
926
927			/* Remove the page from the freelists */
928			list_del(&page->lru);
929			rmv_page_order(page);
930
931			/* Take ownership for orders >= pageblock_order */
932			if (current_order >= pageblock_order)
933				change_pageblock_range(page, current_order,
934							start_migratetype);
935
936			expand(zone, page, order, current_order, area, migratetype);
937
938			trace_mm_page_alloc_extfrag(page, order, current_order,
939				start_migratetype, migratetype);
940
941			return page;
942		}
943	}
944
945	return NULL;
946}
947
948/*
949 * Do the hard work of removing an element from the buddy allocator.
950 * Call me with the zone->lock already held.
951 */
952static struct page *__rmqueue(struct zone *zone, unsigned int order,
953						int migratetype)
954{
955	struct page *page;
956
957retry_reserve:
958	page = __rmqueue_smallest(zone, order, migratetype);
959
960	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
961		page = __rmqueue_fallback(zone, order, migratetype);
962
963		/*
964		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
965		 * is used because __rmqueue_smallest is an inline function
966		 * and we want just one call site
967		 */
968		if (!page) {
969			migratetype = MIGRATE_RESERVE;
970			goto retry_reserve;
971		}
972	}
973
974	trace_mm_page_alloc_zone_locked(page, order, migratetype);
975	return page;
976}
977
978/*
979 * Obtain a specified number of elements from the buddy allocator, all under
980 * a single hold of the lock, for efficiency.  Add them to the supplied list.
981 * Returns the number of new pages which were placed at *list.
982 */
983static int rmqueue_bulk(struct zone *zone, unsigned int order,
984			unsigned long count, struct list_head *list,
985			int migratetype, int cold)
986{
987	int i;
988
989	spin_lock(&zone->lock);
990	for (i = 0; i < count; ++i) {
991		struct page *page = __rmqueue(zone, order, migratetype);
992		if (unlikely(page == NULL))
993			break;
994
995		/*
996		 * Split buddy pages returned by expand() are received here
997		 * in physical page order. The page is added to the callers and
998		 * list and the list head then moves forward. From the callers
999		 * perspective, the linked list is ordered by page number in
1000		 * some conditions. This is useful for IO devices that can
1001		 * merge IO requests if the physical pages are ordered
1002		 * properly.
1003		 */
1004		if (likely(cold == 0))
1005			list_add(&page->lru, list);
1006		else
1007			list_add_tail(&page->lru, list);
1008		set_page_private(page, migratetype);
1009		list = &page->lru;
1010	}
1011	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1012	spin_unlock(&zone->lock);
1013	return i;
1014}
1015
1016#ifdef CONFIG_NUMA
1017/*
1018 * Called from the vmstat counter updater to drain pagesets of this
1019 * currently executing processor on remote nodes after they have
1020 * expired.
1021 *
1022 * Note that this function must be called with the thread pinned to
1023 * a single processor.
1024 */
1025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1026{
1027	unsigned long flags;
1028	int to_drain;
1029
1030	local_irq_save(flags);
1031	if (pcp->count >= pcp->batch)
1032		to_drain = pcp->batch;
1033	else
1034		to_drain = pcp->count;
1035	free_pcppages_bulk(zone, to_drain, pcp);
1036	pcp->count -= to_drain;
1037	local_irq_restore(flags);
1038}
1039#endif
1040
1041/*
1042 * Drain pages of the indicated processor.
1043 *
1044 * The processor must either be the current processor and the
1045 * thread pinned to the current processor or a processor that
1046 * is not online.
1047 */
1048static void drain_pages(unsigned int cpu)
1049{
1050	unsigned long flags;
1051	struct zone *zone;
1052
1053	for_each_populated_zone(zone) {
1054		struct per_cpu_pageset *pset;
1055		struct per_cpu_pages *pcp;
1056
1057		local_irq_save(flags);
1058		pset = per_cpu_ptr(zone->pageset, cpu);
1059
1060		pcp = &pset->pcp;
1061		free_pcppages_bulk(zone, pcp->count, pcp);
1062		pcp->count = 0;
1063		local_irq_restore(flags);
1064	}
1065}
1066
1067/*
1068 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1069 */
1070void drain_local_pages(void *arg)
1071{
1072	drain_pages(smp_processor_id());
1073}
1074
1075/*
1076 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1077 */
1078void drain_all_pages(void)
1079{
1080	on_each_cpu(drain_local_pages, NULL, 1);
1081}
1082
1083#ifdef CONFIG_HIBERNATION
1084
1085void mark_free_pages(struct zone *zone)
1086{
1087	unsigned long pfn, max_zone_pfn;
1088	unsigned long flags;
1089	int order, t;
1090	struct list_head *curr;
1091
1092	if (!zone->spanned_pages)
1093		return;
1094
1095	spin_lock_irqsave(&zone->lock, flags);
1096
1097	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1098	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1099		if (pfn_valid(pfn)) {
1100			struct page *page = pfn_to_page(pfn);
1101
1102			if (!swsusp_page_is_forbidden(page))
1103				swsusp_unset_page_free(page);
1104		}
1105
1106	for_each_migratetype_order(order, t) {
1107		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1108			unsigned long i;
1109
1110			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1111			for (i = 0; i < (1UL << order); i++)
1112				swsusp_set_page_free(pfn_to_page(pfn + i));
1113		}
1114	}
1115	spin_unlock_irqrestore(&zone->lock, flags);
1116}
1117#endif /* CONFIG_PM */
1118
1119/*
1120 * Free a 0-order page
1121 * cold == 1 ? free a cold page : free a hot page
1122 */
1123void free_hot_cold_page(struct page *page, int cold)
1124{
1125	struct zone *zone = page_zone(page);
1126	struct per_cpu_pages *pcp;
1127	unsigned long flags;
1128	int migratetype;
1129	int wasMlocked = __TestClearPageMlocked(page);
1130
1131	trace_mm_page_free_direct(page, 0);
1132	kmemcheck_free_shadow(page, 0);
1133
1134	if (PageAnon(page))
1135		page->mapping = NULL;
1136	if (free_pages_check(page))
1137		return;
1138
1139	if (!PageHighMem(page)) {
1140		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1141		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1142	}
1143	arch_free_page(page, 0);
1144	kernel_map_pages(page, 1, 0);
1145
1146	migratetype = get_pageblock_migratetype(page);
1147	set_page_private(page, migratetype);
1148	local_irq_save(flags);
1149	if (unlikely(wasMlocked))
1150		free_page_mlock(page);
1151	__count_vm_event(PGFREE);
1152
1153	/*
1154	 * We only track unmovable, reclaimable and movable on pcp lists.
1155	 * Free ISOLATE pages back to the allocator because they are being
1156	 * offlined but treat RESERVE as movable pages so we can get those
1157	 * areas back if necessary. Otherwise, we may have to free
1158	 * excessively into the page allocator
1159	 */
1160	if (migratetype >= MIGRATE_PCPTYPES) {
1161		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1162			free_one_page(zone, page, 0, migratetype);
1163			goto out;
1164		}
1165		migratetype = MIGRATE_MOVABLE;
1166	}
1167
1168	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1169	if (cold)
1170		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1171	else
1172		list_add(&page->lru, &pcp->lists[migratetype]);
1173	pcp->count++;
1174	if (pcp->count >= pcp->high) {
1175		free_pcppages_bulk(zone, pcp->batch, pcp);
1176		pcp->count -= pcp->batch;
1177	}
1178
1179out:
1180	local_irq_restore(flags);
1181}
1182
1183/*
1184 * split_page takes a non-compound higher-order page, and splits it into
1185 * n (1<<order) sub-pages: page[0..n]
1186 * Each sub-page must be freed individually.
1187 *
1188 * Note: this is probably too low level an operation for use in drivers.
1189 * Please consult with lkml before using this in your driver.
1190 */
1191void split_page(struct page *page, unsigned int order)
1192{
1193	int i;
1194
1195	VM_BUG_ON(PageCompound(page));
1196	VM_BUG_ON(!page_count(page));
1197
1198#ifdef CONFIG_KMEMCHECK
1199	/*
1200	 * Split shadow pages too, because free(page[0]) would
1201	 * otherwise free the whole shadow.
1202	 */
1203	if (kmemcheck_page_is_tracked(page))
1204		split_page(virt_to_page(page[0].shadow), order);
1205#endif
1206
1207	for (i = 1; i < (1 << order); i++)
1208		set_page_refcounted(page + i);
1209}
1210
1211/*
1212 * Similar to split_page except the page is already free. As this is only
1213 * being used for migration, the migratetype of the block also changes.
1214 * As this is called with interrupts disabled, the caller is responsible
1215 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1216 * are enabled.
1217 *
1218 * Note: this is probably too low level an operation for use in drivers.
1219 * Please consult with lkml before using this in your driver.
1220 */
1221int split_free_page(struct page *page)
1222{
1223	unsigned int order;
1224	unsigned long watermark;
1225	struct zone *zone;
1226
1227	BUG_ON(!PageBuddy(page));
1228
1229	zone = page_zone(page);
1230	order = page_order(page);
1231
1232	/* Obey watermarks as if the page was being allocated */
1233	watermark = low_wmark_pages(zone) + (1 << order);
1234	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1235		return 0;
1236
1237	/* Remove page from free list */
1238	list_del(&page->lru);
1239	zone->free_area[order].nr_free--;
1240	rmv_page_order(page);
1241	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1242
1243	/* Split into individual pages */
1244	set_page_refcounted(page);
1245	split_page(page, order);
1246
1247	if (order >= pageblock_order - 1) {
1248		struct page *endpage = page + (1 << order) - 1;
1249		for (; page < endpage; page += pageblock_nr_pages)
1250			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1251	}
1252
1253	return 1 << order;
1254}
1255
1256/*
1257 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1258 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1259 * or two.
1260 */
1261static inline
1262struct page *buffered_rmqueue(struct zone *preferred_zone,
1263			struct zone *zone, int order, gfp_t gfp_flags,
1264			int migratetype)
1265{
1266	unsigned long flags;
1267	struct page *page;
1268	int cold = !!(gfp_flags & __GFP_COLD);
1269
1270again:
1271	if (likely(order == 0)) {
1272		struct per_cpu_pages *pcp;
1273		struct list_head *list;
1274
1275		local_irq_save(flags);
1276		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1277		list = &pcp->lists[migratetype];
1278		if (list_empty(list)) {
1279			pcp->count += rmqueue_bulk(zone, 0,
1280					pcp->batch, list,
1281					migratetype, cold);
1282			if (unlikely(list_empty(list)))
1283				goto failed;
1284		}
1285
1286		if (cold)
1287			page = list_entry(list->prev, struct page, lru);
1288		else
1289			page = list_entry(list->next, struct page, lru);
1290
1291		list_del(&page->lru);
1292		pcp->count--;
1293	} else {
1294		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1295			/*
1296			 * __GFP_NOFAIL is not to be used in new code.
1297			 *
1298			 * All __GFP_NOFAIL callers should be fixed so that they
1299			 * properly detect and handle allocation failures.
1300			 *
1301			 * We most definitely don't want callers attempting to
1302			 * allocate greater than order-1 page units with
1303			 * __GFP_NOFAIL.
1304			 */
1305			WARN_ON_ONCE(order > 1);
1306		}
1307		spin_lock_irqsave(&zone->lock, flags);
1308		page = __rmqueue(zone, order, migratetype);
1309		spin_unlock(&zone->lock);
1310		if (!page)
1311			goto failed;
1312		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1313	}
1314
1315	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1316	zone_statistics(preferred_zone, zone);
1317	local_irq_restore(flags);
1318
1319	VM_BUG_ON(bad_range(zone, page));
1320	if (prep_new_page(page, order, gfp_flags))
1321		goto again;
1322	return page;
1323
1324failed:
1325	local_irq_restore(flags);
1326	return NULL;
1327}
1328
1329/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1330#define ALLOC_WMARK_MIN		WMARK_MIN
1331#define ALLOC_WMARK_LOW		WMARK_LOW
1332#define ALLOC_WMARK_HIGH	WMARK_HIGH
1333#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1334
1335/* Mask to get the watermark bits */
1336#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1337
1338#define ALLOC_HARDER		0x10 /* try to alloc harder */
1339#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1340#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1341
1342#ifdef CONFIG_FAIL_PAGE_ALLOC
1343
1344static struct fail_page_alloc_attr {
1345	struct fault_attr attr;
1346
1347	u32 ignore_gfp_highmem;
1348	u32 ignore_gfp_wait;
1349	u32 min_order;
1350
1351#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1352
1353	struct dentry *ignore_gfp_highmem_file;
1354	struct dentry *ignore_gfp_wait_file;
1355	struct dentry *min_order_file;
1356
1357#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1358
1359} fail_page_alloc = {
1360	.attr = FAULT_ATTR_INITIALIZER,
1361	.ignore_gfp_wait = 1,
1362	.ignore_gfp_highmem = 1,
1363	.min_order = 1,
1364};
1365
1366static int __init setup_fail_page_alloc(char *str)
1367{
1368	return setup_fault_attr(&fail_page_alloc.attr, str);
1369}
1370__setup("fail_page_alloc=", setup_fail_page_alloc);
1371
1372static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1373{
1374	if (order < fail_page_alloc.min_order)
1375		return 0;
1376	if (gfp_mask & __GFP_NOFAIL)
1377		return 0;
1378	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1379		return 0;
1380	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1381		return 0;
1382
1383	return should_fail(&fail_page_alloc.attr, 1 << order);
1384}
1385
1386#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1387
1388static int __init fail_page_alloc_debugfs(void)
1389{
1390	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1391	struct dentry *dir;
1392	int err;
1393
1394	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1395				       "fail_page_alloc");
1396	if (err)
1397		return err;
1398	dir = fail_page_alloc.attr.dentries.dir;
1399
1400	fail_page_alloc.ignore_gfp_wait_file =
1401		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1402				      &fail_page_alloc.ignore_gfp_wait);
1403
1404	fail_page_alloc.ignore_gfp_highmem_file =
1405		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1406				      &fail_page_alloc.ignore_gfp_highmem);
1407	fail_page_alloc.min_order_file =
1408		debugfs_create_u32("min-order", mode, dir,
1409				   &fail_page_alloc.min_order);
1410
1411	if (!fail_page_alloc.ignore_gfp_wait_file ||
1412            !fail_page_alloc.ignore_gfp_highmem_file ||
1413            !fail_page_alloc.min_order_file) {
1414		err = -ENOMEM;
1415		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1416		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1417		debugfs_remove(fail_page_alloc.min_order_file);
1418		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1419	}
1420
1421	return err;
1422}
1423
1424late_initcall(fail_page_alloc_debugfs);
1425
1426#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1427
1428#else /* CONFIG_FAIL_PAGE_ALLOC */
1429
1430static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1431{
1432	return 0;
1433}
1434
1435#endif /* CONFIG_FAIL_PAGE_ALLOC */
1436
1437/*
1438 * Return 1 if free pages are above 'mark'. This takes into account the order
1439 * of the allocation.
1440 */
1441int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1442		      int classzone_idx, int alloc_flags)
1443{
1444	/* free_pages my go negative - that's OK */
1445	long min = mark;
1446	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1447	int o;
1448
1449	if (alloc_flags & ALLOC_HIGH)
1450		min -= min / 2;
1451	if (alloc_flags & ALLOC_HARDER)
1452		min -= min / 4;
1453
1454	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1455		return 0;
1456	for (o = 0; o < order; o++) {
1457		/* At the next order, this order's pages become unavailable */
1458		free_pages -= z->free_area[o].nr_free << o;
1459
1460		/* Require fewer higher order pages to be free */
1461		min >>= 1;
1462
1463		if (free_pages <= min)
1464			return 0;
1465	}
1466	return 1;
1467}
1468
1469#ifdef CONFIG_NUMA
1470/*
1471 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1472 * skip over zones that are not allowed by the cpuset, or that have
1473 * been recently (in last second) found to be nearly full.  See further
1474 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1475 * that have to skip over a lot of full or unallowed zones.
1476 *
1477 * If the zonelist cache is present in the passed in zonelist, then
1478 * returns a pointer to the allowed node mask (either the current
1479 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1480 *
1481 * If the zonelist cache is not available for this zonelist, does
1482 * nothing and returns NULL.
1483 *
1484 * If the fullzones BITMAP in the zonelist cache is stale (more than
1485 * a second since last zap'd) then we zap it out (clear its bits.)
1486 *
1487 * We hold off even calling zlc_setup, until after we've checked the
1488 * first zone in the zonelist, on the theory that most allocations will
1489 * be satisfied from that first zone, so best to examine that zone as
1490 * quickly as we can.
1491 */
1492static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1493{
1494	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1495	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1496
1497	zlc = zonelist->zlcache_ptr;
1498	if (!zlc)
1499		return NULL;
1500
1501	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1502		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1503		zlc->last_full_zap = jiffies;
1504	}
1505
1506	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1507					&cpuset_current_mems_allowed :
1508					&node_states[N_HIGH_MEMORY];
1509	return allowednodes;
1510}
1511
1512/*
1513 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1514 * if it is worth looking at further for free memory:
1515 *  1) Check that the zone isn't thought to be full (doesn't have its
1516 *     bit set in the zonelist_cache fullzones BITMAP).
1517 *  2) Check that the zones node (obtained from the zonelist_cache
1518 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1519 * Return true (non-zero) if zone is worth looking at further, or
1520 * else return false (zero) if it is not.
1521 *
1522 * This check -ignores- the distinction between various watermarks,
1523 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1524 * found to be full for any variation of these watermarks, it will
1525 * be considered full for up to one second by all requests, unless
1526 * we are so low on memory on all allowed nodes that we are forced
1527 * into the second scan of the zonelist.
1528 *
1529 * In the second scan we ignore this zonelist cache and exactly
1530 * apply the watermarks to all zones, even it is slower to do so.
1531 * We are low on memory in the second scan, and should leave no stone
1532 * unturned looking for a free page.
1533 */
1534static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1535						nodemask_t *allowednodes)
1536{
1537	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1538	int i;				/* index of *z in zonelist zones */
1539	int n;				/* node that zone *z is on */
1540
1541	zlc = zonelist->zlcache_ptr;
1542	if (!zlc)
1543		return 1;
1544
1545	i = z - zonelist->_zonerefs;
1546	n = zlc->z_to_n[i];
1547
1548	/* This zone is worth trying if it is allowed but not full */
1549	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1550}
1551
1552/*
1553 * Given 'z' scanning a zonelist, set the corresponding bit in
1554 * zlc->fullzones, so that subsequent attempts to allocate a page
1555 * from that zone don't waste time re-examining it.
1556 */
1557static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1558{
1559	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1560	int i;				/* index of *z in zonelist zones */
1561
1562	zlc = zonelist->zlcache_ptr;
1563	if (!zlc)
1564		return;
1565
1566	i = z - zonelist->_zonerefs;
1567
1568	set_bit(i, zlc->fullzones);
1569}
1570
1571#else	/* CONFIG_NUMA */
1572
1573static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1574{
1575	return NULL;
1576}
1577
1578static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1579				nodemask_t *allowednodes)
1580{
1581	return 1;
1582}
1583
1584static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1585{
1586}
1587#endif	/* CONFIG_NUMA */
1588
1589/*
1590 * get_page_from_freelist goes through the zonelist trying to allocate
1591 * a page.
1592 */
1593static struct page *
1594get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1595		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1596		struct zone *preferred_zone, int migratetype)
1597{
1598	struct zoneref *z;
1599	struct page *page = NULL;
1600	int classzone_idx;
1601	struct zone *zone;
1602	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1603	int zlc_active = 0;		/* set if using zonelist_cache */
1604	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1605
1606	classzone_idx = zone_idx(preferred_zone);
1607zonelist_scan:
1608	/*
1609	 * Scan zonelist, looking for a zone with enough free.
1610	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1611	 */
1612	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1613						high_zoneidx, nodemask) {
1614		if (NUMA_BUILD && zlc_active &&
1615			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1616				continue;
1617		if ((alloc_flags & ALLOC_CPUSET) &&
1618			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1619				goto try_next_zone;
1620
1621		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1622		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1623			unsigned long mark;
1624			int ret;
1625
1626			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1627			if (zone_watermark_ok(zone, order, mark,
1628				    classzone_idx, alloc_flags))
1629				goto try_this_zone;
1630
1631			if (zone_reclaim_mode == 0)
1632				goto this_zone_full;
1633
1634			ret = zone_reclaim(zone, gfp_mask, order);
1635			switch (ret) {
1636			case ZONE_RECLAIM_NOSCAN:
1637				/* did not scan */
1638				goto try_next_zone;
1639			case ZONE_RECLAIM_FULL:
1640				/* scanned but unreclaimable */
1641				goto this_zone_full;
1642			default:
1643				/* did we reclaim enough */
1644				if (!zone_watermark_ok(zone, order, mark,
1645						classzone_idx, alloc_flags))
1646					goto this_zone_full;
1647			}
1648		}
1649
1650try_this_zone:
1651		page = buffered_rmqueue(preferred_zone, zone, order,
1652						gfp_mask, migratetype);
1653		if (page)
1654			break;
1655this_zone_full:
1656		if (NUMA_BUILD)
1657			zlc_mark_zone_full(zonelist, z);
1658try_next_zone:
1659		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1660			/*
1661			 * we do zlc_setup after the first zone is tried but only
1662			 * if there are multiple nodes make it worthwhile
1663			 */
1664			allowednodes = zlc_setup(zonelist, alloc_flags);
1665			zlc_active = 1;
1666			did_zlc_setup = 1;
1667		}
1668	}
1669
1670	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1671		/* Disable zlc cache for second zonelist scan */
1672		zlc_active = 0;
1673		goto zonelist_scan;
1674	}
1675	return page;
1676}
1677
1678static inline int
1679should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1680				unsigned long pages_reclaimed)
1681{
1682	/* Do not loop if specifically requested */
1683	if (gfp_mask & __GFP_NORETRY)
1684		return 0;
1685
1686	/*
1687	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1688	 * means __GFP_NOFAIL, but that may not be true in other
1689	 * implementations.
1690	 */
1691	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1692		return 1;
1693
1694	/*
1695	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1696	 * specified, then we retry until we no longer reclaim any pages
1697	 * (above), or we've reclaimed an order of pages at least as
1698	 * large as the allocation's order. In both cases, if the
1699	 * allocation still fails, we stop retrying.
1700	 */
1701	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1702		return 1;
1703
1704	/*
1705	 * Don't let big-order allocations loop unless the caller
1706	 * explicitly requests that.
1707	 */
1708	if (gfp_mask & __GFP_NOFAIL)
1709		return 1;
1710
1711	return 0;
1712}
1713
1714static inline struct page *
1715__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1716	struct zonelist *zonelist, enum zone_type high_zoneidx,
1717	nodemask_t *nodemask, struct zone *preferred_zone,
1718	int migratetype)
1719{
1720	struct page *page;
1721
1722	/* Acquire the OOM killer lock for the zones in zonelist */
1723	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1724		schedule_timeout_uninterruptible(1);
1725		return NULL;
1726	}
1727
1728	/*
1729	 * Go through the zonelist yet one more time, keep very high watermark
1730	 * here, this is only to catch a parallel oom killing, we must fail if
1731	 * we're still under heavy pressure.
1732	 */
1733	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1734		order, zonelist, high_zoneidx,
1735		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1736		preferred_zone, migratetype);
1737	if (page)
1738		goto out;
1739
1740	if (!(gfp_mask & __GFP_NOFAIL)) {
1741		/* The OOM killer will not help higher order allocs */
1742		if (order > PAGE_ALLOC_COSTLY_ORDER)
1743			goto out;
1744		/*
1745		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1746		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1747		 * The caller should handle page allocation failure by itself if
1748		 * it specifies __GFP_THISNODE.
1749		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1750		 */
1751		if (gfp_mask & __GFP_THISNODE)
1752			goto out;
1753	}
1754	/* Exhausted what can be done so it's blamo time */
1755	out_of_memory(zonelist, gfp_mask, order, nodemask);
1756
1757out:
1758	clear_zonelist_oom(zonelist, gfp_mask);
1759	return page;
1760}
1761
1762#ifdef CONFIG_COMPACTION
1763/* Try memory compaction for high-order allocations before reclaim */
1764static struct page *
1765__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1766	struct zonelist *zonelist, enum zone_type high_zoneidx,
1767	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1768	int migratetype, unsigned long *did_some_progress)
1769{
1770	struct page *page;
1771
1772	if (!order)
1773		return NULL;
1774
1775	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1776								nodemask);
1777	if (*did_some_progress != COMPACT_SKIPPED) {
1778
1779		/* Page migration frees to the PCP lists but we want merging */
1780		drain_pages(get_cpu());
1781		put_cpu();
1782
1783		page = get_page_from_freelist(gfp_mask, nodemask,
1784				order, zonelist, high_zoneidx,
1785				alloc_flags, preferred_zone,
1786				migratetype);
1787		if (page) {
1788			count_vm_event(COMPACTSUCCESS);
1789			return page;
1790		}
1791
1792		/*
1793		 * It's bad if compaction run occurs and fails.
1794		 * The most likely reason is that pages exist,
1795		 * but not enough to satisfy watermarks.
1796		 */
1797		count_vm_event(COMPACTFAIL);
1798
1799		cond_resched();
1800	}
1801
1802	return NULL;
1803}
1804#else
1805static inline struct page *
1806__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1807	struct zonelist *zonelist, enum zone_type high_zoneidx,
1808	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1809	int migratetype, unsigned long *did_some_progress)
1810{
1811	return NULL;
1812}
1813#endif /* CONFIG_COMPACTION */
1814
1815/* The really slow allocator path where we enter direct reclaim */
1816static inline struct page *
1817__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1818	struct zonelist *zonelist, enum zone_type high_zoneidx,
1819	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1820	int migratetype, unsigned long *did_some_progress)
1821{
1822	struct page *page = NULL;
1823	struct reclaim_state reclaim_state;
1824	struct task_struct *p = current;
1825
1826	cond_resched();
1827
1828	/* We now go into synchronous reclaim */
1829	cpuset_memory_pressure_bump();
1830	p->flags |= PF_MEMALLOC;
1831	lockdep_set_current_reclaim_state(gfp_mask);
1832	reclaim_state.reclaimed_slab = 0;
1833	p->reclaim_state = &reclaim_state;
1834
1835	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1836
1837	p->reclaim_state = NULL;
1838	lockdep_clear_current_reclaim_state();
1839	p->flags &= ~PF_MEMALLOC;
1840
1841	cond_resched();
1842
1843	if (order != 0)
1844		drain_all_pages();
1845
1846	if (likely(*did_some_progress))
1847		page = get_page_from_freelist(gfp_mask, nodemask, order,
1848					zonelist, high_zoneidx,
1849					alloc_flags, preferred_zone,
1850					migratetype);
1851	return page;
1852}
1853
1854/*
1855 * This is called in the allocator slow-path if the allocation request is of
1856 * sufficient urgency to ignore watermarks and take other desperate measures
1857 */
1858static inline struct page *
1859__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1860	struct zonelist *zonelist, enum zone_type high_zoneidx,
1861	nodemask_t *nodemask, struct zone *preferred_zone,
1862	int migratetype)
1863{
1864	struct page *page;
1865
1866	do {
1867		page = get_page_from_freelist(gfp_mask, nodemask, order,
1868			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1869			preferred_zone, migratetype);
1870
1871		if (!page && gfp_mask & __GFP_NOFAIL)
1872			congestion_wait(BLK_RW_ASYNC, HZ/50);
1873	} while (!page && (gfp_mask & __GFP_NOFAIL));
1874
1875	return page;
1876}
1877
1878static inline
1879void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1880						enum zone_type high_zoneidx)
1881{
1882	struct zoneref *z;
1883	struct zone *zone;
1884
1885	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1886		wakeup_kswapd(zone, order);
1887}
1888
1889static inline int
1890gfp_to_alloc_flags(gfp_t gfp_mask)
1891{
1892	struct task_struct *p = current;
1893	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1894	const gfp_t wait = gfp_mask & __GFP_WAIT;
1895
1896	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1897	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1898
1899	/*
1900	 * The caller may dip into page reserves a bit more if the caller
1901	 * cannot run direct reclaim, or if the caller has realtime scheduling
1902	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1903	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1904	 */
1905	alloc_flags |= (gfp_mask & __GFP_HIGH);
1906
1907	if (!wait) {
1908		alloc_flags |= ALLOC_HARDER;
1909		/*
1910		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1911		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1912		 */
1913		alloc_flags &= ~ALLOC_CPUSET;
1914	} else if (unlikely(rt_task(p)) && !in_interrupt())
1915		alloc_flags |= ALLOC_HARDER;
1916
1917	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1918		if (!in_interrupt() &&
1919		    ((p->flags & PF_MEMALLOC) ||
1920		     unlikely(test_thread_flag(TIF_MEMDIE))))
1921			alloc_flags |= ALLOC_NO_WATERMARKS;
1922	}
1923
1924	return alloc_flags;
1925}
1926
1927static inline struct page *
1928__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1929	struct zonelist *zonelist, enum zone_type high_zoneidx,
1930	nodemask_t *nodemask, struct zone *preferred_zone,
1931	int migratetype)
1932{
1933	const gfp_t wait = gfp_mask & __GFP_WAIT;
1934	struct page *page = NULL;
1935	int alloc_flags;
1936	unsigned long pages_reclaimed = 0;
1937	unsigned long did_some_progress;
1938	struct task_struct *p = current;
1939
1940	/*
1941	 * In the slowpath, we sanity check order to avoid ever trying to
1942	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1943	 * be using allocators in order of preference for an area that is
1944	 * too large.
1945	 */
1946	if (order >= MAX_ORDER) {
1947		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1948		return NULL;
1949	}
1950
1951	/*
1952	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1953	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1954	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1955	 * using a larger set of nodes after it has established that the
1956	 * allowed per node queues are empty and that nodes are
1957	 * over allocated.
1958	 */
1959	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1960		goto nopage;
1961
1962restart:
1963	wake_all_kswapd(order, zonelist, high_zoneidx);
1964
1965	/*
1966	 * OK, we're below the kswapd watermark and have kicked background
1967	 * reclaim. Now things get more complex, so set up alloc_flags according
1968	 * to how we want to proceed.
1969	 */
1970	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1971
1972	/* This is the last chance, in general, before the goto nopage. */
1973	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1974			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1975			preferred_zone, migratetype);
1976	if (page)
1977		goto got_pg;
1978
1979rebalance:
1980	/* Allocate without watermarks if the context allows */
1981	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1982		page = __alloc_pages_high_priority(gfp_mask, order,
1983				zonelist, high_zoneidx, nodemask,
1984				preferred_zone, migratetype);
1985		if (page)
1986			goto got_pg;
1987	}
1988
1989	/* Atomic allocations - we can't balance anything */
1990	if (!wait)
1991		goto nopage;
1992
1993	/* Avoid recursion of direct reclaim */
1994	if (p->flags & PF_MEMALLOC)
1995		goto nopage;
1996
1997	/* Avoid allocations with no watermarks from looping endlessly */
1998	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1999		goto nopage;
2000
2001	/* Try direct compaction */
2002	page = __alloc_pages_direct_compact(gfp_mask, order,
2003					zonelist, high_zoneidx,
2004					nodemask,
2005					alloc_flags, preferred_zone,
2006					migratetype, &did_some_progress);
2007	if (page)
2008		goto got_pg;
2009
2010	/* Try direct reclaim and then allocating */
2011	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2012					zonelist, high_zoneidx,
2013					nodemask,
2014					alloc_flags, preferred_zone,
2015					migratetype, &did_some_progress);
2016	if (page)
2017		goto got_pg;
2018
2019	/*
2020	 * If we failed to make any progress reclaiming, then we are
2021	 * running out of options and have to consider going OOM
2022	 */
2023	if (!did_some_progress) {
2024		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2025			if (oom_killer_disabled)
2026				goto nopage;
2027			page = __alloc_pages_may_oom(gfp_mask, order,
2028					zonelist, high_zoneidx,
2029					nodemask, preferred_zone,
2030					migratetype);
2031			if (page)
2032				goto got_pg;
2033
2034			/*
2035			 * The OOM killer does not trigger for high-order
2036			 * ~__GFP_NOFAIL allocations so if no progress is being
2037			 * made, there are no other options and retrying is
2038			 * unlikely to help.
2039			 */
2040			if (order > PAGE_ALLOC_COSTLY_ORDER &&
2041						!(gfp_mask & __GFP_NOFAIL))
2042				goto nopage;
2043
2044			goto restart;
2045		}
2046	}
2047
2048	/* Check if we should retry the allocation */
2049	pages_reclaimed += did_some_progress;
2050	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2051		/* Wait for some write requests to complete then retry */
2052		congestion_wait(BLK_RW_ASYNC, HZ/50);
2053		goto rebalance;
2054	}
2055
2056nopage:
2057	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2058		printk(KERN_WARNING "%s: page allocation failure."
2059			" order:%d, mode:0x%x\n",
2060			p->comm, order, gfp_mask);
2061		dump_stack();
2062		show_mem();
2063	}
2064	return page;
2065got_pg:
2066	if (kmemcheck_enabled)
2067		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2068	return page;
2069
2070}
2071
2072/*
2073 * This is the 'heart' of the zoned buddy allocator.
2074 */
2075struct page *
2076__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2077			struct zonelist *zonelist, nodemask_t *nodemask)
2078{
2079	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2080	struct zone *preferred_zone;
2081	struct page *page;
2082	int migratetype = allocflags_to_migratetype(gfp_mask);
2083
2084	gfp_mask &= gfp_allowed_mask;
2085
2086	lockdep_trace_alloc(gfp_mask);
2087
2088	might_sleep_if(gfp_mask & __GFP_WAIT);
2089
2090	if (should_fail_alloc_page(gfp_mask, order))
2091		return NULL;
2092
2093	/*
2094	 * Check the zones suitable for the gfp_mask contain at least one
2095	 * valid zone. It's possible to have an empty zonelist as a result
2096	 * of GFP_THISNODE and a memoryless node
2097	 */
2098	if (unlikely(!zonelist->_zonerefs->zone))
2099		return NULL;
2100
2101	get_mems_allowed();
2102	/* The preferred zone is used for statistics later */
2103	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2104	if (!preferred_zone) {
2105		put_mems_allowed();
2106		return NULL;
2107	}
2108
2109	/* First allocation attempt */
2110	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2111			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2112			preferred_zone, migratetype);
2113	if (unlikely(!page))
2114		page = __alloc_pages_slowpath(gfp_mask, order,
2115				zonelist, high_zoneidx, nodemask,
2116				preferred_zone, migratetype);
2117	put_mems_allowed();
2118
2119	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2120	return page;
2121}
2122EXPORT_SYMBOL(__alloc_pages_nodemask);
2123
2124/*
2125 * Common helper functions.
2126 */
2127unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2128{
2129	struct page *page;
2130
2131	/*
2132	 * __get_free_pages() returns a 32-bit address, which cannot represent
2133	 * a highmem page
2134	 */
2135	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2136
2137	page = alloc_pages(gfp_mask, order);
2138	if (!page)
2139		return 0;
2140	return (unsigned long) page_address(page);
2141}
2142EXPORT_SYMBOL(__get_free_pages);
2143
2144unsigned long get_zeroed_page(gfp_t gfp_mask)
2145{
2146	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2147}
2148EXPORT_SYMBOL(get_zeroed_page);
2149
2150void __pagevec_free(struct pagevec *pvec)
2151{
2152	int i = pagevec_count(pvec);
2153
2154	while (--i >= 0) {
2155		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2156		free_hot_cold_page(pvec->pages[i], pvec->cold);
2157	}
2158}
2159
2160void __free_pages(struct page *page, unsigned int order)
2161{
2162	if (put_page_testzero(page)) {
2163		if (order == 0)
2164			free_hot_cold_page(page, 0);
2165		else
2166			__free_pages_ok(page, order);
2167	}
2168}
2169
2170EXPORT_SYMBOL(__free_pages);
2171
2172void free_pages(unsigned long addr, unsigned int order)
2173{
2174	if (addr != 0) {
2175		VM_BUG_ON(!virt_addr_valid((void *)addr));
2176		__free_pages(virt_to_page((void *)addr), order);
2177	}
2178}
2179
2180EXPORT_SYMBOL(free_pages);
2181
2182/**
2183 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2184 * @size: the number of bytes to allocate
2185 * @gfp_mask: GFP flags for the allocation
2186 *
2187 * This function is similar to alloc_pages(), except that it allocates the
2188 * minimum number of pages to satisfy the request.  alloc_pages() can only
2189 * allocate memory in power-of-two pages.
2190 *
2191 * This function is also limited by MAX_ORDER.
2192 *
2193 * Memory allocated by this function must be released by free_pages_exact().
2194 */
2195void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2196{
2197	unsigned int order = get_order(size);
2198	unsigned long addr;
2199
2200	addr = __get_free_pages(gfp_mask, order);
2201	if (addr) {
2202		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2203		unsigned long used = addr + PAGE_ALIGN(size);
2204
2205		split_page(virt_to_page((void *)addr), order);
2206		while (used < alloc_end) {
2207			free_page(used);
2208			used += PAGE_SIZE;
2209		}
2210	}
2211
2212	return (void *)addr;
2213}
2214EXPORT_SYMBOL(alloc_pages_exact);
2215
2216/**
2217 * free_pages_exact - release memory allocated via alloc_pages_exact()
2218 * @virt: the value returned by alloc_pages_exact.
2219 * @size: size of allocation, same value as passed to alloc_pages_exact().
2220 *
2221 * Release the memory allocated by a previous call to alloc_pages_exact.
2222 */
2223void free_pages_exact(void *virt, size_t size)
2224{
2225	unsigned long addr = (unsigned long)virt;
2226	unsigned long end = addr + PAGE_ALIGN(size);
2227
2228	while (addr < end) {
2229		free_page(addr);
2230		addr += PAGE_SIZE;
2231	}
2232}
2233EXPORT_SYMBOL(free_pages_exact);
2234
2235static unsigned int nr_free_zone_pages(int offset)
2236{
2237	struct zoneref *z;
2238	struct zone *zone;
2239
2240	/* Just pick one node, since fallback list is circular */
2241	unsigned int sum = 0;
2242
2243	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2244
2245	for_each_zone_zonelist(zone, z, zonelist, offset) {
2246		unsigned long size = zone->present_pages;
2247		unsigned long high = high_wmark_pages(zone);
2248		if (size > high)
2249			sum += size - high;
2250	}
2251
2252	return sum;
2253}
2254
2255/*
2256 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2257 */
2258unsigned int nr_free_buffer_pages(void)
2259{
2260	return nr_free_zone_pages(gfp_zone(GFP_USER));
2261}
2262EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2263
2264/*
2265 * Amount of free RAM allocatable within all zones
2266 */
2267unsigned int nr_free_pagecache_pages(void)
2268{
2269	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2270}
2271
2272static inline void show_node(struct zone *zone)
2273{
2274	if (NUMA_BUILD)
2275		printk("Node %d ", zone_to_nid(zone));
2276}
2277
2278void si_meminfo(struct sysinfo *val)
2279{
2280	val->totalram = totalram_pages;
2281	val->sharedram = 0;
2282	val->freeram = global_page_state(NR_FREE_PAGES);
2283	val->bufferram = nr_blockdev_pages();
2284	val->totalhigh = totalhigh_pages;
2285	val->freehigh = nr_free_highpages();
2286	val->mem_unit = PAGE_SIZE;
2287}
2288
2289EXPORT_SYMBOL(si_meminfo);
2290
2291#ifdef CONFIG_NUMA
2292void si_meminfo_node(struct sysinfo *val, int nid)
2293{
2294	pg_data_t *pgdat = NODE_DATA(nid);
2295
2296	val->totalram = pgdat->node_present_pages;
2297	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2298#ifdef CONFIG_HIGHMEM
2299	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2300	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2301			NR_FREE_PAGES);
2302#else
2303	val->totalhigh = 0;
2304	val->freehigh = 0;
2305#endif
2306	val->mem_unit = PAGE_SIZE;
2307}
2308#endif
2309
2310#define K(x) ((x) << (PAGE_SHIFT-10))
2311
2312/*
2313 * Show free area list (used inside shift_scroll-lock stuff)
2314 * We also calculate the percentage fragmentation. We do this by counting the
2315 * memory on each free list with the exception of the first item on the list.
2316 */
2317void show_free_areas(void)
2318{
2319	int cpu;
2320	struct zone *zone;
2321
2322	for_each_populated_zone(zone) {
2323		show_node(zone);
2324		printk("%s per-cpu:\n", zone->name);
2325
2326		for_each_online_cpu(cpu) {
2327			struct per_cpu_pageset *pageset;
2328
2329			pageset = per_cpu_ptr(zone->pageset, cpu);
2330
2331			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2332			       cpu, pageset->pcp.high,
2333			       pageset->pcp.batch, pageset->pcp.count);
2334		}
2335	}
2336
2337	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2338		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2339		" unevictable:%lu"
2340		" dirty:%lu writeback:%lu unstable:%lu\n"
2341		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2342		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2343		global_page_state(NR_ACTIVE_ANON),
2344		global_page_state(NR_INACTIVE_ANON),
2345		global_page_state(NR_ISOLATED_ANON),
2346		global_page_state(NR_ACTIVE_FILE),
2347		global_page_state(NR_INACTIVE_FILE),
2348		global_page_state(NR_ISOLATED_FILE),
2349		global_page_state(NR_UNEVICTABLE),
2350		global_page_state(NR_FILE_DIRTY),
2351		global_page_state(NR_WRITEBACK),
2352		global_page_state(NR_UNSTABLE_NFS),
2353		global_page_state(NR_FREE_PAGES),
2354		global_page_state(NR_SLAB_RECLAIMABLE),
2355		global_page_state(NR_SLAB_UNRECLAIMABLE),
2356		global_page_state(NR_FILE_MAPPED),
2357		global_page_state(NR_SHMEM),
2358		global_page_state(NR_PAGETABLE),
2359		global_page_state(NR_BOUNCE));
2360
2361	for_each_populated_zone(zone) {
2362		int i;
2363
2364		show_node(zone);
2365		printk("%s"
2366			" free:%lukB"
2367			" min:%lukB"
2368			" low:%lukB"
2369			" high:%lukB"
2370			" active_anon:%lukB"
2371			" inactive_anon:%lukB"
2372			" active_file:%lukB"
2373			" inactive_file:%lukB"
2374			" unevictable:%lukB"
2375			" isolated(anon):%lukB"
2376			" isolated(file):%lukB"
2377			" present:%lukB"
2378			" mlocked:%lukB"
2379			" dirty:%lukB"
2380			" writeback:%lukB"
2381			" mapped:%lukB"
2382			" shmem:%lukB"
2383			" slab_reclaimable:%lukB"
2384			" slab_unreclaimable:%lukB"
2385			" kernel_stack:%lukB"
2386			" pagetables:%lukB"
2387			" unstable:%lukB"
2388			" bounce:%lukB"
2389			" writeback_tmp:%lukB"
2390			" pages_scanned:%lu"
2391			" all_unreclaimable? %s"
2392			"\n",
2393			zone->name,
2394			K(zone_page_state(zone, NR_FREE_PAGES)),
2395			K(min_wmark_pages(zone)),
2396			K(low_wmark_pages(zone)),
2397			K(high_wmark_pages(zone)),
2398			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2399			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2400			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2401			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2402			K(zone_page_state(zone, NR_UNEVICTABLE)),
2403			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2404			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2405			K(zone->present_pages),
2406			K(zone_page_state(zone, NR_MLOCK)),
2407			K(zone_page_state(zone, NR_FILE_DIRTY)),
2408			K(zone_page_state(zone, NR_WRITEBACK)),
2409			K(zone_page_state(zone, NR_FILE_MAPPED)),
2410			K(zone_page_state(zone, NR_SHMEM)),
2411			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2412			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2413			zone_page_state(zone, NR_KERNEL_STACK) *
2414				THREAD_SIZE / 1024,
2415			K(zone_page_state(zone, NR_PAGETABLE)),
2416			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2417			K(zone_page_state(zone, NR_BOUNCE)),
2418			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2419			zone->pages_scanned,
2420			(zone->all_unreclaimable ? "yes" : "no")
2421			);
2422		printk("lowmem_reserve[]:");
2423		for (i = 0; i < MAX_NR_ZONES; i++)
2424			printk(" %lu", zone->lowmem_reserve[i]);
2425		printk("\n");
2426	}
2427
2428	for_each_populated_zone(zone) {
2429 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2430
2431		show_node(zone);
2432		printk("%s: ", zone->name);
2433
2434		spin_lock_irqsave(&zone->lock, flags);
2435		for (order = 0; order < MAX_ORDER; order++) {
2436			nr[order] = zone->free_area[order].nr_free;
2437			total += nr[order] << order;
2438		}
2439		spin_unlock_irqrestore(&zone->lock, flags);
2440		for (order = 0; order < MAX_ORDER; order++)
2441			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2442		printk("= %lukB\n", K(total));
2443	}
2444
2445	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2446
2447	show_swap_cache_info();
2448}
2449
2450static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2451{
2452	zoneref->zone = zone;
2453	zoneref->zone_idx = zone_idx(zone);
2454}
2455
2456/*
2457 * Builds allocation fallback zone lists.
2458 *
2459 * Add all populated zones of a node to the zonelist.
2460 */
2461static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2462				int nr_zones, enum zone_type zone_type)
2463{
2464	struct zone *zone;
2465
2466	BUG_ON(zone_type >= MAX_NR_ZONES);
2467	zone_type++;
2468
2469	do {
2470		zone_type--;
2471		zone = pgdat->node_zones + zone_type;
2472		if (populated_zone(zone)) {
2473			zoneref_set_zone(zone,
2474				&zonelist->_zonerefs[nr_zones++]);
2475			check_highest_zone(zone_type);
2476		}
2477
2478	} while (zone_type);
2479	return nr_zones;
2480}
2481
2482
2483/*
2484 *  zonelist_order:
2485 *  0 = automatic detection of better ordering.
2486 *  1 = order by ([node] distance, -zonetype)
2487 *  2 = order by (-zonetype, [node] distance)
2488 *
2489 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2490 *  the same zonelist. So only NUMA can configure this param.
2491 */
2492#define ZONELIST_ORDER_DEFAULT  0
2493#define ZONELIST_ORDER_NODE     1
2494#define ZONELIST_ORDER_ZONE     2
2495
2496/* zonelist order in the kernel.
2497 * set_zonelist_order() will set this to NODE or ZONE.
2498 */
2499static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2500static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2501
2502
2503#ifdef CONFIG_NUMA
2504/* The value user specified ....changed by config */
2505static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2506/* string for sysctl */
2507#define NUMA_ZONELIST_ORDER_LEN	16
2508char numa_zonelist_order[16] = "default";
2509
2510/*
2511 * interface for configure zonelist ordering.
2512 * command line option "numa_zonelist_order"
2513 *	= "[dD]efault	- default, automatic configuration.
2514 *	= "[nN]ode 	- order by node locality, then by zone within node
2515 *	= "[zZ]one      - order by zone, then by locality within zone
2516 */
2517
2518static int __parse_numa_zonelist_order(char *s)
2519{
2520	if (*s == 'd' || *s == 'D') {
2521		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2522	} else if (*s == 'n' || *s == 'N') {
2523		user_zonelist_order = ZONELIST_ORDER_NODE;
2524	} else if (*s == 'z' || *s == 'Z') {
2525		user_zonelist_order = ZONELIST_ORDER_ZONE;
2526	} else {
2527		printk(KERN_WARNING
2528			"Ignoring invalid numa_zonelist_order value:  "
2529			"%s\n", s);
2530		return -EINVAL;
2531	}
2532	return 0;
2533}
2534
2535static __init int setup_numa_zonelist_order(char *s)
2536{
2537	if (s)
2538		return __parse_numa_zonelist_order(s);
2539	return 0;
2540}
2541early_param("numa_zonelist_order", setup_numa_zonelist_order);
2542
2543/*
2544 * sysctl handler for numa_zonelist_order
2545 */
2546int numa_zonelist_order_handler(ctl_table *table, int write,
2547		void __user *buffer, size_t *length,
2548		loff_t *ppos)
2549{
2550	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2551	int ret;
2552	static DEFINE_MUTEX(zl_order_mutex);
2553
2554	mutex_lock(&zl_order_mutex);
2555	if (write)
2556		strcpy(saved_string, (char*)table->data);
2557	ret = proc_dostring(table, write, buffer, length, ppos);
2558	if (ret)
2559		goto out;
2560	if (write) {
2561		int oldval = user_zonelist_order;
2562		if (__parse_numa_zonelist_order((char*)table->data)) {
2563			/*
2564			 * bogus value.  restore saved string
2565			 */
2566			strncpy((char*)table->data, saved_string,
2567				NUMA_ZONELIST_ORDER_LEN);
2568			user_zonelist_order = oldval;
2569		} else if (oldval != user_zonelist_order)
2570			build_all_zonelists();
2571	}
2572out:
2573	mutex_unlock(&zl_order_mutex);
2574	return ret;
2575}
2576
2577
2578#define MAX_NODE_LOAD (nr_online_nodes)
2579static int node_load[MAX_NUMNODES];
2580
2581/**
2582 * find_next_best_node - find the next node that should appear in a given node's fallback list
2583 * @node: node whose fallback list we're appending
2584 * @used_node_mask: nodemask_t of already used nodes
2585 *
2586 * We use a number of factors to determine which is the next node that should
2587 * appear on a given node's fallback list.  The node should not have appeared
2588 * already in @node's fallback list, and it should be the next closest node
2589 * according to the distance array (which contains arbitrary distance values
2590 * from each node to each node in the system), and should also prefer nodes
2591 * with no CPUs, since presumably they'll have very little allocation pressure
2592 * on them otherwise.
2593 * It returns -1 if no node is found.
2594 */
2595static int find_next_best_node(int node, nodemask_t *used_node_mask)
2596{
2597	int n, val;
2598	int min_val = INT_MAX;
2599	int best_node = -1;
2600	const struct cpumask *tmp = cpumask_of_node(0);
2601
2602	/* Use the local node if we haven't already */
2603	if (!node_isset(node, *used_node_mask)) {
2604		node_set(node, *used_node_mask);
2605		return node;
2606	}
2607
2608	for_each_node_state(n, N_HIGH_MEMORY) {
2609
2610		/* Don't want a node to appear more than once */
2611		if (node_isset(n, *used_node_mask))
2612			continue;
2613
2614		/* Use the distance array to find the distance */
2615		val = node_distance(node, n);
2616
2617		/* Penalize nodes under us ("prefer the next node") */
2618		val += (n < node);
2619
2620		/* Give preference to headless and unused nodes */
2621		tmp = cpumask_of_node(n);
2622		if (!cpumask_empty(tmp))
2623			val += PENALTY_FOR_NODE_WITH_CPUS;
2624
2625		/* Slight preference for less loaded node */
2626		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2627		val += node_load[n];
2628
2629		if (val < min_val) {
2630			min_val = val;
2631			best_node = n;
2632		}
2633	}
2634
2635	if (best_node >= 0)
2636		node_set(best_node, *used_node_mask);
2637
2638	return best_node;
2639}
2640
2641
2642/*
2643 * Build zonelists ordered by node and zones within node.
2644 * This results in maximum locality--normal zone overflows into local
2645 * DMA zone, if any--but risks exhausting DMA zone.
2646 */
2647static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2648{
2649	int j;
2650	struct zonelist *zonelist;
2651
2652	zonelist = &pgdat->node_zonelists[0];
2653	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2654		;
2655	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2656							MAX_NR_ZONES - 1);
2657	zonelist->_zonerefs[j].zone = NULL;
2658	zonelist->_zonerefs[j].zone_idx = 0;
2659}
2660
2661/*
2662 * Build gfp_thisnode zonelists
2663 */
2664static void build_thisnode_zonelists(pg_data_t *pgdat)
2665{
2666	int j;
2667	struct zonelist *zonelist;
2668
2669	zonelist = &pgdat->node_zonelists[1];
2670	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2671	zonelist->_zonerefs[j].zone = NULL;
2672	zonelist->_zonerefs[j].zone_idx = 0;
2673}
2674
2675/*
2676 * Build zonelists ordered by zone and nodes within zones.
2677 * This results in conserving DMA zone[s] until all Normal memory is
2678 * exhausted, but results in overflowing to remote node while memory
2679 * may still exist in local DMA zone.
2680 */
2681static int node_order[MAX_NUMNODES];
2682
2683static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2684{
2685	int pos, j, node;
2686	int zone_type;		/* needs to be signed */
2687	struct zone *z;
2688	struct zonelist *zonelist;
2689
2690	zonelist = &pgdat->node_zonelists[0];
2691	pos = 0;
2692	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2693		for (j = 0; j < nr_nodes; j++) {
2694			node = node_order[j];
2695			z = &NODE_DATA(node)->node_zones[zone_type];
2696			if (populated_zone(z)) {
2697				zoneref_set_zone(z,
2698					&zonelist->_zonerefs[pos++]);
2699				check_highest_zone(zone_type);
2700			}
2701		}
2702	}
2703	zonelist->_zonerefs[pos].zone = NULL;
2704	zonelist->_zonerefs[pos].zone_idx = 0;
2705}
2706
2707static int default_zonelist_order(void)
2708{
2709	int nid, zone_type;
2710	unsigned long low_kmem_size,total_size;
2711	struct zone *z;
2712	int average_size;
2713	/*
2714         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2715	 * If they are really small and used heavily, the system can fall
2716	 * into OOM very easily.
2717	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2718	 */
2719	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2720	low_kmem_size = 0;
2721	total_size = 0;
2722	for_each_online_node(nid) {
2723		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2724			z = &NODE_DATA(nid)->node_zones[zone_type];
2725			if (populated_zone(z)) {
2726				if (zone_type < ZONE_NORMAL)
2727					low_kmem_size += z->present_pages;
2728				total_size += z->present_pages;
2729			} else if (zone_type == ZONE_NORMAL) {
2730				/*
2731				 * If any node has only lowmem, then node order
2732				 * is preferred to allow kernel allocations
2733				 * locally; otherwise, they can easily infringe
2734				 * on other nodes when there is an abundance of
2735				 * lowmem available to allocate from.
2736				 */
2737				return ZONELIST_ORDER_NODE;
2738			}
2739		}
2740	}
2741	if (!low_kmem_size ||  /* there are no DMA area. */
2742	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2743		return ZONELIST_ORDER_NODE;
2744	/*
2745	 * look into each node's config.
2746  	 * If there is a node whose DMA/DMA32 memory is very big area on
2747 	 * local memory, NODE_ORDER may be suitable.
2748         */
2749	average_size = total_size /
2750				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2751	for_each_online_node(nid) {
2752		low_kmem_size = 0;
2753		total_size = 0;
2754		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2755			z = &NODE_DATA(nid)->node_zones[zone_type];
2756			if (populated_zone(z)) {
2757				if (zone_type < ZONE_NORMAL)
2758					low_kmem_size += z->present_pages;
2759				total_size += z->present_pages;
2760			}
2761		}
2762		if (low_kmem_size &&
2763		    total_size > average_size && /* ignore small node */
2764		    low_kmem_size > total_size * 70/100)
2765			return ZONELIST_ORDER_NODE;
2766	}
2767	return ZONELIST_ORDER_ZONE;
2768}
2769
2770static void set_zonelist_order(void)
2771{
2772	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2773		current_zonelist_order = default_zonelist_order();
2774	else
2775		current_zonelist_order = user_zonelist_order;
2776}
2777
2778static void build_zonelists(pg_data_t *pgdat)
2779{
2780	int j, node, load;
2781	enum zone_type i;
2782	nodemask_t used_mask;
2783	int local_node, prev_node;
2784	struct zonelist *zonelist;
2785	int order = current_zonelist_order;
2786
2787	/* initialize zonelists */
2788	for (i = 0; i < MAX_ZONELISTS; i++) {
2789		zonelist = pgdat->node_zonelists + i;
2790		zonelist->_zonerefs[0].zone = NULL;
2791		zonelist->_zonerefs[0].zone_idx = 0;
2792	}
2793
2794	/* NUMA-aware ordering of nodes */
2795	local_node = pgdat->node_id;
2796	load = nr_online_nodes;
2797	prev_node = local_node;
2798	nodes_clear(used_mask);
2799
2800	memset(node_order, 0, sizeof(node_order));
2801	j = 0;
2802
2803	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2804		int distance = node_distance(local_node, node);
2805
2806		/*
2807		 * If another node is sufficiently far away then it is better
2808		 * to reclaim pages in a zone before going off node.
2809		 */
2810		if (distance > RECLAIM_DISTANCE)
2811			zone_reclaim_mode = 1;
2812
2813		/*
2814		 * We don't want to pressure a particular node.
2815		 * So adding penalty to the first node in same
2816		 * distance group to make it round-robin.
2817		 */
2818		if (distance != node_distance(local_node, prev_node))
2819			node_load[node] = load;
2820
2821		prev_node = node;
2822		load--;
2823		if (order == ZONELIST_ORDER_NODE)
2824			build_zonelists_in_node_order(pgdat, node);
2825		else
2826			node_order[j++] = node;	/* remember order */
2827	}
2828
2829	if (order == ZONELIST_ORDER_ZONE) {
2830		/* calculate node order -- i.e., DMA last! */
2831		build_zonelists_in_zone_order(pgdat, j);
2832	}
2833
2834	build_thisnode_zonelists(pgdat);
2835}
2836
2837/* Construct the zonelist performance cache - see further mmzone.h */
2838static void build_zonelist_cache(pg_data_t *pgdat)
2839{
2840	struct zonelist *zonelist;
2841	struct zonelist_cache *zlc;
2842	struct zoneref *z;
2843
2844	zonelist = &pgdat->node_zonelists[0];
2845	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2846	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2847	for (z = zonelist->_zonerefs; z->zone; z++)
2848		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2849}
2850
2851
2852#else	/* CONFIG_NUMA */
2853
2854static void set_zonelist_order(void)
2855{
2856	current_zonelist_order = ZONELIST_ORDER_ZONE;
2857}
2858
2859static void build_zonelists(pg_data_t *pgdat)
2860{
2861	int node, local_node;
2862	enum zone_type j;
2863	struct zonelist *zonelist;
2864
2865	local_node = pgdat->node_id;
2866
2867	zonelist = &pgdat->node_zonelists[0];
2868	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2869
2870	/*
2871	 * Now we build the zonelist so that it contains the zones
2872	 * of all the other nodes.
2873	 * We don't want to pressure a particular node, so when
2874	 * building the zones for node N, we make sure that the
2875	 * zones coming right after the local ones are those from
2876	 * node N+1 (modulo N)
2877	 */
2878	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2879		if (!node_online(node))
2880			continue;
2881		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2882							MAX_NR_ZONES - 1);
2883	}
2884	for (node = 0; node < local_node; node++) {
2885		if (!node_online(node))
2886			continue;
2887		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2888							MAX_NR_ZONES - 1);
2889	}
2890
2891	zonelist->_zonerefs[j].zone = NULL;
2892	zonelist->_zonerefs[j].zone_idx = 0;
2893}
2894
2895/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2896static void build_zonelist_cache(pg_data_t *pgdat)
2897{
2898	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2899}
2900
2901#endif	/* CONFIG_NUMA */
2902
2903/*
2904 * Boot pageset table. One per cpu which is going to be used for all
2905 * zones and all nodes. The parameters will be set in such a way
2906 * that an item put on a list will immediately be handed over to
2907 * the buddy list. This is safe since pageset manipulation is done
2908 * with interrupts disabled.
2909 *
2910 * The boot_pagesets must be kept even after bootup is complete for
2911 * unused processors and/or zones. They do play a role for bootstrapping
2912 * hotplugged processors.
2913 *
2914 * zoneinfo_show() and maybe other functions do
2915 * not check if the processor is online before following the pageset pointer.
2916 * Other parts of the kernel may not check if the zone is available.
2917 */
2918static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2919static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2920
2921/* return values int ....just for stop_machine() */
2922static int __build_all_zonelists(void *dummy)
2923{
2924	int nid;
2925	int cpu;
2926
2927#ifdef CONFIG_NUMA
2928	memset(node_load, 0, sizeof(node_load));
2929#endif
2930	for_each_online_node(nid) {
2931		pg_data_t *pgdat = NODE_DATA(nid);
2932
2933		build_zonelists(pgdat);
2934		build_zonelist_cache(pgdat);
2935	}
2936
2937	/*
2938	 * Initialize the boot_pagesets that are going to be used
2939	 * for bootstrapping processors. The real pagesets for
2940	 * each zone will be allocated later when the per cpu
2941	 * allocator is available.
2942	 *
2943	 * boot_pagesets are used also for bootstrapping offline
2944	 * cpus if the system is already booted because the pagesets
2945	 * are needed to initialize allocators on a specific cpu too.
2946	 * F.e. the percpu allocator needs the page allocator which
2947	 * needs the percpu allocator in order to allocate its pagesets
2948	 * (a chicken-egg dilemma).
2949	 */
2950	for_each_possible_cpu(cpu)
2951		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2952
2953	return 0;
2954}
2955
2956void build_all_zonelists(void)
2957{
2958	set_zonelist_order();
2959
2960	if (system_state == SYSTEM_BOOTING) {
2961		__build_all_zonelists(NULL);
2962		mminit_verify_zonelist();
2963		cpuset_init_current_mems_allowed();
2964	} else {
2965		/* we have to stop all cpus to guarantee there is no user
2966		   of zonelist */
2967		stop_machine(__build_all_zonelists, NULL, NULL);
2968		/* cpuset refresh routine should be here */
2969	}
2970	vm_total_pages = nr_free_pagecache_pages();
2971	/*
2972	 * Disable grouping by mobility if the number of pages in the
2973	 * system is too low to allow the mechanism to work. It would be
2974	 * more accurate, but expensive to check per-zone. This check is
2975	 * made on memory-hotadd so a system can start with mobility
2976	 * disabled and enable it later
2977	 */
2978	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2979		page_group_by_mobility_disabled = 1;
2980	else
2981		page_group_by_mobility_disabled = 0;
2982
2983	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2984		"Total pages: %ld\n",
2985			nr_online_nodes,
2986			zonelist_order_name[current_zonelist_order],
2987			page_group_by_mobility_disabled ? "off" : "on",
2988			vm_total_pages);
2989#ifdef CONFIG_NUMA
2990	printk("Policy zone: %s\n", zone_names[policy_zone]);
2991#endif
2992}
2993
2994/*
2995 * Helper functions to size the waitqueue hash table.
2996 * Essentially these want to choose hash table sizes sufficiently
2997 * large so that collisions trying to wait on pages are rare.
2998 * But in fact, the number of active page waitqueues on typical
2999 * systems is ridiculously low, less than 200. So this is even
3000 * conservative, even though it seems large.
3001 *
3002 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3003 * waitqueues, i.e. the size of the waitq table given the number of pages.
3004 */
3005#define PAGES_PER_WAITQUEUE	256
3006
3007#ifndef CONFIG_MEMORY_HOTPLUG
3008static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3009{
3010	unsigned long size = 1;
3011
3012	pages /= PAGES_PER_WAITQUEUE;
3013
3014	while (size < pages)
3015		size <<= 1;
3016
3017	/*
3018	 * Once we have dozens or even hundreds of threads sleeping
3019	 * on IO we've got bigger problems than wait queue collision.
3020	 * Limit the size of the wait table to a reasonable size.
3021	 */
3022	size = min(size, 4096UL);
3023
3024	return max(size, 4UL);
3025}
3026#else
3027/*
3028 * A zone's size might be changed by hot-add, so it is not possible to determine
3029 * a suitable size for its wait_table.  So we use the maximum size now.
3030 *
3031 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3032 *
3033 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3034 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3035 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3036 *
3037 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3038 * or more by the traditional way. (See above).  It equals:
3039 *
3040 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3041 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3042 *    powerpc (64K page size)             : =  (32G +16M)byte.
3043 */
3044static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3045{
3046	return 4096UL;
3047}
3048#endif
3049
3050/*
3051 * This is an integer logarithm so that shifts can be used later
3052 * to extract the more random high bits from the multiplicative
3053 * hash function before the remainder is taken.
3054 */
3055static inline unsigned long wait_table_bits(unsigned long size)
3056{
3057	return ffz(~size);
3058}
3059
3060#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3061
3062/*
3063 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3064 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3065 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3066 * higher will lead to a bigger reserve which will get freed as contiguous
3067 * blocks as reclaim kicks in
3068 */
3069static void setup_zone_migrate_reserve(struct zone *zone)
3070{
3071	unsigned long start_pfn, pfn, end_pfn;
3072	struct page *page;
3073	unsigned long block_migratetype;
3074	int reserve;
3075
3076	/* Get the start pfn, end pfn and the number of blocks to reserve */
3077	start_pfn = zone->zone_start_pfn;
3078	end_pfn = start_pfn + zone->spanned_pages;
3079	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3080							pageblock_order;
3081
3082	/*
3083	 * Reserve blocks are generally in place to help high-order atomic
3084	 * allocations that are short-lived. A min_free_kbytes value that
3085	 * would result in more than 2 reserve blocks for atomic allocations
3086	 * is assumed to be in place to help anti-fragmentation for the
3087	 * future allocation of hugepages at runtime.
3088	 */
3089	reserve = min(2, reserve);
3090
3091	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3092		if (!pfn_valid(pfn))
3093			continue;
3094		page = pfn_to_page(pfn);
3095
3096		/* Watch out for overlapping nodes */
3097		if (page_to_nid(page) != zone_to_nid(zone))
3098			continue;
3099
3100		/* Blocks with reserved pages will never free, skip them. */
3101		if (PageReserved(page))
3102			continue;
3103
3104		block_migratetype = get_pageblock_migratetype(page);
3105
3106		/* If this block is reserved, account for it */
3107		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3108			reserve--;
3109			continue;
3110		}
3111
3112		/* Suitable for reserving if this block is movable */
3113		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3114			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3115			move_freepages_block(zone, page, MIGRATE_RESERVE);
3116			reserve--;
3117			continue;
3118		}
3119
3120		/*
3121		 * If the reserve is met and this is a previous reserved block,
3122		 * take it back
3123		 */
3124		if (block_migratetype == MIGRATE_RESERVE) {
3125			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3126			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3127		}
3128	}
3129}
3130
3131/*
3132 * Initially all pages are reserved - free ones are freed
3133 * up by free_all_bootmem() once the early boot process is
3134 * done. Non-atomic initialization, single-pass.
3135 */
3136void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3137		unsigned long start_pfn, enum memmap_context context)
3138{
3139	struct page *page;
3140	unsigned long end_pfn = start_pfn + size;
3141	unsigned long pfn;
3142	struct zone *z;
3143
3144	if (highest_memmap_pfn < end_pfn - 1)
3145		highest_memmap_pfn = end_pfn - 1;
3146
3147	z = &NODE_DATA(nid)->node_zones[zone];
3148	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3149		/*
3150		 * There can be holes in boot-time mem_map[]s
3151		 * handed to this function.  They do not
3152		 * exist on hotplugged memory.
3153		 */
3154		if (context == MEMMAP_EARLY) {
3155			if (!early_pfn_valid(pfn))
3156				continue;
3157			if (!early_pfn_in_nid(pfn, nid))
3158				continue;
3159		}
3160		page = pfn_to_page(pfn);
3161		set_page_links(page, zone, nid, pfn);
3162		mminit_verify_page_links(page, zone, nid, pfn);
3163		init_page_count(page);
3164		reset_page_mapcount(page);
3165		SetPageReserved(page);
3166		/*
3167		 * Mark the block movable so that blocks are reserved for
3168		 * movable at startup. This will force kernel allocations
3169		 * to reserve their blocks rather than leaking throughout
3170		 * the address space during boot when many long-lived
3171		 * kernel allocations are made. Later some blocks near
3172		 * the start are marked MIGRATE_RESERVE by
3173		 * setup_zone_migrate_reserve()
3174		 *
3175		 * bitmap is created for zone's valid pfn range. but memmap
3176		 * can be created for invalid pages (for alignment)
3177		 * check here not to call set_pageblock_migratetype() against
3178		 * pfn out of zone.
3179		 */
3180		if ((z->zone_start_pfn <= pfn)
3181		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3182		    && !(pfn & (pageblock_nr_pages - 1)))
3183			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3184
3185		INIT_LIST_HEAD(&page->lru);
3186#ifdef WANT_PAGE_VIRTUAL
3187		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3188		if (!is_highmem_idx(zone))
3189			set_page_address(page, __va(pfn << PAGE_SHIFT));
3190#endif
3191	}
3192}
3193
3194static void __meminit zone_init_free_lists(struct zone *zone)
3195{
3196	int order, t;
3197	for_each_migratetype_order(order, t) {
3198		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3199		zone->free_area[order].nr_free = 0;
3200	}
3201}
3202
3203#ifndef __HAVE_ARCH_MEMMAP_INIT
3204#define memmap_init(size, nid, zone, start_pfn) \
3205	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3206#endif
3207
3208static int zone_batchsize(struct zone *zone)
3209{
3210#ifdef CONFIG_MMU
3211	int batch;
3212
3213	/*
3214	 * The per-cpu-pages pools are set to around 1000th of the
3215	 * size of the zone.  But no more than 1/2 of a meg.
3216	 *
3217	 * OK, so we don't know how big the cache is.  So guess.
3218	 */
3219	batch = zone->present_pages / 1024;
3220	if (batch * PAGE_SIZE > 512 * 1024)
3221		batch = (512 * 1024) / PAGE_SIZE;
3222	batch /= 4;		/* We effectively *= 4 below */
3223	if (batch < 1)
3224		batch = 1;
3225
3226	/*
3227	 * Clamp the batch to a 2^n - 1 value. Having a power
3228	 * of 2 value was found to be more likely to have
3229	 * suboptimal cache aliasing properties in some cases.
3230	 *
3231	 * For example if 2 tasks are alternately allocating
3232	 * batches of pages, one task can end up with a lot
3233	 * of pages of one half of the possible page colors
3234	 * and the other with pages of the other colors.
3235	 */
3236	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3237
3238	return batch;
3239
3240#else
3241	/* The deferral and batching of frees should be suppressed under NOMMU
3242	 * conditions.
3243	 *
3244	 * The problem is that NOMMU needs to be able to allocate large chunks
3245	 * of contiguous memory as there's no hardware page translation to
3246	 * assemble apparent contiguous memory from discontiguous pages.
3247	 *
3248	 * Queueing large contiguous runs of pages for batching, however,
3249	 * causes the pages to actually be freed in smaller chunks.  As there
3250	 * can be a significant delay between the individual batches being
3251	 * recycled, this leads to the once large chunks of space being
3252	 * fragmented and becoming unavailable for high-order allocations.
3253	 */
3254	return 0;
3255#endif
3256}
3257
3258static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3259{
3260	struct per_cpu_pages *pcp;
3261	int migratetype;
3262
3263	memset(p, 0, sizeof(*p));
3264
3265	pcp = &p->pcp;
3266	pcp->count = 0;
3267	pcp->high = 6 * batch;
3268	pcp->batch = max(1UL, 1 * batch);
3269	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3270		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3271}
3272
3273/*
3274 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3275 * to the value high for the pageset p.
3276 */
3277
3278static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3279				unsigned long high)
3280{
3281	struct per_cpu_pages *pcp;
3282
3283	pcp = &p->pcp;
3284	pcp->high = high;
3285	pcp->batch = max(1UL, high/4);
3286	if ((high/4) > (PAGE_SHIFT * 8))
3287		pcp->batch = PAGE_SHIFT * 8;
3288}
3289
3290/*
3291 * Allocate per cpu pagesets and initialize them.
3292 * Before this call only boot pagesets were available.
3293 * Boot pagesets will no longer be used by this processorr
3294 * after setup_per_cpu_pageset().
3295 */
3296void __init setup_per_cpu_pageset(void)
3297{
3298	struct zone *zone;
3299	int cpu;
3300
3301	for_each_populated_zone(zone) {
3302		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3303
3304		for_each_possible_cpu(cpu) {
3305			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3306
3307			setup_pageset(pcp, zone_batchsize(zone));
3308
3309			if (percpu_pagelist_fraction)
3310				setup_pagelist_highmark(pcp,
3311					(zone->present_pages /
3312						percpu_pagelist_fraction));
3313		}
3314	}
3315}
3316
3317static noinline __init_refok
3318int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3319{
3320	int i;
3321	struct pglist_data *pgdat = zone->zone_pgdat;
3322	size_t alloc_size;
3323
3324	/*
3325	 * The per-page waitqueue mechanism uses hashed waitqueues
3326	 * per zone.
3327	 */
3328	zone->wait_table_hash_nr_entries =
3329		 wait_table_hash_nr_entries(zone_size_pages);
3330	zone->wait_table_bits =
3331		wait_table_bits(zone->wait_table_hash_nr_entries);
3332	alloc_size = zone->wait_table_hash_nr_entries
3333					* sizeof(wait_queue_head_t);
3334
3335	if (!slab_is_available()) {
3336		zone->wait_table = (wait_queue_head_t *)
3337			alloc_bootmem_node(pgdat, alloc_size);
3338	} else {
3339		/*
3340		 * This case means that a zone whose size was 0 gets new memory
3341		 * via memory hot-add.
3342		 * But it may be the case that a new node was hot-added.  In
3343		 * this case vmalloc() will not be able to use this new node's
3344		 * memory - this wait_table must be initialized to use this new
3345		 * node itself as well.
3346		 * To use this new node's memory, further consideration will be
3347		 * necessary.
3348		 */
3349		zone->wait_table = vmalloc(alloc_size);
3350	}
3351	if (!zone->wait_table)
3352		return -ENOMEM;
3353
3354	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3355		init_waitqueue_head(zone->wait_table + i);
3356
3357	return 0;
3358}
3359
3360static int __zone_pcp_update(void *data)
3361{
3362	struct zone *zone = data;
3363	int cpu;
3364	unsigned long batch = zone_batchsize(zone), flags;
3365
3366	for_each_possible_cpu(cpu) {
3367		struct per_cpu_pageset *pset;
3368		struct per_cpu_pages *pcp;
3369
3370		pset = per_cpu_ptr(zone->pageset, cpu);
3371		pcp = &pset->pcp;
3372
3373		local_irq_save(flags);
3374		free_pcppages_bulk(zone, pcp->count, pcp);
3375		setup_pageset(pset, batch);
3376		local_irq_restore(flags);
3377	}
3378	return 0;
3379}
3380
3381void zone_pcp_update(struct zone *zone)
3382{
3383	stop_machine(__zone_pcp_update, zone, NULL);
3384}
3385
3386static __meminit void zone_pcp_init(struct zone *zone)
3387{
3388	/*
3389	 * per cpu subsystem is not up at this point. The following code
3390	 * relies on the ability of the linker to provide the
3391	 * offset of a (static) per cpu variable into the per cpu area.
3392	 */
3393	zone->pageset = &boot_pageset;
3394
3395	if (zone->present_pages)
3396		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3397			zone->name, zone->present_pages,
3398					 zone_batchsize(zone));
3399}
3400
3401__meminit int init_currently_empty_zone(struct zone *zone,
3402					unsigned long zone_start_pfn,
3403					unsigned long size,
3404					enum memmap_context context)
3405{
3406	struct pglist_data *pgdat = zone->zone_pgdat;
3407	int ret;
3408	ret = zone_wait_table_init(zone, size);
3409	if (ret)
3410		return ret;
3411	pgdat->nr_zones = zone_idx(zone) + 1;
3412
3413	zone->zone_start_pfn = zone_start_pfn;
3414
3415	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3416			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3417			pgdat->node_id,
3418			(unsigned long)zone_idx(zone),
3419			zone_start_pfn, (zone_start_pfn + size));
3420
3421	zone_init_free_lists(zone);
3422
3423	return 0;
3424}
3425
3426#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3427/*
3428 * Basic iterator support. Return the first range of PFNs for a node
3429 * Note: nid == MAX_NUMNODES returns first region regardless of node
3430 */
3431static int __meminit first_active_region_index_in_nid(int nid)
3432{
3433	int i;
3434
3435	for (i = 0; i < nr_nodemap_entries; i++)
3436		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3437			return i;
3438
3439	return -1;
3440}
3441
3442/*
3443 * Basic iterator support. Return the next active range of PFNs for a node
3444 * Note: nid == MAX_NUMNODES returns next region regardless of node
3445 */
3446static int __meminit next_active_region_index_in_nid(int index, int nid)
3447{
3448	for (index = index + 1; index < nr_nodemap_entries; index++)
3449		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3450			return index;
3451
3452	return -1;
3453}
3454
3455#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3456/*
3457 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3458 * Architectures may implement their own version but if add_active_range()
3459 * was used and there are no special requirements, this is a convenient
3460 * alternative
3461 */
3462int __meminit __early_pfn_to_nid(unsigned long pfn)
3463{
3464	int i;
3465
3466	for (i = 0; i < nr_nodemap_entries; i++) {
3467		unsigned long start_pfn = early_node_map[i].start_pfn;
3468		unsigned long end_pfn = early_node_map[i].end_pfn;
3469
3470		if (start_pfn <= pfn && pfn < end_pfn)
3471			return early_node_map[i].nid;
3472	}
3473	/* This is a memory hole */
3474	return -1;
3475}
3476#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3477
3478int __meminit early_pfn_to_nid(unsigned long pfn)
3479{
3480	int nid;
3481
3482	nid = __early_pfn_to_nid(pfn);
3483	if (nid >= 0)
3484		return nid;
3485	/* just returns 0 */
3486	return 0;
3487}
3488
3489#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3490bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3491{
3492	int nid;
3493
3494	nid = __early_pfn_to_nid(pfn);
3495	if (nid >= 0 && nid != node)
3496		return false;
3497	return true;
3498}
3499#endif
3500
3501/* Basic iterator support to walk early_node_map[] */
3502#define for_each_active_range_index_in_nid(i, nid) \
3503	for (i = first_active_region_index_in_nid(nid); i != -1; \
3504				i = next_active_region_index_in_nid(i, nid))
3505
3506/**
3507 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3508 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3509 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3510 *
3511 * If an architecture guarantees that all ranges registered with
3512 * add_active_ranges() contain no holes and may be freed, this
3513 * this function may be used instead of calling free_bootmem() manually.
3514 */
3515void __init free_bootmem_with_active_regions(int nid,
3516						unsigned long max_low_pfn)
3517{
3518	int i;
3519
3520	for_each_active_range_index_in_nid(i, nid) {
3521		unsigned long size_pages = 0;
3522		unsigned long end_pfn = early_node_map[i].end_pfn;
3523
3524		if (early_node_map[i].start_pfn >= max_low_pfn)
3525			continue;
3526
3527		if (end_pfn > max_low_pfn)
3528			end_pfn = max_low_pfn;
3529
3530		size_pages = end_pfn - early_node_map[i].start_pfn;
3531		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3532				PFN_PHYS(early_node_map[i].start_pfn),
3533				size_pages << PAGE_SHIFT);
3534	}
3535}
3536
3537int __init add_from_early_node_map(struct range *range, int az,
3538				   int nr_range, int nid)
3539{
3540	int i;
3541	u64 start, end;
3542
3543	/* need to go over early_node_map to find out good range for node */
3544	for_each_active_range_index_in_nid(i, nid) {
3545		start = early_node_map[i].start_pfn;
3546		end = early_node_map[i].end_pfn;
3547		nr_range = add_range(range, az, nr_range, start, end);
3548	}
3549	return nr_range;
3550}
3551
3552#ifdef CONFIG_NO_BOOTMEM
3553void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3554					u64 goal, u64 limit)
3555{
3556	int i;
3557	void *ptr;
3558
3559	/* need to go over early_node_map to find out good range for node */
3560	for_each_active_range_index_in_nid(i, nid) {
3561		u64 addr;
3562		u64 ei_start, ei_last;
3563
3564		ei_last = early_node_map[i].end_pfn;
3565		ei_last <<= PAGE_SHIFT;
3566		ei_start = early_node_map[i].start_pfn;
3567		ei_start <<= PAGE_SHIFT;
3568		addr = find_early_area(ei_start, ei_last,
3569					 goal, limit, size, align);
3570
3571		if (addr == -1ULL)
3572			continue;
3573
3574#if 0
3575		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3576				nid,
3577				ei_start, ei_last, goal, limit, size,
3578				align, addr);
3579#endif
3580
3581		ptr = phys_to_virt(addr);
3582		memset(ptr, 0, size);
3583		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3584		return ptr;
3585	}
3586
3587	return NULL;
3588}
3589#endif
3590
3591
3592void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3593{
3594	int i;
3595	int ret;
3596
3597	for_each_active_range_index_in_nid(i, nid) {
3598		ret = work_fn(early_node_map[i].start_pfn,
3599			      early_node_map[i].end_pfn, data);
3600		if (ret)
3601			break;
3602	}
3603}
3604/**
3605 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3606 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3607 *
3608 * If an architecture guarantees that all ranges registered with
3609 * add_active_ranges() contain no holes and may be freed, this
3610 * function may be used instead of calling memory_present() manually.
3611 */
3612void __init sparse_memory_present_with_active_regions(int nid)
3613{
3614	int i;
3615
3616	for_each_active_range_index_in_nid(i, nid)
3617		memory_present(early_node_map[i].nid,
3618				early_node_map[i].start_pfn,
3619				early_node_map[i].end_pfn);
3620}
3621
3622/**
3623 * get_pfn_range_for_nid - Return the start and end page frames for a node
3624 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3625 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3626 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3627 *
3628 * It returns the start and end page frame of a node based on information
3629 * provided by an arch calling add_active_range(). If called for a node
3630 * with no available memory, a warning is printed and the start and end
3631 * PFNs will be 0.
3632 */
3633void __meminit get_pfn_range_for_nid(unsigned int nid,
3634			unsigned long *start_pfn, unsigned long *end_pfn)
3635{
3636	int i;
3637	*start_pfn = -1UL;
3638	*end_pfn = 0;
3639
3640	for_each_active_range_index_in_nid(i, nid) {
3641		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3642		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3643	}
3644
3645	if (*start_pfn == -1UL)
3646		*start_pfn = 0;
3647}
3648
3649/*
3650 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3651 * assumption is made that zones within a node are ordered in monotonic
3652 * increasing memory addresses so that the "highest" populated zone is used
3653 */
3654static void __init find_usable_zone_for_movable(void)
3655{
3656	int zone_index;
3657	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3658		if (zone_index == ZONE_MOVABLE)
3659			continue;
3660
3661		if (arch_zone_highest_possible_pfn[zone_index] >
3662				arch_zone_lowest_possible_pfn[zone_index])
3663			break;
3664	}
3665
3666	VM_BUG_ON(zone_index == -1);
3667	movable_zone = zone_index;
3668}
3669
3670/*
3671 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3672 * because it is sized independant of architecture. Unlike the other zones,
3673 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3674 * in each node depending on the size of each node and how evenly kernelcore
3675 * is distributed. This helper function adjusts the zone ranges
3676 * provided by the architecture for a given node by using the end of the
3677 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3678 * zones within a node are in order of monotonic increases memory addresses
3679 */
3680static void __meminit adjust_zone_range_for_zone_movable(int nid,
3681					unsigned long zone_type,
3682					unsigned long node_start_pfn,
3683					unsigned long node_end_pfn,
3684					unsigned long *zone_start_pfn,
3685					unsigned long *zone_end_pfn)
3686{
3687	/* Only adjust if ZONE_MOVABLE is on this node */
3688	if (zone_movable_pfn[nid]) {
3689		/* Size ZONE_MOVABLE */
3690		if (zone_type == ZONE_MOVABLE) {
3691			*zone_start_pfn = zone_movable_pfn[nid];
3692			*zone_end_pfn = min(node_end_pfn,
3693				arch_zone_highest_possible_pfn[movable_zone]);
3694
3695		/* Adjust for ZONE_MOVABLE starting within this range */
3696		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3697				*zone_end_pfn > zone_movable_pfn[nid]) {
3698			*zone_end_pfn = zone_movable_pfn[nid];
3699
3700		/* Check if this whole range is within ZONE_MOVABLE */
3701		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3702			*zone_start_pfn = *zone_end_pfn;
3703	}
3704}
3705
3706/*
3707 * Return the number of pages a zone spans in a node, including holes
3708 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3709 */
3710static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3711					unsigned long zone_type,
3712					unsigned long *ignored)
3713{
3714	unsigned long node_start_pfn, node_end_pfn;
3715	unsigned long zone_start_pfn, zone_end_pfn;
3716
3717	/* Get the start and end of the node and zone */
3718	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3719	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3720	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3721	adjust_zone_range_for_zone_movable(nid, zone_type,
3722				node_start_pfn, node_end_pfn,
3723				&zone_start_pfn, &zone_end_pfn);
3724
3725	/* Check that this node has pages within the zone's required range */
3726	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3727		return 0;
3728
3729	/* Move the zone boundaries inside the node if necessary */
3730	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3731	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3732
3733	/* Return the spanned pages */
3734	return zone_end_pfn - zone_start_pfn;
3735}
3736
3737/*
3738 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3739 * then all holes in the requested range will be accounted for.
3740 */
3741unsigned long __meminit __absent_pages_in_range(int nid,
3742				unsigned long range_start_pfn,
3743				unsigned long range_end_pfn)
3744{
3745	int i = 0;
3746	unsigned long prev_end_pfn = 0, hole_pages = 0;
3747	unsigned long start_pfn;
3748
3749	/* Find the end_pfn of the first active range of pfns in the node */
3750	i = first_active_region_index_in_nid(nid);
3751	if (i == -1)
3752		return 0;
3753
3754	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3755
3756	/* Account for ranges before physical memory on this node */
3757	if (early_node_map[i].start_pfn > range_start_pfn)
3758		hole_pages = prev_end_pfn - range_start_pfn;
3759
3760	/* Find all holes for the zone within the node */
3761	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3762
3763		/* No need to continue if prev_end_pfn is outside the zone */
3764		if (prev_end_pfn >= range_end_pfn)
3765			break;
3766
3767		/* Make sure the end of the zone is not within the hole */
3768		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3769		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3770
3771		/* Update the hole size cound and move on */
3772		if (start_pfn > range_start_pfn) {
3773			BUG_ON(prev_end_pfn > start_pfn);
3774			hole_pages += start_pfn - prev_end_pfn;
3775		}
3776		prev_end_pfn = early_node_map[i].end_pfn;
3777	}
3778
3779	/* Account for ranges past physical memory on this node */
3780	if (range_end_pfn > prev_end_pfn)
3781		hole_pages += range_end_pfn -
3782				max(range_start_pfn, prev_end_pfn);
3783
3784	return hole_pages;
3785}
3786
3787/**
3788 * absent_pages_in_range - Return number of page frames in holes within a range
3789 * @start_pfn: The start PFN to start searching for holes
3790 * @end_pfn: The end PFN to stop searching for holes
3791 *
3792 * It returns the number of pages frames in memory holes within a range.
3793 */
3794unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3795							unsigned long end_pfn)
3796{
3797	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3798}
3799
3800/* Return the number of page frames in holes in a zone on a node */
3801static unsigned long __meminit zone_absent_pages_in_node(int nid,
3802					unsigned long zone_type,
3803					unsigned long *ignored)
3804{
3805	unsigned long node_start_pfn, node_end_pfn;
3806	unsigned long zone_start_pfn, zone_end_pfn;
3807
3808	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3809	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3810							node_start_pfn);
3811	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3812							node_end_pfn);
3813
3814	adjust_zone_range_for_zone_movable(nid, zone_type,
3815			node_start_pfn, node_end_pfn,
3816			&zone_start_pfn, &zone_end_pfn);
3817	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3818}
3819
3820#else
3821static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3822					unsigned long zone_type,
3823					unsigned long *zones_size)
3824{
3825	return zones_size[zone_type];
3826}
3827
3828static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3829						unsigned long zone_type,
3830						unsigned long *zholes_size)
3831{
3832	if (!zholes_size)
3833		return 0;
3834
3835	return zholes_size[zone_type];
3836}
3837
3838#endif
3839
3840static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3841		unsigned long *zones_size, unsigned long *zholes_size)
3842{
3843	unsigned long realtotalpages, totalpages = 0;
3844	enum zone_type i;
3845
3846	for (i = 0; i < MAX_NR_ZONES; i++)
3847		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3848								zones_size);
3849	pgdat->node_spanned_pages = totalpages;
3850
3851	realtotalpages = totalpages;
3852	for (i = 0; i < MAX_NR_ZONES; i++)
3853		realtotalpages -=
3854			zone_absent_pages_in_node(pgdat->node_id, i,
3855								zholes_size);
3856	pgdat->node_present_pages = realtotalpages;
3857	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3858							realtotalpages);
3859}
3860
3861#ifndef CONFIG_SPARSEMEM
3862/*
3863 * Calculate the size of the zone->blockflags rounded to an unsigned long
3864 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3865 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3866 * round what is now in bits to nearest long in bits, then return it in
3867 * bytes.
3868 */
3869static unsigned long __init usemap_size(unsigned long zonesize)
3870{
3871	unsigned long usemapsize;
3872
3873	usemapsize = roundup(zonesize, pageblock_nr_pages);
3874	usemapsize = usemapsize >> pageblock_order;
3875	usemapsize *= NR_PAGEBLOCK_BITS;
3876	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3877
3878	return usemapsize / 8;
3879}
3880
3881static void __init setup_usemap(struct pglist_data *pgdat,
3882				struct zone *zone, unsigned long zonesize)
3883{
3884	unsigned long usemapsize = usemap_size(zonesize);
3885	zone->pageblock_flags = NULL;
3886	if (usemapsize)
3887		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3888}
3889#else
3890static void inline setup_usemap(struct pglist_data *pgdat,
3891				struct zone *zone, unsigned long zonesize) {}
3892#endif /* CONFIG_SPARSEMEM */
3893
3894#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3895
3896/* Return a sensible default order for the pageblock size. */
3897static inline int pageblock_default_order(void)
3898{
3899	if (HPAGE_SHIFT > PAGE_SHIFT)
3900		return HUGETLB_PAGE_ORDER;
3901
3902	return MAX_ORDER-1;
3903}
3904
3905/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3906static inline void __init set_pageblock_order(unsigned int order)
3907{
3908	/* Check that pageblock_nr_pages has not already been setup */
3909	if (pageblock_order)
3910		return;
3911
3912	/*
3913	 * Assume the largest contiguous order of interest is a huge page.
3914	 * This value may be variable depending on boot parameters on IA64
3915	 */
3916	pageblock_order = order;
3917}
3918#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3919
3920/*
3921 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3922 * and pageblock_default_order() are unused as pageblock_order is set
3923 * at compile-time. See include/linux/pageblock-flags.h for the values of
3924 * pageblock_order based on the kernel config
3925 */
3926static inline int pageblock_default_order(unsigned int order)
3927{
3928	return MAX_ORDER-1;
3929}
3930#define set_pageblock_order(x)	do {} while (0)
3931
3932#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3933
3934/*
3935 * Set up the zone data structures:
3936 *   - mark all pages reserved
3937 *   - mark all memory queues empty
3938 *   - clear the memory bitmaps
3939 */
3940static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3941		unsigned long *zones_size, unsigned long *zholes_size)
3942{
3943	enum zone_type j;
3944	int nid = pgdat->node_id;
3945	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3946	int ret;
3947
3948	pgdat_resize_init(pgdat);
3949	pgdat->nr_zones = 0;
3950	init_waitqueue_head(&pgdat->kswapd_wait);
3951	pgdat->kswapd_max_order = 0;
3952	pgdat_page_cgroup_init(pgdat);
3953
3954	for (j = 0; j < MAX_NR_ZONES; j++) {
3955		struct zone *zone = pgdat->node_zones + j;
3956		unsigned long size, realsize, memmap_pages;
3957		enum lru_list l;
3958
3959		size = zone_spanned_pages_in_node(nid, j, zones_size);
3960		realsize = size - zone_absent_pages_in_node(nid, j,
3961								zholes_size);
3962
3963		/*
3964		 * Adjust realsize so that it accounts for how much memory
3965		 * is used by this zone for memmap. This affects the watermark
3966		 * and per-cpu initialisations
3967		 */
3968		memmap_pages =
3969			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3970		if (realsize >= memmap_pages) {
3971			realsize -= memmap_pages;
3972			if (memmap_pages)
3973				printk(KERN_DEBUG
3974				       "  %s zone: %lu pages used for memmap\n",
3975				       zone_names[j], memmap_pages);
3976		} else
3977			printk(KERN_WARNING
3978				"  %s zone: %lu pages exceeds realsize %lu\n",
3979				zone_names[j], memmap_pages, realsize);
3980
3981		/* Account for reserved pages */
3982		if (j == 0 && realsize > dma_reserve) {
3983			realsize -= dma_reserve;
3984			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3985					zone_names[0], dma_reserve);
3986		}
3987
3988		if (!is_highmem_idx(j))
3989			nr_kernel_pages += realsize;
3990		nr_all_pages += realsize;
3991
3992		zone->spanned_pages = size;
3993		zone->present_pages = realsize;
3994#ifdef CONFIG_NUMA
3995		zone->node = nid;
3996		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3997						/ 100;
3998		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3999#endif
4000		zone->name = zone_names[j];
4001		spin_lock_init(&zone->lock);
4002		spin_lock_init(&zone->lru_lock);
4003		zone_seqlock_init(zone);
4004		zone->zone_pgdat = pgdat;
4005
4006		zone->prev_priority = DEF_PRIORITY;
4007
4008		zone_pcp_init(zone);
4009		for_each_lru(l) {
4010			INIT_LIST_HEAD(&zone->lru[l].list);
4011			zone->reclaim_stat.nr_saved_scan[l] = 0;
4012		}
4013		zone->reclaim_stat.recent_rotated[0] = 0;
4014		zone->reclaim_stat.recent_rotated[1] = 0;
4015		zone->reclaim_stat.recent_scanned[0] = 0;
4016		zone->reclaim_stat.recent_scanned[1] = 0;
4017		zap_zone_vm_stats(zone);
4018		zone->flags = 0;
4019		if (!size)
4020			continue;
4021
4022		set_pageblock_order(pageblock_default_order());
4023		setup_usemap(pgdat, zone, size);
4024		ret = init_currently_empty_zone(zone, zone_start_pfn,
4025						size, MEMMAP_EARLY);
4026		BUG_ON(ret);
4027		memmap_init(size, nid, j, zone_start_pfn);
4028		zone_start_pfn += size;
4029	}
4030}
4031
4032static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4033{
4034	/* Skip empty nodes */
4035	if (!pgdat->node_spanned_pages)
4036		return;
4037
4038#ifdef CONFIG_FLAT_NODE_MEM_MAP
4039	/* ia64 gets its own node_mem_map, before this, without bootmem */
4040	if (!pgdat->node_mem_map) {
4041		unsigned long size, start, end;
4042		struct page *map;
4043
4044		/*
4045		 * The zone's endpoints aren't required to be MAX_ORDER
4046		 * aligned but the node_mem_map endpoints must be in order
4047		 * for the buddy allocator to function correctly.
4048		 */
4049		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4050		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4051		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4052		size =  (end - start) * sizeof(struct page);
4053		map = alloc_remap(pgdat->node_id, size);
4054		if (!map)
4055			map = alloc_bootmem_node(pgdat, size);
4056		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4057	}
4058#ifndef CONFIG_NEED_MULTIPLE_NODES
4059	/*
4060	 * With no DISCONTIG, the global mem_map is just set as node 0's
4061	 */
4062	if (pgdat == NODE_DATA(0)) {
4063		mem_map = NODE_DATA(0)->node_mem_map;
4064#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4065		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4066			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4067#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4068	}
4069#endif
4070#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4071}
4072
4073void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4074		unsigned long node_start_pfn, unsigned long *zholes_size)
4075{
4076	pg_data_t *pgdat = NODE_DATA(nid);
4077
4078	pgdat->node_id = nid;
4079	pgdat->node_start_pfn = node_start_pfn;
4080	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4081
4082	alloc_node_mem_map(pgdat);
4083#ifdef CONFIG_FLAT_NODE_MEM_MAP
4084	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4085		nid, (unsigned long)pgdat,
4086		(unsigned long)pgdat->node_mem_map);
4087#endif
4088
4089	free_area_init_core(pgdat, zones_size, zholes_size);
4090}
4091
4092#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4093
4094#if MAX_NUMNODES > 1
4095/*
4096 * Figure out the number of possible node ids.
4097 */
4098static void __init setup_nr_node_ids(void)
4099{
4100	unsigned int node;
4101	unsigned int highest = 0;
4102
4103	for_each_node_mask(node, node_possible_map)
4104		highest = node;
4105	nr_node_ids = highest + 1;
4106}
4107#else
4108static inline void setup_nr_node_ids(void)
4109{
4110}
4111#endif
4112
4113/**
4114 * add_active_range - Register a range of PFNs backed by physical memory
4115 * @nid: The node ID the range resides on
4116 * @start_pfn: The start PFN of the available physical memory
4117 * @end_pfn: The end PFN of the available physical memory
4118 *
4119 * These ranges are stored in an early_node_map[] and later used by
4120 * free_area_init_nodes() to calculate zone sizes and holes. If the
4121 * range spans a memory hole, it is up to the architecture to ensure
4122 * the memory is not freed by the bootmem allocator. If possible
4123 * the range being registered will be merged with existing ranges.
4124 */
4125void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4126						unsigned long end_pfn)
4127{
4128	int i;
4129
4130	mminit_dprintk(MMINIT_TRACE, "memory_register",
4131			"Entering add_active_range(%d, %#lx, %#lx) "
4132			"%d entries of %d used\n",
4133			nid, start_pfn, end_pfn,
4134			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4135
4136	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4137
4138	/* Merge with existing active regions if possible */
4139	for (i = 0; i < nr_nodemap_entries; i++) {
4140		if (early_node_map[i].nid != nid)
4141			continue;
4142
4143		/* Skip if an existing region covers this new one */
4144		if (start_pfn >= early_node_map[i].start_pfn &&
4145				end_pfn <= early_node_map[i].end_pfn)
4146			return;
4147
4148		/* Merge forward if suitable */
4149		if (start_pfn <= early_node_map[i].end_pfn &&
4150				end_pfn > early_node_map[i].end_pfn) {
4151			early_node_map[i].end_pfn = end_pfn;
4152			return;
4153		}
4154
4155		/* Merge backward if suitable */
4156		if (start_pfn < early_node_map[i].start_pfn &&
4157				end_pfn >= early_node_map[i].start_pfn) {
4158			early_node_map[i].start_pfn = start_pfn;
4159			return;
4160		}
4161	}
4162
4163	/* Check that early_node_map is large enough */
4164	if (i >= MAX_ACTIVE_REGIONS) {
4165		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4166							MAX_ACTIVE_REGIONS);
4167		return;
4168	}
4169
4170	early_node_map[i].nid = nid;
4171	early_node_map[i].start_pfn = start_pfn;
4172	early_node_map[i].end_pfn = end_pfn;
4173	nr_nodemap_entries = i + 1;
4174}
4175
4176/**
4177 * remove_active_range - Shrink an existing registered range of PFNs
4178 * @nid: The node id the range is on that should be shrunk
4179 * @start_pfn: The new PFN of the range
4180 * @end_pfn: The new PFN of the range
4181 *
4182 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4183 * The map is kept near the end physical page range that has already been
4184 * registered. This function allows an arch to shrink an existing registered
4185 * range.
4186 */
4187void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4188				unsigned long end_pfn)
4189{
4190	int i, j;
4191	int removed = 0;
4192
4193	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4194			  nid, start_pfn, end_pfn);
4195
4196	/* Find the old active region end and shrink */
4197	for_each_active_range_index_in_nid(i, nid) {
4198		if (early_node_map[i].start_pfn >= start_pfn &&
4199		    early_node_map[i].end_pfn <= end_pfn) {
4200			/* clear it */
4201			early_node_map[i].start_pfn = 0;
4202			early_node_map[i].end_pfn = 0;
4203			removed = 1;
4204			continue;
4205		}
4206		if (early_node_map[i].start_pfn < start_pfn &&
4207		    early_node_map[i].end_pfn > start_pfn) {
4208			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4209			early_node_map[i].end_pfn = start_pfn;
4210			if (temp_end_pfn > end_pfn)
4211				add_active_range(nid, end_pfn, temp_end_pfn);
4212			continue;
4213		}
4214		if (early_node_map[i].start_pfn >= start_pfn &&
4215		    early_node_map[i].end_pfn > end_pfn &&
4216		    early_node_map[i].start_pfn < end_pfn) {
4217			early_node_map[i].start_pfn = end_pfn;
4218			continue;
4219		}
4220	}
4221
4222	if (!removed)
4223		return;
4224
4225	/* remove the blank ones */
4226	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4227		if (early_node_map[i].nid != nid)
4228			continue;
4229		if (early_node_map[i].end_pfn)
4230			continue;
4231		/* we found it, get rid of it */
4232		for (j = i; j < nr_nodemap_entries - 1; j++)
4233			memcpy(&early_node_map[j], &early_node_map[j+1],
4234				sizeof(early_node_map[j]));
4235		j = nr_nodemap_entries - 1;
4236		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4237		nr_nodemap_entries--;
4238	}
4239}
4240
4241/**
4242 * remove_all_active_ranges - Remove all currently registered regions
4243 *
4244 * During discovery, it may be found that a table like SRAT is invalid
4245 * and an alternative discovery method must be used. This function removes
4246 * all currently registered regions.
4247 */
4248void __init remove_all_active_ranges(void)
4249{
4250	memset(early_node_map, 0, sizeof(early_node_map));
4251	nr_nodemap_entries = 0;
4252}
4253
4254/* Compare two active node_active_regions */
4255static int __init cmp_node_active_region(const void *a, const void *b)
4256{
4257	struct node_active_region *arange = (struct node_active_region *)a;
4258	struct node_active_region *brange = (struct node_active_region *)b;
4259
4260	/* Done this way to avoid overflows */
4261	if (arange->start_pfn > brange->start_pfn)
4262		return 1;
4263	if (arange->start_pfn < brange->start_pfn)
4264		return -1;
4265
4266	return 0;
4267}
4268
4269/* sort the node_map by start_pfn */
4270void __init sort_node_map(void)
4271{
4272	sort(early_node_map, (size_t)nr_nodemap_entries,
4273			sizeof(struct node_active_region),
4274			cmp_node_active_region, NULL);
4275}
4276
4277/* Find the lowest pfn for a node */
4278static unsigned long __init find_min_pfn_for_node(int nid)
4279{
4280	int i;
4281	unsigned long min_pfn = ULONG_MAX;
4282
4283	/* Assuming a sorted map, the first range found has the starting pfn */
4284	for_each_active_range_index_in_nid(i, nid)
4285		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4286
4287	if (min_pfn == ULONG_MAX) {
4288		printk(KERN_WARNING
4289			"Could not find start_pfn for node %d\n", nid);
4290		return 0;
4291	}
4292
4293	return min_pfn;
4294}
4295
4296/**
4297 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4298 *
4299 * It returns the minimum PFN based on information provided via
4300 * add_active_range().
4301 */
4302unsigned long __init find_min_pfn_with_active_regions(void)
4303{
4304	return find_min_pfn_for_node(MAX_NUMNODES);
4305}
4306
4307/*
4308 * early_calculate_totalpages()
4309 * Sum pages in active regions for movable zone.
4310 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4311 */
4312static unsigned long __init early_calculate_totalpages(void)
4313{
4314	int i;
4315	unsigned long totalpages = 0;
4316
4317	for (i = 0; i < nr_nodemap_entries; i++) {
4318		unsigned long pages = early_node_map[i].end_pfn -
4319						early_node_map[i].start_pfn;
4320		totalpages += pages;
4321		if (pages)
4322			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4323	}
4324  	return totalpages;
4325}
4326
4327/*
4328 * Find the PFN the Movable zone begins in each node. Kernel memory
4329 * is spread evenly between nodes as long as the nodes have enough
4330 * memory. When they don't, some nodes will have more kernelcore than
4331 * others
4332 */
4333static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4334{
4335	int i, nid;
4336	unsigned long usable_startpfn;
4337	unsigned long kernelcore_node, kernelcore_remaining;
4338	/* save the state before borrow the nodemask */
4339	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4340	unsigned long totalpages = early_calculate_totalpages();
4341	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4342
4343	/*
4344	 * If movablecore was specified, calculate what size of
4345	 * kernelcore that corresponds so that memory usable for
4346	 * any allocation type is evenly spread. If both kernelcore
4347	 * and movablecore are specified, then the value of kernelcore
4348	 * will be used for required_kernelcore if it's greater than
4349	 * what movablecore would have allowed.
4350	 */
4351	if (required_movablecore) {
4352		unsigned long corepages;
4353
4354		/*
4355		 * Round-up so that ZONE_MOVABLE is at least as large as what
4356		 * was requested by the user
4357		 */
4358		required_movablecore =
4359			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4360		corepages = totalpages - required_movablecore;
4361
4362		required_kernelcore = max(required_kernelcore, corepages);
4363	}
4364
4365	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4366	if (!required_kernelcore)
4367		goto out;
4368
4369	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4370	find_usable_zone_for_movable();
4371	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4372
4373restart:
4374	/* Spread kernelcore memory as evenly as possible throughout nodes */
4375	kernelcore_node = required_kernelcore / usable_nodes;
4376	for_each_node_state(nid, N_HIGH_MEMORY) {
4377		/*
4378		 * Recalculate kernelcore_node if the division per node
4379		 * now exceeds what is necessary to satisfy the requested
4380		 * amount of memory for the kernel
4381		 */
4382		if (required_kernelcore < kernelcore_node)
4383			kernelcore_node = required_kernelcore / usable_nodes;
4384
4385		/*
4386		 * As the map is walked, we track how much memory is usable
4387		 * by the kernel using kernelcore_remaining. When it is
4388		 * 0, the rest of the node is usable by ZONE_MOVABLE
4389		 */
4390		kernelcore_remaining = kernelcore_node;
4391
4392		/* Go through each range of PFNs within this node */
4393		for_each_active_range_index_in_nid(i, nid) {
4394			unsigned long start_pfn, end_pfn;
4395			unsigned long size_pages;
4396
4397			start_pfn = max(early_node_map[i].start_pfn,
4398						zone_movable_pfn[nid]);
4399			end_pfn = early_node_map[i].end_pfn;
4400			if (start_pfn >= end_pfn)
4401				continue;
4402
4403			/* Account for what is only usable for kernelcore */
4404			if (start_pfn < usable_startpfn) {
4405				unsigned long kernel_pages;
4406				kernel_pages = min(end_pfn, usable_startpfn)
4407								- start_pfn;
4408
4409				kernelcore_remaining -= min(kernel_pages,
4410							kernelcore_remaining);
4411				required_kernelcore -= min(kernel_pages,
4412							required_kernelcore);
4413
4414				/* Continue if range is now fully accounted */
4415				if (end_pfn <= usable_startpfn) {
4416
4417					/*
4418					 * Push zone_movable_pfn to the end so
4419					 * that if we have to rebalance
4420					 * kernelcore across nodes, we will
4421					 * not double account here
4422					 */
4423					zone_movable_pfn[nid] = end_pfn;
4424					continue;
4425				}
4426				start_pfn = usable_startpfn;
4427			}
4428
4429			/*
4430			 * The usable PFN range for ZONE_MOVABLE is from
4431			 * start_pfn->end_pfn. Calculate size_pages as the
4432			 * number of pages used as kernelcore
4433			 */
4434			size_pages = end_pfn - start_pfn;
4435			if (size_pages > kernelcore_remaining)
4436				size_pages = kernelcore_remaining;
4437			zone_movable_pfn[nid] = start_pfn + size_pages;
4438
4439			/*
4440			 * Some kernelcore has been met, update counts and
4441			 * break if the kernelcore for this node has been
4442			 * satisified
4443			 */
4444			required_kernelcore -= min(required_kernelcore,
4445								size_pages);
4446			kernelcore_remaining -= size_pages;
4447			if (!kernelcore_remaining)
4448				break;
4449		}
4450	}
4451
4452	/*
4453	 * If there is still required_kernelcore, we do another pass with one
4454	 * less node in the count. This will push zone_movable_pfn[nid] further
4455	 * along on the nodes that still have memory until kernelcore is
4456	 * satisified
4457	 */
4458	usable_nodes--;
4459	if (usable_nodes && required_kernelcore > usable_nodes)
4460		goto restart;
4461
4462	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4463	for (nid = 0; nid < MAX_NUMNODES; nid++)
4464		zone_movable_pfn[nid] =
4465			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4466
4467out:
4468	/* restore the node_state */
4469	node_states[N_HIGH_MEMORY] = saved_node_state;
4470}
4471
4472/* Any regular memory on that node ? */
4473static void check_for_regular_memory(pg_data_t *pgdat)
4474{
4475#ifdef CONFIG_HIGHMEM
4476	enum zone_type zone_type;
4477
4478	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4479		struct zone *zone = &pgdat->node_zones[zone_type];
4480		if (zone->present_pages)
4481			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4482	}
4483#endif
4484}
4485
4486/**
4487 * free_area_init_nodes - Initialise all pg_data_t and zone data
4488 * @max_zone_pfn: an array of max PFNs for each zone
4489 *
4490 * This will call free_area_init_node() for each active node in the system.
4491 * Using the page ranges provided by add_active_range(), the size of each
4492 * zone in each node and their holes is calculated. If the maximum PFN
4493 * between two adjacent zones match, it is assumed that the zone is empty.
4494 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4495 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4496 * starts where the previous one ended. For example, ZONE_DMA32 starts
4497 * at arch_max_dma_pfn.
4498 */
4499void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4500{
4501	unsigned long nid;
4502	int i;
4503
4504	/* Sort early_node_map as initialisation assumes it is sorted */
4505	sort_node_map();
4506
4507	/* Record where the zone boundaries are */
4508	memset(arch_zone_lowest_possible_pfn, 0,
4509				sizeof(arch_zone_lowest_possible_pfn));
4510	memset(arch_zone_highest_possible_pfn, 0,
4511				sizeof(arch_zone_highest_possible_pfn));
4512	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4513	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4514	for (i = 1; i < MAX_NR_ZONES; i++) {
4515		if (i == ZONE_MOVABLE)
4516			continue;
4517		arch_zone_lowest_possible_pfn[i] =
4518			arch_zone_highest_possible_pfn[i-1];
4519		arch_zone_highest_possible_pfn[i] =
4520			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4521	}
4522	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4523	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4524
4525	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4526	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4527	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4528
4529	/* Print out the zone ranges */
4530	printk("Zone PFN ranges:\n");
4531	for (i = 0; i < MAX_NR_ZONES; i++) {
4532		if (i == ZONE_MOVABLE)
4533			continue;
4534		printk("  %-8s ", zone_names[i]);
4535		if (arch_zone_lowest_possible_pfn[i] ==
4536				arch_zone_highest_possible_pfn[i])
4537			printk("empty\n");
4538		else
4539			printk("%0#10lx -> %0#10lx\n",
4540				arch_zone_lowest_possible_pfn[i],
4541				arch_zone_highest_possible_pfn[i]);
4542	}
4543
4544	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4545	printk("Movable zone start PFN for each node\n");
4546	for (i = 0; i < MAX_NUMNODES; i++) {
4547		if (zone_movable_pfn[i])
4548			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4549	}
4550
4551	/* Print out the early_node_map[] */
4552	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4553	for (i = 0; i < nr_nodemap_entries; i++)
4554		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4555						early_node_map[i].start_pfn,
4556						early_node_map[i].end_pfn);
4557
4558	/* Initialise every node */
4559	mminit_verify_pageflags_layout();
4560	setup_nr_node_ids();
4561	for_each_online_node(nid) {
4562		pg_data_t *pgdat = NODE_DATA(nid);
4563		free_area_init_node(nid, NULL,
4564				find_min_pfn_for_node(nid), NULL);
4565
4566		/* Any memory on that node */
4567		if (pgdat->node_present_pages)
4568			node_set_state(nid, N_HIGH_MEMORY);
4569		check_for_regular_memory(pgdat);
4570	}
4571}
4572
4573static int __init cmdline_parse_core(char *p, unsigned long *core)
4574{
4575	unsigned long long coremem;
4576	if (!p)
4577		return -EINVAL;
4578
4579	coremem = memparse(p, &p);
4580	*core = coremem >> PAGE_SHIFT;
4581
4582	/* Paranoid check that UL is enough for the coremem value */
4583	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4584
4585	return 0;
4586}
4587
4588/*
4589 * kernelcore=size sets the amount of memory for use for allocations that
4590 * cannot be reclaimed or migrated.
4591 */
4592static int __init cmdline_parse_kernelcore(char *p)
4593{
4594	return cmdline_parse_core(p, &required_kernelcore);
4595}
4596
4597/*
4598 * movablecore=size sets the amount of memory for use for allocations that
4599 * can be reclaimed or migrated.
4600 */
4601static int __init cmdline_parse_movablecore(char *p)
4602{
4603	return cmdline_parse_core(p, &required_movablecore);
4604}
4605
4606early_param("kernelcore", cmdline_parse_kernelcore);
4607early_param("movablecore", cmdline_parse_movablecore);
4608
4609#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4610
4611/**
4612 * set_dma_reserve - set the specified number of pages reserved in the first zone
4613 * @new_dma_reserve: The number of pages to mark reserved
4614 *
4615 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4616 * In the DMA zone, a significant percentage may be consumed by kernel image
4617 * and other unfreeable allocations which can skew the watermarks badly. This
4618 * function may optionally be used to account for unfreeable pages in the
4619 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4620 * smaller per-cpu batchsize.
4621 */
4622void __init set_dma_reserve(unsigned long new_dma_reserve)
4623{
4624	dma_reserve = new_dma_reserve;
4625}
4626
4627#ifndef CONFIG_NEED_MULTIPLE_NODES
4628struct pglist_data __refdata contig_page_data = {
4629#ifndef CONFIG_NO_BOOTMEM
4630 .bdata = &bootmem_node_data[0]
4631#endif
4632 };
4633EXPORT_SYMBOL(contig_page_data);
4634#endif
4635
4636void __init free_area_init(unsigned long *zones_size)
4637{
4638	free_area_init_node(0, zones_size,
4639			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4640}
4641
4642static int page_alloc_cpu_notify(struct notifier_block *self,
4643				 unsigned long action, void *hcpu)
4644{
4645	int cpu = (unsigned long)hcpu;
4646
4647	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4648		drain_pages(cpu);
4649
4650		/*
4651		 * Spill the event counters of the dead processor
4652		 * into the current processors event counters.
4653		 * This artificially elevates the count of the current
4654		 * processor.
4655		 */
4656		vm_events_fold_cpu(cpu);
4657
4658		/*
4659		 * Zero the differential counters of the dead processor
4660		 * so that the vm statistics are consistent.
4661		 *
4662		 * This is only okay since the processor is dead and cannot
4663		 * race with what we are doing.
4664		 */
4665		refresh_cpu_vm_stats(cpu);
4666	}
4667	return NOTIFY_OK;
4668}
4669
4670void __init page_alloc_init(void)
4671{
4672	hotcpu_notifier(page_alloc_cpu_notify, 0);
4673}
4674
4675/*
4676 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4677 *	or min_free_kbytes changes.
4678 */
4679static void calculate_totalreserve_pages(void)
4680{
4681	struct pglist_data *pgdat;
4682	unsigned long reserve_pages = 0;
4683	enum zone_type i, j;
4684
4685	for_each_online_pgdat(pgdat) {
4686		for (i = 0; i < MAX_NR_ZONES; i++) {
4687			struct zone *zone = pgdat->node_zones + i;
4688			unsigned long max = 0;
4689
4690			/* Find valid and maximum lowmem_reserve in the zone */
4691			for (j = i; j < MAX_NR_ZONES; j++) {
4692				if (zone->lowmem_reserve[j] > max)
4693					max = zone->lowmem_reserve[j];
4694			}
4695
4696			/* we treat the high watermark as reserved pages. */
4697			max += high_wmark_pages(zone);
4698
4699			if (max > zone->present_pages)
4700				max = zone->present_pages;
4701			reserve_pages += max;
4702		}
4703	}
4704	totalreserve_pages = reserve_pages;
4705}
4706
4707/*
4708 * setup_per_zone_lowmem_reserve - called whenever
4709 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4710 *	has a correct pages reserved value, so an adequate number of
4711 *	pages are left in the zone after a successful __alloc_pages().
4712 */
4713static void setup_per_zone_lowmem_reserve(void)
4714{
4715	struct pglist_data *pgdat;
4716	enum zone_type j, idx;
4717
4718	for_each_online_pgdat(pgdat) {
4719		for (j = 0; j < MAX_NR_ZONES; j++) {
4720			struct zone *zone = pgdat->node_zones + j;
4721			unsigned long present_pages = zone->present_pages;
4722
4723			zone->lowmem_reserve[j] = 0;
4724
4725			idx = j;
4726			while (idx) {
4727				struct zone *lower_zone;
4728
4729				idx--;
4730
4731				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4732					sysctl_lowmem_reserve_ratio[idx] = 1;
4733
4734				lower_zone = pgdat->node_zones + idx;
4735				lower_zone->lowmem_reserve[j] = present_pages /
4736					sysctl_lowmem_reserve_ratio[idx];
4737				present_pages += lower_zone->present_pages;
4738			}
4739		}
4740	}
4741
4742	/* update totalreserve_pages */
4743	calculate_totalreserve_pages();
4744}
4745
4746/**
4747 * setup_per_zone_wmarks - called when min_free_kbytes changes
4748 * or when memory is hot-{added|removed}
4749 *
4750 * Ensures that the watermark[min,low,high] values for each zone are set
4751 * correctly with respect to min_free_kbytes.
4752 */
4753void setup_per_zone_wmarks(void)
4754{
4755	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4756	unsigned long lowmem_pages = 0;
4757	struct zone *zone;
4758	unsigned long flags;
4759
4760	/* Calculate total number of !ZONE_HIGHMEM pages */
4761	for_each_zone(zone) {
4762		if (!is_highmem(zone))
4763			lowmem_pages += zone->present_pages;
4764	}
4765
4766	for_each_zone(zone) {
4767		u64 tmp;
4768
4769		spin_lock_irqsave(&zone->lock, flags);
4770		tmp = (u64)pages_min * zone->present_pages;
4771		do_div(tmp, lowmem_pages);
4772		if (is_highmem(zone)) {
4773			/*
4774			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4775			 * need highmem pages, so cap pages_min to a small
4776			 * value here.
4777			 *
4778			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4779			 * deltas controls asynch page reclaim, and so should
4780			 * not be capped for highmem.
4781			 */
4782			int min_pages;
4783
4784			min_pages = zone->present_pages / 1024;
4785			if (min_pages < SWAP_CLUSTER_MAX)
4786				min_pages = SWAP_CLUSTER_MAX;
4787			if (min_pages > 128)
4788				min_pages = 128;
4789			zone->watermark[WMARK_MIN] = min_pages;
4790		} else {
4791			/*
4792			 * If it's a lowmem zone, reserve a number of pages
4793			 * proportionate to the zone's size.
4794			 */
4795			zone->watermark[WMARK_MIN] = tmp;
4796		}
4797
4798		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4799		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4800		setup_zone_migrate_reserve(zone);
4801		spin_unlock_irqrestore(&zone->lock, flags);
4802	}
4803
4804	/* update totalreserve_pages */
4805	calculate_totalreserve_pages();
4806}
4807
4808/*
4809 * The inactive anon list should be small enough that the VM never has to
4810 * do too much work, but large enough that each inactive page has a chance
4811 * to be referenced again before it is swapped out.
4812 *
4813 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4814 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4815 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4816 * the anonymous pages are kept on the inactive list.
4817 *
4818 * total     target    max
4819 * memory    ratio     inactive anon
4820 * -------------------------------------
4821 *   10MB       1         5MB
4822 *  100MB       1        50MB
4823 *    1GB       3       250MB
4824 *   10GB      10       0.9GB
4825 *  100GB      31         3GB
4826 *    1TB     101        10GB
4827 *   10TB     320        32GB
4828 */
4829void calculate_zone_inactive_ratio(struct zone *zone)
4830{
4831	unsigned int gb, ratio;
4832
4833	/* Zone size in gigabytes */
4834	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4835	if (gb)
4836		ratio = int_sqrt(10 * gb);
4837	else
4838		ratio = 1;
4839
4840	zone->inactive_ratio = ratio;
4841}
4842
4843static void __init setup_per_zone_inactive_ratio(void)
4844{
4845	struct zone *zone;
4846
4847	for_each_zone(zone)
4848		calculate_zone_inactive_ratio(zone);
4849}
4850
4851/*
4852 * Initialise min_free_kbytes.
4853 *
4854 * For small machines we want it small (128k min).  For large machines
4855 * we want it large (64MB max).  But it is not linear, because network
4856 * bandwidth does not increase linearly with machine size.  We use
4857 *
4858 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4859 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4860 *
4861 * which yields
4862 *
4863 * 16MB:	512k
4864 * 32MB:	724k
4865 * 64MB:	1024k
4866 * 128MB:	1448k
4867 * 256MB:	2048k
4868 * 512MB:	2896k
4869 * 1024MB:	4096k
4870 * 2048MB:	5792k
4871 * 4096MB:	8192k
4872 * 8192MB:	11584k
4873 * 16384MB:	16384k
4874 */
4875static int __init init_per_zone_wmark_min(void)
4876{
4877	unsigned long lowmem_kbytes;
4878
4879	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4880
4881	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4882	if (min_free_kbytes < 128)
4883		min_free_kbytes = 128;
4884	if (min_free_kbytes > 65536)
4885		min_free_kbytes = 65536;
4886	setup_per_zone_wmarks();
4887	setup_per_zone_lowmem_reserve();
4888	setup_per_zone_inactive_ratio();
4889	return 0;
4890}
4891module_init(init_per_zone_wmark_min)
4892
4893/*
4894 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4895 *	that we can call two helper functions whenever min_free_kbytes
4896 *	changes.
4897 */
4898int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4899	void __user *buffer, size_t *length, loff_t *ppos)
4900{
4901	proc_dointvec(table, write, buffer, length, ppos);
4902	if (write)
4903		setup_per_zone_wmarks();
4904	return 0;
4905}
4906
4907#ifdef CONFIG_NUMA
4908int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4909	void __user *buffer, size_t *length, loff_t *ppos)
4910{
4911	struct zone *zone;
4912	int rc;
4913
4914	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4915	if (rc)
4916		return rc;
4917
4918	for_each_zone(zone)
4919		zone->min_unmapped_pages = (zone->present_pages *
4920				sysctl_min_unmapped_ratio) / 100;
4921	return 0;
4922}
4923
4924int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4925	void __user *buffer, size_t *length, loff_t *ppos)
4926{
4927	struct zone *zone;
4928	int rc;
4929
4930	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4931	if (rc)
4932		return rc;
4933
4934	for_each_zone(zone)
4935		zone->min_slab_pages = (zone->present_pages *
4936				sysctl_min_slab_ratio) / 100;
4937	return 0;
4938}
4939#endif
4940
4941/*
4942 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4943 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4944 *	whenever sysctl_lowmem_reserve_ratio changes.
4945 *
4946 * The reserve ratio obviously has absolutely no relation with the
4947 * minimum watermarks. The lowmem reserve ratio can only make sense
4948 * if in function of the boot time zone sizes.
4949 */
4950int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4951	void __user *buffer, size_t *length, loff_t *ppos)
4952{
4953	proc_dointvec_minmax(table, write, buffer, length, ppos);
4954	setup_per_zone_lowmem_reserve();
4955	return 0;
4956}
4957
4958/*
4959 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4960 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4961 * can have before it gets flushed back to buddy allocator.
4962 */
4963
4964int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4965	void __user *buffer, size_t *length, loff_t *ppos)
4966{
4967	struct zone *zone;
4968	unsigned int cpu;
4969	int ret;
4970
4971	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4972	if (!write || (ret == -EINVAL))
4973		return ret;
4974	for_each_populated_zone(zone) {
4975		for_each_possible_cpu(cpu) {
4976			unsigned long  high;
4977			high = zone->present_pages / percpu_pagelist_fraction;
4978			setup_pagelist_highmark(
4979				per_cpu_ptr(zone->pageset, cpu), high);
4980		}
4981	}
4982	return 0;
4983}
4984
4985int hashdist = HASHDIST_DEFAULT;
4986
4987#ifdef CONFIG_NUMA
4988static int __init set_hashdist(char *str)
4989{
4990	if (!str)
4991		return 0;
4992	hashdist = simple_strtoul(str, &str, 0);
4993	return 1;
4994}
4995__setup("hashdist=", set_hashdist);
4996#endif
4997
4998/*
4999 * allocate a large system hash table from bootmem
5000 * - it is assumed that the hash table must contain an exact power-of-2
5001 *   quantity of entries
5002 * - limit is the number of hash buckets, not the total allocation size
5003 */
5004void *__init alloc_large_system_hash(const char *tablename,
5005				     unsigned long bucketsize,
5006				     unsigned long numentries,
5007				     int scale,
5008				     int flags,
5009				     unsigned int *_hash_shift,
5010				     unsigned int *_hash_mask,
5011				     unsigned long limit)
5012{
5013	unsigned long long max = limit;
5014	unsigned long log2qty, size;
5015	void *table = NULL;
5016
5017	/* allow the kernel cmdline to have a say */
5018	if (!numentries) {
5019		/* round applicable memory size up to nearest megabyte */
5020		numentries = nr_kernel_pages;
5021		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5022		numentries >>= 20 - PAGE_SHIFT;
5023		numentries <<= 20 - PAGE_SHIFT;
5024
5025		/* limit to 1 bucket per 2^scale bytes of low memory */
5026		if (scale > PAGE_SHIFT)
5027			numentries >>= (scale - PAGE_SHIFT);
5028		else
5029			numentries <<= (PAGE_SHIFT - scale);
5030
5031		/* Make sure we've got at least a 0-order allocation.. */
5032		if (unlikely(flags & HASH_SMALL)) {
5033			/* Makes no sense without HASH_EARLY */
5034			WARN_ON(!(flags & HASH_EARLY));
5035			if (!(numentries >> *_hash_shift)) {
5036				numentries = 1UL << *_hash_shift;
5037				BUG_ON(!numentries);
5038			}
5039		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5040			numentries = PAGE_SIZE / bucketsize;
5041	}
5042	numentries = roundup_pow_of_two(numentries);
5043
5044	/* limit allocation size to 1/16 total memory by default */
5045	if (max == 0) {
5046		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5047		do_div(max, bucketsize);
5048	}
5049
5050	if (numentries > max)
5051		numentries = max;
5052
5053	log2qty = ilog2(numentries);
5054
5055	do {
5056		size = bucketsize << log2qty;
5057		if (flags & HASH_EARLY)
5058			table = alloc_bootmem_nopanic(size);
5059		else if (hashdist)
5060			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5061		else {
5062			/*
5063			 * If bucketsize is not a power-of-two, we may free
5064			 * some pages at the end of hash table which
5065			 * alloc_pages_exact() automatically does
5066			 */
5067			if (get_order(size) < MAX_ORDER) {
5068				table = alloc_pages_exact(size, GFP_ATOMIC);
5069				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5070			}
5071		}
5072	} while (!table && size > PAGE_SIZE && --log2qty);
5073
5074	if (!table)
5075		panic("Failed to allocate %s hash table\n", tablename);
5076
5077	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5078	       tablename,
5079	       (1U << log2qty),
5080	       ilog2(size) - PAGE_SHIFT,
5081	       size);
5082
5083	if (_hash_shift)
5084		*_hash_shift = log2qty;
5085	if (_hash_mask)
5086		*_hash_mask = (1 << log2qty) - 1;
5087
5088	return table;
5089}
5090
5091/* Return a pointer to the bitmap storing bits affecting a block of pages */
5092static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5093							unsigned long pfn)
5094{
5095#ifdef CONFIG_SPARSEMEM
5096	return __pfn_to_section(pfn)->pageblock_flags;
5097#else
5098	return zone->pageblock_flags;
5099#endif /* CONFIG_SPARSEMEM */
5100}
5101
5102static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5103{
5104#ifdef CONFIG_SPARSEMEM
5105	pfn &= (PAGES_PER_SECTION-1);
5106	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5107#else
5108	pfn = pfn - zone->zone_start_pfn;
5109	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5110#endif /* CONFIG_SPARSEMEM */
5111}
5112
5113/**
5114 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5115 * @page: The page within the block of interest
5116 * @start_bitidx: The first bit of interest to retrieve
5117 * @end_bitidx: The last bit of interest
5118 * returns pageblock_bits flags
5119 */
5120unsigned long get_pageblock_flags_group(struct page *page,
5121					int start_bitidx, int end_bitidx)
5122{
5123	struct zone *zone;
5124	unsigned long *bitmap;
5125	unsigned long pfn, bitidx;
5126	unsigned long flags = 0;
5127	unsigned long value = 1;
5128
5129	zone = page_zone(page);
5130	pfn = page_to_pfn(page);
5131	bitmap = get_pageblock_bitmap(zone, pfn);
5132	bitidx = pfn_to_bitidx(zone, pfn);
5133
5134	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5135		if (test_bit(bitidx + start_bitidx, bitmap))
5136			flags |= value;
5137
5138	return flags;
5139}
5140
5141/**
5142 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5143 * @page: The page within the block of interest
5144 * @start_bitidx: The first bit of interest
5145 * @end_bitidx: The last bit of interest
5146 * @flags: The flags to set
5147 */
5148void set_pageblock_flags_group(struct page *page, unsigned long flags,
5149					int start_bitidx, int end_bitidx)
5150{
5151	struct zone *zone;
5152	unsigned long *bitmap;
5153	unsigned long pfn, bitidx;
5154	unsigned long value = 1;
5155
5156	zone = page_zone(page);
5157	pfn = page_to_pfn(page);
5158	bitmap = get_pageblock_bitmap(zone, pfn);
5159	bitidx = pfn_to_bitidx(zone, pfn);
5160	VM_BUG_ON(pfn < zone->zone_start_pfn);
5161	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5162
5163	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5164		if (flags & value)
5165			__set_bit(bitidx + start_bitidx, bitmap);
5166		else
5167			__clear_bit(bitidx + start_bitidx, bitmap);
5168}
5169
5170/*
5171 * This is designed as sub function...plz see page_isolation.c also.
5172 * set/clear page block's type to be ISOLATE.
5173 * page allocater never alloc memory from ISOLATE block.
5174 */
5175
5176int set_migratetype_isolate(struct page *page)
5177{
5178	struct zone *zone;
5179	struct page *curr_page;
5180	unsigned long flags, pfn, iter;
5181	unsigned long immobile = 0;
5182	struct memory_isolate_notify arg;
5183	int notifier_ret;
5184	int ret = -EBUSY;
5185	int zone_idx;
5186
5187	zone = page_zone(page);
5188	zone_idx = zone_idx(zone);
5189
5190	spin_lock_irqsave(&zone->lock, flags);
5191	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5192	    zone_idx == ZONE_MOVABLE) {
5193		ret = 0;
5194		goto out;
5195	}
5196
5197	pfn = page_to_pfn(page);
5198	arg.start_pfn = pfn;
5199	arg.nr_pages = pageblock_nr_pages;
5200	arg.pages_found = 0;
5201
5202	/*
5203	 * It may be possible to isolate a pageblock even if the
5204	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5205	 * notifier chain is used by balloon drivers to return the
5206	 * number of pages in a range that are held by the balloon
5207	 * driver to shrink memory. If all the pages are accounted for
5208	 * by balloons, are free, or on the LRU, isolation can continue.
5209	 * Later, for example, when memory hotplug notifier runs, these
5210	 * pages reported as "can be isolated" should be isolated(freed)
5211	 * by the balloon driver through the memory notifier chain.
5212	 */
5213	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5214	notifier_ret = notifier_to_errno(notifier_ret);
5215	if (notifier_ret || !arg.pages_found)
5216		goto out;
5217
5218	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5219		if (!pfn_valid_within(pfn))
5220			continue;
5221
5222		curr_page = pfn_to_page(iter);
5223		if (!page_count(curr_page) || PageLRU(curr_page))
5224			continue;
5225
5226		immobile++;
5227	}
5228
5229	if (arg.pages_found == immobile)
5230		ret = 0;
5231
5232out:
5233	if (!ret) {
5234		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5235		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5236	}
5237
5238	spin_unlock_irqrestore(&zone->lock, flags);
5239	if (!ret)
5240		drain_all_pages();
5241	return ret;
5242}
5243
5244void unset_migratetype_isolate(struct page *page)
5245{
5246	struct zone *zone;
5247	unsigned long flags;
5248	zone = page_zone(page);
5249	spin_lock_irqsave(&zone->lock, flags);
5250	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5251		goto out;
5252	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5253	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5254out:
5255	spin_unlock_irqrestore(&zone->lock, flags);
5256}
5257
5258#ifdef CONFIG_MEMORY_HOTREMOVE
5259/*
5260 * All pages in the range must be isolated before calling this.
5261 */
5262void
5263__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5264{
5265	struct page *page;
5266	struct zone *zone;
5267	int order, i;
5268	unsigned long pfn;
5269	unsigned long flags;
5270	/* find the first valid pfn */
5271	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5272		if (pfn_valid(pfn))
5273			break;
5274	if (pfn == end_pfn)
5275		return;
5276	zone = page_zone(pfn_to_page(pfn));
5277	spin_lock_irqsave(&zone->lock, flags);
5278	pfn = start_pfn;
5279	while (pfn < end_pfn) {
5280		if (!pfn_valid(pfn)) {
5281			pfn++;
5282			continue;
5283		}
5284		page = pfn_to_page(pfn);
5285		BUG_ON(page_count(page));
5286		BUG_ON(!PageBuddy(page));
5287		order = page_order(page);
5288#ifdef CONFIG_DEBUG_VM
5289		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5290		       pfn, 1 << order, end_pfn);
5291#endif
5292		list_del(&page->lru);
5293		rmv_page_order(page);
5294		zone->free_area[order].nr_free--;
5295		__mod_zone_page_state(zone, NR_FREE_PAGES,
5296				      - (1UL << order));
5297		for (i = 0; i < (1 << order); i++)
5298			SetPageReserved((page+i));
5299		pfn += (1 << order);
5300	}
5301	spin_unlock_irqrestore(&zone->lock, flags);
5302}
5303#endif
5304
5305#ifdef CONFIG_MEMORY_FAILURE
5306bool is_free_buddy_page(struct page *page)
5307{
5308	struct zone *zone = page_zone(page);
5309	unsigned long pfn = page_to_pfn(page);
5310	unsigned long flags;
5311	int order;
5312
5313	spin_lock_irqsave(&zone->lock, flags);
5314	for (order = 0; order < MAX_ORDER; order++) {
5315		struct page *page_head = page - (pfn & ((1 << order) - 1));
5316
5317		if (PageBuddy(page_head) && page_order(page_head) >= order)
5318			break;
5319	}
5320	spin_unlock_irqrestore(&zone->lock, flags);
5321
5322	return order < MAX_ORDER;
5323}
5324#endif
5325
5326static struct trace_print_flags pageflag_names[] = {
5327	{1UL << PG_locked,		"locked"	},
5328	{1UL << PG_error,		"error"		},
5329	{1UL << PG_referenced,		"referenced"	},
5330	{1UL << PG_uptodate,		"uptodate"	},
5331	{1UL << PG_dirty,		"dirty"		},
5332	{1UL << PG_lru,			"lru"		},
5333	{1UL << PG_active,		"active"	},
5334	{1UL << PG_slab,		"slab"		},
5335	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5336	{1UL << PG_arch_1,		"arch_1"	},
5337	{1UL << PG_reserved,		"reserved"	},
5338	{1UL << PG_private,		"private"	},
5339	{1UL << PG_private_2,		"private_2"	},
5340	{1UL << PG_writeback,		"writeback"	},
5341#ifdef CONFIG_PAGEFLAGS_EXTENDED
5342	{1UL << PG_head,		"head"		},
5343	{1UL << PG_tail,		"tail"		},
5344#else
5345	{1UL << PG_compound,		"compound"	},
5346#endif
5347	{1UL << PG_swapcache,		"swapcache"	},
5348	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5349	{1UL << PG_reclaim,		"reclaim"	},
5350	{1UL << PG_buddy,		"buddy"		},
5351	{1UL << PG_swapbacked,		"swapbacked"	},
5352	{1UL << PG_unevictable,		"unevictable"	},
5353#ifdef CONFIG_MMU
5354	{1UL << PG_mlocked,		"mlocked"	},
5355#endif
5356#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5357	{1UL << PG_uncached,		"uncached"	},
5358#endif
5359#ifdef CONFIG_MEMORY_FAILURE
5360	{1UL << PG_hwpoison,		"hwpoison"	},
5361#endif
5362	{-1UL,				NULL		},
5363};
5364
5365static void dump_page_flags(unsigned long flags)
5366{
5367	const char *delim = "";
5368	unsigned long mask;
5369	int i;
5370
5371	printk(KERN_ALERT "page flags: %#lx(", flags);
5372
5373	/* remove zone id */
5374	flags &= (1UL << NR_PAGEFLAGS) - 1;
5375
5376	for (i = 0; pageflag_names[i].name && flags; i++) {
5377
5378		mask = pageflag_names[i].mask;
5379		if ((flags & mask) != mask)
5380			continue;
5381
5382		flags &= ~mask;
5383		printk("%s%s", delim, pageflag_names[i].name);
5384		delim = "|";
5385	}
5386
5387	/* check for left over flags */
5388	if (flags)
5389		printk("%s%#lx", delim, flags);
5390
5391	printk(")\n");
5392}
5393
5394void dump_page(struct page *page)
5395{
5396	printk(KERN_ALERT
5397	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5398		page, page_count(page), page_mapcount(page),
5399		page->mapping, page->index);
5400	dump_page_flags(page->flags);
5401}
5402