page_alloc.c revision 77a8a78834561398fb4cb1480afa7b0e80b1dd53
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48EXPORT_SYMBOL(node_online_map);
49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50EXPORT_SYMBOL(node_possible_map);
51struct pglist_data *pgdat_list __read_mostly;
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 *	1G machine -> (16M dma, 784M normal, 224M high)
60 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
63 *
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
66 */
67int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
68
69EXPORT_SYMBOL(totalram_pages);
70
71/*
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
74 */
75struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76EXPORT_SYMBOL(zone_table);
77
78static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79int min_free_kbytes = 1024;
80
81unsigned long __initdata nr_kernel_pages;
82unsigned long __initdata nr_all_pages;
83
84static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
85{
86	int ret = 0;
87	unsigned seq;
88	unsigned long pfn = page_to_pfn(page);
89
90	do {
91		seq = zone_span_seqbegin(zone);
92		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93			ret = 1;
94		else if (pfn < zone->zone_start_pfn)
95			ret = 1;
96	} while (zone_span_seqretry(zone, seq));
97
98	return ret;
99}
100
101static int page_is_consistent(struct zone *zone, struct page *page)
102{
103#ifdef CONFIG_HOLES_IN_ZONE
104	if (!pfn_valid(page_to_pfn(page)))
105		return 0;
106#endif
107	if (zone != page_zone(page))
108		return 0;
109
110	return 1;
111}
112/*
113 * Temporary debugging check for pages not lying within a given zone.
114 */
115static int bad_range(struct zone *zone, struct page *page)
116{
117	if (page_outside_zone_boundaries(zone, page))
118		return 1;
119	if (!page_is_consistent(zone, page))
120		return 1;
121
122	return 0;
123}
124
125static void bad_page(const char *function, struct page *page)
126{
127	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128		function, current->comm, page);
129	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
130		(int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
131		page->mapping, page_mapcount(page), page_count(page));
132	printk(KERN_EMERG "Backtrace:\n");
133	dump_stack();
134	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
135	page->flags &= ~(1 << PG_lru	|
136			1 << PG_private |
137			1 << PG_locked	|
138			1 << PG_active	|
139			1 << PG_dirty	|
140			1 << PG_reclaim |
141			1 << PG_slab    |
142			1 << PG_swapcache |
143			1 << PG_writeback );
144	set_page_count(page, 0);
145	reset_page_mapcount(page);
146	page->mapping = NULL;
147	add_taint(TAINT_BAD_PAGE);
148}
149
150/*
151 * Higher-order pages are called "compound pages".  They are structured thusly:
152 *
153 * The first PAGE_SIZE page is called the "head page".
154 *
155 * The remaining PAGE_SIZE pages are called "tail pages".
156 *
157 * All pages have PG_compound set.  All pages have their ->private pointing at
158 * the head page (even the head page has this).
159 *
160 * The first tail page's ->mapping, if non-zero, holds the address of the
161 * compound page's put_page() function.
162 *
163 * The order of the allocation is stored in the first tail page's ->index
164 * This is only for debug at present.  This usage means that zero-order pages
165 * may not be compound.
166 */
167static void prep_compound_page(struct page *page, unsigned long order)
168{
169	int i;
170	int nr_pages = 1 << order;
171
172	page[1].mapping = NULL;
173	page[1].index = order;
174	for (i = 0; i < nr_pages; i++) {
175		struct page *p = page + i;
176
177		SetPageCompound(p);
178		set_page_private(p, (unsigned long)page);
179	}
180}
181
182static void destroy_compound_page(struct page *page, unsigned long order)
183{
184	int i;
185	int nr_pages = 1 << order;
186
187	if (!PageCompound(page))
188		return;
189
190	if (page[1].index != order)
191		bad_page(__FUNCTION__, page);
192
193	for (i = 0; i < nr_pages; i++) {
194		struct page *p = page + i;
195
196		if (!PageCompound(p))
197			bad_page(__FUNCTION__, page);
198		if (page_private(p) != (unsigned long)page)
199			bad_page(__FUNCTION__, page);
200		ClearPageCompound(p);
201	}
202}
203
204/*
205 * function for dealing with page's order in buddy system.
206 * zone->lock is already acquired when we use these.
207 * So, we don't need atomic page->flags operations here.
208 */
209static inline unsigned long page_order(struct page *page) {
210	return page_private(page);
211}
212
213static inline void set_page_order(struct page *page, int order) {
214	set_page_private(page, order);
215	__SetPagePrivate(page);
216}
217
218static inline void rmv_page_order(struct page *page)
219{
220	__ClearPagePrivate(page);
221	set_page_private(page, 0);
222}
223
224/*
225 * Locate the struct page for both the matching buddy in our
226 * pair (buddy1) and the combined O(n+1) page they form (page).
227 *
228 * 1) Any buddy B1 will have an order O twin B2 which satisfies
229 * the following equation:
230 *     B2 = B1 ^ (1 << O)
231 * For example, if the starting buddy (buddy2) is #8 its order
232 * 1 buddy is #10:
233 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
234 *
235 * 2) Any buddy B will have an order O+1 parent P which
236 * satisfies the following equation:
237 *     P = B & ~(1 << O)
238 *
239 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
240 */
241static inline struct page *
242__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
243{
244	unsigned long buddy_idx = page_idx ^ (1 << order);
245
246	return page + (buddy_idx - page_idx);
247}
248
249static inline unsigned long
250__find_combined_index(unsigned long page_idx, unsigned int order)
251{
252	return (page_idx & ~(1 << order));
253}
254
255/*
256 * This function checks whether a page is free && is the buddy
257 * we can do coalesce a page and its buddy if
258 * (a) the buddy is free &&
259 * (b) the buddy is on the buddy system &&
260 * (c) a page and its buddy have the same order.
261 * for recording page's order, we use page_private(page) and PG_private.
262 *
263 */
264static inline int page_is_buddy(struct page *page, int order)
265{
266       if (PagePrivate(page)           &&
267           (page_order(page) == order) &&
268            page_count(page) == 0)
269               return 1;
270       return 0;
271}
272
273/*
274 * Freeing function for a buddy system allocator.
275 *
276 * The concept of a buddy system is to maintain direct-mapped table
277 * (containing bit values) for memory blocks of various "orders".
278 * The bottom level table contains the map for the smallest allocatable
279 * units of memory (here, pages), and each level above it describes
280 * pairs of units from the levels below, hence, "buddies".
281 * At a high level, all that happens here is marking the table entry
282 * at the bottom level available, and propagating the changes upward
283 * as necessary, plus some accounting needed to play nicely with other
284 * parts of the VM system.
285 * At each level, we keep a list of pages, which are heads of continuous
286 * free pages of length of (1 << order) and marked with PG_Private.Page's
287 * order is recorded in page_private(page) field.
288 * So when we are allocating or freeing one, we can derive the state of the
289 * other.  That is, if we allocate a small block, and both were
290 * free, the remainder of the region must be split into blocks.
291 * If a block is freed, and its buddy is also free, then this
292 * triggers coalescing into a block of larger size.
293 *
294 * -- wli
295 */
296
297static inline void __free_pages_bulk (struct page *page,
298		struct zone *zone, unsigned int order)
299{
300	unsigned long page_idx;
301	int order_size = 1 << order;
302
303	if (unlikely(order))
304		destroy_compound_page(page, order);
305
306	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
307
308	BUG_ON(page_idx & (order_size - 1));
309	BUG_ON(bad_range(zone, page));
310
311	zone->free_pages += order_size;
312	while (order < MAX_ORDER-1) {
313		unsigned long combined_idx;
314		struct free_area *area;
315		struct page *buddy;
316
317		combined_idx = __find_combined_index(page_idx, order);
318		buddy = __page_find_buddy(page, page_idx, order);
319
320		if (bad_range(zone, buddy))
321			break;
322		if (!page_is_buddy(buddy, order))
323			break;		/* Move the buddy up one level. */
324		list_del(&buddy->lru);
325		area = zone->free_area + order;
326		area->nr_free--;
327		rmv_page_order(buddy);
328		page = page + (combined_idx - page_idx);
329		page_idx = combined_idx;
330		order++;
331	}
332	set_page_order(page, order);
333	list_add(&page->lru, &zone->free_area[order].free_list);
334	zone->free_area[order].nr_free++;
335}
336
337static inline int free_pages_check(const char *function, struct page *page)
338{
339	if (	page_mapcount(page) ||
340		page->mapping != NULL ||
341		page_count(page) != 0 ||
342		(page->flags & (
343			1 << PG_lru	|
344			1 << PG_private |
345			1 << PG_locked	|
346			1 << PG_active	|
347			1 << PG_reclaim	|
348			1 << PG_slab	|
349			1 << PG_swapcache |
350			1 << PG_writeback |
351			1 << PG_reserved )))
352		bad_page(function, page);
353	if (PageDirty(page))
354		__ClearPageDirty(page);
355	/*
356	 * For now, we report if PG_reserved was found set, but do not
357	 * clear it, and do not free the page.  But we shall soon need
358	 * to do more, for when the ZERO_PAGE count wraps negative.
359	 */
360	return PageReserved(page);
361}
362
363/*
364 * Frees a list of pages.
365 * Assumes all pages on list are in same zone, and of same order.
366 * count is the number of pages to free.
367 *
368 * If the zone was previously in an "all pages pinned" state then look to
369 * see if this freeing clears that state.
370 *
371 * And clear the zone's pages_scanned counter, to hold off the "all pages are
372 * pinned" detection logic.
373 */
374static int
375free_pages_bulk(struct zone *zone, int count,
376		struct list_head *list, unsigned int order)
377{
378	struct page *page = NULL;
379	int ret = 0;
380
381	spin_lock(&zone->lock);
382	zone->all_unreclaimable = 0;
383	zone->pages_scanned = 0;
384	while (!list_empty(list) && count--) {
385		page = list_entry(list->prev, struct page, lru);
386		/* have to delete it as __free_pages_bulk list manipulates */
387		list_del(&page->lru);
388		__free_pages_bulk(page, zone, order);
389		ret++;
390	}
391	spin_unlock(&zone->lock);
392	return ret;
393}
394
395void __free_pages_ok(struct page *page, unsigned int order)
396{
397	unsigned long flags;
398	LIST_HEAD(list);
399	int i;
400	int reserved = 0;
401
402	arch_free_page(page, order);
403
404#ifndef CONFIG_MMU
405	if (order > 0)
406		for (i = 1 ; i < (1 << order) ; ++i)
407			__put_page(page + i);
408#endif
409
410	for (i = 0 ; i < (1 << order) ; ++i)
411		reserved += free_pages_check(__FUNCTION__, page + i);
412	if (reserved)
413		return;
414
415	list_add(&page->lru, &list);
416	mod_page_state(pgfree, 1 << order);
417	kernel_map_pages(page, 1<<order, 0);
418	local_irq_save(flags);
419	free_pages_bulk(page_zone(page), 1, &list, order);
420	local_irq_restore(flags);
421}
422
423
424/*
425 * The order of subdivision here is critical for the IO subsystem.
426 * Please do not alter this order without good reasons and regression
427 * testing. Specifically, as large blocks of memory are subdivided,
428 * the order in which smaller blocks are delivered depends on the order
429 * they're subdivided in this function. This is the primary factor
430 * influencing the order in which pages are delivered to the IO
431 * subsystem according to empirical testing, and this is also justified
432 * by considering the behavior of a buddy system containing a single
433 * large block of memory acted on by a series of small allocations.
434 * This behavior is a critical factor in sglist merging's success.
435 *
436 * -- wli
437 */
438static inline struct page *
439expand(struct zone *zone, struct page *page,
440 	int low, int high, struct free_area *area)
441{
442	unsigned long size = 1 << high;
443
444	while (high > low) {
445		area--;
446		high--;
447		size >>= 1;
448		BUG_ON(bad_range(zone, &page[size]));
449		list_add(&page[size].lru, &area->free_list);
450		area->nr_free++;
451		set_page_order(&page[size], high);
452	}
453	return page;
454}
455
456/*
457 * This page is about to be returned from the page allocator
458 */
459static int prep_new_page(struct page *page, int order)
460{
461	if (	page_mapcount(page) ||
462		page->mapping != NULL ||
463		page_count(page) != 0 ||
464		(page->flags & (
465			1 << PG_lru	|
466			1 << PG_private	|
467			1 << PG_locked	|
468			1 << PG_active	|
469			1 << PG_dirty	|
470			1 << PG_reclaim	|
471			1 << PG_slab    |
472			1 << PG_swapcache |
473			1 << PG_writeback |
474			1 << PG_reserved )))
475		bad_page(__FUNCTION__, page);
476
477	/*
478	 * For now, we report if PG_reserved was found set, but do not
479	 * clear it, and do not allocate the page: as a safety net.
480	 */
481	if (PageReserved(page))
482		return 1;
483
484	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
485			1 << PG_referenced | 1 << PG_arch_1 |
486			1 << PG_checked | 1 << PG_mappedtodisk);
487	set_page_private(page, 0);
488	set_page_refs(page, order);
489	kernel_map_pages(page, 1 << order, 1);
490	return 0;
491}
492
493/*
494 * Do the hard work of removing an element from the buddy allocator.
495 * Call me with the zone->lock already held.
496 */
497static struct page *__rmqueue(struct zone *zone, unsigned int order)
498{
499	struct free_area * area;
500	unsigned int current_order;
501	struct page *page;
502
503	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
504		area = zone->free_area + current_order;
505		if (list_empty(&area->free_list))
506			continue;
507
508		page = list_entry(area->free_list.next, struct page, lru);
509		list_del(&page->lru);
510		rmv_page_order(page);
511		area->nr_free--;
512		zone->free_pages -= 1UL << order;
513		return expand(zone, page, order, current_order, area);
514	}
515
516	return NULL;
517}
518
519/*
520 * Obtain a specified number of elements from the buddy allocator, all under
521 * a single hold of the lock, for efficiency.  Add them to the supplied list.
522 * Returns the number of new pages which were placed at *list.
523 */
524static int rmqueue_bulk(struct zone *zone, unsigned int order,
525			unsigned long count, struct list_head *list)
526{
527	int i;
528	int allocated = 0;
529	struct page *page;
530
531	spin_lock(&zone->lock);
532	for (i = 0; i < count; ++i) {
533		page = __rmqueue(zone, order);
534		if (page == NULL)
535			break;
536		allocated++;
537		list_add_tail(&page->lru, list);
538	}
539	spin_unlock(&zone->lock);
540	return allocated;
541}
542
543#ifdef CONFIG_NUMA
544/* Called from the slab reaper to drain remote pagesets */
545void drain_remote_pages(void)
546{
547	struct zone *zone;
548	int i;
549	unsigned long flags;
550
551	local_irq_save(flags);
552	for_each_zone(zone) {
553		struct per_cpu_pageset *pset;
554
555		/* Do not drain local pagesets */
556		if (zone->zone_pgdat->node_id == numa_node_id())
557			continue;
558
559		pset = zone->pageset[smp_processor_id()];
560		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
561			struct per_cpu_pages *pcp;
562
563			pcp = &pset->pcp[i];
564			if (pcp->count)
565				pcp->count -= free_pages_bulk(zone, pcp->count,
566						&pcp->list, 0);
567		}
568	}
569	local_irq_restore(flags);
570}
571#endif
572
573#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
574static void __drain_pages(unsigned int cpu)
575{
576	unsigned long flags;
577	struct zone *zone;
578	int i;
579
580	for_each_zone(zone) {
581		struct per_cpu_pageset *pset;
582
583		pset = zone_pcp(zone, cpu);
584		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
585			struct per_cpu_pages *pcp;
586
587			pcp = &pset->pcp[i];
588			local_irq_save(flags);
589			pcp->count -= free_pages_bulk(zone, pcp->count,
590						&pcp->list, 0);
591			local_irq_restore(flags);
592		}
593	}
594}
595#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
596
597#ifdef CONFIG_PM
598
599void mark_free_pages(struct zone *zone)
600{
601	unsigned long zone_pfn, flags;
602	int order;
603	struct list_head *curr;
604
605	if (!zone->spanned_pages)
606		return;
607
608	spin_lock_irqsave(&zone->lock, flags);
609	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
610		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
611
612	for (order = MAX_ORDER - 1; order >= 0; --order)
613		list_for_each(curr, &zone->free_area[order].free_list) {
614			unsigned long start_pfn, i;
615
616			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
617
618			for (i=0; i < (1<<order); i++)
619				SetPageNosaveFree(pfn_to_page(start_pfn+i));
620	}
621	spin_unlock_irqrestore(&zone->lock, flags);
622}
623
624/*
625 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
626 */
627void drain_local_pages(void)
628{
629	unsigned long flags;
630
631	local_irq_save(flags);
632	__drain_pages(smp_processor_id());
633	local_irq_restore(flags);
634}
635#endif /* CONFIG_PM */
636
637static void zone_statistics(struct zonelist *zonelist, struct zone *z)
638{
639#ifdef CONFIG_NUMA
640	unsigned long flags;
641	int cpu;
642	pg_data_t *pg = z->zone_pgdat;
643	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
644	struct per_cpu_pageset *p;
645
646	local_irq_save(flags);
647	cpu = smp_processor_id();
648	p = zone_pcp(z,cpu);
649	if (pg == orig) {
650		p->numa_hit++;
651	} else {
652		p->numa_miss++;
653		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
654	}
655	if (pg == NODE_DATA(numa_node_id()))
656		p->local_node++;
657	else
658		p->other_node++;
659	local_irq_restore(flags);
660#endif
661}
662
663/*
664 * Free a 0-order page
665 */
666static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
667static void fastcall free_hot_cold_page(struct page *page, int cold)
668{
669	struct zone *zone = page_zone(page);
670	struct per_cpu_pages *pcp;
671	unsigned long flags;
672
673	arch_free_page(page, 0);
674
675	if (PageAnon(page))
676		page->mapping = NULL;
677	if (free_pages_check(__FUNCTION__, page))
678		return;
679
680	inc_page_state(pgfree);
681	kernel_map_pages(page, 1, 0);
682
683	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
684	local_irq_save(flags);
685	list_add(&page->lru, &pcp->list);
686	pcp->count++;
687	if (pcp->count >= pcp->high)
688		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
689	local_irq_restore(flags);
690	put_cpu();
691}
692
693void fastcall free_hot_page(struct page *page)
694{
695	free_hot_cold_page(page, 0);
696}
697
698void fastcall free_cold_page(struct page *page)
699{
700	free_hot_cold_page(page, 1);
701}
702
703static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
704{
705	int i;
706
707	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
708	for(i = 0; i < (1 << order); i++)
709		clear_highpage(page + i);
710}
711
712/*
713 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
714 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
715 * or two.
716 */
717static struct page *
718buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
719{
720	unsigned long flags;
721	struct page *page;
722	int cold = !!(gfp_flags & __GFP_COLD);
723
724again:
725	if (order == 0) {
726		struct per_cpu_pages *pcp;
727
728		page = NULL;
729		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
730		local_irq_save(flags);
731		if (pcp->count <= pcp->low)
732			pcp->count += rmqueue_bulk(zone, 0,
733						pcp->batch, &pcp->list);
734		if (likely(pcp->count)) {
735			page = list_entry(pcp->list.next, struct page, lru);
736			list_del(&page->lru);
737			pcp->count--;
738		}
739		local_irq_restore(flags);
740		put_cpu();
741	} else {
742		spin_lock_irqsave(&zone->lock, flags);
743		page = __rmqueue(zone, order);
744		spin_unlock_irqrestore(&zone->lock, flags);
745	}
746
747	if (page != NULL) {
748		BUG_ON(bad_range(zone, page));
749		mod_page_state_zone(zone, pgalloc, 1 << order);
750		if (prep_new_page(page, order))
751			goto again;
752
753		if (gfp_flags & __GFP_ZERO)
754			prep_zero_page(page, order, gfp_flags);
755
756		if (order && (gfp_flags & __GFP_COMP))
757			prep_compound_page(page, order);
758	}
759	return page;
760}
761
762#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
763#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
764#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
765#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
766#define ALLOC_HARDER		0x10 /* try to alloc harder */
767#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
768#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
769
770/*
771 * Return 1 if free pages are above 'mark'. This takes into account the order
772 * of the allocation.
773 */
774int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
775		      int classzone_idx, int alloc_flags)
776{
777	/* free_pages my go negative - that's OK */
778	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
779	int o;
780
781	if (alloc_flags & ALLOC_HIGH)
782		min -= min / 2;
783	if (alloc_flags & ALLOC_HARDER)
784		min -= min / 4;
785
786	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
787		return 0;
788	for (o = 0; o < order; o++) {
789		/* At the next order, this order's pages become unavailable */
790		free_pages -= z->free_area[o].nr_free << o;
791
792		/* Require fewer higher order pages to be free */
793		min >>= 1;
794
795		if (free_pages <= min)
796			return 0;
797	}
798	return 1;
799}
800
801/*
802 * get_page_from_freeliest goes through the zonelist trying to allocate
803 * a page.
804 */
805static struct page *
806get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
807		struct zonelist *zonelist, int alloc_flags)
808{
809	struct zone **z = zonelist->zones;
810	struct page *page = NULL;
811	int classzone_idx = zone_idx(*z);
812
813	/*
814	 * Go through the zonelist once, looking for a zone with enough free.
815	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
816	 */
817	do {
818		if ((alloc_flags & ALLOC_CPUSET) &&
819				!cpuset_zone_allowed(*z, gfp_mask))
820			continue;
821
822		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
823			unsigned long mark;
824			if (alloc_flags & ALLOC_WMARK_MIN)
825				mark = (*z)->pages_min;
826			else if (alloc_flags & ALLOC_WMARK_LOW)
827				mark = (*z)->pages_low;
828			else
829				mark = (*z)->pages_high;
830			if (!zone_watermark_ok(*z, order, mark,
831				    classzone_idx, alloc_flags))
832				continue;
833		}
834
835		page = buffered_rmqueue(*z, order, gfp_mask);
836		if (page) {
837			zone_statistics(zonelist, *z);
838			break;
839		}
840	} while (*(++z) != NULL);
841	return page;
842}
843
844/*
845 * This is the 'heart' of the zoned buddy allocator.
846 */
847struct page * fastcall
848__alloc_pages(gfp_t gfp_mask, unsigned int order,
849		struct zonelist *zonelist)
850{
851	const gfp_t wait = gfp_mask & __GFP_WAIT;
852	struct zone **z;
853	struct page *page;
854	struct reclaim_state reclaim_state;
855	struct task_struct *p = current;
856	int do_retry;
857	int alloc_flags;
858	int did_some_progress;
859
860	might_sleep_if(wait);
861
862restart:
863	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
864
865	if (unlikely(*z == NULL)) {
866		/* Should this ever happen?? */
867		return NULL;
868	}
869
870	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
871				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
872	if (page)
873		goto got_pg;
874
875	do {
876		wakeup_kswapd(*z, order);
877	} while (*(++z));
878
879	/*
880	 * OK, we're below the kswapd watermark and have kicked background
881	 * reclaim. Now things get more complex, so set up alloc_flags according
882	 * to how we want to proceed.
883	 *
884	 * The caller may dip into page reserves a bit more if the caller
885	 * cannot run direct reclaim, or if the caller has realtime scheduling
886	 * policy.
887	 */
888	alloc_flags = ALLOC_WMARK_MIN;
889	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
890		alloc_flags |= ALLOC_HARDER;
891	if (gfp_mask & __GFP_HIGH)
892		alloc_flags |= ALLOC_HIGH;
893	alloc_flags |= ALLOC_CPUSET;
894
895	/*
896	 * Go through the zonelist again. Let __GFP_HIGH and allocations
897	 * coming from realtime tasks go deeper into reserves.
898	 *
899	 * This is the last chance, in general, before the goto nopage.
900	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
901	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
902	 */
903	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
904	if (page)
905		goto got_pg;
906
907	/* This allocation should allow future memory freeing. */
908
909	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
910			&& !in_interrupt()) {
911		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
912nofail_alloc:
913			/* go through the zonelist yet again, ignoring mins */
914			page = get_page_from_freelist(gfp_mask, order,
915				zonelist, ALLOC_NO_WATERMARKS);
916			if (page)
917				goto got_pg;
918			if (gfp_mask & __GFP_NOFAIL) {
919				blk_congestion_wait(WRITE, HZ/50);
920				goto nofail_alloc;
921			}
922		}
923		goto nopage;
924	}
925
926	/* Atomic allocations - we can't balance anything */
927	if (!wait)
928		goto nopage;
929
930rebalance:
931	cond_resched();
932
933	/* We now go into synchronous reclaim */
934	p->flags |= PF_MEMALLOC;
935	reclaim_state.reclaimed_slab = 0;
936	p->reclaim_state = &reclaim_state;
937
938	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
939
940	p->reclaim_state = NULL;
941	p->flags &= ~PF_MEMALLOC;
942
943	cond_resched();
944
945	if (likely(did_some_progress)) {
946		page = get_page_from_freelist(gfp_mask, order,
947						zonelist, alloc_flags);
948		if (page)
949			goto got_pg;
950	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
951		/*
952		 * Go through the zonelist yet one more time, keep
953		 * very high watermark here, this is only to catch
954		 * a parallel oom killing, we must fail if we're still
955		 * under heavy pressure.
956		 */
957		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
958				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
959		if (page)
960			goto got_pg;
961
962		out_of_memory(gfp_mask, order);
963		goto restart;
964	}
965
966	/*
967	 * Don't let big-order allocations loop unless the caller explicitly
968	 * requests that.  Wait for some write requests to complete then retry.
969	 *
970	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
971	 * <= 3, but that may not be true in other implementations.
972	 */
973	do_retry = 0;
974	if (!(gfp_mask & __GFP_NORETRY)) {
975		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
976			do_retry = 1;
977		if (gfp_mask & __GFP_NOFAIL)
978			do_retry = 1;
979	}
980	if (do_retry) {
981		blk_congestion_wait(WRITE, HZ/50);
982		goto rebalance;
983	}
984
985nopage:
986	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
987		printk(KERN_WARNING "%s: page allocation failure."
988			" order:%d, mode:0x%x\n",
989			p->comm, order, gfp_mask);
990		dump_stack();
991		show_mem();
992	}
993got_pg:
994	return page;
995}
996
997EXPORT_SYMBOL(__alloc_pages);
998
999/*
1000 * Common helper functions.
1001 */
1002fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1003{
1004	struct page * page;
1005	page = alloc_pages(gfp_mask, order);
1006	if (!page)
1007		return 0;
1008	return (unsigned long) page_address(page);
1009}
1010
1011EXPORT_SYMBOL(__get_free_pages);
1012
1013fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1014{
1015	struct page * page;
1016
1017	/*
1018	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1019	 * a highmem page
1020	 */
1021	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1022
1023	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1024	if (page)
1025		return (unsigned long) page_address(page);
1026	return 0;
1027}
1028
1029EXPORT_SYMBOL(get_zeroed_page);
1030
1031void __pagevec_free(struct pagevec *pvec)
1032{
1033	int i = pagevec_count(pvec);
1034
1035	while (--i >= 0)
1036		free_hot_cold_page(pvec->pages[i], pvec->cold);
1037}
1038
1039fastcall void __free_pages(struct page *page, unsigned int order)
1040{
1041	if (put_page_testzero(page)) {
1042		if (order == 0)
1043			free_hot_page(page);
1044		else
1045			__free_pages_ok(page, order);
1046	}
1047}
1048
1049EXPORT_SYMBOL(__free_pages);
1050
1051fastcall void free_pages(unsigned long addr, unsigned int order)
1052{
1053	if (addr != 0) {
1054		BUG_ON(!virt_addr_valid((void *)addr));
1055		__free_pages(virt_to_page((void *)addr), order);
1056	}
1057}
1058
1059EXPORT_SYMBOL(free_pages);
1060
1061/*
1062 * Total amount of free (allocatable) RAM:
1063 */
1064unsigned int nr_free_pages(void)
1065{
1066	unsigned int sum = 0;
1067	struct zone *zone;
1068
1069	for_each_zone(zone)
1070		sum += zone->free_pages;
1071
1072	return sum;
1073}
1074
1075EXPORT_SYMBOL(nr_free_pages);
1076
1077#ifdef CONFIG_NUMA
1078unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1079{
1080	unsigned int i, sum = 0;
1081
1082	for (i = 0; i < MAX_NR_ZONES; i++)
1083		sum += pgdat->node_zones[i].free_pages;
1084
1085	return sum;
1086}
1087#endif
1088
1089static unsigned int nr_free_zone_pages(int offset)
1090{
1091	/* Just pick one node, since fallback list is circular */
1092	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1093	unsigned int sum = 0;
1094
1095	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1096	struct zone **zonep = zonelist->zones;
1097	struct zone *zone;
1098
1099	for (zone = *zonep++; zone; zone = *zonep++) {
1100		unsigned long size = zone->present_pages;
1101		unsigned long high = zone->pages_high;
1102		if (size > high)
1103			sum += size - high;
1104	}
1105
1106	return sum;
1107}
1108
1109/*
1110 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1111 */
1112unsigned int nr_free_buffer_pages(void)
1113{
1114	return nr_free_zone_pages(gfp_zone(GFP_USER));
1115}
1116
1117/*
1118 * Amount of free RAM allocatable within all zones
1119 */
1120unsigned int nr_free_pagecache_pages(void)
1121{
1122	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1123}
1124
1125#ifdef CONFIG_HIGHMEM
1126unsigned int nr_free_highpages (void)
1127{
1128	pg_data_t *pgdat;
1129	unsigned int pages = 0;
1130
1131	for_each_pgdat(pgdat)
1132		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1133
1134	return pages;
1135}
1136#endif
1137
1138#ifdef CONFIG_NUMA
1139static void show_node(struct zone *zone)
1140{
1141	printk("Node %d ", zone->zone_pgdat->node_id);
1142}
1143#else
1144#define show_node(zone)	do { } while (0)
1145#endif
1146
1147/*
1148 * Accumulate the page_state information across all CPUs.
1149 * The result is unavoidably approximate - it can change
1150 * during and after execution of this function.
1151 */
1152static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1153
1154atomic_t nr_pagecache = ATOMIC_INIT(0);
1155EXPORT_SYMBOL(nr_pagecache);
1156#ifdef CONFIG_SMP
1157DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1158#endif
1159
1160void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1161{
1162	int cpu = 0;
1163
1164	memset(ret, 0, sizeof(*ret));
1165	cpus_and(*cpumask, *cpumask, cpu_online_map);
1166
1167	cpu = first_cpu(*cpumask);
1168	while (cpu < NR_CPUS) {
1169		unsigned long *in, *out, off;
1170
1171		in = (unsigned long *)&per_cpu(page_states, cpu);
1172
1173		cpu = next_cpu(cpu, *cpumask);
1174
1175		if (cpu < NR_CPUS)
1176			prefetch(&per_cpu(page_states, cpu));
1177
1178		out = (unsigned long *)ret;
1179		for (off = 0; off < nr; off++)
1180			*out++ += *in++;
1181	}
1182}
1183
1184void get_page_state_node(struct page_state *ret, int node)
1185{
1186	int nr;
1187	cpumask_t mask = node_to_cpumask(node);
1188
1189	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1190	nr /= sizeof(unsigned long);
1191
1192	__get_page_state(ret, nr+1, &mask);
1193}
1194
1195void get_page_state(struct page_state *ret)
1196{
1197	int nr;
1198	cpumask_t mask = CPU_MASK_ALL;
1199
1200	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1201	nr /= sizeof(unsigned long);
1202
1203	__get_page_state(ret, nr + 1, &mask);
1204}
1205
1206void get_full_page_state(struct page_state *ret)
1207{
1208	cpumask_t mask = CPU_MASK_ALL;
1209
1210	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1211}
1212
1213unsigned long __read_page_state(unsigned long offset)
1214{
1215	unsigned long ret = 0;
1216	int cpu;
1217
1218	for_each_online_cpu(cpu) {
1219		unsigned long in;
1220
1221		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1222		ret += *((unsigned long *)in);
1223	}
1224	return ret;
1225}
1226
1227void __mod_page_state(unsigned long offset, unsigned long delta)
1228{
1229	unsigned long flags;
1230	void* ptr;
1231
1232	local_irq_save(flags);
1233	ptr = &__get_cpu_var(page_states);
1234	*(unsigned long*)(ptr + offset) += delta;
1235	local_irq_restore(flags);
1236}
1237
1238EXPORT_SYMBOL(__mod_page_state);
1239
1240void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1241			unsigned long *free, struct pglist_data *pgdat)
1242{
1243	struct zone *zones = pgdat->node_zones;
1244	int i;
1245
1246	*active = 0;
1247	*inactive = 0;
1248	*free = 0;
1249	for (i = 0; i < MAX_NR_ZONES; i++) {
1250		*active += zones[i].nr_active;
1251		*inactive += zones[i].nr_inactive;
1252		*free += zones[i].free_pages;
1253	}
1254}
1255
1256void get_zone_counts(unsigned long *active,
1257		unsigned long *inactive, unsigned long *free)
1258{
1259	struct pglist_data *pgdat;
1260
1261	*active = 0;
1262	*inactive = 0;
1263	*free = 0;
1264	for_each_pgdat(pgdat) {
1265		unsigned long l, m, n;
1266		__get_zone_counts(&l, &m, &n, pgdat);
1267		*active += l;
1268		*inactive += m;
1269		*free += n;
1270	}
1271}
1272
1273void si_meminfo(struct sysinfo *val)
1274{
1275	val->totalram = totalram_pages;
1276	val->sharedram = 0;
1277	val->freeram = nr_free_pages();
1278	val->bufferram = nr_blockdev_pages();
1279#ifdef CONFIG_HIGHMEM
1280	val->totalhigh = totalhigh_pages;
1281	val->freehigh = nr_free_highpages();
1282#else
1283	val->totalhigh = 0;
1284	val->freehigh = 0;
1285#endif
1286	val->mem_unit = PAGE_SIZE;
1287}
1288
1289EXPORT_SYMBOL(si_meminfo);
1290
1291#ifdef CONFIG_NUMA
1292void si_meminfo_node(struct sysinfo *val, int nid)
1293{
1294	pg_data_t *pgdat = NODE_DATA(nid);
1295
1296	val->totalram = pgdat->node_present_pages;
1297	val->freeram = nr_free_pages_pgdat(pgdat);
1298	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1299	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1300	val->mem_unit = PAGE_SIZE;
1301}
1302#endif
1303
1304#define K(x) ((x) << (PAGE_SHIFT-10))
1305
1306/*
1307 * Show free area list (used inside shift_scroll-lock stuff)
1308 * We also calculate the percentage fragmentation. We do this by counting the
1309 * memory on each free list with the exception of the first item on the list.
1310 */
1311void show_free_areas(void)
1312{
1313	struct page_state ps;
1314	int cpu, temperature;
1315	unsigned long active;
1316	unsigned long inactive;
1317	unsigned long free;
1318	struct zone *zone;
1319
1320	for_each_zone(zone) {
1321		show_node(zone);
1322		printk("%s per-cpu:", zone->name);
1323
1324		if (!zone->present_pages) {
1325			printk(" empty\n");
1326			continue;
1327		} else
1328			printk("\n");
1329
1330		for_each_online_cpu(cpu) {
1331			struct per_cpu_pageset *pageset;
1332
1333			pageset = zone_pcp(zone, cpu);
1334
1335			for (temperature = 0; temperature < 2; temperature++)
1336				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1337					cpu,
1338					temperature ? "cold" : "hot",
1339					pageset->pcp[temperature].low,
1340					pageset->pcp[temperature].high,
1341					pageset->pcp[temperature].batch,
1342					pageset->pcp[temperature].count);
1343		}
1344	}
1345
1346	get_page_state(&ps);
1347	get_zone_counts(&active, &inactive, &free);
1348
1349	printk("Free pages: %11ukB (%ukB HighMem)\n",
1350		K(nr_free_pages()),
1351		K(nr_free_highpages()));
1352
1353	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1354		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1355		active,
1356		inactive,
1357		ps.nr_dirty,
1358		ps.nr_writeback,
1359		ps.nr_unstable,
1360		nr_free_pages(),
1361		ps.nr_slab,
1362		ps.nr_mapped,
1363		ps.nr_page_table_pages);
1364
1365	for_each_zone(zone) {
1366		int i;
1367
1368		show_node(zone);
1369		printk("%s"
1370			" free:%lukB"
1371			" min:%lukB"
1372			" low:%lukB"
1373			" high:%lukB"
1374			" active:%lukB"
1375			" inactive:%lukB"
1376			" present:%lukB"
1377			" pages_scanned:%lu"
1378			" all_unreclaimable? %s"
1379			"\n",
1380			zone->name,
1381			K(zone->free_pages),
1382			K(zone->pages_min),
1383			K(zone->pages_low),
1384			K(zone->pages_high),
1385			K(zone->nr_active),
1386			K(zone->nr_inactive),
1387			K(zone->present_pages),
1388			zone->pages_scanned,
1389			(zone->all_unreclaimable ? "yes" : "no")
1390			);
1391		printk("lowmem_reserve[]:");
1392		for (i = 0; i < MAX_NR_ZONES; i++)
1393			printk(" %lu", zone->lowmem_reserve[i]);
1394		printk("\n");
1395	}
1396
1397	for_each_zone(zone) {
1398 		unsigned long nr, flags, order, total = 0;
1399
1400		show_node(zone);
1401		printk("%s: ", zone->name);
1402		if (!zone->present_pages) {
1403			printk("empty\n");
1404			continue;
1405		}
1406
1407		spin_lock_irqsave(&zone->lock, flags);
1408		for (order = 0; order < MAX_ORDER; order++) {
1409			nr = zone->free_area[order].nr_free;
1410			total += nr << order;
1411			printk("%lu*%lukB ", nr, K(1UL) << order);
1412		}
1413		spin_unlock_irqrestore(&zone->lock, flags);
1414		printk("= %lukB\n", K(total));
1415	}
1416
1417	show_swap_cache_info();
1418}
1419
1420/*
1421 * Builds allocation fallback zone lists.
1422 */
1423static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1424{
1425	switch (k) {
1426		struct zone *zone;
1427	default:
1428		BUG();
1429	case ZONE_HIGHMEM:
1430		zone = pgdat->node_zones + ZONE_HIGHMEM;
1431		if (zone->present_pages) {
1432#ifndef CONFIG_HIGHMEM
1433			BUG();
1434#endif
1435			zonelist->zones[j++] = zone;
1436		}
1437	case ZONE_NORMAL:
1438		zone = pgdat->node_zones + ZONE_NORMAL;
1439		if (zone->present_pages)
1440			zonelist->zones[j++] = zone;
1441	case ZONE_DMA32:
1442		zone = pgdat->node_zones + ZONE_DMA32;
1443		if (zone->present_pages)
1444			zonelist->zones[j++] = zone;
1445	case ZONE_DMA:
1446		zone = pgdat->node_zones + ZONE_DMA;
1447		if (zone->present_pages)
1448			zonelist->zones[j++] = zone;
1449	}
1450
1451	return j;
1452}
1453
1454static inline int highest_zone(int zone_bits)
1455{
1456	int res = ZONE_NORMAL;
1457	if (zone_bits & (__force int)__GFP_HIGHMEM)
1458		res = ZONE_HIGHMEM;
1459	if (zone_bits & (__force int)__GFP_DMA32)
1460		res = ZONE_DMA32;
1461	if (zone_bits & (__force int)__GFP_DMA)
1462		res = ZONE_DMA;
1463	return res;
1464}
1465
1466#ifdef CONFIG_NUMA
1467#define MAX_NODE_LOAD (num_online_nodes())
1468static int __initdata node_load[MAX_NUMNODES];
1469/**
1470 * find_next_best_node - find the next node that should appear in a given node's fallback list
1471 * @node: node whose fallback list we're appending
1472 * @used_node_mask: nodemask_t of already used nodes
1473 *
1474 * We use a number of factors to determine which is the next node that should
1475 * appear on a given node's fallback list.  The node should not have appeared
1476 * already in @node's fallback list, and it should be the next closest node
1477 * according to the distance array (which contains arbitrary distance values
1478 * from each node to each node in the system), and should also prefer nodes
1479 * with no CPUs, since presumably they'll have very little allocation pressure
1480 * on them otherwise.
1481 * It returns -1 if no node is found.
1482 */
1483static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1484{
1485	int i, n, val;
1486	int min_val = INT_MAX;
1487	int best_node = -1;
1488
1489	for_each_online_node(i) {
1490		cpumask_t tmp;
1491
1492		/* Start from local node */
1493		n = (node+i) % num_online_nodes();
1494
1495		/* Don't want a node to appear more than once */
1496		if (node_isset(n, *used_node_mask))
1497			continue;
1498
1499		/* Use the local node if we haven't already */
1500		if (!node_isset(node, *used_node_mask)) {
1501			best_node = node;
1502			break;
1503		}
1504
1505		/* Use the distance array to find the distance */
1506		val = node_distance(node, n);
1507
1508		/* Give preference to headless and unused nodes */
1509		tmp = node_to_cpumask(n);
1510		if (!cpus_empty(tmp))
1511			val += PENALTY_FOR_NODE_WITH_CPUS;
1512
1513		/* Slight preference for less loaded node */
1514		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1515		val += node_load[n];
1516
1517		if (val < min_val) {
1518			min_val = val;
1519			best_node = n;
1520		}
1521	}
1522
1523	if (best_node >= 0)
1524		node_set(best_node, *used_node_mask);
1525
1526	return best_node;
1527}
1528
1529static void __init build_zonelists(pg_data_t *pgdat)
1530{
1531	int i, j, k, node, local_node;
1532	int prev_node, load;
1533	struct zonelist *zonelist;
1534	nodemask_t used_mask;
1535
1536	/* initialize zonelists */
1537	for (i = 0; i < GFP_ZONETYPES; i++) {
1538		zonelist = pgdat->node_zonelists + i;
1539		zonelist->zones[0] = NULL;
1540	}
1541
1542	/* NUMA-aware ordering of nodes */
1543	local_node = pgdat->node_id;
1544	load = num_online_nodes();
1545	prev_node = local_node;
1546	nodes_clear(used_mask);
1547	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1548		/*
1549		 * We don't want to pressure a particular node.
1550		 * So adding penalty to the first node in same
1551		 * distance group to make it round-robin.
1552		 */
1553		if (node_distance(local_node, node) !=
1554				node_distance(local_node, prev_node))
1555			node_load[node] += load;
1556		prev_node = node;
1557		load--;
1558		for (i = 0; i < GFP_ZONETYPES; i++) {
1559			zonelist = pgdat->node_zonelists + i;
1560			for (j = 0; zonelist->zones[j] != NULL; j++);
1561
1562			k = highest_zone(i);
1563
1564	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1565			zonelist->zones[j] = NULL;
1566		}
1567	}
1568}
1569
1570#else	/* CONFIG_NUMA */
1571
1572static void __init build_zonelists(pg_data_t *pgdat)
1573{
1574	int i, j, k, node, local_node;
1575
1576	local_node = pgdat->node_id;
1577	for (i = 0; i < GFP_ZONETYPES; i++) {
1578		struct zonelist *zonelist;
1579
1580		zonelist = pgdat->node_zonelists + i;
1581
1582		j = 0;
1583		k = highest_zone(i);
1584 		j = build_zonelists_node(pgdat, zonelist, j, k);
1585 		/*
1586 		 * Now we build the zonelist so that it contains the zones
1587 		 * of all the other nodes.
1588 		 * We don't want to pressure a particular node, so when
1589 		 * building the zones for node N, we make sure that the
1590 		 * zones coming right after the local ones are those from
1591 		 * node N+1 (modulo N)
1592 		 */
1593		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1594			if (!node_online(node))
1595				continue;
1596			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1597		}
1598		for (node = 0; node < local_node; node++) {
1599			if (!node_online(node))
1600				continue;
1601			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1602		}
1603
1604		zonelist->zones[j] = NULL;
1605	}
1606}
1607
1608#endif	/* CONFIG_NUMA */
1609
1610void __init build_all_zonelists(void)
1611{
1612	int i;
1613
1614	for_each_online_node(i)
1615		build_zonelists(NODE_DATA(i));
1616	printk("Built %i zonelists\n", num_online_nodes());
1617	cpuset_init_current_mems_allowed();
1618}
1619
1620/*
1621 * Helper functions to size the waitqueue hash table.
1622 * Essentially these want to choose hash table sizes sufficiently
1623 * large so that collisions trying to wait on pages are rare.
1624 * But in fact, the number of active page waitqueues on typical
1625 * systems is ridiculously low, less than 200. So this is even
1626 * conservative, even though it seems large.
1627 *
1628 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1629 * waitqueues, i.e. the size of the waitq table given the number of pages.
1630 */
1631#define PAGES_PER_WAITQUEUE	256
1632
1633static inline unsigned long wait_table_size(unsigned long pages)
1634{
1635	unsigned long size = 1;
1636
1637	pages /= PAGES_PER_WAITQUEUE;
1638
1639	while (size < pages)
1640		size <<= 1;
1641
1642	/*
1643	 * Once we have dozens or even hundreds of threads sleeping
1644	 * on IO we've got bigger problems than wait queue collision.
1645	 * Limit the size of the wait table to a reasonable size.
1646	 */
1647	size = min(size, 4096UL);
1648
1649	return max(size, 4UL);
1650}
1651
1652/*
1653 * This is an integer logarithm so that shifts can be used later
1654 * to extract the more random high bits from the multiplicative
1655 * hash function before the remainder is taken.
1656 */
1657static inline unsigned long wait_table_bits(unsigned long size)
1658{
1659	return ffz(~size);
1660}
1661
1662#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1663
1664static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1665		unsigned long *zones_size, unsigned long *zholes_size)
1666{
1667	unsigned long realtotalpages, totalpages = 0;
1668	int i;
1669
1670	for (i = 0; i < MAX_NR_ZONES; i++)
1671		totalpages += zones_size[i];
1672	pgdat->node_spanned_pages = totalpages;
1673
1674	realtotalpages = totalpages;
1675	if (zholes_size)
1676		for (i = 0; i < MAX_NR_ZONES; i++)
1677			realtotalpages -= zholes_size[i];
1678	pgdat->node_present_pages = realtotalpages;
1679	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1680}
1681
1682
1683/*
1684 * Initially all pages are reserved - free ones are freed
1685 * up by free_all_bootmem() once the early boot process is
1686 * done. Non-atomic initialization, single-pass.
1687 */
1688void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1689		unsigned long start_pfn)
1690{
1691	struct page *page;
1692	unsigned long end_pfn = start_pfn + size;
1693	unsigned long pfn;
1694
1695	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1696		if (!early_pfn_valid(pfn))
1697			continue;
1698		page = pfn_to_page(pfn);
1699		set_page_links(page, zone, nid, pfn);
1700		set_page_count(page, 1);
1701		reset_page_mapcount(page);
1702		SetPageReserved(page);
1703		INIT_LIST_HEAD(&page->lru);
1704#ifdef WANT_PAGE_VIRTUAL
1705		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1706		if (!is_highmem_idx(zone))
1707			set_page_address(page, __va(pfn << PAGE_SHIFT));
1708#endif
1709	}
1710}
1711
1712void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1713				unsigned long size)
1714{
1715	int order;
1716	for (order = 0; order < MAX_ORDER ; order++) {
1717		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1718		zone->free_area[order].nr_free = 0;
1719	}
1720}
1721
1722#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1723void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1724		unsigned long size)
1725{
1726	unsigned long snum = pfn_to_section_nr(pfn);
1727	unsigned long end = pfn_to_section_nr(pfn + size);
1728
1729	if (FLAGS_HAS_NODE)
1730		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1731	else
1732		for (; snum <= end; snum++)
1733			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1734}
1735
1736#ifndef __HAVE_ARCH_MEMMAP_INIT
1737#define memmap_init(size, nid, zone, start_pfn) \
1738	memmap_init_zone((size), (nid), (zone), (start_pfn))
1739#endif
1740
1741static int __devinit zone_batchsize(struct zone *zone)
1742{
1743	int batch;
1744
1745	/*
1746	 * The per-cpu-pages pools are set to around 1000th of the
1747	 * size of the zone.  But no more than 1/2 of a meg.
1748	 *
1749	 * OK, so we don't know how big the cache is.  So guess.
1750	 */
1751	batch = zone->present_pages / 1024;
1752	if (batch * PAGE_SIZE > 512 * 1024)
1753		batch = (512 * 1024) / PAGE_SIZE;
1754	batch /= 4;		/* We effectively *= 4 below */
1755	if (batch < 1)
1756		batch = 1;
1757
1758	/*
1759	 * Clamp the batch to a 2^n - 1 value. Having a power
1760	 * of 2 value was found to be more likely to have
1761	 * suboptimal cache aliasing properties in some cases.
1762	 *
1763	 * For example if 2 tasks are alternately allocating
1764	 * batches of pages, one task can end up with a lot
1765	 * of pages of one half of the possible page colors
1766	 * and the other with pages of the other colors.
1767	 */
1768	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1769
1770	return batch;
1771}
1772
1773inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1774{
1775	struct per_cpu_pages *pcp;
1776
1777	memset(p, 0, sizeof(*p));
1778
1779	pcp = &p->pcp[0];		/* hot */
1780	pcp->count = 0;
1781	pcp->low = 0;
1782	pcp->high = 6 * batch;
1783	pcp->batch = max(1UL, 1 * batch);
1784	INIT_LIST_HEAD(&pcp->list);
1785
1786	pcp = &p->pcp[1];		/* cold*/
1787	pcp->count = 0;
1788	pcp->low = 0;
1789	pcp->high = 2 * batch;
1790	pcp->batch = max(1UL, batch/2);
1791	INIT_LIST_HEAD(&pcp->list);
1792}
1793
1794#ifdef CONFIG_NUMA
1795/*
1796 * Boot pageset table. One per cpu which is going to be used for all
1797 * zones and all nodes. The parameters will be set in such a way
1798 * that an item put on a list will immediately be handed over to
1799 * the buddy list. This is safe since pageset manipulation is done
1800 * with interrupts disabled.
1801 *
1802 * Some NUMA counter updates may also be caught by the boot pagesets.
1803 *
1804 * The boot_pagesets must be kept even after bootup is complete for
1805 * unused processors and/or zones. They do play a role for bootstrapping
1806 * hotplugged processors.
1807 *
1808 * zoneinfo_show() and maybe other functions do
1809 * not check if the processor is online before following the pageset pointer.
1810 * Other parts of the kernel may not check if the zone is available.
1811 */
1812static struct per_cpu_pageset
1813	boot_pageset[NR_CPUS];
1814
1815/*
1816 * Dynamically allocate memory for the
1817 * per cpu pageset array in struct zone.
1818 */
1819static int __devinit process_zones(int cpu)
1820{
1821	struct zone *zone, *dzone;
1822
1823	for_each_zone(zone) {
1824
1825		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1826					 GFP_KERNEL, cpu_to_node(cpu));
1827		if (!zone->pageset[cpu])
1828			goto bad;
1829
1830		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1831	}
1832
1833	return 0;
1834bad:
1835	for_each_zone(dzone) {
1836		if (dzone == zone)
1837			break;
1838		kfree(dzone->pageset[cpu]);
1839		dzone->pageset[cpu] = NULL;
1840	}
1841	return -ENOMEM;
1842}
1843
1844static inline void free_zone_pagesets(int cpu)
1845{
1846#ifdef CONFIG_NUMA
1847	struct zone *zone;
1848
1849	for_each_zone(zone) {
1850		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1851
1852		zone_pcp(zone, cpu) = NULL;
1853		kfree(pset);
1854	}
1855#endif
1856}
1857
1858static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1859		unsigned long action,
1860		void *hcpu)
1861{
1862	int cpu = (long)hcpu;
1863	int ret = NOTIFY_OK;
1864
1865	switch (action) {
1866		case CPU_UP_PREPARE:
1867			if (process_zones(cpu))
1868				ret = NOTIFY_BAD;
1869			break;
1870		case CPU_UP_CANCELED:
1871		case CPU_DEAD:
1872			free_zone_pagesets(cpu);
1873			break;
1874		default:
1875			break;
1876	}
1877	return ret;
1878}
1879
1880static struct notifier_block pageset_notifier =
1881	{ &pageset_cpuup_callback, NULL, 0 };
1882
1883void __init setup_per_cpu_pageset(void)
1884{
1885	int err;
1886
1887	/* Initialize per_cpu_pageset for cpu 0.
1888	 * A cpuup callback will do this for every cpu
1889	 * as it comes online
1890	 */
1891	err = process_zones(smp_processor_id());
1892	BUG_ON(err);
1893	register_cpu_notifier(&pageset_notifier);
1894}
1895
1896#endif
1897
1898static __devinit
1899void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1900{
1901	int i;
1902	struct pglist_data *pgdat = zone->zone_pgdat;
1903
1904	/*
1905	 * The per-page waitqueue mechanism uses hashed waitqueues
1906	 * per zone.
1907	 */
1908	zone->wait_table_size = wait_table_size(zone_size_pages);
1909	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1910	zone->wait_table = (wait_queue_head_t *)
1911		alloc_bootmem_node(pgdat, zone->wait_table_size
1912					* sizeof(wait_queue_head_t));
1913
1914	for(i = 0; i < zone->wait_table_size; ++i)
1915		init_waitqueue_head(zone->wait_table + i);
1916}
1917
1918static __devinit void zone_pcp_init(struct zone *zone)
1919{
1920	int cpu;
1921	unsigned long batch = zone_batchsize(zone);
1922
1923	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1924#ifdef CONFIG_NUMA
1925		/* Early boot. Slab allocator not functional yet */
1926		zone->pageset[cpu] = &boot_pageset[cpu];
1927		setup_pageset(&boot_pageset[cpu],0);
1928#else
1929		setup_pageset(zone_pcp(zone,cpu), batch);
1930#endif
1931	}
1932	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1933		zone->name, zone->present_pages, batch);
1934}
1935
1936static __devinit void init_currently_empty_zone(struct zone *zone,
1937		unsigned long zone_start_pfn, unsigned long size)
1938{
1939	struct pglist_data *pgdat = zone->zone_pgdat;
1940
1941	zone_wait_table_init(zone, size);
1942	pgdat->nr_zones = zone_idx(zone) + 1;
1943
1944	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1945	zone->zone_start_pfn = zone_start_pfn;
1946
1947	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1948
1949	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1950}
1951
1952/*
1953 * Set up the zone data structures:
1954 *   - mark all pages reserved
1955 *   - mark all memory queues empty
1956 *   - clear the memory bitmaps
1957 */
1958static void __init free_area_init_core(struct pglist_data *pgdat,
1959		unsigned long *zones_size, unsigned long *zholes_size)
1960{
1961	unsigned long j;
1962	int nid = pgdat->node_id;
1963	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1964
1965	pgdat_resize_init(pgdat);
1966	pgdat->nr_zones = 0;
1967	init_waitqueue_head(&pgdat->kswapd_wait);
1968	pgdat->kswapd_max_order = 0;
1969
1970	for (j = 0; j < MAX_NR_ZONES; j++) {
1971		struct zone *zone = pgdat->node_zones + j;
1972		unsigned long size, realsize;
1973
1974		realsize = size = zones_size[j];
1975		if (zholes_size)
1976			realsize -= zholes_size[j];
1977
1978		if (j < ZONE_HIGHMEM)
1979			nr_kernel_pages += realsize;
1980		nr_all_pages += realsize;
1981
1982		zone->spanned_pages = size;
1983		zone->present_pages = realsize;
1984		zone->name = zone_names[j];
1985		spin_lock_init(&zone->lock);
1986		spin_lock_init(&zone->lru_lock);
1987		zone_seqlock_init(zone);
1988		zone->zone_pgdat = pgdat;
1989		zone->free_pages = 0;
1990
1991		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1992
1993		zone_pcp_init(zone);
1994		INIT_LIST_HEAD(&zone->active_list);
1995		INIT_LIST_HEAD(&zone->inactive_list);
1996		zone->nr_scan_active = 0;
1997		zone->nr_scan_inactive = 0;
1998		zone->nr_active = 0;
1999		zone->nr_inactive = 0;
2000		atomic_set(&zone->reclaim_in_progress, 0);
2001		if (!size)
2002			continue;
2003
2004		zonetable_add(zone, nid, j, zone_start_pfn, size);
2005		init_currently_empty_zone(zone, zone_start_pfn, size);
2006		zone_start_pfn += size;
2007	}
2008}
2009
2010static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2011{
2012	/* Skip empty nodes */
2013	if (!pgdat->node_spanned_pages)
2014		return;
2015
2016#ifdef CONFIG_FLAT_NODE_MEM_MAP
2017	/* ia64 gets its own node_mem_map, before this, without bootmem */
2018	if (!pgdat->node_mem_map) {
2019		unsigned long size;
2020		struct page *map;
2021
2022		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2023		map = alloc_remap(pgdat->node_id, size);
2024		if (!map)
2025			map = alloc_bootmem_node(pgdat, size);
2026		pgdat->node_mem_map = map;
2027	}
2028#ifdef CONFIG_FLATMEM
2029	/*
2030	 * With no DISCONTIG, the global mem_map is just set as node 0's
2031	 */
2032	if (pgdat == NODE_DATA(0))
2033		mem_map = NODE_DATA(0)->node_mem_map;
2034#endif
2035#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2036}
2037
2038void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2039		unsigned long *zones_size, unsigned long node_start_pfn,
2040		unsigned long *zholes_size)
2041{
2042	pgdat->node_id = nid;
2043	pgdat->node_start_pfn = node_start_pfn;
2044	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2045
2046	alloc_node_mem_map(pgdat);
2047
2048	free_area_init_core(pgdat, zones_size, zholes_size);
2049}
2050
2051#ifndef CONFIG_NEED_MULTIPLE_NODES
2052static bootmem_data_t contig_bootmem_data;
2053struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2054
2055EXPORT_SYMBOL(contig_page_data);
2056#endif
2057
2058void __init free_area_init(unsigned long *zones_size)
2059{
2060	free_area_init_node(0, NODE_DATA(0), zones_size,
2061			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2062}
2063
2064#ifdef CONFIG_PROC_FS
2065
2066#include <linux/seq_file.h>
2067
2068static void *frag_start(struct seq_file *m, loff_t *pos)
2069{
2070	pg_data_t *pgdat;
2071	loff_t node = *pos;
2072
2073	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2074		--node;
2075
2076	return pgdat;
2077}
2078
2079static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2080{
2081	pg_data_t *pgdat = (pg_data_t *)arg;
2082
2083	(*pos)++;
2084	return pgdat->pgdat_next;
2085}
2086
2087static void frag_stop(struct seq_file *m, void *arg)
2088{
2089}
2090
2091/*
2092 * This walks the free areas for each zone.
2093 */
2094static int frag_show(struct seq_file *m, void *arg)
2095{
2096	pg_data_t *pgdat = (pg_data_t *)arg;
2097	struct zone *zone;
2098	struct zone *node_zones = pgdat->node_zones;
2099	unsigned long flags;
2100	int order;
2101
2102	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2103		if (!zone->present_pages)
2104			continue;
2105
2106		spin_lock_irqsave(&zone->lock, flags);
2107		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2108		for (order = 0; order < MAX_ORDER; ++order)
2109			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2110		spin_unlock_irqrestore(&zone->lock, flags);
2111		seq_putc(m, '\n');
2112	}
2113	return 0;
2114}
2115
2116struct seq_operations fragmentation_op = {
2117	.start	= frag_start,
2118	.next	= frag_next,
2119	.stop	= frag_stop,
2120	.show	= frag_show,
2121};
2122
2123/*
2124 * Output information about zones in @pgdat.
2125 */
2126static int zoneinfo_show(struct seq_file *m, void *arg)
2127{
2128	pg_data_t *pgdat = arg;
2129	struct zone *zone;
2130	struct zone *node_zones = pgdat->node_zones;
2131	unsigned long flags;
2132
2133	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2134		int i;
2135
2136		if (!zone->present_pages)
2137			continue;
2138
2139		spin_lock_irqsave(&zone->lock, flags);
2140		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2141		seq_printf(m,
2142			   "\n  pages free     %lu"
2143			   "\n        min      %lu"
2144			   "\n        low      %lu"
2145			   "\n        high     %lu"
2146			   "\n        active   %lu"
2147			   "\n        inactive %lu"
2148			   "\n        scanned  %lu (a: %lu i: %lu)"
2149			   "\n        spanned  %lu"
2150			   "\n        present  %lu",
2151			   zone->free_pages,
2152			   zone->pages_min,
2153			   zone->pages_low,
2154			   zone->pages_high,
2155			   zone->nr_active,
2156			   zone->nr_inactive,
2157			   zone->pages_scanned,
2158			   zone->nr_scan_active, zone->nr_scan_inactive,
2159			   zone->spanned_pages,
2160			   zone->present_pages);
2161		seq_printf(m,
2162			   "\n        protection: (%lu",
2163			   zone->lowmem_reserve[0]);
2164		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2165			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2166		seq_printf(m,
2167			   ")"
2168			   "\n  pagesets");
2169		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2170			struct per_cpu_pageset *pageset;
2171			int j;
2172
2173			pageset = zone_pcp(zone, i);
2174			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2175				if (pageset->pcp[j].count)
2176					break;
2177			}
2178			if (j == ARRAY_SIZE(pageset->pcp))
2179				continue;
2180			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2181				seq_printf(m,
2182					   "\n    cpu: %i pcp: %i"
2183					   "\n              count: %i"
2184					   "\n              low:   %i"
2185					   "\n              high:  %i"
2186					   "\n              batch: %i",
2187					   i, j,
2188					   pageset->pcp[j].count,
2189					   pageset->pcp[j].low,
2190					   pageset->pcp[j].high,
2191					   pageset->pcp[j].batch);
2192			}
2193#ifdef CONFIG_NUMA
2194			seq_printf(m,
2195				   "\n            numa_hit:       %lu"
2196				   "\n            numa_miss:      %lu"
2197				   "\n            numa_foreign:   %lu"
2198				   "\n            interleave_hit: %lu"
2199				   "\n            local_node:     %lu"
2200				   "\n            other_node:     %lu",
2201				   pageset->numa_hit,
2202				   pageset->numa_miss,
2203				   pageset->numa_foreign,
2204				   pageset->interleave_hit,
2205				   pageset->local_node,
2206				   pageset->other_node);
2207#endif
2208		}
2209		seq_printf(m,
2210			   "\n  all_unreclaimable: %u"
2211			   "\n  prev_priority:     %i"
2212			   "\n  temp_priority:     %i"
2213			   "\n  start_pfn:         %lu",
2214			   zone->all_unreclaimable,
2215			   zone->prev_priority,
2216			   zone->temp_priority,
2217			   zone->zone_start_pfn);
2218		spin_unlock_irqrestore(&zone->lock, flags);
2219		seq_putc(m, '\n');
2220	}
2221	return 0;
2222}
2223
2224struct seq_operations zoneinfo_op = {
2225	.start	= frag_start, /* iterate over all zones. The same as in
2226			       * fragmentation. */
2227	.next	= frag_next,
2228	.stop	= frag_stop,
2229	.show	= zoneinfo_show,
2230};
2231
2232static char *vmstat_text[] = {
2233	"nr_dirty",
2234	"nr_writeback",
2235	"nr_unstable",
2236	"nr_page_table_pages",
2237	"nr_mapped",
2238	"nr_slab",
2239
2240	"pgpgin",
2241	"pgpgout",
2242	"pswpin",
2243	"pswpout",
2244	"pgalloc_high",
2245
2246	"pgalloc_normal",
2247	"pgalloc_dma",
2248	"pgfree",
2249	"pgactivate",
2250	"pgdeactivate",
2251
2252	"pgfault",
2253	"pgmajfault",
2254	"pgrefill_high",
2255	"pgrefill_normal",
2256	"pgrefill_dma",
2257
2258	"pgsteal_high",
2259	"pgsteal_normal",
2260	"pgsteal_dma",
2261	"pgscan_kswapd_high",
2262	"pgscan_kswapd_normal",
2263
2264	"pgscan_kswapd_dma",
2265	"pgscan_direct_high",
2266	"pgscan_direct_normal",
2267	"pgscan_direct_dma",
2268	"pginodesteal",
2269
2270	"slabs_scanned",
2271	"kswapd_steal",
2272	"kswapd_inodesteal",
2273	"pageoutrun",
2274	"allocstall",
2275
2276	"pgrotated",
2277	"nr_bounce",
2278};
2279
2280static void *vmstat_start(struct seq_file *m, loff_t *pos)
2281{
2282	struct page_state *ps;
2283
2284	if (*pos >= ARRAY_SIZE(vmstat_text))
2285		return NULL;
2286
2287	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2288	m->private = ps;
2289	if (!ps)
2290		return ERR_PTR(-ENOMEM);
2291	get_full_page_state(ps);
2292	ps->pgpgin /= 2;		/* sectors -> kbytes */
2293	ps->pgpgout /= 2;
2294	return (unsigned long *)ps + *pos;
2295}
2296
2297static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2298{
2299	(*pos)++;
2300	if (*pos >= ARRAY_SIZE(vmstat_text))
2301		return NULL;
2302	return (unsigned long *)m->private + *pos;
2303}
2304
2305static int vmstat_show(struct seq_file *m, void *arg)
2306{
2307	unsigned long *l = arg;
2308	unsigned long off = l - (unsigned long *)m->private;
2309
2310	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2311	return 0;
2312}
2313
2314static void vmstat_stop(struct seq_file *m, void *arg)
2315{
2316	kfree(m->private);
2317	m->private = NULL;
2318}
2319
2320struct seq_operations vmstat_op = {
2321	.start	= vmstat_start,
2322	.next	= vmstat_next,
2323	.stop	= vmstat_stop,
2324	.show	= vmstat_show,
2325};
2326
2327#endif /* CONFIG_PROC_FS */
2328
2329#ifdef CONFIG_HOTPLUG_CPU
2330static int page_alloc_cpu_notify(struct notifier_block *self,
2331				 unsigned long action, void *hcpu)
2332{
2333	int cpu = (unsigned long)hcpu;
2334	long *count;
2335	unsigned long *src, *dest;
2336
2337	if (action == CPU_DEAD) {
2338		int i;
2339
2340		/* Drain local pagecache count. */
2341		count = &per_cpu(nr_pagecache_local, cpu);
2342		atomic_add(*count, &nr_pagecache);
2343		*count = 0;
2344		local_irq_disable();
2345		__drain_pages(cpu);
2346
2347		/* Add dead cpu's page_states to our own. */
2348		dest = (unsigned long *)&__get_cpu_var(page_states);
2349		src = (unsigned long *)&per_cpu(page_states, cpu);
2350
2351		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2352				i++) {
2353			dest[i] += src[i];
2354			src[i] = 0;
2355		}
2356
2357		local_irq_enable();
2358	}
2359	return NOTIFY_OK;
2360}
2361#endif /* CONFIG_HOTPLUG_CPU */
2362
2363void __init page_alloc_init(void)
2364{
2365	hotcpu_notifier(page_alloc_cpu_notify, 0);
2366}
2367
2368/*
2369 * setup_per_zone_lowmem_reserve - called whenever
2370 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2371 *	has a correct pages reserved value, so an adequate number of
2372 *	pages are left in the zone after a successful __alloc_pages().
2373 */
2374static void setup_per_zone_lowmem_reserve(void)
2375{
2376	struct pglist_data *pgdat;
2377	int j, idx;
2378
2379	for_each_pgdat(pgdat) {
2380		for (j = 0; j < MAX_NR_ZONES; j++) {
2381			struct zone *zone = pgdat->node_zones + j;
2382			unsigned long present_pages = zone->present_pages;
2383
2384			zone->lowmem_reserve[j] = 0;
2385
2386			for (idx = j-1; idx >= 0; idx--) {
2387				struct zone *lower_zone;
2388
2389				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2390					sysctl_lowmem_reserve_ratio[idx] = 1;
2391
2392				lower_zone = pgdat->node_zones + idx;
2393				lower_zone->lowmem_reserve[j] = present_pages /
2394					sysctl_lowmem_reserve_ratio[idx];
2395				present_pages += lower_zone->present_pages;
2396			}
2397		}
2398	}
2399}
2400
2401/*
2402 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2403 *	that the pages_{min,low,high} values for each zone are set correctly
2404 *	with respect to min_free_kbytes.
2405 */
2406void setup_per_zone_pages_min(void)
2407{
2408	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2409	unsigned long lowmem_pages = 0;
2410	struct zone *zone;
2411	unsigned long flags;
2412
2413	/* Calculate total number of !ZONE_HIGHMEM pages */
2414	for_each_zone(zone) {
2415		if (!is_highmem(zone))
2416			lowmem_pages += zone->present_pages;
2417	}
2418
2419	for_each_zone(zone) {
2420		unsigned long tmp;
2421		spin_lock_irqsave(&zone->lru_lock, flags);
2422		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2423		if (is_highmem(zone)) {
2424			/*
2425			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2426			 * need highmem pages, so cap pages_min to a small
2427			 * value here.
2428			 *
2429			 * The (pages_high-pages_low) and (pages_low-pages_min)
2430			 * deltas controls asynch page reclaim, and so should
2431			 * not be capped for highmem.
2432			 */
2433			int min_pages;
2434
2435			min_pages = zone->present_pages / 1024;
2436			if (min_pages < SWAP_CLUSTER_MAX)
2437				min_pages = SWAP_CLUSTER_MAX;
2438			if (min_pages > 128)
2439				min_pages = 128;
2440			zone->pages_min = min_pages;
2441		} else {
2442			/*
2443			 * If it's a lowmem zone, reserve a number of pages
2444			 * proportionate to the zone's size.
2445			 */
2446			zone->pages_min = tmp;
2447		}
2448
2449		zone->pages_low   = zone->pages_min + tmp / 4;
2450		zone->pages_high  = zone->pages_min + tmp / 2;
2451		spin_unlock_irqrestore(&zone->lru_lock, flags);
2452	}
2453}
2454
2455/*
2456 * Initialise min_free_kbytes.
2457 *
2458 * For small machines we want it small (128k min).  For large machines
2459 * we want it large (64MB max).  But it is not linear, because network
2460 * bandwidth does not increase linearly with machine size.  We use
2461 *
2462 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2463 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2464 *
2465 * which yields
2466 *
2467 * 16MB:	512k
2468 * 32MB:	724k
2469 * 64MB:	1024k
2470 * 128MB:	1448k
2471 * 256MB:	2048k
2472 * 512MB:	2896k
2473 * 1024MB:	4096k
2474 * 2048MB:	5792k
2475 * 4096MB:	8192k
2476 * 8192MB:	11584k
2477 * 16384MB:	16384k
2478 */
2479static int __init init_per_zone_pages_min(void)
2480{
2481	unsigned long lowmem_kbytes;
2482
2483	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2484
2485	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2486	if (min_free_kbytes < 128)
2487		min_free_kbytes = 128;
2488	if (min_free_kbytes > 65536)
2489		min_free_kbytes = 65536;
2490	setup_per_zone_pages_min();
2491	setup_per_zone_lowmem_reserve();
2492	return 0;
2493}
2494module_init(init_per_zone_pages_min)
2495
2496/*
2497 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2498 *	that we can call two helper functions whenever min_free_kbytes
2499 *	changes.
2500 */
2501int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2502	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2503{
2504	proc_dointvec(table, write, file, buffer, length, ppos);
2505	setup_per_zone_pages_min();
2506	return 0;
2507}
2508
2509/*
2510 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2511 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2512 *	whenever sysctl_lowmem_reserve_ratio changes.
2513 *
2514 * The reserve ratio obviously has absolutely no relation with the
2515 * pages_min watermarks. The lowmem reserve ratio can only make sense
2516 * if in function of the boot time zone sizes.
2517 */
2518int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2519	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2520{
2521	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2522	setup_per_zone_lowmem_reserve();
2523	return 0;
2524}
2525
2526__initdata int hashdist = HASHDIST_DEFAULT;
2527
2528#ifdef CONFIG_NUMA
2529static int __init set_hashdist(char *str)
2530{
2531	if (!str)
2532		return 0;
2533	hashdist = simple_strtoul(str, &str, 0);
2534	return 1;
2535}
2536__setup("hashdist=", set_hashdist);
2537#endif
2538
2539/*
2540 * allocate a large system hash table from bootmem
2541 * - it is assumed that the hash table must contain an exact power-of-2
2542 *   quantity of entries
2543 * - limit is the number of hash buckets, not the total allocation size
2544 */
2545void *__init alloc_large_system_hash(const char *tablename,
2546				     unsigned long bucketsize,
2547				     unsigned long numentries,
2548				     int scale,
2549				     int flags,
2550				     unsigned int *_hash_shift,
2551				     unsigned int *_hash_mask,
2552				     unsigned long limit)
2553{
2554	unsigned long long max = limit;
2555	unsigned long log2qty, size;
2556	void *table = NULL;
2557
2558	/* allow the kernel cmdline to have a say */
2559	if (!numentries) {
2560		/* round applicable memory size up to nearest megabyte */
2561		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2562		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2563		numentries >>= 20 - PAGE_SHIFT;
2564		numentries <<= 20 - PAGE_SHIFT;
2565
2566		/* limit to 1 bucket per 2^scale bytes of low memory */
2567		if (scale > PAGE_SHIFT)
2568			numentries >>= (scale - PAGE_SHIFT);
2569		else
2570			numentries <<= (PAGE_SHIFT - scale);
2571	}
2572	/* rounded up to nearest power of 2 in size */
2573	numentries = 1UL << (long_log2(numentries) + 1);
2574
2575	/* limit allocation size to 1/16 total memory by default */
2576	if (max == 0) {
2577		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2578		do_div(max, bucketsize);
2579	}
2580
2581	if (numentries > max)
2582		numentries = max;
2583
2584	log2qty = long_log2(numentries);
2585
2586	do {
2587		size = bucketsize << log2qty;
2588		if (flags & HASH_EARLY)
2589			table = alloc_bootmem(size);
2590		else if (hashdist)
2591			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2592		else {
2593			unsigned long order;
2594			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2595				;
2596			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2597		}
2598	} while (!table && size > PAGE_SIZE && --log2qty);
2599
2600	if (!table)
2601		panic("Failed to allocate %s hash table\n", tablename);
2602
2603	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2604	       tablename,
2605	       (1U << log2qty),
2606	       long_log2(size) - PAGE_SHIFT,
2607	       size);
2608
2609	if (_hash_shift)
2610		*_hash_shift = log2qty;
2611	if (_hash_mask)
2612		*_hash_mask = (1 << log2qty) - 1;
2613
2614	return table;
2615}
2616