page_alloc.c revision 656a070629adfe23c12768e35ddf91feab469ff7
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/memory.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <linux/ftrace_event.h>
58#include <linux/memcontrol.h>
59#include <linux/prefetch.h>
60#include <linux/page-debug-flags.h>
61
62#include <asm/tlbflush.h>
63#include <asm/div64.h>
64#include "internal.h"
65
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
82/*
83 * Array of node states.
84 */
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86	[N_POSSIBLE] = NODE_MASK_ALL,
87	[N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93	[N_CPU] = { { [0] = 1UL } },
94#endif	/* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
98unsigned long totalram_pages __read_mostly;
99unsigned long totalreserve_pages __read_mostly;
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory.  This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
108int percpu_pagelist_fraction;
109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended.  To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
124{
125	WARN_ON(!mutex_is_locked(&pm_mutex));
126	if (saved_gfp_mask) {
127		gfp_allowed_mask = saved_gfp_mask;
128		saved_gfp_mask = 0;
129	}
130}
131
132void pm_restrict_gfp_mask(void)
133{
134	WARN_ON(!mutex_is_locked(&pm_mutex));
135	WARN_ON(saved_gfp_mask);
136	saved_gfp_mask = gfp_allowed_mask;
137	gfp_allowed_mask &= ~GFP_IOFS;
138}
139
140bool pm_suspended_storage(void)
141{
142	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143		return false;
144	return true;
145}
146#endif /* CONFIG_PM_SLEEP */
147
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
152static void __free_pages_ok(struct page *page, unsigned int order);
153
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 *	1G machine -> (16M dma, 784M normal, 224M high)
158 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166#ifdef CONFIG_ZONE_DMA
167	 256,
168#endif
169#ifdef CONFIG_ZONE_DMA32
170	 256,
171#endif
172#ifdef CONFIG_HIGHMEM
173	 32,
174#endif
175	 32,
176};
177
178EXPORT_SYMBOL(totalram_pages);
179
180static char * const zone_names[MAX_NR_ZONES] = {
181#ifdef CONFIG_ZONE_DMA
182	 "DMA",
183#endif
184#ifdef CONFIG_ZONE_DMA32
185	 "DMA32",
186#endif
187	 "Normal",
188#ifdef CONFIG_HIGHMEM
189	 "HighMem",
190#endif
191	 "Movable",
192};
193
194int min_free_kbytes = 1024;
195
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
198static unsigned long __meminitdata dma_reserve;
199
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
214int nr_online_nodes __read_mostly = 1;
215EXPORT_SYMBOL(nr_node_ids);
216EXPORT_SYMBOL(nr_online_nodes);
217#endif
218
219int page_group_by_mobility_disabled __read_mostly;
220
221static void set_pageblock_migratetype(struct page *page, int migratetype)
222{
223
224	if (unlikely(page_group_by_mobility_disabled))
225		migratetype = MIGRATE_UNMOVABLE;
226
227	set_pageblock_flags_group(page, (unsigned long)migratetype,
228					PB_migrate, PB_migrate_end);
229}
230
231bool oom_killer_disabled __read_mostly;
232
233#ifdef CONFIG_DEBUG_VM
234static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
235{
236	int ret = 0;
237	unsigned seq;
238	unsigned long pfn = page_to_pfn(page);
239
240	do {
241		seq = zone_span_seqbegin(zone);
242		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243			ret = 1;
244		else if (pfn < zone->zone_start_pfn)
245			ret = 1;
246	} while (zone_span_seqretry(zone, seq));
247
248	return ret;
249}
250
251static int page_is_consistent(struct zone *zone, struct page *page)
252{
253	if (!pfn_valid_within(page_to_pfn(page)))
254		return 0;
255	if (zone != page_zone(page))
256		return 0;
257
258	return 1;
259}
260/*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
263static int bad_range(struct zone *zone, struct page *page)
264{
265	if (page_outside_zone_boundaries(zone, page))
266		return 1;
267	if (!page_is_consistent(zone, page))
268		return 1;
269
270	return 0;
271}
272#else
273static inline int bad_range(struct zone *zone, struct page *page)
274{
275	return 0;
276}
277#endif
278
279static void bad_page(struct page *page)
280{
281	static unsigned long resume;
282	static unsigned long nr_shown;
283	static unsigned long nr_unshown;
284
285	/* Don't complain about poisoned pages */
286	if (PageHWPoison(page)) {
287		reset_page_mapcount(page); /* remove PageBuddy */
288		return;
289	}
290
291	/*
292	 * Allow a burst of 60 reports, then keep quiet for that minute;
293	 * or allow a steady drip of one report per second.
294	 */
295	if (nr_shown == 60) {
296		if (time_before(jiffies, resume)) {
297			nr_unshown++;
298			goto out;
299		}
300		if (nr_unshown) {
301			printk(KERN_ALERT
302			      "BUG: Bad page state: %lu messages suppressed\n",
303				nr_unshown);
304			nr_unshown = 0;
305		}
306		nr_shown = 0;
307	}
308	if (nr_shown++ == 0)
309		resume = jiffies + 60 * HZ;
310
311	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
312		current->comm, page_to_pfn(page));
313	dump_page(page);
314
315	print_modules();
316	dump_stack();
317out:
318	/* Leave bad fields for debug, except PageBuddy could make trouble */
319	reset_page_mapcount(page); /* remove PageBuddy */
320	add_taint(TAINT_BAD_PAGE);
321}
322
323/*
324 * Higher-order pages are called "compound pages".  They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
330 * All pages have PG_compound set.  All tail pages have their ->first_page
331 * pointing at the head page.
332 *
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function.  Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
336 */
337
338static void free_compound_page(struct page *page)
339{
340	__free_pages_ok(page, compound_order(page));
341}
342
343void prep_compound_page(struct page *page, unsigned long order)
344{
345	int i;
346	int nr_pages = 1 << order;
347
348	set_compound_page_dtor(page, free_compound_page);
349	set_compound_order(page, order);
350	__SetPageHead(page);
351	for (i = 1; i < nr_pages; i++) {
352		struct page *p = page + i;
353		__SetPageTail(p);
354		set_page_count(p, 0);
355		p->first_page = page;
356	}
357}
358
359/* update __split_huge_page_refcount if you change this function */
360static int destroy_compound_page(struct page *page, unsigned long order)
361{
362	int i;
363	int nr_pages = 1 << order;
364	int bad = 0;
365
366	if (unlikely(compound_order(page) != order) ||
367	    unlikely(!PageHead(page))) {
368		bad_page(page);
369		bad++;
370	}
371
372	__ClearPageHead(page);
373
374	for (i = 1; i < nr_pages; i++) {
375		struct page *p = page + i;
376
377		if (unlikely(!PageTail(p) || (p->first_page != page))) {
378			bad_page(page);
379			bad++;
380		}
381		__ClearPageTail(p);
382	}
383
384	return bad;
385}
386
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389	int i;
390
391	/*
392	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393	 * and __GFP_HIGHMEM from hard or soft interrupt context.
394	 */
395	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396	for (i = 0; i < (1 << order); i++)
397		clear_highpage(page + i);
398}
399
400#ifdef CONFIG_DEBUG_PAGEALLOC
401unsigned int _debug_guardpage_minorder;
402
403static int __init debug_guardpage_minorder_setup(char *buf)
404{
405	unsigned long res;
406
407	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
408		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409		return 0;
410	}
411	_debug_guardpage_minorder = res;
412	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413	return 0;
414}
415__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
417static inline void set_page_guard_flag(struct page *page)
418{
419	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420}
421
422static inline void clear_page_guard_flag(struct page *page)
423{
424	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426#else
427static inline void set_page_guard_flag(struct page *page) { }
428static inline void clear_page_guard_flag(struct page *page) { }
429#endif
430
431static inline void set_page_order(struct page *page, int order)
432{
433	set_page_private(page, order);
434	__SetPageBuddy(page);
435}
436
437static inline void rmv_page_order(struct page *page)
438{
439	__ClearPageBuddy(page);
440	set_page_private(page, 0);
441}
442
443/*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 *     B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 *     P = B & ~(1 << O)
457 *
458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
459 */
460static inline unsigned long
461__find_buddy_index(unsigned long page_idx, unsigned int order)
462{
463	return page_idx ^ (1 << order);
464}
465
466/*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
469 * (a) the buddy is not in a hole &&
470 * (b) the buddy is in the buddy system &&
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
473 *
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
476 *
477 * For recording page's order, we use page_private(page).
478 */
479static inline int page_is_buddy(struct page *page, struct page *buddy,
480								int order)
481{
482	if (!pfn_valid_within(page_to_pfn(buddy)))
483		return 0;
484
485	if (page_zone_id(page) != page_zone_id(buddy))
486		return 0;
487
488	if (page_is_guard(buddy) && page_order(buddy) == order) {
489		VM_BUG_ON(page_count(buddy) != 0);
490		return 1;
491	}
492
493	if (PageBuddy(buddy) && page_order(buddy) == order) {
494		VM_BUG_ON(page_count(buddy) != 0);
495		return 1;
496	}
497	return 0;
498}
499
500/*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514 * order is recorded in page_private(page) field.
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other.  That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
520 *
521 * -- wli
522 */
523
524static inline void __free_one_page(struct page *page,
525		struct zone *zone, unsigned int order,
526		int migratetype)
527{
528	unsigned long page_idx;
529	unsigned long combined_idx;
530	unsigned long uninitialized_var(buddy_idx);
531	struct page *buddy;
532
533	if (unlikely(PageCompound(page)))
534		if (unlikely(destroy_compound_page(page, order)))
535			return;
536
537	VM_BUG_ON(migratetype == -1);
538
539	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
541	VM_BUG_ON(page_idx & ((1 << order) - 1));
542	VM_BUG_ON(bad_range(zone, page));
543
544	while (order < MAX_ORDER-1) {
545		buddy_idx = __find_buddy_index(page_idx, order);
546		buddy = page + (buddy_idx - page_idx);
547		if (!page_is_buddy(page, buddy, order))
548			break;
549		/*
550		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551		 * merge with it and move up one order.
552		 */
553		if (page_is_guard(buddy)) {
554			clear_page_guard_flag(buddy);
555			set_page_private(page, 0);
556			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557		} else {
558			list_del(&buddy->lru);
559			zone->free_area[order].nr_free--;
560			rmv_page_order(buddy);
561		}
562		combined_idx = buddy_idx & page_idx;
563		page = page + (combined_idx - page_idx);
564		page_idx = combined_idx;
565		order++;
566	}
567	set_page_order(page, order);
568
569	/*
570	 * If this is not the largest possible page, check if the buddy
571	 * of the next-highest order is free. If it is, it's possible
572	 * that pages are being freed that will coalesce soon. In case,
573	 * that is happening, add the free page to the tail of the list
574	 * so it's less likely to be used soon and more likely to be merged
575	 * as a higher order page
576	 */
577	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
578		struct page *higher_page, *higher_buddy;
579		combined_idx = buddy_idx & page_idx;
580		higher_page = page + (combined_idx - page_idx);
581		buddy_idx = __find_buddy_index(combined_idx, order + 1);
582		higher_buddy = page + (buddy_idx - combined_idx);
583		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584			list_add_tail(&page->lru,
585				&zone->free_area[order].free_list[migratetype]);
586			goto out;
587		}
588	}
589
590	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591out:
592	zone->free_area[order].nr_free++;
593}
594
595/*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
600static inline void free_page_mlock(struct page *page)
601{
602	__dec_zone_page_state(page, NR_MLOCK);
603	__count_vm_event(UNEVICTABLE_MLOCKFREED);
604}
605
606static inline int free_pages_check(struct page *page)
607{
608	if (unlikely(page_mapcount(page) |
609		(page->mapping != NULL)  |
610		(atomic_read(&page->_count) != 0) |
611		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612		(mem_cgroup_bad_page_check(page)))) {
613		bad_page(page);
614		return 1;
615	}
616	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618	return 0;
619}
620
621/*
622 * Frees a number of pages from the PCP lists
623 * Assumes all pages on list are in same zone, and of same order.
624 * count is the number of pages to free.
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
632static void free_pcppages_bulk(struct zone *zone, int count,
633					struct per_cpu_pages *pcp)
634{
635	int migratetype = 0;
636	int batch_free = 0;
637	int to_free = count;
638
639	spin_lock(&zone->lock);
640	zone->all_unreclaimable = 0;
641	zone->pages_scanned = 0;
642
643	while (to_free) {
644		struct page *page;
645		struct list_head *list;
646
647		/*
648		 * Remove pages from lists in a round-robin fashion. A
649		 * batch_free count is maintained that is incremented when an
650		 * empty list is encountered.  This is so more pages are freed
651		 * off fuller lists instead of spinning excessively around empty
652		 * lists
653		 */
654		do {
655			batch_free++;
656			if (++migratetype == MIGRATE_PCPTYPES)
657				migratetype = 0;
658			list = &pcp->lists[migratetype];
659		} while (list_empty(list));
660
661		/* This is the only non-empty list. Free them all. */
662		if (batch_free == MIGRATE_PCPTYPES)
663			batch_free = to_free;
664
665		do {
666			page = list_entry(list->prev, struct page, lru);
667			/* must delete as __free_one_page list manipulates */
668			list_del(&page->lru);
669			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670			__free_one_page(page, zone, 0, page_private(page));
671			trace_mm_page_pcpu_drain(page, 0, page_private(page));
672		} while (--to_free && --batch_free && !list_empty(list));
673	}
674	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
675	spin_unlock(&zone->lock);
676}
677
678static void free_one_page(struct zone *zone, struct page *page, int order,
679				int migratetype)
680{
681	spin_lock(&zone->lock);
682	zone->all_unreclaimable = 0;
683	zone->pages_scanned = 0;
684
685	__free_one_page(page, zone, order, migratetype);
686	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
687	spin_unlock(&zone->lock);
688}
689
690static bool free_pages_prepare(struct page *page, unsigned int order)
691{
692	int i;
693	int bad = 0;
694
695	trace_mm_page_free(page, order);
696	kmemcheck_free_shadow(page, order);
697
698	if (PageAnon(page))
699		page->mapping = NULL;
700	for (i = 0; i < (1 << order); i++)
701		bad += free_pages_check(page + i);
702	if (bad)
703		return false;
704
705	if (!PageHighMem(page)) {
706		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
707		debug_check_no_obj_freed(page_address(page),
708					   PAGE_SIZE << order);
709	}
710	arch_free_page(page, order);
711	kernel_map_pages(page, 1 << order, 0);
712
713	return true;
714}
715
716static void __free_pages_ok(struct page *page, unsigned int order)
717{
718	unsigned long flags;
719	int wasMlocked = __TestClearPageMlocked(page);
720
721	if (!free_pages_prepare(page, order))
722		return;
723
724	local_irq_save(flags);
725	if (unlikely(wasMlocked))
726		free_page_mlock(page);
727	__count_vm_events(PGFREE, 1 << order);
728	free_one_page(page_zone(page), page, order,
729					get_pageblock_migratetype(page));
730	local_irq_restore(flags);
731}
732
733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734{
735	unsigned int nr_pages = 1 << order;
736	unsigned int loop;
737
738	prefetchw(page);
739	for (loop = 0; loop < nr_pages; loop++) {
740		struct page *p = &page[loop];
741
742		if (loop + 1 < nr_pages)
743			prefetchw(p + 1);
744		__ClearPageReserved(p);
745		set_page_count(p, 0);
746	}
747
748	set_page_refcounted(page);
749	__free_pages(page, order);
750}
751
752
753/*
754 * The order of subdivision here is critical for the IO subsystem.
755 * Please do not alter this order without good reasons and regression
756 * testing. Specifically, as large blocks of memory are subdivided,
757 * the order in which smaller blocks are delivered depends on the order
758 * they're subdivided in this function. This is the primary factor
759 * influencing the order in which pages are delivered to the IO
760 * subsystem according to empirical testing, and this is also justified
761 * by considering the behavior of a buddy system containing a single
762 * large block of memory acted on by a series of small allocations.
763 * This behavior is a critical factor in sglist merging's success.
764 *
765 * -- wli
766 */
767static inline void expand(struct zone *zone, struct page *page,
768	int low, int high, struct free_area *area,
769	int migratetype)
770{
771	unsigned long size = 1 << high;
772
773	while (high > low) {
774		area--;
775		high--;
776		size >>= 1;
777		VM_BUG_ON(bad_range(zone, &page[size]));
778
779#ifdef CONFIG_DEBUG_PAGEALLOC
780		if (high < debug_guardpage_minorder()) {
781			/*
782			 * Mark as guard pages (or page), that will allow to
783			 * merge back to allocator when buddy will be freed.
784			 * Corresponding page table entries will not be touched,
785			 * pages will stay not present in virtual address space
786			 */
787			INIT_LIST_HEAD(&page[size].lru);
788			set_page_guard_flag(&page[size]);
789			set_page_private(&page[size], high);
790			/* Guard pages are not available for any usage */
791			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792			continue;
793		}
794#endif
795		list_add(&page[size].lru, &area->free_list[migratetype]);
796		area->nr_free++;
797		set_page_order(&page[size], high);
798	}
799}
800
801/*
802 * This page is about to be returned from the page allocator
803 */
804static inline int check_new_page(struct page *page)
805{
806	if (unlikely(page_mapcount(page) |
807		(page->mapping != NULL)  |
808		(atomic_read(&page->_count) != 0)  |
809		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810		(mem_cgroup_bad_page_check(page)))) {
811		bad_page(page);
812		return 1;
813	}
814	return 0;
815}
816
817static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
818{
819	int i;
820
821	for (i = 0; i < (1 << order); i++) {
822		struct page *p = page + i;
823		if (unlikely(check_new_page(p)))
824			return 1;
825	}
826
827	set_page_private(page, 0);
828	set_page_refcounted(page);
829
830	arch_alloc_page(page, order);
831	kernel_map_pages(page, 1 << order, 1);
832
833	if (gfp_flags & __GFP_ZERO)
834		prep_zero_page(page, order, gfp_flags);
835
836	if (order && (gfp_flags & __GFP_COMP))
837		prep_compound_page(page, order);
838
839	return 0;
840}
841
842/*
843 * Go through the free lists for the given migratetype and remove
844 * the smallest available page from the freelists
845 */
846static inline
847struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
848						int migratetype)
849{
850	unsigned int current_order;
851	struct free_area * area;
852	struct page *page;
853
854	/* Find a page of the appropriate size in the preferred list */
855	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856		area = &(zone->free_area[current_order]);
857		if (list_empty(&area->free_list[migratetype]))
858			continue;
859
860		page = list_entry(area->free_list[migratetype].next,
861							struct page, lru);
862		list_del(&page->lru);
863		rmv_page_order(page);
864		area->nr_free--;
865		expand(zone, page, order, current_order, area, migratetype);
866		return page;
867	}
868
869	return NULL;
870}
871
872
873/*
874 * This array describes the order lists are fallen back to when
875 * the free lists for the desirable migrate type are depleted
876 */
877static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
878	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
879	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
880	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
882};
883
884/*
885 * Move the free pages in a range to the free lists of the requested type.
886 * Note that start_page and end_pages are not aligned on a pageblock
887 * boundary. If alignment is required, use move_freepages_block()
888 */
889static int move_freepages(struct zone *zone,
890			  struct page *start_page, struct page *end_page,
891			  int migratetype)
892{
893	struct page *page;
894	unsigned long order;
895	int pages_moved = 0;
896
897#ifndef CONFIG_HOLES_IN_ZONE
898	/*
899	 * page_zone is not safe to call in this context when
900	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901	 * anyway as we check zone boundaries in move_freepages_block().
902	 * Remove at a later date when no bug reports exist related to
903	 * grouping pages by mobility
904	 */
905	BUG_ON(page_zone(start_page) != page_zone(end_page));
906#endif
907
908	for (page = start_page; page <= end_page;) {
909		/* Make sure we are not inadvertently changing nodes */
910		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
911
912		if (!pfn_valid_within(page_to_pfn(page))) {
913			page++;
914			continue;
915		}
916
917		if (!PageBuddy(page)) {
918			page++;
919			continue;
920		}
921
922		order = page_order(page);
923		list_move(&page->lru,
924			  &zone->free_area[order].free_list[migratetype]);
925		page += 1 << order;
926		pages_moved += 1 << order;
927	}
928
929	return pages_moved;
930}
931
932static int move_freepages_block(struct zone *zone, struct page *page,
933				int migratetype)
934{
935	unsigned long start_pfn, end_pfn;
936	struct page *start_page, *end_page;
937
938	start_pfn = page_to_pfn(page);
939	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
940	start_page = pfn_to_page(start_pfn);
941	end_page = start_page + pageblock_nr_pages - 1;
942	end_pfn = start_pfn + pageblock_nr_pages - 1;
943
944	/* Do not cross zone boundaries */
945	if (start_pfn < zone->zone_start_pfn)
946		start_page = page;
947	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948		return 0;
949
950	return move_freepages(zone, start_page, end_page, migratetype);
951}
952
953static void change_pageblock_range(struct page *pageblock_page,
954					int start_order, int migratetype)
955{
956	int nr_pageblocks = 1 << (start_order - pageblock_order);
957
958	while (nr_pageblocks--) {
959		set_pageblock_migratetype(pageblock_page, migratetype);
960		pageblock_page += pageblock_nr_pages;
961	}
962}
963
964/* Remove an element from the buddy allocator from the fallback list */
965static inline struct page *
966__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
967{
968	struct free_area * area;
969	int current_order;
970	struct page *page;
971	int migratetype, i;
972
973	/* Find the largest possible block of pages in the other list */
974	for (current_order = MAX_ORDER-1; current_order >= order;
975						--current_order) {
976		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977			migratetype = fallbacks[start_migratetype][i];
978
979			/* MIGRATE_RESERVE handled later if necessary */
980			if (migratetype == MIGRATE_RESERVE)
981				continue;
982
983			area = &(zone->free_area[current_order]);
984			if (list_empty(&area->free_list[migratetype]))
985				continue;
986
987			page = list_entry(area->free_list[migratetype].next,
988					struct page, lru);
989			area->nr_free--;
990
991			/*
992			 * If breaking a large block of pages, move all free
993			 * pages to the preferred allocation list. If falling
994			 * back for a reclaimable kernel allocation, be more
995			 * aggressive about taking ownership of free pages
996			 */
997			if (unlikely(current_order >= (pageblock_order >> 1)) ||
998					start_migratetype == MIGRATE_RECLAIMABLE ||
999					page_group_by_mobility_disabled) {
1000				unsigned long pages;
1001				pages = move_freepages_block(zone, page,
1002								start_migratetype);
1003
1004				/* Claim the whole block if over half of it is free */
1005				if (pages >= (1 << (pageblock_order-1)) ||
1006						page_group_by_mobility_disabled)
1007					set_pageblock_migratetype(page,
1008								start_migratetype);
1009
1010				migratetype = start_migratetype;
1011			}
1012
1013			/* Remove the page from the freelists */
1014			list_del(&page->lru);
1015			rmv_page_order(page);
1016
1017			/* Take ownership for orders >= pageblock_order */
1018			if (current_order >= pageblock_order)
1019				change_pageblock_range(page, current_order,
1020							start_migratetype);
1021
1022			expand(zone, page, order, current_order, area, migratetype);
1023
1024			trace_mm_page_alloc_extfrag(page, order, current_order,
1025				start_migratetype, migratetype);
1026
1027			return page;
1028		}
1029	}
1030
1031	return NULL;
1032}
1033
1034/*
1035 * Do the hard work of removing an element from the buddy allocator.
1036 * Call me with the zone->lock already held.
1037 */
1038static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039						int migratetype)
1040{
1041	struct page *page;
1042
1043retry_reserve:
1044	page = __rmqueue_smallest(zone, order, migratetype);
1045
1046	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1047		page = __rmqueue_fallback(zone, order, migratetype);
1048
1049		/*
1050		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051		 * is used because __rmqueue_smallest is an inline function
1052		 * and we want just one call site
1053		 */
1054		if (!page) {
1055			migratetype = MIGRATE_RESERVE;
1056			goto retry_reserve;
1057		}
1058	}
1059
1060	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1061	return page;
1062}
1063
1064/*
1065 * Obtain a specified number of elements from the buddy allocator, all under
1066 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1067 * Returns the number of new pages which were placed at *list.
1068 */
1069static int rmqueue_bulk(struct zone *zone, unsigned int order,
1070			unsigned long count, struct list_head *list,
1071			int migratetype, int cold)
1072{
1073	int i;
1074
1075	spin_lock(&zone->lock);
1076	for (i = 0; i < count; ++i) {
1077		struct page *page = __rmqueue(zone, order, migratetype);
1078		if (unlikely(page == NULL))
1079			break;
1080
1081		/*
1082		 * Split buddy pages returned by expand() are received here
1083		 * in physical page order. The page is added to the callers and
1084		 * list and the list head then moves forward. From the callers
1085		 * perspective, the linked list is ordered by page number in
1086		 * some conditions. This is useful for IO devices that can
1087		 * merge IO requests if the physical pages are ordered
1088		 * properly.
1089		 */
1090		if (likely(cold == 0))
1091			list_add(&page->lru, list);
1092		else
1093			list_add_tail(&page->lru, list);
1094		set_page_private(page, migratetype);
1095		list = &page->lru;
1096	}
1097	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1098	spin_unlock(&zone->lock);
1099	return i;
1100}
1101
1102#ifdef CONFIG_NUMA
1103/*
1104 * Called from the vmstat counter updater to drain pagesets of this
1105 * currently executing processor on remote nodes after they have
1106 * expired.
1107 *
1108 * Note that this function must be called with the thread pinned to
1109 * a single processor.
1110 */
1111void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1112{
1113	unsigned long flags;
1114	int to_drain;
1115
1116	local_irq_save(flags);
1117	if (pcp->count >= pcp->batch)
1118		to_drain = pcp->batch;
1119	else
1120		to_drain = pcp->count;
1121	free_pcppages_bulk(zone, to_drain, pcp);
1122	pcp->count -= to_drain;
1123	local_irq_restore(flags);
1124}
1125#endif
1126
1127/*
1128 * Drain pages of the indicated processor.
1129 *
1130 * The processor must either be the current processor and the
1131 * thread pinned to the current processor or a processor that
1132 * is not online.
1133 */
1134static void drain_pages(unsigned int cpu)
1135{
1136	unsigned long flags;
1137	struct zone *zone;
1138
1139	for_each_populated_zone(zone) {
1140		struct per_cpu_pageset *pset;
1141		struct per_cpu_pages *pcp;
1142
1143		local_irq_save(flags);
1144		pset = per_cpu_ptr(zone->pageset, cpu);
1145
1146		pcp = &pset->pcp;
1147		if (pcp->count) {
1148			free_pcppages_bulk(zone, pcp->count, pcp);
1149			pcp->count = 0;
1150		}
1151		local_irq_restore(flags);
1152	}
1153}
1154
1155/*
1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1157 */
1158void drain_local_pages(void *arg)
1159{
1160	drain_pages(smp_processor_id());
1161}
1162
1163/*
1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1165 */
1166void drain_all_pages(void)
1167{
1168	on_each_cpu(drain_local_pages, NULL, 1);
1169}
1170
1171#ifdef CONFIG_HIBERNATION
1172
1173void mark_free_pages(struct zone *zone)
1174{
1175	unsigned long pfn, max_zone_pfn;
1176	unsigned long flags;
1177	int order, t;
1178	struct list_head *curr;
1179
1180	if (!zone->spanned_pages)
1181		return;
1182
1183	spin_lock_irqsave(&zone->lock, flags);
1184
1185	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1186	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187		if (pfn_valid(pfn)) {
1188			struct page *page = pfn_to_page(pfn);
1189
1190			if (!swsusp_page_is_forbidden(page))
1191				swsusp_unset_page_free(page);
1192		}
1193
1194	for_each_migratetype_order(order, t) {
1195		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1196			unsigned long i;
1197
1198			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1199			for (i = 0; i < (1UL << order); i++)
1200				swsusp_set_page_free(pfn_to_page(pfn + i));
1201		}
1202	}
1203	spin_unlock_irqrestore(&zone->lock, flags);
1204}
1205#endif /* CONFIG_PM */
1206
1207/*
1208 * Free a 0-order page
1209 * cold == 1 ? free a cold page : free a hot page
1210 */
1211void free_hot_cold_page(struct page *page, int cold)
1212{
1213	struct zone *zone = page_zone(page);
1214	struct per_cpu_pages *pcp;
1215	unsigned long flags;
1216	int migratetype;
1217	int wasMlocked = __TestClearPageMlocked(page);
1218
1219	if (!free_pages_prepare(page, 0))
1220		return;
1221
1222	migratetype = get_pageblock_migratetype(page);
1223	set_page_private(page, migratetype);
1224	local_irq_save(flags);
1225	if (unlikely(wasMlocked))
1226		free_page_mlock(page);
1227	__count_vm_event(PGFREE);
1228
1229	/*
1230	 * We only track unmovable, reclaimable and movable on pcp lists.
1231	 * Free ISOLATE pages back to the allocator because they are being
1232	 * offlined but treat RESERVE as movable pages so we can get those
1233	 * areas back if necessary. Otherwise, we may have to free
1234	 * excessively into the page allocator
1235	 */
1236	if (migratetype >= MIGRATE_PCPTYPES) {
1237		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1238			free_one_page(zone, page, 0, migratetype);
1239			goto out;
1240		}
1241		migratetype = MIGRATE_MOVABLE;
1242	}
1243
1244	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1245	if (cold)
1246		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1247	else
1248		list_add(&page->lru, &pcp->lists[migratetype]);
1249	pcp->count++;
1250	if (pcp->count >= pcp->high) {
1251		free_pcppages_bulk(zone, pcp->batch, pcp);
1252		pcp->count -= pcp->batch;
1253	}
1254
1255out:
1256	local_irq_restore(flags);
1257}
1258
1259/*
1260 * Free a list of 0-order pages
1261 */
1262void free_hot_cold_page_list(struct list_head *list, int cold)
1263{
1264	struct page *page, *next;
1265
1266	list_for_each_entry_safe(page, next, list, lru) {
1267		trace_mm_page_free_batched(page, cold);
1268		free_hot_cold_page(page, cold);
1269	}
1270}
1271
1272/*
1273 * split_page takes a non-compound higher-order page, and splits it into
1274 * n (1<<order) sub-pages: page[0..n]
1275 * Each sub-page must be freed individually.
1276 *
1277 * Note: this is probably too low level an operation for use in drivers.
1278 * Please consult with lkml before using this in your driver.
1279 */
1280void split_page(struct page *page, unsigned int order)
1281{
1282	int i;
1283
1284	VM_BUG_ON(PageCompound(page));
1285	VM_BUG_ON(!page_count(page));
1286
1287#ifdef CONFIG_KMEMCHECK
1288	/*
1289	 * Split shadow pages too, because free(page[0]) would
1290	 * otherwise free the whole shadow.
1291	 */
1292	if (kmemcheck_page_is_tracked(page))
1293		split_page(virt_to_page(page[0].shadow), order);
1294#endif
1295
1296	for (i = 1; i < (1 << order); i++)
1297		set_page_refcounted(page + i);
1298}
1299
1300/*
1301 * Similar to split_page except the page is already free. As this is only
1302 * being used for migration, the migratetype of the block also changes.
1303 * As this is called with interrupts disabled, the caller is responsible
1304 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1305 * are enabled.
1306 *
1307 * Note: this is probably too low level an operation for use in drivers.
1308 * Please consult with lkml before using this in your driver.
1309 */
1310int split_free_page(struct page *page)
1311{
1312	unsigned int order;
1313	unsigned long watermark;
1314	struct zone *zone;
1315
1316	BUG_ON(!PageBuddy(page));
1317
1318	zone = page_zone(page);
1319	order = page_order(page);
1320
1321	/* Obey watermarks as if the page was being allocated */
1322	watermark = low_wmark_pages(zone) + (1 << order);
1323	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1324		return 0;
1325
1326	/* Remove page from free list */
1327	list_del(&page->lru);
1328	zone->free_area[order].nr_free--;
1329	rmv_page_order(page);
1330	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1331
1332	/* Split into individual pages */
1333	set_page_refcounted(page);
1334	split_page(page, order);
1335
1336	if (order >= pageblock_order - 1) {
1337		struct page *endpage = page + (1 << order) - 1;
1338		for (; page < endpage; page += pageblock_nr_pages)
1339			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1340	}
1341
1342	return 1 << order;
1343}
1344
1345/*
1346 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1347 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1348 * or two.
1349 */
1350static inline
1351struct page *buffered_rmqueue(struct zone *preferred_zone,
1352			struct zone *zone, int order, gfp_t gfp_flags,
1353			int migratetype)
1354{
1355	unsigned long flags;
1356	struct page *page;
1357	int cold = !!(gfp_flags & __GFP_COLD);
1358
1359again:
1360	if (likely(order == 0)) {
1361		struct per_cpu_pages *pcp;
1362		struct list_head *list;
1363
1364		local_irq_save(flags);
1365		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1366		list = &pcp->lists[migratetype];
1367		if (list_empty(list)) {
1368			pcp->count += rmqueue_bulk(zone, 0,
1369					pcp->batch, list,
1370					migratetype, cold);
1371			if (unlikely(list_empty(list)))
1372				goto failed;
1373		}
1374
1375		if (cold)
1376			page = list_entry(list->prev, struct page, lru);
1377		else
1378			page = list_entry(list->next, struct page, lru);
1379
1380		list_del(&page->lru);
1381		pcp->count--;
1382	} else {
1383		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1384			/*
1385			 * __GFP_NOFAIL is not to be used in new code.
1386			 *
1387			 * All __GFP_NOFAIL callers should be fixed so that they
1388			 * properly detect and handle allocation failures.
1389			 *
1390			 * We most definitely don't want callers attempting to
1391			 * allocate greater than order-1 page units with
1392			 * __GFP_NOFAIL.
1393			 */
1394			WARN_ON_ONCE(order > 1);
1395		}
1396		spin_lock_irqsave(&zone->lock, flags);
1397		page = __rmqueue(zone, order, migratetype);
1398		spin_unlock(&zone->lock);
1399		if (!page)
1400			goto failed;
1401		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1402	}
1403
1404	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1405	zone_statistics(preferred_zone, zone, gfp_flags);
1406	local_irq_restore(flags);
1407
1408	VM_BUG_ON(bad_range(zone, page));
1409	if (prep_new_page(page, order, gfp_flags))
1410		goto again;
1411	return page;
1412
1413failed:
1414	local_irq_restore(flags);
1415	return NULL;
1416}
1417
1418/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1419#define ALLOC_WMARK_MIN		WMARK_MIN
1420#define ALLOC_WMARK_LOW		WMARK_LOW
1421#define ALLOC_WMARK_HIGH	WMARK_HIGH
1422#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1423
1424/* Mask to get the watermark bits */
1425#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1426
1427#define ALLOC_HARDER		0x10 /* try to alloc harder */
1428#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1429#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1430
1431#ifdef CONFIG_FAIL_PAGE_ALLOC
1432
1433static struct {
1434	struct fault_attr attr;
1435
1436	u32 ignore_gfp_highmem;
1437	u32 ignore_gfp_wait;
1438	u32 min_order;
1439} fail_page_alloc = {
1440	.attr = FAULT_ATTR_INITIALIZER,
1441	.ignore_gfp_wait = 1,
1442	.ignore_gfp_highmem = 1,
1443	.min_order = 1,
1444};
1445
1446static int __init setup_fail_page_alloc(char *str)
1447{
1448	return setup_fault_attr(&fail_page_alloc.attr, str);
1449}
1450__setup("fail_page_alloc=", setup_fail_page_alloc);
1451
1452static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1453{
1454	if (order < fail_page_alloc.min_order)
1455		return 0;
1456	if (gfp_mask & __GFP_NOFAIL)
1457		return 0;
1458	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1459		return 0;
1460	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1461		return 0;
1462
1463	return should_fail(&fail_page_alloc.attr, 1 << order);
1464}
1465
1466#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1467
1468static int __init fail_page_alloc_debugfs(void)
1469{
1470	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1471	struct dentry *dir;
1472
1473	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1474					&fail_page_alloc.attr);
1475	if (IS_ERR(dir))
1476		return PTR_ERR(dir);
1477
1478	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1479				&fail_page_alloc.ignore_gfp_wait))
1480		goto fail;
1481	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1482				&fail_page_alloc.ignore_gfp_highmem))
1483		goto fail;
1484	if (!debugfs_create_u32("min-order", mode, dir,
1485				&fail_page_alloc.min_order))
1486		goto fail;
1487
1488	return 0;
1489fail:
1490	debugfs_remove_recursive(dir);
1491
1492	return -ENOMEM;
1493}
1494
1495late_initcall(fail_page_alloc_debugfs);
1496
1497#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1498
1499#else /* CONFIG_FAIL_PAGE_ALLOC */
1500
1501static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1502{
1503	return 0;
1504}
1505
1506#endif /* CONFIG_FAIL_PAGE_ALLOC */
1507
1508/*
1509 * Return true if free pages are above 'mark'. This takes into account the order
1510 * of the allocation.
1511 */
1512static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1513		      int classzone_idx, int alloc_flags, long free_pages)
1514{
1515	/* free_pages my go negative - that's OK */
1516	long min = mark;
1517	int o;
1518
1519	free_pages -= (1 << order) - 1;
1520	if (alloc_flags & ALLOC_HIGH)
1521		min -= min / 2;
1522	if (alloc_flags & ALLOC_HARDER)
1523		min -= min / 4;
1524
1525	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1526		return false;
1527	for (o = 0; o < order; o++) {
1528		/* At the next order, this order's pages become unavailable */
1529		free_pages -= z->free_area[o].nr_free << o;
1530
1531		/* Require fewer higher order pages to be free */
1532		min >>= 1;
1533
1534		if (free_pages <= min)
1535			return false;
1536	}
1537	return true;
1538}
1539
1540bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1541		      int classzone_idx, int alloc_flags)
1542{
1543	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1544					zone_page_state(z, NR_FREE_PAGES));
1545}
1546
1547bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1548		      int classzone_idx, int alloc_flags)
1549{
1550	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1551
1552	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1553		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1554
1555	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1556								free_pages);
1557}
1558
1559#ifdef CONFIG_NUMA
1560/*
1561 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1562 * skip over zones that are not allowed by the cpuset, or that have
1563 * been recently (in last second) found to be nearly full.  See further
1564 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1565 * that have to skip over a lot of full or unallowed zones.
1566 *
1567 * If the zonelist cache is present in the passed in zonelist, then
1568 * returns a pointer to the allowed node mask (either the current
1569 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1570 *
1571 * If the zonelist cache is not available for this zonelist, does
1572 * nothing and returns NULL.
1573 *
1574 * If the fullzones BITMAP in the zonelist cache is stale (more than
1575 * a second since last zap'd) then we zap it out (clear its bits.)
1576 *
1577 * We hold off even calling zlc_setup, until after we've checked the
1578 * first zone in the zonelist, on the theory that most allocations will
1579 * be satisfied from that first zone, so best to examine that zone as
1580 * quickly as we can.
1581 */
1582static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1583{
1584	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1585	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1586
1587	zlc = zonelist->zlcache_ptr;
1588	if (!zlc)
1589		return NULL;
1590
1591	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1592		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1593		zlc->last_full_zap = jiffies;
1594	}
1595
1596	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1597					&cpuset_current_mems_allowed :
1598					&node_states[N_HIGH_MEMORY];
1599	return allowednodes;
1600}
1601
1602/*
1603 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1604 * if it is worth looking at further for free memory:
1605 *  1) Check that the zone isn't thought to be full (doesn't have its
1606 *     bit set in the zonelist_cache fullzones BITMAP).
1607 *  2) Check that the zones node (obtained from the zonelist_cache
1608 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1609 * Return true (non-zero) if zone is worth looking at further, or
1610 * else return false (zero) if it is not.
1611 *
1612 * This check -ignores- the distinction between various watermarks,
1613 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1614 * found to be full for any variation of these watermarks, it will
1615 * be considered full for up to one second by all requests, unless
1616 * we are so low on memory on all allowed nodes that we are forced
1617 * into the second scan of the zonelist.
1618 *
1619 * In the second scan we ignore this zonelist cache and exactly
1620 * apply the watermarks to all zones, even it is slower to do so.
1621 * We are low on memory in the second scan, and should leave no stone
1622 * unturned looking for a free page.
1623 */
1624static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625						nodemask_t *allowednodes)
1626{
1627	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1628	int i;				/* index of *z in zonelist zones */
1629	int n;				/* node that zone *z is on */
1630
1631	zlc = zonelist->zlcache_ptr;
1632	if (!zlc)
1633		return 1;
1634
1635	i = z - zonelist->_zonerefs;
1636	n = zlc->z_to_n[i];
1637
1638	/* This zone is worth trying if it is allowed but not full */
1639	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1640}
1641
1642/*
1643 * Given 'z' scanning a zonelist, set the corresponding bit in
1644 * zlc->fullzones, so that subsequent attempts to allocate a page
1645 * from that zone don't waste time re-examining it.
1646 */
1647static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1648{
1649	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1650	int i;				/* index of *z in zonelist zones */
1651
1652	zlc = zonelist->zlcache_ptr;
1653	if (!zlc)
1654		return;
1655
1656	i = z - zonelist->_zonerefs;
1657
1658	set_bit(i, zlc->fullzones);
1659}
1660
1661/*
1662 * clear all zones full, called after direct reclaim makes progress so that
1663 * a zone that was recently full is not skipped over for up to a second
1664 */
1665static void zlc_clear_zones_full(struct zonelist *zonelist)
1666{
1667	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1668
1669	zlc = zonelist->zlcache_ptr;
1670	if (!zlc)
1671		return;
1672
1673	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1674}
1675
1676#else	/* CONFIG_NUMA */
1677
1678static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1679{
1680	return NULL;
1681}
1682
1683static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1684				nodemask_t *allowednodes)
1685{
1686	return 1;
1687}
1688
1689static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1690{
1691}
1692
1693static void zlc_clear_zones_full(struct zonelist *zonelist)
1694{
1695}
1696#endif	/* CONFIG_NUMA */
1697
1698/*
1699 * get_page_from_freelist goes through the zonelist trying to allocate
1700 * a page.
1701 */
1702static struct page *
1703get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1704		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1705		struct zone *preferred_zone, int migratetype)
1706{
1707	struct zoneref *z;
1708	struct page *page = NULL;
1709	int classzone_idx;
1710	struct zone *zone;
1711	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1712	int zlc_active = 0;		/* set if using zonelist_cache */
1713	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1714
1715	classzone_idx = zone_idx(preferred_zone);
1716zonelist_scan:
1717	/*
1718	 * Scan zonelist, looking for a zone with enough free.
1719	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1720	 */
1721	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1722						high_zoneidx, nodemask) {
1723		if (NUMA_BUILD && zlc_active &&
1724			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1725				continue;
1726		if ((alloc_flags & ALLOC_CPUSET) &&
1727			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1728				continue;
1729		/*
1730		 * When allocating a page cache page for writing, we
1731		 * want to get it from a zone that is within its dirty
1732		 * limit, such that no single zone holds more than its
1733		 * proportional share of globally allowed dirty pages.
1734		 * The dirty limits take into account the zone's
1735		 * lowmem reserves and high watermark so that kswapd
1736		 * should be able to balance it without having to
1737		 * write pages from its LRU list.
1738		 *
1739		 * This may look like it could increase pressure on
1740		 * lower zones by failing allocations in higher zones
1741		 * before they are full.  But the pages that do spill
1742		 * over are limited as the lower zones are protected
1743		 * by this very same mechanism.  It should not become
1744		 * a practical burden to them.
1745		 *
1746		 * XXX: For now, allow allocations to potentially
1747		 * exceed the per-zone dirty limit in the slowpath
1748		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1749		 * which is important when on a NUMA setup the allowed
1750		 * zones are together not big enough to reach the
1751		 * global limit.  The proper fix for these situations
1752		 * will require awareness of zones in the
1753		 * dirty-throttling and the flusher threads.
1754		 */
1755		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1756		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1757			goto this_zone_full;
1758
1759		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1760		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1761			unsigned long mark;
1762			int ret;
1763
1764			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1765			if (zone_watermark_ok(zone, order, mark,
1766				    classzone_idx, alloc_flags))
1767				goto try_this_zone;
1768
1769			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1770				/*
1771				 * we do zlc_setup if there are multiple nodes
1772				 * and before considering the first zone allowed
1773				 * by the cpuset.
1774				 */
1775				allowednodes = zlc_setup(zonelist, alloc_flags);
1776				zlc_active = 1;
1777				did_zlc_setup = 1;
1778			}
1779
1780			if (zone_reclaim_mode == 0)
1781				goto this_zone_full;
1782
1783			/*
1784			 * As we may have just activated ZLC, check if the first
1785			 * eligible zone has failed zone_reclaim recently.
1786			 */
1787			if (NUMA_BUILD && zlc_active &&
1788				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1789				continue;
1790
1791			ret = zone_reclaim(zone, gfp_mask, order);
1792			switch (ret) {
1793			case ZONE_RECLAIM_NOSCAN:
1794				/* did not scan */
1795				continue;
1796			case ZONE_RECLAIM_FULL:
1797				/* scanned but unreclaimable */
1798				continue;
1799			default:
1800				/* did we reclaim enough */
1801				if (!zone_watermark_ok(zone, order, mark,
1802						classzone_idx, alloc_flags))
1803					goto this_zone_full;
1804			}
1805		}
1806
1807try_this_zone:
1808		page = buffered_rmqueue(preferred_zone, zone, order,
1809						gfp_mask, migratetype);
1810		if (page)
1811			break;
1812this_zone_full:
1813		if (NUMA_BUILD)
1814			zlc_mark_zone_full(zonelist, z);
1815	}
1816
1817	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1818		/* Disable zlc cache for second zonelist scan */
1819		zlc_active = 0;
1820		goto zonelist_scan;
1821	}
1822	return page;
1823}
1824
1825/*
1826 * Large machines with many possible nodes should not always dump per-node
1827 * meminfo in irq context.
1828 */
1829static inline bool should_suppress_show_mem(void)
1830{
1831	bool ret = false;
1832
1833#if NODES_SHIFT > 8
1834	ret = in_interrupt();
1835#endif
1836	return ret;
1837}
1838
1839static DEFINE_RATELIMIT_STATE(nopage_rs,
1840		DEFAULT_RATELIMIT_INTERVAL,
1841		DEFAULT_RATELIMIT_BURST);
1842
1843void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1844{
1845	unsigned int filter = SHOW_MEM_FILTER_NODES;
1846
1847	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1848	    debug_guardpage_minorder() > 0)
1849		return;
1850
1851	/*
1852	 * This documents exceptions given to allocations in certain
1853	 * contexts that are allowed to allocate outside current's set
1854	 * of allowed nodes.
1855	 */
1856	if (!(gfp_mask & __GFP_NOMEMALLOC))
1857		if (test_thread_flag(TIF_MEMDIE) ||
1858		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1859			filter &= ~SHOW_MEM_FILTER_NODES;
1860	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1861		filter &= ~SHOW_MEM_FILTER_NODES;
1862
1863	if (fmt) {
1864		struct va_format vaf;
1865		va_list args;
1866
1867		va_start(args, fmt);
1868
1869		vaf.fmt = fmt;
1870		vaf.va = &args;
1871
1872		pr_warn("%pV", &vaf);
1873
1874		va_end(args);
1875	}
1876
1877	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1878		current->comm, order, gfp_mask);
1879
1880	dump_stack();
1881	if (!should_suppress_show_mem())
1882		show_mem(filter);
1883}
1884
1885static inline int
1886should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1887				unsigned long did_some_progress,
1888				unsigned long pages_reclaimed)
1889{
1890	/* Do not loop if specifically requested */
1891	if (gfp_mask & __GFP_NORETRY)
1892		return 0;
1893
1894	/* Always retry if specifically requested */
1895	if (gfp_mask & __GFP_NOFAIL)
1896		return 1;
1897
1898	/*
1899	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1900	 * making forward progress without invoking OOM. Suspend also disables
1901	 * storage devices so kswapd will not help. Bail if we are suspending.
1902	 */
1903	if (!did_some_progress && pm_suspended_storage())
1904		return 0;
1905
1906	/*
1907	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1908	 * means __GFP_NOFAIL, but that may not be true in other
1909	 * implementations.
1910	 */
1911	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1912		return 1;
1913
1914	/*
1915	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1916	 * specified, then we retry until we no longer reclaim any pages
1917	 * (above), or we've reclaimed an order of pages at least as
1918	 * large as the allocation's order. In both cases, if the
1919	 * allocation still fails, we stop retrying.
1920	 */
1921	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1922		return 1;
1923
1924	return 0;
1925}
1926
1927static inline struct page *
1928__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1929	struct zonelist *zonelist, enum zone_type high_zoneidx,
1930	nodemask_t *nodemask, struct zone *preferred_zone,
1931	int migratetype)
1932{
1933	struct page *page;
1934
1935	/* Acquire the OOM killer lock for the zones in zonelist */
1936	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1937		schedule_timeout_uninterruptible(1);
1938		return NULL;
1939	}
1940
1941	/*
1942	 * Go through the zonelist yet one more time, keep very high watermark
1943	 * here, this is only to catch a parallel oom killing, we must fail if
1944	 * we're still under heavy pressure.
1945	 */
1946	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1947		order, zonelist, high_zoneidx,
1948		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1949		preferred_zone, migratetype);
1950	if (page)
1951		goto out;
1952
1953	if (!(gfp_mask & __GFP_NOFAIL)) {
1954		/* The OOM killer will not help higher order allocs */
1955		if (order > PAGE_ALLOC_COSTLY_ORDER)
1956			goto out;
1957		/* The OOM killer does not needlessly kill tasks for lowmem */
1958		if (high_zoneidx < ZONE_NORMAL)
1959			goto out;
1960		/*
1961		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1962		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1963		 * The caller should handle page allocation failure by itself if
1964		 * it specifies __GFP_THISNODE.
1965		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1966		 */
1967		if (gfp_mask & __GFP_THISNODE)
1968			goto out;
1969	}
1970	/* Exhausted what can be done so it's blamo time */
1971	out_of_memory(zonelist, gfp_mask, order, nodemask);
1972
1973out:
1974	clear_zonelist_oom(zonelist, gfp_mask);
1975	return page;
1976}
1977
1978#ifdef CONFIG_COMPACTION
1979/* Try memory compaction for high-order allocations before reclaim */
1980static struct page *
1981__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1982	struct zonelist *zonelist, enum zone_type high_zoneidx,
1983	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1984	int migratetype, bool sync_migration,
1985	bool *deferred_compaction,
1986	unsigned long *did_some_progress)
1987{
1988	struct page *page;
1989
1990	if (!order)
1991		return NULL;
1992
1993	if (compaction_deferred(preferred_zone)) {
1994		*deferred_compaction = true;
1995		return NULL;
1996	}
1997
1998	current->flags |= PF_MEMALLOC;
1999	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2000						nodemask, sync_migration);
2001	current->flags &= ~PF_MEMALLOC;
2002	if (*did_some_progress != COMPACT_SKIPPED) {
2003
2004		/* Page migration frees to the PCP lists but we want merging */
2005		drain_pages(get_cpu());
2006		put_cpu();
2007
2008		page = get_page_from_freelist(gfp_mask, nodemask,
2009				order, zonelist, high_zoneidx,
2010				alloc_flags, preferred_zone,
2011				migratetype);
2012		if (page) {
2013			preferred_zone->compact_considered = 0;
2014			preferred_zone->compact_defer_shift = 0;
2015			count_vm_event(COMPACTSUCCESS);
2016			return page;
2017		}
2018
2019		/*
2020		 * It's bad if compaction run occurs and fails.
2021		 * The most likely reason is that pages exist,
2022		 * but not enough to satisfy watermarks.
2023		 */
2024		count_vm_event(COMPACTFAIL);
2025
2026		/*
2027		 * As async compaction considers a subset of pageblocks, only
2028		 * defer if the failure was a sync compaction failure.
2029		 */
2030		if (sync_migration)
2031			defer_compaction(preferred_zone);
2032
2033		cond_resched();
2034	}
2035
2036	return NULL;
2037}
2038#else
2039static inline struct page *
2040__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2041	struct zonelist *zonelist, enum zone_type high_zoneidx,
2042	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2043	int migratetype, bool sync_migration,
2044	bool *deferred_compaction,
2045	unsigned long *did_some_progress)
2046{
2047	return NULL;
2048}
2049#endif /* CONFIG_COMPACTION */
2050
2051/* The really slow allocator path where we enter direct reclaim */
2052static inline struct page *
2053__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2054	struct zonelist *zonelist, enum zone_type high_zoneidx,
2055	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2056	int migratetype, unsigned long *did_some_progress)
2057{
2058	struct page *page = NULL;
2059	struct reclaim_state reclaim_state;
2060	bool drained = false;
2061
2062	cond_resched();
2063
2064	/* We now go into synchronous reclaim */
2065	cpuset_memory_pressure_bump();
2066	current->flags |= PF_MEMALLOC;
2067	lockdep_set_current_reclaim_state(gfp_mask);
2068	reclaim_state.reclaimed_slab = 0;
2069	current->reclaim_state = &reclaim_state;
2070
2071	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2072
2073	current->reclaim_state = NULL;
2074	lockdep_clear_current_reclaim_state();
2075	current->flags &= ~PF_MEMALLOC;
2076
2077	cond_resched();
2078
2079	if (unlikely(!(*did_some_progress)))
2080		return NULL;
2081
2082	/* After successful reclaim, reconsider all zones for allocation */
2083	if (NUMA_BUILD)
2084		zlc_clear_zones_full(zonelist);
2085
2086retry:
2087	page = get_page_from_freelist(gfp_mask, nodemask, order,
2088					zonelist, high_zoneidx,
2089					alloc_flags, preferred_zone,
2090					migratetype);
2091
2092	/*
2093	 * If an allocation failed after direct reclaim, it could be because
2094	 * pages are pinned on the per-cpu lists. Drain them and try again
2095	 */
2096	if (!page && !drained) {
2097		drain_all_pages();
2098		drained = true;
2099		goto retry;
2100	}
2101
2102	return page;
2103}
2104
2105/*
2106 * This is called in the allocator slow-path if the allocation request is of
2107 * sufficient urgency to ignore watermarks and take other desperate measures
2108 */
2109static inline struct page *
2110__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2111	struct zonelist *zonelist, enum zone_type high_zoneidx,
2112	nodemask_t *nodemask, struct zone *preferred_zone,
2113	int migratetype)
2114{
2115	struct page *page;
2116
2117	do {
2118		page = get_page_from_freelist(gfp_mask, nodemask, order,
2119			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2120			preferred_zone, migratetype);
2121
2122		if (!page && gfp_mask & __GFP_NOFAIL)
2123			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2124	} while (!page && (gfp_mask & __GFP_NOFAIL));
2125
2126	return page;
2127}
2128
2129static inline
2130void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2131						enum zone_type high_zoneidx,
2132						enum zone_type classzone_idx)
2133{
2134	struct zoneref *z;
2135	struct zone *zone;
2136
2137	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2138		wakeup_kswapd(zone, order, classzone_idx);
2139}
2140
2141static inline int
2142gfp_to_alloc_flags(gfp_t gfp_mask)
2143{
2144	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2145	const gfp_t wait = gfp_mask & __GFP_WAIT;
2146
2147	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2148	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2149
2150	/*
2151	 * The caller may dip into page reserves a bit more if the caller
2152	 * cannot run direct reclaim, or if the caller has realtime scheduling
2153	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2154	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2155	 */
2156	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2157
2158	if (!wait) {
2159		/*
2160		 * Not worth trying to allocate harder for
2161		 * __GFP_NOMEMALLOC even if it can't schedule.
2162		 */
2163		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2164			alloc_flags |= ALLOC_HARDER;
2165		/*
2166		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2167		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2168		 */
2169		alloc_flags &= ~ALLOC_CPUSET;
2170	} else if (unlikely(rt_task(current)) && !in_interrupt())
2171		alloc_flags |= ALLOC_HARDER;
2172
2173	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2174		if (!in_interrupt() &&
2175		    ((current->flags & PF_MEMALLOC) ||
2176		     unlikely(test_thread_flag(TIF_MEMDIE))))
2177			alloc_flags |= ALLOC_NO_WATERMARKS;
2178	}
2179
2180	return alloc_flags;
2181}
2182
2183static inline struct page *
2184__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2185	struct zonelist *zonelist, enum zone_type high_zoneidx,
2186	nodemask_t *nodemask, struct zone *preferred_zone,
2187	int migratetype)
2188{
2189	const gfp_t wait = gfp_mask & __GFP_WAIT;
2190	struct page *page = NULL;
2191	int alloc_flags;
2192	unsigned long pages_reclaimed = 0;
2193	unsigned long did_some_progress;
2194	bool sync_migration = false;
2195	bool deferred_compaction = false;
2196
2197	/*
2198	 * In the slowpath, we sanity check order to avoid ever trying to
2199	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2200	 * be using allocators in order of preference for an area that is
2201	 * too large.
2202	 */
2203	if (order >= MAX_ORDER) {
2204		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2205		return NULL;
2206	}
2207
2208	/*
2209	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2210	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2211	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2212	 * using a larger set of nodes after it has established that the
2213	 * allowed per node queues are empty and that nodes are
2214	 * over allocated.
2215	 */
2216	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2217		goto nopage;
2218
2219restart:
2220	if (!(gfp_mask & __GFP_NO_KSWAPD))
2221		wake_all_kswapd(order, zonelist, high_zoneidx,
2222						zone_idx(preferred_zone));
2223
2224	/*
2225	 * OK, we're below the kswapd watermark and have kicked background
2226	 * reclaim. Now things get more complex, so set up alloc_flags according
2227	 * to how we want to proceed.
2228	 */
2229	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2230
2231	/*
2232	 * Find the true preferred zone if the allocation is unconstrained by
2233	 * cpusets.
2234	 */
2235	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2236		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2237					&preferred_zone);
2238
2239rebalance:
2240	/* This is the last chance, in general, before the goto nopage. */
2241	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2242			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2243			preferred_zone, migratetype);
2244	if (page)
2245		goto got_pg;
2246
2247	/* Allocate without watermarks if the context allows */
2248	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2249		page = __alloc_pages_high_priority(gfp_mask, order,
2250				zonelist, high_zoneidx, nodemask,
2251				preferred_zone, migratetype);
2252		if (page)
2253			goto got_pg;
2254	}
2255
2256	/* Atomic allocations - we can't balance anything */
2257	if (!wait)
2258		goto nopage;
2259
2260	/* Avoid recursion of direct reclaim */
2261	if (current->flags & PF_MEMALLOC)
2262		goto nopage;
2263
2264	/* Avoid allocations with no watermarks from looping endlessly */
2265	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2266		goto nopage;
2267
2268	/*
2269	 * Try direct compaction. The first pass is asynchronous. Subsequent
2270	 * attempts after direct reclaim are synchronous
2271	 */
2272	page = __alloc_pages_direct_compact(gfp_mask, order,
2273					zonelist, high_zoneidx,
2274					nodemask,
2275					alloc_flags, preferred_zone,
2276					migratetype, sync_migration,
2277					&deferred_compaction,
2278					&did_some_progress);
2279	if (page)
2280		goto got_pg;
2281	sync_migration = true;
2282
2283	/*
2284	 * If compaction is deferred for high-order allocations, it is because
2285	 * sync compaction recently failed. In this is the case and the caller
2286	 * has requested the system not be heavily disrupted, fail the
2287	 * allocation now instead of entering direct reclaim
2288	 */
2289	if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2290		goto nopage;
2291
2292	/* Try direct reclaim and then allocating */
2293	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2294					zonelist, high_zoneidx,
2295					nodemask,
2296					alloc_flags, preferred_zone,
2297					migratetype, &did_some_progress);
2298	if (page)
2299		goto got_pg;
2300
2301	/*
2302	 * If we failed to make any progress reclaiming, then we are
2303	 * running out of options and have to consider going OOM
2304	 */
2305	if (!did_some_progress) {
2306		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2307			if (oom_killer_disabled)
2308				goto nopage;
2309			page = __alloc_pages_may_oom(gfp_mask, order,
2310					zonelist, high_zoneidx,
2311					nodemask, preferred_zone,
2312					migratetype);
2313			if (page)
2314				goto got_pg;
2315
2316			if (!(gfp_mask & __GFP_NOFAIL)) {
2317				/*
2318				 * The oom killer is not called for high-order
2319				 * allocations that may fail, so if no progress
2320				 * is being made, there are no other options and
2321				 * retrying is unlikely to help.
2322				 */
2323				if (order > PAGE_ALLOC_COSTLY_ORDER)
2324					goto nopage;
2325				/*
2326				 * The oom killer is not called for lowmem
2327				 * allocations to prevent needlessly killing
2328				 * innocent tasks.
2329				 */
2330				if (high_zoneidx < ZONE_NORMAL)
2331					goto nopage;
2332			}
2333
2334			goto restart;
2335		}
2336	}
2337
2338	/* Check if we should retry the allocation */
2339	pages_reclaimed += did_some_progress;
2340	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2341						pages_reclaimed)) {
2342		/* Wait for some write requests to complete then retry */
2343		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2344		goto rebalance;
2345	} else {
2346		/*
2347		 * High-order allocations do not necessarily loop after
2348		 * direct reclaim and reclaim/compaction depends on compaction
2349		 * being called after reclaim so call directly if necessary
2350		 */
2351		page = __alloc_pages_direct_compact(gfp_mask, order,
2352					zonelist, high_zoneidx,
2353					nodemask,
2354					alloc_flags, preferred_zone,
2355					migratetype, sync_migration,
2356					&deferred_compaction,
2357					&did_some_progress);
2358		if (page)
2359			goto got_pg;
2360	}
2361
2362nopage:
2363	warn_alloc_failed(gfp_mask, order, NULL);
2364	return page;
2365got_pg:
2366	if (kmemcheck_enabled)
2367		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2368	return page;
2369
2370}
2371
2372/*
2373 * This is the 'heart' of the zoned buddy allocator.
2374 */
2375struct page *
2376__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2377			struct zonelist *zonelist, nodemask_t *nodemask)
2378{
2379	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2380	struct zone *preferred_zone;
2381	struct page *page;
2382	int migratetype = allocflags_to_migratetype(gfp_mask);
2383
2384	gfp_mask &= gfp_allowed_mask;
2385
2386	lockdep_trace_alloc(gfp_mask);
2387
2388	might_sleep_if(gfp_mask & __GFP_WAIT);
2389
2390	if (should_fail_alloc_page(gfp_mask, order))
2391		return NULL;
2392
2393	/*
2394	 * Check the zones suitable for the gfp_mask contain at least one
2395	 * valid zone. It's possible to have an empty zonelist as a result
2396	 * of GFP_THISNODE and a memoryless node
2397	 */
2398	if (unlikely(!zonelist->_zonerefs->zone))
2399		return NULL;
2400
2401	get_mems_allowed();
2402	/* The preferred zone is used for statistics later */
2403	first_zones_zonelist(zonelist, high_zoneidx,
2404				nodemask ? : &cpuset_current_mems_allowed,
2405				&preferred_zone);
2406	if (!preferred_zone) {
2407		put_mems_allowed();
2408		return NULL;
2409	}
2410
2411	/* First allocation attempt */
2412	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2413			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2414			preferred_zone, migratetype);
2415	if (unlikely(!page))
2416		page = __alloc_pages_slowpath(gfp_mask, order,
2417				zonelist, high_zoneidx, nodemask,
2418				preferred_zone, migratetype);
2419	put_mems_allowed();
2420
2421	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2422	return page;
2423}
2424EXPORT_SYMBOL(__alloc_pages_nodemask);
2425
2426/*
2427 * Common helper functions.
2428 */
2429unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2430{
2431	struct page *page;
2432
2433	/*
2434	 * __get_free_pages() returns a 32-bit address, which cannot represent
2435	 * a highmem page
2436	 */
2437	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2438
2439	page = alloc_pages(gfp_mask, order);
2440	if (!page)
2441		return 0;
2442	return (unsigned long) page_address(page);
2443}
2444EXPORT_SYMBOL(__get_free_pages);
2445
2446unsigned long get_zeroed_page(gfp_t gfp_mask)
2447{
2448	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2449}
2450EXPORT_SYMBOL(get_zeroed_page);
2451
2452void __free_pages(struct page *page, unsigned int order)
2453{
2454	if (put_page_testzero(page)) {
2455		if (order == 0)
2456			free_hot_cold_page(page, 0);
2457		else
2458			__free_pages_ok(page, order);
2459	}
2460}
2461
2462EXPORT_SYMBOL(__free_pages);
2463
2464void free_pages(unsigned long addr, unsigned int order)
2465{
2466	if (addr != 0) {
2467		VM_BUG_ON(!virt_addr_valid((void *)addr));
2468		__free_pages(virt_to_page((void *)addr), order);
2469	}
2470}
2471
2472EXPORT_SYMBOL(free_pages);
2473
2474static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2475{
2476	if (addr) {
2477		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2478		unsigned long used = addr + PAGE_ALIGN(size);
2479
2480		split_page(virt_to_page((void *)addr), order);
2481		while (used < alloc_end) {
2482			free_page(used);
2483			used += PAGE_SIZE;
2484		}
2485	}
2486	return (void *)addr;
2487}
2488
2489/**
2490 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2491 * @size: the number of bytes to allocate
2492 * @gfp_mask: GFP flags for the allocation
2493 *
2494 * This function is similar to alloc_pages(), except that it allocates the
2495 * minimum number of pages to satisfy the request.  alloc_pages() can only
2496 * allocate memory in power-of-two pages.
2497 *
2498 * This function is also limited by MAX_ORDER.
2499 *
2500 * Memory allocated by this function must be released by free_pages_exact().
2501 */
2502void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2503{
2504	unsigned int order = get_order(size);
2505	unsigned long addr;
2506
2507	addr = __get_free_pages(gfp_mask, order);
2508	return make_alloc_exact(addr, order, size);
2509}
2510EXPORT_SYMBOL(alloc_pages_exact);
2511
2512/**
2513 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2514 *			   pages on a node.
2515 * @nid: the preferred node ID where memory should be allocated
2516 * @size: the number of bytes to allocate
2517 * @gfp_mask: GFP flags for the allocation
2518 *
2519 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2520 * back.
2521 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2522 * but is not exact.
2523 */
2524void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2525{
2526	unsigned order = get_order(size);
2527	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2528	if (!p)
2529		return NULL;
2530	return make_alloc_exact((unsigned long)page_address(p), order, size);
2531}
2532EXPORT_SYMBOL(alloc_pages_exact_nid);
2533
2534/**
2535 * free_pages_exact - release memory allocated via alloc_pages_exact()
2536 * @virt: the value returned by alloc_pages_exact.
2537 * @size: size of allocation, same value as passed to alloc_pages_exact().
2538 *
2539 * Release the memory allocated by a previous call to alloc_pages_exact.
2540 */
2541void free_pages_exact(void *virt, size_t size)
2542{
2543	unsigned long addr = (unsigned long)virt;
2544	unsigned long end = addr + PAGE_ALIGN(size);
2545
2546	while (addr < end) {
2547		free_page(addr);
2548		addr += PAGE_SIZE;
2549	}
2550}
2551EXPORT_SYMBOL(free_pages_exact);
2552
2553static unsigned int nr_free_zone_pages(int offset)
2554{
2555	struct zoneref *z;
2556	struct zone *zone;
2557
2558	/* Just pick one node, since fallback list is circular */
2559	unsigned int sum = 0;
2560
2561	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2562
2563	for_each_zone_zonelist(zone, z, zonelist, offset) {
2564		unsigned long size = zone->present_pages;
2565		unsigned long high = high_wmark_pages(zone);
2566		if (size > high)
2567			sum += size - high;
2568	}
2569
2570	return sum;
2571}
2572
2573/*
2574 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2575 */
2576unsigned int nr_free_buffer_pages(void)
2577{
2578	return nr_free_zone_pages(gfp_zone(GFP_USER));
2579}
2580EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2581
2582/*
2583 * Amount of free RAM allocatable within all zones
2584 */
2585unsigned int nr_free_pagecache_pages(void)
2586{
2587	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2588}
2589
2590static inline void show_node(struct zone *zone)
2591{
2592	if (NUMA_BUILD)
2593		printk("Node %d ", zone_to_nid(zone));
2594}
2595
2596void si_meminfo(struct sysinfo *val)
2597{
2598	val->totalram = totalram_pages;
2599	val->sharedram = 0;
2600	val->freeram = global_page_state(NR_FREE_PAGES);
2601	val->bufferram = nr_blockdev_pages();
2602	val->totalhigh = totalhigh_pages;
2603	val->freehigh = nr_free_highpages();
2604	val->mem_unit = PAGE_SIZE;
2605}
2606
2607EXPORT_SYMBOL(si_meminfo);
2608
2609#ifdef CONFIG_NUMA
2610void si_meminfo_node(struct sysinfo *val, int nid)
2611{
2612	pg_data_t *pgdat = NODE_DATA(nid);
2613
2614	val->totalram = pgdat->node_present_pages;
2615	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2616#ifdef CONFIG_HIGHMEM
2617	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2618	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2619			NR_FREE_PAGES);
2620#else
2621	val->totalhigh = 0;
2622	val->freehigh = 0;
2623#endif
2624	val->mem_unit = PAGE_SIZE;
2625}
2626#endif
2627
2628/*
2629 * Determine whether the node should be displayed or not, depending on whether
2630 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2631 */
2632bool skip_free_areas_node(unsigned int flags, int nid)
2633{
2634	bool ret = false;
2635
2636	if (!(flags & SHOW_MEM_FILTER_NODES))
2637		goto out;
2638
2639	get_mems_allowed();
2640	ret = !node_isset(nid, cpuset_current_mems_allowed);
2641	put_mems_allowed();
2642out:
2643	return ret;
2644}
2645
2646#define K(x) ((x) << (PAGE_SHIFT-10))
2647
2648/*
2649 * Show free area list (used inside shift_scroll-lock stuff)
2650 * We also calculate the percentage fragmentation. We do this by counting the
2651 * memory on each free list with the exception of the first item on the list.
2652 * Suppresses nodes that are not allowed by current's cpuset if
2653 * SHOW_MEM_FILTER_NODES is passed.
2654 */
2655void show_free_areas(unsigned int filter)
2656{
2657	int cpu;
2658	struct zone *zone;
2659
2660	for_each_populated_zone(zone) {
2661		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2662			continue;
2663		show_node(zone);
2664		printk("%s per-cpu:\n", zone->name);
2665
2666		for_each_online_cpu(cpu) {
2667			struct per_cpu_pageset *pageset;
2668
2669			pageset = per_cpu_ptr(zone->pageset, cpu);
2670
2671			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2672			       cpu, pageset->pcp.high,
2673			       pageset->pcp.batch, pageset->pcp.count);
2674		}
2675	}
2676
2677	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2678		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2679		" unevictable:%lu"
2680		" dirty:%lu writeback:%lu unstable:%lu\n"
2681		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2682		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2683		global_page_state(NR_ACTIVE_ANON),
2684		global_page_state(NR_INACTIVE_ANON),
2685		global_page_state(NR_ISOLATED_ANON),
2686		global_page_state(NR_ACTIVE_FILE),
2687		global_page_state(NR_INACTIVE_FILE),
2688		global_page_state(NR_ISOLATED_FILE),
2689		global_page_state(NR_UNEVICTABLE),
2690		global_page_state(NR_FILE_DIRTY),
2691		global_page_state(NR_WRITEBACK),
2692		global_page_state(NR_UNSTABLE_NFS),
2693		global_page_state(NR_FREE_PAGES),
2694		global_page_state(NR_SLAB_RECLAIMABLE),
2695		global_page_state(NR_SLAB_UNRECLAIMABLE),
2696		global_page_state(NR_FILE_MAPPED),
2697		global_page_state(NR_SHMEM),
2698		global_page_state(NR_PAGETABLE),
2699		global_page_state(NR_BOUNCE));
2700
2701	for_each_populated_zone(zone) {
2702		int i;
2703
2704		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2705			continue;
2706		show_node(zone);
2707		printk("%s"
2708			" free:%lukB"
2709			" min:%lukB"
2710			" low:%lukB"
2711			" high:%lukB"
2712			" active_anon:%lukB"
2713			" inactive_anon:%lukB"
2714			" active_file:%lukB"
2715			" inactive_file:%lukB"
2716			" unevictable:%lukB"
2717			" isolated(anon):%lukB"
2718			" isolated(file):%lukB"
2719			" present:%lukB"
2720			" mlocked:%lukB"
2721			" dirty:%lukB"
2722			" writeback:%lukB"
2723			" mapped:%lukB"
2724			" shmem:%lukB"
2725			" slab_reclaimable:%lukB"
2726			" slab_unreclaimable:%lukB"
2727			" kernel_stack:%lukB"
2728			" pagetables:%lukB"
2729			" unstable:%lukB"
2730			" bounce:%lukB"
2731			" writeback_tmp:%lukB"
2732			" pages_scanned:%lu"
2733			" all_unreclaimable? %s"
2734			"\n",
2735			zone->name,
2736			K(zone_page_state(zone, NR_FREE_PAGES)),
2737			K(min_wmark_pages(zone)),
2738			K(low_wmark_pages(zone)),
2739			K(high_wmark_pages(zone)),
2740			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2741			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2742			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2743			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2744			K(zone_page_state(zone, NR_UNEVICTABLE)),
2745			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2746			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2747			K(zone->present_pages),
2748			K(zone_page_state(zone, NR_MLOCK)),
2749			K(zone_page_state(zone, NR_FILE_DIRTY)),
2750			K(zone_page_state(zone, NR_WRITEBACK)),
2751			K(zone_page_state(zone, NR_FILE_MAPPED)),
2752			K(zone_page_state(zone, NR_SHMEM)),
2753			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2754			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2755			zone_page_state(zone, NR_KERNEL_STACK) *
2756				THREAD_SIZE / 1024,
2757			K(zone_page_state(zone, NR_PAGETABLE)),
2758			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2759			K(zone_page_state(zone, NR_BOUNCE)),
2760			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2761			zone->pages_scanned,
2762			(zone->all_unreclaimable ? "yes" : "no")
2763			);
2764		printk("lowmem_reserve[]:");
2765		for (i = 0; i < MAX_NR_ZONES; i++)
2766			printk(" %lu", zone->lowmem_reserve[i]);
2767		printk("\n");
2768	}
2769
2770	for_each_populated_zone(zone) {
2771 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2772
2773		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2774			continue;
2775		show_node(zone);
2776		printk("%s: ", zone->name);
2777
2778		spin_lock_irqsave(&zone->lock, flags);
2779		for (order = 0; order < MAX_ORDER; order++) {
2780			nr[order] = zone->free_area[order].nr_free;
2781			total += nr[order] << order;
2782		}
2783		spin_unlock_irqrestore(&zone->lock, flags);
2784		for (order = 0; order < MAX_ORDER; order++)
2785			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2786		printk("= %lukB\n", K(total));
2787	}
2788
2789	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2790
2791	show_swap_cache_info();
2792}
2793
2794static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2795{
2796	zoneref->zone = zone;
2797	zoneref->zone_idx = zone_idx(zone);
2798}
2799
2800/*
2801 * Builds allocation fallback zone lists.
2802 *
2803 * Add all populated zones of a node to the zonelist.
2804 */
2805static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2806				int nr_zones, enum zone_type zone_type)
2807{
2808	struct zone *zone;
2809
2810	BUG_ON(zone_type >= MAX_NR_ZONES);
2811	zone_type++;
2812
2813	do {
2814		zone_type--;
2815		zone = pgdat->node_zones + zone_type;
2816		if (populated_zone(zone)) {
2817			zoneref_set_zone(zone,
2818				&zonelist->_zonerefs[nr_zones++]);
2819			check_highest_zone(zone_type);
2820		}
2821
2822	} while (zone_type);
2823	return nr_zones;
2824}
2825
2826
2827/*
2828 *  zonelist_order:
2829 *  0 = automatic detection of better ordering.
2830 *  1 = order by ([node] distance, -zonetype)
2831 *  2 = order by (-zonetype, [node] distance)
2832 *
2833 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2834 *  the same zonelist. So only NUMA can configure this param.
2835 */
2836#define ZONELIST_ORDER_DEFAULT  0
2837#define ZONELIST_ORDER_NODE     1
2838#define ZONELIST_ORDER_ZONE     2
2839
2840/* zonelist order in the kernel.
2841 * set_zonelist_order() will set this to NODE or ZONE.
2842 */
2843static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2844static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2845
2846
2847#ifdef CONFIG_NUMA
2848/* The value user specified ....changed by config */
2849static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2850/* string for sysctl */
2851#define NUMA_ZONELIST_ORDER_LEN	16
2852char numa_zonelist_order[16] = "default";
2853
2854/*
2855 * interface for configure zonelist ordering.
2856 * command line option "numa_zonelist_order"
2857 *	= "[dD]efault	- default, automatic configuration.
2858 *	= "[nN]ode 	- order by node locality, then by zone within node
2859 *	= "[zZ]one      - order by zone, then by locality within zone
2860 */
2861
2862static int __parse_numa_zonelist_order(char *s)
2863{
2864	if (*s == 'd' || *s == 'D') {
2865		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2866	} else if (*s == 'n' || *s == 'N') {
2867		user_zonelist_order = ZONELIST_ORDER_NODE;
2868	} else if (*s == 'z' || *s == 'Z') {
2869		user_zonelist_order = ZONELIST_ORDER_ZONE;
2870	} else {
2871		printk(KERN_WARNING
2872			"Ignoring invalid numa_zonelist_order value:  "
2873			"%s\n", s);
2874		return -EINVAL;
2875	}
2876	return 0;
2877}
2878
2879static __init int setup_numa_zonelist_order(char *s)
2880{
2881	int ret;
2882
2883	if (!s)
2884		return 0;
2885
2886	ret = __parse_numa_zonelist_order(s);
2887	if (ret == 0)
2888		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2889
2890	return ret;
2891}
2892early_param("numa_zonelist_order", setup_numa_zonelist_order);
2893
2894/*
2895 * sysctl handler for numa_zonelist_order
2896 */
2897int numa_zonelist_order_handler(ctl_table *table, int write,
2898		void __user *buffer, size_t *length,
2899		loff_t *ppos)
2900{
2901	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2902	int ret;
2903	static DEFINE_MUTEX(zl_order_mutex);
2904
2905	mutex_lock(&zl_order_mutex);
2906	if (write)
2907		strcpy(saved_string, (char*)table->data);
2908	ret = proc_dostring(table, write, buffer, length, ppos);
2909	if (ret)
2910		goto out;
2911	if (write) {
2912		int oldval = user_zonelist_order;
2913		if (__parse_numa_zonelist_order((char*)table->data)) {
2914			/*
2915			 * bogus value.  restore saved string
2916			 */
2917			strncpy((char*)table->data, saved_string,
2918				NUMA_ZONELIST_ORDER_LEN);
2919			user_zonelist_order = oldval;
2920		} else if (oldval != user_zonelist_order) {
2921			mutex_lock(&zonelists_mutex);
2922			build_all_zonelists(NULL);
2923			mutex_unlock(&zonelists_mutex);
2924		}
2925	}
2926out:
2927	mutex_unlock(&zl_order_mutex);
2928	return ret;
2929}
2930
2931
2932#define MAX_NODE_LOAD (nr_online_nodes)
2933static int node_load[MAX_NUMNODES];
2934
2935/**
2936 * find_next_best_node - find the next node that should appear in a given node's fallback list
2937 * @node: node whose fallback list we're appending
2938 * @used_node_mask: nodemask_t of already used nodes
2939 *
2940 * We use a number of factors to determine which is the next node that should
2941 * appear on a given node's fallback list.  The node should not have appeared
2942 * already in @node's fallback list, and it should be the next closest node
2943 * according to the distance array (which contains arbitrary distance values
2944 * from each node to each node in the system), and should also prefer nodes
2945 * with no CPUs, since presumably they'll have very little allocation pressure
2946 * on them otherwise.
2947 * It returns -1 if no node is found.
2948 */
2949static int find_next_best_node(int node, nodemask_t *used_node_mask)
2950{
2951	int n, val;
2952	int min_val = INT_MAX;
2953	int best_node = -1;
2954	const struct cpumask *tmp = cpumask_of_node(0);
2955
2956	/* Use the local node if we haven't already */
2957	if (!node_isset(node, *used_node_mask)) {
2958		node_set(node, *used_node_mask);
2959		return node;
2960	}
2961
2962	for_each_node_state(n, N_HIGH_MEMORY) {
2963
2964		/* Don't want a node to appear more than once */
2965		if (node_isset(n, *used_node_mask))
2966			continue;
2967
2968		/* Use the distance array to find the distance */
2969		val = node_distance(node, n);
2970
2971		/* Penalize nodes under us ("prefer the next node") */
2972		val += (n < node);
2973
2974		/* Give preference to headless and unused nodes */
2975		tmp = cpumask_of_node(n);
2976		if (!cpumask_empty(tmp))
2977			val += PENALTY_FOR_NODE_WITH_CPUS;
2978
2979		/* Slight preference for less loaded node */
2980		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2981		val += node_load[n];
2982
2983		if (val < min_val) {
2984			min_val = val;
2985			best_node = n;
2986		}
2987	}
2988
2989	if (best_node >= 0)
2990		node_set(best_node, *used_node_mask);
2991
2992	return best_node;
2993}
2994
2995
2996/*
2997 * Build zonelists ordered by node and zones within node.
2998 * This results in maximum locality--normal zone overflows into local
2999 * DMA zone, if any--but risks exhausting DMA zone.
3000 */
3001static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3002{
3003	int j;
3004	struct zonelist *zonelist;
3005
3006	zonelist = &pgdat->node_zonelists[0];
3007	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3008		;
3009	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3010							MAX_NR_ZONES - 1);
3011	zonelist->_zonerefs[j].zone = NULL;
3012	zonelist->_zonerefs[j].zone_idx = 0;
3013}
3014
3015/*
3016 * Build gfp_thisnode zonelists
3017 */
3018static void build_thisnode_zonelists(pg_data_t *pgdat)
3019{
3020	int j;
3021	struct zonelist *zonelist;
3022
3023	zonelist = &pgdat->node_zonelists[1];
3024	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3025	zonelist->_zonerefs[j].zone = NULL;
3026	zonelist->_zonerefs[j].zone_idx = 0;
3027}
3028
3029/*
3030 * Build zonelists ordered by zone and nodes within zones.
3031 * This results in conserving DMA zone[s] until all Normal memory is
3032 * exhausted, but results in overflowing to remote node while memory
3033 * may still exist in local DMA zone.
3034 */
3035static int node_order[MAX_NUMNODES];
3036
3037static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3038{
3039	int pos, j, node;
3040	int zone_type;		/* needs to be signed */
3041	struct zone *z;
3042	struct zonelist *zonelist;
3043
3044	zonelist = &pgdat->node_zonelists[0];
3045	pos = 0;
3046	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3047		for (j = 0; j < nr_nodes; j++) {
3048			node = node_order[j];
3049			z = &NODE_DATA(node)->node_zones[zone_type];
3050			if (populated_zone(z)) {
3051				zoneref_set_zone(z,
3052					&zonelist->_zonerefs[pos++]);
3053				check_highest_zone(zone_type);
3054			}
3055		}
3056	}
3057	zonelist->_zonerefs[pos].zone = NULL;
3058	zonelist->_zonerefs[pos].zone_idx = 0;
3059}
3060
3061static int default_zonelist_order(void)
3062{
3063	int nid, zone_type;
3064	unsigned long low_kmem_size,total_size;
3065	struct zone *z;
3066	int average_size;
3067	/*
3068         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3069	 * If they are really small and used heavily, the system can fall
3070	 * into OOM very easily.
3071	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3072	 */
3073	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3074	low_kmem_size = 0;
3075	total_size = 0;
3076	for_each_online_node(nid) {
3077		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3078			z = &NODE_DATA(nid)->node_zones[zone_type];
3079			if (populated_zone(z)) {
3080				if (zone_type < ZONE_NORMAL)
3081					low_kmem_size += z->present_pages;
3082				total_size += z->present_pages;
3083			} else if (zone_type == ZONE_NORMAL) {
3084				/*
3085				 * If any node has only lowmem, then node order
3086				 * is preferred to allow kernel allocations
3087				 * locally; otherwise, they can easily infringe
3088				 * on other nodes when there is an abundance of
3089				 * lowmem available to allocate from.
3090				 */
3091				return ZONELIST_ORDER_NODE;
3092			}
3093		}
3094	}
3095	if (!low_kmem_size ||  /* there are no DMA area. */
3096	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3097		return ZONELIST_ORDER_NODE;
3098	/*
3099	 * look into each node's config.
3100  	 * If there is a node whose DMA/DMA32 memory is very big area on
3101 	 * local memory, NODE_ORDER may be suitable.
3102         */
3103	average_size = total_size /
3104				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3105	for_each_online_node(nid) {
3106		low_kmem_size = 0;
3107		total_size = 0;
3108		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3109			z = &NODE_DATA(nid)->node_zones[zone_type];
3110			if (populated_zone(z)) {
3111				if (zone_type < ZONE_NORMAL)
3112					low_kmem_size += z->present_pages;
3113				total_size += z->present_pages;
3114			}
3115		}
3116		if (low_kmem_size &&
3117		    total_size > average_size && /* ignore small node */
3118		    low_kmem_size > total_size * 70/100)
3119			return ZONELIST_ORDER_NODE;
3120	}
3121	return ZONELIST_ORDER_ZONE;
3122}
3123
3124static void set_zonelist_order(void)
3125{
3126	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3127		current_zonelist_order = default_zonelist_order();
3128	else
3129		current_zonelist_order = user_zonelist_order;
3130}
3131
3132static void build_zonelists(pg_data_t *pgdat)
3133{
3134	int j, node, load;
3135	enum zone_type i;
3136	nodemask_t used_mask;
3137	int local_node, prev_node;
3138	struct zonelist *zonelist;
3139	int order = current_zonelist_order;
3140
3141	/* initialize zonelists */
3142	for (i = 0; i < MAX_ZONELISTS; i++) {
3143		zonelist = pgdat->node_zonelists + i;
3144		zonelist->_zonerefs[0].zone = NULL;
3145		zonelist->_zonerefs[0].zone_idx = 0;
3146	}
3147
3148	/* NUMA-aware ordering of nodes */
3149	local_node = pgdat->node_id;
3150	load = nr_online_nodes;
3151	prev_node = local_node;
3152	nodes_clear(used_mask);
3153
3154	memset(node_order, 0, sizeof(node_order));
3155	j = 0;
3156
3157	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3158		int distance = node_distance(local_node, node);
3159
3160		/*
3161		 * If another node is sufficiently far away then it is better
3162		 * to reclaim pages in a zone before going off node.
3163		 */
3164		if (distance > RECLAIM_DISTANCE)
3165			zone_reclaim_mode = 1;
3166
3167		/*
3168		 * We don't want to pressure a particular node.
3169		 * So adding penalty to the first node in same
3170		 * distance group to make it round-robin.
3171		 */
3172		if (distance != node_distance(local_node, prev_node))
3173			node_load[node] = load;
3174
3175		prev_node = node;
3176		load--;
3177		if (order == ZONELIST_ORDER_NODE)
3178			build_zonelists_in_node_order(pgdat, node);
3179		else
3180			node_order[j++] = node;	/* remember order */
3181	}
3182
3183	if (order == ZONELIST_ORDER_ZONE) {
3184		/* calculate node order -- i.e., DMA last! */
3185		build_zonelists_in_zone_order(pgdat, j);
3186	}
3187
3188	build_thisnode_zonelists(pgdat);
3189}
3190
3191/* Construct the zonelist performance cache - see further mmzone.h */
3192static void build_zonelist_cache(pg_data_t *pgdat)
3193{
3194	struct zonelist *zonelist;
3195	struct zonelist_cache *zlc;
3196	struct zoneref *z;
3197
3198	zonelist = &pgdat->node_zonelists[0];
3199	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3200	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3201	for (z = zonelist->_zonerefs; z->zone; z++)
3202		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3203}
3204
3205#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3206/*
3207 * Return node id of node used for "local" allocations.
3208 * I.e., first node id of first zone in arg node's generic zonelist.
3209 * Used for initializing percpu 'numa_mem', which is used primarily
3210 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3211 */
3212int local_memory_node(int node)
3213{
3214	struct zone *zone;
3215
3216	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3217				   gfp_zone(GFP_KERNEL),
3218				   NULL,
3219				   &zone);
3220	return zone->node;
3221}
3222#endif
3223
3224#else	/* CONFIG_NUMA */
3225
3226static void set_zonelist_order(void)
3227{
3228	current_zonelist_order = ZONELIST_ORDER_ZONE;
3229}
3230
3231static void build_zonelists(pg_data_t *pgdat)
3232{
3233	int node, local_node;
3234	enum zone_type j;
3235	struct zonelist *zonelist;
3236
3237	local_node = pgdat->node_id;
3238
3239	zonelist = &pgdat->node_zonelists[0];
3240	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3241
3242	/*
3243	 * Now we build the zonelist so that it contains the zones
3244	 * of all the other nodes.
3245	 * We don't want to pressure a particular node, so when
3246	 * building the zones for node N, we make sure that the
3247	 * zones coming right after the local ones are those from
3248	 * node N+1 (modulo N)
3249	 */
3250	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3251		if (!node_online(node))
3252			continue;
3253		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3254							MAX_NR_ZONES - 1);
3255	}
3256	for (node = 0; node < local_node; node++) {
3257		if (!node_online(node))
3258			continue;
3259		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3260							MAX_NR_ZONES - 1);
3261	}
3262
3263	zonelist->_zonerefs[j].zone = NULL;
3264	zonelist->_zonerefs[j].zone_idx = 0;
3265}
3266
3267/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3268static void build_zonelist_cache(pg_data_t *pgdat)
3269{
3270	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3271}
3272
3273#endif	/* CONFIG_NUMA */
3274
3275/*
3276 * Boot pageset table. One per cpu which is going to be used for all
3277 * zones and all nodes. The parameters will be set in such a way
3278 * that an item put on a list will immediately be handed over to
3279 * the buddy list. This is safe since pageset manipulation is done
3280 * with interrupts disabled.
3281 *
3282 * The boot_pagesets must be kept even after bootup is complete for
3283 * unused processors and/or zones. They do play a role for bootstrapping
3284 * hotplugged processors.
3285 *
3286 * zoneinfo_show() and maybe other functions do
3287 * not check if the processor is online before following the pageset pointer.
3288 * Other parts of the kernel may not check if the zone is available.
3289 */
3290static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3291static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3292static void setup_zone_pageset(struct zone *zone);
3293
3294/*
3295 * Global mutex to protect against size modification of zonelists
3296 * as well as to serialize pageset setup for the new populated zone.
3297 */
3298DEFINE_MUTEX(zonelists_mutex);
3299
3300/* return values int ....just for stop_machine() */
3301static __init_refok int __build_all_zonelists(void *data)
3302{
3303	int nid;
3304	int cpu;
3305
3306#ifdef CONFIG_NUMA
3307	memset(node_load, 0, sizeof(node_load));
3308#endif
3309	for_each_online_node(nid) {
3310		pg_data_t *pgdat = NODE_DATA(nid);
3311
3312		build_zonelists(pgdat);
3313		build_zonelist_cache(pgdat);
3314	}
3315
3316	/*
3317	 * Initialize the boot_pagesets that are going to be used
3318	 * for bootstrapping processors. The real pagesets for
3319	 * each zone will be allocated later when the per cpu
3320	 * allocator is available.
3321	 *
3322	 * boot_pagesets are used also for bootstrapping offline
3323	 * cpus if the system is already booted because the pagesets
3324	 * are needed to initialize allocators on a specific cpu too.
3325	 * F.e. the percpu allocator needs the page allocator which
3326	 * needs the percpu allocator in order to allocate its pagesets
3327	 * (a chicken-egg dilemma).
3328	 */
3329	for_each_possible_cpu(cpu) {
3330		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3331
3332#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3333		/*
3334		 * We now know the "local memory node" for each node--
3335		 * i.e., the node of the first zone in the generic zonelist.
3336		 * Set up numa_mem percpu variable for on-line cpus.  During
3337		 * boot, only the boot cpu should be on-line;  we'll init the
3338		 * secondary cpus' numa_mem as they come on-line.  During
3339		 * node/memory hotplug, we'll fixup all on-line cpus.
3340		 */
3341		if (cpu_online(cpu))
3342			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3343#endif
3344	}
3345
3346	return 0;
3347}
3348
3349/*
3350 * Called with zonelists_mutex held always
3351 * unless system_state == SYSTEM_BOOTING.
3352 */
3353void __ref build_all_zonelists(void *data)
3354{
3355	set_zonelist_order();
3356
3357	if (system_state == SYSTEM_BOOTING) {
3358		__build_all_zonelists(NULL);
3359		mminit_verify_zonelist();
3360		cpuset_init_current_mems_allowed();
3361	} else {
3362		/* we have to stop all cpus to guarantee there is no user
3363		   of zonelist */
3364#ifdef CONFIG_MEMORY_HOTPLUG
3365		if (data)
3366			setup_zone_pageset((struct zone *)data);
3367#endif
3368		stop_machine(__build_all_zonelists, NULL, NULL);
3369		/* cpuset refresh routine should be here */
3370	}
3371	vm_total_pages = nr_free_pagecache_pages();
3372	/*
3373	 * Disable grouping by mobility if the number of pages in the
3374	 * system is too low to allow the mechanism to work. It would be
3375	 * more accurate, but expensive to check per-zone. This check is
3376	 * made on memory-hotadd so a system can start with mobility
3377	 * disabled and enable it later
3378	 */
3379	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3380		page_group_by_mobility_disabled = 1;
3381	else
3382		page_group_by_mobility_disabled = 0;
3383
3384	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3385		"Total pages: %ld\n",
3386			nr_online_nodes,
3387			zonelist_order_name[current_zonelist_order],
3388			page_group_by_mobility_disabled ? "off" : "on",
3389			vm_total_pages);
3390#ifdef CONFIG_NUMA
3391	printk("Policy zone: %s\n", zone_names[policy_zone]);
3392#endif
3393}
3394
3395/*
3396 * Helper functions to size the waitqueue hash table.
3397 * Essentially these want to choose hash table sizes sufficiently
3398 * large so that collisions trying to wait on pages are rare.
3399 * But in fact, the number of active page waitqueues on typical
3400 * systems is ridiculously low, less than 200. So this is even
3401 * conservative, even though it seems large.
3402 *
3403 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3404 * waitqueues, i.e. the size of the waitq table given the number of pages.
3405 */
3406#define PAGES_PER_WAITQUEUE	256
3407
3408#ifndef CONFIG_MEMORY_HOTPLUG
3409static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3410{
3411	unsigned long size = 1;
3412
3413	pages /= PAGES_PER_WAITQUEUE;
3414
3415	while (size < pages)
3416		size <<= 1;
3417
3418	/*
3419	 * Once we have dozens or even hundreds of threads sleeping
3420	 * on IO we've got bigger problems than wait queue collision.
3421	 * Limit the size of the wait table to a reasonable size.
3422	 */
3423	size = min(size, 4096UL);
3424
3425	return max(size, 4UL);
3426}
3427#else
3428/*
3429 * A zone's size might be changed by hot-add, so it is not possible to determine
3430 * a suitable size for its wait_table.  So we use the maximum size now.
3431 *
3432 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3433 *
3434 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3435 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3436 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3437 *
3438 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3439 * or more by the traditional way. (See above).  It equals:
3440 *
3441 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3442 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3443 *    powerpc (64K page size)             : =  (32G +16M)byte.
3444 */
3445static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3446{
3447	return 4096UL;
3448}
3449#endif
3450
3451/*
3452 * This is an integer logarithm so that shifts can be used later
3453 * to extract the more random high bits from the multiplicative
3454 * hash function before the remainder is taken.
3455 */
3456static inline unsigned long wait_table_bits(unsigned long size)
3457{
3458	return ffz(~size);
3459}
3460
3461#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3462
3463/*
3464 * Check if a pageblock contains reserved pages
3465 */
3466static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3467{
3468	unsigned long pfn;
3469
3470	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3471		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3472			return 1;
3473	}
3474	return 0;
3475}
3476
3477/*
3478 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3479 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3480 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3481 * higher will lead to a bigger reserve which will get freed as contiguous
3482 * blocks as reclaim kicks in
3483 */
3484static void setup_zone_migrate_reserve(struct zone *zone)
3485{
3486	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3487	struct page *page;
3488	unsigned long block_migratetype;
3489	int reserve;
3490
3491	/*
3492	 * Get the start pfn, end pfn and the number of blocks to reserve
3493	 * We have to be careful to be aligned to pageblock_nr_pages to
3494	 * make sure that we always check pfn_valid for the first page in
3495	 * the block.
3496	 */
3497	start_pfn = zone->zone_start_pfn;
3498	end_pfn = start_pfn + zone->spanned_pages;
3499	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3500	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3501							pageblock_order;
3502
3503	/*
3504	 * Reserve blocks are generally in place to help high-order atomic
3505	 * allocations that are short-lived. A min_free_kbytes value that
3506	 * would result in more than 2 reserve blocks for atomic allocations
3507	 * is assumed to be in place to help anti-fragmentation for the
3508	 * future allocation of hugepages at runtime.
3509	 */
3510	reserve = min(2, reserve);
3511
3512	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3513		if (!pfn_valid(pfn))
3514			continue;
3515		page = pfn_to_page(pfn);
3516
3517		/* Watch out for overlapping nodes */
3518		if (page_to_nid(page) != zone_to_nid(zone))
3519			continue;
3520
3521		block_migratetype = get_pageblock_migratetype(page);
3522
3523		/* Only test what is necessary when the reserves are not met */
3524		if (reserve > 0) {
3525			/*
3526			 * Blocks with reserved pages will never free, skip
3527			 * them.
3528			 */
3529			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3530			if (pageblock_is_reserved(pfn, block_end_pfn))
3531				continue;
3532
3533			/* If this block is reserved, account for it */
3534			if (block_migratetype == MIGRATE_RESERVE) {
3535				reserve--;
3536				continue;
3537			}
3538
3539			/* Suitable for reserving if this block is movable */
3540			if (block_migratetype == MIGRATE_MOVABLE) {
3541				set_pageblock_migratetype(page,
3542							MIGRATE_RESERVE);
3543				move_freepages_block(zone, page,
3544							MIGRATE_RESERVE);
3545				reserve--;
3546				continue;
3547			}
3548		}
3549
3550		/*
3551		 * If the reserve is met and this is a previous reserved block,
3552		 * take it back
3553		 */
3554		if (block_migratetype == MIGRATE_RESERVE) {
3555			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3556			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3557		}
3558	}
3559}
3560
3561/*
3562 * Initially all pages are reserved - free ones are freed
3563 * up by free_all_bootmem() once the early boot process is
3564 * done. Non-atomic initialization, single-pass.
3565 */
3566void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3567		unsigned long start_pfn, enum memmap_context context)
3568{
3569	struct page *page;
3570	unsigned long end_pfn = start_pfn + size;
3571	unsigned long pfn;
3572	struct zone *z;
3573
3574	if (highest_memmap_pfn < end_pfn - 1)
3575		highest_memmap_pfn = end_pfn - 1;
3576
3577	z = &NODE_DATA(nid)->node_zones[zone];
3578	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3579		/*
3580		 * There can be holes in boot-time mem_map[]s
3581		 * handed to this function.  They do not
3582		 * exist on hotplugged memory.
3583		 */
3584		if (context == MEMMAP_EARLY) {
3585			if (!early_pfn_valid(pfn))
3586				continue;
3587			if (!early_pfn_in_nid(pfn, nid))
3588				continue;
3589		}
3590		page = pfn_to_page(pfn);
3591		set_page_links(page, zone, nid, pfn);
3592		mminit_verify_page_links(page, zone, nid, pfn);
3593		init_page_count(page);
3594		reset_page_mapcount(page);
3595		SetPageReserved(page);
3596		/*
3597		 * Mark the block movable so that blocks are reserved for
3598		 * movable at startup. This will force kernel allocations
3599		 * to reserve their blocks rather than leaking throughout
3600		 * the address space during boot when many long-lived
3601		 * kernel allocations are made. Later some blocks near
3602		 * the start are marked MIGRATE_RESERVE by
3603		 * setup_zone_migrate_reserve()
3604		 *
3605		 * bitmap is created for zone's valid pfn range. but memmap
3606		 * can be created for invalid pages (for alignment)
3607		 * check here not to call set_pageblock_migratetype() against
3608		 * pfn out of zone.
3609		 */
3610		if ((z->zone_start_pfn <= pfn)
3611		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3612		    && !(pfn & (pageblock_nr_pages - 1)))
3613			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3614
3615		INIT_LIST_HEAD(&page->lru);
3616#ifdef WANT_PAGE_VIRTUAL
3617		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3618		if (!is_highmem_idx(zone))
3619			set_page_address(page, __va(pfn << PAGE_SHIFT));
3620#endif
3621	}
3622}
3623
3624static void __meminit zone_init_free_lists(struct zone *zone)
3625{
3626	int order, t;
3627	for_each_migratetype_order(order, t) {
3628		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3629		zone->free_area[order].nr_free = 0;
3630	}
3631}
3632
3633#ifndef __HAVE_ARCH_MEMMAP_INIT
3634#define memmap_init(size, nid, zone, start_pfn) \
3635	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3636#endif
3637
3638static int zone_batchsize(struct zone *zone)
3639{
3640#ifdef CONFIG_MMU
3641	int batch;
3642
3643	/*
3644	 * The per-cpu-pages pools are set to around 1000th of the
3645	 * size of the zone.  But no more than 1/2 of a meg.
3646	 *
3647	 * OK, so we don't know how big the cache is.  So guess.
3648	 */
3649	batch = zone->present_pages / 1024;
3650	if (batch * PAGE_SIZE > 512 * 1024)
3651		batch = (512 * 1024) / PAGE_SIZE;
3652	batch /= 4;		/* We effectively *= 4 below */
3653	if (batch < 1)
3654		batch = 1;
3655
3656	/*
3657	 * Clamp the batch to a 2^n - 1 value. Having a power
3658	 * of 2 value was found to be more likely to have
3659	 * suboptimal cache aliasing properties in some cases.
3660	 *
3661	 * For example if 2 tasks are alternately allocating
3662	 * batches of pages, one task can end up with a lot
3663	 * of pages of one half of the possible page colors
3664	 * and the other with pages of the other colors.
3665	 */
3666	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3667
3668	return batch;
3669
3670#else
3671	/* The deferral and batching of frees should be suppressed under NOMMU
3672	 * conditions.
3673	 *
3674	 * The problem is that NOMMU needs to be able to allocate large chunks
3675	 * of contiguous memory as there's no hardware page translation to
3676	 * assemble apparent contiguous memory from discontiguous pages.
3677	 *
3678	 * Queueing large contiguous runs of pages for batching, however,
3679	 * causes the pages to actually be freed in smaller chunks.  As there
3680	 * can be a significant delay between the individual batches being
3681	 * recycled, this leads to the once large chunks of space being
3682	 * fragmented and becoming unavailable for high-order allocations.
3683	 */
3684	return 0;
3685#endif
3686}
3687
3688static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3689{
3690	struct per_cpu_pages *pcp;
3691	int migratetype;
3692
3693	memset(p, 0, sizeof(*p));
3694
3695	pcp = &p->pcp;
3696	pcp->count = 0;
3697	pcp->high = 6 * batch;
3698	pcp->batch = max(1UL, 1 * batch);
3699	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3700		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3701}
3702
3703/*
3704 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3705 * to the value high for the pageset p.
3706 */
3707
3708static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3709				unsigned long high)
3710{
3711	struct per_cpu_pages *pcp;
3712
3713	pcp = &p->pcp;
3714	pcp->high = high;
3715	pcp->batch = max(1UL, high/4);
3716	if ((high/4) > (PAGE_SHIFT * 8))
3717		pcp->batch = PAGE_SHIFT * 8;
3718}
3719
3720static void setup_zone_pageset(struct zone *zone)
3721{
3722	int cpu;
3723
3724	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3725
3726	for_each_possible_cpu(cpu) {
3727		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3728
3729		setup_pageset(pcp, zone_batchsize(zone));
3730
3731		if (percpu_pagelist_fraction)
3732			setup_pagelist_highmark(pcp,
3733				(zone->present_pages /
3734					percpu_pagelist_fraction));
3735	}
3736}
3737
3738/*
3739 * Allocate per cpu pagesets and initialize them.
3740 * Before this call only boot pagesets were available.
3741 */
3742void __init setup_per_cpu_pageset(void)
3743{
3744	struct zone *zone;
3745
3746	for_each_populated_zone(zone)
3747		setup_zone_pageset(zone);
3748}
3749
3750static noinline __init_refok
3751int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3752{
3753	int i;
3754	struct pglist_data *pgdat = zone->zone_pgdat;
3755	size_t alloc_size;
3756
3757	/*
3758	 * The per-page waitqueue mechanism uses hashed waitqueues
3759	 * per zone.
3760	 */
3761	zone->wait_table_hash_nr_entries =
3762		 wait_table_hash_nr_entries(zone_size_pages);
3763	zone->wait_table_bits =
3764		wait_table_bits(zone->wait_table_hash_nr_entries);
3765	alloc_size = zone->wait_table_hash_nr_entries
3766					* sizeof(wait_queue_head_t);
3767
3768	if (!slab_is_available()) {
3769		zone->wait_table = (wait_queue_head_t *)
3770			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3771	} else {
3772		/*
3773		 * This case means that a zone whose size was 0 gets new memory
3774		 * via memory hot-add.
3775		 * But it may be the case that a new node was hot-added.  In
3776		 * this case vmalloc() will not be able to use this new node's
3777		 * memory - this wait_table must be initialized to use this new
3778		 * node itself as well.
3779		 * To use this new node's memory, further consideration will be
3780		 * necessary.
3781		 */
3782		zone->wait_table = vmalloc(alloc_size);
3783	}
3784	if (!zone->wait_table)
3785		return -ENOMEM;
3786
3787	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3788		init_waitqueue_head(zone->wait_table + i);
3789
3790	return 0;
3791}
3792
3793static int __zone_pcp_update(void *data)
3794{
3795	struct zone *zone = data;
3796	int cpu;
3797	unsigned long batch = zone_batchsize(zone), flags;
3798
3799	for_each_possible_cpu(cpu) {
3800		struct per_cpu_pageset *pset;
3801		struct per_cpu_pages *pcp;
3802
3803		pset = per_cpu_ptr(zone->pageset, cpu);
3804		pcp = &pset->pcp;
3805
3806		local_irq_save(flags);
3807		free_pcppages_bulk(zone, pcp->count, pcp);
3808		setup_pageset(pset, batch);
3809		local_irq_restore(flags);
3810	}
3811	return 0;
3812}
3813
3814void zone_pcp_update(struct zone *zone)
3815{
3816	stop_machine(__zone_pcp_update, zone, NULL);
3817}
3818
3819static __meminit void zone_pcp_init(struct zone *zone)
3820{
3821	/*
3822	 * per cpu subsystem is not up at this point. The following code
3823	 * relies on the ability of the linker to provide the
3824	 * offset of a (static) per cpu variable into the per cpu area.
3825	 */
3826	zone->pageset = &boot_pageset;
3827
3828	if (zone->present_pages)
3829		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3830			zone->name, zone->present_pages,
3831					 zone_batchsize(zone));
3832}
3833
3834__meminit int init_currently_empty_zone(struct zone *zone,
3835					unsigned long zone_start_pfn,
3836					unsigned long size,
3837					enum memmap_context context)
3838{
3839	struct pglist_data *pgdat = zone->zone_pgdat;
3840	int ret;
3841	ret = zone_wait_table_init(zone, size);
3842	if (ret)
3843		return ret;
3844	pgdat->nr_zones = zone_idx(zone) + 1;
3845
3846	zone->zone_start_pfn = zone_start_pfn;
3847
3848	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3849			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3850			pgdat->node_id,
3851			(unsigned long)zone_idx(zone),
3852			zone_start_pfn, (zone_start_pfn + size));
3853
3854	zone_init_free_lists(zone);
3855
3856	return 0;
3857}
3858
3859#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3860#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3861/*
3862 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3863 * Architectures may implement their own version but if add_active_range()
3864 * was used and there are no special requirements, this is a convenient
3865 * alternative
3866 */
3867int __meminit __early_pfn_to_nid(unsigned long pfn)
3868{
3869	unsigned long start_pfn, end_pfn;
3870	int i, nid;
3871
3872	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3873		if (start_pfn <= pfn && pfn < end_pfn)
3874			return nid;
3875	/* This is a memory hole */
3876	return -1;
3877}
3878#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3879
3880int __meminit early_pfn_to_nid(unsigned long pfn)
3881{
3882	int nid;
3883
3884	nid = __early_pfn_to_nid(pfn);
3885	if (nid >= 0)
3886		return nid;
3887	/* just returns 0 */
3888	return 0;
3889}
3890
3891#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3892bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3893{
3894	int nid;
3895
3896	nid = __early_pfn_to_nid(pfn);
3897	if (nid >= 0 && nid != node)
3898		return false;
3899	return true;
3900}
3901#endif
3902
3903/**
3904 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3905 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3906 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3907 *
3908 * If an architecture guarantees that all ranges registered with
3909 * add_active_ranges() contain no holes and may be freed, this
3910 * this function may be used instead of calling free_bootmem() manually.
3911 */
3912void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3913{
3914	unsigned long start_pfn, end_pfn;
3915	int i, this_nid;
3916
3917	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3918		start_pfn = min(start_pfn, max_low_pfn);
3919		end_pfn = min(end_pfn, max_low_pfn);
3920
3921		if (start_pfn < end_pfn)
3922			free_bootmem_node(NODE_DATA(this_nid),
3923					  PFN_PHYS(start_pfn),
3924					  (end_pfn - start_pfn) << PAGE_SHIFT);
3925	}
3926}
3927
3928int __init add_from_early_node_map(struct range *range, int az,
3929				   int nr_range, int nid)
3930{
3931	unsigned long start_pfn, end_pfn;
3932	int i;
3933
3934	/* need to go over early_node_map to find out good range for node */
3935	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3936		nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
3937	return nr_range;
3938}
3939
3940/**
3941 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3942 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3943 *
3944 * If an architecture guarantees that all ranges registered with
3945 * add_active_ranges() contain no holes and may be freed, this
3946 * function may be used instead of calling memory_present() manually.
3947 */
3948void __init sparse_memory_present_with_active_regions(int nid)
3949{
3950	unsigned long start_pfn, end_pfn;
3951	int i, this_nid;
3952
3953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3954		memory_present(this_nid, start_pfn, end_pfn);
3955}
3956
3957/**
3958 * get_pfn_range_for_nid - Return the start and end page frames for a node
3959 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3960 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3961 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3962 *
3963 * It returns the start and end page frame of a node based on information
3964 * provided by an arch calling add_active_range(). If called for a node
3965 * with no available memory, a warning is printed and the start and end
3966 * PFNs will be 0.
3967 */
3968void __meminit get_pfn_range_for_nid(unsigned int nid,
3969			unsigned long *start_pfn, unsigned long *end_pfn)
3970{
3971	unsigned long this_start_pfn, this_end_pfn;
3972	int i;
3973
3974	*start_pfn = -1UL;
3975	*end_pfn = 0;
3976
3977	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3978		*start_pfn = min(*start_pfn, this_start_pfn);
3979		*end_pfn = max(*end_pfn, this_end_pfn);
3980	}
3981
3982	if (*start_pfn == -1UL)
3983		*start_pfn = 0;
3984}
3985
3986/*
3987 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3988 * assumption is made that zones within a node are ordered in monotonic
3989 * increasing memory addresses so that the "highest" populated zone is used
3990 */
3991static void __init find_usable_zone_for_movable(void)
3992{
3993	int zone_index;
3994	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3995		if (zone_index == ZONE_MOVABLE)
3996			continue;
3997
3998		if (arch_zone_highest_possible_pfn[zone_index] >
3999				arch_zone_lowest_possible_pfn[zone_index])
4000			break;
4001	}
4002
4003	VM_BUG_ON(zone_index == -1);
4004	movable_zone = zone_index;
4005}
4006
4007/*
4008 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4009 * because it is sized independent of architecture. Unlike the other zones,
4010 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4011 * in each node depending on the size of each node and how evenly kernelcore
4012 * is distributed. This helper function adjusts the zone ranges
4013 * provided by the architecture for a given node by using the end of the
4014 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4015 * zones within a node are in order of monotonic increases memory addresses
4016 */
4017static void __meminit adjust_zone_range_for_zone_movable(int nid,
4018					unsigned long zone_type,
4019					unsigned long node_start_pfn,
4020					unsigned long node_end_pfn,
4021					unsigned long *zone_start_pfn,
4022					unsigned long *zone_end_pfn)
4023{
4024	/* Only adjust if ZONE_MOVABLE is on this node */
4025	if (zone_movable_pfn[nid]) {
4026		/* Size ZONE_MOVABLE */
4027		if (zone_type == ZONE_MOVABLE) {
4028			*zone_start_pfn = zone_movable_pfn[nid];
4029			*zone_end_pfn = min(node_end_pfn,
4030				arch_zone_highest_possible_pfn[movable_zone]);
4031
4032		/* Adjust for ZONE_MOVABLE starting within this range */
4033		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4034				*zone_end_pfn > zone_movable_pfn[nid]) {
4035			*zone_end_pfn = zone_movable_pfn[nid];
4036
4037		/* Check if this whole range is within ZONE_MOVABLE */
4038		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4039			*zone_start_pfn = *zone_end_pfn;
4040	}
4041}
4042
4043/*
4044 * Return the number of pages a zone spans in a node, including holes
4045 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4046 */
4047static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4048					unsigned long zone_type,
4049					unsigned long *ignored)
4050{
4051	unsigned long node_start_pfn, node_end_pfn;
4052	unsigned long zone_start_pfn, zone_end_pfn;
4053
4054	/* Get the start and end of the node and zone */
4055	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4056	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4057	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4058	adjust_zone_range_for_zone_movable(nid, zone_type,
4059				node_start_pfn, node_end_pfn,
4060				&zone_start_pfn, &zone_end_pfn);
4061
4062	/* Check that this node has pages within the zone's required range */
4063	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4064		return 0;
4065
4066	/* Move the zone boundaries inside the node if necessary */
4067	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4068	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4069
4070	/* Return the spanned pages */
4071	return zone_end_pfn - zone_start_pfn;
4072}
4073
4074/*
4075 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4076 * then all holes in the requested range will be accounted for.
4077 */
4078unsigned long __meminit __absent_pages_in_range(int nid,
4079				unsigned long range_start_pfn,
4080				unsigned long range_end_pfn)
4081{
4082	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4083	unsigned long start_pfn, end_pfn;
4084	int i;
4085
4086	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4087		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4088		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4089		nr_absent -= end_pfn - start_pfn;
4090	}
4091	return nr_absent;
4092}
4093
4094/**
4095 * absent_pages_in_range - Return number of page frames in holes within a range
4096 * @start_pfn: The start PFN to start searching for holes
4097 * @end_pfn: The end PFN to stop searching for holes
4098 *
4099 * It returns the number of pages frames in memory holes within a range.
4100 */
4101unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4102							unsigned long end_pfn)
4103{
4104	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4105}
4106
4107/* Return the number of page frames in holes in a zone on a node */
4108static unsigned long __meminit zone_absent_pages_in_node(int nid,
4109					unsigned long zone_type,
4110					unsigned long *ignored)
4111{
4112	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4113	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4114	unsigned long node_start_pfn, node_end_pfn;
4115	unsigned long zone_start_pfn, zone_end_pfn;
4116
4117	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4118	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4119	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4120
4121	adjust_zone_range_for_zone_movable(nid, zone_type,
4122			node_start_pfn, node_end_pfn,
4123			&zone_start_pfn, &zone_end_pfn);
4124	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4125}
4126
4127#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4128static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4129					unsigned long zone_type,
4130					unsigned long *zones_size)
4131{
4132	return zones_size[zone_type];
4133}
4134
4135static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4136						unsigned long zone_type,
4137						unsigned long *zholes_size)
4138{
4139	if (!zholes_size)
4140		return 0;
4141
4142	return zholes_size[zone_type];
4143}
4144
4145#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4146
4147static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4148		unsigned long *zones_size, unsigned long *zholes_size)
4149{
4150	unsigned long realtotalpages, totalpages = 0;
4151	enum zone_type i;
4152
4153	for (i = 0; i < MAX_NR_ZONES; i++)
4154		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4155								zones_size);
4156	pgdat->node_spanned_pages = totalpages;
4157
4158	realtotalpages = totalpages;
4159	for (i = 0; i < MAX_NR_ZONES; i++)
4160		realtotalpages -=
4161			zone_absent_pages_in_node(pgdat->node_id, i,
4162								zholes_size);
4163	pgdat->node_present_pages = realtotalpages;
4164	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4165							realtotalpages);
4166}
4167
4168#ifndef CONFIG_SPARSEMEM
4169/*
4170 * Calculate the size of the zone->blockflags rounded to an unsigned long
4171 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4172 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4173 * round what is now in bits to nearest long in bits, then return it in
4174 * bytes.
4175 */
4176static unsigned long __init usemap_size(unsigned long zonesize)
4177{
4178	unsigned long usemapsize;
4179
4180	usemapsize = roundup(zonesize, pageblock_nr_pages);
4181	usemapsize = usemapsize >> pageblock_order;
4182	usemapsize *= NR_PAGEBLOCK_BITS;
4183	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4184
4185	return usemapsize / 8;
4186}
4187
4188static void __init setup_usemap(struct pglist_data *pgdat,
4189				struct zone *zone, unsigned long zonesize)
4190{
4191	unsigned long usemapsize = usemap_size(zonesize);
4192	zone->pageblock_flags = NULL;
4193	if (usemapsize)
4194		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4195								   usemapsize);
4196}
4197#else
4198static inline void setup_usemap(struct pglist_data *pgdat,
4199				struct zone *zone, unsigned long zonesize) {}
4200#endif /* CONFIG_SPARSEMEM */
4201
4202#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4203
4204/* Return a sensible default order for the pageblock size. */
4205static inline int pageblock_default_order(void)
4206{
4207	if (HPAGE_SHIFT > PAGE_SHIFT)
4208		return HUGETLB_PAGE_ORDER;
4209
4210	return MAX_ORDER-1;
4211}
4212
4213/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4214static inline void __init set_pageblock_order(unsigned int order)
4215{
4216	/* Check that pageblock_nr_pages has not already been setup */
4217	if (pageblock_order)
4218		return;
4219
4220	/*
4221	 * Assume the largest contiguous order of interest is a huge page.
4222	 * This value may be variable depending on boot parameters on IA64
4223	 */
4224	pageblock_order = order;
4225}
4226#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4227
4228/*
4229 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4230 * and pageblock_default_order() are unused as pageblock_order is set
4231 * at compile-time. See include/linux/pageblock-flags.h for the values of
4232 * pageblock_order based on the kernel config
4233 */
4234static inline int pageblock_default_order(unsigned int order)
4235{
4236	return MAX_ORDER-1;
4237}
4238#define set_pageblock_order(x)	do {} while (0)
4239
4240#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4241
4242/*
4243 * Set up the zone data structures:
4244 *   - mark all pages reserved
4245 *   - mark all memory queues empty
4246 *   - clear the memory bitmaps
4247 */
4248static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4249		unsigned long *zones_size, unsigned long *zholes_size)
4250{
4251	enum zone_type j;
4252	int nid = pgdat->node_id;
4253	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4254	int ret;
4255
4256	pgdat_resize_init(pgdat);
4257	pgdat->nr_zones = 0;
4258	init_waitqueue_head(&pgdat->kswapd_wait);
4259	pgdat->kswapd_max_order = 0;
4260	pgdat_page_cgroup_init(pgdat);
4261
4262	for (j = 0; j < MAX_NR_ZONES; j++) {
4263		struct zone *zone = pgdat->node_zones + j;
4264		unsigned long size, realsize, memmap_pages;
4265		enum lru_list lru;
4266
4267		size = zone_spanned_pages_in_node(nid, j, zones_size);
4268		realsize = size - zone_absent_pages_in_node(nid, j,
4269								zholes_size);
4270
4271		/*
4272		 * Adjust realsize so that it accounts for how much memory
4273		 * is used by this zone for memmap. This affects the watermark
4274		 * and per-cpu initialisations
4275		 */
4276		memmap_pages =
4277			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4278		if (realsize >= memmap_pages) {
4279			realsize -= memmap_pages;
4280			if (memmap_pages)
4281				printk(KERN_DEBUG
4282				       "  %s zone: %lu pages used for memmap\n",
4283				       zone_names[j], memmap_pages);
4284		} else
4285			printk(KERN_WARNING
4286				"  %s zone: %lu pages exceeds realsize %lu\n",
4287				zone_names[j], memmap_pages, realsize);
4288
4289		/* Account for reserved pages */
4290		if (j == 0 && realsize > dma_reserve) {
4291			realsize -= dma_reserve;
4292			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4293					zone_names[0], dma_reserve);
4294		}
4295
4296		if (!is_highmem_idx(j))
4297			nr_kernel_pages += realsize;
4298		nr_all_pages += realsize;
4299
4300		zone->spanned_pages = size;
4301		zone->present_pages = realsize;
4302#ifdef CONFIG_NUMA
4303		zone->node = nid;
4304		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4305						/ 100;
4306		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4307#endif
4308		zone->name = zone_names[j];
4309		spin_lock_init(&zone->lock);
4310		spin_lock_init(&zone->lru_lock);
4311		zone_seqlock_init(zone);
4312		zone->zone_pgdat = pgdat;
4313
4314		zone_pcp_init(zone);
4315		for_each_lru(lru)
4316			INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4317		zone->reclaim_stat.recent_rotated[0] = 0;
4318		zone->reclaim_stat.recent_rotated[1] = 0;
4319		zone->reclaim_stat.recent_scanned[0] = 0;
4320		zone->reclaim_stat.recent_scanned[1] = 0;
4321		zap_zone_vm_stats(zone);
4322		zone->flags = 0;
4323		if (!size)
4324			continue;
4325
4326		set_pageblock_order(pageblock_default_order());
4327		setup_usemap(pgdat, zone, size);
4328		ret = init_currently_empty_zone(zone, zone_start_pfn,
4329						size, MEMMAP_EARLY);
4330		BUG_ON(ret);
4331		memmap_init(size, nid, j, zone_start_pfn);
4332		zone_start_pfn += size;
4333	}
4334}
4335
4336static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4337{
4338	/* Skip empty nodes */
4339	if (!pgdat->node_spanned_pages)
4340		return;
4341
4342#ifdef CONFIG_FLAT_NODE_MEM_MAP
4343	/* ia64 gets its own node_mem_map, before this, without bootmem */
4344	if (!pgdat->node_mem_map) {
4345		unsigned long size, start, end;
4346		struct page *map;
4347
4348		/*
4349		 * The zone's endpoints aren't required to be MAX_ORDER
4350		 * aligned but the node_mem_map endpoints must be in order
4351		 * for the buddy allocator to function correctly.
4352		 */
4353		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4354		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4355		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4356		size =  (end - start) * sizeof(struct page);
4357		map = alloc_remap(pgdat->node_id, size);
4358		if (!map)
4359			map = alloc_bootmem_node_nopanic(pgdat, size);
4360		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4361	}
4362#ifndef CONFIG_NEED_MULTIPLE_NODES
4363	/*
4364	 * With no DISCONTIG, the global mem_map is just set as node 0's
4365	 */
4366	if (pgdat == NODE_DATA(0)) {
4367		mem_map = NODE_DATA(0)->node_mem_map;
4368#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4369		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4370			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4371#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4372	}
4373#endif
4374#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4375}
4376
4377void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4378		unsigned long node_start_pfn, unsigned long *zholes_size)
4379{
4380	pg_data_t *pgdat = NODE_DATA(nid);
4381
4382	pgdat->node_id = nid;
4383	pgdat->node_start_pfn = node_start_pfn;
4384	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4385
4386	alloc_node_mem_map(pgdat);
4387#ifdef CONFIG_FLAT_NODE_MEM_MAP
4388	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4389		nid, (unsigned long)pgdat,
4390		(unsigned long)pgdat->node_mem_map);
4391#endif
4392
4393	free_area_init_core(pgdat, zones_size, zholes_size);
4394}
4395
4396#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4397
4398#if MAX_NUMNODES > 1
4399/*
4400 * Figure out the number of possible node ids.
4401 */
4402static void __init setup_nr_node_ids(void)
4403{
4404	unsigned int node;
4405	unsigned int highest = 0;
4406
4407	for_each_node_mask(node, node_possible_map)
4408		highest = node;
4409	nr_node_ids = highest + 1;
4410}
4411#else
4412static inline void setup_nr_node_ids(void)
4413{
4414}
4415#endif
4416
4417/**
4418 * node_map_pfn_alignment - determine the maximum internode alignment
4419 *
4420 * This function should be called after node map is populated and sorted.
4421 * It calculates the maximum power of two alignment which can distinguish
4422 * all the nodes.
4423 *
4424 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4425 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4426 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4427 * shifted, 1GiB is enough and this function will indicate so.
4428 *
4429 * This is used to test whether pfn -> nid mapping of the chosen memory
4430 * model has fine enough granularity to avoid incorrect mapping for the
4431 * populated node map.
4432 *
4433 * Returns the determined alignment in pfn's.  0 if there is no alignment
4434 * requirement (single node).
4435 */
4436unsigned long __init node_map_pfn_alignment(void)
4437{
4438	unsigned long accl_mask = 0, last_end = 0;
4439	unsigned long start, end, mask;
4440	int last_nid = -1;
4441	int i, nid;
4442
4443	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4444		if (!start || last_nid < 0 || last_nid == nid) {
4445			last_nid = nid;
4446			last_end = end;
4447			continue;
4448		}
4449
4450		/*
4451		 * Start with a mask granular enough to pin-point to the
4452		 * start pfn and tick off bits one-by-one until it becomes
4453		 * too coarse to separate the current node from the last.
4454		 */
4455		mask = ~((1 << __ffs(start)) - 1);
4456		while (mask && last_end <= (start & (mask << 1)))
4457			mask <<= 1;
4458
4459		/* accumulate all internode masks */
4460		accl_mask |= mask;
4461	}
4462
4463	/* convert mask to number of pages */
4464	return ~accl_mask + 1;
4465}
4466
4467/* Find the lowest pfn for a node */
4468static unsigned long __init find_min_pfn_for_node(int nid)
4469{
4470	unsigned long min_pfn = ULONG_MAX;
4471	unsigned long start_pfn;
4472	int i;
4473
4474	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4475		min_pfn = min(min_pfn, start_pfn);
4476
4477	if (min_pfn == ULONG_MAX) {
4478		printk(KERN_WARNING
4479			"Could not find start_pfn for node %d\n", nid);
4480		return 0;
4481	}
4482
4483	return min_pfn;
4484}
4485
4486/**
4487 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4488 *
4489 * It returns the minimum PFN based on information provided via
4490 * add_active_range().
4491 */
4492unsigned long __init find_min_pfn_with_active_regions(void)
4493{
4494	return find_min_pfn_for_node(MAX_NUMNODES);
4495}
4496
4497/*
4498 * early_calculate_totalpages()
4499 * Sum pages in active regions for movable zone.
4500 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4501 */
4502static unsigned long __init early_calculate_totalpages(void)
4503{
4504	unsigned long totalpages = 0;
4505	unsigned long start_pfn, end_pfn;
4506	int i, nid;
4507
4508	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4509		unsigned long pages = end_pfn - start_pfn;
4510
4511		totalpages += pages;
4512		if (pages)
4513			node_set_state(nid, N_HIGH_MEMORY);
4514	}
4515  	return totalpages;
4516}
4517
4518/*
4519 * Find the PFN the Movable zone begins in each node. Kernel memory
4520 * is spread evenly between nodes as long as the nodes have enough
4521 * memory. When they don't, some nodes will have more kernelcore than
4522 * others
4523 */
4524static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4525{
4526	int i, nid;
4527	unsigned long usable_startpfn;
4528	unsigned long kernelcore_node, kernelcore_remaining;
4529	/* save the state before borrow the nodemask */
4530	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4531	unsigned long totalpages = early_calculate_totalpages();
4532	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4533
4534	/*
4535	 * If movablecore was specified, calculate what size of
4536	 * kernelcore that corresponds so that memory usable for
4537	 * any allocation type is evenly spread. If both kernelcore
4538	 * and movablecore are specified, then the value of kernelcore
4539	 * will be used for required_kernelcore if it's greater than
4540	 * what movablecore would have allowed.
4541	 */
4542	if (required_movablecore) {
4543		unsigned long corepages;
4544
4545		/*
4546		 * Round-up so that ZONE_MOVABLE is at least as large as what
4547		 * was requested by the user
4548		 */
4549		required_movablecore =
4550			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4551		corepages = totalpages - required_movablecore;
4552
4553		required_kernelcore = max(required_kernelcore, corepages);
4554	}
4555
4556	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4557	if (!required_kernelcore)
4558		goto out;
4559
4560	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4561	find_usable_zone_for_movable();
4562	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4563
4564restart:
4565	/* Spread kernelcore memory as evenly as possible throughout nodes */
4566	kernelcore_node = required_kernelcore / usable_nodes;
4567	for_each_node_state(nid, N_HIGH_MEMORY) {
4568		unsigned long start_pfn, end_pfn;
4569
4570		/*
4571		 * Recalculate kernelcore_node if the division per node
4572		 * now exceeds what is necessary to satisfy the requested
4573		 * amount of memory for the kernel
4574		 */
4575		if (required_kernelcore < kernelcore_node)
4576			kernelcore_node = required_kernelcore / usable_nodes;
4577
4578		/*
4579		 * As the map is walked, we track how much memory is usable
4580		 * by the kernel using kernelcore_remaining. When it is
4581		 * 0, the rest of the node is usable by ZONE_MOVABLE
4582		 */
4583		kernelcore_remaining = kernelcore_node;
4584
4585		/* Go through each range of PFNs within this node */
4586		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4587			unsigned long size_pages;
4588
4589			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4590			if (start_pfn >= end_pfn)
4591				continue;
4592
4593			/* Account for what is only usable for kernelcore */
4594			if (start_pfn < usable_startpfn) {
4595				unsigned long kernel_pages;
4596				kernel_pages = min(end_pfn, usable_startpfn)
4597								- start_pfn;
4598
4599				kernelcore_remaining -= min(kernel_pages,
4600							kernelcore_remaining);
4601				required_kernelcore -= min(kernel_pages,
4602							required_kernelcore);
4603
4604				/* Continue if range is now fully accounted */
4605				if (end_pfn <= usable_startpfn) {
4606
4607					/*
4608					 * Push zone_movable_pfn to the end so
4609					 * that if we have to rebalance
4610					 * kernelcore across nodes, we will
4611					 * not double account here
4612					 */
4613					zone_movable_pfn[nid] = end_pfn;
4614					continue;
4615				}
4616				start_pfn = usable_startpfn;
4617			}
4618
4619			/*
4620			 * The usable PFN range for ZONE_MOVABLE is from
4621			 * start_pfn->end_pfn. Calculate size_pages as the
4622			 * number of pages used as kernelcore
4623			 */
4624			size_pages = end_pfn - start_pfn;
4625			if (size_pages > kernelcore_remaining)
4626				size_pages = kernelcore_remaining;
4627			zone_movable_pfn[nid] = start_pfn + size_pages;
4628
4629			/*
4630			 * Some kernelcore has been met, update counts and
4631			 * break if the kernelcore for this node has been
4632			 * satisified
4633			 */
4634			required_kernelcore -= min(required_kernelcore,
4635								size_pages);
4636			kernelcore_remaining -= size_pages;
4637			if (!kernelcore_remaining)
4638				break;
4639		}
4640	}
4641
4642	/*
4643	 * If there is still required_kernelcore, we do another pass with one
4644	 * less node in the count. This will push zone_movable_pfn[nid] further
4645	 * along on the nodes that still have memory until kernelcore is
4646	 * satisified
4647	 */
4648	usable_nodes--;
4649	if (usable_nodes && required_kernelcore > usable_nodes)
4650		goto restart;
4651
4652	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4653	for (nid = 0; nid < MAX_NUMNODES; nid++)
4654		zone_movable_pfn[nid] =
4655			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4656
4657out:
4658	/* restore the node_state */
4659	node_states[N_HIGH_MEMORY] = saved_node_state;
4660}
4661
4662/* Any regular memory on that node ? */
4663static void check_for_regular_memory(pg_data_t *pgdat)
4664{
4665#ifdef CONFIG_HIGHMEM
4666	enum zone_type zone_type;
4667
4668	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4669		struct zone *zone = &pgdat->node_zones[zone_type];
4670		if (zone->present_pages) {
4671			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4672			break;
4673		}
4674	}
4675#endif
4676}
4677
4678/**
4679 * free_area_init_nodes - Initialise all pg_data_t and zone data
4680 * @max_zone_pfn: an array of max PFNs for each zone
4681 *
4682 * This will call free_area_init_node() for each active node in the system.
4683 * Using the page ranges provided by add_active_range(), the size of each
4684 * zone in each node and their holes is calculated. If the maximum PFN
4685 * between two adjacent zones match, it is assumed that the zone is empty.
4686 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4687 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4688 * starts where the previous one ended. For example, ZONE_DMA32 starts
4689 * at arch_max_dma_pfn.
4690 */
4691void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4692{
4693	unsigned long start_pfn, end_pfn;
4694	int i, nid;
4695
4696	/* Record where the zone boundaries are */
4697	memset(arch_zone_lowest_possible_pfn, 0,
4698				sizeof(arch_zone_lowest_possible_pfn));
4699	memset(arch_zone_highest_possible_pfn, 0,
4700				sizeof(arch_zone_highest_possible_pfn));
4701	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4702	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4703	for (i = 1; i < MAX_NR_ZONES; i++) {
4704		if (i == ZONE_MOVABLE)
4705			continue;
4706		arch_zone_lowest_possible_pfn[i] =
4707			arch_zone_highest_possible_pfn[i-1];
4708		arch_zone_highest_possible_pfn[i] =
4709			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4710	}
4711	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4712	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4713
4714	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4715	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4716	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4717
4718	/* Print out the zone ranges */
4719	printk("Zone PFN ranges:\n");
4720	for (i = 0; i < MAX_NR_ZONES; i++) {
4721		if (i == ZONE_MOVABLE)
4722			continue;
4723		printk("  %-8s ", zone_names[i]);
4724		if (arch_zone_lowest_possible_pfn[i] ==
4725				arch_zone_highest_possible_pfn[i])
4726			printk("empty\n");
4727		else
4728			printk("%0#10lx -> %0#10lx\n",
4729				arch_zone_lowest_possible_pfn[i],
4730				arch_zone_highest_possible_pfn[i]);
4731	}
4732
4733	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4734	printk("Movable zone start PFN for each node\n");
4735	for (i = 0; i < MAX_NUMNODES; i++) {
4736		if (zone_movable_pfn[i])
4737			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4738	}
4739
4740	/* Print out the early_node_map[] */
4741	printk("Early memory PFN ranges\n");
4742	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4743		printk("  %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4744
4745	/* Initialise every node */
4746	mminit_verify_pageflags_layout();
4747	setup_nr_node_ids();
4748	for_each_online_node(nid) {
4749		pg_data_t *pgdat = NODE_DATA(nid);
4750		free_area_init_node(nid, NULL,
4751				find_min_pfn_for_node(nid), NULL);
4752
4753		/* Any memory on that node */
4754		if (pgdat->node_present_pages)
4755			node_set_state(nid, N_HIGH_MEMORY);
4756		check_for_regular_memory(pgdat);
4757	}
4758}
4759
4760static int __init cmdline_parse_core(char *p, unsigned long *core)
4761{
4762	unsigned long long coremem;
4763	if (!p)
4764		return -EINVAL;
4765
4766	coremem = memparse(p, &p);
4767	*core = coremem >> PAGE_SHIFT;
4768
4769	/* Paranoid check that UL is enough for the coremem value */
4770	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4771
4772	return 0;
4773}
4774
4775/*
4776 * kernelcore=size sets the amount of memory for use for allocations that
4777 * cannot be reclaimed or migrated.
4778 */
4779static int __init cmdline_parse_kernelcore(char *p)
4780{
4781	return cmdline_parse_core(p, &required_kernelcore);
4782}
4783
4784/*
4785 * movablecore=size sets the amount of memory for use for allocations that
4786 * can be reclaimed or migrated.
4787 */
4788static int __init cmdline_parse_movablecore(char *p)
4789{
4790	return cmdline_parse_core(p, &required_movablecore);
4791}
4792
4793early_param("kernelcore", cmdline_parse_kernelcore);
4794early_param("movablecore", cmdline_parse_movablecore);
4795
4796#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4797
4798/**
4799 * set_dma_reserve - set the specified number of pages reserved in the first zone
4800 * @new_dma_reserve: The number of pages to mark reserved
4801 *
4802 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4803 * In the DMA zone, a significant percentage may be consumed by kernel image
4804 * and other unfreeable allocations which can skew the watermarks badly. This
4805 * function may optionally be used to account for unfreeable pages in the
4806 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4807 * smaller per-cpu batchsize.
4808 */
4809void __init set_dma_reserve(unsigned long new_dma_reserve)
4810{
4811	dma_reserve = new_dma_reserve;
4812}
4813
4814void __init free_area_init(unsigned long *zones_size)
4815{
4816	free_area_init_node(0, zones_size,
4817			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4818}
4819
4820static int page_alloc_cpu_notify(struct notifier_block *self,
4821				 unsigned long action, void *hcpu)
4822{
4823	int cpu = (unsigned long)hcpu;
4824
4825	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4826		drain_pages(cpu);
4827
4828		/*
4829		 * Spill the event counters of the dead processor
4830		 * into the current processors event counters.
4831		 * This artificially elevates the count of the current
4832		 * processor.
4833		 */
4834		vm_events_fold_cpu(cpu);
4835
4836		/*
4837		 * Zero the differential counters of the dead processor
4838		 * so that the vm statistics are consistent.
4839		 *
4840		 * This is only okay since the processor is dead and cannot
4841		 * race with what we are doing.
4842		 */
4843		refresh_cpu_vm_stats(cpu);
4844	}
4845	return NOTIFY_OK;
4846}
4847
4848void __init page_alloc_init(void)
4849{
4850	hotcpu_notifier(page_alloc_cpu_notify, 0);
4851}
4852
4853/*
4854 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4855 *	or min_free_kbytes changes.
4856 */
4857static void calculate_totalreserve_pages(void)
4858{
4859	struct pglist_data *pgdat;
4860	unsigned long reserve_pages = 0;
4861	enum zone_type i, j;
4862
4863	for_each_online_pgdat(pgdat) {
4864		for (i = 0; i < MAX_NR_ZONES; i++) {
4865			struct zone *zone = pgdat->node_zones + i;
4866			unsigned long max = 0;
4867
4868			/* Find valid and maximum lowmem_reserve in the zone */
4869			for (j = i; j < MAX_NR_ZONES; j++) {
4870				if (zone->lowmem_reserve[j] > max)
4871					max = zone->lowmem_reserve[j];
4872			}
4873
4874			/* we treat the high watermark as reserved pages. */
4875			max += high_wmark_pages(zone);
4876
4877			if (max > zone->present_pages)
4878				max = zone->present_pages;
4879			reserve_pages += max;
4880			/*
4881			 * Lowmem reserves are not available to
4882			 * GFP_HIGHUSER page cache allocations and
4883			 * kswapd tries to balance zones to their high
4884			 * watermark.  As a result, neither should be
4885			 * regarded as dirtyable memory, to prevent a
4886			 * situation where reclaim has to clean pages
4887			 * in order to balance the zones.
4888			 */
4889			zone->dirty_balance_reserve = max;
4890		}
4891	}
4892	dirty_balance_reserve = reserve_pages;
4893	totalreserve_pages = reserve_pages;
4894}
4895
4896/*
4897 * setup_per_zone_lowmem_reserve - called whenever
4898 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4899 *	has a correct pages reserved value, so an adequate number of
4900 *	pages are left in the zone after a successful __alloc_pages().
4901 */
4902static void setup_per_zone_lowmem_reserve(void)
4903{
4904	struct pglist_data *pgdat;
4905	enum zone_type j, idx;
4906
4907	for_each_online_pgdat(pgdat) {
4908		for (j = 0; j < MAX_NR_ZONES; j++) {
4909			struct zone *zone = pgdat->node_zones + j;
4910			unsigned long present_pages = zone->present_pages;
4911
4912			zone->lowmem_reserve[j] = 0;
4913
4914			idx = j;
4915			while (idx) {
4916				struct zone *lower_zone;
4917
4918				idx--;
4919
4920				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4921					sysctl_lowmem_reserve_ratio[idx] = 1;
4922
4923				lower_zone = pgdat->node_zones + idx;
4924				lower_zone->lowmem_reserve[j] = present_pages /
4925					sysctl_lowmem_reserve_ratio[idx];
4926				present_pages += lower_zone->present_pages;
4927			}
4928		}
4929	}
4930
4931	/* update totalreserve_pages */
4932	calculate_totalreserve_pages();
4933}
4934
4935/**
4936 * setup_per_zone_wmarks - called when min_free_kbytes changes
4937 * or when memory is hot-{added|removed}
4938 *
4939 * Ensures that the watermark[min,low,high] values for each zone are set
4940 * correctly with respect to min_free_kbytes.
4941 */
4942void setup_per_zone_wmarks(void)
4943{
4944	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4945	unsigned long lowmem_pages = 0;
4946	struct zone *zone;
4947	unsigned long flags;
4948
4949	/* Calculate total number of !ZONE_HIGHMEM pages */
4950	for_each_zone(zone) {
4951		if (!is_highmem(zone))
4952			lowmem_pages += zone->present_pages;
4953	}
4954
4955	for_each_zone(zone) {
4956		u64 tmp;
4957
4958		spin_lock_irqsave(&zone->lock, flags);
4959		tmp = (u64)pages_min * zone->present_pages;
4960		do_div(tmp, lowmem_pages);
4961		if (is_highmem(zone)) {
4962			/*
4963			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4964			 * need highmem pages, so cap pages_min to a small
4965			 * value here.
4966			 *
4967			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4968			 * deltas controls asynch page reclaim, and so should
4969			 * not be capped for highmem.
4970			 */
4971			int min_pages;
4972
4973			min_pages = zone->present_pages / 1024;
4974			if (min_pages < SWAP_CLUSTER_MAX)
4975				min_pages = SWAP_CLUSTER_MAX;
4976			if (min_pages > 128)
4977				min_pages = 128;
4978			zone->watermark[WMARK_MIN] = min_pages;
4979		} else {
4980			/*
4981			 * If it's a lowmem zone, reserve a number of pages
4982			 * proportionate to the zone's size.
4983			 */
4984			zone->watermark[WMARK_MIN] = tmp;
4985		}
4986
4987		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4988		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4989		setup_zone_migrate_reserve(zone);
4990		spin_unlock_irqrestore(&zone->lock, flags);
4991	}
4992
4993	/* update totalreserve_pages */
4994	calculate_totalreserve_pages();
4995}
4996
4997/*
4998 * The inactive anon list should be small enough that the VM never has to
4999 * do too much work, but large enough that each inactive page has a chance
5000 * to be referenced again before it is swapped out.
5001 *
5002 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5003 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5004 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5005 * the anonymous pages are kept on the inactive list.
5006 *
5007 * total     target    max
5008 * memory    ratio     inactive anon
5009 * -------------------------------------
5010 *   10MB       1         5MB
5011 *  100MB       1        50MB
5012 *    1GB       3       250MB
5013 *   10GB      10       0.9GB
5014 *  100GB      31         3GB
5015 *    1TB     101        10GB
5016 *   10TB     320        32GB
5017 */
5018static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5019{
5020	unsigned int gb, ratio;
5021
5022	/* Zone size in gigabytes */
5023	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5024	if (gb)
5025		ratio = int_sqrt(10 * gb);
5026	else
5027		ratio = 1;
5028
5029	zone->inactive_ratio = ratio;
5030}
5031
5032static void __meminit setup_per_zone_inactive_ratio(void)
5033{
5034	struct zone *zone;
5035
5036	for_each_zone(zone)
5037		calculate_zone_inactive_ratio(zone);
5038}
5039
5040/*
5041 * Initialise min_free_kbytes.
5042 *
5043 * For small machines we want it small (128k min).  For large machines
5044 * we want it large (64MB max).  But it is not linear, because network
5045 * bandwidth does not increase linearly with machine size.  We use
5046 *
5047 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5048 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5049 *
5050 * which yields
5051 *
5052 * 16MB:	512k
5053 * 32MB:	724k
5054 * 64MB:	1024k
5055 * 128MB:	1448k
5056 * 256MB:	2048k
5057 * 512MB:	2896k
5058 * 1024MB:	4096k
5059 * 2048MB:	5792k
5060 * 4096MB:	8192k
5061 * 8192MB:	11584k
5062 * 16384MB:	16384k
5063 */
5064int __meminit init_per_zone_wmark_min(void)
5065{
5066	unsigned long lowmem_kbytes;
5067
5068	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5069
5070	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5071	if (min_free_kbytes < 128)
5072		min_free_kbytes = 128;
5073	if (min_free_kbytes > 65536)
5074		min_free_kbytes = 65536;
5075	setup_per_zone_wmarks();
5076	refresh_zone_stat_thresholds();
5077	setup_per_zone_lowmem_reserve();
5078	setup_per_zone_inactive_ratio();
5079	return 0;
5080}
5081module_init(init_per_zone_wmark_min)
5082
5083/*
5084 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5085 *	that we can call two helper functions whenever min_free_kbytes
5086 *	changes.
5087 */
5088int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5089	void __user *buffer, size_t *length, loff_t *ppos)
5090{
5091	proc_dointvec(table, write, buffer, length, ppos);
5092	if (write)
5093		setup_per_zone_wmarks();
5094	return 0;
5095}
5096
5097#ifdef CONFIG_NUMA
5098int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5099	void __user *buffer, size_t *length, loff_t *ppos)
5100{
5101	struct zone *zone;
5102	int rc;
5103
5104	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5105	if (rc)
5106		return rc;
5107
5108	for_each_zone(zone)
5109		zone->min_unmapped_pages = (zone->present_pages *
5110				sysctl_min_unmapped_ratio) / 100;
5111	return 0;
5112}
5113
5114int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5115	void __user *buffer, size_t *length, loff_t *ppos)
5116{
5117	struct zone *zone;
5118	int rc;
5119
5120	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5121	if (rc)
5122		return rc;
5123
5124	for_each_zone(zone)
5125		zone->min_slab_pages = (zone->present_pages *
5126				sysctl_min_slab_ratio) / 100;
5127	return 0;
5128}
5129#endif
5130
5131/*
5132 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5133 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5134 *	whenever sysctl_lowmem_reserve_ratio changes.
5135 *
5136 * The reserve ratio obviously has absolutely no relation with the
5137 * minimum watermarks. The lowmem reserve ratio can only make sense
5138 * if in function of the boot time zone sizes.
5139 */
5140int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5141	void __user *buffer, size_t *length, loff_t *ppos)
5142{
5143	proc_dointvec_minmax(table, write, buffer, length, ppos);
5144	setup_per_zone_lowmem_reserve();
5145	return 0;
5146}
5147
5148/*
5149 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5150 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5151 * can have before it gets flushed back to buddy allocator.
5152 */
5153
5154int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5155	void __user *buffer, size_t *length, loff_t *ppos)
5156{
5157	struct zone *zone;
5158	unsigned int cpu;
5159	int ret;
5160
5161	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5162	if (!write || (ret == -EINVAL))
5163		return ret;
5164	for_each_populated_zone(zone) {
5165		for_each_possible_cpu(cpu) {
5166			unsigned long  high;
5167			high = zone->present_pages / percpu_pagelist_fraction;
5168			setup_pagelist_highmark(
5169				per_cpu_ptr(zone->pageset, cpu), high);
5170		}
5171	}
5172	return 0;
5173}
5174
5175int hashdist = HASHDIST_DEFAULT;
5176
5177#ifdef CONFIG_NUMA
5178static int __init set_hashdist(char *str)
5179{
5180	if (!str)
5181		return 0;
5182	hashdist = simple_strtoul(str, &str, 0);
5183	return 1;
5184}
5185__setup("hashdist=", set_hashdist);
5186#endif
5187
5188/*
5189 * allocate a large system hash table from bootmem
5190 * - it is assumed that the hash table must contain an exact power-of-2
5191 *   quantity of entries
5192 * - limit is the number of hash buckets, not the total allocation size
5193 */
5194void *__init alloc_large_system_hash(const char *tablename,
5195				     unsigned long bucketsize,
5196				     unsigned long numentries,
5197				     int scale,
5198				     int flags,
5199				     unsigned int *_hash_shift,
5200				     unsigned int *_hash_mask,
5201				     unsigned long limit)
5202{
5203	unsigned long long max = limit;
5204	unsigned long log2qty, size;
5205	void *table = NULL;
5206
5207	/* allow the kernel cmdline to have a say */
5208	if (!numentries) {
5209		/* round applicable memory size up to nearest megabyte */
5210		numentries = nr_kernel_pages;
5211		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5212		numentries >>= 20 - PAGE_SHIFT;
5213		numentries <<= 20 - PAGE_SHIFT;
5214
5215		/* limit to 1 bucket per 2^scale bytes of low memory */
5216		if (scale > PAGE_SHIFT)
5217			numentries >>= (scale - PAGE_SHIFT);
5218		else
5219			numentries <<= (PAGE_SHIFT - scale);
5220
5221		/* Make sure we've got at least a 0-order allocation.. */
5222		if (unlikely(flags & HASH_SMALL)) {
5223			/* Makes no sense without HASH_EARLY */
5224			WARN_ON(!(flags & HASH_EARLY));
5225			if (!(numentries >> *_hash_shift)) {
5226				numentries = 1UL << *_hash_shift;
5227				BUG_ON(!numentries);
5228			}
5229		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5230			numentries = PAGE_SIZE / bucketsize;
5231	}
5232	numentries = roundup_pow_of_two(numentries);
5233
5234	/* limit allocation size to 1/16 total memory by default */
5235	if (max == 0) {
5236		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5237		do_div(max, bucketsize);
5238	}
5239
5240	if (numentries > max)
5241		numentries = max;
5242
5243	log2qty = ilog2(numentries);
5244
5245	do {
5246		size = bucketsize << log2qty;
5247		if (flags & HASH_EARLY)
5248			table = alloc_bootmem_nopanic(size);
5249		else if (hashdist)
5250			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5251		else {
5252			/*
5253			 * If bucketsize is not a power-of-two, we may free
5254			 * some pages at the end of hash table which
5255			 * alloc_pages_exact() automatically does
5256			 */
5257			if (get_order(size) < MAX_ORDER) {
5258				table = alloc_pages_exact(size, GFP_ATOMIC);
5259				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5260			}
5261		}
5262	} while (!table && size > PAGE_SIZE && --log2qty);
5263
5264	if (!table)
5265		panic("Failed to allocate %s hash table\n", tablename);
5266
5267	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5268	       tablename,
5269	       (1UL << log2qty),
5270	       ilog2(size) - PAGE_SHIFT,
5271	       size);
5272
5273	if (_hash_shift)
5274		*_hash_shift = log2qty;
5275	if (_hash_mask)
5276		*_hash_mask = (1 << log2qty) - 1;
5277
5278	return table;
5279}
5280
5281/* Return a pointer to the bitmap storing bits affecting a block of pages */
5282static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5283							unsigned long pfn)
5284{
5285#ifdef CONFIG_SPARSEMEM
5286	return __pfn_to_section(pfn)->pageblock_flags;
5287#else
5288	return zone->pageblock_flags;
5289#endif /* CONFIG_SPARSEMEM */
5290}
5291
5292static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5293{
5294#ifdef CONFIG_SPARSEMEM
5295	pfn &= (PAGES_PER_SECTION-1);
5296	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5297#else
5298	pfn = pfn - zone->zone_start_pfn;
5299	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5300#endif /* CONFIG_SPARSEMEM */
5301}
5302
5303/**
5304 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5305 * @page: The page within the block of interest
5306 * @start_bitidx: The first bit of interest to retrieve
5307 * @end_bitidx: The last bit of interest
5308 * returns pageblock_bits flags
5309 */
5310unsigned long get_pageblock_flags_group(struct page *page,
5311					int start_bitidx, int end_bitidx)
5312{
5313	struct zone *zone;
5314	unsigned long *bitmap;
5315	unsigned long pfn, bitidx;
5316	unsigned long flags = 0;
5317	unsigned long value = 1;
5318
5319	zone = page_zone(page);
5320	pfn = page_to_pfn(page);
5321	bitmap = get_pageblock_bitmap(zone, pfn);
5322	bitidx = pfn_to_bitidx(zone, pfn);
5323
5324	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5325		if (test_bit(bitidx + start_bitidx, bitmap))
5326			flags |= value;
5327
5328	return flags;
5329}
5330
5331/**
5332 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5333 * @page: The page within the block of interest
5334 * @start_bitidx: The first bit of interest
5335 * @end_bitidx: The last bit of interest
5336 * @flags: The flags to set
5337 */
5338void set_pageblock_flags_group(struct page *page, unsigned long flags,
5339					int start_bitidx, int end_bitidx)
5340{
5341	struct zone *zone;
5342	unsigned long *bitmap;
5343	unsigned long pfn, bitidx;
5344	unsigned long value = 1;
5345
5346	zone = page_zone(page);
5347	pfn = page_to_pfn(page);
5348	bitmap = get_pageblock_bitmap(zone, pfn);
5349	bitidx = pfn_to_bitidx(zone, pfn);
5350	VM_BUG_ON(pfn < zone->zone_start_pfn);
5351	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5352
5353	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5354		if (flags & value)
5355			__set_bit(bitidx + start_bitidx, bitmap);
5356		else
5357			__clear_bit(bitidx + start_bitidx, bitmap);
5358}
5359
5360/*
5361 * This is designed as sub function...plz see page_isolation.c also.
5362 * set/clear page block's type to be ISOLATE.
5363 * page allocater never alloc memory from ISOLATE block.
5364 */
5365
5366static int
5367__count_immobile_pages(struct zone *zone, struct page *page, int count)
5368{
5369	unsigned long pfn, iter, found;
5370	/*
5371	 * For avoiding noise data, lru_add_drain_all() should be called
5372	 * If ZONE_MOVABLE, the zone never contains immobile pages
5373	 */
5374	if (zone_idx(zone) == ZONE_MOVABLE)
5375		return true;
5376
5377	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5378		return true;
5379
5380	pfn = page_to_pfn(page);
5381	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5382		unsigned long check = pfn + iter;
5383
5384		if (!pfn_valid_within(check))
5385			continue;
5386
5387		page = pfn_to_page(check);
5388		if (!page_count(page)) {
5389			if (PageBuddy(page))
5390				iter += (1 << page_order(page)) - 1;
5391			continue;
5392		}
5393		if (!PageLRU(page))
5394			found++;
5395		/*
5396		 * If there are RECLAIMABLE pages, we need to check it.
5397		 * But now, memory offline itself doesn't call shrink_slab()
5398		 * and it still to be fixed.
5399		 */
5400		/*
5401		 * If the page is not RAM, page_count()should be 0.
5402		 * we don't need more check. This is an _used_ not-movable page.
5403		 *
5404		 * The problematic thing here is PG_reserved pages. PG_reserved
5405		 * is set to both of a memory hole page and a _used_ kernel
5406		 * page at boot.
5407		 */
5408		if (found > count)
5409			return false;
5410	}
5411	return true;
5412}
5413
5414bool is_pageblock_removable_nolock(struct page *page)
5415{
5416	struct zone *zone;
5417	unsigned long pfn;
5418
5419	/*
5420	 * We have to be careful here because we are iterating over memory
5421	 * sections which are not zone aware so we might end up outside of
5422	 * the zone but still within the section.
5423	 * We have to take care about the node as well. If the node is offline
5424	 * its NODE_DATA will be NULL - see page_zone.
5425	 */
5426	if (!node_online(page_to_nid(page)))
5427		return false;
5428
5429	zone = page_zone(page);
5430	pfn = page_to_pfn(page);
5431	if (zone->zone_start_pfn > pfn ||
5432			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5433		return false;
5434
5435	return __count_immobile_pages(zone, page, 0);
5436}
5437
5438int set_migratetype_isolate(struct page *page)
5439{
5440	struct zone *zone;
5441	unsigned long flags, pfn;
5442	struct memory_isolate_notify arg;
5443	int notifier_ret;
5444	int ret = -EBUSY;
5445
5446	zone = page_zone(page);
5447
5448	spin_lock_irqsave(&zone->lock, flags);
5449
5450	pfn = page_to_pfn(page);
5451	arg.start_pfn = pfn;
5452	arg.nr_pages = pageblock_nr_pages;
5453	arg.pages_found = 0;
5454
5455	/*
5456	 * It may be possible to isolate a pageblock even if the
5457	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5458	 * notifier chain is used by balloon drivers to return the
5459	 * number of pages in a range that are held by the balloon
5460	 * driver to shrink memory. If all the pages are accounted for
5461	 * by balloons, are free, or on the LRU, isolation can continue.
5462	 * Later, for example, when memory hotplug notifier runs, these
5463	 * pages reported as "can be isolated" should be isolated(freed)
5464	 * by the balloon driver through the memory notifier chain.
5465	 */
5466	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5467	notifier_ret = notifier_to_errno(notifier_ret);
5468	if (notifier_ret)
5469		goto out;
5470	/*
5471	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5472	 * We just check MOVABLE pages.
5473	 */
5474	if (__count_immobile_pages(zone, page, arg.pages_found))
5475		ret = 0;
5476
5477	/*
5478	 * immobile means "not-on-lru" paes. If immobile is larger than
5479	 * removable-by-driver pages reported by notifier, we'll fail.
5480	 */
5481
5482out:
5483	if (!ret) {
5484		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5485		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5486	}
5487
5488	spin_unlock_irqrestore(&zone->lock, flags);
5489	if (!ret)
5490		drain_all_pages();
5491	return ret;
5492}
5493
5494void unset_migratetype_isolate(struct page *page)
5495{
5496	struct zone *zone;
5497	unsigned long flags;
5498	zone = page_zone(page);
5499	spin_lock_irqsave(&zone->lock, flags);
5500	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5501		goto out;
5502	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5503	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5504out:
5505	spin_unlock_irqrestore(&zone->lock, flags);
5506}
5507
5508#ifdef CONFIG_MEMORY_HOTREMOVE
5509/*
5510 * All pages in the range must be isolated before calling this.
5511 */
5512void
5513__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5514{
5515	struct page *page;
5516	struct zone *zone;
5517	int order, i;
5518	unsigned long pfn;
5519	unsigned long flags;
5520	/* find the first valid pfn */
5521	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5522		if (pfn_valid(pfn))
5523			break;
5524	if (pfn == end_pfn)
5525		return;
5526	zone = page_zone(pfn_to_page(pfn));
5527	spin_lock_irqsave(&zone->lock, flags);
5528	pfn = start_pfn;
5529	while (pfn < end_pfn) {
5530		if (!pfn_valid(pfn)) {
5531			pfn++;
5532			continue;
5533		}
5534		page = pfn_to_page(pfn);
5535		BUG_ON(page_count(page));
5536		BUG_ON(!PageBuddy(page));
5537		order = page_order(page);
5538#ifdef CONFIG_DEBUG_VM
5539		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5540		       pfn, 1 << order, end_pfn);
5541#endif
5542		list_del(&page->lru);
5543		rmv_page_order(page);
5544		zone->free_area[order].nr_free--;
5545		__mod_zone_page_state(zone, NR_FREE_PAGES,
5546				      - (1UL << order));
5547		for (i = 0; i < (1 << order); i++)
5548			SetPageReserved((page+i));
5549		pfn += (1 << order);
5550	}
5551	spin_unlock_irqrestore(&zone->lock, flags);
5552}
5553#endif
5554
5555#ifdef CONFIG_MEMORY_FAILURE
5556bool is_free_buddy_page(struct page *page)
5557{
5558	struct zone *zone = page_zone(page);
5559	unsigned long pfn = page_to_pfn(page);
5560	unsigned long flags;
5561	int order;
5562
5563	spin_lock_irqsave(&zone->lock, flags);
5564	for (order = 0; order < MAX_ORDER; order++) {
5565		struct page *page_head = page - (pfn & ((1 << order) - 1));
5566
5567		if (PageBuddy(page_head) && page_order(page_head) >= order)
5568			break;
5569	}
5570	spin_unlock_irqrestore(&zone->lock, flags);
5571
5572	return order < MAX_ORDER;
5573}
5574#endif
5575
5576static struct trace_print_flags pageflag_names[] = {
5577	{1UL << PG_locked,		"locked"	},
5578	{1UL << PG_error,		"error"		},
5579	{1UL << PG_referenced,		"referenced"	},
5580	{1UL << PG_uptodate,		"uptodate"	},
5581	{1UL << PG_dirty,		"dirty"		},
5582	{1UL << PG_lru,			"lru"		},
5583	{1UL << PG_active,		"active"	},
5584	{1UL << PG_slab,		"slab"		},
5585	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5586	{1UL << PG_arch_1,		"arch_1"	},
5587	{1UL << PG_reserved,		"reserved"	},
5588	{1UL << PG_private,		"private"	},
5589	{1UL << PG_private_2,		"private_2"	},
5590	{1UL << PG_writeback,		"writeback"	},
5591#ifdef CONFIG_PAGEFLAGS_EXTENDED
5592	{1UL << PG_head,		"head"		},
5593	{1UL << PG_tail,		"tail"		},
5594#else
5595	{1UL << PG_compound,		"compound"	},
5596#endif
5597	{1UL << PG_swapcache,		"swapcache"	},
5598	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5599	{1UL << PG_reclaim,		"reclaim"	},
5600	{1UL << PG_swapbacked,		"swapbacked"	},
5601	{1UL << PG_unevictable,		"unevictable"	},
5602#ifdef CONFIG_MMU
5603	{1UL << PG_mlocked,		"mlocked"	},
5604#endif
5605#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5606	{1UL << PG_uncached,		"uncached"	},
5607#endif
5608#ifdef CONFIG_MEMORY_FAILURE
5609	{1UL << PG_hwpoison,		"hwpoison"	},
5610#endif
5611	{-1UL,				NULL		},
5612};
5613
5614static void dump_page_flags(unsigned long flags)
5615{
5616	const char *delim = "";
5617	unsigned long mask;
5618	int i;
5619
5620	printk(KERN_ALERT "page flags: %#lx(", flags);
5621
5622	/* remove zone id */
5623	flags &= (1UL << NR_PAGEFLAGS) - 1;
5624
5625	for (i = 0; pageflag_names[i].name && flags; i++) {
5626
5627		mask = pageflag_names[i].mask;
5628		if ((flags & mask) != mask)
5629			continue;
5630
5631		flags &= ~mask;
5632		printk("%s%s", delim, pageflag_names[i].name);
5633		delim = "|";
5634	}
5635
5636	/* check for left over flags */
5637	if (flags)
5638		printk("%s%#lx", delim, flags);
5639
5640	printk(")\n");
5641}
5642
5643void dump_page(struct page *page)
5644{
5645	printk(KERN_ALERT
5646	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5647		page, atomic_read(&page->_count), page_mapcount(page),
5648		page->mapping, page->index);
5649	dump_page_flags(page->flags);
5650	mem_cgroup_print_bad_page(page);
5651}
5652