page_alloc.c revision 6ea6e6887dad1fd44e6d5020a0fd355af4f2b6b3
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77	 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80	 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83	 32
84#endif
85};
86
87EXPORT_SYMBOL(totalram_pages);
88
89static char * const zone_names[MAX_NR_ZONES] = {
90#ifdef CONFIG_ZONE_DMA
91	 "DMA",
92#endif
93#ifdef CONFIG_ZONE_DMA32
94	 "DMA32",
95#endif
96	 "Normal",
97#ifdef CONFIG_HIGHMEM
98	 "HighMem"
99#endif
100};
101
102int min_free_kbytes = 1024;
103
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
106static unsigned long __meminitdata dma_reserve;
107
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109  /*
110   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111   * ranges of memory (RAM) that may be registered with add_active_range().
112   * Ranges passed to add_active_range() will be merged if possible
113   * so the number of times add_active_range() can be called is
114   * related to the number of nodes and the number of holes
115   */
116  #ifdef CONFIG_MAX_ACTIVE_REGIONS
117    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119  #else
120    #if MAX_NUMNODES >= 32
121      /* If there can be many nodes, allow up to 50 holes per node */
122      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123    #else
124      /* By default, allow up to 256 distinct regions */
125      #define MAX_ACTIVE_REGIONS 256
126    #endif
127  #endif
128
129  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130  static int __meminitdata nr_nodemap_entries;
131  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
135  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139#if MAX_NUMNODES > 1
140int nr_node_ids __read_mostly = MAX_NUMNODES;
141EXPORT_SYMBOL(nr_node_ids);
142#endif
143
144#ifdef CONFIG_DEBUG_VM
145static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
146{
147	int ret = 0;
148	unsigned seq;
149	unsigned long pfn = page_to_pfn(page);
150
151	do {
152		seq = zone_span_seqbegin(zone);
153		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
154			ret = 1;
155		else if (pfn < zone->zone_start_pfn)
156			ret = 1;
157	} while (zone_span_seqretry(zone, seq));
158
159	return ret;
160}
161
162static int page_is_consistent(struct zone *zone, struct page *page)
163{
164	if (!pfn_valid_within(page_to_pfn(page)))
165		return 0;
166	if (zone != page_zone(page))
167		return 0;
168
169	return 1;
170}
171/*
172 * Temporary debugging check for pages not lying within a given zone.
173 */
174static int bad_range(struct zone *zone, struct page *page)
175{
176	if (page_outside_zone_boundaries(zone, page))
177		return 1;
178	if (!page_is_consistent(zone, page))
179		return 1;
180
181	return 0;
182}
183#else
184static inline int bad_range(struct zone *zone, struct page *page)
185{
186	return 0;
187}
188#endif
189
190static void bad_page(struct page *page)
191{
192	printk(KERN_EMERG "Bad page state in process '%s'\n"
193		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
194		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
195		KERN_EMERG "Backtrace:\n",
196		current->comm, page, (int)(2*sizeof(unsigned long)),
197		(unsigned long)page->flags, page->mapping,
198		page_mapcount(page), page_count(page));
199	dump_stack();
200	page->flags &= ~(1 << PG_lru	|
201			1 << PG_private |
202			1 << PG_locked	|
203			1 << PG_active	|
204			1 << PG_dirty	|
205			1 << PG_reclaim |
206			1 << PG_slab    |
207			1 << PG_swapcache |
208			1 << PG_writeback |
209			1 << PG_buddy );
210	set_page_count(page, 0);
211	reset_page_mapcount(page);
212	page->mapping = NULL;
213	add_taint(TAINT_BAD_PAGE);
214}
215
216/*
217 * Higher-order pages are called "compound pages".  They are structured thusly:
218 *
219 * The first PAGE_SIZE page is called the "head page".
220 *
221 * The remaining PAGE_SIZE pages are called "tail pages".
222 *
223 * All pages have PG_compound set.  All pages have their ->private pointing at
224 * the head page (even the head page has this).
225 *
226 * The first tail page's ->lru.next holds the address of the compound page's
227 * put_page() function.  Its ->lru.prev holds the order of allocation.
228 * This usage means that zero-order pages may not be compound.
229 */
230
231static void free_compound_page(struct page *page)
232{
233	__free_pages_ok(page, compound_order(page));
234}
235
236static void prep_compound_page(struct page *page, unsigned long order)
237{
238	int i;
239	int nr_pages = 1 << order;
240
241	set_compound_page_dtor(page, free_compound_page);
242	set_compound_order(page, order);
243	__SetPageHead(page);
244	for (i = 1; i < nr_pages; i++) {
245		struct page *p = page + i;
246
247		__SetPageTail(p);
248		p->first_page = page;
249	}
250}
251
252static void destroy_compound_page(struct page *page, unsigned long order)
253{
254	int i;
255	int nr_pages = 1 << order;
256
257	if (unlikely(compound_order(page) != order))
258		bad_page(page);
259
260	if (unlikely(!PageHead(page)))
261			bad_page(page);
262	__ClearPageHead(page);
263	for (i = 1; i < nr_pages; i++) {
264		struct page *p = page + i;
265
266		if (unlikely(!PageTail(p) |
267				(p->first_page != page)))
268			bad_page(page);
269		__ClearPageTail(p);
270	}
271}
272
273static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
274{
275	int i;
276
277	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
278	/*
279	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
280	 * and __GFP_HIGHMEM from hard or soft interrupt context.
281	 */
282	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
283	for (i = 0; i < (1 << order); i++)
284		clear_highpage(page + i);
285}
286
287/*
288 * function for dealing with page's order in buddy system.
289 * zone->lock is already acquired when we use these.
290 * So, we don't need atomic page->flags operations here.
291 */
292static inline unsigned long page_order(struct page *page)
293{
294	return page_private(page);
295}
296
297static inline void set_page_order(struct page *page, int order)
298{
299	set_page_private(page, order);
300	__SetPageBuddy(page);
301}
302
303static inline void rmv_page_order(struct page *page)
304{
305	__ClearPageBuddy(page);
306	set_page_private(page, 0);
307}
308
309/*
310 * Locate the struct page for both the matching buddy in our
311 * pair (buddy1) and the combined O(n+1) page they form (page).
312 *
313 * 1) Any buddy B1 will have an order O twin B2 which satisfies
314 * the following equation:
315 *     B2 = B1 ^ (1 << O)
316 * For example, if the starting buddy (buddy2) is #8 its order
317 * 1 buddy is #10:
318 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
319 *
320 * 2) Any buddy B will have an order O+1 parent P which
321 * satisfies the following equation:
322 *     P = B & ~(1 << O)
323 *
324 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
325 */
326static inline struct page *
327__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
328{
329	unsigned long buddy_idx = page_idx ^ (1 << order);
330
331	return page + (buddy_idx - page_idx);
332}
333
334static inline unsigned long
335__find_combined_index(unsigned long page_idx, unsigned int order)
336{
337	return (page_idx & ~(1 << order));
338}
339
340/*
341 * This function checks whether a page is free && is the buddy
342 * we can do coalesce a page and its buddy if
343 * (a) the buddy is not in a hole &&
344 * (b) the buddy is in the buddy system &&
345 * (c) a page and its buddy have the same order &&
346 * (d) a page and its buddy are in the same zone.
347 *
348 * For recording whether a page is in the buddy system, we use PG_buddy.
349 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
350 *
351 * For recording page's order, we use page_private(page).
352 */
353static inline int page_is_buddy(struct page *page, struct page *buddy,
354								int order)
355{
356	if (!pfn_valid_within(page_to_pfn(buddy)))
357		return 0;
358
359	if (page_zone_id(page) != page_zone_id(buddy))
360		return 0;
361
362	if (PageBuddy(buddy) && page_order(buddy) == order) {
363		BUG_ON(page_count(buddy) != 0);
364		return 1;
365	}
366	return 0;
367}
368
369/*
370 * Freeing function for a buddy system allocator.
371 *
372 * The concept of a buddy system is to maintain direct-mapped table
373 * (containing bit values) for memory blocks of various "orders".
374 * The bottom level table contains the map for the smallest allocatable
375 * units of memory (here, pages), and each level above it describes
376 * pairs of units from the levels below, hence, "buddies".
377 * At a high level, all that happens here is marking the table entry
378 * at the bottom level available, and propagating the changes upward
379 * as necessary, plus some accounting needed to play nicely with other
380 * parts of the VM system.
381 * At each level, we keep a list of pages, which are heads of continuous
382 * free pages of length of (1 << order) and marked with PG_buddy. Page's
383 * order is recorded in page_private(page) field.
384 * So when we are allocating or freeing one, we can derive the state of the
385 * other.  That is, if we allocate a small block, and both were
386 * free, the remainder of the region must be split into blocks.
387 * If a block is freed, and its buddy is also free, then this
388 * triggers coalescing into a block of larger size.
389 *
390 * -- wli
391 */
392
393static inline void __free_one_page(struct page *page,
394		struct zone *zone, unsigned int order)
395{
396	unsigned long page_idx;
397	int order_size = 1 << order;
398
399	if (unlikely(PageCompound(page)))
400		destroy_compound_page(page, order);
401
402	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
403
404	VM_BUG_ON(page_idx & (order_size - 1));
405	VM_BUG_ON(bad_range(zone, page));
406
407	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
408	while (order < MAX_ORDER-1) {
409		unsigned long combined_idx;
410		struct free_area *area;
411		struct page *buddy;
412
413		buddy = __page_find_buddy(page, page_idx, order);
414		if (!page_is_buddy(page, buddy, order))
415			break;		/* Move the buddy up one level. */
416
417		list_del(&buddy->lru);
418		area = zone->free_area + order;
419		area->nr_free--;
420		rmv_page_order(buddy);
421		combined_idx = __find_combined_index(page_idx, order);
422		page = page + (combined_idx - page_idx);
423		page_idx = combined_idx;
424		order++;
425	}
426	set_page_order(page, order);
427	list_add(&page->lru, &zone->free_area[order].free_list);
428	zone->free_area[order].nr_free++;
429}
430
431static inline int free_pages_check(struct page *page)
432{
433	if (unlikely(page_mapcount(page) |
434		(page->mapping != NULL)  |
435		(page_count(page) != 0)  |
436		(page->flags & (
437			1 << PG_lru	|
438			1 << PG_private |
439			1 << PG_locked	|
440			1 << PG_active	|
441			1 << PG_slab	|
442			1 << PG_swapcache |
443			1 << PG_writeback |
444			1 << PG_reserved |
445			1 << PG_buddy ))))
446		bad_page(page);
447	/*
448	 * PageReclaim == PageTail. It is only an error
449	 * for PageReclaim to be set if PageCompound is clear.
450	 */
451	if (unlikely(!PageCompound(page) && PageReclaim(page)))
452		bad_page(page);
453	if (PageDirty(page))
454		__ClearPageDirty(page);
455	/*
456	 * For now, we report if PG_reserved was found set, but do not
457	 * clear it, and do not free the page.  But we shall soon need
458	 * to do more, for when the ZERO_PAGE count wraps negative.
459	 */
460	return PageReserved(page);
461}
462
463/*
464 * Frees a list of pages.
465 * Assumes all pages on list are in same zone, and of same order.
466 * count is the number of pages to free.
467 *
468 * If the zone was previously in an "all pages pinned" state then look to
469 * see if this freeing clears that state.
470 *
471 * And clear the zone's pages_scanned counter, to hold off the "all pages are
472 * pinned" detection logic.
473 */
474static void free_pages_bulk(struct zone *zone, int count,
475					struct list_head *list, int order)
476{
477	spin_lock(&zone->lock);
478	zone->all_unreclaimable = 0;
479	zone->pages_scanned = 0;
480	while (count--) {
481		struct page *page;
482
483		VM_BUG_ON(list_empty(list));
484		page = list_entry(list->prev, struct page, lru);
485		/* have to delete it as __free_one_page list manipulates */
486		list_del(&page->lru);
487		__free_one_page(page, zone, order);
488	}
489	spin_unlock(&zone->lock);
490}
491
492static void free_one_page(struct zone *zone, struct page *page, int order)
493{
494	spin_lock(&zone->lock);
495	zone->all_unreclaimable = 0;
496	zone->pages_scanned = 0;
497	__free_one_page(page, zone, order);
498	spin_unlock(&zone->lock);
499}
500
501static void __free_pages_ok(struct page *page, unsigned int order)
502{
503	unsigned long flags;
504	int i;
505	int reserved = 0;
506
507	for (i = 0 ; i < (1 << order) ; ++i)
508		reserved += free_pages_check(page + i);
509	if (reserved)
510		return;
511
512	if (!PageHighMem(page))
513		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
514	arch_free_page(page, order);
515	kernel_map_pages(page, 1 << order, 0);
516
517	local_irq_save(flags);
518	__count_vm_events(PGFREE, 1 << order);
519	free_one_page(page_zone(page), page, order);
520	local_irq_restore(flags);
521}
522
523/*
524 * permit the bootmem allocator to evade page validation on high-order frees
525 */
526void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
527{
528	if (order == 0) {
529		__ClearPageReserved(page);
530		set_page_count(page, 0);
531		set_page_refcounted(page);
532		__free_page(page);
533	} else {
534		int loop;
535
536		prefetchw(page);
537		for (loop = 0; loop < BITS_PER_LONG; loop++) {
538			struct page *p = &page[loop];
539
540			if (loop + 1 < BITS_PER_LONG)
541				prefetchw(p + 1);
542			__ClearPageReserved(p);
543			set_page_count(p, 0);
544		}
545
546		set_page_refcounted(page);
547		__free_pages(page, order);
548	}
549}
550
551
552/*
553 * The order of subdivision here is critical for the IO subsystem.
554 * Please do not alter this order without good reasons and regression
555 * testing. Specifically, as large blocks of memory are subdivided,
556 * the order in which smaller blocks are delivered depends on the order
557 * they're subdivided in this function. This is the primary factor
558 * influencing the order in which pages are delivered to the IO
559 * subsystem according to empirical testing, and this is also justified
560 * by considering the behavior of a buddy system containing a single
561 * large block of memory acted on by a series of small allocations.
562 * This behavior is a critical factor in sglist merging's success.
563 *
564 * -- wli
565 */
566static inline void expand(struct zone *zone, struct page *page,
567 	int low, int high, struct free_area *area)
568{
569	unsigned long size = 1 << high;
570
571	while (high > low) {
572		area--;
573		high--;
574		size >>= 1;
575		VM_BUG_ON(bad_range(zone, &page[size]));
576		list_add(&page[size].lru, &area->free_list);
577		area->nr_free++;
578		set_page_order(&page[size], high);
579	}
580}
581
582/*
583 * This page is about to be returned from the page allocator
584 */
585static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
586{
587	if (unlikely(page_mapcount(page) |
588		(page->mapping != NULL)  |
589		(page_count(page) != 0)  |
590		(page->flags & (
591			1 << PG_lru	|
592			1 << PG_private	|
593			1 << PG_locked	|
594			1 << PG_active	|
595			1 << PG_dirty	|
596			1 << PG_reclaim	|
597			1 << PG_slab    |
598			1 << PG_swapcache |
599			1 << PG_writeback |
600			1 << PG_reserved |
601			1 << PG_buddy ))))
602		bad_page(page);
603
604	/*
605	 * For now, we report if PG_reserved was found set, but do not
606	 * clear it, and do not allocate the page: as a safety net.
607	 */
608	if (PageReserved(page))
609		return 1;
610
611	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
612			1 << PG_referenced | 1 << PG_arch_1 |
613			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614	set_page_private(page, 0);
615	set_page_refcounted(page);
616
617	arch_alloc_page(page, order);
618	kernel_map_pages(page, 1 << order, 1);
619
620	if (gfp_flags & __GFP_ZERO)
621		prep_zero_page(page, order, gfp_flags);
622
623	if (order && (gfp_flags & __GFP_COMP))
624		prep_compound_page(page, order);
625
626	return 0;
627}
628
629/*
630 * Do the hard work of removing an element from the buddy allocator.
631 * Call me with the zone->lock already held.
632 */
633static struct page *__rmqueue(struct zone *zone, unsigned int order)
634{
635	struct free_area * area;
636	unsigned int current_order;
637	struct page *page;
638
639	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
640		area = zone->free_area + current_order;
641		if (list_empty(&area->free_list))
642			continue;
643
644		page = list_entry(area->free_list.next, struct page, lru);
645		list_del(&page->lru);
646		rmv_page_order(page);
647		area->nr_free--;
648		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
649		expand(zone, page, order, current_order, area);
650		return page;
651	}
652
653	return NULL;
654}
655
656/*
657 * Obtain a specified number of elements from the buddy allocator, all under
658 * a single hold of the lock, for efficiency.  Add them to the supplied list.
659 * Returns the number of new pages which were placed at *list.
660 */
661static int rmqueue_bulk(struct zone *zone, unsigned int order,
662			unsigned long count, struct list_head *list)
663{
664	int i;
665
666	spin_lock(&zone->lock);
667	for (i = 0; i < count; ++i) {
668		struct page *page = __rmqueue(zone, order);
669		if (unlikely(page == NULL))
670			break;
671		list_add_tail(&page->lru, list);
672	}
673	spin_unlock(&zone->lock);
674	return i;
675}
676
677#ifdef CONFIG_NUMA
678/*
679 * Called from the vmstat counter updater to drain pagesets of this
680 * currently executing processor on remote nodes after they have
681 * expired.
682 *
683 * Note that this function must be called with the thread pinned to
684 * a single processor.
685 */
686void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
687{
688	unsigned long flags;
689	int to_drain;
690
691	local_irq_save(flags);
692	if (pcp->count >= pcp->batch)
693		to_drain = pcp->batch;
694	else
695		to_drain = pcp->count;
696	free_pages_bulk(zone, to_drain, &pcp->list, 0);
697	pcp->count -= to_drain;
698	local_irq_restore(flags);
699}
700#endif
701
702static void __drain_pages(unsigned int cpu)
703{
704	unsigned long flags;
705	struct zone *zone;
706	int i;
707
708	for_each_zone(zone) {
709		struct per_cpu_pageset *pset;
710
711		if (!populated_zone(zone))
712			continue;
713
714		pset = zone_pcp(zone, cpu);
715		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716			struct per_cpu_pages *pcp;
717
718			pcp = &pset->pcp[i];
719			local_irq_save(flags);
720			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721			pcp->count = 0;
722			local_irq_restore(flags);
723		}
724	}
725}
726
727#ifdef CONFIG_PM
728
729void mark_free_pages(struct zone *zone)
730{
731	unsigned long pfn, max_zone_pfn;
732	unsigned long flags;
733	int order;
734	struct list_head *curr;
735
736	if (!zone->spanned_pages)
737		return;
738
739	spin_lock_irqsave(&zone->lock, flags);
740
741	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743		if (pfn_valid(pfn)) {
744			struct page *page = pfn_to_page(pfn);
745
746			if (!swsusp_page_is_forbidden(page))
747				swsusp_unset_page_free(page);
748		}
749
750	for (order = MAX_ORDER - 1; order >= 0; --order)
751		list_for_each(curr, &zone->free_area[order].free_list) {
752			unsigned long i;
753
754			pfn = page_to_pfn(list_entry(curr, struct page, lru));
755			for (i = 0; i < (1UL << order); i++)
756				swsusp_set_page_free(pfn_to_page(pfn + i));
757		}
758
759	spin_unlock_irqrestore(&zone->lock, flags);
760}
761
762/*
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764 */
765void drain_local_pages(void)
766{
767	unsigned long flags;
768
769	local_irq_save(flags);
770	__drain_pages(smp_processor_id());
771	local_irq_restore(flags);
772}
773#endif /* CONFIG_PM */
774
775/*
776 * Free a 0-order page
777 */
778static void fastcall free_hot_cold_page(struct page *page, int cold)
779{
780	struct zone *zone = page_zone(page);
781	struct per_cpu_pages *pcp;
782	unsigned long flags;
783
784	if (PageAnon(page))
785		page->mapping = NULL;
786	if (free_pages_check(page))
787		return;
788
789	if (!PageHighMem(page))
790		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791	arch_free_page(page, 0);
792	kernel_map_pages(page, 1, 0);
793
794	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795	local_irq_save(flags);
796	__count_vm_event(PGFREE);
797	list_add(&page->lru, &pcp->list);
798	pcp->count++;
799	if (pcp->count >= pcp->high) {
800		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801		pcp->count -= pcp->batch;
802	}
803	local_irq_restore(flags);
804	put_cpu();
805}
806
807void fastcall free_hot_page(struct page *page)
808{
809	free_hot_cold_page(page, 0);
810}
811
812void fastcall free_cold_page(struct page *page)
813{
814	free_hot_cold_page(page, 1);
815}
816
817/*
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
821 *
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
824 */
825void split_page(struct page *page, unsigned int order)
826{
827	int i;
828
829	VM_BUG_ON(PageCompound(page));
830	VM_BUG_ON(!page_count(page));
831	for (i = 1; i < (1 << order); i++)
832		set_page_refcounted(page + i);
833}
834
835/*
836 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
837 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
838 * or two.
839 */
840static struct page *buffered_rmqueue(struct zonelist *zonelist,
841			struct zone *zone, int order, gfp_t gfp_flags)
842{
843	unsigned long flags;
844	struct page *page;
845	int cold = !!(gfp_flags & __GFP_COLD);
846	int cpu;
847
848again:
849	cpu  = get_cpu();
850	if (likely(order == 0)) {
851		struct per_cpu_pages *pcp;
852
853		pcp = &zone_pcp(zone, cpu)->pcp[cold];
854		local_irq_save(flags);
855		if (!pcp->count) {
856			pcp->count = rmqueue_bulk(zone, 0,
857						pcp->batch, &pcp->list);
858			if (unlikely(!pcp->count))
859				goto failed;
860		}
861		page = list_entry(pcp->list.next, struct page, lru);
862		list_del(&page->lru);
863		pcp->count--;
864	} else {
865		spin_lock_irqsave(&zone->lock, flags);
866		page = __rmqueue(zone, order);
867		spin_unlock(&zone->lock);
868		if (!page)
869			goto failed;
870	}
871
872	__count_zone_vm_events(PGALLOC, zone, 1 << order);
873	zone_statistics(zonelist, zone);
874	local_irq_restore(flags);
875	put_cpu();
876
877	VM_BUG_ON(bad_range(zone, page));
878	if (prep_new_page(page, order, gfp_flags))
879		goto again;
880	return page;
881
882failed:
883	local_irq_restore(flags);
884	put_cpu();
885	return NULL;
886}
887
888#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
889#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
890#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
891#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
892#define ALLOC_HARDER		0x10 /* try to alloc harder */
893#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
894#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
895
896#ifdef CONFIG_FAIL_PAGE_ALLOC
897
898static struct fail_page_alloc_attr {
899	struct fault_attr attr;
900
901	u32 ignore_gfp_highmem;
902	u32 ignore_gfp_wait;
903
904#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
905
906	struct dentry *ignore_gfp_highmem_file;
907	struct dentry *ignore_gfp_wait_file;
908
909#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
910
911} fail_page_alloc = {
912	.attr = FAULT_ATTR_INITIALIZER,
913	.ignore_gfp_wait = 1,
914	.ignore_gfp_highmem = 1,
915};
916
917static int __init setup_fail_page_alloc(char *str)
918{
919	return setup_fault_attr(&fail_page_alloc.attr, str);
920}
921__setup("fail_page_alloc=", setup_fail_page_alloc);
922
923static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
924{
925	if (gfp_mask & __GFP_NOFAIL)
926		return 0;
927	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
928		return 0;
929	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
930		return 0;
931
932	return should_fail(&fail_page_alloc.attr, 1 << order);
933}
934
935#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
936
937static int __init fail_page_alloc_debugfs(void)
938{
939	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
940	struct dentry *dir;
941	int err;
942
943	err = init_fault_attr_dentries(&fail_page_alloc.attr,
944				       "fail_page_alloc");
945	if (err)
946		return err;
947	dir = fail_page_alloc.attr.dentries.dir;
948
949	fail_page_alloc.ignore_gfp_wait_file =
950		debugfs_create_bool("ignore-gfp-wait", mode, dir,
951				      &fail_page_alloc.ignore_gfp_wait);
952
953	fail_page_alloc.ignore_gfp_highmem_file =
954		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
955				      &fail_page_alloc.ignore_gfp_highmem);
956
957	if (!fail_page_alloc.ignore_gfp_wait_file ||
958			!fail_page_alloc.ignore_gfp_highmem_file) {
959		err = -ENOMEM;
960		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
961		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
962		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
963	}
964
965	return err;
966}
967
968late_initcall(fail_page_alloc_debugfs);
969
970#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
971
972#else /* CONFIG_FAIL_PAGE_ALLOC */
973
974static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
975{
976	return 0;
977}
978
979#endif /* CONFIG_FAIL_PAGE_ALLOC */
980
981/*
982 * Return 1 if free pages are above 'mark'. This takes into account the order
983 * of the allocation.
984 */
985int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
986		      int classzone_idx, int alloc_flags)
987{
988	/* free_pages my go negative - that's OK */
989	long min = mark;
990	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
991	int o;
992
993	if (alloc_flags & ALLOC_HIGH)
994		min -= min / 2;
995	if (alloc_flags & ALLOC_HARDER)
996		min -= min / 4;
997
998	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
999		return 0;
1000	for (o = 0; o < order; o++) {
1001		/* At the next order, this order's pages become unavailable */
1002		free_pages -= z->free_area[o].nr_free << o;
1003
1004		/* Require fewer higher order pages to be free */
1005		min >>= 1;
1006
1007		if (free_pages <= min)
1008			return 0;
1009	}
1010	return 1;
1011}
1012
1013#ifdef CONFIG_NUMA
1014/*
1015 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1016 * skip over zones that are not allowed by the cpuset, or that have
1017 * been recently (in last second) found to be nearly full.  See further
1018 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1019 * that have to skip over alot of full or unallowed zones.
1020 *
1021 * If the zonelist cache is present in the passed in zonelist, then
1022 * returns a pointer to the allowed node mask (either the current
1023 * tasks mems_allowed, or node_online_map.)
1024 *
1025 * If the zonelist cache is not available for this zonelist, does
1026 * nothing and returns NULL.
1027 *
1028 * If the fullzones BITMAP in the zonelist cache is stale (more than
1029 * a second since last zap'd) then we zap it out (clear its bits.)
1030 *
1031 * We hold off even calling zlc_setup, until after we've checked the
1032 * first zone in the zonelist, on the theory that most allocations will
1033 * be satisfied from that first zone, so best to examine that zone as
1034 * quickly as we can.
1035 */
1036static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1037{
1038	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1039	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1040
1041	zlc = zonelist->zlcache_ptr;
1042	if (!zlc)
1043		return NULL;
1044
1045	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1046		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1047		zlc->last_full_zap = jiffies;
1048	}
1049
1050	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1051					&cpuset_current_mems_allowed :
1052					&node_online_map;
1053	return allowednodes;
1054}
1055
1056/*
1057 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1058 * if it is worth looking at further for free memory:
1059 *  1) Check that the zone isn't thought to be full (doesn't have its
1060 *     bit set in the zonelist_cache fullzones BITMAP).
1061 *  2) Check that the zones node (obtained from the zonelist_cache
1062 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1063 * Return true (non-zero) if zone is worth looking at further, or
1064 * else return false (zero) if it is not.
1065 *
1066 * This check -ignores- the distinction between various watermarks,
1067 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1068 * found to be full for any variation of these watermarks, it will
1069 * be considered full for up to one second by all requests, unless
1070 * we are so low on memory on all allowed nodes that we are forced
1071 * into the second scan of the zonelist.
1072 *
1073 * In the second scan we ignore this zonelist cache and exactly
1074 * apply the watermarks to all zones, even it is slower to do so.
1075 * We are low on memory in the second scan, and should leave no stone
1076 * unturned looking for a free page.
1077 */
1078static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1079						nodemask_t *allowednodes)
1080{
1081	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1082	int i;				/* index of *z in zonelist zones */
1083	int n;				/* node that zone *z is on */
1084
1085	zlc = zonelist->zlcache_ptr;
1086	if (!zlc)
1087		return 1;
1088
1089	i = z - zonelist->zones;
1090	n = zlc->z_to_n[i];
1091
1092	/* This zone is worth trying if it is allowed but not full */
1093	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1094}
1095
1096/*
1097 * Given 'z' scanning a zonelist, set the corresponding bit in
1098 * zlc->fullzones, so that subsequent attempts to allocate a page
1099 * from that zone don't waste time re-examining it.
1100 */
1101static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1102{
1103	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1104	int i;				/* index of *z in zonelist zones */
1105
1106	zlc = zonelist->zlcache_ptr;
1107	if (!zlc)
1108		return;
1109
1110	i = z - zonelist->zones;
1111
1112	set_bit(i, zlc->fullzones);
1113}
1114
1115#else	/* CONFIG_NUMA */
1116
1117static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1118{
1119	return NULL;
1120}
1121
1122static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1123				nodemask_t *allowednodes)
1124{
1125	return 1;
1126}
1127
1128static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1129{
1130}
1131#endif	/* CONFIG_NUMA */
1132
1133/*
1134 * get_page_from_freelist goes through the zonelist trying to allocate
1135 * a page.
1136 */
1137static struct page *
1138get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1139		struct zonelist *zonelist, int alloc_flags)
1140{
1141	struct zone **z;
1142	struct page *page = NULL;
1143	int classzone_idx = zone_idx(zonelist->zones[0]);
1144	struct zone *zone;
1145	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1146	int zlc_active = 0;		/* set if using zonelist_cache */
1147	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1148
1149zonelist_scan:
1150	/*
1151	 * Scan zonelist, looking for a zone with enough free.
1152	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1153	 */
1154	z = zonelist->zones;
1155
1156	do {
1157		if (NUMA_BUILD && zlc_active &&
1158			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1159				continue;
1160		zone = *z;
1161		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1162			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1163				break;
1164		if ((alloc_flags & ALLOC_CPUSET) &&
1165			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1166				goto try_next_zone;
1167
1168		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1169			unsigned long mark;
1170			if (alloc_flags & ALLOC_WMARK_MIN)
1171				mark = zone->pages_min;
1172			else if (alloc_flags & ALLOC_WMARK_LOW)
1173				mark = zone->pages_low;
1174			else
1175				mark = zone->pages_high;
1176			if (!zone_watermark_ok(zone, order, mark,
1177				    classzone_idx, alloc_flags)) {
1178				if (!zone_reclaim_mode ||
1179				    !zone_reclaim(zone, gfp_mask, order))
1180					goto this_zone_full;
1181			}
1182		}
1183
1184		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1185		if (page)
1186			break;
1187this_zone_full:
1188		if (NUMA_BUILD)
1189			zlc_mark_zone_full(zonelist, z);
1190try_next_zone:
1191		if (NUMA_BUILD && !did_zlc_setup) {
1192			/* we do zlc_setup after the first zone is tried */
1193			allowednodes = zlc_setup(zonelist, alloc_flags);
1194			zlc_active = 1;
1195			did_zlc_setup = 1;
1196		}
1197	} while (*(++z) != NULL);
1198
1199	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1200		/* Disable zlc cache for second zonelist scan */
1201		zlc_active = 0;
1202		goto zonelist_scan;
1203	}
1204	return page;
1205}
1206
1207/*
1208 * This is the 'heart' of the zoned buddy allocator.
1209 */
1210struct page * fastcall
1211__alloc_pages(gfp_t gfp_mask, unsigned int order,
1212		struct zonelist *zonelist)
1213{
1214	const gfp_t wait = gfp_mask & __GFP_WAIT;
1215	struct zone **z;
1216	struct page *page;
1217	struct reclaim_state reclaim_state;
1218	struct task_struct *p = current;
1219	int do_retry;
1220	int alloc_flags;
1221	int did_some_progress;
1222
1223	might_sleep_if(wait);
1224
1225	if (should_fail_alloc_page(gfp_mask, order))
1226		return NULL;
1227
1228restart:
1229	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1230
1231	if (unlikely(*z == NULL)) {
1232		/* Should this ever happen?? */
1233		return NULL;
1234	}
1235
1236	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1237				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1238	if (page)
1239		goto got_pg;
1240
1241	/*
1242	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1243	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1244	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1245	 * using a larger set of nodes after it has established that the
1246	 * allowed per node queues are empty and that nodes are
1247	 * over allocated.
1248	 */
1249	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1250		goto nopage;
1251
1252	for (z = zonelist->zones; *z; z++)
1253		wakeup_kswapd(*z, order);
1254
1255	/*
1256	 * OK, we're below the kswapd watermark and have kicked background
1257	 * reclaim. Now things get more complex, so set up alloc_flags according
1258	 * to how we want to proceed.
1259	 *
1260	 * The caller may dip into page reserves a bit more if the caller
1261	 * cannot run direct reclaim, or if the caller has realtime scheduling
1262	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1263	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1264	 */
1265	alloc_flags = ALLOC_WMARK_MIN;
1266	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1267		alloc_flags |= ALLOC_HARDER;
1268	if (gfp_mask & __GFP_HIGH)
1269		alloc_flags |= ALLOC_HIGH;
1270	if (wait)
1271		alloc_flags |= ALLOC_CPUSET;
1272
1273	/*
1274	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1275	 * coming from realtime tasks go deeper into reserves.
1276	 *
1277	 * This is the last chance, in general, before the goto nopage.
1278	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1279	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1280	 */
1281	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1282	if (page)
1283		goto got_pg;
1284
1285	/* This allocation should allow future memory freeing. */
1286
1287rebalance:
1288	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1289			&& !in_interrupt()) {
1290		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1291nofail_alloc:
1292			/* go through the zonelist yet again, ignoring mins */
1293			page = get_page_from_freelist(gfp_mask, order,
1294				zonelist, ALLOC_NO_WATERMARKS);
1295			if (page)
1296				goto got_pg;
1297			if (gfp_mask & __GFP_NOFAIL) {
1298				congestion_wait(WRITE, HZ/50);
1299				goto nofail_alloc;
1300			}
1301		}
1302		goto nopage;
1303	}
1304
1305	/* Atomic allocations - we can't balance anything */
1306	if (!wait)
1307		goto nopage;
1308
1309	cond_resched();
1310
1311	/* We now go into synchronous reclaim */
1312	cpuset_memory_pressure_bump();
1313	p->flags |= PF_MEMALLOC;
1314	reclaim_state.reclaimed_slab = 0;
1315	p->reclaim_state = &reclaim_state;
1316
1317	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1318
1319	p->reclaim_state = NULL;
1320	p->flags &= ~PF_MEMALLOC;
1321
1322	cond_resched();
1323
1324	if (likely(did_some_progress)) {
1325		page = get_page_from_freelist(gfp_mask, order,
1326						zonelist, alloc_flags);
1327		if (page)
1328			goto got_pg;
1329	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1330		/*
1331		 * Go through the zonelist yet one more time, keep
1332		 * very high watermark here, this is only to catch
1333		 * a parallel oom killing, we must fail if we're still
1334		 * under heavy pressure.
1335		 */
1336		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1337				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1338		if (page)
1339			goto got_pg;
1340
1341		out_of_memory(zonelist, gfp_mask, order);
1342		goto restart;
1343	}
1344
1345	/*
1346	 * Don't let big-order allocations loop unless the caller explicitly
1347	 * requests that.  Wait for some write requests to complete then retry.
1348	 *
1349	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1350	 * <= 3, but that may not be true in other implementations.
1351	 */
1352	do_retry = 0;
1353	if (!(gfp_mask & __GFP_NORETRY)) {
1354		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1355			do_retry = 1;
1356		if (gfp_mask & __GFP_NOFAIL)
1357			do_retry = 1;
1358	}
1359	if (do_retry) {
1360		congestion_wait(WRITE, HZ/50);
1361		goto rebalance;
1362	}
1363
1364nopage:
1365	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1366		printk(KERN_WARNING "%s: page allocation failure."
1367			" order:%d, mode:0x%x\n",
1368			p->comm, order, gfp_mask);
1369		dump_stack();
1370		show_mem();
1371	}
1372got_pg:
1373	return page;
1374}
1375
1376EXPORT_SYMBOL(__alloc_pages);
1377
1378/*
1379 * Common helper functions.
1380 */
1381fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1382{
1383	struct page * page;
1384	page = alloc_pages(gfp_mask, order);
1385	if (!page)
1386		return 0;
1387	return (unsigned long) page_address(page);
1388}
1389
1390EXPORT_SYMBOL(__get_free_pages);
1391
1392fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1393{
1394	struct page * page;
1395
1396	/*
1397	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1398	 * a highmem page
1399	 */
1400	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1401
1402	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1403	if (page)
1404		return (unsigned long) page_address(page);
1405	return 0;
1406}
1407
1408EXPORT_SYMBOL(get_zeroed_page);
1409
1410void __pagevec_free(struct pagevec *pvec)
1411{
1412	int i = pagevec_count(pvec);
1413
1414	while (--i >= 0)
1415		free_hot_cold_page(pvec->pages[i], pvec->cold);
1416}
1417
1418fastcall void __free_pages(struct page *page, unsigned int order)
1419{
1420	if (put_page_testzero(page)) {
1421		if (order == 0)
1422			free_hot_page(page);
1423		else
1424			__free_pages_ok(page, order);
1425	}
1426}
1427
1428EXPORT_SYMBOL(__free_pages);
1429
1430fastcall void free_pages(unsigned long addr, unsigned int order)
1431{
1432	if (addr != 0) {
1433		VM_BUG_ON(!virt_addr_valid((void *)addr));
1434		__free_pages(virt_to_page((void *)addr), order);
1435	}
1436}
1437
1438EXPORT_SYMBOL(free_pages);
1439
1440static unsigned int nr_free_zone_pages(int offset)
1441{
1442	/* Just pick one node, since fallback list is circular */
1443	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1444	unsigned int sum = 0;
1445
1446	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1447	struct zone **zonep = zonelist->zones;
1448	struct zone *zone;
1449
1450	for (zone = *zonep++; zone; zone = *zonep++) {
1451		unsigned long size = zone->present_pages;
1452		unsigned long high = zone->pages_high;
1453		if (size > high)
1454			sum += size - high;
1455	}
1456
1457	return sum;
1458}
1459
1460/*
1461 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1462 */
1463unsigned int nr_free_buffer_pages(void)
1464{
1465	return nr_free_zone_pages(gfp_zone(GFP_USER));
1466}
1467
1468/*
1469 * Amount of free RAM allocatable within all zones
1470 */
1471unsigned int nr_free_pagecache_pages(void)
1472{
1473	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1474}
1475
1476static inline void show_node(struct zone *zone)
1477{
1478	if (NUMA_BUILD)
1479		printk("Node %d ", zone_to_nid(zone));
1480}
1481
1482void si_meminfo(struct sysinfo *val)
1483{
1484	val->totalram = totalram_pages;
1485	val->sharedram = 0;
1486	val->freeram = global_page_state(NR_FREE_PAGES);
1487	val->bufferram = nr_blockdev_pages();
1488	val->totalhigh = totalhigh_pages;
1489	val->freehigh = nr_free_highpages();
1490	val->mem_unit = PAGE_SIZE;
1491}
1492
1493EXPORT_SYMBOL(si_meminfo);
1494
1495#ifdef CONFIG_NUMA
1496void si_meminfo_node(struct sysinfo *val, int nid)
1497{
1498	pg_data_t *pgdat = NODE_DATA(nid);
1499
1500	val->totalram = pgdat->node_present_pages;
1501	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1502#ifdef CONFIG_HIGHMEM
1503	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1504	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1505			NR_FREE_PAGES);
1506#else
1507	val->totalhigh = 0;
1508	val->freehigh = 0;
1509#endif
1510	val->mem_unit = PAGE_SIZE;
1511}
1512#endif
1513
1514#define K(x) ((x) << (PAGE_SHIFT-10))
1515
1516/*
1517 * Show free area list (used inside shift_scroll-lock stuff)
1518 * We also calculate the percentage fragmentation. We do this by counting the
1519 * memory on each free list with the exception of the first item on the list.
1520 */
1521void show_free_areas(void)
1522{
1523	int cpu;
1524	struct zone *zone;
1525
1526	for_each_zone(zone) {
1527		if (!populated_zone(zone))
1528			continue;
1529
1530		show_node(zone);
1531		printk("%s per-cpu:\n", zone->name);
1532
1533		for_each_online_cpu(cpu) {
1534			struct per_cpu_pageset *pageset;
1535
1536			pageset = zone_pcp(zone, cpu);
1537
1538			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1539			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1540			       cpu, pageset->pcp[0].high,
1541			       pageset->pcp[0].batch, pageset->pcp[0].count,
1542			       pageset->pcp[1].high, pageset->pcp[1].batch,
1543			       pageset->pcp[1].count);
1544		}
1545	}
1546
1547	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1548		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1549		global_page_state(NR_ACTIVE),
1550		global_page_state(NR_INACTIVE),
1551		global_page_state(NR_FILE_DIRTY),
1552		global_page_state(NR_WRITEBACK),
1553		global_page_state(NR_UNSTABLE_NFS),
1554		global_page_state(NR_FREE_PAGES),
1555		global_page_state(NR_SLAB_RECLAIMABLE) +
1556			global_page_state(NR_SLAB_UNRECLAIMABLE),
1557		global_page_state(NR_FILE_MAPPED),
1558		global_page_state(NR_PAGETABLE),
1559		global_page_state(NR_BOUNCE));
1560
1561	for_each_zone(zone) {
1562		int i;
1563
1564		if (!populated_zone(zone))
1565			continue;
1566
1567		show_node(zone);
1568		printk("%s"
1569			" free:%lukB"
1570			" min:%lukB"
1571			" low:%lukB"
1572			" high:%lukB"
1573			" active:%lukB"
1574			" inactive:%lukB"
1575			" present:%lukB"
1576			" pages_scanned:%lu"
1577			" all_unreclaimable? %s"
1578			"\n",
1579			zone->name,
1580			K(zone_page_state(zone, NR_FREE_PAGES)),
1581			K(zone->pages_min),
1582			K(zone->pages_low),
1583			K(zone->pages_high),
1584			K(zone_page_state(zone, NR_ACTIVE)),
1585			K(zone_page_state(zone, NR_INACTIVE)),
1586			K(zone->present_pages),
1587			zone->pages_scanned,
1588			(zone->all_unreclaimable ? "yes" : "no")
1589			);
1590		printk("lowmem_reserve[]:");
1591		for (i = 0; i < MAX_NR_ZONES; i++)
1592			printk(" %lu", zone->lowmem_reserve[i]);
1593		printk("\n");
1594	}
1595
1596	for_each_zone(zone) {
1597 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1598
1599		if (!populated_zone(zone))
1600			continue;
1601
1602		show_node(zone);
1603		printk("%s: ", zone->name);
1604
1605		spin_lock_irqsave(&zone->lock, flags);
1606		for (order = 0; order < MAX_ORDER; order++) {
1607			nr[order] = zone->free_area[order].nr_free;
1608			total += nr[order] << order;
1609		}
1610		spin_unlock_irqrestore(&zone->lock, flags);
1611		for (order = 0; order < MAX_ORDER; order++)
1612			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1613		printk("= %lukB\n", K(total));
1614	}
1615
1616	show_swap_cache_info();
1617}
1618
1619/*
1620 * Builds allocation fallback zone lists.
1621 *
1622 * Add all populated zones of a node to the zonelist.
1623 */
1624static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1625				int nr_zones, enum zone_type zone_type)
1626{
1627	struct zone *zone;
1628
1629	BUG_ON(zone_type >= MAX_NR_ZONES);
1630	zone_type++;
1631
1632	do {
1633		zone_type--;
1634		zone = pgdat->node_zones + zone_type;
1635		if (populated_zone(zone)) {
1636			zonelist->zones[nr_zones++] = zone;
1637			check_highest_zone(zone_type);
1638		}
1639
1640	} while (zone_type);
1641	return nr_zones;
1642}
1643
1644
1645/*
1646 *  zonelist_order:
1647 *  0 = automatic detection of better ordering.
1648 *  1 = order by ([node] distance, -zonetype)
1649 *  2 = order by (-zonetype, [node] distance)
1650 *
1651 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1652 *  the same zonelist. So only NUMA can configure this param.
1653 */
1654#define ZONELIST_ORDER_DEFAULT  0
1655#define ZONELIST_ORDER_NODE     1
1656#define ZONELIST_ORDER_ZONE     2
1657
1658/* zonelist order in the kernel.
1659 * set_zonelist_order() will set this to NODE or ZONE.
1660 */
1661static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1662static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1663
1664
1665#ifdef CONFIG_NUMA
1666/* The value user specified ....changed by config */
1667static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1668/* string for sysctl */
1669#define NUMA_ZONELIST_ORDER_LEN	16
1670char numa_zonelist_order[16] = "default";
1671
1672/*
1673 * interface for configure zonelist ordering.
1674 * command line option "numa_zonelist_order"
1675 *	= "[dD]efault	- default, automatic configuration.
1676 *	= "[nN]ode 	- order by node locality, then by zone within node
1677 *	= "[zZ]one      - order by zone, then by locality within zone
1678 */
1679
1680static int __parse_numa_zonelist_order(char *s)
1681{
1682	if (*s == 'd' || *s == 'D') {
1683		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1684	} else if (*s == 'n' || *s == 'N') {
1685		user_zonelist_order = ZONELIST_ORDER_NODE;
1686	} else if (*s == 'z' || *s == 'Z') {
1687		user_zonelist_order = ZONELIST_ORDER_ZONE;
1688	} else {
1689		printk(KERN_WARNING
1690			"Ignoring invalid numa_zonelist_order value:  "
1691			"%s\n", s);
1692		return -EINVAL;
1693	}
1694	return 0;
1695}
1696
1697static __init int setup_numa_zonelist_order(char *s)
1698{
1699	if (s)
1700		return __parse_numa_zonelist_order(s);
1701	return 0;
1702}
1703early_param("numa_zonelist_order", setup_numa_zonelist_order);
1704
1705/*
1706 * sysctl handler for numa_zonelist_order
1707 */
1708int numa_zonelist_order_handler(ctl_table *table, int write,
1709		struct file *file, void __user *buffer, size_t *length,
1710		loff_t *ppos)
1711{
1712	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1713	int ret;
1714
1715	if (write)
1716		strncpy(saved_string, (char*)table->data,
1717			NUMA_ZONELIST_ORDER_LEN);
1718	ret = proc_dostring(table, write, file, buffer, length, ppos);
1719	if (ret)
1720		return ret;
1721	if (write) {
1722		int oldval = user_zonelist_order;
1723		if (__parse_numa_zonelist_order((char*)table->data)) {
1724			/*
1725			 * bogus value.  restore saved string
1726			 */
1727			strncpy((char*)table->data, saved_string,
1728				NUMA_ZONELIST_ORDER_LEN);
1729			user_zonelist_order = oldval;
1730		} else if (oldval != user_zonelist_order)
1731			build_all_zonelists();
1732	}
1733	return 0;
1734}
1735
1736
1737#define MAX_NODE_LOAD (num_online_nodes())
1738static int node_load[MAX_NUMNODES];
1739
1740/**
1741 * find_next_best_node - find the next node that should appear in a given node's fallback list
1742 * @node: node whose fallback list we're appending
1743 * @used_node_mask: nodemask_t of already used nodes
1744 *
1745 * We use a number of factors to determine which is the next node that should
1746 * appear on a given node's fallback list.  The node should not have appeared
1747 * already in @node's fallback list, and it should be the next closest node
1748 * according to the distance array (which contains arbitrary distance values
1749 * from each node to each node in the system), and should also prefer nodes
1750 * with no CPUs, since presumably they'll have very little allocation pressure
1751 * on them otherwise.
1752 * It returns -1 if no node is found.
1753 */
1754static int find_next_best_node(int node, nodemask_t *used_node_mask)
1755{
1756	int n, val;
1757	int min_val = INT_MAX;
1758	int best_node = -1;
1759
1760	/* Use the local node if we haven't already */
1761	if (!node_isset(node, *used_node_mask)) {
1762		node_set(node, *used_node_mask);
1763		return node;
1764	}
1765
1766	for_each_online_node(n) {
1767		cpumask_t tmp;
1768
1769		/* Don't want a node to appear more than once */
1770		if (node_isset(n, *used_node_mask))
1771			continue;
1772
1773		/* Use the distance array to find the distance */
1774		val = node_distance(node, n);
1775
1776		/* Penalize nodes under us ("prefer the next node") */
1777		val += (n < node);
1778
1779		/* Give preference to headless and unused nodes */
1780		tmp = node_to_cpumask(n);
1781		if (!cpus_empty(tmp))
1782			val += PENALTY_FOR_NODE_WITH_CPUS;
1783
1784		/* Slight preference for less loaded node */
1785		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1786		val += node_load[n];
1787
1788		if (val < min_val) {
1789			min_val = val;
1790			best_node = n;
1791		}
1792	}
1793
1794	if (best_node >= 0)
1795		node_set(best_node, *used_node_mask);
1796
1797	return best_node;
1798}
1799
1800
1801/*
1802 * Build zonelists ordered by node and zones within node.
1803 * This results in maximum locality--normal zone overflows into local
1804 * DMA zone, if any--but risks exhausting DMA zone.
1805 */
1806static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1807{
1808	enum zone_type i;
1809	int j;
1810	struct zonelist *zonelist;
1811
1812	for (i = 0; i < MAX_NR_ZONES; i++) {
1813		zonelist = pgdat->node_zonelists + i;
1814		for (j = 0; zonelist->zones[j] != NULL; j++)
1815			;
1816 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1817		zonelist->zones[j] = NULL;
1818	}
1819}
1820
1821/*
1822 * Build zonelists ordered by zone and nodes within zones.
1823 * This results in conserving DMA zone[s] until all Normal memory is
1824 * exhausted, but results in overflowing to remote node while memory
1825 * may still exist in local DMA zone.
1826 */
1827static int node_order[MAX_NUMNODES];
1828
1829static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1830{
1831	enum zone_type i;
1832	int pos, j, node;
1833	int zone_type;		/* needs to be signed */
1834	struct zone *z;
1835	struct zonelist *zonelist;
1836
1837	for (i = 0; i < MAX_NR_ZONES; i++) {
1838		zonelist = pgdat->node_zonelists + i;
1839		pos = 0;
1840		for (zone_type = i; zone_type >= 0; zone_type--) {
1841			for (j = 0; j < nr_nodes; j++) {
1842				node = node_order[j];
1843				z = &NODE_DATA(node)->node_zones[zone_type];
1844				if (populated_zone(z)) {
1845					zonelist->zones[pos++] = z;
1846					check_highest_zone(zone_type);
1847				}
1848			}
1849		}
1850		zonelist->zones[pos] = NULL;
1851	}
1852}
1853
1854static int default_zonelist_order(void)
1855{
1856	int nid, zone_type;
1857	unsigned long low_kmem_size,total_size;
1858	struct zone *z;
1859	int average_size;
1860	/*
1861         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1862	 * If they are really small and used heavily, the system can fall
1863	 * into OOM very easily.
1864	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1865	 */
1866	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1867	low_kmem_size = 0;
1868	total_size = 0;
1869	for_each_online_node(nid) {
1870		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1871			z = &NODE_DATA(nid)->node_zones[zone_type];
1872			if (populated_zone(z)) {
1873				if (zone_type < ZONE_NORMAL)
1874					low_kmem_size += z->present_pages;
1875				total_size += z->present_pages;
1876			}
1877		}
1878	}
1879	if (!low_kmem_size ||  /* there are no DMA area. */
1880	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1881		return ZONELIST_ORDER_NODE;
1882	/*
1883	 * look into each node's config.
1884  	 * If there is a node whose DMA/DMA32 memory is very big area on
1885 	 * local memory, NODE_ORDER may be suitable.
1886         */
1887	average_size = total_size / (num_online_nodes() + 1);
1888	for_each_online_node(nid) {
1889		low_kmem_size = 0;
1890		total_size = 0;
1891		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1892			z = &NODE_DATA(nid)->node_zones[zone_type];
1893			if (populated_zone(z)) {
1894				if (zone_type < ZONE_NORMAL)
1895					low_kmem_size += z->present_pages;
1896				total_size += z->present_pages;
1897			}
1898		}
1899		if (low_kmem_size &&
1900		    total_size > average_size && /* ignore small node */
1901		    low_kmem_size > total_size * 70/100)
1902			return ZONELIST_ORDER_NODE;
1903	}
1904	return ZONELIST_ORDER_ZONE;
1905}
1906
1907static void set_zonelist_order(void)
1908{
1909	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1910		current_zonelist_order = default_zonelist_order();
1911	else
1912		current_zonelist_order = user_zonelist_order;
1913}
1914
1915static void build_zonelists(pg_data_t *pgdat)
1916{
1917	int j, node, load;
1918	enum zone_type i;
1919	nodemask_t used_mask;
1920	int local_node, prev_node;
1921	struct zonelist *zonelist;
1922	int order = current_zonelist_order;
1923
1924	/* initialize zonelists */
1925	for (i = 0; i < MAX_NR_ZONES; i++) {
1926		zonelist = pgdat->node_zonelists + i;
1927		zonelist->zones[0] = NULL;
1928	}
1929
1930	/* NUMA-aware ordering of nodes */
1931	local_node = pgdat->node_id;
1932	load = num_online_nodes();
1933	prev_node = local_node;
1934	nodes_clear(used_mask);
1935
1936	memset(node_load, 0, sizeof(node_load));
1937	memset(node_order, 0, sizeof(node_order));
1938	j = 0;
1939
1940	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1941		int distance = node_distance(local_node, node);
1942
1943		/*
1944		 * If another node is sufficiently far away then it is better
1945		 * to reclaim pages in a zone before going off node.
1946		 */
1947		if (distance > RECLAIM_DISTANCE)
1948			zone_reclaim_mode = 1;
1949
1950		/*
1951		 * We don't want to pressure a particular node.
1952		 * So adding penalty to the first node in same
1953		 * distance group to make it round-robin.
1954		 */
1955		if (distance != node_distance(local_node, prev_node))
1956			node_load[node] = load;
1957
1958		prev_node = node;
1959		load--;
1960		if (order == ZONELIST_ORDER_NODE)
1961			build_zonelists_in_node_order(pgdat, node);
1962		else
1963			node_order[j++] = node;	/* remember order */
1964	}
1965
1966	if (order == ZONELIST_ORDER_ZONE) {
1967		/* calculate node order -- i.e., DMA last! */
1968		build_zonelists_in_zone_order(pgdat, j);
1969	}
1970}
1971
1972/* Construct the zonelist performance cache - see further mmzone.h */
1973static void build_zonelist_cache(pg_data_t *pgdat)
1974{
1975	int i;
1976
1977	for (i = 0; i < MAX_NR_ZONES; i++) {
1978		struct zonelist *zonelist;
1979		struct zonelist_cache *zlc;
1980		struct zone **z;
1981
1982		zonelist = pgdat->node_zonelists + i;
1983		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1984		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1985		for (z = zonelist->zones; *z; z++)
1986			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1987	}
1988}
1989
1990
1991#else	/* CONFIG_NUMA */
1992
1993static void set_zonelist_order(void)
1994{
1995	current_zonelist_order = ZONELIST_ORDER_ZONE;
1996}
1997
1998static void build_zonelists(pg_data_t *pgdat)
1999{
2000	int node, local_node;
2001	enum zone_type i,j;
2002
2003	local_node = pgdat->node_id;
2004	for (i = 0; i < MAX_NR_ZONES; i++) {
2005		struct zonelist *zonelist;
2006
2007		zonelist = pgdat->node_zonelists + i;
2008
2009 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2010 		/*
2011 		 * Now we build the zonelist so that it contains the zones
2012 		 * of all the other nodes.
2013 		 * We don't want to pressure a particular node, so when
2014 		 * building the zones for node N, we make sure that the
2015 		 * zones coming right after the local ones are those from
2016 		 * node N+1 (modulo N)
2017 		 */
2018		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2019			if (!node_online(node))
2020				continue;
2021			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2022		}
2023		for (node = 0; node < local_node; node++) {
2024			if (!node_online(node))
2025				continue;
2026			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2027		}
2028
2029		zonelist->zones[j] = NULL;
2030	}
2031}
2032
2033/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2034static void build_zonelist_cache(pg_data_t *pgdat)
2035{
2036	int i;
2037
2038	for (i = 0; i < MAX_NR_ZONES; i++)
2039		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2040}
2041
2042#endif	/* CONFIG_NUMA */
2043
2044/* return values int ....just for stop_machine_run() */
2045static int __build_all_zonelists(void *dummy)
2046{
2047	int nid;
2048
2049	for_each_online_node(nid) {
2050		build_zonelists(NODE_DATA(nid));
2051		build_zonelist_cache(NODE_DATA(nid));
2052	}
2053	return 0;
2054}
2055
2056void build_all_zonelists(void)
2057{
2058	set_zonelist_order();
2059
2060	if (system_state == SYSTEM_BOOTING) {
2061		__build_all_zonelists(NULL);
2062		cpuset_init_current_mems_allowed();
2063	} else {
2064		/* we have to stop all cpus to guaranntee there is no user
2065		   of zonelist */
2066		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2067		/* cpuset refresh routine should be here */
2068	}
2069	vm_total_pages = nr_free_pagecache_pages();
2070	printk("Built %i zonelists in %s order.  Total pages: %ld\n",
2071			num_online_nodes(),
2072			zonelist_order_name[current_zonelist_order],
2073			vm_total_pages);
2074#ifdef CONFIG_NUMA
2075	printk("Policy zone: %s\n", zone_names[policy_zone]);
2076#endif
2077}
2078
2079/*
2080 * Helper functions to size the waitqueue hash table.
2081 * Essentially these want to choose hash table sizes sufficiently
2082 * large so that collisions trying to wait on pages are rare.
2083 * But in fact, the number of active page waitqueues on typical
2084 * systems is ridiculously low, less than 200. So this is even
2085 * conservative, even though it seems large.
2086 *
2087 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2088 * waitqueues, i.e. the size of the waitq table given the number of pages.
2089 */
2090#define PAGES_PER_WAITQUEUE	256
2091
2092#ifndef CONFIG_MEMORY_HOTPLUG
2093static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2094{
2095	unsigned long size = 1;
2096
2097	pages /= PAGES_PER_WAITQUEUE;
2098
2099	while (size < pages)
2100		size <<= 1;
2101
2102	/*
2103	 * Once we have dozens or even hundreds of threads sleeping
2104	 * on IO we've got bigger problems than wait queue collision.
2105	 * Limit the size of the wait table to a reasonable size.
2106	 */
2107	size = min(size, 4096UL);
2108
2109	return max(size, 4UL);
2110}
2111#else
2112/*
2113 * A zone's size might be changed by hot-add, so it is not possible to determine
2114 * a suitable size for its wait_table.  So we use the maximum size now.
2115 *
2116 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2117 *
2118 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2119 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2120 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2121 *
2122 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2123 * or more by the traditional way. (See above).  It equals:
2124 *
2125 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2126 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2127 *    powerpc (64K page size)             : =  (32G +16M)byte.
2128 */
2129static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2130{
2131	return 4096UL;
2132}
2133#endif
2134
2135/*
2136 * This is an integer logarithm so that shifts can be used later
2137 * to extract the more random high bits from the multiplicative
2138 * hash function before the remainder is taken.
2139 */
2140static inline unsigned long wait_table_bits(unsigned long size)
2141{
2142	return ffz(~size);
2143}
2144
2145#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2146
2147/*
2148 * Initially all pages are reserved - free ones are freed
2149 * up by free_all_bootmem() once the early boot process is
2150 * done. Non-atomic initialization, single-pass.
2151 */
2152void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2153		unsigned long start_pfn, enum memmap_context context)
2154{
2155	struct page *page;
2156	unsigned long end_pfn = start_pfn + size;
2157	unsigned long pfn;
2158
2159	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2160		/*
2161		 * There can be holes in boot-time mem_map[]s
2162		 * handed to this function.  They do not
2163		 * exist on hotplugged memory.
2164		 */
2165		if (context == MEMMAP_EARLY) {
2166			if (!early_pfn_valid(pfn))
2167				continue;
2168			if (!early_pfn_in_nid(pfn, nid))
2169				continue;
2170		}
2171		page = pfn_to_page(pfn);
2172		set_page_links(page, zone, nid, pfn);
2173		init_page_count(page);
2174		reset_page_mapcount(page);
2175		SetPageReserved(page);
2176		INIT_LIST_HEAD(&page->lru);
2177#ifdef WANT_PAGE_VIRTUAL
2178		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2179		if (!is_highmem_idx(zone))
2180			set_page_address(page, __va(pfn << PAGE_SHIFT));
2181#endif
2182	}
2183}
2184
2185static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2186				struct zone *zone, unsigned long size)
2187{
2188	int order;
2189	for (order = 0; order < MAX_ORDER ; order++) {
2190		INIT_LIST_HEAD(&zone->free_area[order].free_list);
2191		zone->free_area[order].nr_free = 0;
2192	}
2193}
2194
2195#ifndef __HAVE_ARCH_MEMMAP_INIT
2196#define memmap_init(size, nid, zone, start_pfn) \
2197	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2198#endif
2199
2200static int __devinit zone_batchsize(struct zone *zone)
2201{
2202	int batch;
2203
2204	/*
2205	 * The per-cpu-pages pools are set to around 1000th of the
2206	 * size of the zone.  But no more than 1/2 of a meg.
2207	 *
2208	 * OK, so we don't know how big the cache is.  So guess.
2209	 */
2210	batch = zone->present_pages / 1024;
2211	if (batch * PAGE_SIZE > 512 * 1024)
2212		batch = (512 * 1024) / PAGE_SIZE;
2213	batch /= 4;		/* We effectively *= 4 below */
2214	if (batch < 1)
2215		batch = 1;
2216
2217	/*
2218	 * Clamp the batch to a 2^n - 1 value. Having a power
2219	 * of 2 value was found to be more likely to have
2220	 * suboptimal cache aliasing properties in some cases.
2221	 *
2222	 * For example if 2 tasks are alternately allocating
2223	 * batches of pages, one task can end up with a lot
2224	 * of pages of one half of the possible page colors
2225	 * and the other with pages of the other colors.
2226	 */
2227	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2228
2229	return batch;
2230}
2231
2232inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2233{
2234	struct per_cpu_pages *pcp;
2235
2236	memset(p, 0, sizeof(*p));
2237
2238	pcp = &p->pcp[0];		/* hot */
2239	pcp->count = 0;
2240	pcp->high = 6 * batch;
2241	pcp->batch = max(1UL, 1 * batch);
2242	INIT_LIST_HEAD(&pcp->list);
2243
2244	pcp = &p->pcp[1];		/* cold*/
2245	pcp->count = 0;
2246	pcp->high = 2 * batch;
2247	pcp->batch = max(1UL, batch/2);
2248	INIT_LIST_HEAD(&pcp->list);
2249}
2250
2251/*
2252 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2253 * to the value high for the pageset p.
2254 */
2255
2256static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2257				unsigned long high)
2258{
2259	struct per_cpu_pages *pcp;
2260
2261	pcp = &p->pcp[0]; /* hot list */
2262	pcp->high = high;
2263	pcp->batch = max(1UL, high/4);
2264	if ((high/4) > (PAGE_SHIFT * 8))
2265		pcp->batch = PAGE_SHIFT * 8;
2266}
2267
2268
2269#ifdef CONFIG_NUMA
2270/*
2271 * Boot pageset table. One per cpu which is going to be used for all
2272 * zones and all nodes. The parameters will be set in such a way
2273 * that an item put on a list will immediately be handed over to
2274 * the buddy list. This is safe since pageset manipulation is done
2275 * with interrupts disabled.
2276 *
2277 * Some NUMA counter updates may also be caught by the boot pagesets.
2278 *
2279 * The boot_pagesets must be kept even after bootup is complete for
2280 * unused processors and/or zones. They do play a role for bootstrapping
2281 * hotplugged processors.
2282 *
2283 * zoneinfo_show() and maybe other functions do
2284 * not check if the processor is online before following the pageset pointer.
2285 * Other parts of the kernel may not check if the zone is available.
2286 */
2287static struct per_cpu_pageset boot_pageset[NR_CPUS];
2288
2289/*
2290 * Dynamically allocate memory for the
2291 * per cpu pageset array in struct zone.
2292 */
2293static int __cpuinit process_zones(int cpu)
2294{
2295	struct zone *zone, *dzone;
2296
2297	for_each_zone(zone) {
2298
2299		if (!populated_zone(zone))
2300			continue;
2301
2302		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2303					 GFP_KERNEL, cpu_to_node(cpu));
2304		if (!zone_pcp(zone, cpu))
2305			goto bad;
2306
2307		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2308
2309		if (percpu_pagelist_fraction)
2310			setup_pagelist_highmark(zone_pcp(zone, cpu),
2311			 	(zone->present_pages / percpu_pagelist_fraction));
2312	}
2313
2314	return 0;
2315bad:
2316	for_each_zone(dzone) {
2317		if (dzone == zone)
2318			break;
2319		kfree(zone_pcp(dzone, cpu));
2320		zone_pcp(dzone, cpu) = NULL;
2321	}
2322	return -ENOMEM;
2323}
2324
2325static inline void free_zone_pagesets(int cpu)
2326{
2327	struct zone *zone;
2328
2329	for_each_zone(zone) {
2330		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2331
2332		/* Free per_cpu_pageset if it is slab allocated */
2333		if (pset != &boot_pageset[cpu])
2334			kfree(pset);
2335		zone_pcp(zone, cpu) = NULL;
2336	}
2337}
2338
2339static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2340		unsigned long action,
2341		void *hcpu)
2342{
2343	int cpu = (long)hcpu;
2344	int ret = NOTIFY_OK;
2345
2346	switch (action) {
2347	case CPU_UP_PREPARE:
2348	case CPU_UP_PREPARE_FROZEN:
2349		if (process_zones(cpu))
2350			ret = NOTIFY_BAD;
2351		break;
2352	case CPU_UP_CANCELED:
2353	case CPU_UP_CANCELED_FROZEN:
2354	case CPU_DEAD:
2355	case CPU_DEAD_FROZEN:
2356		free_zone_pagesets(cpu);
2357		break;
2358	default:
2359		break;
2360	}
2361	return ret;
2362}
2363
2364static struct notifier_block __cpuinitdata pageset_notifier =
2365	{ &pageset_cpuup_callback, NULL, 0 };
2366
2367void __init setup_per_cpu_pageset(void)
2368{
2369	int err;
2370
2371	/* Initialize per_cpu_pageset for cpu 0.
2372	 * A cpuup callback will do this for every cpu
2373	 * as it comes online
2374	 */
2375	err = process_zones(smp_processor_id());
2376	BUG_ON(err);
2377	register_cpu_notifier(&pageset_notifier);
2378}
2379
2380#endif
2381
2382static noinline __init_refok
2383int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2384{
2385	int i;
2386	struct pglist_data *pgdat = zone->zone_pgdat;
2387	size_t alloc_size;
2388
2389	/*
2390	 * The per-page waitqueue mechanism uses hashed waitqueues
2391	 * per zone.
2392	 */
2393	zone->wait_table_hash_nr_entries =
2394		 wait_table_hash_nr_entries(zone_size_pages);
2395	zone->wait_table_bits =
2396		wait_table_bits(zone->wait_table_hash_nr_entries);
2397	alloc_size = zone->wait_table_hash_nr_entries
2398					* sizeof(wait_queue_head_t);
2399
2400 	if (system_state == SYSTEM_BOOTING) {
2401		zone->wait_table = (wait_queue_head_t *)
2402			alloc_bootmem_node(pgdat, alloc_size);
2403	} else {
2404		/*
2405		 * This case means that a zone whose size was 0 gets new memory
2406		 * via memory hot-add.
2407		 * But it may be the case that a new node was hot-added.  In
2408		 * this case vmalloc() will not be able to use this new node's
2409		 * memory - this wait_table must be initialized to use this new
2410		 * node itself as well.
2411		 * To use this new node's memory, further consideration will be
2412		 * necessary.
2413		 */
2414		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2415	}
2416	if (!zone->wait_table)
2417		return -ENOMEM;
2418
2419	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2420		init_waitqueue_head(zone->wait_table + i);
2421
2422	return 0;
2423}
2424
2425static __meminit void zone_pcp_init(struct zone *zone)
2426{
2427	int cpu;
2428	unsigned long batch = zone_batchsize(zone);
2429
2430	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2431#ifdef CONFIG_NUMA
2432		/* Early boot. Slab allocator not functional yet */
2433		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2434		setup_pageset(&boot_pageset[cpu],0);
2435#else
2436		setup_pageset(zone_pcp(zone,cpu), batch);
2437#endif
2438	}
2439	if (zone->present_pages)
2440		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2441			zone->name, zone->present_pages, batch);
2442}
2443
2444__meminit int init_currently_empty_zone(struct zone *zone,
2445					unsigned long zone_start_pfn,
2446					unsigned long size,
2447					enum memmap_context context)
2448{
2449	struct pglist_data *pgdat = zone->zone_pgdat;
2450	int ret;
2451	ret = zone_wait_table_init(zone, size);
2452	if (ret)
2453		return ret;
2454	pgdat->nr_zones = zone_idx(zone) + 1;
2455
2456	zone->zone_start_pfn = zone_start_pfn;
2457
2458	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2459
2460	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2461
2462	return 0;
2463}
2464
2465#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2466/*
2467 * Basic iterator support. Return the first range of PFNs for a node
2468 * Note: nid == MAX_NUMNODES returns first region regardless of node
2469 */
2470static int __meminit first_active_region_index_in_nid(int nid)
2471{
2472	int i;
2473
2474	for (i = 0; i < nr_nodemap_entries; i++)
2475		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2476			return i;
2477
2478	return -1;
2479}
2480
2481/*
2482 * Basic iterator support. Return the next active range of PFNs for a node
2483 * Note: nid == MAX_NUMNODES returns next region regardles of node
2484 */
2485static int __meminit next_active_region_index_in_nid(int index, int nid)
2486{
2487	for (index = index + 1; index < nr_nodemap_entries; index++)
2488		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2489			return index;
2490
2491	return -1;
2492}
2493
2494#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2495/*
2496 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2497 * Architectures may implement their own version but if add_active_range()
2498 * was used and there are no special requirements, this is a convenient
2499 * alternative
2500 */
2501int __meminit early_pfn_to_nid(unsigned long pfn)
2502{
2503	int i;
2504
2505	for (i = 0; i < nr_nodemap_entries; i++) {
2506		unsigned long start_pfn = early_node_map[i].start_pfn;
2507		unsigned long end_pfn = early_node_map[i].end_pfn;
2508
2509		if (start_pfn <= pfn && pfn < end_pfn)
2510			return early_node_map[i].nid;
2511	}
2512
2513	return 0;
2514}
2515#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2516
2517/* Basic iterator support to walk early_node_map[] */
2518#define for_each_active_range_index_in_nid(i, nid) \
2519	for (i = first_active_region_index_in_nid(nid); i != -1; \
2520				i = next_active_region_index_in_nid(i, nid))
2521
2522/**
2523 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2524 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2525 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2526 *
2527 * If an architecture guarantees that all ranges registered with
2528 * add_active_ranges() contain no holes and may be freed, this
2529 * this function may be used instead of calling free_bootmem() manually.
2530 */
2531void __init free_bootmem_with_active_regions(int nid,
2532						unsigned long max_low_pfn)
2533{
2534	int i;
2535
2536	for_each_active_range_index_in_nid(i, nid) {
2537		unsigned long size_pages = 0;
2538		unsigned long end_pfn = early_node_map[i].end_pfn;
2539
2540		if (early_node_map[i].start_pfn >= max_low_pfn)
2541			continue;
2542
2543		if (end_pfn > max_low_pfn)
2544			end_pfn = max_low_pfn;
2545
2546		size_pages = end_pfn - early_node_map[i].start_pfn;
2547		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2548				PFN_PHYS(early_node_map[i].start_pfn),
2549				size_pages << PAGE_SHIFT);
2550	}
2551}
2552
2553/**
2554 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2555 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2556 *
2557 * If an architecture guarantees that all ranges registered with
2558 * add_active_ranges() contain no holes and may be freed, this
2559 * function may be used instead of calling memory_present() manually.
2560 */
2561void __init sparse_memory_present_with_active_regions(int nid)
2562{
2563	int i;
2564
2565	for_each_active_range_index_in_nid(i, nid)
2566		memory_present(early_node_map[i].nid,
2567				early_node_map[i].start_pfn,
2568				early_node_map[i].end_pfn);
2569}
2570
2571/**
2572 * push_node_boundaries - Push node boundaries to at least the requested boundary
2573 * @nid: The nid of the node to push the boundary for
2574 * @start_pfn: The start pfn of the node
2575 * @end_pfn: The end pfn of the node
2576 *
2577 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2578 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2579 * be hotplugged even though no physical memory exists. This function allows
2580 * an arch to push out the node boundaries so mem_map is allocated that can
2581 * be used later.
2582 */
2583#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2584void __init push_node_boundaries(unsigned int nid,
2585		unsigned long start_pfn, unsigned long end_pfn)
2586{
2587	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2588			nid, start_pfn, end_pfn);
2589
2590	/* Initialise the boundary for this node if necessary */
2591	if (node_boundary_end_pfn[nid] == 0)
2592		node_boundary_start_pfn[nid] = -1UL;
2593
2594	/* Update the boundaries */
2595	if (node_boundary_start_pfn[nid] > start_pfn)
2596		node_boundary_start_pfn[nid] = start_pfn;
2597	if (node_boundary_end_pfn[nid] < end_pfn)
2598		node_boundary_end_pfn[nid] = end_pfn;
2599}
2600
2601/* If necessary, push the node boundary out for reserve hotadd */
2602static void __meminit account_node_boundary(unsigned int nid,
2603		unsigned long *start_pfn, unsigned long *end_pfn)
2604{
2605	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2606			nid, *start_pfn, *end_pfn);
2607
2608	/* Return if boundary information has not been provided */
2609	if (node_boundary_end_pfn[nid] == 0)
2610		return;
2611
2612	/* Check the boundaries and update if necessary */
2613	if (node_boundary_start_pfn[nid] < *start_pfn)
2614		*start_pfn = node_boundary_start_pfn[nid];
2615	if (node_boundary_end_pfn[nid] > *end_pfn)
2616		*end_pfn = node_boundary_end_pfn[nid];
2617}
2618#else
2619void __init push_node_boundaries(unsigned int nid,
2620		unsigned long start_pfn, unsigned long end_pfn) {}
2621
2622static void __meminit account_node_boundary(unsigned int nid,
2623		unsigned long *start_pfn, unsigned long *end_pfn) {}
2624#endif
2625
2626
2627/**
2628 * get_pfn_range_for_nid - Return the start and end page frames for a node
2629 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2630 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2631 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2632 *
2633 * It returns the start and end page frame of a node based on information
2634 * provided by an arch calling add_active_range(). If called for a node
2635 * with no available memory, a warning is printed and the start and end
2636 * PFNs will be 0.
2637 */
2638void __meminit get_pfn_range_for_nid(unsigned int nid,
2639			unsigned long *start_pfn, unsigned long *end_pfn)
2640{
2641	int i;
2642	*start_pfn = -1UL;
2643	*end_pfn = 0;
2644
2645	for_each_active_range_index_in_nid(i, nid) {
2646		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2647		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2648	}
2649
2650	if (*start_pfn == -1UL) {
2651		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2652		*start_pfn = 0;
2653	}
2654
2655	/* Push the node boundaries out if requested */
2656	account_node_boundary(nid, start_pfn, end_pfn);
2657}
2658
2659/*
2660 * Return the number of pages a zone spans in a node, including holes
2661 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2662 */
2663static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2664					unsigned long zone_type,
2665					unsigned long *ignored)
2666{
2667	unsigned long node_start_pfn, node_end_pfn;
2668	unsigned long zone_start_pfn, zone_end_pfn;
2669
2670	/* Get the start and end of the node and zone */
2671	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2672	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2673	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2674
2675	/* Check that this node has pages within the zone's required range */
2676	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2677		return 0;
2678
2679	/* Move the zone boundaries inside the node if necessary */
2680	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2681	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2682
2683	/* Return the spanned pages */
2684	return zone_end_pfn - zone_start_pfn;
2685}
2686
2687/*
2688 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2689 * then all holes in the requested range will be accounted for.
2690 */
2691unsigned long __meminit __absent_pages_in_range(int nid,
2692				unsigned long range_start_pfn,
2693				unsigned long range_end_pfn)
2694{
2695	int i = 0;
2696	unsigned long prev_end_pfn = 0, hole_pages = 0;
2697	unsigned long start_pfn;
2698
2699	/* Find the end_pfn of the first active range of pfns in the node */
2700	i = first_active_region_index_in_nid(nid);
2701	if (i == -1)
2702		return 0;
2703
2704	/* Account for ranges before physical memory on this node */
2705	if (early_node_map[i].start_pfn > range_start_pfn)
2706		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2707
2708	prev_end_pfn = early_node_map[i].start_pfn;
2709
2710	/* Find all holes for the zone within the node */
2711	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2712
2713		/* No need to continue if prev_end_pfn is outside the zone */
2714		if (prev_end_pfn >= range_end_pfn)
2715			break;
2716
2717		/* Make sure the end of the zone is not within the hole */
2718		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2719		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2720
2721		/* Update the hole size cound and move on */
2722		if (start_pfn > range_start_pfn) {
2723			BUG_ON(prev_end_pfn > start_pfn);
2724			hole_pages += start_pfn - prev_end_pfn;
2725		}
2726		prev_end_pfn = early_node_map[i].end_pfn;
2727	}
2728
2729	/* Account for ranges past physical memory on this node */
2730	if (range_end_pfn > prev_end_pfn)
2731		hole_pages += range_end_pfn -
2732				max(range_start_pfn, prev_end_pfn);
2733
2734	return hole_pages;
2735}
2736
2737/**
2738 * absent_pages_in_range - Return number of page frames in holes within a range
2739 * @start_pfn: The start PFN to start searching for holes
2740 * @end_pfn: The end PFN to stop searching for holes
2741 *
2742 * It returns the number of pages frames in memory holes within a range.
2743 */
2744unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2745							unsigned long end_pfn)
2746{
2747	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2748}
2749
2750/* Return the number of page frames in holes in a zone on a node */
2751static unsigned long __meminit zone_absent_pages_in_node(int nid,
2752					unsigned long zone_type,
2753					unsigned long *ignored)
2754{
2755	unsigned long node_start_pfn, node_end_pfn;
2756	unsigned long zone_start_pfn, zone_end_pfn;
2757
2758	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2759	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2760							node_start_pfn);
2761	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2762							node_end_pfn);
2763
2764	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2765}
2766
2767#else
2768static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2769					unsigned long zone_type,
2770					unsigned long *zones_size)
2771{
2772	return zones_size[zone_type];
2773}
2774
2775static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2776						unsigned long zone_type,
2777						unsigned long *zholes_size)
2778{
2779	if (!zholes_size)
2780		return 0;
2781
2782	return zholes_size[zone_type];
2783}
2784
2785#endif
2786
2787static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2788		unsigned long *zones_size, unsigned long *zholes_size)
2789{
2790	unsigned long realtotalpages, totalpages = 0;
2791	enum zone_type i;
2792
2793	for (i = 0; i < MAX_NR_ZONES; i++)
2794		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2795								zones_size);
2796	pgdat->node_spanned_pages = totalpages;
2797
2798	realtotalpages = totalpages;
2799	for (i = 0; i < MAX_NR_ZONES; i++)
2800		realtotalpages -=
2801			zone_absent_pages_in_node(pgdat->node_id, i,
2802								zholes_size);
2803	pgdat->node_present_pages = realtotalpages;
2804	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2805							realtotalpages);
2806}
2807
2808/*
2809 * Set up the zone data structures:
2810 *   - mark all pages reserved
2811 *   - mark all memory queues empty
2812 *   - clear the memory bitmaps
2813 */
2814static void __meminit free_area_init_core(struct pglist_data *pgdat,
2815		unsigned long *zones_size, unsigned long *zholes_size)
2816{
2817	enum zone_type j;
2818	int nid = pgdat->node_id;
2819	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2820	int ret;
2821
2822	pgdat_resize_init(pgdat);
2823	pgdat->nr_zones = 0;
2824	init_waitqueue_head(&pgdat->kswapd_wait);
2825	pgdat->kswapd_max_order = 0;
2826
2827	for (j = 0; j < MAX_NR_ZONES; j++) {
2828		struct zone *zone = pgdat->node_zones + j;
2829		unsigned long size, realsize, memmap_pages;
2830
2831		size = zone_spanned_pages_in_node(nid, j, zones_size);
2832		realsize = size - zone_absent_pages_in_node(nid, j,
2833								zholes_size);
2834
2835		/*
2836		 * Adjust realsize so that it accounts for how much memory
2837		 * is used by this zone for memmap. This affects the watermark
2838		 * and per-cpu initialisations
2839		 */
2840		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2841		if (realsize >= memmap_pages) {
2842			realsize -= memmap_pages;
2843			printk(KERN_DEBUG
2844				"  %s zone: %lu pages used for memmap\n",
2845				zone_names[j], memmap_pages);
2846		} else
2847			printk(KERN_WARNING
2848				"  %s zone: %lu pages exceeds realsize %lu\n",
2849				zone_names[j], memmap_pages, realsize);
2850
2851		/* Account for reserved pages */
2852		if (j == 0 && realsize > dma_reserve) {
2853			realsize -= dma_reserve;
2854			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2855					zone_names[0], dma_reserve);
2856		}
2857
2858		if (!is_highmem_idx(j))
2859			nr_kernel_pages += realsize;
2860		nr_all_pages += realsize;
2861
2862		zone->spanned_pages = size;
2863		zone->present_pages = realsize;
2864#ifdef CONFIG_NUMA
2865		zone->node = nid;
2866		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2867						/ 100;
2868		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2869#endif
2870		zone->name = zone_names[j];
2871		spin_lock_init(&zone->lock);
2872		spin_lock_init(&zone->lru_lock);
2873		zone_seqlock_init(zone);
2874		zone->zone_pgdat = pgdat;
2875
2876		zone->prev_priority = DEF_PRIORITY;
2877
2878		zone_pcp_init(zone);
2879		INIT_LIST_HEAD(&zone->active_list);
2880		INIT_LIST_HEAD(&zone->inactive_list);
2881		zone->nr_scan_active = 0;
2882		zone->nr_scan_inactive = 0;
2883		zap_zone_vm_stats(zone);
2884		atomic_set(&zone->reclaim_in_progress, 0);
2885		if (!size)
2886			continue;
2887
2888		ret = init_currently_empty_zone(zone, zone_start_pfn,
2889						size, MEMMAP_EARLY);
2890		BUG_ON(ret);
2891		zone_start_pfn += size;
2892	}
2893}
2894
2895static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2896{
2897	/* Skip empty nodes */
2898	if (!pgdat->node_spanned_pages)
2899		return;
2900
2901#ifdef CONFIG_FLAT_NODE_MEM_MAP
2902	/* ia64 gets its own node_mem_map, before this, without bootmem */
2903	if (!pgdat->node_mem_map) {
2904		unsigned long size, start, end;
2905		struct page *map;
2906
2907		/*
2908		 * The zone's endpoints aren't required to be MAX_ORDER
2909		 * aligned but the node_mem_map endpoints must be in order
2910		 * for the buddy allocator to function correctly.
2911		 */
2912		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2913		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2914		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2915		size =  (end - start) * sizeof(struct page);
2916		map = alloc_remap(pgdat->node_id, size);
2917		if (!map)
2918			map = alloc_bootmem_node(pgdat, size);
2919		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2920	}
2921#ifndef CONFIG_NEED_MULTIPLE_NODES
2922	/*
2923	 * With no DISCONTIG, the global mem_map is just set as node 0's
2924	 */
2925	if (pgdat == NODE_DATA(0)) {
2926		mem_map = NODE_DATA(0)->node_mem_map;
2927#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2928		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2929			mem_map -= pgdat->node_start_pfn;
2930#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2931	}
2932#endif
2933#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2934}
2935
2936void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2937		unsigned long *zones_size, unsigned long node_start_pfn,
2938		unsigned long *zholes_size)
2939{
2940	pgdat->node_id = nid;
2941	pgdat->node_start_pfn = node_start_pfn;
2942	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2943
2944	alloc_node_mem_map(pgdat);
2945
2946	free_area_init_core(pgdat, zones_size, zholes_size);
2947}
2948
2949#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2950
2951#if MAX_NUMNODES > 1
2952/*
2953 * Figure out the number of possible node ids.
2954 */
2955static void __init setup_nr_node_ids(void)
2956{
2957	unsigned int node;
2958	unsigned int highest = 0;
2959
2960	for_each_node_mask(node, node_possible_map)
2961		highest = node;
2962	nr_node_ids = highest + 1;
2963}
2964#else
2965static inline void setup_nr_node_ids(void)
2966{
2967}
2968#endif
2969
2970/**
2971 * add_active_range - Register a range of PFNs backed by physical memory
2972 * @nid: The node ID the range resides on
2973 * @start_pfn: The start PFN of the available physical memory
2974 * @end_pfn: The end PFN of the available physical memory
2975 *
2976 * These ranges are stored in an early_node_map[] and later used by
2977 * free_area_init_nodes() to calculate zone sizes and holes. If the
2978 * range spans a memory hole, it is up to the architecture to ensure
2979 * the memory is not freed by the bootmem allocator. If possible
2980 * the range being registered will be merged with existing ranges.
2981 */
2982void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2983						unsigned long end_pfn)
2984{
2985	int i;
2986
2987	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2988			  "%d entries of %d used\n",
2989			  nid, start_pfn, end_pfn,
2990			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2991
2992	/* Merge with existing active regions if possible */
2993	for (i = 0; i < nr_nodemap_entries; i++) {
2994		if (early_node_map[i].nid != nid)
2995			continue;
2996
2997		/* Skip if an existing region covers this new one */
2998		if (start_pfn >= early_node_map[i].start_pfn &&
2999				end_pfn <= early_node_map[i].end_pfn)
3000			return;
3001
3002		/* Merge forward if suitable */
3003		if (start_pfn <= early_node_map[i].end_pfn &&
3004				end_pfn > early_node_map[i].end_pfn) {
3005			early_node_map[i].end_pfn = end_pfn;
3006			return;
3007		}
3008
3009		/* Merge backward if suitable */
3010		if (start_pfn < early_node_map[i].end_pfn &&
3011				end_pfn >= early_node_map[i].start_pfn) {
3012			early_node_map[i].start_pfn = start_pfn;
3013			return;
3014		}
3015	}
3016
3017	/* Check that early_node_map is large enough */
3018	if (i >= MAX_ACTIVE_REGIONS) {
3019		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3020							MAX_ACTIVE_REGIONS);
3021		return;
3022	}
3023
3024	early_node_map[i].nid = nid;
3025	early_node_map[i].start_pfn = start_pfn;
3026	early_node_map[i].end_pfn = end_pfn;
3027	nr_nodemap_entries = i + 1;
3028}
3029
3030/**
3031 * shrink_active_range - Shrink an existing registered range of PFNs
3032 * @nid: The node id the range is on that should be shrunk
3033 * @old_end_pfn: The old end PFN of the range
3034 * @new_end_pfn: The new PFN of the range
3035 *
3036 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3037 * The map is kept at the end physical page range that has already been
3038 * registered with add_active_range(). This function allows an arch to shrink
3039 * an existing registered range.
3040 */
3041void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3042						unsigned long new_end_pfn)
3043{
3044	int i;
3045
3046	/* Find the old active region end and shrink */
3047	for_each_active_range_index_in_nid(i, nid)
3048		if (early_node_map[i].end_pfn == old_end_pfn) {
3049			early_node_map[i].end_pfn = new_end_pfn;
3050			break;
3051		}
3052}
3053
3054/**
3055 * remove_all_active_ranges - Remove all currently registered regions
3056 *
3057 * During discovery, it may be found that a table like SRAT is invalid
3058 * and an alternative discovery method must be used. This function removes
3059 * all currently registered regions.
3060 */
3061void __init remove_all_active_ranges(void)
3062{
3063	memset(early_node_map, 0, sizeof(early_node_map));
3064	nr_nodemap_entries = 0;
3065#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3066	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3067	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3068#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3069}
3070
3071/* Compare two active node_active_regions */
3072static int __init cmp_node_active_region(const void *a, const void *b)
3073{
3074	struct node_active_region *arange = (struct node_active_region *)a;
3075	struct node_active_region *brange = (struct node_active_region *)b;
3076
3077	/* Done this way to avoid overflows */
3078	if (arange->start_pfn > brange->start_pfn)
3079		return 1;
3080	if (arange->start_pfn < brange->start_pfn)
3081		return -1;
3082
3083	return 0;
3084}
3085
3086/* sort the node_map by start_pfn */
3087static void __init sort_node_map(void)
3088{
3089	sort(early_node_map, (size_t)nr_nodemap_entries,
3090			sizeof(struct node_active_region),
3091			cmp_node_active_region, NULL);
3092}
3093
3094/* Find the lowest pfn for a node */
3095unsigned long __init find_min_pfn_for_node(unsigned long nid)
3096{
3097	int i;
3098	unsigned long min_pfn = ULONG_MAX;
3099
3100	/* Assuming a sorted map, the first range found has the starting pfn */
3101	for_each_active_range_index_in_nid(i, nid)
3102		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3103
3104	if (min_pfn == ULONG_MAX) {
3105		printk(KERN_WARNING
3106			"Could not find start_pfn for node %lu\n", nid);
3107		return 0;
3108	}
3109
3110	return min_pfn;
3111}
3112
3113/**
3114 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3115 *
3116 * It returns the minimum PFN based on information provided via
3117 * add_active_range().
3118 */
3119unsigned long __init find_min_pfn_with_active_regions(void)
3120{
3121	return find_min_pfn_for_node(MAX_NUMNODES);
3122}
3123
3124/**
3125 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3126 *
3127 * It returns the maximum PFN based on information provided via
3128 * add_active_range().
3129 */
3130unsigned long __init find_max_pfn_with_active_regions(void)
3131{
3132	int i;
3133	unsigned long max_pfn = 0;
3134
3135	for (i = 0; i < nr_nodemap_entries; i++)
3136		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3137
3138	return max_pfn;
3139}
3140
3141/**
3142 * free_area_init_nodes - Initialise all pg_data_t and zone data
3143 * @max_zone_pfn: an array of max PFNs for each zone
3144 *
3145 * This will call free_area_init_node() for each active node in the system.
3146 * Using the page ranges provided by add_active_range(), the size of each
3147 * zone in each node and their holes is calculated. If the maximum PFN
3148 * between two adjacent zones match, it is assumed that the zone is empty.
3149 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3150 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3151 * starts where the previous one ended. For example, ZONE_DMA32 starts
3152 * at arch_max_dma_pfn.
3153 */
3154void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3155{
3156	unsigned long nid;
3157	enum zone_type i;
3158
3159	/* Sort early_node_map as initialisation assumes it is sorted */
3160	sort_node_map();
3161
3162	/* Record where the zone boundaries are */
3163	memset(arch_zone_lowest_possible_pfn, 0,
3164				sizeof(arch_zone_lowest_possible_pfn));
3165	memset(arch_zone_highest_possible_pfn, 0,
3166				sizeof(arch_zone_highest_possible_pfn));
3167	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3168	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3169	for (i = 1; i < MAX_NR_ZONES; i++) {
3170		arch_zone_lowest_possible_pfn[i] =
3171			arch_zone_highest_possible_pfn[i-1];
3172		arch_zone_highest_possible_pfn[i] =
3173			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3174	}
3175
3176	/* Print out the zone ranges */
3177	printk("Zone PFN ranges:\n");
3178	for (i = 0; i < MAX_NR_ZONES; i++)
3179		printk("  %-8s %8lu -> %8lu\n",
3180				zone_names[i],
3181				arch_zone_lowest_possible_pfn[i],
3182				arch_zone_highest_possible_pfn[i]);
3183
3184	/* Print out the early_node_map[] */
3185	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3186	for (i = 0; i < nr_nodemap_entries; i++)
3187		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3188						early_node_map[i].start_pfn,
3189						early_node_map[i].end_pfn);
3190
3191	/* Initialise every node */
3192	setup_nr_node_ids();
3193	for_each_online_node(nid) {
3194		pg_data_t *pgdat = NODE_DATA(nid);
3195		free_area_init_node(nid, pgdat, NULL,
3196				find_min_pfn_for_node(nid), NULL);
3197	}
3198}
3199#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3200
3201/**
3202 * set_dma_reserve - set the specified number of pages reserved in the first zone
3203 * @new_dma_reserve: The number of pages to mark reserved
3204 *
3205 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3206 * In the DMA zone, a significant percentage may be consumed by kernel image
3207 * and other unfreeable allocations which can skew the watermarks badly. This
3208 * function may optionally be used to account for unfreeable pages in the
3209 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3210 * smaller per-cpu batchsize.
3211 */
3212void __init set_dma_reserve(unsigned long new_dma_reserve)
3213{
3214	dma_reserve = new_dma_reserve;
3215}
3216
3217#ifndef CONFIG_NEED_MULTIPLE_NODES
3218static bootmem_data_t contig_bootmem_data;
3219struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3220
3221EXPORT_SYMBOL(contig_page_data);
3222#endif
3223
3224void __init free_area_init(unsigned long *zones_size)
3225{
3226	free_area_init_node(0, NODE_DATA(0), zones_size,
3227			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3228}
3229
3230static int page_alloc_cpu_notify(struct notifier_block *self,
3231				 unsigned long action, void *hcpu)
3232{
3233	int cpu = (unsigned long)hcpu;
3234
3235	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3236		local_irq_disable();
3237		__drain_pages(cpu);
3238		vm_events_fold_cpu(cpu);
3239		local_irq_enable();
3240		refresh_cpu_vm_stats(cpu);
3241	}
3242	return NOTIFY_OK;
3243}
3244
3245void __init page_alloc_init(void)
3246{
3247	hotcpu_notifier(page_alloc_cpu_notify, 0);
3248}
3249
3250/*
3251 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3252 *	or min_free_kbytes changes.
3253 */
3254static void calculate_totalreserve_pages(void)
3255{
3256	struct pglist_data *pgdat;
3257	unsigned long reserve_pages = 0;
3258	enum zone_type i, j;
3259
3260	for_each_online_pgdat(pgdat) {
3261		for (i = 0; i < MAX_NR_ZONES; i++) {
3262			struct zone *zone = pgdat->node_zones + i;
3263			unsigned long max = 0;
3264
3265			/* Find valid and maximum lowmem_reserve in the zone */
3266			for (j = i; j < MAX_NR_ZONES; j++) {
3267				if (zone->lowmem_reserve[j] > max)
3268					max = zone->lowmem_reserve[j];
3269			}
3270
3271			/* we treat pages_high as reserved pages. */
3272			max += zone->pages_high;
3273
3274			if (max > zone->present_pages)
3275				max = zone->present_pages;
3276			reserve_pages += max;
3277		}
3278	}
3279	totalreserve_pages = reserve_pages;
3280}
3281
3282/*
3283 * setup_per_zone_lowmem_reserve - called whenever
3284 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3285 *	has a correct pages reserved value, so an adequate number of
3286 *	pages are left in the zone after a successful __alloc_pages().
3287 */
3288static void setup_per_zone_lowmem_reserve(void)
3289{
3290	struct pglist_data *pgdat;
3291	enum zone_type j, idx;
3292
3293	for_each_online_pgdat(pgdat) {
3294		for (j = 0; j < MAX_NR_ZONES; j++) {
3295			struct zone *zone = pgdat->node_zones + j;
3296			unsigned long present_pages = zone->present_pages;
3297
3298			zone->lowmem_reserve[j] = 0;
3299
3300			idx = j;
3301			while (idx) {
3302				struct zone *lower_zone;
3303
3304				idx--;
3305
3306				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3307					sysctl_lowmem_reserve_ratio[idx] = 1;
3308
3309				lower_zone = pgdat->node_zones + idx;
3310				lower_zone->lowmem_reserve[j] = present_pages /
3311					sysctl_lowmem_reserve_ratio[idx];
3312				present_pages += lower_zone->present_pages;
3313			}
3314		}
3315	}
3316
3317	/* update totalreserve_pages */
3318	calculate_totalreserve_pages();
3319}
3320
3321/**
3322 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3323 *
3324 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3325 * with respect to min_free_kbytes.
3326 */
3327void setup_per_zone_pages_min(void)
3328{
3329	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3330	unsigned long lowmem_pages = 0;
3331	struct zone *zone;
3332	unsigned long flags;
3333
3334	/* Calculate total number of !ZONE_HIGHMEM pages */
3335	for_each_zone(zone) {
3336		if (!is_highmem(zone))
3337			lowmem_pages += zone->present_pages;
3338	}
3339
3340	for_each_zone(zone) {
3341		u64 tmp;
3342
3343		spin_lock_irqsave(&zone->lru_lock, flags);
3344		tmp = (u64)pages_min * zone->present_pages;
3345		do_div(tmp, lowmem_pages);
3346		if (is_highmem(zone)) {
3347			/*
3348			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3349			 * need highmem pages, so cap pages_min to a small
3350			 * value here.
3351			 *
3352			 * The (pages_high-pages_low) and (pages_low-pages_min)
3353			 * deltas controls asynch page reclaim, and so should
3354			 * not be capped for highmem.
3355			 */
3356			int min_pages;
3357
3358			min_pages = zone->present_pages / 1024;
3359			if (min_pages < SWAP_CLUSTER_MAX)
3360				min_pages = SWAP_CLUSTER_MAX;
3361			if (min_pages > 128)
3362				min_pages = 128;
3363			zone->pages_min = min_pages;
3364		} else {
3365			/*
3366			 * If it's a lowmem zone, reserve a number of pages
3367			 * proportionate to the zone's size.
3368			 */
3369			zone->pages_min = tmp;
3370		}
3371
3372		zone->pages_low   = zone->pages_min + (tmp >> 2);
3373		zone->pages_high  = zone->pages_min + (tmp >> 1);
3374		spin_unlock_irqrestore(&zone->lru_lock, flags);
3375	}
3376
3377	/* update totalreserve_pages */
3378	calculate_totalreserve_pages();
3379}
3380
3381/*
3382 * Initialise min_free_kbytes.
3383 *
3384 * For small machines we want it small (128k min).  For large machines
3385 * we want it large (64MB max).  But it is not linear, because network
3386 * bandwidth does not increase linearly with machine size.  We use
3387 *
3388 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3389 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3390 *
3391 * which yields
3392 *
3393 * 16MB:	512k
3394 * 32MB:	724k
3395 * 64MB:	1024k
3396 * 128MB:	1448k
3397 * 256MB:	2048k
3398 * 512MB:	2896k
3399 * 1024MB:	4096k
3400 * 2048MB:	5792k
3401 * 4096MB:	8192k
3402 * 8192MB:	11584k
3403 * 16384MB:	16384k
3404 */
3405static int __init init_per_zone_pages_min(void)
3406{
3407	unsigned long lowmem_kbytes;
3408
3409	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3410
3411	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3412	if (min_free_kbytes < 128)
3413		min_free_kbytes = 128;
3414	if (min_free_kbytes > 65536)
3415		min_free_kbytes = 65536;
3416	setup_per_zone_pages_min();
3417	setup_per_zone_lowmem_reserve();
3418	return 0;
3419}
3420module_init(init_per_zone_pages_min)
3421
3422/*
3423 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3424 *	that we can call two helper functions whenever min_free_kbytes
3425 *	changes.
3426 */
3427int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3428	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3429{
3430	proc_dointvec(table, write, file, buffer, length, ppos);
3431	if (write)
3432		setup_per_zone_pages_min();
3433	return 0;
3434}
3435
3436#ifdef CONFIG_NUMA
3437int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3438	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3439{
3440	struct zone *zone;
3441	int rc;
3442
3443	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3444	if (rc)
3445		return rc;
3446
3447	for_each_zone(zone)
3448		zone->min_unmapped_pages = (zone->present_pages *
3449				sysctl_min_unmapped_ratio) / 100;
3450	return 0;
3451}
3452
3453int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3454	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3455{
3456	struct zone *zone;
3457	int rc;
3458
3459	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3460	if (rc)
3461		return rc;
3462
3463	for_each_zone(zone)
3464		zone->min_slab_pages = (zone->present_pages *
3465				sysctl_min_slab_ratio) / 100;
3466	return 0;
3467}
3468#endif
3469
3470/*
3471 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3472 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3473 *	whenever sysctl_lowmem_reserve_ratio changes.
3474 *
3475 * The reserve ratio obviously has absolutely no relation with the
3476 * pages_min watermarks. The lowmem reserve ratio can only make sense
3477 * if in function of the boot time zone sizes.
3478 */
3479int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3480	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3481{
3482	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3483	setup_per_zone_lowmem_reserve();
3484	return 0;
3485}
3486
3487/*
3488 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3489 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3490 * can have before it gets flushed back to buddy allocator.
3491 */
3492
3493int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3494	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3495{
3496	struct zone *zone;
3497	unsigned int cpu;
3498	int ret;
3499
3500	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3501	if (!write || (ret == -EINVAL))
3502		return ret;
3503	for_each_zone(zone) {
3504		for_each_online_cpu(cpu) {
3505			unsigned long  high;
3506			high = zone->present_pages / percpu_pagelist_fraction;
3507			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3508		}
3509	}
3510	return 0;
3511}
3512
3513int hashdist = HASHDIST_DEFAULT;
3514
3515#ifdef CONFIG_NUMA
3516static int __init set_hashdist(char *str)
3517{
3518	if (!str)
3519		return 0;
3520	hashdist = simple_strtoul(str, &str, 0);
3521	return 1;
3522}
3523__setup("hashdist=", set_hashdist);
3524#endif
3525
3526/*
3527 * allocate a large system hash table from bootmem
3528 * - it is assumed that the hash table must contain an exact power-of-2
3529 *   quantity of entries
3530 * - limit is the number of hash buckets, not the total allocation size
3531 */
3532void *__init alloc_large_system_hash(const char *tablename,
3533				     unsigned long bucketsize,
3534				     unsigned long numentries,
3535				     int scale,
3536				     int flags,
3537				     unsigned int *_hash_shift,
3538				     unsigned int *_hash_mask,
3539				     unsigned long limit)
3540{
3541	unsigned long long max = limit;
3542	unsigned long log2qty, size;
3543	void *table = NULL;
3544
3545	/* allow the kernel cmdline to have a say */
3546	if (!numentries) {
3547		/* round applicable memory size up to nearest megabyte */
3548		numentries = nr_kernel_pages;
3549		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3550		numentries >>= 20 - PAGE_SHIFT;
3551		numentries <<= 20 - PAGE_SHIFT;
3552
3553		/* limit to 1 bucket per 2^scale bytes of low memory */
3554		if (scale > PAGE_SHIFT)
3555			numentries >>= (scale - PAGE_SHIFT);
3556		else
3557			numentries <<= (PAGE_SHIFT - scale);
3558
3559		/* Make sure we've got at least a 0-order allocation.. */
3560		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3561			numentries = PAGE_SIZE / bucketsize;
3562	}
3563	numentries = roundup_pow_of_two(numentries);
3564
3565	/* limit allocation size to 1/16 total memory by default */
3566	if (max == 0) {
3567		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3568		do_div(max, bucketsize);
3569	}
3570
3571	if (numentries > max)
3572		numentries = max;
3573
3574	log2qty = ilog2(numentries);
3575
3576	do {
3577		size = bucketsize << log2qty;
3578		if (flags & HASH_EARLY)
3579			table = alloc_bootmem(size);
3580		else if (hashdist)
3581			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3582		else {
3583			unsigned long order;
3584			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3585				;
3586			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3587			/*
3588			 * If bucketsize is not a power-of-two, we may free
3589			 * some pages at the end of hash table.
3590			 */
3591			if (table) {
3592				unsigned long alloc_end = (unsigned long)table +
3593						(PAGE_SIZE << order);
3594				unsigned long used = (unsigned long)table +
3595						PAGE_ALIGN(size);
3596				split_page(virt_to_page(table), order);
3597				while (used < alloc_end) {
3598					free_page(used);
3599					used += PAGE_SIZE;
3600				}
3601			}
3602		}
3603	} while (!table && size > PAGE_SIZE && --log2qty);
3604
3605	if (!table)
3606		panic("Failed to allocate %s hash table\n", tablename);
3607
3608	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3609	       tablename,
3610	       (1U << log2qty),
3611	       ilog2(size) - PAGE_SHIFT,
3612	       size);
3613
3614	if (_hash_shift)
3615		*_hash_shift = log2qty;
3616	if (_hash_mask)
3617		*_hash_mask = (1 << log2qty) - 1;
3618
3619	return table;
3620}
3621
3622#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3623struct page *pfn_to_page(unsigned long pfn)
3624{
3625	return __pfn_to_page(pfn);
3626}
3627unsigned long page_to_pfn(struct page *page)
3628{
3629	return __page_to_pfn(page);
3630}
3631EXPORT_SYMBOL(pfn_to_page);
3632EXPORT_SYMBOL(page_to_pfn);
3633#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3634
3635
3636