page_alloc.c revision 72280ede316911fd5a82ef78d12a6705b1007d36
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77	 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80	 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83	 32
84#endif
85};
86
87EXPORT_SYMBOL(totalram_pages);
88
89static char * const zone_names[MAX_NR_ZONES] = {
90#ifdef CONFIG_ZONE_DMA
91	 "DMA",
92#endif
93#ifdef CONFIG_ZONE_DMA32
94	 "DMA32",
95#endif
96	 "Normal",
97#ifdef CONFIG_HIGHMEM
98	 "HighMem"
99#endif
100};
101
102int min_free_kbytes = 1024;
103
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
106static unsigned long __meminitdata dma_reserve;
107
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109  /*
110   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111   * ranges of memory (RAM) that may be registered with add_active_range().
112   * Ranges passed to add_active_range() will be merged if possible
113   * so the number of times add_active_range() can be called is
114   * related to the number of nodes and the number of holes
115   */
116  #ifdef CONFIG_MAX_ACTIVE_REGIONS
117    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119  #else
120    #if MAX_NUMNODES >= 32
121      /* If there can be many nodes, allow up to 50 holes per node */
122      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123    #else
124      /* By default, allow up to 256 distinct regions */
125      #define MAX_ACTIVE_REGIONS 256
126    #endif
127  #endif
128
129  struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130  int __meminitdata nr_nodemap_entries;
131  unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132  unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139#ifdef CONFIG_DEBUG_VM
140static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
141{
142	int ret = 0;
143	unsigned seq;
144	unsigned long pfn = page_to_pfn(page);
145
146	do {
147		seq = zone_span_seqbegin(zone);
148		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149			ret = 1;
150		else if (pfn < zone->zone_start_pfn)
151			ret = 1;
152	} while (zone_span_seqretry(zone, seq));
153
154	return ret;
155}
156
157static int page_is_consistent(struct zone *zone, struct page *page)
158{
159	if (!pfn_valid_within(page_to_pfn(page)))
160		return 0;
161	if (zone != page_zone(page))
162		return 0;
163
164	return 1;
165}
166/*
167 * Temporary debugging check for pages not lying within a given zone.
168 */
169static int bad_range(struct zone *zone, struct page *page)
170{
171	if (page_outside_zone_boundaries(zone, page))
172		return 1;
173	if (!page_is_consistent(zone, page))
174		return 1;
175
176	return 0;
177}
178#else
179static inline int bad_range(struct zone *zone, struct page *page)
180{
181	return 0;
182}
183#endif
184
185static void bad_page(struct page *page)
186{
187	printk(KERN_EMERG "Bad page state in process '%s'\n"
188		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
190		KERN_EMERG "Backtrace:\n",
191		current->comm, page, (int)(2*sizeof(unsigned long)),
192		(unsigned long)page->flags, page->mapping,
193		page_mapcount(page), page_count(page));
194	dump_stack();
195	page->flags &= ~(1 << PG_lru	|
196			1 << PG_private |
197			1 << PG_locked	|
198			1 << PG_active	|
199			1 << PG_dirty	|
200			1 << PG_reclaim |
201			1 << PG_slab    |
202			1 << PG_swapcache |
203			1 << PG_writeback |
204			1 << PG_buddy );
205	set_page_count(page, 0);
206	reset_page_mapcount(page);
207	page->mapping = NULL;
208	add_taint(TAINT_BAD_PAGE);
209}
210
211/*
212 * Higher-order pages are called "compound pages".  They are structured thusly:
213 *
214 * The first PAGE_SIZE page is called the "head page".
215 *
216 * The remaining PAGE_SIZE pages are called "tail pages".
217 *
218 * All pages have PG_compound set.  All pages have their ->private pointing at
219 * the head page (even the head page has this).
220 *
221 * The first tail page's ->lru.next holds the address of the compound page's
222 * put_page() function.  Its ->lru.prev holds the order of allocation.
223 * This usage means that zero-order pages may not be compound.
224 */
225
226static void free_compound_page(struct page *page)
227{
228	__free_pages_ok(page, compound_order(page));
229}
230
231static void prep_compound_page(struct page *page, unsigned long order)
232{
233	int i;
234	int nr_pages = 1 << order;
235
236	set_compound_page_dtor(page, free_compound_page);
237	set_compound_order(page, order);
238	__SetPageHead(page);
239	for (i = 1; i < nr_pages; i++) {
240		struct page *p = page + i;
241
242		__SetPageTail(p);
243		p->first_page = page;
244	}
245}
246
247static void destroy_compound_page(struct page *page, unsigned long order)
248{
249	int i;
250	int nr_pages = 1 << order;
251
252	if (unlikely(compound_order(page) != order))
253		bad_page(page);
254
255	if (unlikely(!PageHead(page)))
256			bad_page(page);
257	__ClearPageHead(page);
258	for (i = 1; i < nr_pages; i++) {
259		struct page *p = page + i;
260
261		if (unlikely(!PageTail(p) |
262				(p->first_page != page)))
263			bad_page(page);
264		__ClearPageTail(p);
265	}
266}
267
268static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
269{
270	int i;
271
272	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
273	/*
274	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
275	 * and __GFP_HIGHMEM from hard or soft interrupt context.
276	 */
277	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
278	for (i = 0; i < (1 << order); i++)
279		clear_highpage(page + i);
280}
281
282/*
283 * function for dealing with page's order in buddy system.
284 * zone->lock is already acquired when we use these.
285 * So, we don't need atomic page->flags operations here.
286 */
287static inline unsigned long page_order(struct page *page)
288{
289	return page_private(page);
290}
291
292static inline void set_page_order(struct page *page, int order)
293{
294	set_page_private(page, order);
295	__SetPageBuddy(page);
296}
297
298static inline void rmv_page_order(struct page *page)
299{
300	__ClearPageBuddy(page);
301	set_page_private(page, 0);
302}
303
304/*
305 * Locate the struct page for both the matching buddy in our
306 * pair (buddy1) and the combined O(n+1) page they form (page).
307 *
308 * 1) Any buddy B1 will have an order O twin B2 which satisfies
309 * the following equation:
310 *     B2 = B1 ^ (1 << O)
311 * For example, if the starting buddy (buddy2) is #8 its order
312 * 1 buddy is #10:
313 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
314 *
315 * 2) Any buddy B will have an order O+1 parent P which
316 * satisfies the following equation:
317 *     P = B & ~(1 << O)
318 *
319 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
320 */
321static inline struct page *
322__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
323{
324	unsigned long buddy_idx = page_idx ^ (1 << order);
325
326	return page + (buddy_idx - page_idx);
327}
328
329static inline unsigned long
330__find_combined_index(unsigned long page_idx, unsigned int order)
331{
332	return (page_idx & ~(1 << order));
333}
334
335/*
336 * This function checks whether a page is free && is the buddy
337 * we can do coalesce a page and its buddy if
338 * (a) the buddy is not in a hole &&
339 * (b) the buddy is in the buddy system &&
340 * (c) a page and its buddy have the same order &&
341 * (d) a page and its buddy are in the same zone.
342 *
343 * For recording whether a page is in the buddy system, we use PG_buddy.
344 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
345 *
346 * For recording page's order, we use page_private(page).
347 */
348static inline int page_is_buddy(struct page *page, struct page *buddy,
349								int order)
350{
351	if (!pfn_valid_within(page_to_pfn(buddy)))
352		return 0;
353
354	if (page_zone_id(page) != page_zone_id(buddy))
355		return 0;
356
357	if (PageBuddy(buddy) && page_order(buddy) == order) {
358		BUG_ON(page_count(buddy) != 0);
359		return 1;
360	}
361	return 0;
362}
363
364/*
365 * Freeing function for a buddy system allocator.
366 *
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other.  That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
384 *
385 * -- wli
386 */
387
388static inline void __free_one_page(struct page *page,
389		struct zone *zone, unsigned int order)
390{
391	unsigned long page_idx;
392	int order_size = 1 << order;
393
394	if (unlikely(PageCompound(page)))
395		destroy_compound_page(page, order);
396
397	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
398
399	VM_BUG_ON(page_idx & (order_size - 1));
400	VM_BUG_ON(bad_range(zone, page));
401
402	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
403	while (order < MAX_ORDER-1) {
404		unsigned long combined_idx;
405		struct free_area *area;
406		struct page *buddy;
407
408		buddy = __page_find_buddy(page, page_idx, order);
409		if (!page_is_buddy(page, buddy, order))
410			break;		/* Move the buddy up one level. */
411
412		list_del(&buddy->lru);
413		area = zone->free_area + order;
414		area->nr_free--;
415		rmv_page_order(buddy);
416		combined_idx = __find_combined_index(page_idx, order);
417		page = page + (combined_idx - page_idx);
418		page_idx = combined_idx;
419		order++;
420	}
421	set_page_order(page, order);
422	list_add(&page->lru, &zone->free_area[order].free_list);
423	zone->free_area[order].nr_free++;
424}
425
426static inline int free_pages_check(struct page *page)
427{
428	if (unlikely(page_mapcount(page) |
429		(page->mapping != NULL)  |
430		(page_count(page) != 0)  |
431		(page->flags & (
432			1 << PG_lru	|
433			1 << PG_private |
434			1 << PG_locked	|
435			1 << PG_active	|
436			1 << PG_slab	|
437			1 << PG_swapcache |
438			1 << PG_writeback |
439			1 << PG_reserved |
440			1 << PG_buddy ))))
441		bad_page(page);
442	/*
443	 * PageReclaim == PageTail. It is only an error
444	 * for PageReclaim to be set if PageCompound is clear.
445	 */
446	if (unlikely(!PageCompound(page) && PageReclaim(page)))
447		bad_page(page);
448	if (PageDirty(page))
449		__ClearPageDirty(page);
450	/*
451	 * For now, we report if PG_reserved was found set, but do not
452	 * clear it, and do not free the page.  But we shall soon need
453	 * to do more, for when the ZERO_PAGE count wraps negative.
454	 */
455	return PageReserved(page);
456}
457
458/*
459 * Frees a list of pages.
460 * Assumes all pages on list are in same zone, and of same order.
461 * count is the number of pages to free.
462 *
463 * If the zone was previously in an "all pages pinned" state then look to
464 * see if this freeing clears that state.
465 *
466 * And clear the zone's pages_scanned counter, to hold off the "all pages are
467 * pinned" detection logic.
468 */
469static void free_pages_bulk(struct zone *zone, int count,
470					struct list_head *list, int order)
471{
472	spin_lock(&zone->lock);
473	zone->all_unreclaimable = 0;
474	zone->pages_scanned = 0;
475	while (count--) {
476		struct page *page;
477
478		VM_BUG_ON(list_empty(list));
479		page = list_entry(list->prev, struct page, lru);
480		/* have to delete it as __free_one_page list manipulates */
481		list_del(&page->lru);
482		__free_one_page(page, zone, order);
483	}
484	spin_unlock(&zone->lock);
485}
486
487static void free_one_page(struct zone *zone, struct page *page, int order)
488{
489	spin_lock(&zone->lock);
490	zone->all_unreclaimable = 0;
491	zone->pages_scanned = 0;
492	__free_one_page(page, zone, order);
493	spin_unlock(&zone->lock);
494}
495
496static void __free_pages_ok(struct page *page, unsigned int order)
497{
498	unsigned long flags;
499	int i;
500	int reserved = 0;
501
502	for (i = 0 ; i < (1 << order) ; ++i)
503		reserved += free_pages_check(page + i);
504	if (reserved)
505		return;
506
507	if (!PageHighMem(page))
508		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
509	arch_free_page(page, order);
510	kernel_map_pages(page, 1 << order, 0);
511
512	local_irq_save(flags);
513	__count_vm_events(PGFREE, 1 << order);
514	free_one_page(page_zone(page), page, order);
515	local_irq_restore(flags);
516}
517
518/*
519 * permit the bootmem allocator to evade page validation on high-order frees
520 */
521void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
522{
523	if (order == 0) {
524		__ClearPageReserved(page);
525		set_page_count(page, 0);
526		set_page_refcounted(page);
527		__free_page(page);
528	} else {
529		int loop;
530
531		prefetchw(page);
532		for (loop = 0; loop < BITS_PER_LONG; loop++) {
533			struct page *p = &page[loop];
534
535			if (loop + 1 < BITS_PER_LONG)
536				prefetchw(p + 1);
537			__ClearPageReserved(p);
538			set_page_count(p, 0);
539		}
540
541		set_page_refcounted(page);
542		__free_pages(page, order);
543	}
544}
545
546
547/*
548 * The order of subdivision here is critical for the IO subsystem.
549 * Please do not alter this order without good reasons and regression
550 * testing. Specifically, as large blocks of memory are subdivided,
551 * the order in which smaller blocks are delivered depends on the order
552 * they're subdivided in this function. This is the primary factor
553 * influencing the order in which pages are delivered to the IO
554 * subsystem according to empirical testing, and this is also justified
555 * by considering the behavior of a buddy system containing a single
556 * large block of memory acted on by a series of small allocations.
557 * This behavior is a critical factor in sglist merging's success.
558 *
559 * -- wli
560 */
561static inline void expand(struct zone *zone, struct page *page,
562 	int low, int high, struct free_area *area)
563{
564	unsigned long size = 1 << high;
565
566	while (high > low) {
567		area--;
568		high--;
569		size >>= 1;
570		VM_BUG_ON(bad_range(zone, &page[size]));
571		list_add(&page[size].lru, &area->free_list);
572		area->nr_free++;
573		set_page_order(&page[size], high);
574	}
575}
576
577/*
578 * This page is about to be returned from the page allocator
579 */
580static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
581{
582	if (unlikely(page_mapcount(page) |
583		(page->mapping != NULL)  |
584		(page_count(page) != 0)  |
585		(page->flags & (
586			1 << PG_lru	|
587			1 << PG_private	|
588			1 << PG_locked	|
589			1 << PG_active	|
590			1 << PG_dirty	|
591			1 << PG_reclaim	|
592			1 << PG_slab    |
593			1 << PG_swapcache |
594			1 << PG_writeback |
595			1 << PG_reserved |
596			1 << PG_buddy ))))
597		bad_page(page);
598
599	/*
600	 * For now, we report if PG_reserved was found set, but do not
601	 * clear it, and do not allocate the page: as a safety net.
602	 */
603	if (PageReserved(page))
604		return 1;
605
606	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
607			1 << PG_referenced | 1 << PG_arch_1 |
608			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
609	set_page_private(page, 0);
610	set_page_refcounted(page);
611
612	arch_alloc_page(page, order);
613	kernel_map_pages(page, 1 << order, 1);
614
615	if (gfp_flags & __GFP_ZERO)
616		prep_zero_page(page, order, gfp_flags);
617
618	if (order && (gfp_flags & __GFP_COMP))
619		prep_compound_page(page, order);
620
621	return 0;
622}
623
624/*
625 * Do the hard work of removing an element from the buddy allocator.
626 * Call me with the zone->lock already held.
627 */
628static struct page *__rmqueue(struct zone *zone, unsigned int order)
629{
630	struct free_area * area;
631	unsigned int current_order;
632	struct page *page;
633
634	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
635		area = zone->free_area + current_order;
636		if (list_empty(&area->free_list))
637			continue;
638
639		page = list_entry(area->free_list.next, struct page, lru);
640		list_del(&page->lru);
641		rmv_page_order(page);
642		area->nr_free--;
643		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
644		expand(zone, page, order, current_order, area);
645		return page;
646	}
647
648	return NULL;
649}
650
651/*
652 * Obtain a specified number of elements from the buddy allocator, all under
653 * a single hold of the lock, for efficiency.  Add them to the supplied list.
654 * Returns the number of new pages which were placed at *list.
655 */
656static int rmqueue_bulk(struct zone *zone, unsigned int order,
657			unsigned long count, struct list_head *list)
658{
659	int i;
660
661	spin_lock(&zone->lock);
662	for (i = 0; i < count; ++i) {
663		struct page *page = __rmqueue(zone, order);
664		if (unlikely(page == NULL))
665			break;
666		list_add_tail(&page->lru, list);
667	}
668	spin_unlock(&zone->lock);
669	return i;
670}
671
672#if MAX_NUMNODES > 1
673int nr_node_ids __read_mostly = MAX_NUMNODES;
674EXPORT_SYMBOL(nr_node_ids);
675
676/*
677 * Figure out the number of possible node ids.
678 */
679static void __init setup_nr_node_ids(void)
680{
681	unsigned int node;
682	unsigned int highest = 0;
683
684	for_each_node_mask(node, node_possible_map)
685		highest = node;
686	nr_node_ids = highest + 1;
687}
688#else
689static void __init setup_nr_node_ids(void) {}
690#endif
691
692#ifdef CONFIG_NUMA
693/*
694 * Called from the slab reaper to drain pagesets on a particular node that
695 * belongs to the currently executing processor.
696 * Note that this function must be called with the thread pinned to
697 * a single processor.
698 */
699void drain_node_pages(int nodeid)
700{
701	int i;
702	enum zone_type z;
703	unsigned long flags;
704
705	for (z = 0; z < MAX_NR_ZONES; z++) {
706		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
707		struct per_cpu_pageset *pset;
708
709		if (!populated_zone(zone))
710			continue;
711
712		pset = zone_pcp(zone, smp_processor_id());
713		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
714			struct per_cpu_pages *pcp;
715
716			pcp = &pset->pcp[i];
717			if (pcp->count) {
718				int to_drain;
719
720				local_irq_save(flags);
721				if (pcp->count >= pcp->batch)
722					to_drain = pcp->batch;
723				else
724					to_drain = pcp->count;
725				free_pages_bulk(zone, to_drain, &pcp->list, 0);
726				pcp->count -= to_drain;
727				local_irq_restore(flags);
728			}
729		}
730	}
731}
732#endif
733
734static void __drain_pages(unsigned int cpu)
735{
736	unsigned long flags;
737	struct zone *zone;
738	int i;
739
740	for_each_zone(zone) {
741		struct per_cpu_pageset *pset;
742
743		if (!populated_zone(zone))
744			continue;
745
746		pset = zone_pcp(zone, cpu);
747		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
748			struct per_cpu_pages *pcp;
749
750			pcp = &pset->pcp[i];
751			local_irq_save(flags);
752			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
753			pcp->count = 0;
754			local_irq_restore(flags);
755		}
756	}
757}
758
759#ifdef CONFIG_PM
760
761void mark_free_pages(struct zone *zone)
762{
763	unsigned long pfn, max_zone_pfn;
764	unsigned long flags;
765	int order;
766	struct list_head *curr;
767
768	if (!zone->spanned_pages)
769		return;
770
771	spin_lock_irqsave(&zone->lock, flags);
772
773	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
774	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
775		if (pfn_valid(pfn)) {
776			struct page *page = pfn_to_page(pfn);
777
778			if (!swsusp_page_is_forbidden(page))
779				swsusp_unset_page_free(page);
780		}
781
782	for (order = MAX_ORDER - 1; order >= 0; --order)
783		list_for_each(curr, &zone->free_area[order].free_list) {
784			unsigned long i;
785
786			pfn = page_to_pfn(list_entry(curr, struct page, lru));
787			for (i = 0; i < (1UL << order); i++)
788				swsusp_set_page_free(pfn_to_page(pfn + i));
789		}
790
791	spin_unlock_irqrestore(&zone->lock, flags);
792}
793
794/*
795 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
796 */
797void drain_local_pages(void)
798{
799	unsigned long flags;
800
801	local_irq_save(flags);
802	__drain_pages(smp_processor_id());
803	local_irq_restore(flags);
804}
805#endif /* CONFIG_PM */
806
807/*
808 * Free a 0-order page
809 */
810static void fastcall free_hot_cold_page(struct page *page, int cold)
811{
812	struct zone *zone = page_zone(page);
813	struct per_cpu_pages *pcp;
814	unsigned long flags;
815
816	if (PageAnon(page))
817		page->mapping = NULL;
818	if (free_pages_check(page))
819		return;
820
821	if (!PageHighMem(page))
822		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
823	arch_free_page(page, 0);
824	kernel_map_pages(page, 1, 0);
825
826	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
827	local_irq_save(flags);
828	__count_vm_event(PGFREE);
829	list_add(&page->lru, &pcp->list);
830	pcp->count++;
831	if (pcp->count >= pcp->high) {
832		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
833		pcp->count -= pcp->batch;
834	}
835	local_irq_restore(flags);
836	put_cpu();
837}
838
839void fastcall free_hot_page(struct page *page)
840{
841	free_hot_cold_page(page, 0);
842}
843
844void fastcall free_cold_page(struct page *page)
845{
846	free_hot_cold_page(page, 1);
847}
848
849/*
850 * split_page takes a non-compound higher-order page, and splits it into
851 * n (1<<order) sub-pages: page[0..n]
852 * Each sub-page must be freed individually.
853 *
854 * Note: this is probably too low level an operation for use in drivers.
855 * Please consult with lkml before using this in your driver.
856 */
857void split_page(struct page *page, unsigned int order)
858{
859	int i;
860
861	VM_BUG_ON(PageCompound(page));
862	VM_BUG_ON(!page_count(page));
863	for (i = 1; i < (1 << order); i++)
864		set_page_refcounted(page + i);
865}
866
867/*
868 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
869 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
870 * or two.
871 */
872static struct page *buffered_rmqueue(struct zonelist *zonelist,
873			struct zone *zone, int order, gfp_t gfp_flags)
874{
875	unsigned long flags;
876	struct page *page;
877	int cold = !!(gfp_flags & __GFP_COLD);
878	int cpu;
879
880again:
881	cpu  = get_cpu();
882	if (likely(order == 0)) {
883		struct per_cpu_pages *pcp;
884
885		pcp = &zone_pcp(zone, cpu)->pcp[cold];
886		local_irq_save(flags);
887		if (!pcp->count) {
888			pcp->count = rmqueue_bulk(zone, 0,
889						pcp->batch, &pcp->list);
890			if (unlikely(!pcp->count))
891				goto failed;
892		}
893		page = list_entry(pcp->list.next, struct page, lru);
894		list_del(&page->lru);
895		pcp->count--;
896	} else {
897		spin_lock_irqsave(&zone->lock, flags);
898		page = __rmqueue(zone, order);
899		spin_unlock(&zone->lock);
900		if (!page)
901			goto failed;
902	}
903
904	__count_zone_vm_events(PGALLOC, zone, 1 << order);
905	zone_statistics(zonelist, zone);
906	local_irq_restore(flags);
907	put_cpu();
908
909	VM_BUG_ON(bad_range(zone, page));
910	if (prep_new_page(page, order, gfp_flags))
911		goto again;
912	return page;
913
914failed:
915	local_irq_restore(flags);
916	put_cpu();
917	return NULL;
918}
919
920#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
921#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
922#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
923#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
924#define ALLOC_HARDER		0x10 /* try to alloc harder */
925#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
926#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
927
928#ifdef CONFIG_FAIL_PAGE_ALLOC
929
930static struct fail_page_alloc_attr {
931	struct fault_attr attr;
932
933	u32 ignore_gfp_highmem;
934	u32 ignore_gfp_wait;
935
936#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
937
938	struct dentry *ignore_gfp_highmem_file;
939	struct dentry *ignore_gfp_wait_file;
940
941#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
942
943} fail_page_alloc = {
944	.attr = FAULT_ATTR_INITIALIZER,
945	.ignore_gfp_wait = 1,
946	.ignore_gfp_highmem = 1,
947};
948
949static int __init setup_fail_page_alloc(char *str)
950{
951	return setup_fault_attr(&fail_page_alloc.attr, str);
952}
953__setup("fail_page_alloc=", setup_fail_page_alloc);
954
955static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
956{
957	if (gfp_mask & __GFP_NOFAIL)
958		return 0;
959	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
960		return 0;
961	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
962		return 0;
963
964	return should_fail(&fail_page_alloc.attr, 1 << order);
965}
966
967#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
968
969static int __init fail_page_alloc_debugfs(void)
970{
971	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
972	struct dentry *dir;
973	int err;
974
975	err = init_fault_attr_dentries(&fail_page_alloc.attr,
976				       "fail_page_alloc");
977	if (err)
978		return err;
979	dir = fail_page_alloc.attr.dentries.dir;
980
981	fail_page_alloc.ignore_gfp_wait_file =
982		debugfs_create_bool("ignore-gfp-wait", mode, dir,
983				      &fail_page_alloc.ignore_gfp_wait);
984
985	fail_page_alloc.ignore_gfp_highmem_file =
986		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
987				      &fail_page_alloc.ignore_gfp_highmem);
988
989	if (!fail_page_alloc.ignore_gfp_wait_file ||
990			!fail_page_alloc.ignore_gfp_highmem_file) {
991		err = -ENOMEM;
992		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
993		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
994		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
995	}
996
997	return err;
998}
999
1000late_initcall(fail_page_alloc_debugfs);
1001
1002#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1003
1004#else /* CONFIG_FAIL_PAGE_ALLOC */
1005
1006static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1007{
1008	return 0;
1009}
1010
1011#endif /* CONFIG_FAIL_PAGE_ALLOC */
1012
1013/*
1014 * Return 1 if free pages are above 'mark'. This takes into account the order
1015 * of the allocation.
1016 */
1017int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1018		      int classzone_idx, int alloc_flags)
1019{
1020	/* free_pages my go negative - that's OK */
1021	long min = mark;
1022	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1023	int o;
1024
1025	if (alloc_flags & ALLOC_HIGH)
1026		min -= min / 2;
1027	if (alloc_flags & ALLOC_HARDER)
1028		min -= min / 4;
1029
1030	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1031		return 0;
1032	for (o = 0; o < order; o++) {
1033		/* At the next order, this order's pages become unavailable */
1034		free_pages -= z->free_area[o].nr_free << o;
1035
1036		/* Require fewer higher order pages to be free */
1037		min >>= 1;
1038
1039		if (free_pages <= min)
1040			return 0;
1041	}
1042	return 1;
1043}
1044
1045#ifdef CONFIG_NUMA
1046/*
1047 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1048 * skip over zones that are not allowed by the cpuset, or that have
1049 * been recently (in last second) found to be nearly full.  See further
1050 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1051 * that have to skip over alot of full or unallowed zones.
1052 *
1053 * If the zonelist cache is present in the passed in zonelist, then
1054 * returns a pointer to the allowed node mask (either the current
1055 * tasks mems_allowed, or node_online_map.)
1056 *
1057 * If the zonelist cache is not available for this zonelist, does
1058 * nothing and returns NULL.
1059 *
1060 * If the fullzones BITMAP in the zonelist cache is stale (more than
1061 * a second since last zap'd) then we zap it out (clear its bits.)
1062 *
1063 * We hold off even calling zlc_setup, until after we've checked the
1064 * first zone in the zonelist, on the theory that most allocations will
1065 * be satisfied from that first zone, so best to examine that zone as
1066 * quickly as we can.
1067 */
1068static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1069{
1070	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1071	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1072
1073	zlc = zonelist->zlcache_ptr;
1074	if (!zlc)
1075		return NULL;
1076
1077	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1078		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1079		zlc->last_full_zap = jiffies;
1080	}
1081
1082	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1083					&cpuset_current_mems_allowed :
1084					&node_online_map;
1085	return allowednodes;
1086}
1087
1088/*
1089 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1090 * if it is worth looking at further for free memory:
1091 *  1) Check that the zone isn't thought to be full (doesn't have its
1092 *     bit set in the zonelist_cache fullzones BITMAP).
1093 *  2) Check that the zones node (obtained from the zonelist_cache
1094 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1095 * Return true (non-zero) if zone is worth looking at further, or
1096 * else return false (zero) if it is not.
1097 *
1098 * This check -ignores- the distinction between various watermarks,
1099 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1100 * found to be full for any variation of these watermarks, it will
1101 * be considered full for up to one second by all requests, unless
1102 * we are so low on memory on all allowed nodes that we are forced
1103 * into the second scan of the zonelist.
1104 *
1105 * In the second scan we ignore this zonelist cache and exactly
1106 * apply the watermarks to all zones, even it is slower to do so.
1107 * We are low on memory in the second scan, and should leave no stone
1108 * unturned looking for a free page.
1109 */
1110static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1111						nodemask_t *allowednodes)
1112{
1113	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1114	int i;				/* index of *z in zonelist zones */
1115	int n;				/* node that zone *z is on */
1116
1117	zlc = zonelist->zlcache_ptr;
1118	if (!zlc)
1119		return 1;
1120
1121	i = z - zonelist->zones;
1122	n = zlc->z_to_n[i];
1123
1124	/* This zone is worth trying if it is allowed but not full */
1125	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1126}
1127
1128/*
1129 * Given 'z' scanning a zonelist, set the corresponding bit in
1130 * zlc->fullzones, so that subsequent attempts to allocate a page
1131 * from that zone don't waste time re-examining it.
1132 */
1133static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1134{
1135	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1136	int i;				/* index of *z in zonelist zones */
1137
1138	zlc = zonelist->zlcache_ptr;
1139	if (!zlc)
1140		return;
1141
1142	i = z - zonelist->zones;
1143
1144	set_bit(i, zlc->fullzones);
1145}
1146
1147#else	/* CONFIG_NUMA */
1148
1149static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1150{
1151	return NULL;
1152}
1153
1154static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1155				nodemask_t *allowednodes)
1156{
1157	return 1;
1158}
1159
1160static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1161{
1162}
1163#endif	/* CONFIG_NUMA */
1164
1165/*
1166 * get_page_from_freelist goes through the zonelist trying to allocate
1167 * a page.
1168 */
1169static struct page *
1170get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1171		struct zonelist *zonelist, int alloc_flags)
1172{
1173	struct zone **z;
1174	struct page *page = NULL;
1175	int classzone_idx = zone_idx(zonelist->zones[0]);
1176	struct zone *zone;
1177	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1178	int zlc_active = 0;		/* set if using zonelist_cache */
1179	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1180
1181zonelist_scan:
1182	/*
1183	 * Scan zonelist, looking for a zone with enough free.
1184	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1185	 */
1186	z = zonelist->zones;
1187
1188	do {
1189		if (NUMA_BUILD && zlc_active &&
1190			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1191				continue;
1192		zone = *z;
1193		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1194			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1195				break;
1196		if ((alloc_flags & ALLOC_CPUSET) &&
1197			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1198				goto try_next_zone;
1199
1200		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1201			unsigned long mark;
1202			if (alloc_flags & ALLOC_WMARK_MIN)
1203				mark = zone->pages_min;
1204			else if (alloc_flags & ALLOC_WMARK_LOW)
1205				mark = zone->pages_low;
1206			else
1207				mark = zone->pages_high;
1208			if (!zone_watermark_ok(zone, order, mark,
1209				    classzone_idx, alloc_flags)) {
1210				if (!zone_reclaim_mode ||
1211				    !zone_reclaim(zone, gfp_mask, order))
1212					goto this_zone_full;
1213			}
1214		}
1215
1216		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1217		if (page)
1218			break;
1219this_zone_full:
1220		if (NUMA_BUILD)
1221			zlc_mark_zone_full(zonelist, z);
1222try_next_zone:
1223		if (NUMA_BUILD && !did_zlc_setup) {
1224			/* we do zlc_setup after the first zone is tried */
1225			allowednodes = zlc_setup(zonelist, alloc_flags);
1226			zlc_active = 1;
1227			did_zlc_setup = 1;
1228		}
1229	} while (*(++z) != NULL);
1230
1231	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1232		/* Disable zlc cache for second zonelist scan */
1233		zlc_active = 0;
1234		goto zonelist_scan;
1235	}
1236	return page;
1237}
1238
1239/*
1240 * This is the 'heart' of the zoned buddy allocator.
1241 */
1242struct page * fastcall
1243__alloc_pages(gfp_t gfp_mask, unsigned int order,
1244		struct zonelist *zonelist)
1245{
1246	const gfp_t wait = gfp_mask & __GFP_WAIT;
1247	struct zone **z;
1248	struct page *page;
1249	struct reclaim_state reclaim_state;
1250	struct task_struct *p = current;
1251	int do_retry;
1252	int alloc_flags;
1253	int did_some_progress;
1254
1255	might_sleep_if(wait);
1256
1257	if (should_fail_alloc_page(gfp_mask, order))
1258		return NULL;
1259
1260restart:
1261	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1262
1263	if (unlikely(*z == NULL)) {
1264		/* Should this ever happen?? */
1265		return NULL;
1266	}
1267
1268	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1269				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1270	if (page)
1271		goto got_pg;
1272
1273	/*
1274	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1275	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1276	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1277	 * using a larger set of nodes after it has established that the
1278	 * allowed per node queues are empty and that nodes are
1279	 * over allocated.
1280	 */
1281	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1282		goto nopage;
1283
1284	for (z = zonelist->zones; *z; z++)
1285		wakeup_kswapd(*z, order);
1286
1287	/*
1288	 * OK, we're below the kswapd watermark and have kicked background
1289	 * reclaim. Now things get more complex, so set up alloc_flags according
1290	 * to how we want to proceed.
1291	 *
1292	 * The caller may dip into page reserves a bit more if the caller
1293	 * cannot run direct reclaim, or if the caller has realtime scheduling
1294	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1295	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1296	 */
1297	alloc_flags = ALLOC_WMARK_MIN;
1298	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1299		alloc_flags |= ALLOC_HARDER;
1300	if (gfp_mask & __GFP_HIGH)
1301		alloc_flags |= ALLOC_HIGH;
1302	if (wait)
1303		alloc_flags |= ALLOC_CPUSET;
1304
1305	/*
1306	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1307	 * coming from realtime tasks go deeper into reserves.
1308	 *
1309	 * This is the last chance, in general, before the goto nopage.
1310	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1311	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1312	 */
1313	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1314	if (page)
1315		goto got_pg;
1316
1317	/* This allocation should allow future memory freeing. */
1318
1319rebalance:
1320	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1321			&& !in_interrupt()) {
1322		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1323nofail_alloc:
1324			/* go through the zonelist yet again, ignoring mins */
1325			page = get_page_from_freelist(gfp_mask, order,
1326				zonelist, ALLOC_NO_WATERMARKS);
1327			if (page)
1328				goto got_pg;
1329			if (gfp_mask & __GFP_NOFAIL) {
1330				congestion_wait(WRITE, HZ/50);
1331				goto nofail_alloc;
1332			}
1333		}
1334		goto nopage;
1335	}
1336
1337	/* Atomic allocations - we can't balance anything */
1338	if (!wait)
1339		goto nopage;
1340
1341	cond_resched();
1342
1343	/* We now go into synchronous reclaim */
1344	cpuset_memory_pressure_bump();
1345	p->flags |= PF_MEMALLOC;
1346	reclaim_state.reclaimed_slab = 0;
1347	p->reclaim_state = &reclaim_state;
1348
1349	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1350
1351	p->reclaim_state = NULL;
1352	p->flags &= ~PF_MEMALLOC;
1353
1354	cond_resched();
1355
1356	if (likely(did_some_progress)) {
1357		page = get_page_from_freelist(gfp_mask, order,
1358						zonelist, alloc_flags);
1359		if (page)
1360			goto got_pg;
1361	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1362		/*
1363		 * Go through the zonelist yet one more time, keep
1364		 * very high watermark here, this is only to catch
1365		 * a parallel oom killing, we must fail if we're still
1366		 * under heavy pressure.
1367		 */
1368		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1369				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1370		if (page)
1371			goto got_pg;
1372
1373		out_of_memory(zonelist, gfp_mask, order);
1374		goto restart;
1375	}
1376
1377	/*
1378	 * Don't let big-order allocations loop unless the caller explicitly
1379	 * requests that.  Wait for some write requests to complete then retry.
1380	 *
1381	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1382	 * <= 3, but that may not be true in other implementations.
1383	 */
1384	do_retry = 0;
1385	if (!(gfp_mask & __GFP_NORETRY)) {
1386		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1387			do_retry = 1;
1388		if (gfp_mask & __GFP_NOFAIL)
1389			do_retry = 1;
1390	}
1391	if (do_retry) {
1392		congestion_wait(WRITE, HZ/50);
1393		goto rebalance;
1394	}
1395
1396nopage:
1397	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1398		printk(KERN_WARNING "%s: page allocation failure."
1399			" order:%d, mode:0x%x\n",
1400			p->comm, order, gfp_mask);
1401		dump_stack();
1402		show_mem();
1403	}
1404got_pg:
1405	return page;
1406}
1407
1408EXPORT_SYMBOL(__alloc_pages);
1409
1410/*
1411 * Common helper functions.
1412 */
1413fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1414{
1415	struct page * page;
1416	page = alloc_pages(gfp_mask, order);
1417	if (!page)
1418		return 0;
1419	return (unsigned long) page_address(page);
1420}
1421
1422EXPORT_SYMBOL(__get_free_pages);
1423
1424fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1425{
1426	struct page * page;
1427
1428	/*
1429	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1430	 * a highmem page
1431	 */
1432	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1433
1434	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1435	if (page)
1436		return (unsigned long) page_address(page);
1437	return 0;
1438}
1439
1440EXPORT_SYMBOL(get_zeroed_page);
1441
1442void __pagevec_free(struct pagevec *pvec)
1443{
1444	int i = pagevec_count(pvec);
1445
1446	while (--i >= 0)
1447		free_hot_cold_page(pvec->pages[i], pvec->cold);
1448}
1449
1450fastcall void __free_pages(struct page *page, unsigned int order)
1451{
1452	if (put_page_testzero(page)) {
1453		if (order == 0)
1454			free_hot_page(page);
1455		else
1456			__free_pages_ok(page, order);
1457	}
1458}
1459
1460EXPORT_SYMBOL(__free_pages);
1461
1462fastcall void free_pages(unsigned long addr, unsigned int order)
1463{
1464	if (addr != 0) {
1465		VM_BUG_ON(!virt_addr_valid((void *)addr));
1466		__free_pages(virt_to_page((void *)addr), order);
1467	}
1468}
1469
1470EXPORT_SYMBOL(free_pages);
1471
1472static unsigned int nr_free_zone_pages(int offset)
1473{
1474	/* Just pick one node, since fallback list is circular */
1475	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1476	unsigned int sum = 0;
1477
1478	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1479	struct zone **zonep = zonelist->zones;
1480	struct zone *zone;
1481
1482	for (zone = *zonep++; zone; zone = *zonep++) {
1483		unsigned long size = zone->present_pages;
1484		unsigned long high = zone->pages_high;
1485		if (size > high)
1486			sum += size - high;
1487	}
1488
1489	return sum;
1490}
1491
1492/*
1493 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1494 */
1495unsigned int nr_free_buffer_pages(void)
1496{
1497	return nr_free_zone_pages(gfp_zone(GFP_USER));
1498}
1499
1500/*
1501 * Amount of free RAM allocatable within all zones
1502 */
1503unsigned int nr_free_pagecache_pages(void)
1504{
1505	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1506}
1507
1508static inline void show_node(struct zone *zone)
1509{
1510	if (NUMA_BUILD)
1511		printk("Node %d ", zone_to_nid(zone));
1512}
1513
1514void si_meminfo(struct sysinfo *val)
1515{
1516	val->totalram = totalram_pages;
1517	val->sharedram = 0;
1518	val->freeram = global_page_state(NR_FREE_PAGES);
1519	val->bufferram = nr_blockdev_pages();
1520	val->totalhigh = totalhigh_pages;
1521	val->freehigh = nr_free_highpages();
1522	val->mem_unit = PAGE_SIZE;
1523}
1524
1525EXPORT_SYMBOL(si_meminfo);
1526
1527#ifdef CONFIG_NUMA
1528void si_meminfo_node(struct sysinfo *val, int nid)
1529{
1530	pg_data_t *pgdat = NODE_DATA(nid);
1531
1532	val->totalram = pgdat->node_present_pages;
1533	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1534#ifdef CONFIG_HIGHMEM
1535	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1536	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1537			NR_FREE_PAGES);
1538#else
1539	val->totalhigh = 0;
1540	val->freehigh = 0;
1541#endif
1542	val->mem_unit = PAGE_SIZE;
1543}
1544#endif
1545
1546#define K(x) ((x) << (PAGE_SHIFT-10))
1547
1548/*
1549 * Show free area list (used inside shift_scroll-lock stuff)
1550 * We also calculate the percentage fragmentation. We do this by counting the
1551 * memory on each free list with the exception of the first item on the list.
1552 */
1553void show_free_areas(void)
1554{
1555	int cpu;
1556	struct zone *zone;
1557
1558	for_each_zone(zone) {
1559		if (!populated_zone(zone))
1560			continue;
1561
1562		show_node(zone);
1563		printk("%s per-cpu:\n", zone->name);
1564
1565		for_each_online_cpu(cpu) {
1566			struct per_cpu_pageset *pageset;
1567
1568			pageset = zone_pcp(zone, cpu);
1569
1570			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1571			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1572			       cpu, pageset->pcp[0].high,
1573			       pageset->pcp[0].batch, pageset->pcp[0].count,
1574			       pageset->pcp[1].high, pageset->pcp[1].batch,
1575			       pageset->pcp[1].count);
1576		}
1577	}
1578
1579	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1580		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1581		global_page_state(NR_ACTIVE),
1582		global_page_state(NR_INACTIVE),
1583		global_page_state(NR_FILE_DIRTY),
1584		global_page_state(NR_WRITEBACK),
1585		global_page_state(NR_UNSTABLE_NFS),
1586		global_page_state(NR_FREE_PAGES),
1587		global_page_state(NR_SLAB_RECLAIMABLE) +
1588			global_page_state(NR_SLAB_UNRECLAIMABLE),
1589		global_page_state(NR_FILE_MAPPED),
1590		global_page_state(NR_PAGETABLE),
1591		global_page_state(NR_BOUNCE));
1592
1593	for_each_zone(zone) {
1594		int i;
1595
1596		if (!populated_zone(zone))
1597			continue;
1598
1599		show_node(zone);
1600		printk("%s"
1601			" free:%lukB"
1602			" min:%lukB"
1603			" low:%lukB"
1604			" high:%lukB"
1605			" active:%lukB"
1606			" inactive:%lukB"
1607			" present:%lukB"
1608			" pages_scanned:%lu"
1609			" all_unreclaimable? %s"
1610			"\n",
1611			zone->name,
1612			K(zone_page_state(zone, NR_FREE_PAGES)),
1613			K(zone->pages_min),
1614			K(zone->pages_low),
1615			K(zone->pages_high),
1616			K(zone_page_state(zone, NR_ACTIVE)),
1617			K(zone_page_state(zone, NR_INACTIVE)),
1618			K(zone->present_pages),
1619			zone->pages_scanned,
1620			(zone->all_unreclaimable ? "yes" : "no")
1621			);
1622		printk("lowmem_reserve[]:");
1623		for (i = 0; i < MAX_NR_ZONES; i++)
1624			printk(" %lu", zone->lowmem_reserve[i]);
1625		printk("\n");
1626	}
1627
1628	for_each_zone(zone) {
1629 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1630
1631		if (!populated_zone(zone))
1632			continue;
1633
1634		show_node(zone);
1635		printk("%s: ", zone->name);
1636
1637		spin_lock_irqsave(&zone->lock, flags);
1638		for (order = 0; order < MAX_ORDER; order++) {
1639			nr[order] = zone->free_area[order].nr_free;
1640			total += nr[order] << order;
1641		}
1642		spin_unlock_irqrestore(&zone->lock, flags);
1643		for (order = 0; order < MAX_ORDER; order++)
1644			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1645		printk("= %lukB\n", K(total));
1646	}
1647
1648	show_swap_cache_info();
1649}
1650
1651/*
1652 * Builds allocation fallback zone lists.
1653 *
1654 * Add all populated zones of a node to the zonelist.
1655 */
1656static int __meminit build_zonelists_node(pg_data_t *pgdat,
1657			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1658{
1659	struct zone *zone;
1660
1661	BUG_ON(zone_type >= MAX_NR_ZONES);
1662	zone_type++;
1663
1664	do {
1665		zone_type--;
1666		zone = pgdat->node_zones + zone_type;
1667		if (populated_zone(zone)) {
1668			zonelist->zones[nr_zones++] = zone;
1669			check_highest_zone(zone_type);
1670		}
1671
1672	} while (zone_type);
1673	return nr_zones;
1674}
1675
1676#ifdef CONFIG_NUMA
1677#define MAX_NODE_LOAD (num_online_nodes())
1678static int __meminitdata node_load[MAX_NUMNODES];
1679/**
1680 * find_next_best_node - find the next node that should appear in a given node's fallback list
1681 * @node: node whose fallback list we're appending
1682 * @used_node_mask: nodemask_t of already used nodes
1683 *
1684 * We use a number of factors to determine which is the next node that should
1685 * appear on a given node's fallback list.  The node should not have appeared
1686 * already in @node's fallback list, and it should be the next closest node
1687 * according to the distance array (which contains arbitrary distance values
1688 * from each node to each node in the system), and should also prefer nodes
1689 * with no CPUs, since presumably they'll have very little allocation pressure
1690 * on them otherwise.
1691 * It returns -1 if no node is found.
1692 */
1693static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1694{
1695	int n, val;
1696	int min_val = INT_MAX;
1697	int best_node = -1;
1698
1699	/* Use the local node if we haven't already */
1700	if (!node_isset(node, *used_node_mask)) {
1701		node_set(node, *used_node_mask);
1702		return node;
1703	}
1704
1705	for_each_online_node(n) {
1706		cpumask_t tmp;
1707
1708		/* Don't want a node to appear more than once */
1709		if (node_isset(n, *used_node_mask))
1710			continue;
1711
1712		/* Use the distance array to find the distance */
1713		val = node_distance(node, n);
1714
1715		/* Penalize nodes under us ("prefer the next node") */
1716		val += (n < node);
1717
1718		/* Give preference to headless and unused nodes */
1719		tmp = node_to_cpumask(n);
1720		if (!cpus_empty(tmp))
1721			val += PENALTY_FOR_NODE_WITH_CPUS;
1722
1723		/* Slight preference for less loaded node */
1724		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1725		val += node_load[n];
1726
1727		if (val < min_val) {
1728			min_val = val;
1729			best_node = n;
1730		}
1731	}
1732
1733	if (best_node >= 0)
1734		node_set(best_node, *used_node_mask);
1735
1736	return best_node;
1737}
1738
1739static void __meminit build_zonelists(pg_data_t *pgdat)
1740{
1741	int j, node, local_node;
1742	enum zone_type i;
1743	int prev_node, load;
1744	struct zonelist *zonelist;
1745	nodemask_t used_mask;
1746
1747	/* initialize zonelists */
1748	for (i = 0; i < MAX_NR_ZONES; i++) {
1749		zonelist = pgdat->node_zonelists + i;
1750		zonelist->zones[0] = NULL;
1751	}
1752
1753	/* NUMA-aware ordering of nodes */
1754	local_node = pgdat->node_id;
1755	load = num_online_nodes();
1756	prev_node = local_node;
1757	nodes_clear(used_mask);
1758	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1759		int distance = node_distance(local_node, node);
1760
1761		/*
1762		 * If another node is sufficiently far away then it is better
1763		 * to reclaim pages in a zone before going off node.
1764		 */
1765		if (distance > RECLAIM_DISTANCE)
1766			zone_reclaim_mode = 1;
1767
1768		/*
1769		 * We don't want to pressure a particular node.
1770		 * So adding penalty to the first node in same
1771		 * distance group to make it round-robin.
1772		 */
1773
1774		if (distance != node_distance(local_node, prev_node))
1775			node_load[node] += load;
1776		prev_node = node;
1777		load--;
1778		for (i = 0; i < MAX_NR_ZONES; i++) {
1779			zonelist = pgdat->node_zonelists + i;
1780			for (j = 0; zonelist->zones[j] != NULL; j++);
1781
1782	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1783			zonelist->zones[j] = NULL;
1784		}
1785	}
1786}
1787
1788/* Construct the zonelist performance cache - see further mmzone.h */
1789static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1790{
1791	int i;
1792
1793	for (i = 0; i < MAX_NR_ZONES; i++) {
1794		struct zonelist *zonelist;
1795		struct zonelist_cache *zlc;
1796		struct zone **z;
1797
1798		zonelist = pgdat->node_zonelists + i;
1799		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1800		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1801		for (z = zonelist->zones; *z; z++)
1802			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1803	}
1804}
1805
1806#else	/* CONFIG_NUMA */
1807
1808static void __meminit build_zonelists(pg_data_t *pgdat)
1809{
1810	int node, local_node;
1811	enum zone_type i,j;
1812
1813	local_node = pgdat->node_id;
1814	for (i = 0; i < MAX_NR_ZONES; i++) {
1815		struct zonelist *zonelist;
1816
1817		zonelist = pgdat->node_zonelists + i;
1818
1819 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1820 		/*
1821 		 * Now we build the zonelist so that it contains the zones
1822 		 * of all the other nodes.
1823 		 * We don't want to pressure a particular node, so when
1824 		 * building the zones for node N, we make sure that the
1825 		 * zones coming right after the local ones are those from
1826 		 * node N+1 (modulo N)
1827 		 */
1828		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1829			if (!node_online(node))
1830				continue;
1831			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1832		}
1833		for (node = 0; node < local_node; node++) {
1834			if (!node_online(node))
1835				continue;
1836			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1837		}
1838
1839		zonelist->zones[j] = NULL;
1840	}
1841}
1842
1843/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1844static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1845{
1846	int i;
1847
1848	for (i = 0; i < MAX_NR_ZONES; i++)
1849		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1850}
1851
1852#endif	/* CONFIG_NUMA */
1853
1854/* return values int ....just for stop_machine_run() */
1855static int __meminit __build_all_zonelists(void *dummy)
1856{
1857	int nid;
1858
1859	for_each_online_node(nid) {
1860		build_zonelists(NODE_DATA(nid));
1861		build_zonelist_cache(NODE_DATA(nid));
1862	}
1863	return 0;
1864}
1865
1866void __meminit build_all_zonelists(void)
1867{
1868	if (system_state == SYSTEM_BOOTING) {
1869		__build_all_zonelists(NULL);
1870		cpuset_init_current_mems_allowed();
1871	} else {
1872		/* we have to stop all cpus to guaranntee there is no user
1873		   of zonelist */
1874		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1875		/* cpuset refresh routine should be here */
1876	}
1877	vm_total_pages = nr_free_pagecache_pages();
1878	printk("Built %i zonelists.  Total pages: %ld\n",
1879			num_online_nodes(), vm_total_pages);
1880}
1881
1882/*
1883 * Helper functions to size the waitqueue hash table.
1884 * Essentially these want to choose hash table sizes sufficiently
1885 * large so that collisions trying to wait on pages are rare.
1886 * But in fact, the number of active page waitqueues on typical
1887 * systems is ridiculously low, less than 200. So this is even
1888 * conservative, even though it seems large.
1889 *
1890 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1891 * waitqueues, i.e. the size of the waitq table given the number of pages.
1892 */
1893#define PAGES_PER_WAITQUEUE	256
1894
1895#ifndef CONFIG_MEMORY_HOTPLUG
1896static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1897{
1898	unsigned long size = 1;
1899
1900	pages /= PAGES_PER_WAITQUEUE;
1901
1902	while (size < pages)
1903		size <<= 1;
1904
1905	/*
1906	 * Once we have dozens or even hundreds of threads sleeping
1907	 * on IO we've got bigger problems than wait queue collision.
1908	 * Limit the size of the wait table to a reasonable size.
1909	 */
1910	size = min(size, 4096UL);
1911
1912	return max(size, 4UL);
1913}
1914#else
1915/*
1916 * A zone's size might be changed by hot-add, so it is not possible to determine
1917 * a suitable size for its wait_table.  So we use the maximum size now.
1918 *
1919 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1920 *
1921 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1922 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1923 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1924 *
1925 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1926 * or more by the traditional way. (See above).  It equals:
1927 *
1928 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1929 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1930 *    powerpc (64K page size)             : =  (32G +16M)byte.
1931 */
1932static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1933{
1934	return 4096UL;
1935}
1936#endif
1937
1938/*
1939 * This is an integer logarithm so that shifts can be used later
1940 * to extract the more random high bits from the multiplicative
1941 * hash function before the remainder is taken.
1942 */
1943static inline unsigned long wait_table_bits(unsigned long size)
1944{
1945	return ffz(~size);
1946}
1947
1948#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1949
1950/*
1951 * Initially all pages are reserved - free ones are freed
1952 * up by free_all_bootmem() once the early boot process is
1953 * done. Non-atomic initialization, single-pass.
1954 */
1955void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1956		unsigned long start_pfn, enum memmap_context context)
1957{
1958	struct page *page;
1959	unsigned long end_pfn = start_pfn + size;
1960	unsigned long pfn;
1961
1962	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1963		/*
1964		 * There can be holes in boot-time mem_map[]s
1965		 * handed to this function.  They do not
1966		 * exist on hotplugged memory.
1967		 */
1968		if (context == MEMMAP_EARLY) {
1969			if (!early_pfn_valid(pfn))
1970				continue;
1971			if (!early_pfn_in_nid(pfn, nid))
1972				continue;
1973		}
1974		page = pfn_to_page(pfn);
1975		set_page_links(page, zone, nid, pfn);
1976		init_page_count(page);
1977		reset_page_mapcount(page);
1978		SetPageReserved(page);
1979		INIT_LIST_HEAD(&page->lru);
1980#ifdef WANT_PAGE_VIRTUAL
1981		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1982		if (!is_highmem_idx(zone))
1983			set_page_address(page, __va(pfn << PAGE_SHIFT));
1984#endif
1985	}
1986}
1987
1988void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1989				unsigned long size)
1990{
1991	int order;
1992	for (order = 0; order < MAX_ORDER ; order++) {
1993		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1994		zone->free_area[order].nr_free = 0;
1995	}
1996}
1997
1998#ifndef __HAVE_ARCH_MEMMAP_INIT
1999#define memmap_init(size, nid, zone, start_pfn) \
2000	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2001#endif
2002
2003static int __cpuinit zone_batchsize(struct zone *zone)
2004{
2005	int batch;
2006
2007	/*
2008	 * The per-cpu-pages pools are set to around 1000th of the
2009	 * size of the zone.  But no more than 1/2 of a meg.
2010	 *
2011	 * OK, so we don't know how big the cache is.  So guess.
2012	 */
2013	batch = zone->present_pages / 1024;
2014	if (batch * PAGE_SIZE > 512 * 1024)
2015		batch = (512 * 1024) / PAGE_SIZE;
2016	batch /= 4;		/* We effectively *= 4 below */
2017	if (batch < 1)
2018		batch = 1;
2019
2020	/*
2021	 * Clamp the batch to a 2^n - 1 value. Having a power
2022	 * of 2 value was found to be more likely to have
2023	 * suboptimal cache aliasing properties in some cases.
2024	 *
2025	 * For example if 2 tasks are alternately allocating
2026	 * batches of pages, one task can end up with a lot
2027	 * of pages of one half of the possible page colors
2028	 * and the other with pages of the other colors.
2029	 */
2030	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2031
2032	return batch;
2033}
2034
2035inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2036{
2037	struct per_cpu_pages *pcp;
2038
2039	memset(p, 0, sizeof(*p));
2040
2041	pcp = &p->pcp[0];		/* hot */
2042	pcp->count = 0;
2043	pcp->high = 6 * batch;
2044	pcp->batch = max(1UL, 1 * batch);
2045	INIT_LIST_HEAD(&pcp->list);
2046
2047	pcp = &p->pcp[1];		/* cold*/
2048	pcp->count = 0;
2049	pcp->high = 2 * batch;
2050	pcp->batch = max(1UL, batch/2);
2051	INIT_LIST_HEAD(&pcp->list);
2052}
2053
2054/*
2055 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2056 * to the value high for the pageset p.
2057 */
2058
2059static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2060				unsigned long high)
2061{
2062	struct per_cpu_pages *pcp;
2063
2064	pcp = &p->pcp[0]; /* hot list */
2065	pcp->high = high;
2066	pcp->batch = max(1UL, high/4);
2067	if ((high/4) > (PAGE_SHIFT * 8))
2068		pcp->batch = PAGE_SHIFT * 8;
2069}
2070
2071
2072#ifdef CONFIG_NUMA
2073/*
2074 * Boot pageset table. One per cpu which is going to be used for all
2075 * zones and all nodes. The parameters will be set in such a way
2076 * that an item put on a list will immediately be handed over to
2077 * the buddy list. This is safe since pageset manipulation is done
2078 * with interrupts disabled.
2079 *
2080 * Some NUMA counter updates may also be caught by the boot pagesets.
2081 *
2082 * The boot_pagesets must be kept even after bootup is complete for
2083 * unused processors and/or zones. They do play a role for bootstrapping
2084 * hotplugged processors.
2085 *
2086 * zoneinfo_show() and maybe other functions do
2087 * not check if the processor is online before following the pageset pointer.
2088 * Other parts of the kernel may not check if the zone is available.
2089 */
2090static struct per_cpu_pageset boot_pageset[NR_CPUS];
2091
2092/*
2093 * Dynamically allocate memory for the
2094 * per cpu pageset array in struct zone.
2095 */
2096static int __cpuinit process_zones(int cpu)
2097{
2098	struct zone *zone, *dzone;
2099
2100	for_each_zone(zone) {
2101
2102		if (!populated_zone(zone))
2103			continue;
2104
2105		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2106					 GFP_KERNEL, cpu_to_node(cpu));
2107		if (!zone_pcp(zone, cpu))
2108			goto bad;
2109
2110		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2111
2112		if (percpu_pagelist_fraction)
2113			setup_pagelist_highmark(zone_pcp(zone, cpu),
2114			 	(zone->present_pages / percpu_pagelist_fraction));
2115	}
2116
2117	return 0;
2118bad:
2119	for_each_zone(dzone) {
2120		if (dzone == zone)
2121			break;
2122		kfree(zone_pcp(dzone, cpu));
2123		zone_pcp(dzone, cpu) = NULL;
2124	}
2125	return -ENOMEM;
2126}
2127
2128static inline void free_zone_pagesets(int cpu)
2129{
2130	struct zone *zone;
2131
2132	for_each_zone(zone) {
2133		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2134
2135		/* Free per_cpu_pageset if it is slab allocated */
2136		if (pset != &boot_pageset[cpu])
2137			kfree(pset);
2138		zone_pcp(zone, cpu) = NULL;
2139	}
2140}
2141
2142static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2143		unsigned long action,
2144		void *hcpu)
2145{
2146	int cpu = (long)hcpu;
2147	int ret = NOTIFY_OK;
2148
2149	switch (action) {
2150	case CPU_UP_PREPARE:
2151		if (process_zones(cpu))
2152			ret = NOTIFY_BAD;
2153		break;
2154	case CPU_UP_CANCELED:
2155	case CPU_DEAD:
2156		free_zone_pagesets(cpu);
2157		break;
2158	default:
2159		break;
2160	}
2161	return ret;
2162}
2163
2164static struct notifier_block __cpuinitdata pageset_notifier =
2165	{ &pageset_cpuup_callback, NULL, 0 };
2166
2167void __init setup_per_cpu_pageset(void)
2168{
2169	int err;
2170
2171	/* Initialize per_cpu_pageset for cpu 0.
2172	 * A cpuup callback will do this for every cpu
2173	 * as it comes online
2174	 */
2175	err = process_zones(smp_processor_id());
2176	BUG_ON(err);
2177	register_cpu_notifier(&pageset_notifier);
2178}
2179
2180#endif
2181
2182static __meminit noinline
2183int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2184{
2185	int i;
2186	struct pglist_data *pgdat = zone->zone_pgdat;
2187	size_t alloc_size;
2188
2189	/*
2190	 * The per-page waitqueue mechanism uses hashed waitqueues
2191	 * per zone.
2192	 */
2193	zone->wait_table_hash_nr_entries =
2194		 wait_table_hash_nr_entries(zone_size_pages);
2195	zone->wait_table_bits =
2196		wait_table_bits(zone->wait_table_hash_nr_entries);
2197	alloc_size = zone->wait_table_hash_nr_entries
2198					* sizeof(wait_queue_head_t);
2199
2200 	if (system_state == SYSTEM_BOOTING) {
2201		zone->wait_table = (wait_queue_head_t *)
2202			alloc_bootmem_node(pgdat, alloc_size);
2203	} else {
2204		/*
2205		 * This case means that a zone whose size was 0 gets new memory
2206		 * via memory hot-add.
2207		 * But it may be the case that a new node was hot-added.  In
2208		 * this case vmalloc() will not be able to use this new node's
2209		 * memory - this wait_table must be initialized to use this new
2210		 * node itself as well.
2211		 * To use this new node's memory, further consideration will be
2212		 * necessary.
2213		 */
2214		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2215	}
2216	if (!zone->wait_table)
2217		return -ENOMEM;
2218
2219	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2220		init_waitqueue_head(zone->wait_table + i);
2221
2222	return 0;
2223}
2224
2225static __meminit void zone_pcp_init(struct zone *zone)
2226{
2227	int cpu;
2228	unsigned long batch = zone_batchsize(zone);
2229
2230	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2231#ifdef CONFIG_NUMA
2232		/* Early boot. Slab allocator not functional yet */
2233		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2234		setup_pageset(&boot_pageset[cpu],0);
2235#else
2236		setup_pageset(zone_pcp(zone,cpu), batch);
2237#endif
2238	}
2239	if (zone->present_pages)
2240		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2241			zone->name, zone->present_pages, batch);
2242}
2243
2244__meminit int init_currently_empty_zone(struct zone *zone,
2245					unsigned long zone_start_pfn,
2246					unsigned long size,
2247					enum memmap_context context)
2248{
2249	struct pglist_data *pgdat = zone->zone_pgdat;
2250	int ret;
2251	ret = zone_wait_table_init(zone, size);
2252	if (ret)
2253		return ret;
2254	pgdat->nr_zones = zone_idx(zone) + 1;
2255
2256	zone->zone_start_pfn = zone_start_pfn;
2257
2258	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2259
2260	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2261
2262	return 0;
2263}
2264
2265#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2266/*
2267 * Basic iterator support. Return the first range of PFNs for a node
2268 * Note: nid == MAX_NUMNODES returns first region regardless of node
2269 */
2270static int __meminit first_active_region_index_in_nid(int nid)
2271{
2272	int i;
2273
2274	for (i = 0; i < nr_nodemap_entries; i++)
2275		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2276			return i;
2277
2278	return -1;
2279}
2280
2281/*
2282 * Basic iterator support. Return the next active range of PFNs for a node
2283 * Note: nid == MAX_NUMNODES returns next region regardles of node
2284 */
2285static int __meminit next_active_region_index_in_nid(int index, int nid)
2286{
2287	for (index = index + 1; index < nr_nodemap_entries; index++)
2288		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2289			return index;
2290
2291	return -1;
2292}
2293
2294#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2295/*
2296 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2297 * Architectures may implement their own version but if add_active_range()
2298 * was used and there are no special requirements, this is a convenient
2299 * alternative
2300 */
2301int __init early_pfn_to_nid(unsigned long pfn)
2302{
2303	int i;
2304
2305	for (i = 0; i < nr_nodemap_entries; i++) {
2306		unsigned long start_pfn = early_node_map[i].start_pfn;
2307		unsigned long end_pfn = early_node_map[i].end_pfn;
2308
2309		if (start_pfn <= pfn && pfn < end_pfn)
2310			return early_node_map[i].nid;
2311	}
2312
2313	return 0;
2314}
2315#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2316
2317/* Basic iterator support to walk early_node_map[] */
2318#define for_each_active_range_index_in_nid(i, nid) \
2319	for (i = first_active_region_index_in_nid(nid); i != -1; \
2320				i = next_active_region_index_in_nid(i, nid))
2321
2322/**
2323 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2324 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2325 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2326 *
2327 * If an architecture guarantees that all ranges registered with
2328 * add_active_ranges() contain no holes and may be freed, this
2329 * this function may be used instead of calling free_bootmem() manually.
2330 */
2331void __init free_bootmem_with_active_regions(int nid,
2332						unsigned long max_low_pfn)
2333{
2334	int i;
2335
2336	for_each_active_range_index_in_nid(i, nid) {
2337		unsigned long size_pages = 0;
2338		unsigned long end_pfn = early_node_map[i].end_pfn;
2339
2340		if (early_node_map[i].start_pfn >= max_low_pfn)
2341			continue;
2342
2343		if (end_pfn > max_low_pfn)
2344			end_pfn = max_low_pfn;
2345
2346		size_pages = end_pfn - early_node_map[i].start_pfn;
2347		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2348				PFN_PHYS(early_node_map[i].start_pfn),
2349				size_pages << PAGE_SHIFT);
2350	}
2351}
2352
2353/**
2354 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2355 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2356 *
2357 * If an architecture guarantees that all ranges registered with
2358 * add_active_ranges() contain no holes and may be freed, this
2359 * function may be used instead of calling memory_present() manually.
2360 */
2361void __init sparse_memory_present_with_active_regions(int nid)
2362{
2363	int i;
2364
2365	for_each_active_range_index_in_nid(i, nid)
2366		memory_present(early_node_map[i].nid,
2367				early_node_map[i].start_pfn,
2368				early_node_map[i].end_pfn);
2369}
2370
2371/**
2372 * push_node_boundaries - Push node boundaries to at least the requested boundary
2373 * @nid: The nid of the node to push the boundary for
2374 * @start_pfn: The start pfn of the node
2375 * @end_pfn: The end pfn of the node
2376 *
2377 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2378 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2379 * be hotplugged even though no physical memory exists. This function allows
2380 * an arch to push out the node boundaries so mem_map is allocated that can
2381 * be used later.
2382 */
2383#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2384void __init push_node_boundaries(unsigned int nid,
2385		unsigned long start_pfn, unsigned long end_pfn)
2386{
2387	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2388			nid, start_pfn, end_pfn);
2389
2390	/* Initialise the boundary for this node if necessary */
2391	if (node_boundary_end_pfn[nid] == 0)
2392		node_boundary_start_pfn[nid] = -1UL;
2393
2394	/* Update the boundaries */
2395	if (node_boundary_start_pfn[nid] > start_pfn)
2396		node_boundary_start_pfn[nid] = start_pfn;
2397	if (node_boundary_end_pfn[nid] < end_pfn)
2398		node_boundary_end_pfn[nid] = end_pfn;
2399}
2400
2401/* If necessary, push the node boundary out for reserve hotadd */
2402static void __init account_node_boundary(unsigned int nid,
2403		unsigned long *start_pfn, unsigned long *end_pfn)
2404{
2405	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2406			nid, *start_pfn, *end_pfn);
2407
2408	/* Return if boundary information has not been provided */
2409	if (node_boundary_end_pfn[nid] == 0)
2410		return;
2411
2412	/* Check the boundaries and update if necessary */
2413	if (node_boundary_start_pfn[nid] < *start_pfn)
2414		*start_pfn = node_boundary_start_pfn[nid];
2415	if (node_boundary_end_pfn[nid] > *end_pfn)
2416		*end_pfn = node_boundary_end_pfn[nid];
2417}
2418#else
2419void __init push_node_boundaries(unsigned int nid,
2420		unsigned long start_pfn, unsigned long end_pfn) {}
2421
2422static void __init account_node_boundary(unsigned int nid,
2423		unsigned long *start_pfn, unsigned long *end_pfn) {}
2424#endif
2425
2426
2427/**
2428 * get_pfn_range_for_nid - Return the start and end page frames for a node
2429 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2430 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2431 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2432 *
2433 * It returns the start and end page frame of a node based on information
2434 * provided by an arch calling add_active_range(). If called for a node
2435 * with no available memory, a warning is printed and the start and end
2436 * PFNs will be 0.
2437 */
2438void __meminit get_pfn_range_for_nid(unsigned int nid,
2439			unsigned long *start_pfn, unsigned long *end_pfn)
2440{
2441	int i;
2442	*start_pfn = -1UL;
2443	*end_pfn = 0;
2444
2445	for_each_active_range_index_in_nid(i, nid) {
2446		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2447		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2448	}
2449
2450	if (*start_pfn == -1UL) {
2451		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2452		*start_pfn = 0;
2453	}
2454
2455	/* Push the node boundaries out if requested */
2456	account_node_boundary(nid, start_pfn, end_pfn);
2457}
2458
2459/*
2460 * Return the number of pages a zone spans in a node, including holes
2461 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2462 */
2463unsigned long __meminit zone_spanned_pages_in_node(int nid,
2464					unsigned long zone_type,
2465					unsigned long *ignored)
2466{
2467	unsigned long node_start_pfn, node_end_pfn;
2468	unsigned long zone_start_pfn, zone_end_pfn;
2469
2470	/* Get the start and end of the node and zone */
2471	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2472	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2473	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2474
2475	/* Check that this node has pages within the zone's required range */
2476	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2477		return 0;
2478
2479	/* Move the zone boundaries inside the node if necessary */
2480	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2481	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2482
2483	/* Return the spanned pages */
2484	return zone_end_pfn - zone_start_pfn;
2485}
2486
2487/*
2488 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2489 * then all holes in the requested range will be accounted for.
2490 */
2491unsigned long __meminit __absent_pages_in_range(int nid,
2492				unsigned long range_start_pfn,
2493				unsigned long range_end_pfn)
2494{
2495	int i = 0;
2496	unsigned long prev_end_pfn = 0, hole_pages = 0;
2497	unsigned long start_pfn;
2498
2499	/* Find the end_pfn of the first active range of pfns in the node */
2500	i = first_active_region_index_in_nid(nid);
2501	if (i == -1)
2502		return 0;
2503
2504	/* Account for ranges before physical memory on this node */
2505	if (early_node_map[i].start_pfn > range_start_pfn)
2506		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2507
2508	prev_end_pfn = early_node_map[i].start_pfn;
2509
2510	/* Find all holes for the zone within the node */
2511	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2512
2513		/* No need to continue if prev_end_pfn is outside the zone */
2514		if (prev_end_pfn >= range_end_pfn)
2515			break;
2516
2517		/* Make sure the end of the zone is not within the hole */
2518		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2519		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2520
2521		/* Update the hole size cound and move on */
2522		if (start_pfn > range_start_pfn) {
2523			BUG_ON(prev_end_pfn > start_pfn);
2524			hole_pages += start_pfn - prev_end_pfn;
2525		}
2526		prev_end_pfn = early_node_map[i].end_pfn;
2527	}
2528
2529	/* Account for ranges past physical memory on this node */
2530	if (range_end_pfn > prev_end_pfn)
2531		hole_pages += range_end_pfn -
2532				max(range_start_pfn, prev_end_pfn);
2533
2534	return hole_pages;
2535}
2536
2537/**
2538 * absent_pages_in_range - Return number of page frames in holes within a range
2539 * @start_pfn: The start PFN to start searching for holes
2540 * @end_pfn: The end PFN to stop searching for holes
2541 *
2542 * It returns the number of pages frames in memory holes within a range.
2543 */
2544unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2545							unsigned long end_pfn)
2546{
2547	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2548}
2549
2550/* Return the number of page frames in holes in a zone on a node */
2551unsigned long __meminit zone_absent_pages_in_node(int nid,
2552					unsigned long zone_type,
2553					unsigned long *ignored)
2554{
2555	unsigned long node_start_pfn, node_end_pfn;
2556	unsigned long zone_start_pfn, zone_end_pfn;
2557
2558	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2559	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2560							node_start_pfn);
2561	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2562							node_end_pfn);
2563
2564	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2565}
2566
2567#else
2568static inline unsigned long zone_spanned_pages_in_node(int nid,
2569					unsigned long zone_type,
2570					unsigned long *zones_size)
2571{
2572	return zones_size[zone_type];
2573}
2574
2575static inline unsigned long zone_absent_pages_in_node(int nid,
2576						unsigned long zone_type,
2577						unsigned long *zholes_size)
2578{
2579	if (!zholes_size)
2580		return 0;
2581
2582	return zholes_size[zone_type];
2583}
2584
2585#endif
2586
2587static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2588		unsigned long *zones_size, unsigned long *zholes_size)
2589{
2590	unsigned long realtotalpages, totalpages = 0;
2591	enum zone_type i;
2592
2593	for (i = 0; i < MAX_NR_ZONES; i++)
2594		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2595								zones_size);
2596	pgdat->node_spanned_pages = totalpages;
2597
2598	realtotalpages = totalpages;
2599	for (i = 0; i < MAX_NR_ZONES; i++)
2600		realtotalpages -=
2601			zone_absent_pages_in_node(pgdat->node_id, i,
2602								zholes_size);
2603	pgdat->node_present_pages = realtotalpages;
2604	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2605							realtotalpages);
2606}
2607
2608/*
2609 * Set up the zone data structures:
2610 *   - mark all pages reserved
2611 *   - mark all memory queues empty
2612 *   - clear the memory bitmaps
2613 */
2614static void __meminit free_area_init_core(struct pglist_data *pgdat,
2615		unsigned long *zones_size, unsigned long *zholes_size)
2616{
2617	enum zone_type j;
2618	int nid = pgdat->node_id;
2619	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2620	int ret;
2621
2622	pgdat_resize_init(pgdat);
2623	pgdat->nr_zones = 0;
2624	init_waitqueue_head(&pgdat->kswapd_wait);
2625	pgdat->kswapd_max_order = 0;
2626
2627	for (j = 0; j < MAX_NR_ZONES; j++) {
2628		struct zone *zone = pgdat->node_zones + j;
2629		unsigned long size, realsize, memmap_pages;
2630
2631		size = zone_spanned_pages_in_node(nid, j, zones_size);
2632		realsize = size - zone_absent_pages_in_node(nid, j,
2633								zholes_size);
2634
2635		/*
2636		 * Adjust realsize so that it accounts for how much memory
2637		 * is used by this zone for memmap. This affects the watermark
2638		 * and per-cpu initialisations
2639		 */
2640		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2641		if (realsize >= memmap_pages) {
2642			realsize -= memmap_pages;
2643			printk(KERN_DEBUG
2644				"  %s zone: %lu pages used for memmap\n",
2645				zone_names[j], memmap_pages);
2646		} else
2647			printk(KERN_WARNING
2648				"  %s zone: %lu pages exceeds realsize %lu\n",
2649				zone_names[j], memmap_pages, realsize);
2650
2651		/* Account for reserved pages */
2652		if (j == 0 && realsize > dma_reserve) {
2653			realsize -= dma_reserve;
2654			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2655					zone_names[0], dma_reserve);
2656		}
2657
2658		if (!is_highmem_idx(j))
2659			nr_kernel_pages += realsize;
2660		nr_all_pages += realsize;
2661
2662		zone->spanned_pages = size;
2663		zone->present_pages = realsize;
2664#ifdef CONFIG_NUMA
2665		zone->node = nid;
2666		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2667						/ 100;
2668		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2669#endif
2670		zone->name = zone_names[j];
2671		spin_lock_init(&zone->lock);
2672		spin_lock_init(&zone->lru_lock);
2673		zone_seqlock_init(zone);
2674		zone->zone_pgdat = pgdat;
2675
2676		zone->prev_priority = DEF_PRIORITY;
2677
2678		zone_pcp_init(zone);
2679		INIT_LIST_HEAD(&zone->active_list);
2680		INIT_LIST_HEAD(&zone->inactive_list);
2681		zone->nr_scan_active = 0;
2682		zone->nr_scan_inactive = 0;
2683		zap_zone_vm_stats(zone);
2684		atomic_set(&zone->reclaim_in_progress, 0);
2685		if (!size)
2686			continue;
2687
2688		ret = init_currently_empty_zone(zone, zone_start_pfn,
2689						size, MEMMAP_EARLY);
2690		BUG_ON(ret);
2691		zone_start_pfn += size;
2692	}
2693}
2694
2695static void __meminit alloc_node_mem_map(struct pglist_data *pgdat)
2696{
2697	/* Skip empty nodes */
2698	if (!pgdat->node_spanned_pages)
2699		return;
2700
2701#ifdef CONFIG_FLAT_NODE_MEM_MAP
2702	/* ia64 gets its own node_mem_map, before this, without bootmem */
2703	if (!pgdat->node_mem_map) {
2704		unsigned long size, start, end;
2705		struct page *map;
2706
2707		/*
2708		 * The zone's endpoints aren't required to be MAX_ORDER
2709		 * aligned but the node_mem_map endpoints must be in order
2710		 * for the buddy allocator to function correctly.
2711		 */
2712		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2713		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2714		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2715		size =  (end - start) * sizeof(struct page);
2716		map = alloc_remap(pgdat->node_id, size);
2717		if (!map)
2718			map = alloc_bootmem_node(pgdat, size);
2719		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2720	}
2721#ifdef CONFIG_FLATMEM
2722	/*
2723	 * With no DISCONTIG, the global mem_map is just set as node 0's
2724	 */
2725	if (pgdat == NODE_DATA(0)) {
2726		mem_map = NODE_DATA(0)->node_mem_map;
2727#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2728		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2729			mem_map -= pgdat->node_start_pfn;
2730#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2731	}
2732#endif
2733#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2734}
2735
2736void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2737		unsigned long *zones_size, unsigned long node_start_pfn,
2738		unsigned long *zholes_size)
2739{
2740	pgdat->node_id = nid;
2741	pgdat->node_start_pfn = node_start_pfn;
2742	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2743
2744	alloc_node_mem_map(pgdat);
2745
2746	free_area_init_core(pgdat, zones_size, zholes_size);
2747}
2748
2749#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2750/**
2751 * add_active_range - Register a range of PFNs backed by physical memory
2752 * @nid: The node ID the range resides on
2753 * @start_pfn: The start PFN of the available physical memory
2754 * @end_pfn: The end PFN of the available physical memory
2755 *
2756 * These ranges are stored in an early_node_map[] and later used by
2757 * free_area_init_nodes() to calculate zone sizes and holes. If the
2758 * range spans a memory hole, it is up to the architecture to ensure
2759 * the memory is not freed by the bootmem allocator. If possible
2760 * the range being registered will be merged with existing ranges.
2761 */
2762void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2763						unsigned long end_pfn)
2764{
2765	int i;
2766
2767	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2768			  "%d entries of %d used\n",
2769			  nid, start_pfn, end_pfn,
2770			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2771
2772	/* Merge with existing active regions if possible */
2773	for (i = 0; i < nr_nodemap_entries; i++) {
2774		if (early_node_map[i].nid != nid)
2775			continue;
2776
2777		/* Skip if an existing region covers this new one */
2778		if (start_pfn >= early_node_map[i].start_pfn &&
2779				end_pfn <= early_node_map[i].end_pfn)
2780			return;
2781
2782		/* Merge forward if suitable */
2783		if (start_pfn <= early_node_map[i].end_pfn &&
2784				end_pfn > early_node_map[i].end_pfn) {
2785			early_node_map[i].end_pfn = end_pfn;
2786			return;
2787		}
2788
2789		/* Merge backward if suitable */
2790		if (start_pfn < early_node_map[i].end_pfn &&
2791				end_pfn >= early_node_map[i].start_pfn) {
2792			early_node_map[i].start_pfn = start_pfn;
2793			return;
2794		}
2795	}
2796
2797	/* Check that early_node_map is large enough */
2798	if (i >= MAX_ACTIVE_REGIONS) {
2799		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2800							MAX_ACTIVE_REGIONS);
2801		return;
2802	}
2803
2804	early_node_map[i].nid = nid;
2805	early_node_map[i].start_pfn = start_pfn;
2806	early_node_map[i].end_pfn = end_pfn;
2807	nr_nodemap_entries = i + 1;
2808}
2809
2810/**
2811 * shrink_active_range - Shrink an existing registered range of PFNs
2812 * @nid: The node id the range is on that should be shrunk
2813 * @old_end_pfn: The old end PFN of the range
2814 * @new_end_pfn: The new PFN of the range
2815 *
2816 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2817 * The map is kept at the end physical page range that has already been
2818 * registered with add_active_range(). This function allows an arch to shrink
2819 * an existing registered range.
2820 */
2821void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2822						unsigned long new_end_pfn)
2823{
2824	int i;
2825
2826	/* Find the old active region end and shrink */
2827	for_each_active_range_index_in_nid(i, nid)
2828		if (early_node_map[i].end_pfn == old_end_pfn) {
2829			early_node_map[i].end_pfn = new_end_pfn;
2830			break;
2831		}
2832}
2833
2834/**
2835 * remove_all_active_ranges - Remove all currently registered regions
2836 *
2837 * During discovery, it may be found that a table like SRAT is invalid
2838 * and an alternative discovery method must be used. This function removes
2839 * all currently registered regions.
2840 */
2841void __init remove_all_active_ranges(void)
2842{
2843	memset(early_node_map, 0, sizeof(early_node_map));
2844	nr_nodemap_entries = 0;
2845#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2846	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2847	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2848#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2849}
2850
2851/* Compare two active node_active_regions */
2852static int __init cmp_node_active_region(const void *a, const void *b)
2853{
2854	struct node_active_region *arange = (struct node_active_region *)a;
2855	struct node_active_region *brange = (struct node_active_region *)b;
2856
2857	/* Done this way to avoid overflows */
2858	if (arange->start_pfn > brange->start_pfn)
2859		return 1;
2860	if (arange->start_pfn < brange->start_pfn)
2861		return -1;
2862
2863	return 0;
2864}
2865
2866/* sort the node_map by start_pfn */
2867static void __init sort_node_map(void)
2868{
2869	sort(early_node_map, (size_t)nr_nodemap_entries,
2870			sizeof(struct node_active_region),
2871			cmp_node_active_region, NULL);
2872}
2873
2874/* Find the lowest pfn for a node */
2875unsigned long __init find_min_pfn_for_node(unsigned long nid)
2876{
2877	int i;
2878	unsigned long min_pfn = ULONG_MAX;
2879
2880	/* Assuming a sorted map, the first range found has the starting pfn */
2881	for_each_active_range_index_in_nid(i, nid)
2882		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2883
2884	if (min_pfn == ULONG_MAX) {
2885		printk(KERN_WARNING
2886			"Could not find start_pfn for node %lu\n", nid);
2887		return 0;
2888	}
2889
2890	return min_pfn;
2891}
2892
2893/**
2894 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2895 *
2896 * It returns the minimum PFN based on information provided via
2897 * add_active_range().
2898 */
2899unsigned long __init find_min_pfn_with_active_regions(void)
2900{
2901	return find_min_pfn_for_node(MAX_NUMNODES);
2902}
2903
2904/**
2905 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2906 *
2907 * It returns the maximum PFN based on information provided via
2908 * add_active_range().
2909 */
2910unsigned long __init find_max_pfn_with_active_regions(void)
2911{
2912	int i;
2913	unsigned long max_pfn = 0;
2914
2915	for (i = 0; i < nr_nodemap_entries; i++)
2916		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2917
2918	return max_pfn;
2919}
2920
2921/**
2922 * free_area_init_nodes - Initialise all pg_data_t and zone data
2923 * @max_zone_pfn: an array of max PFNs for each zone
2924 *
2925 * This will call free_area_init_node() for each active node in the system.
2926 * Using the page ranges provided by add_active_range(), the size of each
2927 * zone in each node and their holes is calculated. If the maximum PFN
2928 * between two adjacent zones match, it is assumed that the zone is empty.
2929 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2930 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2931 * starts where the previous one ended. For example, ZONE_DMA32 starts
2932 * at arch_max_dma_pfn.
2933 */
2934void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2935{
2936	unsigned long nid;
2937	enum zone_type i;
2938
2939	/* Sort early_node_map as initialisation assumes it is sorted */
2940	sort_node_map();
2941
2942	/* Record where the zone boundaries are */
2943	memset(arch_zone_lowest_possible_pfn, 0,
2944				sizeof(arch_zone_lowest_possible_pfn));
2945	memset(arch_zone_highest_possible_pfn, 0,
2946				sizeof(arch_zone_highest_possible_pfn));
2947	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2948	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2949	for (i = 1; i < MAX_NR_ZONES; i++) {
2950		arch_zone_lowest_possible_pfn[i] =
2951			arch_zone_highest_possible_pfn[i-1];
2952		arch_zone_highest_possible_pfn[i] =
2953			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2954	}
2955
2956	/* Print out the zone ranges */
2957	printk("Zone PFN ranges:\n");
2958	for (i = 0; i < MAX_NR_ZONES; i++)
2959		printk("  %-8s %8lu -> %8lu\n",
2960				zone_names[i],
2961				arch_zone_lowest_possible_pfn[i],
2962				arch_zone_highest_possible_pfn[i]);
2963
2964	/* Print out the early_node_map[] */
2965	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2966	for (i = 0; i < nr_nodemap_entries; i++)
2967		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2968						early_node_map[i].start_pfn,
2969						early_node_map[i].end_pfn);
2970
2971	/* Initialise every node */
2972	setup_nr_node_ids();
2973	for_each_online_node(nid) {
2974		pg_data_t *pgdat = NODE_DATA(nid);
2975		free_area_init_node(nid, pgdat, NULL,
2976				find_min_pfn_for_node(nid), NULL);
2977	}
2978}
2979#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2980
2981/**
2982 * set_dma_reserve - set the specified number of pages reserved in the first zone
2983 * @new_dma_reserve: The number of pages to mark reserved
2984 *
2985 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2986 * In the DMA zone, a significant percentage may be consumed by kernel image
2987 * and other unfreeable allocations which can skew the watermarks badly. This
2988 * function may optionally be used to account for unfreeable pages in the
2989 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2990 * smaller per-cpu batchsize.
2991 */
2992void __init set_dma_reserve(unsigned long new_dma_reserve)
2993{
2994	dma_reserve = new_dma_reserve;
2995}
2996
2997#ifndef CONFIG_NEED_MULTIPLE_NODES
2998static bootmem_data_t contig_bootmem_data;
2999struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3000
3001EXPORT_SYMBOL(contig_page_data);
3002#endif
3003
3004void __init free_area_init(unsigned long *zones_size)
3005{
3006	free_area_init_node(0, NODE_DATA(0), zones_size,
3007			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3008}
3009
3010static int page_alloc_cpu_notify(struct notifier_block *self,
3011				 unsigned long action, void *hcpu)
3012{
3013	int cpu = (unsigned long)hcpu;
3014
3015	if (action == CPU_DEAD) {
3016		local_irq_disable();
3017		__drain_pages(cpu);
3018		vm_events_fold_cpu(cpu);
3019		local_irq_enable();
3020		refresh_cpu_vm_stats(cpu);
3021	}
3022	return NOTIFY_OK;
3023}
3024
3025void __init page_alloc_init(void)
3026{
3027	hotcpu_notifier(page_alloc_cpu_notify, 0);
3028}
3029
3030/*
3031 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3032 *	or min_free_kbytes changes.
3033 */
3034static void calculate_totalreserve_pages(void)
3035{
3036	struct pglist_data *pgdat;
3037	unsigned long reserve_pages = 0;
3038	enum zone_type i, j;
3039
3040	for_each_online_pgdat(pgdat) {
3041		for (i = 0; i < MAX_NR_ZONES; i++) {
3042			struct zone *zone = pgdat->node_zones + i;
3043			unsigned long max = 0;
3044
3045			/* Find valid and maximum lowmem_reserve in the zone */
3046			for (j = i; j < MAX_NR_ZONES; j++) {
3047				if (zone->lowmem_reserve[j] > max)
3048					max = zone->lowmem_reserve[j];
3049			}
3050
3051			/* we treat pages_high as reserved pages. */
3052			max += zone->pages_high;
3053
3054			if (max > zone->present_pages)
3055				max = zone->present_pages;
3056			reserve_pages += max;
3057		}
3058	}
3059	totalreserve_pages = reserve_pages;
3060}
3061
3062/*
3063 * setup_per_zone_lowmem_reserve - called whenever
3064 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3065 *	has a correct pages reserved value, so an adequate number of
3066 *	pages are left in the zone after a successful __alloc_pages().
3067 */
3068static void setup_per_zone_lowmem_reserve(void)
3069{
3070	struct pglist_data *pgdat;
3071	enum zone_type j, idx;
3072
3073	for_each_online_pgdat(pgdat) {
3074		for (j = 0; j < MAX_NR_ZONES; j++) {
3075			struct zone *zone = pgdat->node_zones + j;
3076			unsigned long present_pages = zone->present_pages;
3077
3078			zone->lowmem_reserve[j] = 0;
3079
3080			idx = j;
3081			while (idx) {
3082				struct zone *lower_zone;
3083
3084				idx--;
3085
3086				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3087					sysctl_lowmem_reserve_ratio[idx] = 1;
3088
3089				lower_zone = pgdat->node_zones + idx;
3090				lower_zone->lowmem_reserve[j] = present_pages /
3091					sysctl_lowmem_reserve_ratio[idx];
3092				present_pages += lower_zone->present_pages;
3093			}
3094		}
3095	}
3096
3097	/* update totalreserve_pages */
3098	calculate_totalreserve_pages();
3099}
3100
3101/**
3102 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3103 *
3104 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3105 * with respect to min_free_kbytes.
3106 */
3107void setup_per_zone_pages_min(void)
3108{
3109	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3110	unsigned long lowmem_pages = 0;
3111	struct zone *zone;
3112	unsigned long flags;
3113
3114	/* Calculate total number of !ZONE_HIGHMEM pages */
3115	for_each_zone(zone) {
3116		if (!is_highmem(zone))
3117			lowmem_pages += zone->present_pages;
3118	}
3119
3120	for_each_zone(zone) {
3121		u64 tmp;
3122
3123		spin_lock_irqsave(&zone->lru_lock, flags);
3124		tmp = (u64)pages_min * zone->present_pages;
3125		do_div(tmp, lowmem_pages);
3126		if (is_highmem(zone)) {
3127			/*
3128			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3129			 * need highmem pages, so cap pages_min to a small
3130			 * value here.
3131			 *
3132			 * The (pages_high-pages_low) and (pages_low-pages_min)
3133			 * deltas controls asynch page reclaim, and so should
3134			 * not be capped for highmem.
3135			 */
3136			int min_pages;
3137
3138			min_pages = zone->present_pages / 1024;
3139			if (min_pages < SWAP_CLUSTER_MAX)
3140				min_pages = SWAP_CLUSTER_MAX;
3141			if (min_pages > 128)
3142				min_pages = 128;
3143			zone->pages_min = min_pages;
3144		} else {
3145			/*
3146			 * If it's a lowmem zone, reserve a number of pages
3147			 * proportionate to the zone's size.
3148			 */
3149			zone->pages_min = tmp;
3150		}
3151
3152		zone->pages_low   = zone->pages_min + (tmp >> 2);
3153		zone->pages_high  = zone->pages_min + (tmp >> 1);
3154		spin_unlock_irqrestore(&zone->lru_lock, flags);
3155	}
3156
3157	/* update totalreserve_pages */
3158	calculate_totalreserve_pages();
3159}
3160
3161/*
3162 * Initialise min_free_kbytes.
3163 *
3164 * For small machines we want it small (128k min).  For large machines
3165 * we want it large (64MB max).  But it is not linear, because network
3166 * bandwidth does not increase linearly with machine size.  We use
3167 *
3168 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3169 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3170 *
3171 * which yields
3172 *
3173 * 16MB:	512k
3174 * 32MB:	724k
3175 * 64MB:	1024k
3176 * 128MB:	1448k
3177 * 256MB:	2048k
3178 * 512MB:	2896k
3179 * 1024MB:	4096k
3180 * 2048MB:	5792k
3181 * 4096MB:	8192k
3182 * 8192MB:	11584k
3183 * 16384MB:	16384k
3184 */
3185static int __init init_per_zone_pages_min(void)
3186{
3187	unsigned long lowmem_kbytes;
3188
3189	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3190
3191	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3192	if (min_free_kbytes < 128)
3193		min_free_kbytes = 128;
3194	if (min_free_kbytes > 65536)
3195		min_free_kbytes = 65536;
3196	setup_per_zone_pages_min();
3197	setup_per_zone_lowmem_reserve();
3198	return 0;
3199}
3200module_init(init_per_zone_pages_min)
3201
3202/*
3203 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3204 *	that we can call two helper functions whenever min_free_kbytes
3205 *	changes.
3206 */
3207int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3208	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3209{
3210	proc_dointvec(table, write, file, buffer, length, ppos);
3211	if (write)
3212		setup_per_zone_pages_min();
3213	return 0;
3214}
3215
3216#ifdef CONFIG_NUMA
3217int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3218	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3219{
3220	struct zone *zone;
3221	int rc;
3222
3223	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3224	if (rc)
3225		return rc;
3226
3227	for_each_zone(zone)
3228		zone->min_unmapped_pages = (zone->present_pages *
3229				sysctl_min_unmapped_ratio) / 100;
3230	return 0;
3231}
3232
3233int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3234	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3235{
3236	struct zone *zone;
3237	int rc;
3238
3239	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3240	if (rc)
3241		return rc;
3242
3243	for_each_zone(zone)
3244		zone->min_slab_pages = (zone->present_pages *
3245				sysctl_min_slab_ratio) / 100;
3246	return 0;
3247}
3248#endif
3249
3250/*
3251 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3252 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3253 *	whenever sysctl_lowmem_reserve_ratio changes.
3254 *
3255 * The reserve ratio obviously has absolutely no relation with the
3256 * pages_min watermarks. The lowmem reserve ratio can only make sense
3257 * if in function of the boot time zone sizes.
3258 */
3259int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3260	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3261{
3262	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3263	setup_per_zone_lowmem_reserve();
3264	return 0;
3265}
3266
3267/*
3268 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3269 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3270 * can have before it gets flushed back to buddy allocator.
3271 */
3272
3273int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3274	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3275{
3276	struct zone *zone;
3277	unsigned int cpu;
3278	int ret;
3279
3280	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3281	if (!write || (ret == -EINVAL))
3282		return ret;
3283	for_each_zone(zone) {
3284		for_each_online_cpu(cpu) {
3285			unsigned long  high;
3286			high = zone->present_pages / percpu_pagelist_fraction;
3287			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3288		}
3289	}
3290	return 0;
3291}
3292
3293int hashdist = HASHDIST_DEFAULT;
3294
3295#ifdef CONFIG_NUMA
3296static int __init set_hashdist(char *str)
3297{
3298	if (!str)
3299		return 0;
3300	hashdist = simple_strtoul(str, &str, 0);
3301	return 1;
3302}
3303__setup("hashdist=", set_hashdist);
3304#endif
3305
3306/*
3307 * allocate a large system hash table from bootmem
3308 * - it is assumed that the hash table must contain an exact power-of-2
3309 *   quantity of entries
3310 * - limit is the number of hash buckets, not the total allocation size
3311 */
3312void *__init alloc_large_system_hash(const char *tablename,
3313				     unsigned long bucketsize,
3314				     unsigned long numentries,
3315				     int scale,
3316				     int flags,
3317				     unsigned int *_hash_shift,
3318				     unsigned int *_hash_mask,
3319				     unsigned long limit)
3320{
3321	unsigned long long max = limit;
3322	unsigned long log2qty, size;
3323	void *table = NULL;
3324
3325	/* allow the kernel cmdline to have a say */
3326	if (!numentries) {
3327		/* round applicable memory size up to nearest megabyte */
3328		numentries = nr_kernel_pages;
3329		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3330		numentries >>= 20 - PAGE_SHIFT;
3331		numentries <<= 20 - PAGE_SHIFT;
3332
3333		/* limit to 1 bucket per 2^scale bytes of low memory */
3334		if (scale > PAGE_SHIFT)
3335			numentries >>= (scale - PAGE_SHIFT);
3336		else
3337			numentries <<= (PAGE_SHIFT - scale);
3338
3339		/* Make sure we've got at least a 0-order allocation.. */
3340		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3341			numentries = PAGE_SIZE / bucketsize;
3342	}
3343	numentries = roundup_pow_of_two(numentries);
3344
3345	/* limit allocation size to 1/16 total memory by default */
3346	if (max == 0) {
3347		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3348		do_div(max, bucketsize);
3349	}
3350
3351	if (numentries > max)
3352		numentries = max;
3353
3354	log2qty = ilog2(numentries);
3355
3356	do {
3357		size = bucketsize << log2qty;
3358		if (flags & HASH_EARLY)
3359			table = alloc_bootmem(size);
3360		else if (hashdist)
3361			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3362		else {
3363			unsigned long order;
3364			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3365				;
3366			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3367		}
3368	} while (!table && size > PAGE_SIZE && --log2qty);
3369
3370	if (!table)
3371		panic("Failed to allocate %s hash table\n", tablename);
3372
3373	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3374	       tablename,
3375	       (1U << log2qty),
3376	       ilog2(size) - PAGE_SHIFT,
3377	       size);
3378
3379	if (_hash_shift)
3380		*_hash_shift = log2qty;
3381	if (_hash_mask)
3382		*_hash_mask = (1 << log2qty) - 1;
3383
3384	return table;
3385}
3386
3387#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3388struct page *pfn_to_page(unsigned long pfn)
3389{
3390	return __pfn_to_page(pfn);
3391}
3392unsigned long page_to_pfn(struct page *page)
3393{
3394	return __page_to_pfn(page);
3395}
3396EXPORT_SYMBOL(pfn_to_page);
3397EXPORT_SYMBOL(page_to_pfn);
3398#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3399
3400
3401