page_alloc.c revision 5ad333eb66ff1e52a87639822ae088577669dcf9
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77	 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80	 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83	 32,
84#endif
85	 32,
86};
87
88EXPORT_SYMBOL(totalram_pages);
89
90static char * const zone_names[MAX_NR_ZONES] = {
91#ifdef CONFIG_ZONE_DMA
92	 "DMA",
93#endif
94#ifdef CONFIG_ZONE_DMA32
95	 "DMA32",
96#endif
97	 "Normal",
98#ifdef CONFIG_HIGHMEM
99	 "HighMem",
100#endif
101	 "Movable",
102};
103
104int min_free_kbytes = 1024;
105
106unsigned long __meminitdata nr_kernel_pages;
107unsigned long __meminitdata nr_all_pages;
108static unsigned long __meminitdata dma_reserve;
109
110#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111  /*
112   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113   * ranges of memory (RAM) that may be registered with add_active_range().
114   * Ranges passed to add_active_range() will be merged if possible
115   * so the number of times add_active_range() can be called is
116   * related to the number of nodes and the number of holes
117   */
118  #ifdef CONFIG_MAX_ACTIVE_REGIONS
119    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121  #else
122    #if MAX_NUMNODES >= 32
123      /* If there can be many nodes, allow up to 50 holes per node */
124      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125    #else
126      /* By default, allow up to 256 distinct regions */
127      #define MAX_ACTIVE_REGIONS 256
128    #endif
129  #endif
130
131  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132  static int __meminitdata nr_nodemap_entries;
133  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139  unsigned long __initdata required_kernelcore;
140  unsigned long __initdata required_movablecore;
141  unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
142
143  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144  int movable_zone;
145  EXPORT_SYMBOL(movable_zone);
146#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
147
148#if MAX_NUMNODES > 1
149int nr_node_ids __read_mostly = MAX_NUMNODES;
150EXPORT_SYMBOL(nr_node_ids);
151#endif
152
153#ifdef CONFIG_DEBUG_VM
154static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
155{
156	int ret = 0;
157	unsigned seq;
158	unsigned long pfn = page_to_pfn(page);
159
160	do {
161		seq = zone_span_seqbegin(zone);
162		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163			ret = 1;
164		else if (pfn < zone->zone_start_pfn)
165			ret = 1;
166	} while (zone_span_seqretry(zone, seq));
167
168	return ret;
169}
170
171static int page_is_consistent(struct zone *zone, struct page *page)
172{
173	if (!pfn_valid_within(page_to_pfn(page)))
174		return 0;
175	if (zone != page_zone(page))
176		return 0;
177
178	return 1;
179}
180/*
181 * Temporary debugging check for pages not lying within a given zone.
182 */
183static int bad_range(struct zone *zone, struct page *page)
184{
185	if (page_outside_zone_boundaries(zone, page))
186		return 1;
187	if (!page_is_consistent(zone, page))
188		return 1;
189
190	return 0;
191}
192#else
193static inline int bad_range(struct zone *zone, struct page *page)
194{
195	return 0;
196}
197#endif
198
199static void bad_page(struct page *page)
200{
201	printk(KERN_EMERG "Bad page state in process '%s'\n"
202		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204		KERN_EMERG "Backtrace:\n",
205		current->comm, page, (int)(2*sizeof(unsigned long)),
206		(unsigned long)page->flags, page->mapping,
207		page_mapcount(page), page_count(page));
208	dump_stack();
209	page->flags &= ~(1 << PG_lru	|
210			1 << PG_private |
211			1 << PG_locked	|
212			1 << PG_active	|
213			1 << PG_dirty	|
214			1 << PG_reclaim |
215			1 << PG_slab    |
216			1 << PG_swapcache |
217			1 << PG_writeback |
218			1 << PG_buddy );
219	set_page_count(page, 0);
220	reset_page_mapcount(page);
221	page->mapping = NULL;
222	add_taint(TAINT_BAD_PAGE);
223}
224
225/*
226 * Higher-order pages are called "compound pages".  They are structured thusly:
227 *
228 * The first PAGE_SIZE page is called the "head page".
229 *
230 * The remaining PAGE_SIZE pages are called "tail pages".
231 *
232 * All pages have PG_compound set.  All pages have their ->private pointing at
233 * the head page (even the head page has this).
234 *
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function.  Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
238 */
239
240static void free_compound_page(struct page *page)
241{
242	__free_pages_ok(page, compound_order(page));
243}
244
245static void prep_compound_page(struct page *page, unsigned long order)
246{
247	int i;
248	int nr_pages = 1 << order;
249
250	set_compound_page_dtor(page, free_compound_page);
251	set_compound_order(page, order);
252	__SetPageHead(page);
253	for (i = 1; i < nr_pages; i++) {
254		struct page *p = page + i;
255
256		__SetPageTail(p);
257		p->first_page = page;
258	}
259}
260
261static void destroy_compound_page(struct page *page, unsigned long order)
262{
263	int i;
264	int nr_pages = 1 << order;
265
266	if (unlikely(compound_order(page) != order))
267		bad_page(page);
268
269	if (unlikely(!PageHead(page)))
270			bad_page(page);
271	__ClearPageHead(page);
272	for (i = 1; i < nr_pages; i++) {
273		struct page *p = page + i;
274
275		if (unlikely(!PageTail(p) |
276				(p->first_page != page)))
277			bad_page(page);
278		__ClearPageTail(p);
279	}
280}
281
282static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
283{
284	int i;
285
286	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
287	/*
288	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289	 * and __GFP_HIGHMEM from hard or soft interrupt context.
290	 */
291	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292	for (i = 0; i < (1 << order); i++)
293		clear_highpage(page + i);
294}
295
296/*
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
300 */
301static inline unsigned long page_order(struct page *page)
302{
303	return page_private(page);
304}
305
306static inline void set_page_order(struct page *page, int order)
307{
308	set_page_private(page, order);
309	__SetPageBuddy(page);
310}
311
312static inline void rmv_page_order(struct page *page)
313{
314	__ClearPageBuddy(page);
315	set_page_private(page, 0);
316}
317
318/*
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
321 *
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
324 *     B2 = B1 ^ (1 << O)
325 * For example, if the starting buddy (buddy2) is #8 its order
326 * 1 buddy is #10:
327 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
328 *
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
331 *     P = B & ~(1 << O)
332 *
333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
334 */
335static inline struct page *
336__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
337{
338	unsigned long buddy_idx = page_idx ^ (1 << order);
339
340	return page + (buddy_idx - page_idx);
341}
342
343static inline unsigned long
344__find_combined_index(unsigned long page_idx, unsigned int order)
345{
346	return (page_idx & ~(1 << order));
347}
348
349/*
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
352 * (a) the buddy is not in a hole &&
353 * (b) the buddy is in the buddy system &&
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
356 *
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
359 *
360 * For recording page's order, we use page_private(page).
361 */
362static inline int page_is_buddy(struct page *page, struct page *buddy,
363								int order)
364{
365	if (!pfn_valid_within(page_to_pfn(buddy)))
366		return 0;
367
368	if (page_zone_id(page) != page_zone_id(buddy))
369		return 0;
370
371	if (PageBuddy(buddy) && page_order(buddy) == order) {
372		BUG_ON(page_count(buddy) != 0);
373		return 1;
374	}
375	return 0;
376}
377
378/*
379 * Freeing function for a buddy system allocator.
380 *
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
392 * order is recorded in page_private(page) field.
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other.  That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
398 *
399 * -- wli
400 */
401
402static inline void __free_one_page(struct page *page,
403		struct zone *zone, unsigned int order)
404{
405	unsigned long page_idx;
406	int order_size = 1 << order;
407
408	if (unlikely(PageCompound(page)))
409		destroy_compound_page(page, order);
410
411	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
412
413	VM_BUG_ON(page_idx & (order_size - 1));
414	VM_BUG_ON(bad_range(zone, page));
415
416	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417	while (order < MAX_ORDER-1) {
418		unsigned long combined_idx;
419		struct free_area *area;
420		struct page *buddy;
421
422		buddy = __page_find_buddy(page, page_idx, order);
423		if (!page_is_buddy(page, buddy, order))
424			break;		/* Move the buddy up one level. */
425
426		list_del(&buddy->lru);
427		area = zone->free_area + order;
428		area->nr_free--;
429		rmv_page_order(buddy);
430		combined_idx = __find_combined_index(page_idx, order);
431		page = page + (combined_idx - page_idx);
432		page_idx = combined_idx;
433		order++;
434	}
435	set_page_order(page, order);
436	list_add(&page->lru, &zone->free_area[order].free_list);
437	zone->free_area[order].nr_free++;
438}
439
440static inline int free_pages_check(struct page *page)
441{
442	if (unlikely(page_mapcount(page) |
443		(page->mapping != NULL)  |
444		(page_count(page) != 0)  |
445		(page->flags & (
446			1 << PG_lru	|
447			1 << PG_private |
448			1 << PG_locked	|
449			1 << PG_active	|
450			1 << PG_slab	|
451			1 << PG_swapcache |
452			1 << PG_writeback |
453			1 << PG_reserved |
454			1 << PG_buddy ))))
455		bad_page(page);
456	/*
457	 * PageReclaim == PageTail. It is only an error
458	 * for PageReclaim to be set if PageCompound is clear.
459	 */
460	if (unlikely(!PageCompound(page) && PageReclaim(page)))
461		bad_page(page);
462	if (PageDirty(page))
463		__ClearPageDirty(page);
464	/*
465	 * For now, we report if PG_reserved was found set, but do not
466	 * clear it, and do not free the page.  But we shall soon need
467	 * to do more, for when the ZERO_PAGE count wraps negative.
468	 */
469	return PageReserved(page);
470}
471
472/*
473 * Frees a list of pages.
474 * Assumes all pages on list are in same zone, and of same order.
475 * count is the number of pages to free.
476 *
477 * If the zone was previously in an "all pages pinned" state then look to
478 * see if this freeing clears that state.
479 *
480 * And clear the zone's pages_scanned counter, to hold off the "all pages are
481 * pinned" detection logic.
482 */
483static void free_pages_bulk(struct zone *zone, int count,
484					struct list_head *list, int order)
485{
486	spin_lock(&zone->lock);
487	zone->all_unreclaimable = 0;
488	zone->pages_scanned = 0;
489	while (count--) {
490		struct page *page;
491
492		VM_BUG_ON(list_empty(list));
493		page = list_entry(list->prev, struct page, lru);
494		/* have to delete it as __free_one_page list manipulates */
495		list_del(&page->lru);
496		__free_one_page(page, zone, order);
497	}
498	spin_unlock(&zone->lock);
499}
500
501static void free_one_page(struct zone *zone, struct page *page, int order)
502{
503	spin_lock(&zone->lock);
504	zone->all_unreclaimable = 0;
505	zone->pages_scanned = 0;
506	__free_one_page(page, zone, order);
507	spin_unlock(&zone->lock);
508}
509
510static void __free_pages_ok(struct page *page, unsigned int order)
511{
512	unsigned long flags;
513	int i;
514	int reserved = 0;
515
516	for (i = 0 ; i < (1 << order) ; ++i)
517		reserved += free_pages_check(page + i);
518	if (reserved)
519		return;
520
521	if (!PageHighMem(page))
522		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
523	arch_free_page(page, order);
524	kernel_map_pages(page, 1 << order, 0);
525
526	local_irq_save(flags);
527	__count_vm_events(PGFREE, 1 << order);
528	free_one_page(page_zone(page), page, order);
529	local_irq_restore(flags);
530}
531
532/*
533 * permit the bootmem allocator to evade page validation on high-order frees
534 */
535void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
536{
537	if (order == 0) {
538		__ClearPageReserved(page);
539		set_page_count(page, 0);
540		set_page_refcounted(page);
541		__free_page(page);
542	} else {
543		int loop;
544
545		prefetchw(page);
546		for (loop = 0; loop < BITS_PER_LONG; loop++) {
547			struct page *p = &page[loop];
548
549			if (loop + 1 < BITS_PER_LONG)
550				prefetchw(p + 1);
551			__ClearPageReserved(p);
552			set_page_count(p, 0);
553		}
554
555		set_page_refcounted(page);
556		__free_pages(page, order);
557	}
558}
559
560
561/*
562 * The order of subdivision here is critical for the IO subsystem.
563 * Please do not alter this order without good reasons and regression
564 * testing. Specifically, as large blocks of memory are subdivided,
565 * the order in which smaller blocks are delivered depends on the order
566 * they're subdivided in this function. This is the primary factor
567 * influencing the order in which pages are delivered to the IO
568 * subsystem according to empirical testing, and this is also justified
569 * by considering the behavior of a buddy system containing a single
570 * large block of memory acted on by a series of small allocations.
571 * This behavior is a critical factor in sglist merging's success.
572 *
573 * -- wli
574 */
575static inline void expand(struct zone *zone, struct page *page,
576 	int low, int high, struct free_area *area)
577{
578	unsigned long size = 1 << high;
579
580	while (high > low) {
581		area--;
582		high--;
583		size >>= 1;
584		VM_BUG_ON(bad_range(zone, &page[size]));
585		list_add(&page[size].lru, &area->free_list);
586		area->nr_free++;
587		set_page_order(&page[size], high);
588	}
589}
590
591/*
592 * This page is about to be returned from the page allocator
593 */
594static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
595{
596	if (unlikely(page_mapcount(page) |
597		(page->mapping != NULL)  |
598		(page_count(page) != 0)  |
599		(page->flags & (
600			1 << PG_lru	|
601			1 << PG_private	|
602			1 << PG_locked	|
603			1 << PG_active	|
604			1 << PG_dirty	|
605			1 << PG_reclaim	|
606			1 << PG_slab    |
607			1 << PG_swapcache |
608			1 << PG_writeback |
609			1 << PG_reserved |
610			1 << PG_buddy ))))
611		bad_page(page);
612
613	/*
614	 * For now, we report if PG_reserved was found set, but do not
615	 * clear it, and do not allocate the page: as a safety net.
616	 */
617	if (PageReserved(page))
618		return 1;
619
620	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
621			1 << PG_referenced | 1 << PG_arch_1 |
622			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
623	set_page_private(page, 0);
624	set_page_refcounted(page);
625
626	arch_alloc_page(page, order);
627	kernel_map_pages(page, 1 << order, 1);
628
629	if (gfp_flags & __GFP_ZERO)
630		prep_zero_page(page, order, gfp_flags);
631
632	if (order && (gfp_flags & __GFP_COMP))
633		prep_compound_page(page, order);
634
635	return 0;
636}
637
638/*
639 * Do the hard work of removing an element from the buddy allocator.
640 * Call me with the zone->lock already held.
641 */
642static struct page *__rmqueue(struct zone *zone, unsigned int order)
643{
644	struct free_area * area;
645	unsigned int current_order;
646	struct page *page;
647
648	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
649		area = zone->free_area + current_order;
650		if (list_empty(&area->free_list))
651			continue;
652
653		page = list_entry(area->free_list.next, struct page, lru);
654		list_del(&page->lru);
655		rmv_page_order(page);
656		area->nr_free--;
657		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658		expand(zone, page, order, current_order, area);
659		return page;
660	}
661
662	return NULL;
663}
664
665/*
666 * Obtain a specified number of elements from the buddy allocator, all under
667 * a single hold of the lock, for efficiency.  Add them to the supplied list.
668 * Returns the number of new pages which were placed at *list.
669 */
670static int rmqueue_bulk(struct zone *zone, unsigned int order,
671			unsigned long count, struct list_head *list)
672{
673	int i;
674
675	spin_lock(&zone->lock);
676	for (i = 0; i < count; ++i) {
677		struct page *page = __rmqueue(zone, order);
678		if (unlikely(page == NULL))
679			break;
680		list_add_tail(&page->lru, list);
681	}
682	spin_unlock(&zone->lock);
683	return i;
684}
685
686#ifdef CONFIG_NUMA
687/*
688 * Called from the vmstat counter updater to drain pagesets of this
689 * currently executing processor on remote nodes after they have
690 * expired.
691 *
692 * Note that this function must be called with the thread pinned to
693 * a single processor.
694 */
695void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
696{
697	unsigned long flags;
698	int to_drain;
699
700	local_irq_save(flags);
701	if (pcp->count >= pcp->batch)
702		to_drain = pcp->batch;
703	else
704		to_drain = pcp->count;
705	free_pages_bulk(zone, to_drain, &pcp->list, 0);
706	pcp->count -= to_drain;
707	local_irq_restore(flags);
708}
709#endif
710
711static void __drain_pages(unsigned int cpu)
712{
713	unsigned long flags;
714	struct zone *zone;
715	int i;
716
717	for_each_zone(zone) {
718		struct per_cpu_pageset *pset;
719
720		if (!populated_zone(zone))
721			continue;
722
723		pset = zone_pcp(zone, cpu);
724		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
725			struct per_cpu_pages *pcp;
726
727			pcp = &pset->pcp[i];
728			local_irq_save(flags);
729			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
730			pcp->count = 0;
731			local_irq_restore(flags);
732		}
733	}
734}
735
736#ifdef CONFIG_PM
737
738void mark_free_pages(struct zone *zone)
739{
740	unsigned long pfn, max_zone_pfn;
741	unsigned long flags;
742	int order;
743	struct list_head *curr;
744
745	if (!zone->spanned_pages)
746		return;
747
748	spin_lock_irqsave(&zone->lock, flags);
749
750	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
751	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
752		if (pfn_valid(pfn)) {
753			struct page *page = pfn_to_page(pfn);
754
755			if (!swsusp_page_is_forbidden(page))
756				swsusp_unset_page_free(page);
757		}
758
759	for (order = MAX_ORDER - 1; order >= 0; --order)
760		list_for_each(curr, &zone->free_area[order].free_list) {
761			unsigned long i;
762
763			pfn = page_to_pfn(list_entry(curr, struct page, lru));
764			for (i = 0; i < (1UL << order); i++)
765				swsusp_set_page_free(pfn_to_page(pfn + i));
766		}
767
768	spin_unlock_irqrestore(&zone->lock, flags);
769}
770
771/*
772 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
773 */
774void drain_local_pages(void)
775{
776	unsigned long flags;
777
778	local_irq_save(flags);
779	__drain_pages(smp_processor_id());
780	local_irq_restore(flags);
781}
782#endif /* CONFIG_PM */
783
784/*
785 * Free a 0-order page
786 */
787static void fastcall free_hot_cold_page(struct page *page, int cold)
788{
789	struct zone *zone = page_zone(page);
790	struct per_cpu_pages *pcp;
791	unsigned long flags;
792
793	if (PageAnon(page))
794		page->mapping = NULL;
795	if (free_pages_check(page))
796		return;
797
798	if (!PageHighMem(page))
799		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
800	arch_free_page(page, 0);
801	kernel_map_pages(page, 1, 0);
802
803	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
804	local_irq_save(flags);
805	__count_vm_event(PGFREE);
806	list_add(&page->lru, &pcp->list);
807	pcp->count++;
808	if (pcp->count >= pcp->high) {
809		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
810		pcp->count -= pcp->batch;
811	}
812	local_irq_restore(flags);
813	put_cpu();
814}
815
816void fastcall free_hot_page(struct page *page)
817{
818	free_hot_cold_page(page, 0);
819}
820
821void fastcall free_cold_page(struct page *page)
822{
823	free_hot_cold_page(page, 1);
824}
825
826/*
827 * split_page takes a non-compound higher-order page, and splits it into
828 * n (1<<order) sub-pages: page[0..n]
829 * Each sub-page must be freed individually.
830 *
831 * Note: this is probably too low level an operation for use in drivers.
832 * Please consult with lkml before using this in your driver.
833 */
834void split_page(struct page *page, unsigned int order)
835{
836	int i;
837
838	VM_BUG_ON(PageCompound(page));
839	VM_BUG_ON(!page_count(page));
840	for (i = 1; i < (1 << order); i++)
841		set_page_refcounted(page + i);
842}
843
844/*
845 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
846 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
847 * or two.
848 */
849static struct page *buffered_rmqueue(struct zonelist *zonelist,
850			struct zone *zone, int order, gfp_t gfp_flags)
851{
852	unsigned long flags;
853	struct page *page;
854	int cold = !!(gfp_flags & __GFP_COLD);
855	int cpu;
856
857again:
858	cpu  = get_cpu();
859	if (likely(order == 0)) {
860		struct per_cpu_pages *pcp;
861
862		pcp = &zone_pcp(zone, cpu)->pcp[cold];
863		local_irq_save(flags);
864		if (!pcp->count) {
865			pcp->count = rmqueue_bulk(zone, 0,
866						pcp->batch, &pcp->list);
867			if (unlikely(!pcp->count))
868				goto failed;
869		}
870		page = list_entry(pcp->list.next, struct page, lru);
871		list_del(&page->lru);
872		pcp->count--;
873	} else {
874		spin_lock_irqsave(&zone->lock, flags);
875		page = __rmqueue(zone, order);
876		spin_unlock(&zone->lock);
877		if (!page)
878			goto failed;
879	}
880
881	__count_zone_vm_events(PGALLOC, zone, 1 << order);
882	zone_statistics(zonelist, zone);
883	local_irq_restore(flags);
884	put_cpu();
885
886	VM_BUG_ON(bad_range(zone, page));
887	if (prep_new_page(page, order, gfp_flags))
888		goto again;
889	return page;
890
891failed:
892	local_irq_restore(flags);
893	put_cpu();
894	return NULL;
895}
896
897#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
898#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
899#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
900#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
901#define ALLOC_HARDER		0x10 /* try to alloc harder */
902#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
903#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
904
905#ifdef CONFIG_FAIL_PAGE_ALLOC
906
907static struct fail_page_alloc_attr {
908	struct fault_attr attr;
909
910	u32 ignore_gfp_highmem;
911	u32 ignore_gfp_wait;
912	u32 min_order;
913
914#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
915
916	struct dentry *ignore_gfp_highmem_file;
917	struct dentry *ignore_gfp_wait_file;
918	struct dentry *min_order_file;
919
920#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
921
922} fail_page_alloc = {
923	.attr = FAULT_ATTR_INITIALIZER,
924	.ignore_gfp_wait = 1,
925	.ignore_gfp_highmem = 1,
926	.min_order = 1,
927};
928
929static int __init setup_fail_page_alloc(char *str)
930{
931	return setup_fault_attr(&fail_page_alloc.attr, str);
932}
933__setup("fail_page_alloc=", setup_fail_page_alloc);
934
935static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
936{
937	if (order < fail_page_alloc.min_order)
938		return 0;
939	if (gfp_mask & __GFP_NOFAIL)
940		return 0;
941	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
942		return 0;
943	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
944		return 0;
945
946	return should_fail(&fail_page_alloc.attr, 1 << order);
947}
948
949#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
950
951static int __init fail_page_alloc_debugfs(void)
952{
953	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
954	struct dentry *dir;
955	int err;
956
957	err = init_fault_attr_dentries(&fail_page_alloc.attr,
958				       "fail_page_alloc");
959	if (err)
960		return err;
961	dir = fail_page_alloc.attr.dentries.dir;
962
963	fail_page_alloc.ignore_gfp_wait_file =
964		debugfs_create_bool("ignore-gfp-wait", mode, dir,
965				      &fail_page_alloc.ignore_gfp_wait);
966
967	fail_page_alloc.ignore_gfp_highmem_file =
968		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
969				      &fail_page_alloc.ignore_gfp_highmem);
970	fail_page_alloc.min_order_file =
971		debugfs_create_u32("min-order", mode, dir,
972				   &fail_page_alloc.min_order);
973
974	if (!fail_page_alloc.ignore_gfp_wait_file ||
975            !fail_page_alloc.ignore_gfp_highmem_file ||
976            !fail_page_alloc.min_order_file) {
977		err = -ENOMEM;
978		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
979		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
980		debugfs_remove(fail_page_alloc.min_order_file);
981		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
982	}
983
984	return err;
985}
986
987late_initcall(fail_page_alloc_debugfs);
988
989#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
990
991#else /* CONFIG_FAIL_PAGE_ALLOC */
992
993static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
994{
995	return 0;
996}
997
998#endif /* CONFIG_FAIL_PAGE_ALLOC */
999
1000/*
1001 * Return 1 if free pages are above 'mark'. This takes into account the order
1002 * of the allocation.
1003 */
1004int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1005		      int classzone_idx, int alloc_flags)
1006{
1007	/* free_pages my go negative - that's OK */
1008	long min = mark;
1009	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1010	int o;
1011
1012	if (alloc_flags & ALLOC_HIGH)
1013		min -= min / 2;
1014	if (alloc_flags & ALLOC_HARDER)
1015		min -= min / 4;
1016
1017	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1018		return 0;
1019	for (o = 0; o < order; o++) {
1020		/* At the next order, this order's pages become unavailable */
1021		free_pages -= z->free_area[o].nr_free << o;
1022
1023		/* Require fewer higher order pages to be free */
1024		min >>= 1;
1025
1026		if (free_pages <= min)
1027			return 0;
1028	}
1029	return 1;
1030}
1031
1032#ifdef CONFIG_NUMA
1033/*
1034 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1035 * skip over zones that are not allowed by the cpuset, or that have
1036 * been recently (in last second) found to be nearly full.  See further
1037 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1038 * that have to skip over alot of full or unallowed zones.
1039 *
1040 * If the zonelist cache is present in the passed in zonelist, then
1041 * returns a pointer to the allowed node mask (either the current
1042 * tasks mems_allowed, or node_online_map.)
1043 *
1044 * If the zonelist cache is not available for this zonelist, does
1045 * nothing and returns NULL.
1046 *
1047 * If the fullzones BITMAP in the zonelist cache is stale (more than
1048 * a second since last zap'd) then we zap it out (clear its bits.)
1049 *
1050 * We hold off even calling zlc_setup, until after we've checked the
1051 * first zone in the zonelist, on the theory that most allocations will
1052 * be satisfied from that first zone, so best to examine that zone as
1053 * quickly as we can.
1054 */
1055static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1056{
1057	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1058	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1059
1060	zlc = zonelist->zlcache_ptr;
1061	if (!zlc)
1062		return NULL;
1063
1064	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1065		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1066		zlc->last_full_zap = jiffies;
1067	}
1068
1069	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1070					&cpuset_current_mems_allowed :
1071					&node_online_map;
1072	return allowednodes;
1073}
1074
1075/*
1076 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1077 * if it is worth looking at further for free memory:
1078 *  1) Check that the zone isn't thought to be full (doesn't have its
1079 *     bit set in the zonelist_cache fullzones BITMAP).
1080 *  2) Check that the zones node (obtained from the zonelist_cache
1081 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1082 * Return true (non-zero) if zone is worth looking at further, or
1083 * else return false (zero) if it is not.
1084 *
1085 * This check -ignores- the distinction between various watermarks,
1086 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1087 * found to be full for any variation of these watermarks, it will
1088 * be considered full for up to one second by all requests, unless
1089 * we are so low on memory on all allowed nodes that we are forced
1090 * into the second scan of the zonelist.
1091 *
1092 * In the second scan we ignore this zonelist cache and exactly
1093 * apply the watermarks to all zones, even it is slower to do so.
1094 * We are low on memory in the second scan, and should leave no stone
1095 * unturned looking for a free page.
1096 */
1097static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1098						nodemask_t *allowednodes)
1099{
1100	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1101	int i;				/* index of *z in zonelist zones */
1102	int n;				/* node that zone *z is on */
1103
1104	zlc = zonelist->zlcache_ptr;
1105	if (!zlc)
1106		return 1;
1107
1108	i = z - zonelist->zones;
1109	n = zlc->z_to_n[i];
1110
1111	/* This zone is worth trying if it is allowed but not full */
1112	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1113}
1114
1115/*
1116 * Given 'z' scanning a zonelist, set the corresponding bit in
1117 * zlc->fullzones, so that subsequent attempts to allocate a page
1118 * from that zone don't waste time re-examining it.
1119 */
1120static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1121{
1122	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1123	int i;				/* index of *z in zonelist zones */
1124
1125	zlc = zonelist->zlcache_ptr;
1126	if (!zlc)
1127		return;
1128
1129	i = z - zonelist->zones;
1130
1131	set_bit(i, zlc->fullzones);
1132}
1133
1134#else	/* CONFIG_NUMA */
1135
1136static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1137{
1138	return NULL;
1139}
1140
1141static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1142				nodemask_t *allowednodes)
1143{
1144	return 1;
1145}
1146
1147static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1148{
1149}
1150#endif	/* CONFIG_NUMA */
1151
1152/*
1153 * get_page_from_freelist goes through the zonelist trying to allocate
1154 * a page.
1155 */
1156static struct page *
1157get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1158		struct zonelist *zonelist, int alloc_flags)
1159{
1160	struct zone **z;
1161	struct page *page = NULL;
1162	int classzone_idx = zone_idx(zonelist->zones[0]);
1163	struct zone *zone;
1164	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1165	int zlc_active = 0;		/* set if using zonelist_cache */
1166	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1167
1168zonelist_scan:
1169	/*
1170	 * Scan zonelist, looking for a zone with enough free.
1171	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1172	 */
1173	z = zonelist->zones;
1174
1175	do {
1176		if (NUMA_BUILD && zlc_active &&
1177			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1178				continue;
1179		zone = *z;
1180		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1181			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1182				break;
1183		if ((alloc_flags & ALLOC_CPUSET) &&
1184			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1185				goto try_next_zone;
1186
1187		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1188			unsigned long mark;
1189			if (alloc_flags & ALLOC_WMARK_MIN)
1190				mark = zone->pages_min;
1191			else if (alloc_flags & ALLOC_WMARK_LOW)
1192				mark = zone->pages_low;
1193			else
1194				mark = zone->pages_high;
1195			if (!zone_watermark_ok(zone, order, mark,
1196				    classzone_idx, alloc_flags)) {
1197				if (!zone_reclaim_mode ||
1198				    !zone_reclaim(zone, gfp_mask, order))
1199					goto this_zone_full;
1200			}
1201		}
1202
1203		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1204		if (page)
1205			break;
1206this_zone_full:
1207		if (NUMA_BUILD)
1208			zlc_mark_zone_full(zonelist, z);
1209try_next_zone:
1210		if (NUMA_BUILD && !did_zlc_setup) {
1211			/* we do zlc_setup after the first zone is tried */
1212			allowednodes = zlc_setup(zonelist, alloc_flags);
1213			zlc_active = 1;
1214			did_zlc_setup = 1;
1215		}
1216	} while (*(++z) != NULL);
1217
1218	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1219		/* Disable zlc cache for second zonelist scan */
1220		zlc_active = 0;
1221		goto zonelist_scan;
1222	}
1223	return page;
1224}
1225
1226/*
1227 * This is the 'heart' of the zoned buddy allocator.
1228 */
1229struct page * fastcall
1230__alloc_pages(gfp_t gfp_mask, unsigned int order,
1231		struct zonelist *zonelist)
1232{
1233	const gfp_t wait = gfp_mask & __GFP_WAIT;
1234	struct zone **z;
1235	struct page *page;
1236	struct reclaim_state reclaim_state;
1237	struct task_struct *p = current;
1238	int do_retry;
1239	int alloc_flags;
1240	int did_some_progress;
1241
1242	might_sleep_if(wait);
1243
1244	if (should_fail_alloc_page(gfp_mask, order))
1245		return NULL;
1246
1247restart:
1248	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1249
1250	if (unlikely(*z == NULL)) {
1251		/* Should this ever happen?? */
1252		return NULL;
1253	}
1254
1255	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1256				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1257	if (page)
1258		goto got_pg;
1259
1260	/*
1261	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1262	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1263	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1264	 * using a larger set of nodes after it has established that the
1265	 * allowed per node queues are empty and that nodes are
1266	 * over allocated.
1267	 */
1268	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1269		goto nopage;
1270
1271	for (z = zonelist->zones; *z; z++)
1272		wakeup_kswapd(*z, order);
1273
1274	/*
1275	 * OK, we're below the kswapd watermark and have kicked background
1276	 * reclaim. Now things get more complex, so set up alloc_flags according
1277	 * to how we want to proceed.
1278	 *
1279	 * The caller may dip into page reserves a bit more if the caller
1280	 * cannot run direct reclaim, or if the caller has realtime scheduling
1281	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1282	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1283	 */
1284	alloc_flags = ALLOC_WMARK_MIN;
1285	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1286		alloc_flags |= ALLOC_HARDER;
1287	if (gfp_mask & __GFP_HIGH)
1288		alloc_flags |= ALLOC_HIGH;
1289	if (wait)
1290		alloc_flags |= ALLOC_CPUSET;
1291
1292	/*
1293	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1294	 * coming from realtime tasks go deeper into reserves.
1295	 *
1296	 * This is the last chance, in general, before the goto nopage.
1297	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1298	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1299	 */
1300	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1301	if (page)
1302		goto got_pg;
1303
1304	/* This allocation should allow future memory freeing. */
1305
1306rebalance:
1307	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1308			&& !in_interrupt()) {
1309		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1310nofail_alloc:
1311			/* go through the zonelist yet again, ignoring mins */
1312			page = get_page_from_freelist(gfp_mask, order,
1313				zonelist, ALLOC_NO_WATERMARKS);
1314			if (page)
1315				goto got_pg;
1316			if (gfp_mask & __GFP_NOFAIL) {
1317				congestion_wait(WRITE, HZ/50);
1318				goto nofail_alloc;
1319			}
1320		}
1321		goto nopage;
1322	}
1323
1324	/* Atomic allocations - we can't balance anything */
1325	if (!wait)
1326		goto nopage;
1327
1328	cond_resched();
1329
1330	/* We now go into synchronous reclaim */
1331	cpuset_memory_pressure_bump();
1332	p->flags |= PF_MEMALLOC;
1333	reclaim_state.reclaimed_slab = 0;
1334	p->reclaim_state = &reclaim_state;
1335
1336	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1337
1338	p->reclaim_state = NULL;
1339	p->flags &= ~PF_MEMALLOC;
1340
1341	cond_resched();
1342
1343	if (likely(did_some_progress)) {
1344		page = get_page_from_freelist(gfp_mask, order,
1345						zonelist, alloc_flags);
1346		if (page)
1347			goto got_pg;
1348	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1349		/*
1350		 * Go through the zonelist yet one more time, keep
1351		 * very high watermark here, this is only to catch
1352		 * a parallel oom killing, we must fail if we're still
1353		 * under heavy pressure.
1354		 */
1355		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1356				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1357		if (page)
1358			goto got_pg;
1359
1360		out_of_memory(zonelist, gfp_mask, order);
1361		goto restart;
1362	}
1363
1364	/*
1365	 * Don't let big-order allocations loop unless the caller explicitly
1366	 * requests that.  Wait for some write requests to complete then retry.
1367	 *
1368	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1369	 * <= 3, but that may not be true in other implementations.
1370	 */
1371	do_retry = 0;
1372	if (!(gfp_mask & __GFP_NORETRY)) {
1373		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1374						(gfp_mask & __GFP_REPEAT))
1375			do_retry = 1;
1376		if (gfp_mask & __GFP_NOFAIL)
1377			do_retry = 1;
1378	}
1379	if (do_retry) {
1380		congestion_wait(WRITE, HZ/50);
1381		goto rebalance;
1382	}
1383
1384nopage:
1385	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1386		printk(KERN_WARNING "%s: page allocation failure."
1387			" order:%d, mode:0x%x\n",
1388			p->comm, order, gfp_mask);
1389		dump_stack();
1390		show_mem();
1391	}
1392got_pg:
1393	return page;
1394}
1395
1396EXPORT_SYMBOL(__alloc_pages);
1397
1398/*
1399 * Common helper functions.
1400 */
1401fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1402{
1403	struct page * page;
1404	page = alloc_pages(gfp_mask, order);
1405	if (!page)
1406		return 0;
1407	return (unsigned long) page_address(page);
1408}
1409
1410EXPORT_SYMBOL(__get_free_pages);
1411
1412fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1413{
1414	struct page * page;
1415
1416	/*
1417	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1418	 * a highmem page
1419	 */
1420	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1421
1422	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1423	if (page)
1424		return (unsigned long) page_address(page);
1425	return 0;
1426}
1427
1428EXPORT_SYMBOL(get_zeroed_page);
1429
1430void __pagevec_free(struct pagevec *pvec)
1431{
1432	int i = pagevec_count(pvec);
1433
1434	while (--i >= 0)
1435		free_hot_cold_page(pvec->pages[i], pvec->cold);
1436}
1437
1438fastcall void __free_pages(struct page *page, unsigned int order)
1439{
1440	if (put_page_testzero(page)) {
1441		if (order == 0)
1442			free_hot_page(page);
1443		else
1444			__free_pages_ok(page, order);
1445	}
1446}
1447
1448EXPORT_SYMBOL(__free_pages);
1449
1450fastcall void free_pages(unsigned long addr, unsigned int order)
1451{
1452	if (addr != 0) {
1453		VM_BUG_ON(!virt_addr_valid((void *)addr));
1454		__free_pages(virt_to_page((void *)addr), order);
1455	}
1456}
1457
1458EXPORT_SYMBOL(free_pages);
1459
1460static unsigned int nr_free_zone_pages(int offset)
1461{
1462	/* Just pick one node, since fallback list is circular */
1463	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1464	unsigned int sum = 0;
1465
1466	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1467	struct zone **zonep = zonelist->zones;
1468	struct zone *zone;
1469
1470	for (zone = *zonep++; zone; zone = *zonep++) {
1471		unsigned long size = zone->present_pages;
1472		unsigned long high = zone->pages_high;
1473		if (size > high)
1474			sum += size - high;
1475	}
1476
1477	return sum;
1478}
1479
1480/*
1481 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1482 */
1483unsigned int nr_free_buffer_pages(void)
1484{
1485	return nr_free_zone_pages(gfp_zone(GFP_USER));
1486}
1487
1488/*
1489 * Amount of free RAM allocatable within all zones
1490 */
1491unsigned int nr_free_pagecache_pages(void)
1492{
1493	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1494}
1495
1496static inline void show_node(struct zone *zone)
1497{
1498	if (NUMA_BUILD)
1499		printk("Node %d ", zone_to_nid(zone));
1500}
1501
1502void si_meminfo(struct sysinfo *val)
1503{
1504	val->totalram = totalram_pages;
1505	val->sharedram = 0;
1506	val->freeram = global_page_state(NR_FREE_PAGES);
1507	val->bufferram = nr_blockdev_pages();
1508	val->totalhigh = totalhigh_pages;
1509	val->freehigh = nr_free_highpages();
1510	val->mem_unit = PAGE_SIZE;
1511}
1512
1513EXPORT_SYMBOL(si_meminfo);
1514
1515#ifdef CONFIG_NUMA
1516void si_meminfo_node(struct sysinfo *val, int nid)
1517{
1518	pg_data_t *pgdat = NODE_DATA(nid);
1519
1520	val->totalram = pgdat->node_present_pages;
1521	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1522#ifdef CONFIG_HIGHMEM
1523	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1524	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1525			NR_FREE_PAGES);
1526#else
1527	val->totalhigh = 0;
1528	val->freehigh = 0;
1529#endif
1530	val->mem_unit = PAGE_SIZE;
1531}
1532#endif
1533
1534#define K(x) ((x) << (PAGE_SHIFT-10))
1535
1536/*
1537 * Show free area list (used inside shift_scroll-lock stuff)
1538 * We also calculate the percentage fragmentation. We do this by counting the
1539 * memory on each free list with the exception of the first item on the list.
1540 */
1541void show_free_areas(void)
1542{
1543	int cpu;
1544	struct zone *zone;
1545
1546	for_each_zone(zone) {
1547		if (!populated_zone(zone))
1548			continue;
1549
1550		show_node(zone);
1551		printk("%s per-cpu:\n", zone->name);
1552
1553		for_each_online_cpu(cpu) {
1554			struct per_cpu_pageset *pageset;
1555
1556			pageset = zone_pcp(zone, cpu);
1557
1558			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1559			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1560			       cpu, pageset->pcp[0].high,
1561			       pageset->pcp[0].batch, pageset->pcp[0].count,
1562			       pageset->pcp[1].high, pageset->pcp[1].batch,
1563			       pageset->pcp[1].count);
1564		}
1565	}
1566
1567	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1568		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1569		global_page_state(NR_ACTIVE),
1570		global_page_state(NR_INACTIVE),
1571		global_page_state(NR_FILE_DIRTY),
1572		global_page_state(NR_WRITEBACK),
1573		global_page_state(NR_UNSTABLE_NFS),
1574		global_page_state(NR_FREE_PAGES),
1575		global_page_state(NR_SLAB_RECLAIMABLE) +
1576			global_page_state(NR_SLAB_UNRECLAIMABLE),
1577		global_page_state(NR_FILE_MAPPED),
1578		global_page_state(NR_PAGETABLE),
1579		global_page_state(NR_BOUNCE));
1580
1581	for_each_zone(zone) {
1582		int i;
1583
1584		if (!populated_zone(zone))
1585			continue;
1586
1587		show_node(zone);
1588		printk("%s"
1589			" free:%lukB"
1590			" min:%lukB"
1591			" low:%lukB"
1592			" high:%lukB"
1593			" active:%lukB"
1594			" inactive:%lukB"
1595			" present:%lukB"
1596			" pages_scanned:%lu"
1597			" all_unreclaimable? %s"
1598			"\n",
1599			zone->name,
1600			K(zone_page_state(zone, NR_FREE_PAGES)),
1601			K(zone->pages_min),
1602			K(zone->pages_low),
1603			K(zone->pages_high),
1604			K(zone_page_state(zone, NR_ACTIVE)),
1605			K(zone_page_state(zone, NR_INACTIVE)),
1606			K(zone->present_pages),
1607			zone->pages_scanned,
1608			(zone->all_unreclaimable ? "yes" : "no")
1609			);
1610		printk("lowmem_reserve[]:");
1611		for (i = 0; i < MAX_NR_ZONES; i++)
1612			printk(" %lu", zone->lowmem_reserve[i]);
1613		printk("\n");
1614	}
1615
1616	for_each_zone(zone) {
1617 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1618
1619		if (!populated_zone(zone))
1620			continue;
1621
1622		show_node(zone);
1623		printk("%s: ", zone->name);
1624
1625		spin_lock_irqsave(&zone->lock, flags);
1626		for (order = 0; order < MAX_ORDER; order++) {
1627			nr[order] = zone->free_area[order].nr_free;
1628			total += nr[order] << order;
1629		}
1630		spin_unlock_irqrestore(&zone->lock, flags);
1631		for (order = 0; order < MAX_ORDER; order++)
1632			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1633		printk("= %lukB\n", K(total));
1634	}
1635
1636	show_swap_cache_info();
1637}
1638
1639/*
1640 * Builds allocation fallback zone lists.
1641 *
1642 * Add all populated zones of a node to the zonelist.
1643 */
1644static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1645				int nr_zones, enum zone_type zone_type)
1646{
1647	struct zone *zone;
1648
1649	BUG_ON(zone_type >= MAX_NR_ZONES);
1650	zone_type++;
1651
1652	do {
1653		zone_type--;
1654		zone = pgdat->node_zones + zone_type;
1655		if (populated_zone(zone)) {
1656			zonelist->zones[nr_zones++] = zone;
1657			check_highest_zone(zone_type);
1658		}
1659
1660	} while (zone_type);
1661	return nr_zones;
1662}
1663
1664
1665/*
1666 *  zonelist_order:
1667 *  0 = automatic detection of better ordering.
1668 *  1 = order by ([node] distance, -zonetype)
1669 *  2 = order by (-zonetype, [node] distance)
1670 *
1671 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1672 *  the same zonelist. So only NUMA can configure this param.
1673 */
1674#define ZONELIST_ORDER_DEFAULT  0
1675#define ZONELIST_ORDER_NODE     1
1676#define ZONELIST_ORDER_ZONE     2
1677
1678/* zonelist order in the kernel.
1679 * set_zonelist_order() will set this to NODE or ZONE.
1680 */
1681static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1682static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1683
1684
1685#ifdef CONFIG_NUMA
1686/* The value user specified ....changed by config */
1687static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1688/* string for sysctl */
1689#define NUMA_ZONELIST_ORDER_LEN	16
1690char numa_zonelist_order[16] = "default";
1691
1692/*
1693 * interface for configure zonelist ordering.
1694 * command line option "numa_zonelist_order"
1695 *	= "[dD]efault	- default, automatic configuration.
1696 *	= "[nN]ode 	- order by node locality, then by zone within node
1697 *	= "[zZ]one      - order by zone, then by locality within zone
1698 */
1699
1700static int __parse_numa_zonelist_order(char *s)
1701{
1702	if (*s == 'd' || *s == 'D') {
1703		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1704	} else if (*s == 'n' || *s == 'N') {
1705		user_zonelist_order = ZONELIST_ORDER_NODE;
1706	} else if (*s == 'z' || *s == 'Z') {
1707		user_zonelist_order = ZONELIST_ORDER_ZONE;
1708	} else {
1709		printk(KERN_WARNING
1710			"Ignoring invalid numa_zonelist_order value:  "
1711			"%s\n", s);
1712		return -EINVAL;
1713	}
1714	return 0;
1715}
1716
1717static __init int setup_numa_zonelist_order(char *s)
1718{
1719	if (s)
1720		return __parse_numa_zonelist_order(s);
1721	return 0;
1722}
1723early_param("numa_zonelist_order", setup_numa_zonelist_order);
1724
1725/*
1726 * sysctl handler for numa_zonelist_order
1727 */
1728int numa_zonelist_order_handler(ctl_table *table, int write,
1729		struct file *file, void __user *buffer, size_t *length,
1730		loff_t *ppos)
1731{
1732	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1733	int ret;
1734
1735	if (write)
1736		strncpy(saved_string, (char*)table->data,
1737			NUMA_ZONELIST_ORDER_LEN);
1738	ret = proc_dostring(table, write, file, buffer, length, ppos);
1739	if (ret)
1740		return ret;
1741	if (write) {
1742		int oldval = user_zonelist_order;
1743		if (__parse_numa_zonelist_order((char*)table->data)) {
1744			/*
1745			 * bogus value.  restore saved string
1746			 */
1747			strncpy((char*)table->data, saved_string,
1748				NUMA_ZONELIST_ORDER_LEN);
1749			user_zonelist_order = oldval;
1750		} else if (oldval != user_zonelist_order)
1751			build_all_zonelists();
1752	}
1753	return 0;
1754}
1755
1756
1757#define MAX_NODE_LOAD (num_online_nodes())
1758static int node_load[MAX_NUMNODES];
1759
1760/**
1761 * find_next_best_node - find the next node that should appear in a given node's fallback list
1762 * @node: node whose fallback list we're appending
1763 * @used_node_mask: nodemask_t of already used nodes
1764 *
1765 * We use a number of factors to determine which is the next node that should
1766 * appear on a given node's fallback list.  The node should not have appeared
1767 * already in @node's fallback list, and it should be the next closest node
1768 * according to the distance array (which contains arbitrary distance values
1769 * from each node to each node in the system), and should also prefer nodes
1770 * with no CPUs, since presumably they'll have very little allocation pressure
1771 * on them otherwise.
1772 * It returns -1 if no node is found.
1773 */
1774static int find_next_best_node(int node, nodemask_t *used_node_mask)
1775{
1776	int n, val;
1777	int min_val = INT_MAX;
1778	int best_node = -1;
1779
1780	/* Use the local node if we haven't already */
1781	if (!node_isset(node, *used_node_mask)) {
1782		node_set(node, *used_node_mask);
1783		return node;
1784	}
1785
1786	for_each_online_node(n) {
1787		cpumask_t tmp;
1788
1789		/* Don't want a node to appear more than once */
1790		if (node_isset(n, *used_node_mask))
1791			continue;
1792
1793		/* Use the distance array to find the distance */
1794		val = node_distance(node, n);
1795
1796		/* Penalize nodes under us ("prefer the next node") */
1797		val += (n < node);
1798
1799		/* Give preference to headless and unused nodes */
1800		tmp = node_to_cpumask(n);
1801		if (!cpus_empty(tmp))
1802			val += PENALTY_FOR_NODE_WITH_CPUS;
1803
1804		/* Slight preference for less loaded node */
1805		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1806		val += node_load[n];
1807
1808		if (val < min_val) {
1809			min_val = val;
1810			best_node = n;
1811		}
1812	}
1813
1814	if (best_node >= 0)
1815		node_set(best_node, *used_node_mask);
1816
1817	return best_node;
1818}
1819
1820
1821/*
1822 * Build zonelists ordered by node and zones within node.
1823 * This results in maximum locality--normal zone overflows into local
1824 * DMA zone, if any--but risks exhausting DMA zone.
1825 */
1826static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1827{
1828	enum zone_type i;
1829	int j;
1830	struct zonelist *zonelist;
1831
1832	for (i = 0; i < MAX_NR_ZONES; i++) {
1833		zonelist = pgdat->node_zonelists + i;
1834		for (j = 0; zonelist->zones[j] != NULL; j++)
1835			;
1836 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1837		zonelist->zones[j] = NULL;
1838	}
1839}
1840
1841/*
1842 * Build zonelists ordered by zone and nodes within zones.
1843 * This results in conserving DMA zone[s] until all Normal memory is
1844 * exhausted, but results in overflowing to remote node while memory
1845 * may still exist in local DMA zone.
1846 */
1847static int node_order[MAX_NUMNODES];
1848
1849static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1850{
1851	enum zone_type i;
1852	int pos, j, node;
1853	int zone_type;		/* needs to be signed */
1854	struct zone *z;
1855	struct zonelist *zonelist;
1856
1857	for (i = 0; i < MAX_NR_ZONES; i++) {
1858		zonelist = pgdat->node_zonelists + i;
1859		pos = 0;
1860		for (zone_type = i; zone_type >= 0; zone_type--) {
1861			for (j = 0; j < nr_nodes; j++) {
1862				node = node_order[j];
1863				z = &NODE_DATA(node)->node_zones[zone_type];
1864				if (populated_zone(z)) {
1865					zonelist->zones[pos++] = z;
1866					check_highest_zone(zone_type);
1867				}
1868			}
1869		}
1870		zonelist->zones[pos] = NULL;
1871	}
1872}
1873
1874static int default_zonelist_order(void)
1875{
1876	int nid, zone_type;
1877	unsigned long low_kmem_size,total_size;
1878	struct zone *z;
1879	int average_size;
1880	/*
1881         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1882	 * If they are really small and used heavily, the system can fall
1883	 * into OOM very easily.
1884	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1885	 */
1886	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1887	low_kmem_size = 0;
1888	total_size = 0;
1889	for_each_online_node(nid) {
1890		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1891			z = &NODE_DATA(nid)->node_zones[zone_type];
1892			if (populated_zone(z)) {
1893				if (zone_type < ZONE_NORMAL)
1894					low_kmem_size += z->present_pages;
1895				total_size += z->present_pages;
1896			}
1897		}
1898	}
1899	if (!low_kmem_size ||  /* there are no DMA area. */
1900	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1901		return ZONELIST_ORDER_NODE;
1902	/*
1903	 * look into each node's config.
1904  	 * If there is a node whose DMA/DMA32 memory is very big area on
1905 	 * local memory, NODE_ORDER may be suitable.
1906         */
1907	average_size = total_size / (num_online_nodes() + 1);
1908	for_each_online_node(nid) {
1909		low_kmem_size = 0;
1910		total_size = 0;
1911		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1912			z = &NODE_DATA(nid)->node_zones[zone_type];
1913			if (populated_zone(z)) {
1914				if (zone_type < ZONE_NORMAL)
1915					low_kmem_size += z->present_pages;
1916				total_size += z->present_pages;
1917			}
1918		}
1919		if (low_kmem_size &&
1920		    total_size > average_size && /* ignore small node */
1921		    low_kmem_size > total_size * 70/100)
1922			return ZONELIST_ORDER_NODE;
1923	}
1924	return ZONELIST_ORDER_ZONE;
1925}
1926
1927static void set_zonelist_order(void)
1928{
1929	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1930		current_zonelist_order = default_zonelist_order();
1931	else
1932		current_zonelist_order = user_zonelist_order;
1933}
1934
1935static void build_zonelists(pg_data_t *pgdat)
1936{
1937	int j, node, load;
1938	enum zone_type i;
1939	nodemask_t used_mask;
1940	int local_node, prev_node;
1941	struct zonelist *zonelist;
1942	int order = current_zonelist_order;
1943
1944	/* initialize zonelists */
1945	for (i = 0; i < MAX_NR_ZONES; i++) {
1946		zonelist = pgdat->node_zonelists + i;
1947		zonelist->zones[0] = NULL;
1948	}
1949
1950	/* NUMA-aware ordering of nodes */
1951	local_node = pgdat->node_id;
1952	load = num_online_nodes();
1953	prev_node = local_node;
1954	nodes_clear(used_mask);
1955
1956	memset(node_load, 0, sizeof(node_load));
1957	memset(node_order, 0, sizeof(node_order));
1958	j = 0;
1959
1960	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1961		int distance = node_distance(local_node, node);
1962
1963		/*
1964		 * If another node is sufficiently far away then it is better
1965		 * to reclaim pages in a zone before going off node.
1966		 */
1967		if (distance > RECLAIM_DISTANCE)
1968			zone_reclaim_mode = 1;
1969
1970		/*
1971		 * We don't want to pressure a particular node.
1972		 * So adding penalty to the first node in same
1973		 * distance group to make it round-robin.
1974		 */
1975		if (distance != node_distance(local_node, prev_node))
1976			node_load[node] = load;
1977
1978		prev_node = node;
1979		load--;
1980		if (order == ZONELIST_ORDER_NODE)
1981			build_zonelists_in_node_order(pgdat, node);
1982		else
1983			node_order[j++] = node;	/* remember order */
1984	}
1985
1986	if (order == ZONELIST_ORDER_ZONE) {
1987		/* calculate node order -- i.e., DMA last! */
1988		build_zonelists_in_zone_order(pgdat, j);
1989	}
1990}
1991
1992/* Construct the zonelist performance cache - see further mmzone.h */
1993static void build_zonelist_cache(pg_data_t *pgdat)
1994{
1995	int i;
1996
1997	for (i = 0; i < MAX_NR_ZONES; i++) {
1998		struct zonelist *zonelist;
1999		struct zonelist_cache *zlc;
2000		struct zone **z;
2001
2002		zonelist = pgdat->node_zonelists + i;
2003		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2004		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2005		for (z = zonelist->zones; *z; z++)
2006			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2007	}
2008}
2009
2010
2011#else	/* CONFIG_NUMA */
2012
2013static void set_zonelist_order(void)
2014{
2015	current_zonelist_order = ZONELIST_ORDER_ZONE;
2016}
2017
2018static void build_zonelists(pg_data_t *pgdat)
2019{
2020	int node, local_node;
2021	enum zone_type i,j;
2022
2023	local_node = pgdat->node_id;
2024	for (i = 0; i < MAX_NR_ZONES; i++) {
2025		struct zonelist *zonelist;
2026
2027		zonelist = pgdat->node_zonelists + i;
2028
2029 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2030 		/*
2031 		 * Now we build the zonelist so that it contains the zones
2032 		 * of all the other nodes.
2033 		 * We don't want to pressure a particular node, so when
2034 		 * building the zones for node N, we make sure that the
2035 		 * zones coming right after the local ones are those from
2036 		 * node N+1 (modulo N)
2037 		 */
2038		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2039			if (!node_online(node))
2040				continue;
2041			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2042		}
2043		for (node = 0; node < local_node; node++) {
2044			if (!node_online(node))
2045				continue;
2046			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2047		}
2048
2049		zonelist->zones[j] = NULL;
2050	}
2051}
2052
2053/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2054static void build_zonelist_cache(pg_data_t *pgdat)
2055{
2056	int i;
2057
2058	for (i = 0; i < MAX_NR_ZONES; i++)
2059		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2060}
2061
2062#endif	/* CONFIG_NUMA */
2063
2064/* return values int ....just for stop_machine_run() */
2065static int __build_all_zonelists(void *dummy)
2066{
2067	int nid;
2068
2069	for_each_online_node(nid) {
2070		build_zonelists(NODE_DATA(nid));
2071		build_zonelist_cache(NODE_DATA(nid));
2072	}
2073	return 0;
2074}
2075
2076void build_all_zonelists(void)
2077{
2078	set_zonelist_order();
2079
2080	if (system_state == SYSTEM_BOOTING) {
2081		__build_all_zonelists(NULL);
2082		cpuset_init_current_mems_allowed();
2083	} else {
2084		/* we have to stop all cpus to guaranntee there is no user
2085		   of zonelist */
2086		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2087		/* cpuset refresh routine should be here */
2088	}
2089	vm_total_pages = nr_free_pagecache_pages();
2090	printk("Built %i zonelists in %s order.  Total pages: %ld\n",
2091			num_online_nodes(),
2092			zonelist_order_name[current_zonelist_order],
2093			vm_total_pages);
2094#ifdef CONFIG_NUMA
2095	printk("Policy zone: %s\n", zone_names[policy_zone]);
2096#endif
2097}
2098
2099/*
2100 * Helper functions to size the waitqueue hash table.
2101 * Essentially these want to choose hash table sizes sufficiently
2102 * large so that collisions trying to wait on pages are rare.
2103 * But in fact, the number of active page waitqueues on typical
2104 * systems is ridiculously low, less than 200. So this is even
2105 * conservative, even though it seems large.
2106 *
2107 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2108 * waitqueues, i.e. the size of the waitq table given the number of pages.
2109 */
2110#define PAGES_PER_WAITQUEUE	256
2111
2112#ifndef CONFIG_MEMORY_HOTPLUG
2113static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2114{
2115	unsigned long size = 1;
2116
2117	pages /= PAGES_PER_WAITQUEUE;
2118
2119	while (size < pages)
2120		size <<= 1;
2121
2122	/*
2123	 * Once we have dozens or even hundreds of threads sleeping
2124	 * on IO we've got bigger problems than wait queue collision.
2125	 * Limit the size of the wait table to a reasonable size.
2126	 */
2127	size = min(size, 4096UL);
2128
2129	return max(size, 4UL);
2130}
2131#else
2132/*
2133 * A zone's size might be changed by hot-add, so it is not possible to determine
2134 * a suitable size for its wait_table.  So we use the maximum size now.
2135 *
2136 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2137 *
2138 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2139 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2140 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2141 *
2142 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2143 * or more by the traditional way. (See above).  It equals:
2144 *
2145 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2146 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2147 *    powerpc (64K page size)             : =  (32G +16M)byte.
2148 */
2149static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2150{
2151	return 4096UL;
2152}
2153#endif
2154
2155/*
2156 * This is an integer logarithm so that shifts can be used later
2157 * to extract the more random high bits from the multiplicative
2158 * hash function before the remainder is taken.
2159 */
2160static inline unsigned long wait_table_bits(unsigned long size)
2161{
2162	return ffz(~size);
2163}
2164
2165#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2166
2167/*
2168 * Initially all pages are reserved - free ones are freed
2169 * up by free_all_bootmem() once the early boot process is
2170 * done. Non-atomic initialization, single-pass.
2171 */
2172void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2173		unsigned long start_pfn, enum memmap_context context)
2174{
2175	struct page *page;
2176	unsigned long end_pfn = start_pfn + size;
2177	unsigned long pfn;
2178
2179	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2180		/*
2181		 * There can be holes in boot-time mem_map[]s
2182		 * handed to this function.  They do not
2183		 * exist on hotplugged memory.
2184		 */
2185		if (context == MEMMAP_EARLY) {
2186			if (!early_pfn_valid(pfn))
2187				continue;
2188			if (!early_pfn_in_nid(pfn, nid))
2189				continue;
2190		}
2191		page = pfn_to_page(pfn);
2192		set_page_links(page, zone, nid, pfn);
2193		init_page_count(page);
2194		reset_page_mapcount(page);
2195		SetPageReserved(page);
2196		INIT_LIST_HEAD(&page->lru);
2197#ifdef WANT_PAGE_VIRTUAL
2198		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2199		if (!is_highmem_idx(zone))
2200			set_page_address(page, __va(pfn << PAGE_SHIFT));
2201#endif
2202	}
2203}
2204
2205static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2206				struct zone *zone, unsigned long size)
2207{
2208	int order;
2209	for (order = 0; order < MAX_ORDER ; order++) {
2210		INIT_LIST_HEAD(&zone->free_area[order].free_list);
2211		zone->free_area[order].nr_free = 0;
2212	}
2213}
2214
2215#ifndef __HAVE_ARCH_MEMMAP_INIT
2216#define memmap_init(size, nid, zone, start_pfn) \
2217	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2218#endif
2219
2220static int __devinit zone_batchsize(struct zone *zone)
2221{
2222	int batch;
2223
2224	/*
2225	 * The per-cpu-pages pools are set to around 1000th of the
2226	 * size of the zone.  But no more than 1/2 of a meg.
2227	 *
2228	 * OK, so we don't know how big the cache is.  So guess.
2229	 */
2230	batch = zone->present_pages / 1024;
2231	if (batch * PAGE_SIZE > 512 * 1024)
2232		batch = (512 * 1024) / PAGE_SIZE;
2233	batch /= 4;		/* We effectively *= 4 below */
2234	if (batch < 1)
2235		batch = 1;
2236
2237	/*
2238	 * Clamp the batch to a 2^n - 1 value. Having a power
2239	 * of 2 value was found to be more likely to have
2240	 * suboptimal cache aliasing properties in some cases.
2241	 *
2242	 * For example if 2 tasks are alternately allocating
2243	 * batches of pages, one task can end up with a lot
2244	 * of pages of one half of the possible page colors
2245	 * and the other with pages of the other colors.
2246	 */
2247	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2248
2249	return batch;
2250}
2251
2252inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2253{
2254	struct per_cpu_pages *pcp;
2255
2256	memset(p, 0, sizeof(*p));
2257
2258	pcp = &p->pcp[0];		/* hot */
2259	pcp->count = 0;
2260	pcp->high = 6 * batch;
2261	pcp->batch = max(1UL, 1 * batch);
2262	INIT_LIST_HEAD(&pcp->list);
2263
2264	pcp = &p->pcp[1];		/* cold*/
2265	pcp->count = 0;
2266	pcp->high = 2 * batch;
2267	pcp->batch = max(1UL, batch/2);
2268	INIT_LIST_HEAD(&pcp->list);
2269}
2270
2271/*
2272 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2273 * to the value high for the pageset p.
2274 */
2275
2276static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2277				unsigned long high)
2278{
2279	struct per_cpu_pages *pcp;
2280
2281	pcp = &p->pcp[0]; /* hot list */
2282	pcp->high = high;
2283	pcp->batch = max(1UL, high/4);
2284	if ((high/4) > (PAGE_SHIFT * 8))
2285		pcp->batch = PAGE_SHIFT * 8;
2286}
2287
2288
2289#ifdef CONFIG_NUMA
2290/*
2291 * Boot pageset table. One per cpu which is going to be used for all
2292 * zones and all nodes. The parameters will be set in such a way
2293 * that an item put on a list will immediately be handed over to
2294 * the buddy list. This is safe since pageset manipulation is done
2295 * with interrupts disabled.
2296 *
2297 * Some NUMA counter updates may also be caught by the boot pagesets.
2298 *
2299 * The boot_pagesets must be kept even after bootup is complete for
2300 * unused processors and/or zones. They do play a role for bootstrapping
2301 * hotplugged processors.
2302 *
2303 * zoneinfo_show() and maybe other functions do
2304 * not check if the processor is online before following the pageset pointer.
2305 * Other parts of the kernel may not check if the zone is available.
2306 */
2307static struct per_cpu_pageset boot_pageset[NR_CPUS];
2308
2309/*
2310 * Dynamically allocate memory for the
2311 * per cpu pageset array in struct zone.
2312 */
2313static int __cpuinit process_zones(int cpu)
2314{
2315	struct zone *zone, *dzone;
2316
2317	for_each_zone(zone) {
2318
2319		if (!populated_zone(zone))
2320			continue;
2321
2322		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2323					 GFP_KERNEL, cpu_to_node(cpu));
2324		if (!zone_pcp(zone, cpu))
2325			goto bad;
2326
2327		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2328
2329		if (percpu_pagelist_fraction)
2330			setup_pagelist_highmark(zone_pcp(zone, cpu),
2331			 	(zone->present_pages / percpu_pagelist_fraction));
2332	}
2333
2334	return 0;
2335bad:
2336	for_each_zone(dzone) {
2337		if (dzone == zone)
2338			break;
2339		kfree(zone_pcp(dzone, cpu));
2340		zone_pcp(dzone, cpu) = NULL;
2341	}
2342	return -ENOMEM;
2343}
2344
2345static inline void free_zone_pagesets(int cpu)
2346{
2347	struct zone *zone;
2348
2349	for_each_zone(zone) {
2350		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2351
2352		/* Free per_cpu_pageset if it is slab allocated */
2353		if (pset != &boot_pageset[cpu])
2354			kfree(pset);
2355		zone_pcp(zone, cpu) = NULL;
2356	}
2357}
2358
2359static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2360		unsigned long action,
2361		void *hcpu)
2362{
2363	int cpu = (long)hcpu;
2364	int ret = NOTIFY_OK;
2365
2366	switch (action) {
2367	case CPU_UP_PREPARE:
2368	case CPU_UP_PREPARE_FROZEN:
2369		if (process_zones(cpu))
2370			ret = NOTIFY_BAD;
2371		break;
2372	case CPU_UP_CANCELED:
2373	case CPU_UP_CANCELED_FROZEN:
2374	case CPU_DEAD:
2375	case CPU_DEAD_FROZEN:
2376		free_zone_pagesets(cpu);
2377		break;
2378	default:
2379		break;
2380	}
2381	return ret;
2382}
2383
2384static struct notifier_block __cpuinitdata pageset_notifier =
2385	{ &pageset_cpuup_callback, NULL, 0 };
2386
2387void __init setup_per_cpu_pageset(void)
2388{
2389	int err;
2390
2391	/* Initialize per_cpu_pageset for cpu 0.
2392	 * A cpuup callback will do this for every cpu
2393	 * as it comes online
2394	 */
2395	err = process_zones(smp_processor_id());
2396	BUG_ON(err);
2397	register_cpu_notifier(&pageset_notifier);
2398}
2399
2400#endif
2401
2402static noinline __init_refok
2403int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2404{
2405	int i;
2406	struct pglist_data *pgdat = zone->zone_pgdat;
2407	size_t alloc_size;
2408
2409	/*
2410	 * The per-page waitqueue mechanism uses hashed waitqueues
2411	 * per zone.
2412	 */
2413	zone->wait_table_hash_nr_entries =
2414		 wait_table_hash_nr_entries(zone_size_pages);
2415	zone->wait_table_bits =
2416		wait_table_bits(zone->wait_table_hash_nr_entries);
2417	alloc_size = zone->wait_table_hash_nr_entries
2418					* sizeof(wait_queue_head_t);
2419
2420 	if (system_state == SYSTEM_BOOTING) {
2421		zone->wait_table = (wait_queue_head_t *)
2422			alloc_bootmem_node(pgdat, alloc_size);
2423	} else {
2424		/*
2425		 * This case means that a zone whose size was 0 gets new memory
2426		 * via memory hot-add.
2427		 * But it may be the case that a new node was hot-added.  In
2428		 * this case vmalloc() will not be able to use this new node's
2429		 * memory - this wait_table must be initialized to use this new
2430		 * node itself as well.
2431		 * To use this new node's memory, further consideration will be
2432		 * necessary.
2433		 */
2434		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2435	}
2436	if (!zone->wait_table)
2437		return -ENOMEM;
2438
2439	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2440		init_waitqueue_head(zone->wait_table + i);
2441
2442	return 0;
2443}
2444
2445static __meminit void zone_pcp_init(struct zone *zone)
2446{
2447	int cpu;
2448	unsigned long batch = zone_batchsize(zone);
2449
2450	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2451#ifdef CONFIG_NUMA
2452		/* Early boot. Slab allocator not functional yet */
2453		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2454		setup_pageset(&boot_pageset[cpu],0);
2455#else
2456		setup_pageset(zone_pcp(zone,cpu), batch);
2457#endif
2458	}
2459	if (zone->present_pages)
2460		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2461			zone->name, zone->present_pages, batch);
2462}
2463
2464__meminit int init_currently_empty_zone(struct zone *zone,
2465					unsigned long zone_start_pfn,
2466					unsigned long size,
2467					enum memmap_context context)
2468{
2469	struct pglist_data *pgdat = zone->zone_pgdat;
2470	int ret;
2471	ret = zone_wait_table_init(zone, size);
2472	if (ret)
2473		return ret;
2474	pgdat->nr_zones = zone_idx(zone) + 1;
2475
2476	zone->zone_start_pfn = zone_start_pfn;
2477
2478	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2479
2480	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2481
2482	return 0;
2483}
2484
2485#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2486/*
2487 * Basic iterator support. Return the first range of PFNs for a node
2488 * Note: nid == MAX_NUMNODES returns first region regardless of node
2489 */
2490static int __meminit first_active_region_index_in_nid(int nid)
2491{
2492	int i;
2493
2494	for (i = 0; i < nr_nodemap_entries; i++)
2495		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2496			return i;
2497
2498	return -1;
2499}
2500
2501/*
2502 * Basic iterator support. Return the next active range of PFNs for a node
2503 * Note: nid == MAX_NUMNODES returns next region regardles of node
2504 */
2505static int __meminit next_active_region_index_in_nid(int index, int nid)
2506{
2507	for (index = index + 1; index < nr_nodemap_entries; index++)
2508		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2509			return index;
2510
2511	return -1;
2512}
2513
2514#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2515/*
2516 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2517 * Architectures may implement their own version but if add_active_range()
2518 * was used and there are no special requirements, this is a convenient
2519 * alternative
2520 */
2521int __meminit early_pfn_to_nid(unsigned long pfn)
2522{
2523	int i;
2524
2525	for (i = 0; i < nr_nodemap_entries; i++) {
2526		unsigned long start_pfn = early_node_map[i].start_pfn;
2527		unsigned long end_pfn = early_node_map[i].end_pfn;
2528
2529		if (start_pfn <= pfn && pfn < end_pfn)
2530			return early_node_map[i].nid;
2531	}
2532
2533	return 0;
2534}
2535#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2536
2537/* Basic iterator support to walk early_node_map[] */
2538#define for_each_active_range_index_in_nid(i, nid) \
2539	for (i = first_active_region_index_in_nid(nid); i != -1; \
2540				i = next_active_region_index_in_nid(i, nid))
2541
2542/**
2543 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2544 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2545 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2546 *
2547 * If an architecture guarantees that all ranges registered with
2548 * add_active_ranges() contain no holes and may be freed, this
2549 * this function may be used instead of calling free_bootmem() manually.
2550 */
2551void __init free_bootmem_with_active_regions(int nid,
2552						unsigned long max_low_pfn)
2553{
2554	int i;
2555
2556	for_each_active_range_index_in_nid(i, nid) {
2557		unsigned long size_pages = 0;
2558		unsigned long end_pfn = early_node_map[i].end_pfn;
2559
2560		if (early_node_map[i].start_pfn >= max_low_pfn)
2561			continue;
2562
2563		if (end_pfn > max_low_pfn)
2564			end_pfn = max_low_pfn;
2565
2566		size_pages = end_pfn - early_node_map[i].start_pfn;
2567		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2568				PFN_PHYS(early_node_map[i].start_pfn),
2569				size_pages << PAGE_SHIFT);
2570	}
2571}
2572
2573/**
2574 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2575 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2576 *
2577 * If an architecture guarantees that all ranges registered with
2578 * add_active_ranges() contain no holes and may be freed, this
2579 * function may be used instead of calling memory_present() manually.
2580 */
2581void __init sparse_memory_present_with_active_regions(int nid)
2582{
2583	int i;
2584
2585	for_each_active_range_index_in_nid(i, nid)
2586		memory_present(early_node_map[i].nid,
2587				early_node_map[i].start_pfn,
2588				early_node_map[i].end_pfn);
2589}
2590
2591/**
2592 * push_node_boundaries - Push node boundaries to at least the requested boundary
2593 * @nid: The nid of the node to push the boundary for
2594 * @start_pfn: The start pfn of the node
2595 * @end_pfn: The end pfn of the node
2596 *
2597 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2598 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2599 * be hotplugged even though no physical memory exists. This function allows
2600 * an arch to push out the node boundaries so mem_map is allocated that can
2601 * be used later.
2602 */
2603#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2604void __init push_node_boundaries(unsigned int nid,
2605		unsigned long start_pfn, unsigned long end_pfn)
2606{
2607	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2608			nid, start_pfn, end_pfn);
2609
2610	/* Initialise the boundary for this node if necessary */
2611	if (node_boundary_end_pfn[nid] == 0)
2612		node_boundary_start_pfn[nid] = -1UL;
2613
2614	/* Update the boundaries */
2615	if (node_boundary_start_pfn[nid] > start_pfn)
2616		node_boundary_start_pfn[nid] = start_pfn;
2617	if (node_boundary_end_pfn[nid] < end_pfn)
2618		node_boundary_end_pfn[nid] = end_pfn;
2619}
2620
2621/* If necessary, push the node boundary out for reserve hotadd */
2622static void __meminit account_node_boundary(unsigned int nid,
2623		unsigned long *start_pfn, unsigned long *end_pfn)
2624{
2625	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2626			nid, *start_pfn, *end_pfn);
2627
2628	/* Return if boundary information has not been provided */
2629	if (node_boundary_end_pfn[nid] == 0)
2630		return;
2631
2632	/* Check the boundaries and update if necessary */
2633	if (node_boundary_start_pfn[nid] < *start_pfn)
2634		*start_pfn = node_boundary_start_pfn[nid];
2635	if (node_boundary_end_pfn[nid] > *end_pfn)
2636		*end_pfn = node_boundary_end_pfn[nid];
2637}
2638#else
2639void __init push_node_boundaries(unsigned int nid,
2640		unsigned long start_pfn, unsigned long end_pfn) {}
2641
2642static void __meminit account_node_boundary(unsigned int nid,
2643		unsigned long *start_pfn, unsigned long *end_pfn) {}
2644#endif
2645
2646
2647/**
2648 * get_pfn_range_for_nid - Return the start and end page frames for a node
2649 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2650 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2651 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2652 *
2653 * It returns the start and end page frame of a node based on information
2654 * provided by an arch calling add_active_range(). If called for a node
2655 * with no available memory, a warning is printed and the start and end
2656 * PFNs will be 0.
2657 */
2658void __meminit get_pfn_range_for_nid(unsigned int nid,
2659			unsigned long *start_pfn, unsigned long *end_pfn)
2660{
2661	int i;
2662	*start_pfn = -1UL;
2663	*end_pfn = 0;
2664
2665	for_each_active_range_index_in_nid(i, nid) {
2666		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2667		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2668	}
2669
2670	if (*start_pfn == -1UL) {
2671		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2672		*start_pfn = 0;
2673	}
2674
2675	/* Push the node boundaries out if requested */
2676	account_node_boundary(nid, start_pfn, end_pfn);
2677}
2678
2679/*
2680 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2681 * assumption is made that zones within a node are ordered in monotonic
2682 * increasing memory addresses so that the "highest" populated zone is used
2683 */
2684void __init find_usable_zone_for_movable(void)
2685{
2686	int zone_index;
2687	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2688		if (zone_index == ZONE_MOVABLE)
2689			continue;
2690
2691		if (arch_zone_highest_possible_pfn[zone_index] >
2692				arch_zone_lowest_possible_pfn[zone_index])
2693			break;
2694	}
2695
2696	VM_BUG_ON(zone_index == -1);
2697	movable_zone = zone_index;
2698}
2699
2700/*
2701 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2702 * because it is sized independant of architecture. Unlike the other zones,
2703 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2704 * in each node depending on the size of each node and how evenly kernelcore
2705 * is distributed. This helper function adjusts the zone ranges
2706 * provided by the architecture for a given node by using the end of the
2707 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2708 * zones within a node are in order of monotonic increases memory addresses
2709 */
2710void __meminit adjust_zone_range_for_zone_movable(int nid,
2711					unsigned long zone_type,
2712					unsigned long node_start_pfn,
2713					unsigned long node_end_pfn,
2714					unsigned long *zone_start_pfn,
2715					unsigned long *zone_end_pfn)
2716{
2717	/* Only adjust if ZONE_MOVABLE is on this node */
2718	if (zone_movable_pfn[nid]) {
2719		/* Size ZONE_MOVABLE */
2720		if (zone_type == ZONE_MOVABLE) {
2721			*zone_start_pfn = zone_movable_pfn[nid];
2722			*zone_end_pfn = min(node_end_pfn,
2723				arch_zone_highest_possible_pfn[movable_zone]);
2724
2725		/* Adjust for ZONE_MOVABLE starting within this range */
2726		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2727				*zone_end_pfn > zone_movable_pfn[nid]) {
2728			*zone_end_pfn = zone_movable_pfn[nid];
2729
2730		/* Check if this whole range is within ZONE_MOVABLE */
2731		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
2732			*zone_start_pfn = *zone_end_pfn;
2733	}
2734}
2735
2736/*
2737 * Return the number of pages a zone spans in a node, including holes
2738 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2739 */
2740static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2741					unsigned long zone_type,
2742					unsigned long *ignored)
2743{
2744	unsigned long node_start_pfn, node_end_pfn;
2745	unsigned long zone_start_pfn, zone_end_pfn;
2746
2747	/* Get the start and end of the node and zone */
2748	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2749	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2750	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2751	adjust_zone_range_for_zone_movable(nid, zone_type,
2752				node_start_pfn, node_end_pfn,
2753				&zone_start_pfn, &zone_end_pfn);
2754
2755	/* Check that this node has pages within the zone's required range */
2756	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2757		return 0;
2758
2759	/* Move the zone boundaries inside the node if necessary */
2760	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2761	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2762
2763	/* Return the spanned pages */
2764	return zone_end_pfn - zone_start_pfn;
2765}
2766
2767/*
2768 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2769 * then all holes in the requested range will be accounted for.
2770 */
2771unsigned long __meminit __absent_pages_in_range(int nid,
2772				unsigned long range_start_pfn,
2773				unsigned long range_end_pfn)
2774{
2775	int i = 0;
2776	unsigned long prev_end_pfn = 0, hole_pages = 0;
2777	unsigned long start_pfn;
2778
2779	/* Find the end_pfn of the first active range of pfns in the node */
2780	i = first_active_region_index_in_nid(nid);
2781	if (i == -1)
2782		return 0;
2783
2784	/* Account for ranges before physical memory on this node */
2785	if (early_node_map[i].start_pfn > range_start_pfn)
2786		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2787
2788	prev_end_pfn = early_node_map[i].start_pfn;
2789
2790	/* Find all holes for the zone within the node */
2791	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2792
2793		/* No need to continue if prev_end_pfn is outside the zone */
2794		if (prev_end_pfn >= range_end_pfn)
2795			break;
2796
2797		/* Make sure the end of the zone is not within the hole */
2798		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2799		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2800
2801		/* Update the hole size cound and move on */
2802		if (start_pfn > range_start_pfn) {
2803			BUG_ON(prev_end_pfn > start_pfn);
2804			hole_pages += start_pfn - prev_end_pfn;
2805		}
2806		prev_end_pfn = early_node_map[i].end_pfn;
2807	}
2808
2809	/* Account for ranges past physical memory on this node */
2810	if (range_end_pfn > prev_end_pfn)
2811		hole_pages += range_end_pfn -
2812				max(range_start_pfn, prev_end_pfn);
2813
2814	return hole_pages;
2815}
2816
2817/**
2818 * absent_pages_in_range - Return number of page frames in holes within a range
2819 * @start_pfn: The start PFN to start searching for holes
2820 * @end_pfn: The end PFN to stop searching for holes
2821 *
2822 * It returns the number of pages frames in memory holes within a range.
2823 */
2824unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2825							unsigned long end_pfn)
2826{
2827	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2828}
2829
2830/* Return the number of page frames in holes in a zone on a node */
2831static unsigned long __meminit zone_absent_pages_in_node(int nid,
2832					unsigned long zone_type,
2833					unsigned long *ignored)
2834{
2835	unsigned long node_start_pfn, node_end_pfn;
2836	unsigned long zone_start_pfn, zone_end_pfn;
2837
2838	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2839	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2840							node_start_pfn);
2841	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2842							node_end_pfn);
2843
2844	adjust_zone_range_for_zone_movable(nid, zone_type,
2845			node_start_pfn, node_end_pfn,
2846			&zone_start_pfn, &zone_end_pfn);
2847	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2848}
2849
2850#else
2851static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2852					unsigned long zone_type,
2853					unsigned long *zones_size)
2854{
2855	return zones_size[zone_type];
2856}
2857
2858static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2859						unsigned long zone_type,
2860						unsigned long *zholes_size)
2861{
2862	if (!zholes_size)
2863		return 0;
2864
2865	return zholes_size[zone_type];
2866}
2867
2868#endif
2869
2870static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2871		unsigned long *zones_size, unsigned long *zholes_size)
2872{
2873	unsigned long realtotalpages, totalpages = 0;
2874	enum zone_type i;
2875
2876	for (i = 0; i < MAX_NR_ZONES; i++)
2877		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2878								zones_size);
2879	pgdat->node_spanned_pages = totalpages;
2880
2881	realtotalpages = totalpages;
2882	for (i = 0; i < MAX_NR_ZONES; i++)
2883		realtotalpages -=
2884			zone_absent_pages_in_node(pgdat->node_id, i,
2885								zholes_size);
2886	pgdat->node_present_pages = realtotalpages;
2887	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2888							realtotalpages);
2889}
2890
2891/*
2892 * Set up the zone data structures:
2893 *   - mark all pages reserved
2894 *   - mark all memory queues empty
2895 *   - clear the memory bitmaps
2896 */
2897static void __meminit free_area_init_core(struct pglist_data *pgdat,
2898		unsigned long *zones_size, unsigned long *zholes_size)
2899{
2900	enum zone_type j;
2901	int nid = pgdat->node_id;
2902	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2903	int ret;
2904
2905	pgdat_resize_init(pgdat);
2906	pgdat->nr_zones = 0;
2907	init_waitqueue_head(&pgdat->kswapd_wait);
2908	pgdat->kswapd_max_order = 0;
2909
2910	for (j = 0; j < MAX_NR_ZONES; j++) {
2911		struct zone *zone = pgdat->node_zones + j;
2912		unsigned long size, realsize, memmap_pages;
2913
2914		size = zone_spanned_pages_in_node(nid, j, zones_size);
2915		realsize = size - zone_absent_pages_in_node(nid, j,
2916								zholes_size);
2917
2918		/*
2919		 * Adjust realsize so that it accounts for how much memory
2920		 * is used by this zone for memmap. This affects the watermark
2921		 * and per-cpu initialisations
2922		 */
2923		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2924		if (realsize >= memmap_pages) {
2925			realsize -= memmap_pages;
2926			printk(KERN_DEBUG
2927				"  %s zone: %lu pages used for memmap\n",
2928				zone_names[j], memmap_pages);
2929		} else
2930			printk(KERN_WARNING
2931				"  %s zone: %lu pages exceeds realsize %lu\n",
2932				zone_names[j], memmap_pages, realsize);
2933
2934		/* Account for reserved pages */
2935		if (j == 0 && realsize > dma_reserve) {
2936			realsize -= dma_reserve;
2937			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2938					zone_names[0], dma_reserve);
2939		}
2940
2941		if (!is_highmem_idx(j))
2942			nr_kernel_pages += realsize;
2943		nr_all_pages += realsize;
2944
2945		zone->spanned_pages = size;
2946		zone->present_pages = realsize;
2947#ifdef CONFIG_NUMA
2948		zone->node = nid;
2949		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2950						/ 100;
2951		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2952#endif
2953		zone->name = zone_names[j];
2954		spin_lock_init(&zone->lock);
2955		spin_lock_init(&zone->lru_lock);
2956		zone_seqlock_init(zone);
2957		zone->zone_pgdat = pgdat;
2958
2959		zone->prev_priority = DEF_PRIORITY;
2960
2961		zone_pcp_init(zone);
2962		INIT_LIST_HEAD(&zone->active_list);
2963		INIT_LIST_HEAD(&zone->inactive_list);
2964		zone->nr_scan_active = 0;
2965		zone->nr_scan_inactive = 0;
2966		zap_zone_vm_stats(zone);
2967		atomic_set(&zone->reclaim_in_progress, 0);
2968		if (!size)
2969			continue;
2970
2971		ret = init_currently_empty_zone(zone, zone_start_pfn,
2972						size, MEMMAP_EARLY);
2973		BUG_ON(ret);
2974		zone_start_pfn += size;
2975	}
2976}
2977
2978static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2979{
2980	/* Skip empty nodes */
2981	if (!pgdat->node_spanned_pages)
2982		return;
2983
2984#ifdef CONFIG_FLAT_NODE_MEM_MAP
2985	/* ia64 gets its own node_mem_map, before this, without bootmem */
2986	if (!pgdat->node_mem_map) {
2987		unsigned long size, start, end;
2988		struct page *map;
2989
2990		/*
2991		 * The zone's endpoints aren't required to be MAX_ORDER
2992		 * aligned but the node_mem_map endpoints must be in order
2993		 * for the buddy allocator to function correctly.
2994		 */
2995		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2996		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2997		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2998		size =  (end - start) * sizeof(struct page);
2999		map = alloc_remap(pgdat->node_id, size);
3000		if (!map)
3001			map = alloc_bootmem_node(pgdat, size);
3002		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3003	}
3004#ifndef CONFIG_NEED_MULTIPLE_NODES
3005	/*
3006	 * With no DISCONTIG, the global mem_map is just set as node 0's
3007	 */
3008	if (pgdat == NODE_DATA(0)) {
3009		mem_map = NODE_DATA(0)->node_mem_map;
3010#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3011		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3012			mem_map -= pgdat->node_start_pfn;
3013#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3014	}
3015#endif
3016#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3017}
3018
3019void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3020		unsigned long *zones_size, unsigned long node_start_pfn,
3021		unsigned long *zholes_size)
3022{
3023	pgdat->node_id = nid;
3024	pgdat->node_start_pfn = node_start_pfn;
3025	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3026
3027	alloc_node_mem_map(pgdat);
3028
3029	free_area_init_core(pgdat, zones_size, zholes_size);
3030}
3031
3032#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3033
3034#if MAX_NUMNODES > 1
3035/*
3036 * Figure out the number of possible node ids.
3037 */
3038static void __init setup_nr_node_ids(void)
3039{
3040	unsigned int node;
3041	unsigned int highest = 0;
3042
3043	for_each_node_mask(node, node_possible_map)
3044		highest = node;
3045	nr_node_ids = highest + 1;
3046}
3047#else
3048static inline void setup_nr_node_ids(void)
3049{
3050}
3051#endif
3052
3053/**
3054 * add_active_range - Register a range of PFNs backed by physical memory
3055 * @nid: The node ID the range resides on
3056 * @start_pfn: The start PFN of the available physical memory
3057 * @end_pfn: The end PFN of the available physical memory
3058 *
3059 * These ranges are stored in an early_node_map[] and later used by
3060 * free_area_init_nodes() to calculate zone sizes and holes. If the
3061 * range spans a memory hole, it is up to the architecture to ensure
3062 * the memory is not freed by the bootmem allocator. If possible
3063 * the range being registered will be merged with existing ranges.
3064 */
3065void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3066						unsigned long end_pfn)
3067{
3068	int i;
3069
3070	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3071			  "%d entries of %d used\n",
3072			  nid, start_pfn, end_pfn,
3073			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3074
3075	/* Merge with existing active regions if possible */
3076	for (i = 0; i < nr_nodemap_entries; i++) {
3077		if (early_node_map[i].nid != nid)
3078			continue;
3079
3080		/* Skip if an existing region covers this new one */
3081		if (start_pfn >= early_node_map[i].start_pfn &&
3082				end_pfn <= early_node_map[i].end_pfn)
3083			return;
3084
3085		/* Merge forward if suitable */
3086		if (start_pfn <= early_node_map[i].end_pfn &&
3087				end_pfn > early_node_map[i].end_pfn) {
3088			early_node_map[i].end_pfn = end_pfn;
3089			return;
3090		}
3091
3092		/* Merge backward if suitable */
3093		if (start_pfn < early_node_map[i].end_pfn &&
3094				end_pfn >= early_node_map[i].start_pfn) {
3095			early_node_map[i].start_pfn = start_pfn;
3096			return;
3097		}
3098	}
3099
3100	/* Check that early_node_map is large enough */
3101	if (i >= MAX_ACTIVE_REGIONS) {
3102		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3103							MAX_ACTIVE_REGIONS);
3104		return;
3105	}
3106
3107	early_node_map[i].nid = nid;
3108	early_node_map[i].start_pfn = start_pfn;
3109	early_node_map[i].end_pfn = end_pfn;
3110	nr_nodemap_entries = i + 1;
3111}
3112
3113/**
3114 * shrink_active_range - Shrink an existing registered range of PFNs
3115 * @nid: The node id the range is on that should be shrunk
3116 * @old_end_pfn: The old end PFN of the range
3117 * @new_end_pfn: The new PFN of the range
3118 *
3119 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3120 * The map is kept at the end physical page range that has already been
3121 * registered with add_active_range(). This function allows an arch to shrink
3122 * an existing registered range.
3123 */
3124void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3125						unsigned long new_end_pfn)
3126{
3127	int i;
3128
3129	/* Find the old active region end and shrink */
3130	for_each_active_range_index_in_nid(i, nid)
3131		if (early_node_map[i].end_pfn == old_end_pfn) {
3132			early_node_map[i].end_pfn = new_end_pfn;
3133			break;
3134		}
3135}
3136
3137/**
3138 * remove_all_active_ranges - Remove all currently registered regions
3139 *
3140 * During discovery, it may be found that a table like SRAT is invalid
3141 * and an alternative discovery method must be used. This function removes
3142 * all currently registered regions.
3143 */
3144void __init remove_all_active_ranges(void)
3145{
3146	memset(early_node_map, 0, sizeof(early_node_map));
3147	nr_nodemap_entries = 0;
3148#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3149	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3150	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3151#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3152}
3153
3154/* Compare two active node_active_regions */
3155static int __init cmp_node_active_region(const void *a, const void *b)
3156{
3157	struct node_active_region *arange = (struct node_active_region *)a;
3158	struct node_active_region *brange = (struct node_active_region *)b;
3159
3160	/* Done this way to avoid overflows */
3161	if (arange->start_pfn > brange->start_pfn)
3162		return 1;
3163	if (arange->start_pfn < brange->start_pfn)
3164		return -1;
3165
3166	return 0;
3167}
3168
3169/* sort the node_map by start_pfn */
3170static void __init sort_node_map(void)
3171{
3172	sort(early_node_map, (size_t)nr_nodemap_entries,
3173			sizeof(struct node_active_region),
3174			cmp_node_active_region, NULL);
3175}
3176
3177/* Find the lowest pfn for a node */
3178unsigned long __init find_min_pfn_for_node(unsigned long nid)
3179{
3180	int i;
3181	unsigned long min_pfn = ULONG_MAX;
3182
3183	/* Assuming a sorted map, the first range found has the starting pfn */
3184	for_each_active_range_index_in_nid(i, nid)
3185		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3186
3187	if (min_pfn == ULONG_MAX) {
3188		printk(KERN_WARNING
3189			"Could not find start_pfn for node %lu\n", nid);
3190		return 0;
3191	}
3192
3193	return min_pfn;
3194}
3195
3196/**
3197 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3198 *
3199 * It returns the minimum PFN based on information provided via
3200 * add_active_range().
3201 */
3202unsigned long __init find_min_pfn_with_active_regions(void)
3203{
3204	return find_min_pfn_for_node(MAX_NUMNODES);
3205}
3206
3207/**
3208 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3209 *
3210 * It returns the maximum PFN based on information provided via
3211 * add_active_range().
3212 */
3213unsigned long __init find_max_pfn_with_active_regions(void)
3214{
3215	int i;
3216	unsigned long max_pfn = 0;
3217
3218	for (i = 0; i < nr_nodemap_entries; i++)
3219		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3220
3221	return max_pfn;
3222}
3223
3224unsigned long __init early_calculate_totalpages(void)
3225{
3226	int i;
3227	unsigned long totalpages = 0;
3228
3229	for (i = 0; i < nr_nodemap_entries; i++)
3230		totalpages += early_node_map[i].end_pfn -
3231						early_node_map[i].start_pfn;
3232
3233	return totalpages;
3234}
3235
3236/*
3237 * Find the PFN the Movable zone begins in each node. Kernel memory
3238 * is spread evenly between nodes as long as the nodes have enough
3239 * memory. When they don't, some nodes will have more kernelcore than
3240 * others
3241 */
3242void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3243{
3244	int i, nid;
3245	unsigned long usable_startpfn;
3246	unsigned long kernelcore_node, kernelcore_remaining;
3247	int usable_nodes = num_online_nodes();
3248
3249	/*
3250	 * If movablecore was specified, calculate what size of
3251	 * kernelcore that corresponds so that memory usable for
3252	 * any allocation type is evenly spread. If both kernelcore
3253	 * and movablecore are specified, then the value of kernelcore
3254	 * will be used for required_kernelcore if it's greater than
3255	 * what movablecore would have allowed.
3256	 */
3257	if (required_movablecore) {
3258		unsigned long totalpages = early_calculate_totalpages();
3259		unsigned long corepages;
3260
3261		/*
3262		 * Round-up so that ZONE_MOVABLE is at least as large as what
3263		 * was requested by the user
3264		 */
3265		required_movablecore =
3266			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3267		corepages = totalpages - required_movablecore;
3268
3269		required_kernelcore = max(required_kernelcore, corepages);
3270	}
3271
3272	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3273	if (!required_kernelcore)
3274		return;
3275
3276	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3277	find_usable_zone_for_movable();
3278	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3279
3280restart:
3281	/* Spread kernelcore memory as evenly as possible throughout nodes */
3282	kernelcore_node = required_kernelcore / usable_nodes;
3283	for_each_online_node(nid) {
3284		/*
3285		 * Recalculate kernelcore_node if the division per node
3286		 * now exceeds what is necessary to satisfy the requested
3287		 * amount of memory for the kernel
3288		 */
3289		if (required_kernelcore < kernelcore_node)
3290			kernelcore_node = required_kernelcore / usable_nodes;
3291
3292		/*
3293		 * As the map is walked, we track how much memory is usable
3294		 * by the kernel using kernelcore_remaining. When it is
3295		 * 0, the rest of the node is usable by ZONE_MOVABLE
3296		 */
3297		kernelcore_remaining = kernelcore_node;
3298
3299		/* Go through each range of PFNs within this node */
3300		for_each_active_range_index_in_nid(i, nid) {
3301			unsigned long start_pfn, end_pfn;
3302			unsigned long size_pages;
3303
3304			start_pfn = max(early_node_map[i].start_pfn,
3305						zone_movable_pfn[nid]);
3306			end_pfn = early_node_map[i].end_pfn;
3307			if (start_pfn >= end_pfn)
3308				continue;
3309
3310			/* Account for what is only usable for kernelcore */
3311			if (start_pfn < usable_startpfn) {
3312				unsigned long kernel_pages;
3313				kernel_pages = min(end_pfn, usable_startpfn)
3314								- start_pfn;
3315
3316				kernelcore_remaining -= min(kernel_pages,
3317							kernelcore_remaining);
3318				required_kernelcore -= min(kernel_pages,
3319							required_kernelcore);
3320
3321				/* Continue if range is now fully accounted */
3322				if (end_pfn <= usable_startpfn) {
3323
3324					/*
3325					 * Push zone_movable_pfn to the end so
3326					 * that if we have to rebalance
3327					 * kernelcore across nodes, we will
3328					 * not double account here
3329					 */
3330					zone_movable_pfn[nid] = end_pfn;
3331					continue;
3332				}
3333				start_pfn = usable_startpfn;
3334			}
3335
3336			/*
3337			 * The usable PFN range for ZONE_MOVABLE is from
3338			 * start_pfn->end_pfn. Calculate size_pages as the
3339			 * number of pages used as kernelcore
3340			 */
3341			size_pages = end_pfn - start_pfn;
3342			if (size_pages > kernelcore_remaining)
3343				size_pages = kernelcore_remaining;
3344			zone_movable_pfn[nid] = start_pfn + size_pages;
3345
3346			/*
3347			 * Some kernelcore has been met, update counts and
3348			 * break if the kernelcore for this node has been
3349			 * satisified
3350			 */
3351			required_kernelcore -= min(required_kernelcore,
3352								size_pages);
3353			kernelcore_remaining -= size_pages;
3354			if (!kernelcore_remaining)
3355				break;
3356		}
3357	}
3358
3359	/*
3360	 * If there is still required_kernelcore, we do another pass with one
3361	 * less node in the count. This will push zone_movable_pfn[nid] further
3362	 * along on the nodes that still have memory until kernelcore is
3363	 * satisified
3364	 */
3365	usable_nodes--;
3366	if (usable_nodes && required_kernelcore > usable_nodes)
3367		goto restart;
3368
3369	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3370	for (nid = 0; nid < MAX_NUMNODES; nid++)
3371		zone_movable_pfn[nid] =
3372			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3373}
3374
3375/**
3376 * free_area_init_nodes - Initialise all pg_data_t and zone data
3377 * @max_zone_pfn: an array of max PFNs for each zone
3378 *
3379 * This will call free_area_init_node() for each active node in the system.
3380 * Using the page ranges provided by add_active_range(), the size of each
3381 * zone in each node and their holes is calculated. If the maximum PFN
3382 * between two adjacent zones match, it is assumed that the zone is empty.
3383 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3384 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3385 * starts where the previous one ended. For example, ZONE_DMA32 starts
3386 * at arch_max_dma_pfn.
3387 */
3388void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3389{
3390	unsigned long nid;
3391	enum zone_type i;
3392
3393	/* Sort early_node_map as initialisation assumes it is sorted */
3394	sort_node_map();
3395
3396	/* Record where the zone boundaries are */
3397	memset(arch_zone_lowest_possible_pfn, 0,
3398				sizeof(arch_zone_lowest_possible_pfn));
3399	memset(arch_zone_highest_possible_pfn, 0,
3400				sizeof(arch_zone_highest_possible_pfn));
3401	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3402	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3403	for (i = 1; i < MAX_NR_ZONES; i++) {
3404		if (i == ZONE_MOVABLE)
3405			continue;
3406		arch_zone_lowest_possible_pfn[i] =
3407			arch_zone_highest_possible_pfn[i-1];
3408		arch_zone_highest_possible_pfn[i] =
3409			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3410	}
3411	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3412	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3413
3414	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3415	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3416	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3417
3418	/* Print out the zone ranges */
3419	printk("Zone PFN ranges:\n");
3420	for (i = 0; i < MAX_NR_ZONES; i++) {
3421		if (i == ZONE_MOVABLE)
3422			continue;
3423		printk("  %-8s %8lu -> %8lu\n",
3424				zone_names[i],
3425				arch_zone_lowest_possible_pfn[i],
3426				arch_zone_highest_possible_pfn[i]);
3427	}
3428
3429	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3430	printk("Movable zone start PFN for each node\n");
3431	for (i = 0; i < MAX_NUMNODES; i++) {
3432		if (zone_movable_pfn[i])
3433			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3434	}
3435
3436	/* Print out the early_node_map[] */
3437	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3438	for (i = 0; i < nr_nodemap_entries; i++)
3439		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3440						early_node_map[i].start_pfn,
3441						early_node_map[i].end_pfn);
3442
3443	/* Initialise every node */
3444	setup_nr_node_ids();
3445	for_each_online_node(nid) {
3446		pg_data_t *pgdat = NODE_DATA(nid);
3447		free_area_init_node(nid, pgdat, NULL,
3448				find_min_pfn_for_node(nid), NULL);
3449	}
3450}
3451
3452static int __init cmdline_parse_core(char *p, unsigned long *core)
3453{
3454	unsigned long long coremem;
3455	if (!p)
3456		return -EINVAL;
3457
3458	coremem = memparse(p, &p);
3459	*core = coremem >> PAGE_SHIFT;
3460
3461	/* Paranoid check that UL is enough for the coremem value */
3462	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3463
3464	return 0;
3465}
3466
3467/*
3468 * kernelcore=size sets the amount of memory for use for allocations that
3469 * cannot be reclaimed or migrated.
3470 */
3471static int __init cmdline_parse_kernelcore(char *p)
3472{
3473	return cmdline_parse_core(p, &required_kernelcore);
3474}
3475
3476/*
3477 * movablecore=size sets the amount of memory for use for allocations that
3478 * can be reclaimed or migrated.
3479 */
3480static int __init cmdline_parse_movablecore(char *p)
3481{
3482	return cmdline_parse_core(p, &required_movablecore);
3483}
3484
3485early_param("kernelcore", cmdline_parse_kernelcore);
3486early_param("movablecore", cmdline_parse_movablecore);
3487
3488#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3489
3490/**
3491 * set_dma_reserve - set the specified number of pages reserved in the first zone
3492 * @new_dma_reserve: The number of pages to mark reserved
3493 *
3494 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3495 * In the DMA zone, a significant percentage may be consumed by kernel image
3496 * and other unfreeable allocations which can skew the watermarks badly. This
3497 * function may optionally be used to account for unfreeable pages in the
3498 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3499 * smaller per-cpu batchsize.
3500 */
3501void __init set_dma_reserve(unsigned long new_dma_reserve)
3502{
3503	dma_reserve = new_dma_reserve;
3504}
3505
3506#ifndef CONFIG_NEED_MULTIPLE_NODES
3507static bootmem_data_t contig_bootmem_data;
3508struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3509
3510EXPORT_SYMBOL(contig_page_data);
3511#endif
3512
3513void __init free_area_init(unsigned long *zones_size)
3514{
3515	free_area_init_node(0, NODE_DATA(0), zones_size,
3516			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3517}
3518
3519static int page_alloc_cpu_notify(struct notifier_block *self,
3520				 unsigned long action, void *hcpu)
3521{
3522	int cpu = (unsigned long)hcpu;
3523
3524	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3525		local_irq_disable();
3526		__drain_pages(cpu);
3527		vm_events_fold_cpu(cpu);
3528		local_irq_enable();
3529		refresh_cpu_vm_stats(cpu);
3530	}
3531	return NOTIFY_OK;
3532}
3533
3534void __init page_alloc_init(void)
3535{
3536	hotcpu_notifier(page_alloc_cpu_notify, 0);
3537}
3538
3539/*
3540 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3541 *	or min_free_kbytes changes.
3542 */
3543static void calculate_totalreserve_pages(void)
3544{
3545	struct pglist_data *pgdat;
3546	unsigned long reserve_pages = 0;
3547	enum zone_type i, j;
3548
3549	for_each_online_pgdat(pgdat) {
3550		for (i = 0; i < MAX_NR_ZONES; i++) {
3551			struct zone *zone = pgdat->node_zones + i;
3552			unsigned long max = 0;
3553
3554			/* Find valid and maximum lowmem_reserve in the zone */
3555			for (j = i; j < MAX_NR_ZONES; j++) {
3556				if (zone->lowmem_reserve[j] > max)
3557					max = zone->lowmem_reserve[j];
3558			}
3559
3560			/* we treat pages_high as reserved pages. */
3561			max += zone->pages_high;
3562
3563			if (max > zone->present_pages)
3564				max = zone->present_pages;
3565			reserve_pages += max;
3566		}
3567	}
3568	totalreserve_pages = reserve_pages;
3569}
3570
3571/*
3572 * setup_per_zone_lowmem_reserve - called whenever
3573 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3574 *	has a correct pages reserved value, so an adequate number of
3575 *	pages are left in the zone after a successful __alloc_pages().
3576 */
3577static void setup_per_zone_lowmem_reserve(void)
3578{
3579	struct pglist_data *pgdat;
3580	enum zone_type j, idx;
3581
3582	for_each_online_pgdat(pgdat) {
3583		for (j = 0; j < MAX_NR_ZONES; j++) {
3584			struct zone *zone = pgdat->node_zones + j;
3585			unsigned long present_pages = zone->present_pages;
3586
3587			zone->lowmem_reserve[j] = 0;
3588
3589			idx = j;
3590			while (idx) {
3591				struct zone *lower_zone;
3592
3593				idx--;
3594
3595				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3596					sysctl_lowmem_reserve_ratio[idx] = 1;
3597
3598				lower_zone = pgdat->node_zones + idx;
3599				lower_zone->lowmem_reserve[j] = present_pages /
3600					sysctl_lowmem_reserve_ratio[idx];
3601				present_pages += lower_zone->present_pages;
3602			}
3603		}
3604	}
3605
3606	/* update totalreserve_pages */
3607	calculate_totalreserve_pages();
3608}
3609
3610/**
3611 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3612 *
3613 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3614 * with respect to min_free_kbytes.
3615 */
3616void setup_per_zone_pages_min(void)
3617{
3618	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3619	unsigned long lowmem_pages = 0;
3620	struct zone *zone;
3621	unsigned long flags;
3622
3623	/* Calculate total number of !ZONE_HIGHMEM pages */
3624	for_each_zone(zone) {
3625		if (!is_highmem(zone))
3626			lowmem_pages += zone->present_pages;
3627	}
3628
3629	for_each_zone(zone) {
3630		u64 tmp;
3631
3632		spin_lock_irqsave(&zone->lru_lock, flags);
3633		tmp = (u64)pages_min * zone->present_pages;
3634		do_div(tmp, lowmem_pages);
3635		if (is_highmem(zone)) {
3636			/*
3637			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3638			 * need highmem pages, so cap pages_min to a small
3639			 * value here.
3640			 *
3641			 * The (pages_high-pages_low) and (pages_low-pages_min)
3642			 * deltas controls asynch page reclaim, and so should
3643			 * not be capped for highmem.
3644			 */
3645			int min_pages;
3646
3647			min_pages = zone->present_pages / 1024;
3648			if (min_pages < SWAP_CLUSTER_MAX)
3649				min_pages = SWAP_CLUSTER_MAX;
3650			if (min_pages > 128)
3651				min_pages = 128;
3652			zone->pages_min = min_pages;
3653		} else {
3654			/*
3655			 * If it's a lowmem zone, reserve a number of pages
3656			 * proportionate to the zone's size.
3657			 */
3658			zone->pages_min = tmp;
3659		}
3660
3661		zone->pages_low   = zone->pages_min + (tmp >> 2);
3662		zone->pages_high  = zone->pages_min + (tmp >> 1);
3663		spin_unlock_irqrestore(&zone->lru_lock, flags);
3664	}
3665
3666	/* update totalreserve_pages */
3667	calculate_totalreserve_pages();
3668}
3669
3670/*
3671 * Initialise min_free_kbytes.
3672 *
3673 * For small machines we want it small (128k min).  For large machines
3674 * we want it large (64MB max).  But it is not linear, because network
3675 * bandwidth does not increase linearly with machine size.  We use
3676 *
3677 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3678 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3679 *
3680 * which yields
3681 *
3682 * 16MB:	512k
3683 * 32MB:	724k
3684 * 64MB:	1024k
3685 * 128MB:	1448k
3686 * 256MB:	2048k
3687 * 512MB:	2896k
3688 * 1024MB:	4096k
3689 * 2048MB:	5792k
3690 * 4096MB:	8192k
3691 * 8192MB:	11584k
3692 * 16384MB:	16384k
3693 */
3694static int __init init_per_zone_pages_min(void)
3695{
3696	unsigned long lowmem_kbytes;
3697
3698	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3699
3700	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3701	if (min_free_kbytes < 128)
3702		min_free_kbytes = 128;
3703	if (min_free_kbytes > 65536)
3704		min_free_kbytes = 65536;
3705	setup_per_zone_pages_min();
3706	setup_per_zone_lowmem_reserve();
3707	return 0;
3708}
3709module_init(init_per_zone_pages_min)
3710
3711/*
3712 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3713 *	that we can call two helper functions whenever min_free_kbytes
3714 *	changes.
3715 */
3716int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3717	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3718{
3719	proc_dointvec(table, write, file, buffer, length, ppos);
3720	if (write)
3721		setup_per_zone_pages_min();
3722	return 0;
3723}
3724
3725#ifdef CONFIG_NUMA
3726int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3727	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3728{
3729	struct zone *zone;
3730	int rc;
3731
3732	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3733	if (rc)
3734		return rc;
3735
3736	for_each_zone(zone)
3737		zone->min_unmapped_pages = (zone->present_pages *
3738				sysctl_min_unmapped_ratio) / 100;
3739	return 0;
3740}
3741
3742int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3743	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3744{
3745	struct zone *zone;
3746	int rc;
3747
3748	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3749	if (rc)
3750		return rc;
3751
3752	for_each_zone(zone)
3753		zone->min_slab_pages = (zone->present_pages *
3754				sysctl_min_slab_ratio) / 100;
3755	return 0;
3756}
3757#endif
3758
3759/*
3760 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3761 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3762 *	whenever sysctl_lowmem_reserve_ratio changes.
3763 *
3764 * The reserve ratio obviously has absolutely no relation with the
3765 * pages_min watermarks. The lowmem reserve ratio can only make sense
3766 * if in function of the boot time zone sizes.
3767 */
3768int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3769	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3770{
3771	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3772	setup_per_zone_lowmem_reserve();
3773	return 0;
3774}
3775
3776/*
3777 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3778 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3779 * can have before it gets flushed back to buddy allocator.
3780 */
3781
3782int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3783	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3784{
3785	struct zone *zone;
3786	unsigned int cpu;
3787	int ret;
3788
3789	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3790	if (!write || (ret == -EINVAL))
3791		return ret;
3792	for_each_zone(zone) {
3793		for_each_online_cpu(cpu) {
3794			unsigned long  high;
3795			high = zone->present_pages / percpu_pagelist_fraction;
3796			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3797		}
3798	}
3799	return 0;
3800}
3801
3802int hashdist = HASHDIST_DEFAULT;
3803
3804#ifdef CONFIG_NUMA
3805static int __init set_hashdist(char *str)
3806{
3807	if (!str)
3808		return 0;
3809	hashdist = simple_strtoul(str, &str, 0);
3810	return 1;
3811}
3812__setup("hashdist=", set_hashdist);
3813#endif
3814
3815/*
3816 * allocate a large system hash table from bootmem
3817 * - it is assumed that the hash table must contain an exact power-of-2
3818 *   quantity of entries
3819 * - limit is the number of hash buckets, not the total allocation size
3820 */
3821void *__init alloc_large_system_hash(const char *tablename,
3822				     unsigned long bucketsize,
3823				     unsigned long numentries,
3824				     int scale,
3825				     int flags,
3826				     unsigned int *_hash_shift,
3827				     unsigned int *_hash_mask,
3828				     unsigned long limit)
3829{
3830	unsigned long long max = limit;
3831	unsigned long log2qty, size;
3832	void *table = NULL;
3833
3834	/* allow the kernel cmdline to have a say */
3835	if (!numentries) {
3836		/* round applicable memory size up to nearest megabyte */
3837		numentries = nr_kernel_pages;
3838		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3839		numentries >>= 20 - PAGE_SHIFT;
3840		numentries <<= 20 - PAGE_SHIFT;
3841
3842		/* limit to 1 bucket per 2^scale bytes of low memory */
3843		if (scale > PAGE_SHIFT)
3844			numentries >>= (scale - PAGE_SHIFT);
3845		else
3846			numentries <<= (PAGE_SHIFT - scale);
3847
3848		/* Make sure we've got at least a 0-order allocation.. */
3849		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3850			numentries = PAGE_SIZE / bucketsize;
3851	}
3852	numentries = roundup_pow_of_two(numentries);
3853
3854	/* limit allocation size to 1/16 total memory by default */
3855	if (max == 0) {
3856		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3857		do_div(max, bucketsize);
3858	}
3859
3860	if (numentries > max)
3861		numentries = max;
3862
3863	log2qty = ilog2(numentries);
3864
3865	do {
3866		size = bucketsize << log2qty;
3867		if (flags & HASH_EARLY)
3868			table = alloc_bootmem(size);
3869		else if (hashdist)
3870			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3871		else {
3872			unsigned long order;
3873			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3874				;
3875			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3876			/*
3877			 * If bucketsize is not a power-of-two, we may free
3878			 * some pages at the end of hash table.
3879			 */
3880			if (table) {
3881				unsigned long alloc_end = (unsigned long)table +
3882						(PAGE_SIZE << order);
3883				unsigned long used = (unsigned long)table +
3884						PAGE_ALIGN(size);
3885				split_page(virt_to_page(table), order);
3886				while (used < alloc_end) {
3887					free_page(used);
3888					used += PAGE_SIZE;
3889				}
3890			}
3891		}
3892	} while (!table && size > PAGE_SIZE && --log2qty);
3893
3894	if (!table)
3895		panic("Failed to allocate %s hash table\n", tablename);
3896
3897	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3898	       tablename,
3899	       (1U << log2qty),
3900	       ilog2(size) - PAGE_SHIFT,
3901	       size);
3902
3903	if (_hash_shift)
3904		*_hash_shift = log2qty;
3905	if (_hash_mask)
3906		*_hash_mask = (1 << log2qty) - 1;
3907
3908	return table;
3909}
3910
3911#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3912struct page *pfn_to_page(unsigned long pfn)
3913{
3914	return __pfn_to_page(pfn);
3915}
3916unsigned long page_to_pfn(struct page *page)
3917{
3918	return __page_to_pfn(page);
3919}
3920EXPORT_SYMBOL(pfn_to_page);
3921EXPORT_SYMBOL(page_to_pfn);
3922#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3923
3924
3925