page_alloc.c revision 74768ed833344bb0f82b97cee46320a3d7f09ecd
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/memcontrol.h>
48#include <linux/debugobjects.h>
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52#include "internal.h"
53
54/*
55 * Array of node states.
56 */
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58	[N_POSSIBLE] = NODE_MASK_ALL,
59	[N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65	[N_CPU] = { { [0] = 1UL } },
66#endif	/* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
70unsigned long totalram_pages __read_mostly;
71unsigned long totalreserve_pages __read_mostly;
72long nr_swap_pages;
73int percpu_pagelist_fraction;
74
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
79static void __free_pages_ok(struct page *page, unsigned int order);
80
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 *	1G machine -> (16M dma, 784M normal, 224M high)
85 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93#ifdef CONFIG_ZONE_DMA
94	 256,
95#endif
96#ifdef CONFIG_ZONE_DMA32
97	 256,
98#endif
99#ifdef CONFIG_HIGHMEM
100	 32,
101#endif
102	 32,
103};
104
105EXPORT_SYMBOL(totalram_pages);
106
107static char * const zone_names[MAX_NR_ZONES] = {
108#ifdef CONFIG_ZONE_DMA
109	 "DMA",
110#endif
111#ifdef CONFIG_ZONE_DMA32
112	 "DMA32",
113#endif
114	 "Normal",
115#ifdef CONFIG_HIGHMEM
116	 "HighMem",
117#endif
118	 "Movable",
119};
120
121int min_free_kbytes = 1024;
122
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
125static unsigned long __meminitdata dma_reserve;
126
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128  /*
129   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130   * ranges of memory (RAM) that may be registered with add_active_range().
131   * Ranges passed to add_active_range() will be merged if possible
132   * so the number of times add_active_range() can be called is
133   * related to the number of nodes and the number of holes
134   */
135  #ifdef CONFIG_MAX_ACTIVE_REGIONS
136    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138  #else
139    #if MAX_NUMNODES >= 32
140      /* If there can be many nodes, allow up to 50 holes per node */
141      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142    #else
143      /* By default, allow up to 256 distinct regions */
144      #define MAX_ACTIVE_REGIONS 256
145    #endif
146  #endif
147
148  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149  static int __meminitdata nr_nodemap_entries;
150  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156  static unsigned long __initdata required_kernelcore;
157  static unsigned long __initdata required_movablecore;
158  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161  int movable_zone;
162  EXPORT_SYMBOL(movable_zone);
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
170int page_group_by_mobility_disabled __read_mostly;
171
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174	set_pageblock_flags_group(page, (unsigned long)migratetype,
175					PB_migrate, PB_migrate_end);
176}
177
178#ifdef CONFIG_DEBUG_VM
179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180{
181	int ret = 0;
182	unsigned seq;
183	unsigned long pfn = page_to_pfn(page);
184
185	do {
186		seq = zone_span_seqbegin(zone);
187		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188			ret = 1;
189		else if (pfn < zone->zone_start_pfn)
190			ret = 1;
191	} while (zone_span_seqretry(zone, seq));
192
193	return ret;
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
198	if (!pfn_valid_within(page_to_pfn(page)))
199		return 0;
200	if (zone != page_zone(page))
201		return 0;
202
203	return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210	if (page_outside_zone_boundaries(zone, page))
211		return 1;
212	if (!page_is_consistent(zone, page))
213		return 1;
214
215	return 0;
216}
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220	return 0;
221}
222#endif
223
224static void bad_page(struct page *page)
225{
226	void *pc = page_get_page_cgroup(page);
227
228	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230		current->comm, page, (int)(2*sizeof(unsigned long)),
231		(unsigned long)page->flags, page->mapping,
232		page_mapcount(page), page_count(page));
233	if (pc) {
234		printk(KERN_EMERG "cgroup:%p\n", pc);
235		page_reset_bad_cgroup(page);
236	}
237	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238		KERN_EMERG "Backtrace:\n");
239	dump_stack();
240	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241	set_page_count(page, 0);
242	reset_page_mapcount(page);
243	page->mapping = NULL;
244	add_taint(TAINT_BAD_PAGE);
245}
246
247/*
248 * Higher-order pages are called "compound pages".  They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set.  All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function.  Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262static void free_compound_page(struct page *page)
263{
264	__free_pages_ok(page, compound_order(page));
265}
266
267void prep_compound_page(struct page *page, unsigned long order)
268{
269	int i;
270	int nr_pages = 1 << order;
271
272	set_compound_page_dtor(page, free_compound_page);
273	set_compound_order(page, order);
274	__SetPageHead(page);
275	for (i = 1; i < nr_pages; i++) {
276		struct page *p = page + i;
277
278		__SetPageTail(p);
279		p->first_page = page;
280	}
281}
282
283static void destroy_compound_page(struct page *page, unsigned long order)
284{
285	int i;
286	int nr_pages = 1 << order;
287
288	if (unlikely(compound_order(page) != order))
289		bad_page(page);
290
291	if (unlikely(!PageHead(page)))
292			bad_page(page);
293	__ClearPageHead(page);
294	for (i = 1; i < nr_pages; i++) {
295		struct page *p = page + i;
296
297		if (unlikely(!PageTail(p) |
298				(p->first_page != page)))
299			bad_page(page);
300		__ClearPageTail(p);
301	}
302}
303
304static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305{
306	int i;
307
308	/*
309	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311	 */
312	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313	for (i = 0; i < (1 << order); i++)
314		clear_highpage(page + i);
315}
316
317static inline void set_page_order(struct page *page, int order)
318{
319	set_page_private(page, order);
320	__SetPageBuddy(page);
321}
322
323static inline void rmv_page_order(struct page *page)
324{
325	__ClearPageBuddy(page);
326	set_page_private(page, 0);
327}
328
329/*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 *     B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 *     P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346static inline struct page *
347__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348{
349	unsigned long buddy_idx = page_idx ^ (1 << order);
350
351	return page + (buddy_idx - page_idx);
352}
353
354static inline unsigned long
355__find_combined_index(unsigned long page_idx, unsigned int order)
356{
357	return (page_idx & ~(1 << order));
358}
359
360/*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373static inline int page_is_buddy(struct page *page, struct page *buddy,
374								int order)
375{
376	if (!pfn_valid_within(page_to_pfn(buddy)))
377		return 0;
378
379	if (page_zone_id(page) != page_zone_id(buddy))
380		return 0;
381
382	if (PageBuddy(buddy) && page_order(buddy) == order) {
383		BUG_ON(page_count(buddy) != 0);
384		return 1;
385	}
386	return 0;
387}
388
389/*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other.  That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413static inline void __free_one_page(struct page *page,
414		struct zone *zone, unsigned int order)
415{
416	unsigned long page_idx;
417	int order_size = 1 << order;
418	int migratetype = get_pageblock_migratetype(page);
419
420	if (unlikely(PageCompound(page)))
421		destroy_compound_page(page, order);
422
423	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425	VM_BUG_ON(page_idx & (order_size - 1));
426	VM_BUG_ON(bad_range(zone, page));
427
428	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429	while (order < MAX_ORDER-1) {
430		unsigned long combined_idx;
431		struct page *buddy;
432
433		buddy = __page_find_buddy(page, page_idx, order);
434		if (!page_is_buddy(page, buddy, order))
435			break;
436
437		/* Our buddy is free, merge with it and move up one order. */
438		list_del(&buddy->lru);
439		zone->free_area[order].nr_free--;
440		rmv_page_order(buddy);
441		combined_idx = __find_combined_index(page_idx, order);
442		page = page + (combined_idx - page_idx);
443		page_idx = combined_idx;
444		order++;
445	}
446	set_page_order(page, order);
447	list_add(&page->lru,
448		&zone->free_area[order].free_list[migratetype]);
449	zone->free_area[order].nr_free++;
450}
451
452static inline int free_pages_check(struct page *page)
453{
454	if (unlikely(page_mapcount(page) |
455		(page->mapping != NULL)  |
456		(page_get_page_cgroup(page) != NULL) |
457		(page_count(page) != 0)  |
458		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
459		bad_page(page);
460	if (PageDirty(page))
461		__ClearPageDirty(page);
462	/*
463	 * For now, we report if PG_reserved was found set, but do not
464	 * clear it, and do not free the page.  But we shall soon need
465	 * to do more, for when the ZERO_PAGE count wraps negative.
466	 */
467	return PageReserved(page);
468}
469
470/*
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
474 *
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
477 *
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
480 */
481static void free_pages_bulk(struct zone *zone, int count,
482					struct list_head *list, int order)
483{
484	spin_lock(&zone->lock);
485	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486	zone->pages_scanned = 0;
487	while (count--) {
488		struct page *page;
489
490		VM_BUG_ON(list_empty(list));
491		page = list_entry(list->prev, struct page, lru);
492		/* have to delete it as __free_one_page list manipulates */
493		list_del(&page->lru);
494		__free_one_page(page, zone, order);
495	}
496	spin_unlock(&zone->lock);
497}
498
499static void free_one_page(struct zone *zone, struct page *page, int order)
500{
501	spin_lock(&zone->lock);
502	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503	zone->pages_scanned = 0;
504	__free_one_page(page, zone, order);
505	spin_unlock(&zone->lock);
506}
507
508static void __free_pages_ok(struct page *page, unsigned int order)
509{
510	unsigned long flags;
511	int i;
512	int reserved = 0;
513
514	for (i = 0 ; i < (1 << order) ; ++i)
515		reserved += free_pages_check(page + i);
516	if (reserved)
517		return;
518
519	if (!PageHighMem(page)) {
520		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521		debug_check_no_obj_freed(page_address(page),
522					   PAGE_SIZE << order);
523	}
524	arch_free_page(page, order);
525	kernel_map_pages(page, 1 << order, 0);
526
527	local_irq_save(flags);
528	__count_vm_events(PGFREE, 1 << order);
529	free_one_page(page_zone(page), page, order);
530	local_irq_restore(flags);
531}
532
533/*
534 * permit the bootmem allocator to evade page validation on high-order frees
535 */
536void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
537{
538	if (order == 0) {
539		__ClearPageReserved(page);
540		set_page_count(page, 0);
541		set_page_refcounted(page);
542		__free_page(page);
543	} else {
544		int loop;
545
546		prefetchw(page);
547		for (loop = 0; loop < BITS_PER_LONG; loop++) {
548			struct page *p = &page[loop];
549
550			if (loop + 1 < BITS_PER_LONG)
551				prefetchw(p + 1);
552			__ClearPageReserved(p);
553			set_page_count(p, 0);
554		}
555
556		set_page_refcounted(page);
557		__free_pages(page, order);
558	}
559}
560
561
562/*
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
573 *
574 * -- wli
575 */
576static inline void expand(struct zone *zone, struct page *page,
577	int low, int high, struct free_area *area,
578	int migratetype)
579{
580	unsigned long size = 1 << high;
581
582	while (high > low) {
583		area--;
584		high--;
585		size >>= 1;
586		VM_BUG_ON(bad_range(zone, &page[size]));
587		list_add(&page[size].lru, &area->free_list[migratetype]);
588		area->nr_free++;
589		set_page_order(&page[size], high);
590	}
591}
592
593/*
594 * This page is about to be returned from the page allocator
595 */
596static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597{
598	if (unlikely(page_mapcount(page) |
599		(page->mapping != NULL)  |
600		(page_get_page_cgroup(page) != NULL) |
601		(page_count(page) != 0)  |
602		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
603		bad_page(page);
604
605	/*
606	 * For now, we report if PG_reserved was found set, but do not
607	 * clear it, and do not allocate the page: as a safety net.
608	 */
609	if (PageReserved(page))
610		return 1;
611
612	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
613			1 << PG_referenced | 1 << PG_arch_1 |
614			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
615	set_page_private(page, 0);
616	set_page_refcounted(page);
617
618	arch_alloc_page(page, order);
619	kernel_map_pages(page, 1 << order, 1);
620
621	if (gfp_flags & __GFP_ZERO)
622		prep_zero_page(page, order, gfp_flags);
623
624	if (order && (gfp_flags & __GFP_COMP))
625		prep_compound_page(page, order);
626
627	return 0;
628}
629
630/*
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
633 */
634static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635						int migratetype)
636{
637	unsigned int current_order;
638	struct free_area * area;
639	struct page *page;
640
641	/* Find a page of the appropriate size in the preferred list */
642	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643		area = &(zone->free_area[current_order]);
644		if (list_empty(&area->free_list[migratetype]))
645			continue;
646
647		page = list_entry(area->free_list[migratetype].next,
648							struct page, lru);
649		list_del(&page->lru);
650		rmv_page_order(page);
651		area->nr_free--;
652		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653		expand(zone, page, order, current_order, area, migratetype);
654		return page;
655	}
656
657	return NULL;
658}
659
660
661/*
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
664 */
665static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
666	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
667	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
668	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
670};
671
672/*
673 * Move the free pages in a range to the free lists of the requested type.
674 * Note that start_page and end_pages are not aligned on a pageblock
675 * boundary. If alignment is required, use move_freepages_block()
676 */
677static int move_freepages(struct zone *zone,
678			  struct page *start_page, struct page *end_page,
679			  int migratetype)
680{
681	struct page *page;
682	unsigned long order;
683	int pages_moved = 0;
684
685#ifndef CONFIG_HOLES_IN_ZONE
686	/*
687	 * page_zone is not safe to call in this context when
688	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689	 * anyway as we check zone boundaries in move_freepages_block().
690	 * Remove at a later date when no bug reports exist related to
691	 * grouping pages by mobility
692	 */
693	BUG_ON(page_zone(start_page) != page_zone(end_page));
694#endif
695
696	for (page = start_page; page <= end_page;) {
697		if (!pfn_valid_within(page_to_pfn(page))) {
698			page++;
699			continue;
700		}
701
702		if (!PageBuddy(page)) {
703			page++;
704			continue;
705		}
706
707		order = page_order(page);
708		list_del(&page->lru);
709		list_add(&page->lru,
710			&zone->free_area[order].free_list[migratetype]);
711		page += 1 << order;
712		pages_moved += 1 << order;
713	}
714
715	return pages_moved;
716}
717
718static int move_freepages_block(struct zone *zone, struct page *page,
719				int migratetype)
720{
721	unsigned long start_pfn, end_pfn;
722	struct page *start_page, *end_page;
723
724	start_pfn = page_to_pfn(page);
725	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
726	start_page = pfn_to_page(start_pfn);
727	end_page = start_page + pageblock_nr_pages - 1;
728	end_pfn = start_pfn + pageblock_nr_pages - 1;
729
730	/* Do not cross zone boundaries */
731	if (start_pfn < zone->zone_start_pfn)
732		start_page = page;
733	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
734		return 0;
735
736	return move_freepages(zone, start_page, end_page, migratetype);
737}
738
739/* Remove an element from the buddy allocator from the fallback list */
740static struct page *__rmqueue_fallback(struct zone *zone, int order,
741						int start_migratetype)
742{
743	struct free_area * area;
744	int current_order;
745	struct page *page;
746	int migratetype, i;
747
748	/* Find the largest possible block of pages in the other list */
749	for (current_order = MAX_ORDER-1; current_order >= order;
750						--current_order) {
751		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
752			migratetype = fallbacks[start_migratetype][i];
753
754			/* MIGRATE_RESERVE handled later if necessary */
755			if (migratetype == MIGRATE_RESERVE)
756				continue;
757
758			area = &(zone->free_area[current_order]);
759			if (list_empty(&area->free_list[migratetype]))
760				continue;
761
762			page = list_entry(area->free_list[migratetype].next,
763					struct page, lru);
764			area->nr_free--;
765
766			/*
767			 * If breaking a large block of pages, move all free
768			 * pages to the preferred allocation list. If falling
769			 * back for a reclaimable kernel allocation, be more
770			 * agressive about taking ownership of free pages
771			 */
772			if (unlikely(current_order >= (pageblock_order >> 1)) ||
773					start_migratetype == MIGRATE_RECLAIMABLE) {
774				unsigned long pages;
775				pages = move_freepages_block(zone, page,
776								start_migratetype);
777
778				/* Claim the whole block if over half of it is free */
779				if (pages >= (1 << (pageblock_order-1)))
780					set_pageblock_migratetype(page,
781								start_migratetype);
782
783				migratetype = start_migratetype;
784			}
785
786			/* Remove the page from the freelists */
787			list_del(&page->lru);
788			rmv_page_order(page);
789			__mod_zone_page_state(zone, NR_FREE_PAGES,
790							-(1UL << order));
791
792			if (current_order == pageblock_order)
793				set_pageblock_migratetype(page,
794							start_migratetype);
795
796			expand(zone, page, order, current_order, area, migratetype);
797			return page;
798		}
799	}
800
801	/* Use MIGRATE_RESERVE rather than fail an allocation */
802	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
803}
804
805/*
806 * Do the hard work of removing an element from the buddy allocator.
807 * Call me with the zone->lock already held.
808 */
809static struct page *__rmqueue(struct zone *zone, unsigned int order,
810						int migratetype)
811{
812	struct page *page;
813
814	page = __rmqueue_smallest(zone, order, migratetype);
815
816	if (unlikely(!page))
817		page = __rmqueue_fallback(zone, order, migratetype);
818
819	return page;
820}
821
822/*
823 * Obtain a specified number of elements from the buddy allocator, all under
824 * a single hold of the lock, for efficiency.  Add them to the supplied list.
825 * Returns the number of new pages which were placed at *list.
826 */
827static int rmqueue_bulk(struct zone *zone, unsigned int order,
828			unsigned long count, struct list_head *list,
829			int migratetype)
830{
831	int i;
832
833	spin_lock(&zone->lock);
834	for (i = 0; i < count; ++i) {
835		struct page *page = __rmqueue(zone, order, migratetype);
836		if (unlikely(page == NULL))
837			break;
838
839		/*
840		 * Split buddy pages returned by expand() are received here
841		 * in physical page order. The page is added to the callers and
842		 * list and the list head then moves forward. From the callers
843		 * perspective, the linked list is ordered by page number in
844		 * some conditions. This is useful for IO devices that can
845		 * merge IO requests if the physical pages are ordered
846		 * properly.
847		 */
848		list_add(&page->lru, list);
849		set_page_private(page, migratetype);
850		list = &page->lru;
851	}
852	spin_unlock(&zone->lock);
853	return i;
854}
855
856#ifdef CONFIG_NUMA
857/*
858 * Called from the vmstat counter updater to drain pagesets of this
859 * currently executing processor on remote nodes after they have
860 * expired.
861 *
862 * Note that this function must be called with the thread pinned to
863 * a single processor.
864 */
865void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
866{
867	unsigned long flags;
868	int to_drain;
869
870	local_irq_save(flags);
871	if (pcp->count >= pcp->batch)
872		to_drain = pcp->batch;
873	else
874		to_drain = pcp->count;
875	free_pages_bulk(zone, to_drain, &pcp->list, 0);
876	pcp->count -= to_drain;
877	local_irq_restore(flags);
878}
879#endif
880
881/*
882 * Drain pages of the indicated processor.
883 *
884 * The processor must either be the current processor and the
885 * thread pinned to the current processor or a processor that
886 * is not online.
887 */
888static void drain_pages(unsigned int cpu)
889{
890	unsigned long flags;
891	struct zone *zone;
892
893	for_each_zone(zone) {
894		struct per_cpu_pageset *pset;
895		struct per_cpu_pages *pcp;
896
897		if (!populated_zone(zone))
898			continue;
899
900		pset = zone_pcp(zone, cpu);
901
902		pcp = &pset->pcp;
903		local_irq_save(flags);
904		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
905		pcp->count = 0;
906		local_irq_restore(flags);
907	}
908}
909
910/*
911 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
912 */
913void drain_local_pages(void *arg)
914{
915	drain_pages(smp_processor_id());
916}
917
918/*
919 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
920 */
921void drain_all_pages(void)
922{
923	on_each_cpu(drain_local_pages, NULL, 1);
924}
925
926#ifdef CONFIG_HIBERNATION
927
928void mark_free_pages(struct zone *zone)
929{
930	unsigned long pfn, max_zone_pfn;
931	unsigned long flags;
932	int order, t;
933	struct list_head *curr;
934
935	if (!zone->spanned_pages)
936		return;
937
938	spin_lock_irqsave(&zone->lock, flags);
939
940	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
941	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
942		if (pfn_valid(pfn)) {
943			struct page *page = pfn_to_page(pfn);
944
945			if (!swsusp_page_is_forbidden(page))
946				swsusp_unset_page_free(page);
947		}
948
949	for_each_migratetype_order(order, t) {
950		list_for_each(curr, &zone->free_area[order].free_list[t]) {
951			unsigned long i;
952
953			pfn = page_to_pfn(list_entry(curr, struct page, lru));
954			for (i = 0; i < (1UL << order); i++)
955				swsusp_set_page_free(pfn_to_page(pfn + i));
956		}
957	}
958	spin_unlock_irqrestore(&zone->lock, flags);
959}
960#endif /* CONFIG_PM */
961
962/*
963 * Free a 0-order page
964 */
965static void free_hot_cold_page(struct page *page, int cold)
966{
967	struct zone *zone = page_zone(page);
968	struct per_cpu_pages *pcp;
969	unsigned long flags;
970
971	if (PageAnon(page))
972		page->mapping = NULL;
973	if (free_pages_check(page))
974		return;
975
976	if (!PageHighMem(page)) {
977		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
978		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
979	}
980	arch_free_page(page, 0);
981	kernel_map_pages(page, 1, 0);
982
983	pcp = &zone_pcp(zone, get_cpu())->pcp;
984	local_irq_save(flags);
985	__count_vm_event(PGFREE);
986	if (cold)
987		list_add_tail(&page->lru, &pcp->list);
988	else
989		list_add(&page->lru, &pcp->list);
990	set_page_private(page, get_pageblock_migratetype(page));
991	pcp->count++;
992	if (pcp->count >= pcp->high) {
993		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
994		pcp->count -= pcp->batch;
995	}
996	local_irq_restore(flags);
997	put_cpu();
998}
999
1000void free_hot_page(struct page *page)
1001{
1002	free_hot_cold_page(page, 0);
1003}
1004
1005void free_cold_page(struct page *page)
1006{
1007	free_hot_cold_page(page, 1);
1008}
1009
1010/*
1011 * split_page takes a non-compound higher-order page, and splits it into
1012 * n (1<<order) sub-pages: page[0..n]
1013 * Each sub-page must be freed individually.
1014 *
1015 * Note: this is probably too low level an operation for use in drivers.
1016 * Please consult with lkml before using this in your driver.
1017 */
1018void split_page(struct page *page, unsigned int order)
1019{
1020	int i;
1021
1022	VM_BUG_ON(PageCompound(page));
1023	VM_BUG_ON(!page_count(page));
1024	for (i = 1; i < (1 << order); i++)
1025		set_page_refcounted(page + i);
1026}
1027
1028/*
1029 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1030 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1031 * or two.
1032 */
1033static struct page *buffered_rmqueue(struct zone *preferred_zone,
1034			struct zone *zone, int order, gfp_t gfp_flags)
1035{
1036	unsigned long flags;
1037	struct page *page;
1038	int cold = !!(gfp_flags & __GFP_COLD);
1039	int cpu;
1040	int migratetype = allocflags_to_migratetype(gfp_flags);
1041
1042again:
1043	cpu  = get_cpu();
1044	if (likely(order == 0)) {
1045		struct per_cpu_pages *pcp;
1046
1047		pcp = &zone_pcp(zone, cpu)->pcp;
1048		local_irq_save(flags);
1049		if (!pcp->count) {
1050			pcp->count = rmqueue_bulk(zone, 0,
1051					pcp->batch, &pcp->list, migratetype);
1052			if (unlikely(!pcp->count))
1053				goto failed;
1054		}
1055
1056		/* Find a page of the appropriate migrate type */
1057		if (cold) {
1058			list_for_each_entry_reverse(page, &pcp->list, lru)
1059				if (page_private(page) == migratetype)
1060					break;
1061		} else {
1062			list_for_each_entry(page, &pcp->list, lru)
1063				if (page_private(page) == migratetype)
1064					break;
1065		}
1066
1067		/* Allocate more to the pcp list if necessary */
1068		if (unlikely(&page->lru == &pcp->list)) {
1069			pcp->count += rmqueue_bulk(zone, 0,
1070					pcp->batch, &pcp->list, migratetype);
1071			page = list_entry(pcp->list.next, struct page, lru);
1072		}
1073
1074		list_del(&page->lru);
1075		pcp->count--;
1076	} else {
1077		spin_lock_irqsave(&zone->lock, flags);
1078		page = __rmqueue(zone, order, migratetype);
1079		spin_unlock(&zone->lock);
1080		if (!page)
1081			goto failed;
1082	}
1083
1084	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1085	zone_statistics(preferred_zone, zone);
1086	local_irq_restore(flags);
1087	put_cpu();
1088
1089	VM_BUG_ON(bad_range(zone, page));
1090	if (prep_new_page(page, order, gfp_flags))
1091		goto again;
1092	return page;
1093
1094failed:
1095	local_irq_restore(flags);
1096	put_cpu();
1097	return NULL;
1098}
1099
1100#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1101#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1102#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1103#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1104#define ALLOC_HARDER		0x10 /* try to alloc harder */
1105#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1106#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1107
1108#ifdef CONFIG_FAIL_PAGE_ALLOC
1109
1110static struct fail_page_alloc_attr {
1111	struct fault_attr attr;
1112
1113	u32 ignore_gfp_highmem;
1114	u32 ignore_gfp_wait;
1115	u32 min_order;
1116
1117#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1118
1119	struct dentry *ignore_gfp_highmem_file;
1120	struct dentry *ignore_gfp_wait_file;
1121	struct dentry *min_order_file;
1122
1123#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1124
1125} fail_page_alloc = {
1126	.attr = FAULT_ATTR_INITIALIZER,
1127	.ignore_gfp_wait = 1,
1128	.ignore_gfp_highmem = 1,
1129	.min_order = 1,
1130};
1131
1132static int __init setup_fail_page_alloc(char *str)
1133{
1134	return setup_fault_attr(&fail_page_alloc.attr, str);
1135}
1136__setup("fail_page_alloc=", setup_fail_page_alloc);
1137
1138static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1139{
1140	if (order < fail_page_alloc.min_order)
1141		return 0;
1142	if (gfp_mask & __GFP_NOFAIL)
1143		return 0;
1144	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1145		return 0;
1146	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1147		return 0;
1148
1149	return should_fail(&fail_page_alloc.attr, 1 << order);
1150}
1151
1152#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1153
1154static int __init fail_page_alloc_debugfs(void)
1155{
1156	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1157	struct dentry *dir;
1158	int err;
1159
1160	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1161				       "fail_page_alloc");
1162	if (err)
1163		return err;
1164	dir = fail_page_alloc.attr.dentries.dir;
1165
1166	fail_page_alloc.ignore_gfp_wait_file =
1167		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1168				      &fail_page_alloc.ignore_gfp_wait);
1169
1170	fail_page_alloc.ignore_gfp_highmem_file =
1171		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1172				      &fail_page_alloc.ignore_gfp_highmem);
1173	fail_page_alloc.min_order_file =
1174		debugfs_create_u32("min-order", mode, dir,
1175				   &fail_page_alloc.min_order);
1176
1177	if (!fail_page_alloc.ignore_gfp_wait_file ||
1178            !fail_page_alloc.ignore_gfp_highmem_file ||
1179            !fail_page_alloc.min_order_file) {
1180		err = -ENOMEM;
1181		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1182		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1183		debugfs_remove(fail_page_alloc.min_order_file);
1184		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1185	}
1186
1187	return err;
1188}
1189
1190late_initcall(fail_page_alloc_debugfs);
1191
1192#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1193
1194#else /* CONFIG_FAIL_PAGE_ALLOC */
1195
1196static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1197{
1198	return 0;
1199}
1200
1201#endif /* CONFIG_FAIL_PAGE_ALLOC */
1202
1203/*
1204 * Return 1 if free pages are above 'mark'. This takes into account the order
1205 * of the allocation.
1206 */
1207int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1208		      int classzone_idx, int alloc_flags)
1209{
1210	/* free_pages my go negative - that's OK */
1211	long min = mark;
1212	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1213	int o;
1214
1215	if (alloc_flags & ALLOC_HIGH)
1216		min -= min / 2;
1217	if (alloc_flags & ALLOC_HARDER)
1218		min -= min / 4;
1219
1220	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1221		return 0;
1222	for (o = 0; o < order; o++) {
1223		/* At the next order, this order's pages become unavailable */
1224		free_pages -= z->free_area[o].nr_free << o;
1225
1226		/* Require fewer higher order pages to be free */
1227		min >>= 1;
1228
1229		if (free_pages <= min)
1230			return 0;
1231	}
1232	return 1;
1233}
1234
1235#ifdef CONFIG_NUMA
1236/*
1237 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1238 * skip over zones that are not allowed by the cpuset, or that have
1239 * been recently (in last second) found to be nearly full.  See further
1240 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1241 * that have to skip over a lot of full or unallowed zones.
1242 *
1243 * If the zonelist cache is present in the passed in zonelist, then
1244 * returns a pointer to the allowed node mask (either the current
1245 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1246 *
1247 * If the zonelist cache is not available for this zonelist, does
1248 * nothing and returns NULL.
1249 *
1250 * If the fullzones BITMAP in the zonelist cache is stale (more than
1251 * a second since last zap'd) then we zap it out (clear its bits.)
1252 *
1253 * We hold off even calling zlc_setup, until after we've checked the
1254 * first zone in the zonelist, on the theory that most allocations will
1255 * be satisfied from that first zone, so best to examine that zone as
1256 * quickly as we can.
1257 */
1258static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1259{
1260	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1261	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1262
1263	zlc = zonelist->zlcache_ptr;
1264	if (!zlc)
1265		return NULL;
1266
1267	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1268		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1269		zlc->last_full_zap = jiffies;
1270	}
1271
1272	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1273					&cpuset_current_mems_allowed :
1274					&node_states[N_HIGH_MEMORY];
1275	return allowednodes;
1276}
1277
1278/*
1279 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1280 * if it is worth looking at further for free memory:
1281 *  1) Check that the zone isn't thought to be full (doesn't have its
1282 *     bit set in the zonelist_cache fullzones BITMAP).
1283 *  2) Check that the zones node (obtained from the zonelist_cache
1284 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1285 * Return true (non-zero) if zone is worth looking at further, or
1286 * else return false (zero) if it is not.
1287 *
1288 * This check -ignores- the distinction between various watermarks,
1289 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1290 * found to be full for any variation of these watermarks, it will
1291 * be considered full for up to one second by all requests, unless
1292 * we are so low on memory on all allowed nodes that we are forced
1293 * into the second scan of the zonelist.
1294 *
1295 * In the second scan we ignore this zonelist cache and exactly
1296 * apply the watermarks to all zones, even it is slower to do so.
1297 * We are low on memory in the second scan, and should leave no stone
1298 * unturned looking for a free page.
1299 */
1300static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1301						nodemask_t *allowednodes)
1302{
1303	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1304	int i;				/* index of *z in zonelist zones */
1305	int n;				/* node that zone *z is on */
1306
1307	zlc = zonelist->zlcache_ptr;
1308	if (!zlc)
1309		return 1;
1310
1311	i = z - zonelist->_zonerefs;
1312	n = zlc->z_to_n[i];
1313
1314	/* This zone is worth trying if it is allowed but not full */
1315	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1316}
1317
1318/*
1319 * Given 'z' scanning a zonelist, set the corresponding bit in
1320 * zlc->fullzones, so that subsequent attempts to allocate a page
1321 * from that zone don't waste time re-examining it.
1322 */
1323static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1324{
1325	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1326	int i;				/* index of *z in zonelist zones */
1327
1328	zlc = zonelist->zlcache_ptr;
1329	if (!zlc)
1330		return;
1331
1332	i = z - zonelist->_zonerefs;
1333
1334	set_bit(i, zlc->fullzones);
1335}
1336
1337#else	/* CONFIG_NUMA */
1338
1339static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1340{
1341	return NULL;
1342}
1343
1344static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1345				nodemask_t *allowednodes)
1346{
1347	return 1;
1348}
1349
1350static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1351{
1352}
1353#endif	/* CONFIG_NUMA */
1354
1355/*
1356 * get_page_from_freelist goes through the zonelist trying to allocate
1357 * a page.
1358 */
1359static struct page *
1360get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1361		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1362{
1363	struct zoneref *z;
1364	struct page *page = NULL;
1365	int classzone_idx;
1366	struct zone *zone, *preferred_zone;
1367	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1368	int zlc_active = 0;		/* set if using zonelist_cache */
1369	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1370
1371	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1372							&preferred_zone);
1373	if (!preferred_zone)
1374		return NULL;
1375
1376	classzone_idx = zone_idx(preferred_zone);
1377
1378zonelist_scan:
1379	/*
1380	 * Scan zonelist, looking for a zone with enough free.
1381	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1382	 */
1383	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1384						high_zoneidx, nodemask) {
1385		if (NUMA_BUILD && zlc_active &&
1386			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1387				continue;
1388		if ((alloc_flags & ALLOC_CPUSET) &&
1389			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1390				goto try_next_zone;
1391
1392		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1393			unsigned long mark;
1394			if (alloc_flags & ALLOC_WMARK_MIN)
1395				mark = zone->pages_min;
1396			else if (alloc_flags & ALLOC_WMARK_LOW)
1397				mark = zone->pages_low;
1398			else
1399				mark = zone->pages_high;
1400			if (!zone_watermark_ok(zone, order, mark,
1401				    classzone_idx, alloc_flags)) {
1402				if (!zone_reclaim_mode ||
1403				    !zone_reclaim(zone, gfp_mask, order))
1404					goto this_zone_full;
1405			}
1406		}
1407
1408		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1409		if (page)
1410			break;
1411this_zone_full:
1412		if (NUMA_BUILD)
1413			zlc_mark_zone_full(zonelist, z);
1414try_next_zone:
1415		if (NUMA_BUILD && !did_zlc_setup) {
1416			/* we do zlc_setup after the first zone is tried */
1417			allowednodes = zlc_setup(zonelist, alloc_flags);
1418			zlc_active = 1;
1419			did_zlc_setup = 1;
1420		}
1421	}
1422
1423	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1424		/* Disable zlc cache for second zonelist scan */
1425		zlc_active = 0;
1426		goto zonelist_scan;
1427	}
1428	return page;
1429}
1430
1431/*
1432 * This is the 'heart' of the zoned buddy allocator.
1433 */
1434struct page *
1435__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1436			struct zonelist *zonelist, nodemask_t *nodemask)
1437{
1438	const gfp_t wait = gfp_mask & __GFP_WAIT;
1439	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1440	struct zoneref *z;
1441	struct zone *zone;
1442	struct page *page;
1443	struct reclaim_state reclaim_state;
1444	struct task_struct *p = current;
1445	int do_retry;
1446	int alloc_flags;
1447	unsigned long did_some_progress;
1448	unsigned long pages_reclaimed = 0;
1449
1450	might_sleep_if(wait);
1451
1452	if (should_fail_alloc_page(gfp_mask, order))
1453		return NULL;
1454
1455restart:
1456	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1457
1458	if (unlikely(!z->zone)) {
1459		/*
1460		 * Happens if we have an empty zonelist as a result of
1461		 * GFP_THISNODE being used on a memoryless node
1462		 */
1463		return NULL;
1464	}
1465
1466	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1467			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1468	if (page)
1469		goto got_pg;
1470
1471	/*
1472	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1473	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1474	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1475	 * using a larger set of nodes after it has established that the
1476	 * allowed per node queues are empty and that nodes are
1477	 * over allocated.
1478	 */
1479	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1480		goto nopage;
1481
1482	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1483		wakeup_kswapd(zone, order);
1484
1485	/*
1486	 * OK, we're below the kswapd watermark and have kicked background
1487	 * reclaim. Now things get more complex, so set up alloc_flags according
1488	 * to how we want to proceed.
1489	 *
1490	 * The caller may dip into page reserves a bit more if the caller
1491	 * cannot run direct reclaim, or if the caller has realtime scheduling
1492	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1493	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1494	 */
1495	alloc_flags = ALLOC_WMARK_MIN;
1496	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1497		alloc_flags |= ALLOC_HARDER;
1498	if (gfp_mask & __GFP_HIGH)
1499		alloc_flags |= ALLOC_HIGH;
1500	if (wait)
1501		alloc_flags |= ALLOC_CPUSET;
1502
1503	/*
1504	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1505	 * coming from realtime tasks go deeper into reserves.
1506	 *
1507	 * This is the last chance, in general, before the goto nopage.
1508	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1509	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1510	 */
1511	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1512						high_zoneidx, alloc_flags);
1513	if (page)
1514		goto got_pg;
1515
1516	/* This allocation should allow future memory freeing. */
1517
1518rebalance:
1519	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1520			&& !in_interrupt()) {
1521		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1522nofail_alloc:
1523			/* go through the zonelist yet again, ignoring mins */
1524			page = get_page_from_freelist(gfp_mask, nodemask, order,
1525				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1526			if (page)
1527				goto got_pg;
1528			if (gfp_mask & __GFP_NOFAIL) {
1529				congestion_wait(WRITE, HZ/50);
1530				goto nofail_alloc;
1531			}
1532		}
1533		goto nopage;
1534	}
1535
1536	/* Atomic allocations - we can't balance anything */
1537	if (!wait)
1538		goto nopage;
1539
1540	cond_resched();
1541
1542	/* We now go into synchronous reclaim */
1543	cpuset_memory_pressure_bump();
1544	p->flags |= PF_MEMALLOC;
1545	reclaim_state.reclaimed_slab = 0;
1546	p->reclaim_state = &reclaim_state;
1547
1548	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1549
1550	p->reclaim_state = NULL;
1551	p->flags &= ~PF_MEMALLOC;
1552
1553	cond_resched();
1554
1555	if (order != 0)
1556		drain_all_pages();
1557
1558	if (likely(did_some_progress)) {
1559		page = get_page_from_freelist(gfp_mask, nodemask, order,
1560					zonelist, high_zoneidx, alloc_flags);
1561		if (page)
1562			goto got_pg;
1563	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1564		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1565			schedule_timeout_uninterruptible(1);
1566			goto restart;
1567		}
1568
1569		/*
1570		 * Go through the zonelist yet one more time, keep
1571		 * very high watermark here, this is only to catch
1572		 * a parallel oom killing, we must fail if we're still
1573		 * under heavy pressure.
1574		 */
1575		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1576			order, zonelist, high_zoneidx,
1577			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1578		if (page) {
1579			clear_zonelist_oom(zonelist, gfp_mask);
1580			goto got_pg;
1581		}
1582
1583		/* The OOM killer will not help higher order allocs so fail */
1584		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1585			clear_zonelist_oom(zonelist, gfp_mask);
1586			goto nopage;
1587		}
1588
1589		out_of_memory(zonelist, gfp_mask, order);
1590		clear_zonelist_oom(zonelist, gfp_mask);
1591		goto restart;
1592	}
1593
1594	/*
1595	 * Don't let big-order allocations loop unless the caller explicitly
1596	 * requests that.  Wait for some write requests to complete then retry.
1597	 *
1598	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1599	 * means __GFP_NOFAIL, but that may not be true in other
1600	 * implementations.
1601	 *
1602	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1603	 * specified, then we retry until we no longer reclaim any pages
1604	 * (above), or we've reclaimed an order of pages at least as
1605	 * large as the allocation's order. In both cases, if the
1606	 * allocation still fails, we stop retrying.
1607	 */
1608	pages_reclaimed += did_some_progress;
1609	do_retry = 0;
1610	if (!(gfp_mask & __GFP_NORETRY)) {
1611		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1612			do_retry = 1;
1613		} else {
1614			if (gfp_mask & __GFP_REPEAT &&
1615				pages_reclaimed < (1 << order))
1616					do_retry = 1;
1617		}
1618		if (gfp_mask & __GFP_NOFAIL)
1619			do_retry = 1;
1620	}
1621	if (do_retry) {
1622		congestion_wait(WRITE, HZ/50);
1623		goto rebalance;
1624	}
1625
1626nopage:
1627	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1628		printk(KERN_WARNING "%s: page allocation failure."
1629			" order:%d, mode:0x%x\n",
1630			p->comm, order, gfp_mask);
1631		dump_stack();
1632		show_mem();
1633	}
1634got_pg:
1635	return page;
1636}
1637EXPORT_SYMBOL(__alloc_pages_internal);
1638
1639/*
1640 * Common helper functions.
1641 */
1642unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1643{
1644	struct page * page;
1645	page = alloc_pages(gfp_mask, order);
1646	if (!page)
1647		return 0;
1648	return (unsigned long) page_address(page);
1649}
1650
1651EXPORT_SYMBOL(__get_free_pages);
1652
1653unsigned long get_zeroed_page(gfp_t gfp_mask)
1654{
1655	struct page * page;
1656
1657	/*
1658	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1659	 * a highmem page
1660	 */
1661	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1662
1663	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1664	if (page)
1665		return (unsigned long) page_address(page);
1666	return 0;
1667}
1668
1669EXPORT_SYMBOL(get_zeroed_page);
1670
1671void __pagevec_free(struct pagevec *pvec)
1672{
1673	int i = pagevec_count(pvec);
1674
1675	while (--i >= 0)
1676		free_hot_cold_page(pvec->pages[i], pvec->cold);
1677}
1678
1679void __free_pages(struct page *page, unsigned int order)
1680{
1681	if (put_page_testzero(page)) {
1682		if (order == 0)
1683			free_hot_page(page);
1684		else
1685			__free_pages_ok(page, order);
1686	}
1687}
1688
1689EXPORT_SYMBOL(__free_pages);
1690
1691void free_pages(unsigned long addr, unsigned int order)
1692{
1693	if (addr != 0) {
1694		VM_BUG_ON(!virt_addr_valid((void *)addr));
1695		__free_pages(virt_to_page((void *)addr), order);
1696	}
1697}
1698
1699EXPORT_SYMBOL(free_pages);
1700
1701/**
1702 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1703 * @size: the number of bytes to allocate
1704 * @gfp_mask: GFP flags for the allocation
1705 *
1706 * This function is similar to alloc_pages(), except that it allocates the
1707 * minimum number of pages to satisfy the request.  alloc_pages() can only
1708 * allocate memory in power-of-two pages.
1709 *
1710 * This function is also limited by MAX_ORDER.
1711 *
1712 * Memory allocated by this function must be released by free_pages_exact().
1713 */
1714void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1715{
1716	unsigned int order = get_order(size);
1717	unsigned long addr;
1718
1719	addr = __get_free_pages(gfp_mask, order);
1720	if (addr) {
1721		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1722		unsigned long used = addr + PAGE_ALIGN(size);
1723
1724		split_page(virt_to_page(addr), order);
1725		while (used < alloc_end) {
1726			free_page(used);
1727			used += PAGE_SIZE;
1728		}
1729	}
1730
1731	return (void *)addr;
1732}
1733EXPORT_SYMBOL(alloc_pages_exact);
1734
1735/**
1736 * free_pages_exact - release memory allocated via alloc_pages_exact()
1737 * @virt: the value returned by alloc_pages_exact.
1738 * @size: size of allocation, same value as passed to alloc_pages_exact().
1739 *
1740 * Release the memory allocated by a previous call to alloc_pages_exact.
1741 */
1742void free_pages_exact(void *virt, size_t size)
1743{
1744	unsigned long addr = (unsigned long)virt;
1745	unsigned long end = addr + PAGE_ALIGN(size);
1746
1747	while (addr < end) {
1748		free_page(addr);
1749		addr += PAGE_SIZE;
1750	}
1751}
1752EXPORT_SYMBOL(free_pages_exact);
1753
1754static unsigned int nr_free_zone_pages(int offset)
1755{
1756	struct zoneref *z;
1757	struct zone *zone;
1758
1759	/* Just pick one node, since fallback list is circular */
1760	unsigned int sum = 0;
1761
1762	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1763
1764	for_each_zone_zonelist(zone, z, zonelist, offset) {
1765		unsigned long size = zone->present_pages;
1766		unsigned long high = zone->pages_high;
1767		if (size > high)
1768			sum += size - high;
1769	}
1770
1771	return sum;
1772}
1773
1774/*
1775 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1776 */
1777unsigned int nr_free_buffer_pages(void)
1778{
1779	return nr_free_zone_pages(gfp_zone(GFP_USER));
1780}
1781EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1782
1783/*
1784 * Amount of free RAM allocatable within all zones
1785 */
1786unsigned int nr_free_pagecache_pages(void)
1787{
1788	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1789}
1790
1791static inline void show_node(struct zone *zone)
1792{
1793	if (NUMA_BUILD)
1794		printk("Node %d ", zone_to_nid(zone));
1795}
1796
1797void si_meminfo(struct sysinfo *val)
1798{
1799	val->totalram = totalram_pages;
1800	val->sharedram = 0;
1801	val->freeram = global_page_state(NR_FREE_PAGES);
1802	val->bufferram = nr_blockdev_pages();
1803	val->totalhigh = totalhigh_pages;
1804	val->freehigh = nr_free_highpages();
1805	val->mem_unit = PAGE_SIZE;
1806}
1807
1808EXPORT_SYMBOL(si_meminfo);
1809
1810#ifdef CONFIG_NUMA
1811void si_meminfo_node(struct sysinfo *val, int nid)
1812{
1813	pg_data_t *pgdat = NODE_DATA(nid);
1814
1815	val->totalram = pgdat->node_present_pages;
1816	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1817#ifdef CONFIG_HIGHMEM
1818	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1819	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1820			NR_FREE_PAGES);
1821#else
1822	val->totalhigh = 0;
1823	val->freehigh = 0;
1824#endif
1825	val->mem_unit = PAGE_SIZE;
1826}
1827#endif
1828
1829#define K(x) ((x) << (PAGE_SHIFT-10))
1830
1831/*
1832 * Show free area list (used inside shift_scroll-lock stuff)
1833 * We also calculate the percentage fragmentation. We do this by counting the
1834 * memory on each free list with the exception of the first item on the list.
1835 */
1836void show_free_areas(void)
1837{
1838	int cpu;
1839	struct zone *zone;
1840
1841	for_each_zone(zone) {
1842		if (!populated_zone(zone))
1843			continue;
1844
1845		show_node(zone);
1846		printk("%s per-cpu:\n", zone->name);
1847
1848		for_each_online_cpu(cpu) {
1849			struct per_cpu_pageset *pageset;
1850
1851			pageset = zone_pcp(zone, cpu);
1852
1853			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1854			       cpu, pageset->pcp.high,
1855			       pageset->pcp.batch, pageset->pcp.count);
1856		}
1857	}
1858
1859	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1860		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1861		global_page_state(NR_ACTIVE),
1862		global_page_state(NR_INACTIVE),
1863		global_page_state(NR_FILE_DIRTY),
1864		global_page_state(NR_WRITEBACK),
1865		global_page_state(NR_UNSTABLE_NFS),
1866		global_page_state(NR_FREE_PAGES),
1867		global_page_state(NR_SLAB_RECLAIMABLE) +
1868			global_page_state(NR_SLAB_UNRECLAIMABLE),
1869		global_page_state(NR_FILE_MAPPED),
1870		global_page_state(NR_PAGETABLE),
1871		global_page_state(NR_BOUNCE));
1872
1873	for_each_zone(zone) {
1874		int i;
1875
1876		if (!populated_zone(zone))
1877			continue;
1878
1879		show_node(zone);
1880		printk("%s"
1881			" free:%lukB"
1882			" min:%lukB"
1883			" low:%lukB"
1884			" high:%lukB"
1885			" active:%lukB"
1886			" inactive:%lukB"
1887			" present:%lukB"
1888			" pages_scanned:%lu"
1889			" all_unreclaimable? %s"
1890			"\n",
1891			zone->name,
1892			K(zone_page_state(zone, NR_FREE_PAGES)),
1893			K(zone->pages_min),
1894			K(zone->pages_low),
1895			K(zone->pages_high),
1896			K(zone_page_state(zone, NR_ACTIVE)),
1897			K(zone_page_state(zone, NR_INACTIVE)),
1898			K(zone->present_pages),
1899			zone->pages_scanned,
1900			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1901			);
1902		printk("lowmem_reserve[]:");
1903		for (i = 0; i < MAX_NR_ZONES; i++)
1904			printk(" %lu", zone->lowmem_reserve[i]);
1905		printk("\n");
1906	}
1907
1908	for_each_zone(zone) {
1909 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1910
1911		if (!populated_zone(zone))
1912			continue;
1913
1914		show_node(zone);
1915		printk("%s: ", zone->name);
1916
1917		spin_lock_irqsave(&zone->lock, flags);
1918		for (order = 0; order < MAX_ORDER; order++) {
1919			nr[order] = zone->free_area[order].nr_free;
1920			total += nr[order] << order;
1921		}
1922		spin_unlock_irqrestore(&zone->lock, flags);
1923		for (order = 0; order < MAX_ORDER; order++)
1924			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1925		printk("= %lukB\n", K(total));
1926	}
1927
1928	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1929
1930	show_swap_cache_info();
1931}
1932
1933static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1934{
1935	zoneref->zone = zone;
1936	zoneref->zone_idx = zone_idx(zone);
1937}
1938
1939/*
1940 * Builds allocation fallback zone lists.
1941 *
1942 * Add all populated zones of a node to the zonelist.
1943 */
1944static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1945				int nr_zones, enum zone_type zone_type)
1946{
1947	struct zone *zone;
1948
1949	BUG_ON(zone_type >= MAX_NR_ZONES);
1950	zone_type++;
1951
1952	do {
1953		zone_type--;
1954		zone = pgdat->node_zones + zone_type;
1955		if (populated_zone(zone)) {
1956			zoneref_set_zone(zone,
1957				&zonelist->_zonerefs[nr_zones++]);
1958			check_highest_zone(zone_type);
1959		}
1960
1961	} while (zone_type);
1962	return nr_zones;
1963}
1964
1965
1966/*
1967 *  zonelist_order:
1968 *  0 = automatic detection of better ordering.
1969 *  1 = order by ([node] distance, -zonetype)
1970 *  2 = order by (-zonetype, [node] distance)
1971 *
1972 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1973 *  the same zonelist. So only NUMA can configure this param.
1974 */
1975#define ZONELIST_ORDER_DEFAULT  0
1976#define ZONELIST_ORDER_NODE     1
1977#define ZONELIST_ORDER_ZONE     2
1978
1979/* zonelist order in the kernel.
1980 * set_zonelist_order() will set this to NODE or ZONE.
1981 */
1982static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1983static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1984
1985
1986#ifdef CONFIG_NUMA
1987/* The value user specified ....changed by config */
1988static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1989/* string for sysctl */
1990#define NUMA_ZONELIST_ORDER_LEN	16
1991char numa_zonelist_order[16] = "default";
1992
1993/*
1994 * interface for configure zonelist ordering.
1995 * command line option "numa_zonelist_order"
1996 *	= "[dD]efault	- default, automatic configuration.
1997 *	= "[nN]ode 	- order by node locality, then by zone within node
1998 *	= "[zZ]one      - order by zone, then by locality within zone
1999 */
2000
2001static int __parse_numa_zonelist_order(char *s)
2002{
2003	if (*s == 'd' || *s == 'D') {
2004		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2005	} else if (*s == 'n' || *s == 'N') {
2006		user_zonelist_order = ZONELIST_ORDER_NODE;
2007	} else if (*s == 'z' || *s == 'Z') {
2008		user_zonelist_order = ZONELIST_ORDER_ZONE;
2009	} else {
2010		printk(KERN_WARNING
2011			"Ignoring invalid numa_zonelist_order value:  "
2012			"%s\n", s);
2013		return -EINVAL;
2014	}
2015	return 0;
2016}
2017
2018static __init int setup_numa_zonelist_order(char *s)
2019{
2020	if (s)
2021		return __parse_numa_zonelist_order(s);
2022	return 0;
2023}
2024early_param("numa_zonelist_order", setup_numa_zonelist_order);
2025
2026/*
2027 * sysctl handler for numa_zonelist_order
2028 */
2029int numa_zonelist_order_handler(ctl_table *table, int write,
2030		struct file *file, void __user *buffer, size_t *length,
2031		loff_t *ppos)
2032{
2033	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2034	int ret;
2035
2036	if (write)
2037		strncpy(saved_string, (char*)table->data,
2038			NUMA_ZONELIST_ORDER_LEN);
2039	ret = proc_dostring(table, write, file, buffer, length, ppos);
2040	if (ret)
2041		return ret;
2042	if (write) {
2043		int oldval = user_zonelist_order;
2044		if (__parse_numa_zonelist_order((char*)table->data)) {
2045			/*
2046			 * bogus value.  restore saved string
2047			 */
2048			strncpy((char*)table->data, saved_string,
2049				NUMA_ZONELIST_ORDER_LEN);
2050			user_zonelist_order = oldval;
2051		} else if (oldval != user_zonelist_order)
2052			build_all_zonelists();
2053	}
2054	return 0;
2055}
2056
2057
2058#define MAX_NODE_LOAD (num_online_nodes())
2059static int node_load[MAX_NUMNODES];
2060
2061/**
2062 * find_next_best_node - find the next node that should appear in a given node's fallback list
2063 * @node: node whose fallback list we're appending
2064 * @used_node_mask: nodemask_t of already used nodes
2065 *
2066 * We use a number of factors to determine which is the next node that should
2067 * appear on a given node's fallback list.  The node should not have appeared
2068 * already in @node's fallback list, and it should be the next closest node
2069 * according to the distance array (which contains arbitrary distance values
2070 * from each node to each node in the system), and should also prefer nodes
2071 * with no CPUs, since presumably they'll have very little allocation pressure
2072 * on them otherwise.
2073 * It returns -1 if no node is found.
2074 */
2075static int find_next_best_node(int node, nodemask_t *used_node_mask)
2076{
2077	int n, val;
2078	int min_val = INT_MAX;
2079	int best_node = -1;
2080	node_to_cpumask_ptr(tmp, 0);
2081
2082	/* Use the local node if we haven't already */
2083	if (!node_isset(node, *used_node_mask)) {
2084		node_set(node, *used_node_mask);
2085		return node;
2086	}
2087
2088	for_each_node_state(n, N_HIGH_MEMORY) {
2089
2090		/* Don't want a node to appear more than once */
2091		if (node_isset(n, *used_node_mask))
2092			continue;
2093
2094		/* Use the distance array to find the distance */
2095		val = node_distance(node, n);
2096
2097		/* Penalize nodes under us ("prefer the next node") */
2098		val += (n < node);
2099
2100		/* Give preference to headless and unused nodes */
2101		node_to_cpumask_ptr_next(tmp, n);
2102		if (!cpus_empty(*tmp))
2103			val += PENALTY_FOR_NODE_WITH_CPUS;
2104
2105		/* Slight preference for less loaded node */
2106		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2107		val += node_load[n];
2108
2109		if (val < min_val) {
2110			min_val = val;
2111			best_node = n;
2112		}
2113	}
2114
2115	if (best_node >= 0)
2116		node_set(best_node, *used_node_mask);
2117
2118	return best_node;
2119}
2120
2121
2122/*
2123 * Build zonelists ordered by node and zones within node.
2124 * This results in maximum locality--normal zone overflows into local
2125 * DMA zone, if any--but risks exhausting DMA zone.
2126 */
2127static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2128{
2129	int j;
2130	struct zonelist *zonelist;
2131
2132	zonelist = &pgdat->node_zonelists[0];
2133	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2134		;
2135	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2136							MAX_NR_ZONES - 1);
2137	zonelist->_zonerefs[j].zone = NULL;
2138	zonelist->_zonerefs[j].zone_idx = 0;
2139}
2140
2141/*
2142 * Build gfp_thisnode zonelists
2143 */
2144static void build_thisnode_zonelists(pg_data_t *pgdat)
2145{
2146	int j;
2147	struct zonelist *zonelist;
2148
2149	zonelist = &pgdat->node_zonelists[1];
2150	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2151	zonelist->_zonerefs[j].zone = NULL;
2152	zonelist->_zonerefs[j].zone_idx = 0;
2153}
2154
2155/*
2156 * Build zonelists ordered by zone and nodes within zones.
2157 * This results in conserving DMA zone[s] until all Normal memory is
2158 * exhausted, but results in overflowing to remote node while memory
2159 * may still exist in local DMA zone.
2160 */
2161static int node_order[MAX_NUMNODES];
2162
2163static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2164{
2165	int pos, j, node;
2166	int zone_type;		/* needs to be signed */
2167	struct zone *z;
2168	struct zonelist *zonelist;
2169
2170	zonelist = &pgdat->node_zonelists[0];
2171	pos = 0;
2172	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2173		for (j = 0; j < nr_nodes; j++) {
2174			node = node_order[j];
2175			z = &NODE_DATA(node)->node_zones[zone_type];
2176			if (populated_zone(z)) {
2177				zoneref_set_zone(z,
2178					&zonelist->_zonerefs[pos++]);
2179				check_highest_zone(zone_type);
2180			}
2181		}
2182	}
2183	zonelist->_zonerefs[pos].zone = NULL;
2184	zonelist->_zonerefs[pos].zone_idx = 0;
2185}
2186
2187static int default_zonelist_order(void)
2188{
2189	int nid, zone_type;
2190	unsigned long low_kmem_size,total_size;
2191	struct zone *z;
2192	int average_size;
2193	/*
2194         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2195	 * If they are really small and used heavily, the system can fall
2196	 * into OOM very easily.
2197	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2198	 */
2199	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2200	low_kmem_size = 0;
2201	total_size = 0;
2202	for_each_online_node(nid) {
2203		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2204			z = &NODE_DATA(nid)->node_zones[zone_type];
2205			if (populated_zone(z)) {
2206				if (zone_type < ZONE_NORMAL)
2207					low_kmem_size += z->present_pages;
2208				total_size += z->present_pages;
2209			}
2210		}
2211	}
2212	if (!low_kmem_size ||  /* there are no DMA area. */
2213	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2214		return ZONELIST_ORDER_NODE;
2215	/*
2216	 * look into each node's config.
2217  	 * If there is a node whose DMA/DMA32 memory is very big area on
2218 	 * local memory, NODE_ORDER may be suitable.
2219         */
2220	average_size = total_size /
2221				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2222	for_each_online_node(nid) {
2223		low_kmem_size = 0;
2224		total_size = 0;
2225		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2226			z = &NODE_DATA(nid)->node_zones[zone_type];
2227			if (populated_zone(z)) {
2228				if (zone_type < ZONE_NORMAL)
2229					low_kmem_size += z->present_pages;
2230				total_size += z->present_pages;
2231			}
2232		}
2233		if (low_kmem_size &&
2234		    total_size > average_size && /* ignore small node */
2235		    low_kmem_size > total_size * 70/100)
2236			return ZONELIST_ORDER_NODE;
2237	}
2238	return ZONELIST_ORDER_ZONE;
2239}
2240
2241static void set_zonelist_order(void)
2242{
2243	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2244		current_zonelist_order = default_zonelist_order();
2245	else
2246		current_zonelist_order = user_zonelist_order;
2247}
2248
2249static void build_zonelists(pg_data_t *pgdat)
2250{
2251	int j, node, load;
2252	enum zone_type i;
2253	nodemask_t used_mask;
2254	int local_node, prev_node;
2255	struct zonelist *zonelist;
2256	int order = current_zonelist_order;
2257
2258	/* initialize zonelists */
2259	for (i = 0; i < MAX_ZONELISTS; i++) {
2260		zonelist = pgdat->node_zonelists + i;
2261		zonelist->_zonerefs[0].zone = NULL;
2262		zonelist->_zonerefs[0].zone_idx = 0;
2263	}
2264
2265	/* NUMA-aware ordering of nodes */
2266	local_node = pgdat->node_id;
2267	load = num_online_nodes();
2268	prev_node = local_node;
2269	nodes_clear(used_mask);
2270
2271	memset(node_load, 0, sizeof(node_load));
2272	memset(node_order, 0, sizeof(node_order));
2273	j = 0;
2274
2275	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2276		int distance = node_distance(local_node, node);
2277
2278		/*
2279		 * If another node is sufficiently far away then it is better
2280		 * to reclaim pages in a zone before going off node.
2281		 */
2282		if (distance > RECLAIM_DISTANCE)
2283			zone_reclaim_mode = 1;
2284
2285		/*
2286		 * We don't want to pressure a particular node.
2287		 * So adding penalty to the first node in same
2288		 * distance group to make it round-robin.
2289		 */
2290		if (distance != node_distance(local_node, prev_node))
2291			node_load[node] = load;
2292
2293		prev_node = node;
2294		load--;
2295		if (order == ZONELIST_ORDER_NODE)
2296			build_zonelists_in_node_order(pgdat, node);
2297		else
2298			node_order[j++] = node;	/* remember order */
2299	}
2300
2301	if (order == ZONELIST_ORDER_ZONE) {
2302		/* calculate node order -- i.e., DMA last! */
2303		build_zonelists_in_zone_order(pgdat, j);
2304	}
2305
2306	build_thisnode_zonelists(pgdat);
2307}
2308
2309/* Construct the zonelist performance cache - see further mmzone.h */
2310static void build_zonelist_cache(pg_data_t *pgdat)
2311{
2312	struct zonelist *zonelist;
2313	struct zonelist_cache *zlc;
2314	struct zoneref *z;
2315
2316	zonelist = &pgdat->node_zonelists[0];
2317	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2318	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2319	for (z = zonelist->_zonerefs; z->zone; z++)
2320		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2321}
2322
2323
2324#else	/* CONFIG_NUMA */
2325
2326static void set_zonelist_order(void)
2327{
2328	current_zonelist_order = ZONELIST_ORDER_ZONE;
2329}
2330
2331static void build_zonelists(pg_data_t *pgdat)
2332{
2333	int node, local_node;
2334	enum zone_type j;
2335	struct zonelist *zonelist;
2336
2337	local_node = pgdat->node_id;
2338
2339	zonelist = &pgdat->node_zonelists[0];
2340	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2341
2342	/*
2343	 * Now we build the zonelist so that it contains the zones
2344	 * of all the other nodes.
2345	 * We don't want to pressure a particular node, so when
2346	 * building the zones for node N, we make sure that the
2347	 * zones coming right after the local ones are those from
2348	 * node N+1 (modulo N)
2349	 */
2350	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2351		if (!node_online(node))
2352			continue;
2353		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2354							MAX_NR_ZONES - 1);
2355	}
2356	for (node = 0; node < local_node; node++) {
2357		if (!node_online(node))
2358			continue;
2359		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2360							MAX_NR_ZONES - 1);
2361	}
2362
2363	zonelist->_zonerefs[j].zone = NULL;
2364	zonelist->_zonerefs[j].zone_idx = 0;
2365}
2366
2367/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2368static void build_zonelist_cache(pg_data_t *pgdat)
2369{
2370	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2371}
2372
2373#endif	/* CONFIG_NUMA */
2374
2375/* return values int ....just for stop_machine() */
2376static int __build_all_zonelists(void *dummy)
2377{
2378	int nid;
2379
2380	for_each_online_node(nid) {
2381		pg_data_t *pgdat = NODE_DATA(nid);
2382
2383		build_zonelists(pgdat);
2384		build_zonelist_cache(pgdat);
2385	}
2386	return 0;
2387}
2388
2389void build_all_zonelists(void)
2390{
2391	set_zonelist_order();
2392
2393	if (system_state == SYSTEM_BOOTING) {
2394		__build_all_zonelists(NULL);
2395		mminit_verify_zonelist();
2396		cpuset_init_current_mems_allowed();
2397	} else {
2398		/* we have to stop all cpus to guarantee there is no user
2399		   of zonelist */
2400		stop_machine(__build_all_zonelists, NULL, NULL);
2401		/* cpuset refresh routine should be here */
2402	}
2403	vm_total_pages = nr_free_pagecache_pages();
2404	/*
2405	 * Disable grouping by mobility if the number of pages in the
2406	 * system is too low to allow the mechanism to work. It would be
2407	 * more accurate, but expensive to check per-zone. This check is
2408	 * made on memory-hotadd so a system can start with mobility
2409	 * disabled and enable it later
2410	 */
2411	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2412		page_group_by_mobility_disabled = 1;
2413	else
2414		page_group_by_mobility_disabled = 0;
2415
2416	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2417		"Total pages: %ld\n",
2418			num_online_nodes(),
2419			zonelist_order_name[current_zonelist_order],
2420			page_group_by_mobility_disabled ? "off" : "on",
2421			vm_total_pages);
2422#ifdef CONFIG_NUMA
2423	printk("Policy zone: %s\n", zone_names[policy_zone]);
2424#endif
2425}
2426
2427/*
2428 * Helper functions to size the waitqueue hash table.
2429 * Essentially these want to choose hash table sizes sufficiently
2430 * large so that collisions trying to wait on pages are rare.
2431 * But in fact, the number of active page waitqueues on typical
2432 * systems is ridiculously low, less than 200. So this is even
2433 * conservative, even though it seems large.
2434 *
2435 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2436 * waitqueues, i.e. the size of the waitq table given the number of pages.
2437 */
2438#define PAGES_PER_WAITQUEUE	256
2439
2440#ifndef CONFIG_MEMORY_HOTPLUG
2441static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2442{
2443	unsigned long size = 1;
2444
2445	pages /= PAGES_PER_WAITQUEUE;
2446
2447	while (size < pages)
2448		size <<= 1;
2449
2450	/*
2451	 * Once we have dozens or even hundreds of threads sleeping
2452	 * on IO we've got bigger problems than wait queue collision.
2453	 * Limit the size of the wait table to a reasonable size.
2454	 */
2455	size = min(size, 4096UL);
2456
2457	return max(size, 4UL);
2458}
2459#else
2460/*
2461 * A zone's size might be changed by hot-add, so it is not possible to determine
2462 * a suitable size for its wait_table.  So we use the maximum size now.
2463 *
2464 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2465 *
2466 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2467 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2468 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2469 *
2470 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2471 * or more by the traditional way. (See above).  It equals:
2472 *
2473 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2474 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2475 *    powerpc (64K page size)             : =  (32G +16M)byte.
2476 */
2477static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2478{
2479	return 4096UL;
2480}
2481#endif
2482
2483/*
2484 * This is an integer logarithm so that shifts can be used later
2485 * to extract the more random high bits from the multiplicative
2486 * hash function before the remainder is taken.
2487 */
2488static inline unsigned long wait_table_bits(unsigned long size)
2489{
2490	return ffz(~size);
2491}
2492
2493#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2494
2495/*
2496 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2497 * of blocks reserved is based on zone->pages_min. The memory within the
2498 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2499 * higher will lead to a bigger reserve which will get freed as contiguous
2500 * blocks as reclaim kicks in
2501 */
2502static void setup_zone_migrate_reserve(struct zone *zone)
2503{
2504	unsigned long start_pfn, pfn, end_pfn;
2505	struct page *page;
2506	unsigned long reserve, block_migratetype;
2507
2508	/* Get the start pfn, end pfn and the number of blocks to reserve */
2509	start_pfn = zone->zone_start_pfn;
2510	end_pfn = start_pfn + zone->spanned_pages;
2511	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2512							pageblock_order;
2513
2514	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2515		if (!pfn_valid(pfn))
2516			continue;
2517		page = pfn_to_page(pfn);
2518
2519		/* Blocks with reserved pages will never free, skip them. */
2520		if (PageReserved(page))
2521			continue;
2522
2523		block_migratetype = get_pageblock_migratetype(page);
2524
2525		/* If this block is reserved, account for it */
2526		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2527			reserve--;
2528			continue;
2529		}
2530
2531		/* Suitable for reserving if this block is movable */
2532		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2533			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2534			move_freepages_block(zone, page, MIGRATE_RESERVE);
2535			reserve--;
2536			continue;
2537		}
2538
2539		/*
2540		 * If the reserve is met and this is a previous reserved block,
2541		 * take it back
2542		 */
2543		if (block_migratetype == MIGRATE_RESERVE) {
2544			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2545			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2546		}
2547	}
2548}
2549
2550/*
2551 * Initially all pages are reserved - free ones are freed
2552 * up by free_all_bootmem() once the early boot process is
2553 * done. Non-atomic initialization, single-pass.
2554 */
2555void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2556		unsigned long start_pfn, enum memmap_context context)
2557{
2558	struct page *page;
2559	unsigned long end_pfn = start_pfn + size;
2560	unsigned long pfn;
2561	struct zone *z;
2562
2563	z = &NODE_DATA(nid)->node_zones[zone];
2564	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2565		/*
2566		 * There can be holes in boot-time mem_map[]s
2567		 * handed to this function.  They do not
2568		 * exist on hotplugged memory.
2569		 */
2570		if (context == MEMMAP_EARLY) {
2571			if (!early_pfn_valid(pfn))
2572				continue;
2573			if (!early_pfn_in_nid(pfn, nid))
2574				continue;
2575		}
2576		page = pfn_to_page(pfn);
2577		set_page_links(page, zone, nid, pfn);
2578		mminit_verify_page_links(page, zone, nid, pfn);
2579		init_page_count(page);
2580		reset_page_mapcount(page);
2581		SetPageReserved(page);
2582		/*
2583		 * Mark the block movable so that blocks are reserved for
2584		 * movable at startup. This will force kernel allocations
2585		 * to reserve their blocks rather than leaking throughout
2586		 * the address space during boot when many long-lived
2587		 * kernel allocations are made. Later some blocks near
2588		 * the start are marked MIGRATE_RESERVE by
2589		 * setup_zone_migrate_reserve()
2590		 *
2591		 * bitmap is created for zone's valid pfn range. but memmap
2592		 * can be created for invalid pages (for alignment)
2593		 * check here not to call set_pageblock_migratetype() against
2594		 * pfn out of zone.
2595		 */
2596		if ((z->zone_start_pfn <= pfn)
2597		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2598		    && !(pfn & (pageblock_nr_pages - 1)))
2599			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2600
2601		INIT_LIST_HEAD(&page->lru);
2602#ifdef WANT_PAGE_VIRTUAL
2603		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2604		if (!is_highmem_idx(zone))
2605			set_page_address(page, __va(pfn << PAGE_SHIFT));
2606#endif
2607	}
2608}
2609
2610static void __meminit zone_init_free_lists(struct zone *zone)
2611{
2612	int order, t;
2613	for_each_migratetype_order(order, t) {
2614		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2615		zone->free_area[order].nr_free = 0;
2616	}
2617}
2618
2619#ifndef __HAVE_ARCH_MEMMAP_INIT
2620#define memmap_init(size, nid, zone, start_pfn) \
2621	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2622#endif
2623
2624static int zone_batchsize(struct zone *zone)
2625{
2626	int batch;
2627
2628	/*
2629	 * The per-cpu-pages pools are set to around 1000th of the
2630	 * size of the zone.  But no more than 1/2 of a meg.
2631	 *
2632	 * OK, so we don't know how big the cache is.  So guess.
2633	 */
2634	batch = zone->present_pages / 1024;
2635	if (batch * PAGE_SIZE > 512 * 1024)
2636		batch = (512 * 1024) / PAGE_SIZE;
2637	batch /= 4;		/* We effectively *= 4 below */
2638	if (batch < 1)
2639		batch = 1;
2640
2641	/*
2642	 * Clamp the batch to a 2^n - 1 value. Having a power
2643	 * of 2 value was found to be more likely to have
2644	 * suboptimal cache aliasing properties in some cases.
2645	 *
2646	 * For example if 2 tasks are alternately allocating
2647	 * batches of pages, one task can end up with a lot
2648	 * of pages of one half of the possible page colors
2649	 * and the other with pages of the other colors.
2650	 */
2651	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2652
2653	return batch;
2654}
2655
2656static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2657{
2658	struct per_cpu_pages *pcp;
2659
2660	memset(p, 0, sizeof(*p));
2661
2662	pcp = &p->pcp;
2663	pcp->count = 0;
2664	pcp->high = 6 * batch;
2665	pcp->batch = max(1UL, 1 * batch);
2666	INIT_LIST_HEAD(&pcp->list);
2667}
2668
2669/*
2670 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2671 * to the value high for the pageset p.
2672 */
2673
2674static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2675				unsigned long high)
2676{
2677	struct per_cpu_pages *pcp;
2678
2679	pcp = &p->pcp;
2680	pcp->high = high;
2681	pcp->batch = max(1UL, high/4);
2682	if ((high/4) > (PAGE_SHIFT * 8))
2683		pcp->batch = PAGE_SHIFT * 8;
2684}
2685
2686
2687#ifdef CONFIG_NUMA
2688/*
2689 * Boot pageset table. One per cpu which is going to be used for all
2690 * zones and all nodes. The parameters will be set in such a way
2691 * that an item put on a list will immediately be handed over to
2692 * the buddy list. This is safe since pageset manipulation is done
2693 * with interrupts disabled.
2694 *
2695 * Some NUMA counter updates may also be caught by the boot pagesets.
2696 *
2697 * The boot_pagesets must be kept even after bootup is complete for
2698 * unused processors and/or zones. They do play a role for bootstrapping
2699 * hotplugged processors.
2700 *
2701 * zoneinfo_show() and maybe other functions do
2702 * not check if the processor is online before following the pageset pointer.
2703 * Other parts of the kernel may not check if the zone is available.
2704 */
2705static struct per_cpu_pageset boot_pageset[NR_CPUS];
2706
2707/*
2708 * Dynamically allocate memory for the
2709 * per cpu pageset array in struct zone.
2710 */
2711static int __cpuinit process_zones(int cpu)
2712{
2713	struct zone *zone, *dzone;
2714	int node = cpu_to_node(cpu);
2715
2716	node_set_state(node, N_CPU);	/* this node has a cpu */
2717
2718	for_each_zone(zone) {
2719
2720		if (!populated_zone(zone))
2721			continue;
2722
2723		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2724					 GFP_KERNEL, node);
2725		if (!zone_pcp(zone, cpu))
2726			goto bad;
2727
2728		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2729
2730		if (percpu_pagelist_fraction)
2731			setup_pagelist_highmark(zone_pcp(zone, cpu),
2732			 	(zone->present_pages / percpu_pagelist_fraction));
2733	}
2734
2735	return 0;
2736bad:
2737	for_each_zone(dzone) {
2738		if (!populated_zone(dzone))
2739			continue;
2740		if (dzone == zone)
2741			break;
2742		kfree(zone_pcp(dzone, cpu));
2743		zone_pcp(dzone, cpu) = NULL;
2744	}
2745	return -ENOMEM;
2746}
2747
2748static inline void free_zone_pagesets(int cpu)
2749{
2750	struct zone *zone;
2751
2752	for_each_zone(zone) {
2753		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2754
2755		/* Free per_cpu_pageset if it is slab allocated */
2756		if (pset != &boot_pageset[cpu])
2757			kfree(pset);
2758		zone_pcp(zone, cpu) = NULL;
2759	}
2760}
2761
2762static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2763		unsigned long action,
2764		void *hcpu)
2765{
2766	int cpu = (long)hcpu;
2767	int ret = NOTIFY_OK;
2768
2769	switch (action) {
2770	case CPU_UP_PREPARE:
2771	case CPU_UP_PREPARE_FROZEN:
2772		if (process_zones(cpu))
2773			ret = NOTIFY_BAD;
2774		break;
2775	case CPU_UP_CANCELED:
2776	case CPU_UP_CANCELED_FROZEN:
2777	case CPU_DEAD:
2778	case CPU_DEAD_FROZEN:
2779		free_zone_pagesets(cpu);
2780		break;
2781	default:
2782		break;
2783	}
2784	return ret;
2785}
2786
2787static struct notifier_block __cpuinitdata pageset_notifier =
2788	{ &pageset_cpuup_callback, NULL, 0 };
2789
2790void __init setup_per_cpu_pageset(void)
2791{
2792	int err;
2793
2794	/* Initialize per_cpu_pageset for cpu 0.
2795	 * A cpuup callback will do this for every cpu
2796	 * as it comes online
2797	 */
2798	err = process_zones(smp_processor_id());
2799	BUG_ON(err);
2800	register_cpu_notifier(&pageset_notifier);
2801}
2802
2803#endif
2804
2805static noinline __init_refok
2806int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2807{
2808	int i;
2809	struct pglist_data *pgdat = zone->zone_pgdat;
2810	size_t alloc_size;
2811
2812	/*
2813	 * The per-page waitqueue mechanism uses hashed waitqueues
2814	 * per zone.
2815	 */
2816	zone->wait_table_hash_nr_entries =
2817		 wait_table_hash_nr_entries(zone_size_pages);
2818	zone->wait_table_bits =
2819		wait_table_bits(zone->wait_table_hash_nr_entries);
2820	alloc_size = zone->wait_table_hash_nr_entries
2821					* sizeof(wait_queue_head_t);
2822
2823	if (!slab_is_available()) {
2824		zone->wait_table = (wait_queue_head_t *)
2825			alloc_bootmem_node(pgdat, alloc_size);
2826	} else {
2827		/*
2828		 * This case means that a zone whose size was 0 gets new memory
2829		 * via memory hot-add.
2830		 * But it may be the case that a new node was hot-added.  In
2831		 * this case vmalloc() will not be able to use this new node's
2832		 * memory - this wait_table must be initialized to use this new
2833		 * node itself as well.
2834		 * To use this new node's memory, further consideration will be
2835		 * necessary.
2836		 */
2837		zone->wait_table = vmalloc(alloc_size);
2838	}
2839	if (!zone->wait_table)
2840		return -ENOMEM;
2841
2842	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2843		init_waitqueue_head(zone->wait_table + i);
2844
2845	return 0;
2846}
2847
2848static __meminit void zone_pcp_init(struct zone *zone)
2849{
2850	int cpu;
2851	unsigned long batch = zone_batchsize(zone);
2852
2853	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2854#ifdef CONFIG_NUMA
2855		/* Early boot. Slab allocator not functional yet */
2856		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2857		setup_pageset(&boot_pageset[cpu],0);
2858#else
2859		setup_pageset(zone_pcp(zone,cpu), batch);
2860#endif
2861	}
2862	if (zone->present_pages)
2863		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2864			zone->name, zone->present_pages, batch);
2865}
2866
2867__meminit int init_currently_empty_zone(struct zone *zone,
2868					unsigned long zone_start_pfn,
2869					unsigned long size,
2870					enum memmap_context context)
2871{
2872	struct pglist_data *pgdat = zone->zone_pgdat;
2873	int ret;
2874	ret = zone_wait_table_init(zone, size);
2875	if (ret)
2876		return ret;
2877	pgdat->nr_zones = zone_idx(zone) + 1;
2878
2879	zone->zone_start_pfn = zone_start_pfn;
2880
2881	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2882			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2883			pgdat->node_id,
2884			(unsigned long)zone_idx(zone),
2885			zone_start_pfn, (zone_start_pfn + size));
2886
2887	zone_init_free_lists(zone);
2888
2889	return 0;
2890}
2891
2892#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2893/*
2894 * Basic iterator support. Return the first range of PFNs for a node
2895 * Note: nid == MAX_NUMNODES returns first region regardless of node
2896 */
2897static int __meminit first_active_region_index_in_nid(int nid)
2898{
2899	int i;
2900
2901	for (i = 0; i < nr_nodemap_entries; i++)
2902		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2903			return i;
2904
2905	return -1;
2906}
2907
2908/*
2909 * Basic iterator support. Return the next active range of PFNs for a node
2910 * Note: nid == MAX_NUMNODES returns next region regardless of node
2911 */
2912static int __meminit next_active_region_index_in_nid(int index, int nid)
2913{
2914	for (index = index + 1; index < nr_nodemap_entries; index++)
2915		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2916			return index;
2917
2918	return -1;
2919}
2920
2921#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2922/*
2923 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2924 * Architectures may implement their own version but if add_active_range()
2925 * was used and there are no special requirements, this is a convenient
2926 * alternative
2927 */
2928int __meminit early_pfn_to_nid(unsigned long pfn)
2929{
2930	int i;
2931
2932	for (i = 0; i < nr_nodemap_entries; i++) {
2933		unsigned long start_pfn = early_node_map[i].start_pfn;
2934		unsigned long end_pfn = early_node_map[i].end_pfn;
2935
2936		if (start_pfn <= pfn && pfn < end_pfn)
2937			return early_node_map[i].nid;
2938	}
2939
2940	return 0;
2941}
2942#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2943
2944/* Basic iterator support to walk early_node_map[] */
2945#define for_each_active_range_index_in_nid(i, nid) \
2946	for (i = first_active_region_index_in_nid(nid); i != -1; \
2947				i = next_active_region_index_in_nid(i, nid))
2948
2949/**
2950 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2951 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2952 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2953 *
2954 * If an architecture guarantees that all ranges registered with
2955 * add_active_ranges() contain no holes and may be freed, this
2956 * this function may be used instead of calling free_bootmem() manually.
2957 */
2958void __init free_bootmem_with_active_regions(int nid,
2959						unsigned long max_low_pfn)
2960{
2961	int i;
2962
2963	for_each_active_range_index_in_nid(i, nid) {
2964		unsigned long size_pages = 0;
2965		unsigned long end_pfn = early_node_map[i].end_pfn;
2966
2967		if (early_node_map[i].start_pfn >= max_low_pfn)
2968			continue;
2969
2970		if (end_pfn > max_low_pfn)
2971			end_pfn = max_low_pfn;
2972
2973		size_pages = end_pfn - early_node_map[i].start_pfn;
2974		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2975				PFN_PHYS(early_node_map[i].start_pfn),
2976				size_pages << PAGE_SHIFT);
2977	}
2978}
2979
2980void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2981{
2982	int i;
2983	int ret;
2984
2985	for_each_active_range_index_in_nid(i, nid) {
2986		ret = work_fn(early_node_map[i].start_pfn,
2987			      early_node_map[i].end_pfn, data);
2988		if (ret)
2989			break;
2990	}
2991}
2992/**
2993 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2994 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2995 *
2996 * If an architecture guarantees that all ranges registered with
2997 * add_active_ranges() contain no holes and may be freed, this
2998 * function may be used instead of calling memory_present() manually.
2999 */
3000void __init sparse_memory_present_with_active_regions(int nid)
3001{
3002	int i;
3003
3004	for_each_active_range_index_in_nid(i, nid)
3005		memory_present(early_node_map[i].nid,
3006				early_node_map[i].start_pfn,
3007				early_node_map[i].end_pfn);
3008}
3009
3010/**
3011 * push_node_boundaries - Push node boundaries to at least the requested boundary
3012 * @nid: The nid of the node to push the boundary for
3013 * @start_pfn: The start pfn of the node
3014 * @end_pfn: The end pfn of the node
3015 *
3016 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3017 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3018 * be hotplugged even though no physical memory exists. This function allows
3019 * an arch to push out the node boundaries so mem_map is allocated that can
3020 * be used later.
3021 */
3022#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3023void __init push_node_boundaries(unsigned int nid,
3024		unsigned long start_pfn, unsigned long end_pfn)
3025{
3026	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3027			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3028			nid, start_pfn, end_pfn);
3029
3030	/* Initialise the boundary for this node if necessary */
3031	if (node_boundary_end_pfn[nid] == 0)
3032		node_boundary_start_pfn[nid] = -1UL;
3033
3034	/* Update the boundaries */
3035	if (node_boundary_start_pfn[nid] > start_pfn)
3036		node_boundary_start_pfn[nid] = start_pfn;
3037	if (node_boundary_end_pfn[nid] < end_pfn)
3038		node_boundary_end_pfn[nid] = end_pfn;
3039}
3040
3041/* If necessary, push the node boundary out for reserve hotadd */
3042static void __meminit account_node_boundary(unsigned int nid,
3043		unsigned long *start_pfn, unsigned long *end_pfn)
3044{
3045	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3046			"Entering account_node_boundary(%u, %lu, %lu)\n",
3047			nid, *start_pfn, *end_pfn);
3048
3049	/* Return if boundary information has not been provided */
3050	if (node_boundary_end_pfn[nid] == 0)
3051		return;
3052
3053	/* Check the boundaries and update if necessary */
3054	if (node_boundary_start_pfn[nid] < *start_pfn)
3055		*start_pfn = node_boundary_start_pfn[nid];
3056	if (node_boundary_end_pfn[nid] > *end_pfn)
3057		*end_pfn = node_boundary_end_pfn[nid];
3058}
3059#else
3060void __init push_node_boundaries(unsigned int nid,
3061		unsigned long start_pfn, unsigned long end_pfn) {}
3062
3063static void __meminit account_node_boundary(unsigned int nid,
3064		unsigned long *start_pfn, unsigned long *end_pfn) {}
3065#endif
3066
3067
3068/**
3069 * get_pfn_range_for_nid - Return the start and end page frames for a node
3070 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3071 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3072 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3073 *
3074 * It returns the start and end page frame of a node based on information
3075 * provided by an arch calling add_active_range(). If called for a node
3076 * with no available memory, a warning is printed and the start and end
3077 * PFNs will be 0.
3078 */
3079void __meminit get_pfn_range_for_nid(unsigned int nid,
3080			unsigned long *start_pfn, unsigned long *end_pfn)
3081{
3082	int i;
3083	*start_pfn = -1UL;
3084	*end_pfn = 0;
3085
3086	for_each_active_range_index_in_nid(i, nid) {
3087		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3088		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3089	}
3090
3091	if (*start_pfn == -1UL)
3092		*start_pfn = 0;
3093
3094	/* Push the node boundaries out if requested */
3095	account_node_boundary(nid, start_pfn, end_pfn);
3096}
3097
3098/*
3099 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3100 * assumption is made that zones within a node are ordered in monotonic
3101 * increasing memory addresses so that the "highest" populated zone is used
3102 */
3103static void __init find_usable_zone_for_movable(void)
3104{
3105	int zone_index;
3106	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3107		if (zone_index == ZONE_MOVABLE)
3108			continue;
3109
3110		if (arch_zone_highest_possible_pfn[zone_index] >
3111				arch_zone_lowest_possible_pfn[zone_index])
3112			break;
3113	}
3114
3115	VM_BUG_ON(zone_index == -1);
3116	movable_zone = zone_index;
3117}
3118
3119/*
3120 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3121 * because it is sized independant of architecture. Unlike the other zones,
3122 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3123 * in each node depending on the size of each node and how evenly kernelcore
3124 * is distributed. This helper function adjusts the zone ranges
3125 * provided by the architecture for a given node by using the end of the
3126 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3127 * zones within a node are in order of monotonic increases memory addresses
3128 */
3129static void __meminit adjust_zone_range_for_zone_movable(int nid,
3130					unsigned long zone_type,
3131					unsigned long node_start_pfn,
3132					unsigned long node_end_pfn,
3133					unsigned long *zone_start_pfn,
3134					unsigned long *zone_end_pfn)
3135{
3136	/* Only adjust if ZONE_MOVABLE is on this node */
3137	if (zone_movable_pfn[nid]) {
3138		/* Size ZONE_MOVABLE */
3139		if (zone_type == ZONE_MOVABLE) {
3140			*zone_start_pfn = zone_movable_pfn[nid];
3141			*zone_end_pfn = min(node_end_pfn,
3142				arch_zone_highest_possible_pfn[movable_zone]);
3143
3144		/* Adjust for ZONE_MOVABLE starting within this range */
3145		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3146				*zone_end_pfn > zone_movable_pfn[nid]) {
3147			*zone_end_pfn = zone_movable_pfn[nid];
3148
3149		/* Check if this whole range is within ZONE_MOVABLE */
3150		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3151			*zone_start_pfn = *zone_end_pfn;
3152	}
3153}
3154
3155/*
3156 * Return the number of pages a zone spans in a node, including holes
3157 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3158 */
3159static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3160					unsigned long zone_type,
3161					unsigned long *ignored)
3162{
3163	unsigned long node_start_pfn, node_end_pfn;
3164	unsigned long zone_start_pfn, zone_end_pfn;
3165
3166	/* Get the start and end of the node and zone */
3167	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3168	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3169	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3170	adjust_zone_range_for_zone_movable(nid, zone_type,
3171				node_start_pfn, node_end_pfn,
3172				&zone_start_pfn, &zone_end_pfn);
3173
3174	/* Check that this node has pages within the zone's required range */
3175	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3176		return 0;
3177
3178	/* Move the zone boundaries inside the node if necessary */
3179	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3180	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3181
3182	/* Return the spanned pages */
3183	return zone_end_pfn - zone_start_pfn;
3184}
3185
3186/*
3187 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3188 * then all holes in the requested range will be accounted for.
3189 */
3190static unsigned long __meminit __absent_pages_in_range(int nid,
3191				unsigned long range_start_pfn,
3192				unsigned long range_end_pfn)
3193{
3194	int i = 0;
3195	unsigned long prev_end_pfn = 0, hole_pages = 0;
3196	unsigned long start_pfn;
3197
3198	/* Find the end_pfn of the first active range of pfns in the node */
3199	i = first_active_region_index_in_nid(nid);
3200	if (i == -1)
3201		return 0;
3202
3203	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3204
3205	/* Account for ranges before physical memory on this node */
3206	if (early_node_map[i].start_pfn > range_start_pfn)
3207		hole_pages = prev_end_pfn - range_start_pfn;
3208
3209	/* Find all holes for the zone within the node */
3210	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3211
3212		/* No need to continue if prev_end_pfn is outside the zone */
3213		if (prev_end_pfn >= range_end_pfn)
3214			break;
3215
3216		/* Make sure the end of the zone is not within the hole */
3217		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3218		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3219
3220		/* Update the hole size cound and move on */
3221		if (start_pfn > range_start_pfn) {
3222			BUG_ON(prev_end_pfn > start_pfn);
3223			hole_pages += start_pfn - prev_end_pfn;
3224		}
3225		prev_end_pfn = early_node_map[i].end_pfn;
3226	}
3227
3228	/* Account for ranges past physical memory on this node */
3229	if (range_end_pfn > prev_end_pfn)
3230		hole_pages += range_end_pfn -
3231				max(range_start_pfn, prev_end_pfn);
3232
3233	return hole_pages;
3234}
3235
3236/**
3237 * absent_pages_in_range - Return number of page frames in holes within a range
3238 * @start_pfn: The start PFN to start searching for holes
3239 * @end_pfn: The end PFN to stop searching for holes
3240 *
3241 * It returns the number of pages frames in memory holes within a range.
3242 */
3243unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3244							unsigned long end_pfn)
3245{
3246	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3247}
3248
3249/* Return the number of page frames in holes in a zone on a node */
3250static unsigned long __meminit zone_absent_pages_in_node(int nid,
3251					unsigned long zone_type,
3252					unsigned long *ignored)
3253{
3254	unsigned long node_start_pfn, node_end_pfn;
3255	unsigned long zone_start_pfn, zone_end_pfn;
3256
3257	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3258	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3259							node_start_pfn);
3260	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3261							node_end_pfn);
3262
3263	adjust_zone_range_for_zone_movable(nid, zone_type,
3264			node_start_pfn, node_end_pfn,
3265			&zone_start_pfn, &zone_end_pfn);
3266	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3267}
3268
3269#else
3270static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3271					unsigned long zone_type,
3272					unsigned long *zones_size)
3273{
3274	return zones_size[zone_type];
3275}
3276
3277static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3278						unsigned long zone_type,
3279						unsigned long *zholes_size)
3280{
3281	if (!zholes_size)
3282		return 0;
3283
3284	return zholes_size[zone_type];
3285}
3286
3287#endif
3288
3289static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3290		unsigned long *zones_size, unsigned long *zholes_size)
3291{
3292	unsigned long realtotalpages, totalpages = 0;
3293	enum zone_type i;
3294
3295	for (i = 0; i < MAX_NR_ZONES; i++)
3296		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3297								zones_size);
3298	pgdat->node_spanned_pages = totalpages;
3299
3300	realtotalpages = totalpages;
3301	for (i = 0; i < MAX_NR_ZONES; i++)
3302		realtotalpages -=
3303			zone_absent_pages_in_node(pgdat->node_id, i,
3304								zholes_size);
3305	pgdat->node_present_pages = realtotalpages;
3306	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3307							realtotalpages);
3308}
3309
3310#ifndef CONFIG_SPARSEMEM
3311/*
3312 * Calculate the size of the zone->blockflags rounded to an unsigned long
3313 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3314 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3315 * round what is now in bits to nearest long in bits, then return it in
3316 * bytes.
3317 */
3318static unsigned long __init usemap_size(unsigned long zonesize)
3319{
3320	unsigned long usemapsize;
3321
3322	usemapsize = roundup(zonesize, pageblock_nr_pages);
3323	usemapsize = usemapsize >> pageblock_order;
3324	usemapsize *= NR_PAGEBLOCK_BITS;
3325	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3326
3327	return usemapsize / 8;
3328}
3329
3330static void __init setup_usemap(struct pglist_data *pgdat,
3331				struct zone *zone, unsigned long zonesize)
3332{
3333	unsigned long usemapsize = usemap_size(zonesize);
3334	zone->pageblock_flags = NULL;
3335	if (usemapsize) {
3336		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3337		memset(zone->pageblock_flags, 0, usemapsize);
3338	}
3339}
3340#else
3341static void inline setup_usemap(struct pglist_data *pgdat,
3342				struct zone *zone, unsigned long zonesize) {}
3343#endif /* CONFIG_SPARSEMEM */
3344
3345#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3346
3347/* Return a sensible default order for the pageblock size. */
3348static inline int pageblock_default_order(void)
3349{
3350	if (HPAGE_SHIFT > PAGE_SHIFT)
3351		return HUGETLB_PAGE_ORDER;
3352
3353	return MAX_ORDER-1;
3354}
3355
3356/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3357static inline void __init set_pageblock_order(unsigned int order)
3358{
3359	/* Check that pageblock_nr_pages has not already been setup */
3360	if (pageblock_order)
3361		return;
3362
3363	/*
3364	 * Assume the largest contiguous order of interest is a huge page.
3365	 * This value may be variable depending on boot parameters on IA64
3366	 */
3367	pageblock_order = order;
3368}
3369#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3370
3371/*
3372 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3373 * and pageblock_default_order() are unused as pageblock_order is set
3374 * at compile-time. See include/linux/pageblock-flags.h for the values of
3375 * pageblock_order based on the kernel config
3376 */
3377static inline int pageblock_default_order(unsigned int order)
3378{
3379	return MAX_ORDER-1;
3380}
3381#define set_pageblock_order(x)	do {} while (0)
3382
3383#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3384
3385/*
3386 * Set up the zone data structures:
3387 *   - mark all pages reserved
3388 *   - mark all memory queues empty
3389 *   - clear the memory bitmaps
3390 */
3391static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3392		unsigned long *zones_size, unsigned long *zholes_size)
3393{
3394	enum zone_type j;
3395	int nid = pgdat->node_id;
3396	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3397	int ret;
3398
3399	pgdat_resize_init(pgdat);
3400	pgdat->nr_zones = 0;
3401	init_waitqueue_head(&pgdat->kswapd_wait);
3402	pgdat->kswapd_max_order = 0;
3403
3404	for (j = 0; j < MAX_NR_ZONES; j++) {
3405		struct zone *zone = pgdat->node_zones + j;
3406		unsigned long size, realsize, memmap_pages;
3407
3408		size = zone_spanned_pages_in_node(nid, j, zones_size);
3409		realsize = size - zone_absent_pages_in_node(nid, j,
3410								zholes_size);
3411
3412		/*
3413		 * Adjust realsize so that it accounts for how much memory
3414		 * is used by this zone for memmap. This affects the watermark
3415		 * and per-cpu initialisations
3416		 */
3417		memmap_pages =
3418			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3419		if (realsize >= memmap_pages) {
3420			realsize -= memmap_pages;
3421			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3422				"%s zone: %lu pages used for memmap\n",
3423				zone_names[j], memmap_pages);
3424		} else
3425			printk(KERN_WARNING
3426				"  %s zone: %lu pages exceeds realsize %lu\n",
3427				zone_names[j], memmap_pages, realsize);
3428
3429		/* Account for reserved pages */
3430		if (j == 0 && realsize > dma_reserve) {
3431			realsize -= dma_reserve;
3432			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3433					"%s zone: %lu pages reserved\n",
3434					zone_names[0], dma_reserve);
3435		}
3436
3437		if (!is_highmem_idx(j))
3438			nr_kernel_pages += realsize;
3439		nr_all_pages += realsize;
3440
3441		zone->spanned_pages = size;
3442		zone->present_pages = realsize;
3443#ifdef CONFIG_NUMA
3444		zone->node = nid;
3445		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3446						/ 100;
3447		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3448#endif
3449		zone->name = zone_names[j];
3450		spin_lock_init(&zone->lock);
3451		spin_lock_init(&zone->lru_lock);
3452		zone_seqlock_init(zone);
3453		zone->zone_pgdat = pgdat;
3454
3455		zone->prev_priority = DEF_PRIORITY;
3456
3457		zone_pcp_init(zone);
3458		INIT_LIST_HEAD(&zone->active_list);
3459		INIT_LIST_HEAD(&zone->inactive_list);
3460		zone->nr_scan_active = 0;
3461		zone->nr_scan_inactive = 0;
3462		zap_zone_vm_stats(zone);
3463		zone->flags = 0;
3464		if (!size)
3465			continue;
3466
3467		set_pageblock_order(pageblock_default_order());
3468		setup_usemap(pgdat, zone, size);
3469		ret = init_currently_empty_zone(zone, zone_start_pfn,
3470						size, MEMMAP_EARLY);
3471		BUG_ON(ret);
3472		memmap_init(size, nid, j, zone_start_pfn);
3473		zone_start_pfn += size;
3474	}
3475}
3476
3477static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3478{
3479	/* Skip empty nodes */
3480	if (!pgdat->node_spanned_pages)
3481		return;
3482
3483#ifdef CONFIG_FLAT_NODE_MEM_MAP
3484	/* ia64 gets its own node_mem_map, before this, without bootmem */
3485	if (!pgdat->node_mem_map) {
3486		unsigned long size, start, end;
3487		struct page *map;
3488
3489		/*
3490		 * The zone's endpoints aren't required to be MAX_ORDER
3491		 * aligned but the node_mem_map endpoints must be in order
3492		 * for the buddy allocator to function correctly.
3493		 */
3494		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3495		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3496		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3497		size =  (end - start) * sizeof(struct page);
3498		map = alloc_remap(pgdat->node_id, size);
3499		if (!map)
3500			map = alloc_bootmem_node(pgdat, size);
3501		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3502	}
3503#ifndef CONFIG_NEED_MULTIPLE_NODES
3504	/*
3505	 * With no DISCONTIG, the global mem_map is just set as node 0's
3506	 */
3507	if (pgdat == NODE_DATA(0)) {
3508		mem_map = NODE_DATA(0)->node_mem_map;
3509#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3510		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3511			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3512#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3513	}
3514#endif
3515#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3516}
3517
3518void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3519		unsigned long node_start_pfn, unsigned long *zholes_size)
3520{
3521	pg_data_t *pgdat = NODE_DATA(nid);
3522
3523	pgdat->node_id = nid;
3524	pgdat->node_start_pfn = node_start_pfn;
3525	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3526
3527	alloc_node_mem_map(pgdat);
3528#ifdef CONFIG_FLAT_NODE_MEM_MAP
3529	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3530		nid, (unsigned long)pgdat,
3531		(unsigned long)pgdat->node_mem_map);
3532#endif
3533
3534	free_area_init_core(pgdat, zones_size, zholes_size);
3535}
3536
3537#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3538
3539#if MAX_NUMNODES > 1
3540/*
3541 * Figure out the number of possible node ids.
3542 */
3543static void __init setup_nr_node_ids(void)
3544{
3545	unsigned int node;
3546	unsigned int highest = 0;
3547
3548	for_each_node_mask(node, node_possible_map)
3549		highest = node;
3550	nr_node_ids = highest + 1;
3551}
3552#else
3553static inline void setup_nr_node_ids(void)
3554{
3555}
3556#endif
3557
3558/**
3559 * add_active_range - Register a range of PFNs backed by physical memory
3560 * @nid: The node ID the range resides on
3561 * @start_pfn: The start PFN of the available physical memory
3562 * @end_pfn: The end PFN of the available physical memory
3563 *
3564 * These ranges are stored in an early_node_map[] and later used by
3565 * free_area_init_nodes() to calculate zone sizes and holes. If the
3566 * range spans a memory hole, it is up to the architecture to ensure
3567 * the memory is not freed by the bootmem allocator. If possible
3568 * the range being registered will be merged with existing ranges.
3569 */
3570void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3571						unsigned long end_pfn)
3572{
3573	int i;
3574
3575	mminit_dprintk(MMINIT_TRACE, "memory_register",
3576			"Entering add_active_range(%d, %#lx, %#lx) "
3577			"%d entries of %d used\n",
3578			nid, start_pfn, end_pfn,
3579			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3580
3581	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3582
3583	/* Merge with existing active regions if possible */
3584	for (i = 0; i < nr_nodemap_entries; i++) {
3585		if (early_node_map[i].nid != nid)
3586			continue;
3587
3588		/* Skip if an existing region covers this new one */
3589		if (start_pfn >= early_node_map[i].start_pfn &&
3590				end_pfn <= early_node_map[i].end_pfn)
3591			return;
3592
3593		/* Merge forward if suitable */
3594		if (start_pfn <= early_node_map[i].end_pfn &&
3595				end_pfn > early_node_map[i].end_pfn) {
3596			early_node_map[i].end_pfn = end_pfn;
3597			return;
3598		}
3599
3600		/* Merge backward if suitable */
3601		if (start_pfn < early_node_map[i].end_pfn &&
3602				end_pfn >= early_node_map[i].start_pfn) {
3603			early_node_map[i].start_pfn = start_pfn;
3604			return;
3605		}
3606	}
3607
3608	/* Check that early_node_map is large enough */
3609	if (i >= MAX_ACTIVE_REGIONS) {
3610		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3611							MAX_ACTIVE_REGIONS);
3612		return;
3613	}
3614
3615	early_node_map[i].nid = nid;
3616	early_node_map[i].start_pfn = start_pfn;
3617	early_node_map[i].end_pfn = end_pfn;
3618	nr_nodemap_entries = i + 1;
3619}
3620
3621/**
3622 * remove_active_range - Shrink an existing registered range of PFNs
3623 * @nid: The node id the range is on that should be shrunk
3624 * @start_pfn: The new PFN of the range
3625 * @end_pfn: The new PFN of the range
3626 *
3627 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3628 * The map is kept near the end physical page range that has already been
3629 * registered. This function allows an arch to shrink an existing registered
3630 * range.
3631 */
3632void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3633				unsigned long end_pfn)
3634{
3635	int i, j;
3636	int removed = 0;
3637
3638	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3639			  nid, start_pfn, end_pfn);
3640
3641	/* Find the old active region end and shrink */
3642	for_each_active_range_index_in_nid(i, nid) {
3643		if (early_node_map[i].start_pfn >= start_pfn &&
3644		    early_node_map[i].end_pfn <= end_pfn) {
3645			/* clear it */
3646			early_node_map[i].start_pfn = 0;
3647			early_node_map[i].end_pfn = 0;
3648			removed = 1;
3649			continue;
3650		}
3651		if (early_node_map[i].start_pfn < start_pfn &&
3652		    early_node_map[i].end_pfn > start_pfn) {
3653			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3654			early_node_map[i].end_pfn = start_pfn;
3655			if (temp_end_pfn > end_pfn)
3656				add_active_range(nid, end_pfn, temp_end_pfn);
3657			continue;
3658		}
3659		if (early_node_map[i].start_pfn >= start_pfn &&
3660		    early_node_map[i].end_pfn > end_pfn &&
3661		    early_node_map[i].start_pfn < end_pfn) {
3662			early_node_map[i].start_pfn = end_pfn;
3663			continue;
3664		}
3665	}
3666
3667	if (!removed)
3668		return;
3669
3670	/* remove the blank ones */
3671	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3672		if (early_node_map[i].nid != nid)
3673			continue;
3674		if (early_node_map[i].end_pfn)
3675			continue;
3676		/* we found it, get rid of it */
3677		for (j = i; j < nr_nodemap_entries - 1; j++)
3678			memcpy(&early_node_map[j], &early_node_map[j+1],
3679				sizeof(early_node_map[j]));
3680		j = nr_nodemap_entries - 1;
3681		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3682		nr_nodemap_entries--;
3683	}
3684}
3685
3686/**
3687 * remove_all_active_ranges - Remove all currently registered regions
3688 *
3689 * During discovery, it may be found that a table like SRAT is invalid
3690 * and an alternative discovery method must be used. This function removes
3691 * all currently registered regions.
3692 */
3693void __init remove_all_active_ranges(void)
3694{
3695	memset(early_node_map, 0, sizeof(early_node_map));
3696	nr_nodemap_entries = 0;
3697#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3698	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3699	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3700#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3701}
3702
3703/* Compare two active node_active_regions */
3704static int __init cmp_node_active_region(const void *a, const void *b)
3705{
3706	struct node_active_region *arange = (struct node_active_region *)a;
3707	struct node_active_region *brange = (struct node_active_region *)b;
3708
3709	/* Done this way to avoid overflows */
3710	if (arange->start_pfn > brange->start_pfn)
3711		return 1;
3712	if (arange->start_pfn < brange->start_pfn)
3713		return -1;
3714
3715	return 0;
3716}
3717
3718/* sort the node_map by start_pfn */
3719static void __init sort_node_map(void)
3720{
3721	sort(early_node_map, (size_t)nr_nodemap_entries,
3722			sizeof(struct node_active_region),
3723			cmp_node_active_region, NULL);
3724}
3725
3726/* Find the lowest pfn for a node */
3727static unsigned long __init find_min_pfn_for_node(int nid)
3728{
3729	int i;
3730	unsigned long min_pfn = ULONG_MAX;
3731
3732	/* Assuming a sorted map, the first range found has the starting pfn */
3733	for_each_active_range_index_in_nid(i, nid)
3734		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3735
3736	if (min_pfn == ULONG_MAX) {
3737		printk(KERN_WARNING
3738			"Could not find start_pfn for node %d\n", nid);
3739		return 0;
3740	}
3741
3742	return min_pfn;
3743}
3744
3745/**
3746 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3747 *
3748 * It returns the minimum PFN based on information provided via
3749 * add_active_range().
3750 */
3751unsigned long __init find_min_pfn_with_active_regions(void)
3752{
3753	return find_min_pfn_for_node(MAX_NUMNODES);
3754}
3755
3756/*
3757 * early_calculate_totalpages()
3758 * Sum pages in active regions for movable zone.
3759 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3760 */
3761static unsigned long __init early_calculate_totalpages(void)
3762{
3763	int i;
3764	unsigned long totalpages = 0;
3765
3766	for (i = 0; i < nr_nodemap_entries; i++) {
3767		unsigned long pages = early_node_map[i].end_pfn -
3768						early_node_map[i].start_pfn;
3769		totalpages += pages;
3770		if (pages)
3771			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3772	}
3773  	return totalpages;
3774}
3775
3776/*
3777 * Find the PFN the Movable zone begins in each node. Kernel memory
3778 * is spread evenly between nodes as long as the nodes have enough
3779 * memory. When they don't, some nodes will have more kernelcore than
3780 * others
3781 */
3782static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3783{
3784	int i, nid;
3785	unsigned long usable_startpfn;
3786	unsigned long kernelcore_node, kernelcore_remaining;
3787	unsigned long totalpages = early_calculate_totalpages();
3788	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3789
3790	/*
3791	 * If movablecore was specified, calculate what size of
3792	 * kernelcore that corresponds so that memory usable for
3793	 * any allocation type is evenly spread. If both kernelcore
3794	 * and movablecore are specified, then the value of kernelcore
3795	 * will be used for required_kernelcore if it's greater than
3796	 * what movablecore would have allowed.
3797	 */
3798	if (required_movablecore) {
3799		unsigned long corepages;
3800
3801		/*
3802		 * Round-up so that ZONE_MOVABLE is at least as large as what
3803		 * was requested by the user
3804		 */
3805		required_movablecore =
3806			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3807		corepages = totalpages - required_movablecore;
3808
3809		required_kernelcore = max(required_kernelcore, corepages);
3810	}
3811
3812	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3813	if (!required_kernelcore)
3814		return;
3815
3816	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3817	find_usable_zone_for_movable();
3818	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3819
3820restart:
3821	/* Spread kernelcore memory as evenly as possible throughout nodes */
3822	kernelcore_node = required_kernelcore / usable_nodes;
3823	for_each_node_state(nid, N_HIGH_MEMORY) {
3824		/*
3825		 * Recalculate kernelcore_node if the division per node
3826		 * now exceeds what is necessary to satisfy the requested
3827		 * amount of memory for the kernel
3828		 */
3829		if (required_kernelcore < kernelcore_node)
3830			kernelcore_node = required_kernelcore / usable_nodes;
3831
3832		/*
3833		 * As the map is walked, we track how much memory is usable
3834		 * by the kernel using kernelcore_remaining. When it is
3835		 * 0, the rest of the node is usable by ZONE_MOVABLE
3836		 */
3837		kernelcore_remaining = kernelcore_node;
3838
3839		/* Go through each range of PFNs within this node */
3840		for_each_active_range_index_in_nid(i, nid) {
3841			unsigned long start_pfn, end_pfn;
3842			unsigned long size_pages;
3843
3844			start_pfn = max(early_node_map[i].start_pfn,
3845						zone_movable_pfn[nid]);
3846			end_pfn = early_node_map[i].end_pfn;
3847			if (start_pfn >= end_pfn)
3848				continue;
3849
3850			/* Account for what is only usable for kernelcore */
3851			if (start_pfn < usable_startpfn) {
3852				unsigned long kernel_pages;
3853				kernel_pages = min(end_pfn, usable_startpfn)
3854								- start_pfn;
3855
3856				kernelcore_remaining -= min(kernel_pages,
3857							kernelcore_remaining);
3858				required_kernelcore -= min(kernel_pages,
3859							required_kernelcore);
3860
3861				/* Continue if range is now fully accounted */
3862				if (end_pfn <= usable_startpfn) {
3863
3864					/*
3865					 * Push zone_movable_pfn to the end so
3866					 * that if we have to rebalance
3867					 * kernelcore across nodes, we will
3868					 * not double account here
3869					 */
3870					zone_movable_pfn[nid] = end_pfn;
3871					continue;
3872				}
3873				start_pfn = usable_startpfn;
3874			}
3875
3876			/*
3877			 * The usable PFN range for ZONE_MOVABLE is from
3878			 * start_pfn->end_pfn. Calculate size_pages as the
3879			 * number of pages used as kernelcore
3880			 */
3881			size_pages = end_pfn - start_pfn;
3882			if (size_pages > kernelcore_remaining)
3883				size_pages = kernelcore_remaining;
3884			zone_movable_pfn[nid] = start_pfn + size_pages;
3885
3886			/*
3887			 * Some kernelcore has been met, update counts and
3888			 * break if the kernelcore for this node has been
3889			 * satisified
3890			 */
3891			required_kernelcore -= min(required_kernelcore,
3892								size_pages);
3893			kernelcore_remaining -= size_pages;
3894			if (!kernelcore_remaining)
3895				break;
3896		}
3897	}
3898
3899	/*
3900	 * If there is still required_kernelcore, we do another pass with one
3901	 * less node in the count. This will push zone_movable_pfn[nid] further
3902	 * along on the nodes that still have memory until kernelcore is
3903	 * satisified
3904	 */
3905	usable_nodes--;
3906	if (usable_nodes && required_kernelcore > usable_nodes)
3907		goto restart;
3908
3909	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3910	for (nid = 0; nid < MAX_NUMNODES; nid++)
3911		zone_movable_pfn[nid] =
3912			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3913}
3914
3915/* Any regular memory on that node ? */
3916static void check_for_regular_memory(pg_data_t *pgdat)
3917{
3918#ifdef CONFIG_HIGHMEM
3919	enum zone_type zone_type;
3920
3921	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3922		struct zone *zone = &pgdat->node_zones[zone_type];
3923		if (zone->present_pages)
3924			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3925	}
3926#endif
3927}
3928
3929/**
3930 * free_area_init_nodes - Initialise all pg_data_t and zone data
3931 * @max_zone_pfn: an array of max PFNs for each zone
3932 *
3933 * This will call free_area_init_node() for each active node in the system.
3934 * Using the page ranges provided by add_active_range(), the size of each
3935 * zone in each node and their holes is calculated. If the maximum PFN
3936 * between two adjacent zones match, it is assumed that the zone is empty.
3937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3939 * starts where the previous one ended. For example, ZONE_DMA32 starts
3940 * at arch_max_dma_pfn.
3941 */
3942void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3943{
3944	unsigned long nid;
3945	enum zone_type i;
3946
3947	/* Sort early_node_map as initialisation assumes it is sorted */
3948	sort_node_map();
3949
3950	/* Record where the zone boundaries are */
3951	memset(arch_zone_lowest_possible_pfn, 0,
3952				sizeof(arch_zone_lowest_possible_pfn));
3953	memset(arch_zone_highest_possible_pfn, 0,
3954				sizeof(arch_zone_highest_possible_pfn));
3955	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3956	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3957	for (i = 1; i < MAX_NR_ZONES; i++) {
3958		if (i == ZONE_MOVABLE)
3959			continue;
3960		arch_zone_lowest_possible_pfn[i] =
3961			arch_zone_highest_possible_pfn[i-1];
3962		arch_zone_highest_possible_pfn[i] =
3963			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3964	}
3965	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3966	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3967
3968	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3969	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3970	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3971
3972	/* Print out the zone ranges */
3973	printk("Zone PFN ranges:\n");
3974	for (i = 0; i < MAX_NR_ZONES; i++) {
3975		if (i == ZONE_MOVABLE)
3976			continue;
3977		printk("  %-8s %0#10lx -> %0#10lx\n",
3978				zone_names[i],
3979				arch_zone_lowest_possible_pfn[i],
3980				arch_zone_highest_possible_pfn[i]);
3981	}
3982
3983	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3984	printk("Movable zone start PFN for each node\n");
3985	for (i = 0; i < MAX_NUMNODES; i++) {
3986		if (zone_movable_pfn[i])
3987			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3988	}
3989
3990	/* Print out the early_node_map[] */
3991	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3992	for (i = 0; i < nr_nodemap_entries; i++)
3993		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
3994						early_node_map[i].start_pfn,
3995						early_node_map[i].end_pfn);
3996
3997	/* Initialise every node */
3998	mminit_verify_pageflags_layout();
3999	setup_nr_node_ids();
4000	for_each_online_node(nid) {
4001		pg_data_t *pgdat = NODE_DATA(nid);
4002		free_area_init_node(nid, NULL,
4003				find_min_pfn_for_node(nid), NULL);
4004
4005		/* Any memory on that node */
4006		if (pgdat->node_present_pages)
4007			node_set_state(nid, N_HIGH_MEMORY);
4008		check_for_regular_memory(pgdat);
4009	}
4010}
4011
4012static int __init cmdline_parse_core(char *p, unsigned long *core)
4013{
4014	unsigned long long coremem;
4015	if (!p)
4016		return -EINVAL;
4017
4018	coremem = memparse(p, &p);
4019	*core = coremem >> PAGE_SHIFT;
4020
4021	/* Paranoid check that UL is enough for the coremem value */
4022	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4023
4024	return 0;
4025}
4026
4027/*
4028 * kernelcore=size sets the amount of memory for use for allocations that
4029 * cannot be reclaimed or migrated.
4030 */
4031static int __init cmdline_parse_kernelcore(char *p)
4032{
4033	return cmdline_parse_core(p, &required_kernelcore);
4034}
4035
4036/*
4037 * movablecore=size sets the amount of memory for use for allocations that
4038 * can be reclaimed or migrated.
4039 */
4040static int __init cmdline_parse_movablecore(char *p)
4041{
4042	return cmdline_parse_core(p, &required_movablecore);
4043}
4044
4045early_param("kernelcore", cmdline_parse_kernelcore);
4046early_param("movablecore", cmdline_parse_movablecore);
4047
4048#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4049
4050/**
4051 * set_dma_reserve - set the specified number of pages reserved in the first zone
4052 * @new_dma_reserve: The number of pages to mark reserved
4053 *
4054 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4055 * In the DMA zone, a significant percentage may be consumed by kernel image
4056 * and other unfreeable allocations which can skew the watermarks badly. This
4057 * function may optionally be used to account for unfreeable pages in the
4058 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4059 * smaller per-cpu batchsize.
4060 */
4061void __init set_dma_reserve(unsigned long new_dma_reserve)
4062{
4063	dma_reserve = new_dma_reserve;
4064}
4065
4066#ifndef CONFIG_NEED_MULTIPLE_NODES
4067struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
4068EXPORT_SYMBOL(contig_page_data);
4069#endif
4070
4071void __init free_area_init(unsigned long *zones_size)
4072{
4073	free_area_init_node(0, zones_size,
4074			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4075}
4076
4077static int page_alloc_cpu_notify(struct notifier_block *self,
4078				 unsigned long action, void *hcpu)
4079{
4080	int cpu = (unsigned long)hcpu;
4081
4082	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4083		drain_pages(cpu);
4084
4085		/*
4086		 * Spill the event counters of the dead processor
4087		 * into the current processors event counters.
4088		 * This artificially elevates the count of the current
4089		 * processor.
4090		 */
4091		vm_events_fold_cpu(cpu);
4092
4093		/*
4094		 * Zero the differential counters of the dead processor
4095		 * so that the vm statistics are consistent.
4096		 *
4097		 * This is only okay since the processor is dead and cannot
4098		 * race with what we are doing.
4099		 */
4100		refresh_cpu_vm_stats(cpu);
4101	}
4102	return NOTIFY_OK;
4103}
4104
4105void __init page_alloc_init(void)
4106{
4107	hotcpu_notifier(page_alloc_cpu_notify, 0);
4108}
4109
4110/*
4111 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4112 *	or min_free_kbytes changes.
4113 */
4114static void calculate_totalreserve_pages(void)
4115{
4116	struct pglist_data *pgdat;
4117	unsigned long reserve_pages = 0;
4118	enum zone_type i, j;
4119
4120	for_each_online_pgdat(pgdat) {
4121		for (i = 0; i < MAX_NR_ZONES; i++) {
4122			struct zone *zone = pgdat->node_zones + i;
4123			unsigned long max = 0;
4124
4125			/* Find valid and maximum lowmem_reserve in the zone */
4126			for (j = i; j < MAX_NR_ZONES; j++) {
4127				if (zone->lowmem_reserve[j] > max)
4128					max = zone->lowmem_reserve[j];
4129			}
4130
4131			/* we treat pages_high as reserved pages. */
4132			max += zone->pages_high;
4133
4134			if (max > zone->present_pages)
4135				max = zone->present_pages;
4136			reserve_pages += max;
4137		}
4138	}
4139	totalreserve_pages = reserve_pages;
4140}
4141
4142/*
4143 * setup_per_zone_lowmem_reserve - called whenever
4144 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4145 *	has a correct pages reserved value, so an adequate number of
4146 *	pages are left in the zone after a successful __alloc_pages().
4147 */
4148static void setup_per_zone_lowmem_reserve(void)
4149{
4150	struct pglist_data *pgdat;
4151	enum zone_type j, idx;
4152
4153	for_each_online_pgdat(pgdat) {
4154		for (j = 0; j < MAX_NR_ZONES; j++) {
4155			struct zone *zone = pgdat->node_zones + j;
4156			unsigned long present_pages = zone->present_pages;
4157
4158			zone->lowmem_reserve[j] = 0;
4159
4160			idx = j;
4161			while (idx) {
4162				struct zone *lower_zone;
4163
4164				idx--;
4165
4166				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4167					sysctl_lowmem_reserve_ratio[idx] = 1;
4168
4169				lower_zone = pgdat->node_zones + idx;
4170				lower_zone->lowmem_reserve[j] = present_pages /
4171					sysctl_lowmem_reserve_ratio[idx];
4172				present_pages += lower_zone->present_pages;
4173			}
4174		}
4175	}
4176
4177	/* update totalreserve_pages */
4178	calculate_totalreserve_pages();
4179}
4180
4181/**
4182 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4183 *
4184 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4185 * with respect to min_free_kbytes.
4186 */
4187void setup_per_zone_pages_min(void)
4188{
4189	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4190	unsigned long lowmem_pages = 0;
4191	struct zone *zone;
4192	unsigned long flags;
4193
4194	/* Calculate total number of !ZONE_HIGHMEM pages */
4195	for_each_zone(zone) {
4196		if (!is_highmem(zone))
4197			lowmem_pages += zone->present_pages;
4198	}
4199
4200	for_each_zone(zone) {
4201		u64 tmp;
4202
4203		spin_lock_irqsave(&zone->lru_lock, flags);
4204		tmp = (u64)pages_min * zone->present_pages;
4205		do_div(tmp, lowmem_pages);
4206		if (is_highmem(zone)) {
4207			/*
4208			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4209			 * need highmem pages, so cap pages_min to a small
4210			 * value here.
4211			 *
4212			 * The (pages_high-pages_low) and (pages_low-pages_min)
4213			 * deltas controls asynch page reclaim, and so should
4214			 * not be capped for highmem.
4215			 */
4216			int min_pages;
4217
4218			min_pages = zone->present_pages / 1024;
4219			if (min_pages < SWAP_CLUSTER_MAX)
4220				min_pages = SWAP_CLUSTER_MAX;
4221			if (min_pages > 128)
4222				min_pages = 128;
4223			zone->pages_min = min_pages;
4224		} else {
4225			/*
4226			 * If it's a lowmem zone, reserve a number of pages
4227			 * proportionate to the zone's size.
4228			 */
4229			zone->pages_min = tmp;
4230		}
4231
4232		zone->pages_low   = zone->pages_min + (tmp >> 2);
4233		zone->pages_high  = zone->pages_min + (tmp >> 1);
4234		setup_zone_migrate_reserve(zone);
4235		spin_unlock_irqrestore(&zone->lru_lock, flags);
4236	}
4237
4238	/* update totalreserve_pages */
4239	calculate_totalreserve_pages();
4240}
4241
4242/*
4243 * Initialise min_free_kbytes.
4244 *
4245 * For small machines we want it small (128k min).  For large machines
4246 * we want it large (64MB max).  But it is not linear, because network
4247 * bandwidth does not increase linearly with machine size.  We use
4248 *
4249 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4250 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4251 *
4252 * which yields
4253 *
4254 * 16MB:	512k
4255 * 32MB:	724k
4256 * 64MB:	1024k
4257 * 128MB:	1448k
4258 * 256MB:	2048k
4259 * 512MB:	2896k
4260 * 1024MB:	4096k
4261 * 2048MB:	5792k
4262 * 4096MB:	8192k
4263 * 8192MB:	11584k
4264 * 16384MB:	16384k
4265 */
4266static int __init init_per_zone_pages_min(void)
4267{
4268	unsigned long lowmem_kbytes;
4269
4270	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4271
4272	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4273	if (min_free_kbytes < 128)
4274		min_free_kbytes = 128;
4275	if (min_free_kbytes > 65536)
4276		min_free_kbytes = 65536;
4277	setup_per_zone_pages_min();
4278	setup_per_zone_lowmem_reserve();
4279	return 0;
4280}
4281module_init(init_per_zone_pages_min)
4282
4283/*
4284 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4285 *	that we can call two helper functions whenever min_free_kbytes
4286 *	changes.
4287 */
4288int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4289	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4290{
4291	proc_dointvec(table, write, file, buffer, length, ppos);
4292	if (write)
4293		setup_per_zone_pages_min();
4294	return 0;
4295}
4296
4297#ifdef CONFIG_NUMA
4298int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4299	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4300{
4301	struct zone *zone;
4302	int rc;
4303
4304	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4305	if (rc)
4306		return rc;
4307
4308	for_each_zone(zone)
4309		zone->min_unmapped_pages = (zone->present_pages *
4310				sysctl_min_unmapped_ratio) / 100;
4311	return 0;
4312}
4313
4314int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4315	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4316{
4317	struct zone *zone;
4318	int rc;
4319
4320	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4321	if (rc)
4322		return rc;
4323
4324	for_each_zone(zone)
4325		zone->min_slab_pages = (zone->present_pages *
4326				sysctl_min_slab_ratio) / 100;
4327	return 0;
4328}
4329#endif
4330
4331/*
4332 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4333 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4334 *	whenever sysctl_lowmem_reserve_ratio changes.
4335 *
4336 * The reserve ratio obviously has absolutely no relation with the
4337 * pages_min watermarks. The lowmem reserve ratio can only make sense
4338 * if in function of the boot time zone sizes.
4339 */
4340int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4341	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4342{
4343	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4344	setup_per_zone_lowmem_reserve();
4345	return 0;
4346}
4347
4348/*
4349 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4350 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4351 * can have before it gets flushed back to buddy allocator.
4352 */
4353
4354int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4355	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4356{
4357	struct zone *zone;
4358	unsigned int cpu;
4359	int ret;
4360
4361	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4362	if (!write || (ret == -EINVAL))
4363		return ret;
4364	for_each_zone(zone) {
4365		for_each_online_cpu(cpu) {
4366			unsigned long  high;
4367			high = zone->present_pages / percpu_pagelist_fraction;
4368			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4369		}
4370	}
4371	return 0;
4372}
4373
4374int hashdist = HASHDIST_DEFAULT;
4375
4376#ifdef CONFIG_NUMA
4377static int __init set_hashdist(char *str)
4378{
4379	if (!str)
4380		return 0;
4381	hashdist = simple_strtoul(str, &str, 0);
4382	return 1;
4383}
4384__setup("hashdist=", set_hashdist);
4385#endif
4386
4387/*
4388 * allocate a large system hash table from bootmem
4389 * - it is assumed that the hash table must contain an exact power-of-2
4390 *   quantity of entries
4391 * - limit is the number of hash buckets, not the total allocation size
4392 */
4393void *__init alloc_large_system_hash(const char *tablename,
4394				     unsigned long bucketsize,
4395				     unsigned long numentries,
4396				     int scale,
4397				     int flags,
4398				     unsigned int *_hash_shift,
4399				     unsigned int *_hash_mask,
4400				     unsigned long limit)
4401{
4402	unsigned long long max = limit;
4403	unsigned long log2qty, size;
4404	void *table = NULL;
4405
4406	/* allow the kernel cmdline to have a say */
4407	if (!numentries) {
4408		/* round applicable memory size up to nearest megabyte */
4409		numentries = nr_kernel_pages;
4410		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4411		numentries >>= 20 - PAGE_SHIFT;
4412		numentries <<= 20 - PAGE_SHIFT;
4413
4414		/* limit to 1 bucket per 2^scale bytes of low memory */
4415		if (scale > PAGE_SHIFT)
4416			numentries >>= (scale - PAGE_SHIFT);
4417		else
4418			numentries <<= (PAGE_SHIFT - scale);
4419
4420		/* Make sure we've got at least a 0-order allocation.. */
4421		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4422			numentries = PAGE_SIZE / bucketsize;
4423	}
4424	numentries = roundup_pow_of_two(numentries);
4425
4426	/* limit allocation size to 1/16 total memory by default */
4427	if (max == 0) {
4428		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4429		do_div(max, bucketsize);
4430	}
4431
4432	if (numentries > max)
4433		numentries = max;
4434
4435	log2qty = ilog2(numentries);
4436
4437	do {
4438		size = bucketsize << log2qty;
4439		if (flags & HASH_EARLY)
4440			table = alloc_bootmem_nopanic(size);
4441		else if (hashdist)
4442			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4443		else {
4444			unsigned long order = get_order(size);
4445			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4446			/*
4447			 * If bucketsize is not a power-of-two, we may free
4448			 * some pages at the end of hash table.
4449			 */
4450			if (table) {
4451				unsigned long alloc_end = (unsigned long)table +
4452						(PAGE_SIZE << order);
4453				unsigned long used = (unsigned long)table +
4454						PAGE_ALIGN(size);
4455				split_page(virt_to_page(table), order);
4456				while (used < alloc_end) {
4457					free_page(used);
4458					used += PAGE_SIZE;
4459				}
4460			}
4461		}
4462	} while (!table && size > PAGE_SIZE && --log2qty);
4463
4464	if (!table)
4465		panic("Failed to allocate %s hash table\n", tablename);
4466
4467	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4468	       tablename,
4469	       (1U << log2qty),
4470	       ilog2(size) - PAGE_SHIFT,
4471	       size);
4472
4473	if (_hash_shift)
4474		*_hash_shift = log2qty;
4475	if (_hash_mask)
4476		*_hash_mask = (1 << log2qty) - 1;
4477
4478	return table;
4479}
4480
4481#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4482struct page *pfn_to_page(unsigned long pfn)
4483{
4484	return __pfn_to_page(pfn);
4485}
4486unsigned long page_to_pfn(struct page *page)
4487{
4488	return __page_to_pfn(page);
4489}
4490EXPORT_SYMBOL(pfn_to_page);
4491EXPORT_SYMBOL(page_to_pfn);
4492#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4493
4494/* Return a pointer to the bitmap storing bits affecting a block of pages */
4495static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4496							unsigned long pfn)
4497{
4498#ifdef CONFIG_SPARSEMEM
4499	return __pfn_to_section(pfn)->pageblock_flags;
4500#else
4501	return zone->pageblock_flags;
4502#endif /* CONFIG_SPARSEMEM */
4503}
4504
4505static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4506{
4507#ifdef CONFIG_SPARSEMEM
4508	pfn &= (PAGES_PER_SECTION-1);
4509	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4510#else
4511	pfn = pfn - zone->zone_start_pfn;
4512	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4513#endif /* CONFIG_SPARSEMEM */
4514}
4515
4516/**
4517 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4518 * @page: The page within the block of interest
4519 * @start_bitidx: The first bit of interest to retrieve
4520 * @end_bitidx: The last bit of interest
4521 * returns pageblock_bits flags
4522 */
4523unsigned long get_pageblock_flags_group(struct page *page,
4524					int start_bitidx, int end_bitidx)
4525{
4526	struct zone *zone;
4527	unsigned long *bitmap;
4528	unsigned long pfn, bitidx;
4529	unsigned long flags = 0;
4530	unsigned long value = 1;
4531
4532	zone = page_zone(page);
4533	pfn = page_to_pfn(page);
4534	bitmap = get_pageblock_bitmap(zone, pfn);
4535	bitidx = pfn_to_bitidx(zone, pfn);
4536
4537	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4538		if (test_bit(bitidx + start_bitidx, bitmap))
4539			flags |= value;
4540
4541	return flags;
4542}
4543
4544/**
4545 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4546 * @page: The page within the block of interest
4547 * @start_bitidx: The first bit of interest
4548 * @end_bitidx: The last bit of interest
4549 * @flags: The flags to set
4550 */
4551void set_pageblock_flags_group(struct page *page, unsigned long flags,
4552					int start_bitidx, int end_bitidx)
4553{
4554	struct zone *zone;
4555	unsigned long *bitmap;
4556	unsigned long pfn, bitidx;
4557	unsigned long value = 1;
4558
4559	zone = page_zone(page);
4560	pfn = page_to_pfn(page);
4561	bitmap = get_pageblock_bitmap(zone, pfn);
4562	bitidx = pfn_to_bitidx(zone, pfn);
4563	VM_BUG_ON(pfn < zone->zone_start_pfn);
4564	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4565
4566	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4567		if (flags & value)
4568			__set_bit(bitidx + start_bitidx, bitmap);
4569		else
4570			__clear_bit(bitidx + start_bitidx, bitmap);
4571}
4572
4573/*
4574 * This is designed as sub function...plz see page_isolation.c also.
4575 * set/clear page block's type to be ISOLATE.
4576 * page allocater never alloc memory from ISOLATE block.
4577 */
4578
4579int set_migratetype_isolate(struct page *page)
4580{
4581	struct zone *zone;
4582	unsigned long flags;
4583	int ret = -EBUSY;
4584
4585	zone = page_zone(page);
4586	spin_lock_irqsave(&zone->lock, flags);
4587	/*
4588	 * In future, more migrate types will be able to be isolation target.
4589	 */
4590	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4591		goto out;
4592	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4593	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4594	ret = 0;
4595out:
4596	spin_unlock_irqrestore(&zone->lock, flags);
4597	if (!ret)
4598		drain_all_pages();
4599	return ret;
4600}
4601
4602void unset_migratetype_isolate(struct page *page)
4603{
4604	struct zone *zone;
4605	unsigned long flags;
4606	zone = page_zone(page);
4607	spin_lock_irqsave(&zone->lock, flags);
4608	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4609		goto out;
4610	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4611	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4612out:
4613	spin_unlock_irqrestore(&zone->lock, flags);
4614}
4615
4616#ifdef CONFIG_MEMORY_HOTREMOVE
4617/*
4618 * All pages in the range must be isolated before calling this.
4619 */
4620void
4621__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4622{
4623	struct page *page;
4624	struct zone *zone;
4625	int order, i;
4626	unsigned long pfn;
4627	unsigned long flags;
4628	/* find the first valid pfn */
4629	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4630		if (pfn_valid(pfn))
4631			break;
4632	if (pfn == end_pfn)
4633		return;
4634	zone = page_zone(pfn_to_page(pfn));
4635	spin_lock_irqsave(&zone->lock, flags);
4636	pfn = start_pfn;
4637	while (pfn < end_pfn) {
4638		if (!pfn_valid(pfn)) {
4639			pfn++;
4640			continue;
4641		}
4642		page = pfn_to_page(pfn);
4643		BUG_ON(page_count(page));
4644		BUG_ON(!PageBuddy(page));
4645		order = page_order(page);
4646#ifdef CONFIG_DEBUG_VM
4647		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4648		       pfn, 1 << order, end_pfn);
4649#endif
4650		list_del(&page->lru);
4651		rmv_page_order(page);
4652		zone->free_area[order].nr_free--;
4653		__mod_zone_page_state(zone, NR_FREE_PAGES,
4654				      - (1UL << order));
4655		for (i = 0; i < (1 << order); i++)
4656			SetPageReserved((page+i));
4657		pfn += (1 << order);
4658	}
4659	spin_unlock_irqrestore(&zone->lock, flags);
4660}
4661#endif
4662