page_alloc.c revision 7f33d49a2ed546e01f7b1d0607661810f2421859
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49#include <linux/kmemleak.h>
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53#include "internal.h"
54
55/*
56 * Array of node states.
57 */
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59	[N_POSSIBLE] = NODE_MASK_ALL,
60	[N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64	[N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66	[N_CPU] = { { [0] = 1UL } },
67#endif	/* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
71unsigned long totalram_pages __read_mostly;
72unsigned long totalreserve_pages __read_mostly;
73unsigned long highest_memmap_pfn __read_mostly;
74int percpu_pagelist_fraction;
75
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
80static void __free_pages_ok(struct page *page, unsigned int order);
81
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 *	1G machine -> (16M dma, 784M normal, 224M high)
86 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94#ifdef CONFIG_ZONE_DMA
95	 256,
96#endif
97#ifdef CONFIG_ZONE_DMA32
98	 256,
99#endif
100#ifdef CONFIG_HIGHMEM
101	 32,
102#endif
103	 32,
104};
105
106EXPORT_SYMBOL(totalram_pages);
107
108static char * const zone_names[MAX_NR_ZONES] = {
109#ifdef CONFIG_ZONE_DMA
110	 "DMA",
111#endif
112#ifdef CONFIG_ZONE_DMA32
113	 "DMA32",
114#endif
115	 "Normal",
116#ifdef CONFIG_HIGHMEM
117	 "HighMem",
118#endif
119	 "Movable",
120};
121
122int min_free_kbytes = 1024;
123
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
126static unsigned long __meminitdata dma_reserve;
127
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129  /*
130   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131   * ranges of memory (RAM) that may be registered with add_active_range().
132   * Ranges passed to add_active_range() will be merged if possible
133   * so the number of times add_active_range() can be called is
134   * related to the number of nodes and the number of holes
135   */
136  #ifdef CONFIG_MAX_ACTIVE_REGIONS
137    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139  #else
140    #if MAX_NUMNODES >= 32
141      /* If there can be many nodes, allow up to 50 holes per node */
142      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143    #else
144      /* By default, allow up to 256 distinct regions */
145      #define MAX_ACTIVE_REGIONS 256
146    #endif
147  #endif
148
149  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150  static int __meminitdata nr_nodemap_entries;
151  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153  static unsigned long __initdata required_kernelcore;
154  static unsigned long __initdata required_movablecore;
155  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158  int movable_zone;
159  EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164int nr_online_nodes __read_mostly = 1;
165EXPORT_SYMBOL(nr_node_ids);
166EXPORT_SYMBOL(nr_online_nodes);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173
174	if (unlikely(page_group_by_mobility_disabled))
175		migratetype = MIGRATE_UNMOVABLE;
176
177	set_pageblock_flags_group(page, (unsigned long)migratetype,
178					PB_migrate, PB_migrate_end);
179}
180
181bool oom_killer_disabled __read_mostly;
182
183#ifdef CONFIG_DEBUG_VM
184static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
185{
186	int ret = 0;
187	unsigned seq;
188	unsigned long pfn = page_to_pfn(page);
189
190	do {
191		seq = zone_span_seqbegin(zone);
192		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
193			ret = 1;
194		else if (pfn < zone->zone_start_pfn)
195			ret = 1;
196	} while (zone_span_seqretry(zone, seq));
197
198	return ret;
199}
200
201static int page_is_consistent(struct zone *zone, struct page *page)
202{
203	if (!pfn_valid_within(page_to_pfn(page)))
204		return 0;
205	if (zone != page_zone(page))
206		return 0;
207
208	return 1;
209}
210/*
211 * Temporary debugging check for pages not lying within a given zone.
212 */
213static int bad_range(struct zone *zone, struct page *page)
214{
215	if (page_outside_zone_boundaries(zone, page))
216		return 1;
217	if (!page_is_consistent(zone, page))
218		return 1;
219
220	return 0;
221}
222#else
223static inline int bad_range(struct zone *zone, struct page *page)
224{
225	return 0;
226}
227#endif
228
229static void bad_page(struct page *page)
230{
231	static unsigned long resume;
232	static unsigned long nr_shown;
233	static unsigned long nr_unshown;
234
235	/*
236	 * Allow a burst of 60 reports, then keep quiet for that minute;
237	 * or allow a steady drip of one report per second.
238	 */
239	if (nr_shown == 60) {
240		if (time_before(jiffies, resume)) {
241			nr_unshown++;
242			goto out;
243		}
244		if (nr_unshown) {
245			printk(KERN_ALERT
246			      "BUG: Bad page state: %lu messages suppressed\n",
247				nr_unshown);
248			nr_unshown = 0;
249		}
250		nr_shown = 0;
251	}
252	if (nr_shown++ == 0)
253		resume = jiffies + 60 * HZ;
254
255	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
256		current->comm, page_to_pfn(page));
257	printk(KERN_ALERT
258		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
259		page, (void *)page->flags, page_count(page),
260		page_mapcount(page), page->mapping, page->index);
261
262	dump_stack();
263out:
264	/* Leave bad fields for debug, except PageBuddy could make trouble */
265	__ClearPageBuddy(page);
266	add_taint(TAINT_BAD_PAGE);
267}
268
269/*
270 * Higher-order pages are called "compound pages".  They are structured thusly:
271 *
272 * The first PAGE_SIZE page is called the "head page".
273 *
274 * The remaining PAGE_SIZE pages are called "tail pages".
275 *
276 * All pages have PG_compound set.  All pages have their ->private pointing at
277 * the head page (even the head page has this).
278 *
279 * The first tail page's ->lru.next holds the address of the compound page's
280 * put_page() function.  Its ->lru.prev holds the order of allocation.
281 * This usage means that zero-order pages may not be compound.
282 */
283
284static void free_compound_page(struct page *page)
285{
286	__free_pages_ok(page, compound_order(page));
287}
288
289void prep_compound_page(struct page *page, unsigned long order)
290{
291	int i;
292	int nr_pages = 1 << order;
293
294	set_compound_page_dtor(page, free_compound_page);
295	set_compound_order(page, order);
296	__SetPageHead(page);
297	for (i = 1; i < nr_pages; i++) {
298		struct page *p = page + i;
299
300		__SetPageTail(p);
301		p->first_page = page;
302	}
303}
304
305static int destroy_compound_page(struct page *page, unsigned long order)
306{
307	int i;
308	int nr_pages = 1 << order;
309	int bad = 0;
310
311	if (unlikely(compound_order(page) != order) ||
312	    unlikely(!PageHead(page))) {
313		bad_page(page);
314		bad++;
315	}
316
317	__ClearPageHead(page);
318
319	for (i = 1; i < nr_pages; i++) {
320		struct page *p = page + i;
321
322		if (unlikely(!PageTail(p) || (p->first_page != page))) {
323			bad_page(page);
324			bad++;
325		}
326		__ClearPageTail(p);
327	}
328
329	return bad;
330}
331
332static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
333{
334	int i;
335
336	/*
337	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
338	 * and __GFP_HIGHMEM from hard or soft interrupt context.
339	 */
340	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
341	for (i = 0; i < (1 << order); i++)
342		clear_highpage(page + i);
343}
344
345static inline void set_page_order(struct page *page, int order)
346{
347	set_page_private(page, order);
348	__SetPageBuddy(page);
349}
350
351static inline void rmv_page_order(struct page *page)
352{
353	__ClearPageBuddy(page);
354	set_page_private(page, 0);
355}
356
357/*
358 * Locate the struct page for both the matching buddy in our
359 * pair (buddy1) and the combined O(n+1) page they form (page).
360 *
361 * 1) Any buddy B1 will have an order O twin B2 which satisfies
362 * the following equation:
363 *     B2 = B1 ^ (1 << O)
364 * For example, if the starting buddy (buddy2) is #8 its order
365 * 1 buddy is #10:
366 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
367 *
368 * 2) Any buddy B will have an order O+1 parent P which
369 * satisfies the following equation:
370 *     P = B & ~(1 << O)
371 *
372 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
373 */
374static inline struct page *
375__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
376{
377	unsigned long buddy_idx = page_idx ^ (1 << order);
378
379	return page + (buddy_idx - page_idx);
380}
381
382static inline unsigned long
383__find_combined_index(unsigned long page_idx, unsigned int order)
384{
385	return (page_idx & ~(1 << order));
386}
387
388/*
389 * This function checks whether a page is free && is the buddy
390 * we can do coalesce a page and its buddy if
391 * (a) the buddy is not in a hole &&
392 * (b) the buddy is in the buddy system &&
393 * (c) a page and its buddy have the same order &&
394 * (d) a page and its buddy are in the same zone.
395 *
396 * For recording whether a page is in the buddy system, we use PG_buddy.
397 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
398 *
399 * For recording page's order, we use page_private(page).
400 */
401static inline int page_is_buddy(struct page *page, struct page *buddy,
402								int order)
403{
404	if (!pfn_valid_within(page_to_pfn(buddy)))
405		return 0;
406
407	if (page_zone_id(page) != page_zone_id(buddy))
408		return 0;
409
410	if (PageBuddy(buddy) && page_order(buddy) == order) {
411		VM_BUG_ON(page_count(buddy) != 0);
412		return 1;
413	}
414	return 0;
415}
416
417/*
418 * Freeing function for a buddy system allocator.
419 *
420 * The concept of a buddy system is to maintain direct-mapped table
421 * (containing bit values) for memory blocks of various "orders".
422 * The bottom level table contains the map for the smallest allocatable
423 * units of memory (here, pages), and each level above it describes
424 * pairs of units from the levels below, hence, "buddies".
425 * At a high level, all that happens here is marking the table entry
426 * at the bottom level available, and propagating the changes upward
427 * as necessary, plus some accounting needed to play nicely with other
428 * parts of the VM system.
429 * At each level, we keep a list of pages, which are heads of continuous
430 * free pages of length of (1 << order) and marked with PG_buddy. Page's
431 * order is recorded in page_private(page) field.
432 * So when we are allocating or freeing one, we can derive the state of the
433 * other.  That is, if we allocate a small block, and both were
434 * free, the remainder of the region must be split into blocks.
435 * If a block is freed, and its buddy is also free, then this
436 * triggers coalescing into a block of larger size.
437 *
438 * -- wli
439 */
440
441static inline void __free_one_page(struct page *page,
442		struct zone *zone, unsigned int order,
443		int migratetype)
444{
445	unsigned long page_idx;
446
447	if (unlikely(PageCompound(page)))
448		if (unlikely(destroy_compound_page(page, order)))
449			return;
450
451	VM_BUG_ON(migratetype == -1);
452
453	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
454
455	VM_BUG_ON(page_idx & ((1 << order) - 1));
456	VM_BUG_ON(bad_range(zone, page));
457
458	while (order < MAX_ORDER-1) {
459		unsigned long combined_idx;
460		struct page *buddy;
461
462		buddy = __page_find_buddy(page, page_idx, order);
463		if (!page_is_buddy(page, buddy, order))
464			break;
465
466		/* Our buddy is free, merge with it and move up one order. */
467		list_del(&buddy->lru);
468		zone->free_area[order].nr_free--;
469		rmv_page_order(buddy);
470		combined_idx = __find_combined_index(page_idx, order);
471		page = page + (combined_idx - page_idx);
472		page_idx = combined_idx;
473		order++;
474	}
475	set_page_order(page, order);
476	list_add(&page->lru,
477		&zone->free_area[order].free_list[migratetype]);
478	zone->free_area[order].nr_free++;
479}
480
481#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
482/*
483 * free_page_mlock() -- clean up attempts to free and mlocked() page.
484 * Page should not be on lru, so no need to fix that up.
485 * free_pages_check() will verify...
486 */
487static inline void free_page_mlock(struct page *page)
488{
489	__ClearPageMlocked(page);
490	__dec_zone_page_state(page, NR_MLOCK);
491	__count_vm_event(UNEVICTABLE_MLOCKFREED);
492}
493#else
494static void free_page_mlock(struct page *page) { }
495#endif
496
497static inline int free_pages_check(struct page *page)
498{
499	if (unlikely(page_mapcount(page) |
500		(page->mapping != NULL)  |
501		(atomic_read(&page->_count) != 0) |
502		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
503		bad_page(page);
504		return 1;
505	}
506	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
507		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
508	return 0;
509}
510
511/*
512 * Frees a list of pages.
513 * Assumes all pages on list are in same zone, and of same order.
514 * count is the number of pages to free.
515 *
516 * If the zone was previously in an "all pages pinned" state then look to
517 * see if this freeing clears that state.
518 *
519 * And clear the zone's pages_scanned counter, to hold off the "all pages are
520 * pinned" detection logic.
521 */
522static void free_pages_bulk(struct zone *zone, int count,
523					struct list_head *list, int order)
524{
525	spin_lock(&zone->lock);
526	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
527	zone->pages_scanned = 0;
528
529	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
530	while (count--) {
531		struct page *page;
532
533		VM_BUG_ON(list_empty(list));
534		page = list_entry(list->prev, struct page, lru);
535		/* have to delete it as __free_one_page list manipulates */
536		list_del(&page->lru);
537		__free_one_page(page, zone, order, page_private(page));
538	}
539	spin_unlock(&zone->lock);
540}
541
542static void free_one_page(struct zone *zone, struct page *page, int order,
543				int migratetype)
544{
545	spin_lock(&zone->lock);
546	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
547	zone->pages_scanned = 0;
548
549	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
550	__free_one_page(page, zone, order, migratetype);
551	spin_unlock(&zone->lock);
552}
553
554static void __free_pages_ok(struct page *page, unsigned int order)
555{
556	unsigned long flags;
557	int i;
558	int bad = 0;
559	int clearMlocked = PageMlocked(page);
560
561	for (i = 0 ; i < (1 << order) ; ++i)
562		bad += free_pages_check(page + i);
563	if (bad)
564		return;
565
566	if (!PageHighMem(page)) {
567		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
568		debug_check_no_obj_freed(page_address(page),
569					   PAGE_SIZE << order);
570	}
571	arch_free_page(page, order);
572	kernel_map_pages(page, 1 << order, 0);
573
574	local_irq_save(flags);
575	if (unlikely(clearMlocked))
576		free_page_mlock(page);
577	__count_vm_events(PGFREE, 1 << order);
578	free_one_page(page_zone(page), page, order,
579					get_pageblock_migratetype(page));
580	local_irq_restore(flags);
581}
582
583/*
584 * permit the bootmem allocator to evade page validation on high-order frees
585 */
586void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
587{
588	if (order == 0) {
589		__ClearPageReserved(page);
590		set_page_count(page, 0);
591		set_page_refcounted(page);
592		__free_page(page);
593	} else {
594		int loop;
595
596		prefetchw(page);
597		for (loop = 0; loop < BITS_PER_LONG; loop++) {
598			struct page *p = &page[loop];
599
600			if (loop + 1 < BITS_PER_LONG)
601				prefetchw(p + 1);
602			__ClearPageReserved(p);
603			set_page_count(p, 0);
604		}
605
606		set_page_refcounted(page);
607		__free_pages(page, order);
608	}
609}
610
611
612/*
613 * The order of subdivision here is critical for the IO subsystem.
614 * Please do not alter this order without good reasons and regression
615 * testing. Specifically, as large blocks of memory are subdivided,
616 * the order in which smaller blocks are delivered depends on the order
617 * they're subdivided in this function. This is the primary factor
618 * influencing the order in which pages are delivered to the IO
619 * subsystem according to empirical testing, and this is also justified
620 * by considering the behavior of a buddy system containing a single
621 * large block of memory acted on by a series of small allocations.
622 * This behavior is a critical factor in sglist merging's success.
623 *
624 * -- wli
625 */
626static inline void expand(struct zone *zone, struct page *page,
627	int low, int high, struct free_area *area,
628	int migratetype)
629{
630	unsigned long size = 1 << high;
631
632	while (high > low) {
633		area--;
634		high--;
635		size >>= 1;
636		VM_BUG_ON(bad_range(zone, &page[size]));
637		list_add(&page[size].lru, &area->free_list[migratetype]);
638		area->nr_free++;
639		set_page_order(&page[size], high);
640	}
641}
642
643/*
644 * This page is about to be returned from the page allocator
645 */
646static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
647{
648	if (unlikely(page_mapcount(page) |
649		(page->mapping != NULL)  |
650		(atomic_read(&page->_count) != 0)  |
651		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
652		bad_page(page);
653		return 1;
654	}
655
656	set_page_private(page, 0);
657	set_page_refcounted(page);
658
659	arch_alloc_page(page, order);
660	kernel_map_pages(page, 1 << order, 1);
661
662	if (gfp_flags & __GFP_ZERO)
663		prep_zero_page(page, order, gfp_flags);
664
665	if (order && (gfp_flags & __GFP_COMP))
666		prep_compound_page(page, order);
667
668	return 0;
669}
670
671/*
672 * Go through the free lists for the given migratetype and remove
673 * the smallest available page from the freelists
674 */
675static inline
676struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
677						int migratetype)
678{
679	unsigned int current_order;
680	struct free_area * area;
681	struct page *page;
682
683	/* Find a page of the appropriate size in the preferred list */
684	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
685		area = &(zone->free_area[current_order]);
686		if (list_empty(&area->free_list[migratetype]))
687			continue;
688
689		page = list_entry(area->free_list[migratetype].next,
690							struct page, lru);
691		list_del(&page->lru);
692		rmv_page_order(page);
693		area->nr_free--;
694		expand(zone, page, order, current_order, area, migratetype);
695		return page;
696	}
697
698	return NULL;
699}
700
701
702/*
703 * This array describes the order lists are fallen back to when
704 * the free lists for the desirable migrate type are depleted
705 */
706static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
707	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
708	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
709	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
710	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
711};
712
713/*
714 * Move the free pages in a range to the free lists of the requested type.
715 * Note that start_page and end_pages are not aligned on a pageblock
716 * boundary. If alignment is required, use move_freepages_block()
717 */
718static int move_freepages(struct zone *zone,
719			  struct page *start_page, struct page *end_page,
720			  int migratetype)
721{
722	struct page *page;
723	unsigned long order;
724	int pages_moved = 0;
725
726#ifndef CONFIG_HOLES_IN_ZONE
727	/*
728	 * page_zone is not safe to call in this context when
729	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
730	 * anyway as we check zone boundaries in move_freepages_block().
731	 * Remove at a later date when no bug reports exist related to
732	 * grouping pages by mobility
733	 */
734	BUG_ON(page_zone(start_page) != page_zone(end_page));
735#endif
736
737	for (page = start_page; page <= end_page;) {
738		/* Make sure we are not inadvertently changing nodes */
739		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
740
741		if (!pfn_valid_within(page_to_pfn(page))) {
742			page++;
743			continue;
744		}
745
746		if (!PageBuddy(page)) {
747			page++;
748			continue;
749		}
750
751		order = page_order(page);
752		list_del(&page->lru);
753		list_add(&page->lru,
754			&zone->free_area[order].free_list[migratetype]);
755		page += 1 << order;
756		pages_moved += 1 << order;
757	}
758
759	return pages_moved;
760}
761
762static int move_freepages_block(struct zone *zone, struct page *page,
763				int migratetype)
764{
765	unsigned long start_pfn, end_pfn;
766	struct page *start_page, *end_page;
767
768	start_pfn = page_to_pfn(page);
769	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
770	start_page = pfn_to_page(start_pfn);
771	end_page = start_page + pageblock_nr_pages - 1;
772	end_pfn = start_pfn + pageblock_nr_pages - 1;
773
774	/* Do not cross zone boundaries */
775	if (start_pfn < zone->zone_start_pfn)
776		start_page = page;
777	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
778		return 0;
779
780	return move_freepages(zone, start_page, end_page, migratetype);
781}
782
783/* Remove an element from the buddy allocator from the fallback list */
784static inline struct page *
785__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
786{
787	struct free_area * area;
788	int current_order;
789	struct page *page;
790	int migratetype, i;
791
792	/* Find the largest possible block of pages in the other list */
793	for (current_order = MAX_ORDER-1; current_order >= order;
794						--current_order) {
795		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
796			migratetype = fallbacks[start_migratetype][i];
797
798			/* MIGRATE_RESERVE handled later if necessary */
799			if (migratetype == MIGRATE_RESERVE)
800				continue;
801
802			area = &(zone->free_area[current_order]);
803			if (list_empty(&area->free_list[migratetype]))
804				continue;
805
806			page = list_entry(area->free_list[migratetype].next,
807					struct page, lru);
808			area->nr_free--;
809
810			/*
811			 * If breaking a large block of pages, move all free
812			 * pages to the preferred allocation list. If falling
813			 * back for a reclaimable kernel allocation, be more
814			 * agressive about taking ownership of free pages
815			 */
816			if (unlikely(current_order >= (pageblock_order >> 1)) ||
817					start_migratetype == MIGRATE_RECLAIMABLE) {
818				unsigned long pages;
819				pages = move_freepages_block(zone, page,
820								start_migratetype);
821
822				/* Claim the whole block if over half of it is free */
823				if (pages >= (1 << (pageblock_order-1)))
824					set_pageblock_migratetype(page,
825								start_migratetype);
826
827				migratetype = start_migratetype;
828			}
829
830			/* Remove the page from the freelists */
831			list_del(&page->lru);
832			rmv_page_order(page);
833
834			if (current_order == pageblock_order)
835				set_pageblock_migratetype(page,
836							start_migratetype);
837
838			expand(zone, page, order, current_order, area, migratetype);
839			return page;
840		}
841	}
842
843	return NULL;
844}
845
846/*
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
849 */
850static struct page *__rmqueue(struct zone *zone, unsigned int order,
851						int migratetype)
852{
853	struct page *page;
854
855retry_reserve:
856	page = __rmqueue_smallest(zone, order, migratetype);
857
858	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
859		page = __rmqueue_fallback(zone, order, migratetype);
860
861		/*
862		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
863		 * is used because __rmqueue_smallest is an inline function
864		 * and we want just one call site
865		 */
866		if (!page) {
867			migratetype = MIGRATE_RESERVE;
868			goto retry_reserve;
869		}
870	}
871
872	return page;
873}
874
875/*
876 * Obtain a specified number of elements from the buddy allocator, all under
877 * a single hold of the lock, for efficiency.  Add them to the supplied list.
878 * Returns the number of new pages which were placed at *list.
879 */
880static int rmqueue_bulk(struct zone *zone, unsigned int order,
881			unsigned long count, struct list_head *list,
882			int migratetype)
883{
884	int i;
885
886	spin_lock(&zone->lock);
887	for (i = 0; i < count; ++i) {
888		struct page *page = __rmqueue(zone, order, migratetype);
889		if (unlikely(page == NULL))
890			break;
891
892		/*
893		 * Split buddy pages returned by expand() are received here
894		 * in physical page order. The page is added to the callers and
895		 * list and the list head then moves forward. From the callers
896		 * perspective, the linked list is ordered by page number in
897		 * some conditions. This is useful for IO devices that can
898		 * merge IO requests if the physical pages are ordered
899		 * properly.
900		 */
901		list_add(&page->lru, list);
902		set_page_private(page, migratetype);
903		list = &page->lru;
904	}
905	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
906	spin_unlock(&zone->lock);
907	return i;
908}
909
910#ifdef CONFIG_NUMA
911/*
912 * Called from the vmstat counter updater to drain pagesets of this
913 * currently executing processor on remote nodes after they have
914 * expired.
915 *
916 * Note that this function must be called with the thread pinned to
917 * a single processor.
918 */
919void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
920{
921	unsigned long flags;
922	int to_drain;
923
924	local_irq_save(flags);
925	if (pcp->count >= pcp->batch)
926		to_drain = pcp->batch;
927	else
928		to_drain = pcp->count;
929	free_pages_bulk(zone, to_drain, &pcp->list, 0);
930	pcp->count -= to_drain;
931	local_irq_restore(flags);
932}
933#endif
934
935/*
936 * Drain pages of the indicated processor.
937 *
938 * The processor must either be the current processor and the
939 * thread pinned to the current processor or a processor that
940 * is not online.
941 */
942static void drain_pages(unsigned int cpu)
943{
944	unsigned long flags;
945	struct zone *zone;
946
947	for_each_populated_zone(zone) {
948		struct per_cpu_pageset *pset;
949		struct per_cpu_pages *pcp;
950
951		pset = zone_pcp(zone, cpu);
952
953		pcp = &pset->pcp;
954		local_irq_save(flags);
955		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
956		pcp->count = 0;
957		local_irq_restore(flags);
958	}
959}
960
961/*
962 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
963 */
964void drain_local_pages(void *arg)
965{
966	drain_pages(smp_processor_id());
967}
968
969/*
970 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
971 */
972void drain_all_pages(void)
973{
974	on_each_cpu(drain_local_pages, NULL, 1);
975}
976
977#ifdef CONFIG_HIBERNATION
978
979void mark_free_pages(struct zone *zone)
980{
981	unsigned long pfn, max_zone_pfn;
982	unsigned long flags;
983	int order, t;
984	struct list_head *curr;
985
986	if (!zone->spanned_pages)
987		return;
988
989	spin_lock_irqsave(&zone->lock, flags);
990
991	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
992	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
993		if (pfn_valid(pfn)) {
994			struct page *page = pfn_to_page(pfn);
995
996			if (!swsusp_page_is_forbidden(page))
997				swsusp_unset_page_free(page);
998		}
999
1000	for_each_migratetype_order(order, t) {
1001		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1002			unsigned long i;
1003
1004			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1005			for (i = 0; i < (1UL << order); i++)
1006				swsusp_set_page_free(pfn_to_page(pfn + i));
1007		}
1008	}
1009	spin_unlock_irqrestore(&zone->lock, flags);
1010}
1011#endif /* CONFIG_PM */
1012
1013/*
1014 * Free a 0-order page
1015 */
1016static void free_hot_cold_page(struct page *page, int cold)
1017{
1018	struct zone *zone = page_zone(page);
1019	struct per_cpu_pages *pcp;
1020	unsigned long flags;
1021	int clearMlocked = PageMlocked(page);
1022
1023	if (PageAnon(page))
1024		page->mapping = NULL;
1025	if (free_pages_check(page))
1026		return;
1027
1028	if (!PageHighMem(page)) {
1029		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1030		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1031	}
1032	arch_free_page(page, 0);
1033	kernel_map_pages(page, 1, 0);
1034
1035	pcp = &zone_pcp(zone, get_cpu())->pcp;
1036	set_page_private(page, get_pageblock_migratetype(page));
1037	local_irq_save(flags);
1038	if (unlikely(clearMlocked))
1039		free_page_mlock(page);
1040	__count_vm_event(PGFREE);
1041
1042	if (cold)
1043		list_add_tail(&page->lru, &pcp->list);
1044	else
1045		list_add(&page->lru, &pcp->list);
1046	pcp->count++;
1047	if (pcp->count >= pcp->high) {
1048		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1049		pcp->count -= pcp->batch;
1050	}
1051	local_irq_restore(flags);
1052	put_cpu();
1053}
1054
1055void free_hot_page(struct page *page)
1056{
1057	free_hot_cold_page(page, 0);
1058}
1059
1060void free_cold_page(struct page *page)
1061{
1062	free_hot_cold_page(page, 1);
1063}
1064
1065/*
1066 * split_page takes a non-compound higher-order page, and splits it into
1067 * n (1<<order) sub-pages: page[0..n]
1068 * Each sub-page must be freed individually.
1069 *
1070 * Note: this is probably too low level an operation for use in drivers.
1071 * Please consult with lkml before using this in your driver.
1072 */
1073void split_page(struct page *page, unsigned int order)
1074{
1075	int i;
1076
1077	VM_BUG_ON(PageCompound(page));
1078	VM_BUG_ON(!page_count(page));
1079	for (i = 1; i < (1 << order); i++)
1080		set_page_refcounted(page + i);
1081}
1082
1083/*
1084 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1085 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1086 * or two.
1087 */
1088static inline
1089struct page *buffered_rmqueue(struct zone *preferred_zone,
1090			struct zone *zone, int order, gfp_t gfp_flags,
1091			int migratetype)
1092{
1093	unsigned long flags;
1094	struct page *page;
1095	int cold = !!(gfp_flags & __GFP_COLD);
1096	int cpu;
1097
1098again:
1099	cpu  = get_cpu();
1100	if (likely(order == 0)) {
1101		struct per_cpu_pages *pcp;
1102
1103		pcp = &zone_pcp(zone, cpu)->pcp;
1104		local_irq_save(flags);
1105		if (!pcp->count) {
1106			pcp->count = rmqueue_bulk(zone, 0,
1107					pcp->batch, &pcp->list, migratetype);
1108			if (unlikely(!pcp->count))
1109				goto failed;
1110		}
1111
1112		/* Find a page of the appropriate migrate type */
1113		if (cold) {
1114			list_for_each_entry_reverse(page, &pcp->list, lru)
1115				if (page_private(page) == migratetype)
1116					break;
1117		} else {
1118			list_for_each_entry(page, &pcp->list, lru)
1119				if (page_private(page) == migratetype)
1120					break;
1121		}
1122
1123		/* Allocate more to the pcp list if necessary */
1124		if (unlikely(&page->lru == &pcp->list)) {
1125			pcp->count += rmqueue_bulk(zone, 0,
1126					pcp->batch, &pcp->list, migratetype);
1127			page = list_entry(pcp->list.next, struct page, lru);
1128		}
1129
1130		list_del(&page->lru);
1131		pcp->count--;
1132	} else {
1133		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1134			/*
1135			 * __GFP_NOFAIL is not to be used in new code.
1136			 *
1137			 * All __GFP_NOFAIL callers should be fixed so that they
1138			 * properly detect and handle allocation failures.
1139			 *
1140			 * We most definitely don't want callers attempting to
1141			 * allocate greater than single-page units with
1142			 * __GFP_NOFAIL.
1143			 */
1144			WARN_ON_ONCE(order > 0);
1145		}
1146		spin_lock_irqsave(&zone->lock, flags);
1147		page = __rmqueue(zone, order, migratetype);
1148		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1149		spin_unlock(&zone->lock);
1150		if (!page)
1151			goto failed;
1152	}
1153
1154	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1155	zone_statistics(preferred_zone, zone);
1156	local_irq_restore(flags);
1157	put_cpu();
1158
1159	VM_BUG_ON(bad_range(zone, page));
1160	if (prep_new_page(page, order, gfp_flags))
1161		goto again;
1162	return page;
1163
1164failed:
1165	local_irq_restore(flags);
1166	put_cpu();
1167	return NULL;
1168}
1169
1170/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1171#define ALLOC_WMARK_MIN		WMARK_MIN
1172#define ALLOC_WMARK_LOW		WMARK_LOW
1173#define ALLOC_WMARK_HIGH	WMARK_HIGH
1174#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1175
1176/* Mask to get the watermark bits */
1177#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1178
1179#define ALLOC_HARDER		0x10 /* try to alloc harder */
1180#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1181#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1182
1183#ifdef CONFIG_FAIL_PAGE_ALLOC
1184
1185static struct fail_page_alloc_attr {
1186	struct fault_attr attr;
1187
1188	u32 ignore_gfp_highmem;
1189	u32 ignore_gfp_wait;
1190	u32 min_order;
1191
1192#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1193
1194	struct dentry *ignore_gfp_highmem_file;
1195	struct dentry *ignore_gfp_wait_file;
1196	struct dentry *min_order_file;
1197
1198#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1199
1200} fail_page_alloc = {
1201	.attr = FAULT_ATTR_INITIALIZER,
1202	.ignore_gfp_wait = 1,
1203	.ignore_gfp_highmem = 1,
1204	.min_order = 1,
1205};
1206
1207static int __init setup_fail_page_alloc(char *str)
1208{
1209	return setup_fault_attr(&fail_page_alloc.attr, str);
1210}
1211__setup("fail_page_alloc=", setup_fail_page_alloc);
1212
1213static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1214{
1215	if (order < fail_page_alloc.min_order)
1216		return 0;
1217	if (gfp_mask & __GFP_NOFAIL)
1218		return 0;
1219	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1220		return 0;
1221	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1222		return 0;
1223
1224	return should_fail(&fail_page_alloc.attr, 1 << order);
1225}
1226
1227#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1228
1229static int __init fail_page_alloc_debugfs(void)
1230{
1231	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1232	struct dentry *dir;
1233	int err;
1234
1235	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1236				       "fail_page_alloc");
1237	if (err)
1238		return err;
1239	dir = fail_page_alloc.attr.dentries.dir;
1240
1241	fail_page_alloc.ignore_gfp_wait_file =
1242		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1243				      &fail_page_alloc.ignore_gfp_wait);
1244
1245	fail_page_alloc.ignore_gfp_highmem_file =
1246		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1247				      &fail_page_alloc.ignore_gfp_highmem);
1248	fail_page_alloc.min_order_file =
1249		debugfs_create_u32("min-order", mode, dir,
1250				   &fail_page_alloc.min_order);
1251
1252	if (!fail_page_alloc.ignore_gfp_wait_file ||
1253            !fail_page_alloc.ignore_gfp_highmem_file ||
1254            !fail_page_alloc.min_order_file) {
1255		err = -ENOMEM;
1256		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1257		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1258		debugfs_remove(fail_page_alloc.min_order_file);
1259		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1260	}
1261
1262	return err;
1263}
1264
1265late_initcall(fail_page_alloc_debugfs);
1266
1267#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1268
1269#else /* CONFIG_FAIL_PAGE_ALLOC */
1270
1271static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1272{
1273	return 0;
1274}
1275
1276#endif /* CONFIG_FAIL_PAGE_ALLOC */
1277
1278/*
1279 * Return 1 if free pages are above 'mark'. This takes into account the order
1280 * of the allocation.
1281 */
1282int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1283		      int classzone_idx, int alloc_flags)
1284{
1285	/* free_pages my go negative - that's OK */
1286	long min = mark;
1287	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1288	int o;
1289
1290	if (alloc_flags & ALLOC_HIGH)
1291		min -= min / 2;
1292	if (alloc_flags & ALLOC_HARDER)
1293		min -= min / 4;
1294
1295	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1296		return 0;
1297	for (o = 0; o < order; o++) {
1298		/* At the next order, this order's pages become unavailable */
1299		free_pages -= z->free_area[o].nr_free << o;
1300
1301		/* Require fewer higher order pages to be free */
1302		min >>= 1;
1303
1304		if (free_pages <= min)
1305			return 0;
1306	}
1307	return 1;
1308}
1309
1310#ifdef CONFIG_NUMA
1311/*
1312 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1313 * skip over zones that are not allowed by the cpuset, or that have
1314 * been recently (in last second) found to be nearly full.  See further
1315 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1316 * that have to skip over a lot of full or unallowed zones.
1317 *
1318 * If the zonelist cache is present in the passed in zonelist, then
1319 * returns a pointer to the allowed node mask (either the current
1320 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1321 *
1322 * If the zonelist cache is not available for this zonelist, does
1323 * nothing and returns NULL.
1324 *
1325 * If the fullzones BITMAP in the zonelist cache is stale (more than
1326 * a second since last zap'd) then we zap it out (clear its bits.)
1327 *
1328 * We hold off even calling zlc_setup, until after we've checked the
1329 * first zone in the zonelist, on the theory that most allocations will
1330 * be satisfied from that first zone, so best to examine that zone as
1331 * quickly as we can.
1332 */
1333static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1334{
1335	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1336	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1337
1338	zlc = zonelist->zlcache_ptr;
1339	if (!zlc)
1340		return NULL;
1341
1342	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1343		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1344		zlc->last_full_zap = jiffies;
1345	}
1346
1347	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1348					&cpuset_current_mems_allowed :
1349					&node_states[N_HIGH_MEMORY];
1350	return allowednodes;
1351}
1352
1353/*
1354 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1355 * if it is worth looking at further for free memory:
1356 *  1) Check that the zone isn't thought to be full (doesn't have its
1357 *     bit set in the zonelist_cache fullzones BITMAP).
1358 *  2) Check that the zones node (obtained from the zonelist_cache
1359 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1360 * Return true (non-zero) if zone is worth looking at further, or
1361 * else return false (zero) if it is not.
1362 *
1363 * This check -ignores- the distinction between various watermarks,
1364 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1365 * found to be full for any variation of these watermarks, it will
1366 * be considered full for up to one second by all requests, unless
1367 * we are so low on memory on all allowed nodes that we are forced
1368 * into the second scan of the zonelist.
1369 *
1370 * In the second scan we ignore this zonelist cache and exactly
1371 * apply the watermarks to all zones, even it is slower to do so.
1372 * We are low on memory in the second scan, and should leave no stone
1373 * unturned looking for a free page.
1374 */
1375static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1376						nodemask_t *allowednodes)
1377{
1378	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1379	int i;				/* index of *z in zonelist zones */
1380	int n;				/* node that zone *z is on */
1381
1382	zlc = zonelist->zlcache_ptr;
1383	if (!zlc)
1384		return 1;
1385
1386	i = z - zonelist->_zonerefs;
1387	n = zlc->z_to_n[i];
1388
1389	/* This zone is worth trying if it is allowed but not full */
1390	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1391}
1392
1393/*
1394 * Given 'z' scanning a zonelist, set the corresponding bit in
1395 * zlc->fullzones, so that subsequent attempts to allocate a page
1396 * from that zone don't waste time re-examining it.
1397 */
1398static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1399{
1400	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1401	int i;				/* index of *z in zonelist zones */
1402
1403	zlc = zonelist->zlcache_ptr;
1404	if (!zlc)
1405		return;
1406
1407	i = z - zonelist->_zonerefs;
1408
1409	set_bit(i, zlc->fullzones);
1410}
1411
1412#else	/* CONFIG_NUMA */
1413
1414static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1415{
1416	return NULL;
1417}
1418
1419static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1420				nodemask_t *allowednodes)
1421{
1422	return 1;
1423}
1424
1425static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1426{
1427}
1428#endif	/* CONFIG_NUMA */
1429
1430/*
1431 * get_page_from_freelist goes through the zonelist trying to allocate
1432 * a page.
1433 */
1434static struct page *
1435get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1436		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1437		struct zone *preferred_zone, int migratetype)
1438{
1439	struct zoneref *z;
1440	struct page *page = NULL;
1441	int classzone_idx;
1442	struct zone *zone;
1443	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1444	int zlc_active = 0;		/* set if using zonelist_cache */
1445	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1446
1447	classzone_idx = zone_idx(preferred_zone);
1448zonelist_scan:
1449	/*
1450	 * Scan zonelist, looking for a zone with enough free.
1451	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1452	 */
1453	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1454						high_zoneidx, nodemask) {
1455		if (NUMA_BUILD && zlc_active &&
1456			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1457				continue;
1458		if ((alloc_flags & ALLOC_CPUSET) &&
1459			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1460				goto try_next_zone;
1461
1462		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1463		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1464			unsigned long mark;
1465			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1466			if (!zone_watermark_ok(zone, order, mark,
1467				    classzone_idx, alloc_flags)) {
1468				if (!zone_reclaim_mode ||
1469				    !zone_reclaim(zone, gfp_mask, order))
1470					goto this_zone_full;
1471			}
1472		}
1473
1474		page = buffered_rmqueue(preferred_zone, zone, order,
1475						gfp_mask, migratetype);
1476		if (page)
1477			break;
1478this_zone_full:
1479		if (NUMA_BUILD)
1480			zlc_mark_zone_full(zonelist, z);
1481try_next_zone:
1482		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1483			/*
1484			 * we do zlc_setup after the first zone is tried but only
1485			 * if there are multiple nodes make it worthwhile
1486			 */
1487			allowednodes = zlc_setup(zonelist, alloc_flags);
1488			zlc_active = 1;
1489			did_zlc_setup = 1;
1490		}
1491	}
1492
1493	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1494		/* Disable zlc cache for second zonelist scan */
1495		zlc_active = 0;
1496		goto zonelist_scan;
1497	}
1498	return page;
1499}
1500
1501static inline int
1502should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1503				unsigned long pages_reclaimed)
1504{
1505	/* Do not loop if specifically requested */
1506	if (gfp_mask & __GFP_NORETRY)
1507		return 0;
1508
1509	/*
1510	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1511	 * means __GFP_NOFAIL, but that may not be true in other
1512	 * implementations.
1513	 */
1514	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1515		return 1;
1516
1517	/*
1518	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1519	 * specified, then we retry until we no longer reclaim any pages
1520	 * (above), or we've reclaimed an order of pages at least as
1521	 * large as the allocation's order. In both cases, if the
1522	 * allocation still fails, we stop retrying.
1523	 */
1524	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1525		return 1;
1526
1527	/*
1528	 * Don't let big-order allocations loop unless the caller
1529	 * explicitly requests that.
1530	 */
1531	if (gfp_mask & __GFP_NOFAIL)
1532		return 1;
1533
1534	return 0;
1535}
1536
1537static inline struct page *
1538__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1539	struct zonelist *zonelist, enum zone_type high_zoneidx,
1540	nodemask_t *nodemask, struct zone *preferred_zone,
1541	int migratetype)
1542{
1543	struct page *page;
1544
1545	/* Acquire the OOM killer lock for the zones in zonelist */
1546	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1547		schedule_timeout_uninterruptible(1);
1548		return NULL;
1549	}
1550
1551	/*
1552	 * Go through the zonelist yet one more time, keep very high watermark
1553	 * here, this is only to catch a parallel oom killing, we must fail if
1554	 * we're still under heavy pressure.
1555	 */
1556	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1557		order, zonelist, high_zoneidx,
1558		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1559		preferred_zone, migratetype);
1560	if (page)
1561		goto out;
1562
1563	/* The OOM killer will not help higher order allocs */
1564	if (order > PAGE_ALLOC_COSTLY_ORDER)
1565		goto out;
1566
1567	/* Exhausted what can be done so it's blamo time */
1568	out_of_memory(zonelist, gfp_mask, order);
1569
1570out:
1571	clear_zonelist_oom(zonelist, gfp_mask);
1572	return page;
1573}
1574
1575/* The really slow allocator path where we enter direct reclaim */
1576static inline struct page *
1577__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1578	struct zonelist *zonelist, enum zone_type high_zoneidx,
1579	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1580	int migratetype, unsigned long *did_some_progress)
1581{
1582	struct page *page = NULL;
1583	struct reclaim_state reclaim_state;
1584	struct task_struct *p = current;
1585
1586	cond_resched();
1587
1588	/* We now go into synchronous reclaim */
1589	cpuset_memory_pressure_bump();
1590
1591	/*
1592	 * The task's cpuset might have expanded its set of allowable nodes
1593	 */
1594	p->flags |= PF_MEMALLOC;
1595	lockdep_set_current_reclaim_state(gfp_mask);
1596	reclaim_state.reclaimed_slab = 0;
1597	p->reclaim_state = &reclaim_state;
1598
1599	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1600
1601	p->reclaim_state = NULL;
1602	lockdep_clear_current_reclaim_state();
1603	p->flags &= ~PF_MEMALLOC;
1604
1605	cond_resched();
1606
1607	if (order != 0)
1608		drain_all_pages();
1609
1610	if (likely(*did_some_progress))
1611		page = get_page_from_freelist(gfp_mask, nodemask, order,
1612					zonelist, high_zoneidx,
1613					alloc_flags, preferred_zone,
1614					migratetype);
1615	return page;
1616}
1617
1618/*
1619 * This is called in the allocator slow-path if the allocation request is of
1620 * sufficient urgency to ignore watermarks and take other desperate measures
1621 */
1622static inline struct page *
1623__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1624	struct zonelist *zonelist, enum zone_type high_zoneidx,
1625	nodemask_t *nodemask, struct zone *preferred_zone,
1626	int migratetype)
1627{
1628	struct page *page;
1629
1630	do {
1631		page = get_page_from_freelist(gfp_mask, nodemask, order,
1632			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1633			preferred_zone, migratetype);
1634
1635		if (!page && gfp_mask & __GFP_NOFAIL)
1636			congestion_wait(WRITE, HZ/50);
1637	} while (!page && (gfp_mask & __GFP_NOFAIL));
1638
1639	return page;
1640}
1641
1642static inline
1643void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1644						enum zone_type high_zoneidx)
1645{
1646	struct zoneref *z;
1647	struct zone *zone;
1648
1649	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1650		wakeup_kswapd(zone, order);
1651}
1652
1653static inline int
1654gfp_to_alloc_flags(gfp_t gfp_mask)
1655{
1656	struct task_struct *p = current;
1657	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1658	const gfp_t wait = gfp_mask & __GFP_WAIT;
1659
1660	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1661	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1662
1663	/*
1664	 * The caller may dip into page reserves a bit more if the caller
1665	 * cannot run direct reclaim, or if the caller has realtime scheduling
1666	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1667	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1668	 */
1669	alloc_flags |= (gfp_mask & __GFP_HIGH);
1670
1671	if (!wait) {
1672		alloc_flags |= ALLOC_HARDER;
1673		/*
1674		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1675		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1676		 */
1677		alloc_flags &= ~ALLOC_CPUSET;
1678	} else if (unlikely(rt_task(p)))
1679		alloc_flags |= ALLOC_HARDER;
1680
1681	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1682		if (!in_interrupt() &&
1683		    ((p->flags & PF_MEMALLOC) ||
1684		     unlikely(test_thread_flag(TIF_MEMDIE))))
1685			alloc_flags |= ALLOC_NO_WATERMARKS;
1686	}
1687
1688	return alloc_flags;
1689}
1690
1691static inline struct page *
1692__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1693	struct zonelist *zonelist, enum zone_type high_zoneidx,
1694	nodemask_t *nodemask, struct zone *preferred_zone,
1695	int migratetype)
1696{
1697	const gfp_t wait = gfp_mask & __GFP_WAIT;
1698	struct page *page = NULL;
1699	int alloc_flags;
1700	unsigned long pages_reclaimed = 0;
1701	unsigned long did_some_progress;
1702	struct task_struct *p = current;
1703
1704	/*
1705	 * In the slowpath, we sanity check order to avoid ever trying to
1706	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1707	 * be using allocators in order of preference for an area that is
1708	 * too large.
1709	 */
1710	if (WARN_ON_ONCE(order >= MAX_ORDER))
1711		return NULL;
1712
1713	/*
1714	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1715	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1716	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1717	 * using a larger set of nodes after it has established that the
1718	 * allowed per node queues are empty and that nodes are
1719	 * over allocated.
1720	 */
1721	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1722		goto nopage;
1723
1724	wake_all_kswapd(order, zonelist, high_zoneidx);
1725
1726	/*
1727	 * OK, we're below the kswapd watermark and have kicked background
1728	 * reclaim. Now things get more complex, so set up alloc_flags according
1729	 * to how we want to proceed.
1730	 */
1731	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1732
1733restart:
1734	/* This is the last chance, in general, before the goto nopage. */
1735	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1736			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1737			preferred_zone, migratetype);
1738	if (page)
1739		goto got_pg;
1740
1741rebalance:
1742	/* Allocate without watermarks if the context allows */
1743	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1744		page = __alloc_pages_high_priority(gfp_mask, order,
1745				zonelist, high_zoneidx, nodemask,
1746				preferred_zone, migratetype);
1747		if (page)
1748			goto got_pg;
1749	}
1750
1751	/* Atomic allocations - we can't balance anything */
1752	if (!wait)
1753		goto nopage;
1754
1755	/* Avoid recursion of direct reclaim */
1756	if (p->flags & PF_MEMALLOC)
1757		goto nopage;
1758
1759	/* Try direct reclaim and then allocating */
1760	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1761					zonelist, high_zoneidx,
1762					nodemask,
1763					alloc_flags, preferred_zone,
1764					migratetype, &did_some_progress);
1765	if (page)
1766		goto got_pg;
1767
1768	/*
1769	 * If we failed to make any progress reclaiming, then we are
1770	 * running out of options and have to consider going OOM
1771	 */
1772	if (!did_some_progress) {
1773		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1774			if (oom_killer_disabled)
1775				goto nopage;
1776			page = __alloc_pages_may_oom(gfp_mask, order,
1777					zonelist, high_zoneidx,
1778					nodemask, preferred_zone,
1779					migratetype);
1780			if (page)
1781				goto got_pg;
1782
1783			/*
1784			 * The OOM killer does not trigger for high-order allocations
1785			 * but if no progress is being made, there are no other
1786			 * options and retrying is unlikely to help
1787			 */
1788			if (order > PAGE_ALLOC_COSTLY_ORDER)
1789				goto nopage;
1790
1791			goto restart;
1792		}
1793	}
1794
1795	/* Check if we should retry the allocation */
1796	pages_reclaimed += did_some_progress;
1797	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1798		/* Wait for some write requests to complete then retry */
1799		congestion_wait(WRITE, HZ/50);
1800		goto rebalance;
1801	}
1802
1803nopage:
1804	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1805		printk(KERN_WARNING "%s: page allocation failure."
1806			" order:%d, mode:0x%x\n",
1807			p->comm, order, gfp_mask);
1808		dump_stack();
1809		show_mem();
1810	}
1811got_pg:
1812	return page;
1813
1814}
1815
1816/*
1817 * This is the 'heart' of the zoned buddy allocator.
1818 */
1819struct page *
1820__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1821			struct zonelist *zonelist, nodemask_t *nodemask)
1822{
1823	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1824	struct zone *preferred_zone;
1825	struct page *page;
1826	int migratetype = allocflags_to_migratetype(gfp_mask);
1827
1828	lockdep_trace_alloc(gfp_mask);
1829
1830	might_sleep_if(gfp_mask & __GFP_WAIT);
1831
1832	if (should_fail_alloc_page(gfp_mask, order))
1833		return NULL;
1834
1835	/*
1836	 * Check the zones suitable for the gfp_mask contain at least one
1837	 * valid zone. It's possible to have an empty zonelist as a result
1838	 * of GFP_THISNODE and a memoryless node
1839	 */
1840	if (unlikely(!zonelist->_zonerefs->zone))
1841		return NULL;
1842
1843	/* The preferred zone is used for statistics later */
1844	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1845	if (!preferred_zone)
1846		return NULL;
1847
1848	/* First allocation attempt */
1849	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1850			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1851			preferred_zone, migratetype);
1852	if (unlikely(!page))
1853		page = __alloc_pages_slowpath(gfp_mask, order,
1854				zonelist, high_zoneidx, nodemask,
1855				preferred_zone, migratetype);
1856
1857	return page;
1858}
1859EXPORT_SYMBOL(__alloc_pages_nodemask);
1860
1861/*
1862 * Common helper functions.
1863 */
1864unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1865{
1866	struct page * page;
1867	page = alloc_pages(gfp_mask, order);
1868	if (!page)
1869		return 0;
1870	return (unsigned long) page_address(page);
1871}
1872
1873EXPORT_SYMBOL(__get_free_pages);
1874
1875unsigned long get_zeroed_page(gfp_t gfp_mask)
1876{
1877	struct page * page;
1878
1879	/*
1880	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1881	 * a highmem page
1882	 */
1883	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1884
1885	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1886	if (page)
1887		return (unsigned long) page_address(page);
1888	return 0;
1889}
1890
1891EXPORT_SYMBOL(get_zeroed_page);
1892
1893void __pagevec_free(struct pagevec *pvec)
1894{
1895	int i = pagevec_count(pvec);
1896
1897	while (--i >= 0)
1898		free_hot_cold_page(pvec->pages[i], pvec->cold);
1899}
1900
1901void __free_pages(struct page *page, unsigned int order)
1902{
1903	if (put_page_testzero(page)) {
1904		if (order == 0)
1905			free_hot_page(page);
1906		else
1907			__free_pages_ok(page, order);
1908	}
1909}
1910
1911EXPORT_SYMBOL(__free_pages);
1912
1913void free_pages(unsigned long addr, unsigned int order)
1914{
1915	if (addr != 0) {
1916		VM_BUG_ON(!virt_addr_valid((void *)addr));
1917		__free_pages(virt_to_page((void *)addr), order);
1918	}
1919}
1920
1921EXPORT_SYMBOL(free_pages);
1922
1923/**
1924 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1925 * @size: the number of bytes to allocate
1926 * @gfp_mask: GFP flags for the allocation
1927 *
1928 * This function is similar to alloc_pages(), except that it allocates the
1929 * minimum number of pages to satisfy the request.  alloc_pages() can only
1930 * allocate memory in power-of-two pages.
1931 *
1932 * This function is also limited by MAX_ORDER.
1933 *
1934 * Memory allocated by this function must be released by free_pages_exact().
1935 */
1936void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1937{
1938	unsigned int order = get_order(size);
1939	unsigned long addr;
1940
1941	addr = __get_free_pages(gfp_mask, order);
1942	if (addr) {
1943		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1944		unsigned long used = addr + PAGE_ALIGN(size);
1945
1946		split_page(virt_to_page(addr), order);
1947		while (used < alloc_end) {
1948			free_page(used);
1949			used += PAGE_SIZE;
1950		}
1951	}
1952
1953	return (void *)addr;
1954}
1955EXPORT_SYMBOL(alloc_pages_exact);
1956
1957/**
1958 * free_pages_exact - release memory allocated via alloc_pages_exact()
1959 * @virt: the value returned by alloc_pages_exact.
1960 * @size: size of allocation, same value as passed to alloc_pages_exact().
1961 *
1962 * Release the memory allocated by a previous call to alloc_pages_exact.
1963 */
1964void free_pages_exact(void *virt, size_t size)
1965{
1966	unsigned long addr = (unsigned long)virt;
1967	unsigned long end = addr + PAGE_ALIGN(size);
1968
1969	while (addr < end) {
1970		free_page(addr);
1971		addr += PAGE_SIZE;
1972	}
1973}
1974EXPORT_SYMBOL(free_pages_exact);
1975
1976static unsigned int nr_free_zone_pages(int offset)
1977{
1978	struct zoneref *z;
1979	struct zone *zone;
1980
1981	/* Just pick one node, since fallback list is circular */
1982	unsigned int sum = 0;
1983
1984	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1985
1986	for_each_zone_zonelist(zone, z, zonelist, offset) {
1987		unsigned long size = zone->present_pages;
1988		unsigned long high = high_wmark_pages(zone);
1989		if (size > high)
1990			sum += size - high;
1991	}
1992
1993	return sum;
1994}
1995
1996/*
1997 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1998 */
1999unsigned int nr_free_buffer_pages(void)
2000{
2001	return nr_free_zone_pages(gfp_zone(GFP_USER));
2002}
2003EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2004
2005/*
2006 * Amount of free RAM allocatable within all zones
2007 */
2008unsigned int nr_free_pagecache_pages(void)
2009{
2010	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2011}
2012
2013static inline void show_node(struct zone *zone)
2014{
2015	if (NUMA_BUILD)
2016		printk("Node %d ", zone_to_nid(zone));
2017}
2018
2019void si_meminfo(struct sysinfo *val)
2020{
2021	val->totalram = totalram_pages;
2022	val->sharedram = 0;
2023	val->freeram = global_page_state(NR_FREE_PAGES);
2024	val->bufferram = nr_blockdev_pages();
2025	val->totalhigh = totalhigh_pages;
2026	val->freehigh = nr_free_highpages();
2027	val->mem_unit = PAGE_SIZE;
2028}
2029
2030EXPORT_SYMBOL(si_meminfo);
2031
2032#ifdef CONFIG_NUMA
2033void si_meminfo_node(struct sysinfo *val, int nid)
2034{
2035	pg_data_t *pgdat = NODE_DATA(nid);
2036
2037	val->totalram = pgdat->node_present_pages;
2038	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2039#ifdef CONFIG_HIGHMEM
2040	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2041	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2042			NR_FREE_PAGES);
2043#else
2044	val->totalhigh = 0;
2045	val->freehigh = 0;
2046#endif
2047	val->mem_unit = PAGE_SIZE;
2048}
2049#endif
2050
2051#define K(x) ((x) << (PAGE_SHIFT-10))
2052
2053/*
2054 * Show free area list (used inside shift_scroll-lock stuff)
2055 * We also calculate the percentage fragmentation. We do this by counting the
2056 * memory on each free list with the exception of the first item on the list.
2057 */
2058void show_free_areas(void)
2059{
2060	int cpu;
2061	struct zone *zone;
2062
2063	for_each_populated_zone(zone) {
2064		show_node(zone);
2065		printk("%s per-cpu:\n", zone->name);
2066
2067		for_each_online_cpu(cpu) {
2068			struct per_cpu_pageset *pageset;
2069
2070			pageset = zone_pcp(zone, cpu);
2071
2072			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2073			       cpu, pageset->pcp.high,
2074			       pageset->pcp.batch, pageset->pcp.count);
2075		}
2076	}
2077
2078	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2079		" inactive_file:%lu"
2080//TODO:  check/adjust line lengths
2081#ifdef CONFIG_UNEVICTABLE_LRU
2082		" unevictable:%lu"
2083#endif
2084		" dirty:%lu writeback:%lu unstable:%lu\n"
2085		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2086		global_page_state(NR_ACTIVE_ANON),
2087		global_page_state(NR_ACTIVE_FILE),
2088		global_page_state(NR_INACTIVE_ANON),
2089		global_page_state(NR_INACTIVE_FILE),
2090#ifdef CONFIG_UNEVICTABLE_LRU
2091		global_page_state(NR_UNEVICTABLE),
2092#endif
2093		global_page_state(NR_FILE_DIRTY),
2094		global_page_state(NR_WRITEBACK),
2095		global_page_state(NR_UNSTABLE_NFS),
2096		global_page_state(NR_FREE_PAGES),
2097		global_page_state(NR_SLAB_RECLAIMABLE) +
2098			global_page_state(NR_SLAB_UNRECLAIMABLE),
2099		global_page_state(NR_FILE_MAPPED),
2100		global_page_state(NR_PAGETABLE),
2101		global_page_state(NR_BOUNCE));
2102
2103	for_each_populated_zone(zone) {
2104		int i;
2105
2106		show_node(zone);
2107		printk("%s"
2108			" free:%lukB"
2109			" min:%lukB"
2110			" low:%lukB"
2111			" high:%lukB"
2112			" active_anon:%lukB"
2113			" inactive_anon:%lukB"
2114			" active_file:%lukB"
2115			" inactive_file:%lukB"
2116#ifdef CONFIG_UNEVICTABLE_LRU
2117			" unevictable:%lukB"
2118#endif
2119			" present:%lukB"
2120			" pages_scanned:%lu"
2121			" all_unreclaimable? %s"
2122			"\n",
2123			zone->name,
2124			K(zone_page_state(zone, NR_FREE_PAGES)),
2125			K(min_wmark_pages(zone)),
2126			K(low_wmark_pages(zone)),
2127			K(high_wmark_pages(zone)),
2128			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2129			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2130			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2131			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2132#ifdef CONFIG_UNEVICTABLE_LRU
2133			K(zone_page_state(zone, NR_UNEVICTABLE)),
2134#endif
2135			K(zone->present_pages),
2136			zone->pages_scanned,
2137			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2138			);
2139		printk("lowmem_reserve[]:");
2140		for (i = 0; i < MAX_NR_ZONES; i++)
2141			printk(" %lu", zone->lowmem_reserve[i]);
2142		printk("\n");
2143	}
2144
2145	for_each_populated_zone(zone) {
2146 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2147
2148		show_node(zone);
2149		printk("%s: ", zone->name);
2150
2151		spin_lock_irqsave(&zone->lock, flags);
2152		for (order = 0; order < MAX_ORDER; order++) {
2153			nr[order] = zone->free_area[order].nr_free;
2154			total += nr[order] << order;
2155		}
2156		spin_unlock_irqrestore(&zone->lock, flags);
2157		for (order = 0; order < MAX_ORDER; order++)
2158			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2159		printk("= %lukB\n", K(total));
2160	}
2161
2162	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2163
2164	show_swap_cache_info();
2165}
2166
2167static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2168{
2169	zoneref->zone = zone;
2170	zoneref->zone_idx = zone_idx(zone);
2171}
2172
2173/*
2174 * Builds allocation fallback zone lists.
2175 *
2176 * Add all populated zones of a node to the zonelist.
2177 */
2178static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2179				int nr_zones, enum zone_type zone_type)
2180{
2181	struct zone *zone;
2182
2183	BUG_ON(zone_type >= MAX_NR_ZONES);
2184	zone_type++;
2185
2186	do {
2187		zone_type--;
2188		zone = pgdat->node_zones + zone_type;
2189		if (populated_zone(zone)) {
2190			zoneref_set_zone(zone,
2191				&zonelist->_zonerefs[nr_zones++]);
2192			check_highest_zone(zone_type);
2193		}
2194
2195	} while (zone_type);
2196	return nr_zones;
2197}
2198
2199
2200/*
2201 *  zonelist_order:
2202 *  0 = automatic detection of better ordering.
2203 *  1 = order by ([node] distance, -zonetype)
2204 *  2 = order by (-zonetype, [node] distance)
2205 *
2206 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2207 *  the same zonelist. So only NUMA can configure this param.
2208 */
2209#define ZONELIST_ORDER_DEFAULT  0
2210#define ZONELIST_ORDER_NODE     1
2211#define ZONELIST_ORDER_ZONE     2
2212
2213/* zonelist order in the kernel.
2214 * set_zonelist_order() will set this to NODE or ZONE.
2215 */
2216static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2217static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2218
2219
2220#ifdef CONFIG_NUMA
2221/* The value user specified ....changed by config */
2222static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2223/* string for sysctl */
2224#define NUMA_ZONELIST_ORDER_LEN	16
2225char numa_zonelist_order[16] = "default";
2226
2227/*
2228 * interface for configure zonelist ordering.
2229 * command line option "numa_zonelist_order"
2230 *	= "[dD]efault	- default, automatic configuration.
2231 *	= "[nN]ode 	- order by node locality, then by zone within node
2232 *	= "[zZ]one      - order by zone, then by locality within zone
2233 */
2234
2235static int __parse_numa_zonelist_order(char *s)
2236{
2237	if (*s == 'd' || *s == 'D') {
2238		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2239	} else if (*s == 'n' || *s == 'N') {
2240		user_zonelist_order = ZONELIST_ORDER_NODE;
2241	} else if (*s == 'z' || *s == 'Z') {
2242		user_zonelist_order = ZONELIST_ORDER_ZONE;
2243	} else {
2244		printk(KERN_WARNING
2245			"Ignoring invalid numa_zonelist_order value:  "
2246			"%s\n", s);
2247		return -EINVAL;
2248	}
2249	return 0;
2250}
2251
2252static __init int setup_numa_zonelist_order(char *s)
2253{
2254	if (s)
2255		return __parse_numa_zonelist_order(s);
2256	return 0;
2257}
2258early_param("numa_zonelist_order", setup_numa_zonelist_order);
2259
2260/*
2261 * sysctl handler for numa_zonelist_order
2262 */
2263int numa_zonelist_order_handler(ctl_table *table, int write,
2264		struct file *file, void __user *buffer, size_t *length,
2265		loff_t *ppos)
2266{
2267	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2268	int ret;
2269
2270	if (write)
2271		strncpy(saved_string, (char*)table->data,
2272			NUMA_ZONELIST_ORDER_LEN);
2273	ret = proc_dostring(table, write, file, buffer, length, ppos);
2274	if (ret)
2275		return ret;
2276	if (write) {
2277		int oldval = user_zonelist_order;
2278		if (__parse_numa_zonelist_order((char*)table->data)) {
2279			/*
2280			 * bogus value.  restore saved string
2281			 */
2282			strncpy((char*)table->data, saved_string,
2283				NUMA_ZONELIST_ORDER_LEN);
2284			user_zonelist_order = oldval;
2285		} else if (oldval != user_zonelist_order)
2286			build_all_zonelists();
2287	}
2288	return 0;
2289}
2290
2291
2292#define MAX_NODE_LOAD (nr_online_nodes)
2293static int node_load[MAX_NUMNODES];
2294
2295/**
2296 * find_next_best_node - find the next node that should appear in a given node's fallback list
2297 * @node: node whose fallback list we're appending
2298 * @used_node_mask: nodemask_t of already used nodes
2299 *
2300 * We use a number of factors to determine which is the next node that should
2301 * appear on a given node's fallback list.  The node should not have appeared
2302 * already in @node's fallback list, and it should be the next closest node
2303 * according to the distance array (which contains arbitrary distance values
2304 * from each node to each node in the system), and should also prefer nodes
2305 * with no CPUs, since presumably they'll have very little allocation pressure
2306 * on them otherwise.
2307 * It returns -1 if no node is found.
2308 */
2309static int find_next_best_node(int node, nodemask_t *used_node_mask)
2310{
2311	int n, val;
2312	int min_val = INT_MAX;
2313	int best_node = -1;
2314	const struct cpumask *tmp = cpumask_of_node(0);
2315
2316	/* Use the local node if we haven't already */
2317	if (!node_isset(node, *used_node_mask)) {
2318		node_set(node, *used_node_mask);
2319		return node;
2320	}
2321
2322	for_each_node_state(n, N_HIGH_MEMORY) {
2323
2324		/* Don't want a node to appear more than once */
2325		if (node_isset(n, *used_node_mask))
2326			continue;
2327
2328		/* Use the distance array to find the distance */
2329		val = node_distance(node, n);
2330
2331		/* Penalize nodes under us ("prefer the next node") */
2332		val += (n < node);
2333
2334		/* Give preference to headless and unused nodes */
2335		tmp = cpumask_of_node(n);
2336		if (!cpumask_empty(tmp))
2337			val += PENALTY_FOR_NODE_WITH_CPUS;
2338
2339		/* Slight preference for less loaded node */
2340		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2341		val += node_load[n];
2342
2343		if (val < min_val) {
2344			min_val = val;
2345			best_node = n;
2346		}
2347	}
2348
2349	if (best_node >= 0)
2350		node_set(best_node, *used_node_mask);
2351
2352	return best_node;
2353}
2354
2355
2356/*
2357 * Build zonelists ordered by node and zones within node.
2358 * This results in maximum locality--normal zone overflows into local
2359 * DMA zone, if any--but risks exhausting DMA zone.
2360 */
2361static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2362{
2363	int j;
2364	struct zonelist *zonelist;
2365
2366	zonelist = &pgdat->node_zonelists[0];
2367	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2368		;
2369	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2370							MAX_NR_ZONES - 1);
2371	zonelist->_zonerefs[j].zone = NULL;
2372	zonelist->_zonerefs[j].zone_idx = 0;
2373}
2374
2375/*
2376 * Build gfp_thisnode zonelists
2377 */
2378static void build_thisnode_zonelists(pg_data_t *pgdat)
2379{
2380	int j;
2381	struct zonelist *zonelist;
2382
2383	zonelist = &pgdat->node_zonelists[1];
2384	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2385	zonelist->_zonerefs[j].zone = NULL;
2386	zonelist->_zonerefs[j].zone_idx = 0;
2387}
2388
2389/*
2390 * Build zonelists ordered by zone and nodes within zones.
2391 * This results in conserving DMA zone[s] until all Normal memory is
2392 * exhausted, but results in overflowing to remote node while memory
2393 * may still exist in local DMA zone.
2394 */
2395static int node_order[MAX_NUMNODES];
2396
2397static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2398{
2399	int pos, j, node;
2400	int zone_type;		/* needs to be signed */
2401	struct zone *z;
2402	struct zonelist *zonelist;
2403
2404	zonelist = &pgdat->node_zonelists[0];
2405	pos = 0;
2406	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2407		for (j = 0; j < nr_nodes; j++) {
2408			node = node_order[j];
2409			z = &NODE_DATA(node)->node_zones[zone_type];
2410			if (populated_zone(z)) {
2411				zoneref_set_zone(z,
2412					&zonelist->_zonerefs[pos++]);
2413				check_highest_zone(zone_type);
2414			}
2415		}
2416	}
2417	zonelist->_zonerefs[pos].zone = NULL;
2418	zonelist->_zonerefs[pos].zone_idx = 0;
2419}
2420
2421static int default_zonelist_order(void)
2422{
2423	int nid, zone_type;
2424	unsigned long low_kmem_size,total_size;
2425	struct zone *z;
2426	int average_size;
2427	/*
2428         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2429	 * If they are really small and used heavily, the system can fall
2430	 * into OOM very easily.
2431	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2432	 */
2433	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2434	low_kmem_size = 0;
2435	total_size = 0;
2436	for_each_online_node(nid) {
2437		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2438			z = &NODE_DATA(nid)->node_zones[zone_type];
2439			if (populated_zone(z)) {
2440				if (zone_type < ZONE_NORMAL)
2441					low_kmem_size += z->present_pages;
2442				total_size += z->present_pages;
2443			}
2444		}
2445	}
2446	if (!low_kmem_size ||  /* there are no DMA area. */
2447	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2448		return ZONELIST_ORDER_NODE;
2449	/*
2450	 * look into each node's config.
2451  	 * If there is a node whose DMA/DMA32 memory is very big area on
2452 	 * local memory, NODE_ORDER may be suitable.
2453         */
2454	average_size = total_size /
2455				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2456	for_each_online_node(nid) {
2457		low_kmem_size = 0;
2458		total_size = 0;
2459		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2460			z = &NODE_DATA(nid)->node_zones[zone_type];
2461			if (populated_zone(z)) {
2462				if (zone_type < ZONE_NORMAL)
2463					low_kmem_size += z->present_pages;
2464				total_size += z->present_pages;
2465			}
2466		}
2467		if (low_kmem_size &&
2468		    total_size > average_size && /* ignore small node */
2469		    low_kmem_size > total_size * 70/100)
2470			return ZONELIST_ORDER_NODE;
2471	}
2472	return ZONELIST_ORDER_ZONE;
2473}
2474
2475static void set_zonelist_order(void)
2476{
2477	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2478		current_zonelist_order = default_zonelist_order();
2479	else
2480		current_zonelist_order = user_zonelist_order;
2481}
2482
2483static void build_zonelists(pg_data_t *pgdat)
2484{
2485	int j, node, load;
2486	enum zone_type i;
2487	nodemask_t used_mask;
2488	int local_node, prev_node;
2489	struct zonelist *zonelist;
2490	int order = current_zonelist_order;
2491
2492	/* initialize zonelists */
2493	for (i = 0; i < MAX_ZONELISTS; i++) {
2494		zonelist = pgdat->node_zonelists + i;
2495		zonelist->_zonerefs[0].zone = NULL;
2496		zonelist->_zonerefs[0].zone_idx = 0;
2497	}
2498
2499	/* NUMA-aware ordering of nodes */
2500	local_node = pgdat->node_id;
2501	load = nr_online_nodes;
2502	prev_node = local_node;
2503	nodes_clear(used_mask);
2504
2505	memset(node_load, 0, sizeof(node_load));
2506	memset(node_order, 0, sizeof(node_order));
2507	j = 0;
2508
2509	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2510		int distance = node_distance(local_node, node);
2511
2512		/*
2513		 * If another node is sufficiently far away then it is better
2514		 * to reclaim pages in a zone before going off node.
2515		 */
2516		if (distance > RECLAIM_DISTANCE)
2517			zone_reclaim_mode = 1;
2518
2519		/*
2520		 * We don't want to pressure a particular node.
2521		 * So adding penalty to the first node in same
2522		 * distance group to make it round-robin.
2523		 */
2524		if (distance != node_distance(local_node, prev_node))
2525			node_load[node] = load;
2526
2527		prev_node = node;
2528		load--;
2529		if (order == ZONELIST_ORDER_NODE)
2530			build_zonelists_in_node_order(pgdat, node);
2531		else
2532			node_order[j++] = node;	/* remember order */
2533	}
2534
2535	if (order == ZONELIST_ORDER_ZONE) {
2536		/* calculate node order -- i.e., DMA last! */
2537		build_zonelists_in_zone_order(pgdat, j);
2538	}
2539
2540	build_thisnode_zonelists(pgdat);
2541}
2542
2543/* Construct the zonelist performance cache - see further mmzone.h */
2544static void build_zonelist_cache(pg_data_t *pgdat)
2545{
2546	struct zonelist *zonelist;
2547	struct zonelist_cache *zlc;
2548	struct zoneref *z;
2549
2550	zonelist = &pgdat->node_zonelists[0];
2551	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2552	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2553	for (z = zonelist->_zonerefs; z->zone; z++)
2554		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2555}
2556
2557
2558#else	/* CONFIG_NUMA */
2559
2560static void set_zonelist_order(void)
2561{
2562	current_zonelist_order = ZONELIST_ORDER_ZONE;
2563}
2564
2565static void build_zonelists(pg_data_t *pgdat)
2566{
2567	int node, local_node;
2568	enum zone_type j;
2569	struct zonelist *zonelist;
2570
2571	local_node = pgdat->node_id;
2572
2573	zonelist = &pgdat->node_zonelists[0];
2574	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2575
2576	/*
2577	 * Now we build the zonelist so that it contains the zones
2578	 * of all the other nodes.
2579	 * We don't want to pressure a particular node, so when
2580	 * building the zones for node N, we make sure that the
2581	 * zones coming right after the local ones are those from
2582	 * node N+1 (modulo N)
2583	 */
2584	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2585		if (!node_online(node))
2586			continue;
2587		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2588							MAX_NR_ZONES - 1);
2589	}
2590	for (node = 0; node < local_node; node++) {
2591		if (!node_online(node))
2592			continue;
2593		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2594							MAX_NR_ZONES - 1);
2595	}
2596
2597	zonelist->_zonerefs[j].zone = NULL;
2598	zonelist->_zonerefs[j].zone_idx = 0;
2599}
2600
2601/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2602static void build_zonelist_cache(pg_data_t *pgdat)
2603{
2604	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2605}
2606
2607#endif	/* CONFIG_NUMA */
2608
2609/* return values int ....just for stop_machine() */
2610static int __build_all_zonelists(void *dummy)
2611{
2612	int nid;
2613
2614	for_each_online_node(nid) {
2615		pg_data_t *pgdat = NODE_DATA(nid);
2616
2617		build_zonelists(pgdat);
2618		build_zonelist_cache(pgdat);
2619	}
2620	return 0;
2621}
2622
2623void build_all_zonelists(void)
2624{
2625	set_zonelist_order();
2626
2627	if (system_state == SYSTEM_BOOTING) {
2628		__build_all_zonelists(NULL);
2629		mminit_verify_zonelist();
2630		cpuset_init_current_mems_allowed();
2631	} else {
2632		/* we have to stop all cpus to guarantee there is no user
2633		   of zonelist */
2634		stop_machine(__build_all_zonelists, NULL, NULL);
2635		/* cpuset refresh routine should be here */
2636	}
2637	vm_total_pages = nr_free_pagecache_pages();
2638	/*
2639	 * Disable grouping by mobility if the number of pages in the
2640	 * system is too low to allow the mechanism to work. It would be
2641	 * more accurate, but expensive to check per-zone. This check is
2642	 * made on memory-hotadd so a system can start with mobility
2643	 * disabled and enable it later
2644	 */
2645	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2646		page_group_by_mobility_disabled = 1;
2647	else
2648		page_group_by_mobility_disabled = 0;
2649
2650	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2651		"Total pages: %ld\n",
2652			nr_online_nodes,
2653			zonelist_order_name[current_zonelist_order],
2654			page_group_by_mobility_disabled ? "off" : "on",
2655			vm_total_pages);
2656#ifdef CONFIG_NUMA
2657	printk("Policy zone: %s\n", zone_names[policy_zone]);
2658#endif
2659}
2660
2661/*
2662 * Helper functions to size the waitqueue hash table.
2663 * Essentially these want to choose hash table sizes sufficiently
2664 * large so that collisions trying to wait on pages are rare.
2665 * But in fact, the number of active page waitqueues on typical
2666 * systems is ridiculously low, less than 200. So this is even
2667 * conservative, even though it seems large.
2668 *
2669 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2670 * waitqueues, i.e. the size of the waitq table given the number of pages.
2671 */
2672#define PAGES_PER_WAITQUEUE	256
2673
2674#ifndef CONFIG_MEMORY_HOTPLUG
2675static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2676{
2677	unsigned long size = 1;
2678
2679	pages /= PAGES_PER_WAITQUEUE;
2680
2681	while (size < pages)
2682		size <<= 1;
2683
2684	/*
2685	 * Once we have dozens or even hundreds of threads sleeping
2686	 * on IO we've got bigger problems than wait queue collision.
2687	 * Limit the size of the wait table to a reasonable size.
2688	 */
2689	size = min(size, 4096UL);
2690
2691	return max(size, 4UL);
2692}
2693#else
2694/*
2695 * A zone's size might be changed by hot-add, so it is not possible to determine
2696 * a suitable size for its wait_table.  So we use the maximum size now.
2697 *
2698 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2699 *
2700 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2701 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2702 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2703 *
2704 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2705 * or more by the traditional way. (See above).  It equals:
2706 *
2707 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2708 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2709 *    powerpc (64K page size)             : =  (32G +16M)byte.
2710 */
2711static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2712{
2713	return 4096UL;
2714}
2715#endif
2716
2717/*
2718 * This is an integer logarithm so that shifts can be used later
2719 * to extract the more random high bits from the multiplicative
2720 * hash function before the remainder is taken.
2721 */
2722static inline unsigned long wait_table_bits(unsigned long size)
2723{
2724	return ffz(~size);
2725}
2726
2727#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2728
2729/*
2730 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2731 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2732 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2733 * higher will lead to a bigger reserve which will get freed as contiguous
2734 * blocks as reclaim kicks in
2735 */
2736static void setup_zone_migrate_reserve(struct zone *zone)
2737{
2738	unsigned long start_pfn, pfn, end_pfn;
2739	struct page *page;
2740	unsigned long reserve, block_migratetype;
2741
2742	/* Get the start pfn, end pfn and the number of blocks to reserve */
2743	start_pfn = zone->zone_start_pfn;
2744	end_pfn = start_pfn + zone->spanned_pages;
2745	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2746							pageblock_order;
2747
2748	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2749		if (!pfn_valid(pfn))
2750			continue;
2751		page = pfn_to_page(pfn);
2752
2753		/* Watch out for overlapping nodes */
2754		if (page_to_nid(page) != zone_to_nid(zone))
2755			continue;
2756
2757		/* Blocks with reserved pages will never free, skip them. */
2758		if (PageReserved(page))
2759			continue;
2760
2761		block_migratetype = get_pageblock_migratetype(page);
2762
2763		/* If this block is reserved, account for it */
2764		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2765			reserve--;
2766			continue;
2767		}
2768
2769		/* Suitable for reserving if this block is movable */
2770		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2771			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2772			move_freepages_block(zone, page, MIGRATE_RESERVE);
2773			reserve--;
2774			continue;
2775		}
2776
2777		/*
2778		 * If the reserve is met and this is a previous reserved block,
2779		 * take it back
2780		 */
2781		if (block_migratetype == MIGRATE_RESERVE) {
2782			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2783			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2784		}
2785	}
2786}
2787
2788/*
2789 * Initially all pages are reserved - free ones are freed
2790 * up by free_all_bootmem() once the early boot process is
2791 * done. Non-atomic initialization, single-pass.
2792 */
2793void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2794		unsigned long start_pfn, enum memmap_context context)
2795{
2796	struct page *page;
2797	unsigned long end_pfn = start_pfn + size;
2798	unsigned long pfn;
2799	struct zone *z;
2800
2801	if (highest_memmap_pfn < end_pfn - 1)
2802		highest_memmap_pfn = end_pfn - 1;
2803
2804	z = &NODE_DATA(nid)->node_zones[zone];
2805	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2806		/*
2807		 * There can be holes in boot-time mem_map[]s
2808		 * handed to this function.  They do not
2809		 * exist on hotplugged memory.
2810		 */
2811		if (context == MEMMAP_EARLY) {
2812			if (!early_pfn_valid(pfn))
2813				continue;
2814			if (!early_pfn_in_nid(pfn, nid))
2815				continue;
2816		}
2817		page = pfn_to_page(pfn);
2818		set_page_links(page, zone, nid, pfn);
2819		mminit_verify_page_links(page, zone, nid, pfn);
2820		init_page_count(page);
2821		reset_page_mapcount(page);
2822		SetPageReserved(page);
2823		/*
2824		 * Mark the block movable so that blocks are reserved for
2825		 * movable at startup. This will force kernel allocations
2826		 * to reserve their blocks rather than leaking throughout
2827		 * the address space during boot when many long-lived
2828		 * kernel allocations are made. Later some blocks near
2829		 * the start are marked MIGRATE_RESERVE by
2830		 * setup_zone_migrate_reserve()
2831		 *
2832		 * bitmap is created for zone's valid pfn range. but memmap
2833		 * can be created for invalid pages (for alignment)
2834		 * check here not to call set_pageblock_migratetype() against
2835		 * pfn out of zone.
2836		 */
2837		if ((z->zone_start_pfn <= pfn)
2838		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2839		    && !(pfn & (pageblock_nr_pages - 1)))
2840			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2841
2842		INIT_LIST_HEAD(&page->lru);
2843#ifdef WANT_PAGE_VIRTUAL
2844		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2845		if (!is_highmem_idx(zone))
2846			set_page_address(page, __va(pfn << PAGE_SHIFT));
2847#endif
2848	}
2849}
2850
2851static void __meminit zone_init_free_lists(struct zone *zone)
2852{
2853	int order, t;
2854	for_each_migratetype_order(order, t) {
2855		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2856		zone->free_area[order].nr_free = 0;
2857	}
2858}
2859
2860#ifndef __HAVE_ARCH_MEMMAP_INIT
2861#define memmap_init(size, nid, zone, start_pfn) \
2862	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2863#endif
2864
2865static int zone_batchsize(struct zone *zone)
2866{
2867#ifdef CONFIG_MMU
2868	int batch;
2869
2870	/*
2871	 * The per-cpu-pages pools are set to around 1000th of the
2872	 * size of the zone.  But no more than 1/2 of a meg.
2873	 *
2874	 * OK, so we don't know how big the cache is.  So guess.
2875	 */
2876	batch = zone->present_pages / 1024;
2877	if (batch * PAGE_SIZE > 512 * 1024)
2878		batch = (512 * 1024) / PAGE_SIZE;
2879	batch /= 4;		/* We effectively *= 4 below */
2880	if (batch < 1)
2881		batch = 1;
2882
2883	/*
2884	 * Clamp the batch to a 2^n - 1 value. Having a power
2885	 * of 2 value was found to be more likely to have
2886	 * suboptimal cache aliasing properties in some cases.
2887	 *
2888	 * For example if 2 tasks are alternately allocating
2889	 * batches of pages, one task can end up with a lot
2890	 * of pages of one half of the possible page colors
2891	 * and the other with pages of the other colors.
2892	 */
2893	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2894
2895	return batch;
2896
2897#else
2898	/* The deferral and batching of frees should be suppressed under NOMMU
2899	 * conditions.
2900	 *
2901	 * The problem is that NOMMU needs to be able to allocate large chunks
2902	 * of contiguous memory as there's no hardware page translation to
2903	 * assemble apparent contiguous memory from discontiguous pages.
2904	 *
2905	 * Queueing large contiguous runs of pages for batching, however,
2906	 * causes the pages to actually be freed in smaller chunks.  As there
2907	 * can be a significant delay between the individual batches being
2908	 * recycled, this leads to the once large chunks of space being
2909	 * fragmented and becoming unavailable for high-order allocations.
2910	 */
2911	return 0;
2912#endif
2913}
2914
2915static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2916{
2917	struct per_cpu_pages *pcp;
2918
2919	memset(p, 0, sizeof(*p));
2920
2921	pcp = &p->pcp;
2922	pcp->count = 0;
2923	pcp->high = 6 * batch;
2924	pcp->batch = max(1UL, 1 * batch);
2925	INIT_LIST_HEAD(&pcp->list);
2926}
2927
2928/*
2929 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2930 * to the value high for the pageset p.
2931 */
2932
2933static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2934				unsigned long high)
2935{
2936	struct per_cpu_pages *pcp;
2937
2938	pcp = &p->pcp;
2939	pcp->high = high;
2940	pcp->batch = max(1UL, high/4);
2941	if ((high/4) > (PAGE_SHIFT * 8))
2942		pcp->batch = PAGE_SHIFT * 8;
2943}
2944
2945
2946#ifdef CONFIG_NUMA
2947/*
2948 * Boot pageset table. One per cpu which is going to be used for all
2949 * zones and all nodes. The parameters will be set in such a way
2950 * that an item put on a list will immediately be handed over to
2951 * the buddy list. This is safe since pageset manipulation is done
2952 * with interrupts disabled.
2953 *
2954 * Some NUMA counter updates may also be caught by the boot pagesets.
2955 *
2956 * The boot_pagesets must be kept even after bootup is complete for
2957 * unused processors and/or zones. They do play a role for bootstrapping
2958 * hotplugged processors.
2959 *
2960 * zoneinfo_show() and maybe other functions do
2961 * not check if the processor is online before following the pageset pointer.
2962 * Other parts of the kernel may not check if the zone is available.
2963 */
2964static struct per_cpu_pageset boot_pageset[NR_CPUS];
2965
2966/*
2967 * Dynamically allocate memory for the
2968 * per cpu pageset array in struct zone.
2969 */
2970static int __cpuinit process_zones(int cpu)
2971{
2972	struct zone *zone, *dzone;
2973	int node = cpu_to_node(cpu);
2974
2975	node_set_state(node, N_CPU);	/* this node has a cpu */
2976
2977	for_each_populated_zone(zone) {
2978		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2979					 GFP_KERNEL, node);
2980		if (!zone_pcp(zone, cpu))
2981			goto bad;
2982
2983		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2984
2985		if (percpu_pagelist_fraction)
2986			setup_pagelist_highmark(zone_pcp(zone, cpu),
2987			 	(zone->present_pages / percpu_pagelist_fraction));
2988	}
2989
2990	return 0;
2991bad:
2992	for_each_zone(dzone) {
2993		if (!populated_zone(dzone))
2994			continue;
2995		if (dzone == zone)
2996			break;
2997		kfree(zone_pcp(dzone, cpu));
2998		zone_pcp(dzone, cpu) = NULL;
2999	}
3000	return -ENOMEM;
3001}
3002
3003static inline void free_zone_pagesets(int cpu)
3004{
3005	struct zone *zone;
3006
3007	for_each_zone(zone) {
3008		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3009
3010		/* Free per_cpu_pageset if it is slab allocated */
3011		if (pset != &boot_pageset[cpu])
3012			kfree(pset);
3013		zone_pcp(zone, cpu) = NULL;
3014	}
3015}
3016
3017static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3018		unsigned long action,
3019		void *hcpu)
3020{
3021	int cpu = (long)hcpu;
3022	int ret = NOTIFY_OK;
3023
3024	switch (action) {
3025	case CPU_UP_PREPARE:
3026	case CPU_UP_PREPARE_FROZEN:
3027		if (process_zones(cpu))
3028			ret = NOTIFY_BAD;
3029		break;
3030	case CPU_UP_CANCELED:
3031	case CPU_UP_CANCELED_FROZEN:
3032	case CPU_DEAD:
3033	case CPU_DEAD_FROZEN:
3034		free_zone_pagesets(cpu);
3035		break;
3036	default:
3037		break;
3038	}
3039	return ret;
3040}
3041
3042static struct notifier_block __cpuinitdata pageset_notifier =
3043	{ &pageset_cpuup_callback, NULL, 0 };
3044
3045void __init setup_per_cpu_pageset(void)
3046{
3047	int err;
3048
3049	/* Initialize per_cpu_pageset for cpu 0.
3050	 * A cpuup callback will do this for every cpu
3051	 * as it comes online
3052	 */
3053	err = process_zones(smp_processor_id());
3054	BUG_ON(err);
3055	register_cpu_notifier(&pageset_notifier);
3056}
3057
3058#endif
3059
3060static noinline __init_refok
3061int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3062{
3063	int i;
3064	struct pglist_data *pgdat = zone->zone_pgdat;
3065	size_t alloc_size;
3066
3067	/*
3068	 * The per-page waitqueue mechanism uses hashed waitqueues
3069	 * per zone.
3070	 */
3071	zone->wait_table_hash_nr_entries =
3072		 wait_table_hash_nr_entries(zone_size_pages);
3073	zone->wait_table_bits =
3074		wait_table_bits(zone->wait_table_hash_nr_entries);
3075	alloc_size = zone->wait_table_hash_nr_entries
3076					* sizeof(wait_queue_head_t);
3077
3078	if (!slab_is_available()) {
3079		zone->wait_table = (wait_queue_head_t *)
3080			alloc_bootmem_node(pgdat, alloc_size);
3081	} else {
3082		/*
3083		 * This case means that a zone whose size was 0 gets new memory
3084		 * via memory hot-add.
3085		 * But it may be the case that a new node was hot-added.  In
3086		 * this case vmalloc() will not be able to use this new node's
3087		 * memory - this wait_table must be initialized to use this new
3088		 * node itself as well.
3089		 * To use this new node's memory, further consideration will be
3090		 * necessary.
3091		 */
3092		zone->wait_table = vmalloc(alloc_size);
3093	}
3094	if (!zone->wait_table)
3095		return -ENOMEM;
3096
3097	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3098		init_waitqueue_head(zone->wait_table + i);
3099
3100	return 0;
3101}
3102
3103static __meminit void zone_pcp_init(struct zone *zone)
3104{
3105	int cpu;
3106	unsigned long batch = zone_batchsize(zone);
3107
3108	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3109#ifdef CONFIG_NUMA
3110		/* Early boot. Slab allocator not functional yet */
3111		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3112		setup_pageset(&boot_pageset[cpu],0);
3113#else
3114		setup_pageset(zone_pcp(zone,cpu), batch);
3115#endif
3116	}
3117	if (zone->present_pages)
3118		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3119			zone->name, zone->present_pages, batch);
3120}
3121
3122__meminit int init_currently_empty_zone(struct zone *zone,
3123					unsigned long zone_start_pfn,
3124					unsigned long size,
3125					enum memmap_context context)
3126{
3127	struct pglist_data *pgdat = zone->zone_pgdat;
3128	int ret;
3129	ret = zone_wait_table_init(zone, size);
3130	if (ret)
3131		return ret;
3132	pgdat->nr_zones = zone_idx(zone) + 1;
3133
3134	zone->zone_start_pfn = zone_start_pfn;
3135
3136	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3137			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3138			pgdat->node_id,
3139			(unsigned long)zone_idx(zone),
3140			zone_start_pfn, (zone_start_pfn + size));
3141
3142	zone_init_free_lists(zone);
3143
3144	return 0;
3145}
3146
3147#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3148/*
3149 * Basic iterator support. Return the first range of PFNs for a node
3150 * Note: nid == MAX_NUMNODES returns first region regardless of node
3151 */
3152static int __meminit first_active_region_index_in_nid(int nid)
3153{
3154	int i;
3155
3156	for (i = 0; i < nr_nodemap_entries; i++)
3157		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3158			return i;
3159
3160	return -1;
3161}
3162
3163/*
3164 * Basic iterator support. Return the next active range of PFNs for a node
3165 * Note: nid == MAX_NUMNODES returns next region regardless of node
3166 */
3167static int __meminit next_active_region_index_in_nid(int index, int nid)
3168{
3169	for (index = index + 1; index < nr_nodemap_entries; index++)
3170		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3171			return index;
3172
3173	return -1;
3174}
3175
3176#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3177/*
3178 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3179 * Architectures may implement their own version but if add_active_range()
3180 * was used and there are no special requirements, this is a convenient
3181 * alternative
3182 */
3183int __meminit __early_pfn_to_nid(unsigned long pfn)
3184{
3185	int i;
3186
3187	for (i = 0; i < nr_nodemap_entries; i++) {
3188		unsigned long start_pfn = early_node_map[i].start_pfn;
3189		unsigned long end_pfn = early_node_map[i].end_pfn;
3190
3191		if (start_pfn <= pfn && pfn < end_pfn)
3192			return early_node_map[i].nid;
3193	}
3194	/* This is a memory hole */
3195	return -1;
3196}
3197#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3198
3199int __meminit early_pfn_to_nid(unsigned long pfn)
3200{
3201	int nid;
3202
3203	nid = __early_pfn_to_nid(pfn);
3204	if (nid >= 0)
3205		return nid;
3206	/* just returns 0 */
3207	return 0;
3208}
3209
3210#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3211bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3212{
3213	int nid;
3214
3215	nid = __early_pfn_to_nid(pfn);
3216	if (nid >= 0 && nid != node)
3217		return false;
3218	return true;
3219}
3220#endif
3221
3222/* Basic iterator support to walk early_node_map[] */
3223#define for_each_active_range_index_in_nid(i, nid) \
3224	for (i = first_active_region_index_in_nid(nid); i != -1; \
3225				i = next_active_region_index_in_nid(i, nid))
3226
3227/**
3228 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3229 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3230 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3231 *
3232 * If an architecture guarantees that all ranges registered with
3233 * add_active_ranges() contain no holes and may be freed, this
3234 * this function may be used instead of calling free_bootmem() manually.
3235 */
3236void __init free_bootmem_with_active_regions(int nid,
3237						unsigned long max_low_pfn)
3238{
3239	int i;
3240
3241	for_each_active_range_index_in_nid(i, nid) {
3242		unsigned long size_pages = 0;
3243		unsigned long end_pfn = early_node_map[i].end_pfn;
3244
3245		if (early_node_map[i].start_pfn >= max_low_pfn)
3246			continue;
3247
3248		if (end_pfn > max_low_pfn)
3249			end_pfn = max_low_pfn;
3250
3251		size_pages = end_pfn - early_node_map[i].start_pfn;
3252		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3253				PFN_PHYS(early_node_map[i].start_pfn),
3254				size_pages << PAGE_SHIFT);
3255	}
3256}
3257
3258void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3259{
3260	int i;
3261	int ret;
3262
3263	for_each_active_range_index_in_nid(i, nid) {
3264		ret = work_fn(early_node_map[i].start_pfn,
3265			      early_node_map[i].end_pfn, data);
3266		if (ret)
3267			break;
3268	}
3269}
3270/**
3271 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3272 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3273 *
3274 * If an architecture guarantees that all ranges registered with
3275 * add_active_ranges() contain no holes and may be freed, this
3276 * function may be used instead of calling memory_present() manually.
3277 */
3278void __init sparse_memory_present_with_active_regions(int nid)
3279{
3280	int i;
3281
3282	for_each_active_range_index_in_nid(i, nid)
3283		memory_present(early_node_map[i].nid,
3284				early_node_map[i].start_pfn,
3285				early_node_map[i].end_pfn);
3286}
3287
3288/**
3289 * get_pfn_range_for_nid - Return the start and end page frames for a node
3290 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3291 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3292 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3293 *
3294 * It returns the start and end page frame of a node based on information
3295 * provided by an arch calling add_active_range(). If called for a node
3296 * with no available memory, a warning is printed and the start and end
3297 * PFNs will be 0.
3298 */
3299void __meminit get_pfn_range_for_nid(unsigned int nid,
3300			unsigned long *start_pfn, unsigned long *end_pfn)
3301{
3302	int i;
3303	*start_pfn = -1UL;
3304	*end_pfn = 0;
3305
3306	for_each_active_range_index_in_nid(i, nid) {
3307		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3308		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3309	}
3310
3311	if (*start_pfn == -1UL)
3312		*start_pfn = 0;
3313}
3314
3315/*
3316 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3317 * assumption is made that zones within a node are ordered in monotonic
3318 * increasing memory addresses so that the "highest" populated zone is used
3319 */
3320static void __init find_usable_zone_for_movable(void)
3321{
3322	int zone_index;
3323	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3324		if (zone_index == ZONE_MOVABLE)
3325			continue;
3326
3327		if (arch_zone_highest_possible_pfn[zone_index] >
3328				arch_zone_lowest_possible_pfn[zone_index])
3329			break;
3330	}
3331
3332	VM_BUG_ON(zone_index == -1);
3333	movable_zone = zone_index;
3334}
3335
3336/*
3337 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3338 * because it is sized independant of architecture. Unlike the other zones,
3339 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3340 * in each node depending on the size of each node and how evenly kernelcore
3341 * is distributed. This helper function adjusts the zone ranges
3342 * provided by the architecture for a given node by using the end of the
3343 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3344 * zones within a node are in order of monotonic increases memory addresses
3345 */
3346static void __meminit adjust_zone_range_for_zone_movable(int nid,
3347					unsigned long zone_type,
3348					unsigned long node_start_pfn,
3349					unsigned long node_end_pfn,
3350					unsigned long *zone_start_pfn,
3351					unsigned long *zone_end_pfn)
3352{
3353	/* Only adjust if ZONE_MOVABLE is on this node */
3354	if (zone_movable_pfn[nid]) {
3355		/* Size ZONE_MOVABLE */
3356		if (zone_type == ZONE_MOVABLE) {
3357			*zone_start_pfn = zone_movable_pfn[nid];
3358			*zone_end_pfn = min(node_end_pfn,
3359				arch_zone_highest_possible_pfn[movable_zone]);
3360
3361		/* Adjust for ZONE_MOVABLE starting within this range */
3362		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3363				*zone_end_pfn > zone_movable_pfn[nid]) {
3364			*zone_end_pfn = zone_movable_pfn[nid];
3365
3366		/* Check if this whole range is within ZONE_MOVABLE */
3367		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3368			*zone_start_pfn = *zone_end_pfn;
3369	}
3370}
3371
3372/*
3373 * Return the number of pages a zone spans in a node, including holes
3374 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3375 */
3376static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3377					unsigned long zone_type,
3378					unsigned long *ignored)
3379{
3380	unsigned long node_start_pfn, node_end_pfn;
3381	unsigned long zone_start_pfn, zone_end_pfn;
3382
3383	/* Get the start and end of the node and zone */
3384	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3385	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3386	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3387	adjust_zone_range_for_zone_movable(nid, zone_type,
3388				node_start_pfn, node_end_pfn,
3389				&zone_start_pfn, &zone_end_pfn);
3390
3391	/* Check that this node has pages within the zone's required range */
3392	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3393		return 0;
3394
3395	/* Move the zone boundaries inside the node if necessary */
3396	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3397	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3398
3399	/* Return the spanned pages */
3400	return zone_end_pfn - zone_start_pfn;
3401}
3402
3403/*
3404 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3405 * then all holes in the requested range will be accounted for.
3406 */
3407static unsigned long __meminit __absent_pages_in_range(int nid,
3408				unsigned long range_start_pfn,
3409				unsigned long range_end_pfn)
3410{
3411	int i = 0;
3412	unsigned long prev_end_pfn = 0, hole_pages = 0;
3413	unsigned long start_pfn;
3414
3415	/* Find the end_pfn of the first active range of pfns in the node */
3416	i = first_active_region_index_in_nid(nid);
3417	if (i == -1)
3418		return 0;
3419
3420	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3421
3422	/* Account for ranges before physical memory on this node */
3423	if (early_node_map[i].start_pfn > range_start_pfn)
3424		hole_pages = prev_end_pfn - range_start_pfn;
3425
3426	/* Find all holes for the zone within the node */
3427	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3428
3429		/* No need to continue if prev_end_pfn is outside the zone */
3430		if (prev_end_pfn >= range_end_pfn)
3431			break;
3432
3433		/* Make sure the end of the zone is not within the hole */
3434		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3435		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3436
3437		/* Update the hole size cound and move on */
3438		if (start_pfn > range_start_pfn) {
3439			BUG_ON(prev_end_pfn > start_pfn);
3440			hole_pages += start_pfn - prev_end_pfn;
3441		}
3442		prev_end_pfn = early_node_map[i].end_pfn;
3443	}
3444
3445	/* Account for ranges past physical memory on this node */
3446	if (range_end_pfn > prev_end_pfn)
3447		hole_pages += range_end_pfn -
3448				max(range_start_pfn, prev_end_pfn);
3449
3450	return hole_pages;
3451}
3452
3453/**
3454 * absent_pages_in_range - Return number of page frames in holes within a range
3455 * @start_pfn: The start PFN to start searching for holes
3456 * @end_pfn: The end PFN to stop searching for holes
3457 *
3458 * It returns the number of pages frames in memory holes within a range.
3459 */
3460unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3461							unsigned long end_pfn)
3462{
3463	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3464}
3465
3466/* Return the number of page frames in holes in a zone on a node */
3467static unsigned long __meminit zone_absent_pages_in_node(int nid,
3468					unsigned long zone_type,
3469					unsigned long *ignored)
3470{
3471	unsigned long node_start_pfn, node_end_pfn;
3472	unsigned long zone_start_pfn, zone_end_pfn;
3473
3474	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3475	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3476							node_start_pfn);
3477	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3478							node_end_pfn);
3479
3480	adjust_zone_range_for_zone_movable(nid, zone_type,
3481			node_start_pfn, node_end_pfn,
3482			&zone_start_pfn, &zone_end_pfn);
3483	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3484}
3485
3486#else
3487static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3488					unsigned long zone_type,
3489					unsigned long *zones_size)
3490{
3491	return zones_size[zone_type];
3492}
3493
3494static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3495						unsigned long zone_type,
3496						unsigned long *zholes_size)
3497{
3498	if (!zholes_size)
3499		return 0;
3500
3501	return zholes_size[zone_type];
3502}
3503
3504#endif
3505
3506static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3507		unsigned long *zones_size, unsigned long *zholes_size)
3508{
3509	unsigned long realtotalpages, totalpages = 0;
3510	enum zone_type i;
3511
3512	for (i = 0; i < MAX_NR_ZONES; i++)
3513		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3514								zones_size);
3515	pgdat->node_spanned_pages = totalpages;
3516
3517	realtotalpages = totalpages;
3518	for (i = 0; i < MAX_NR_ZONES; i++)
3519		realtotalpages -=
3520			zone_absent_pages_in_node(pgdat->node_id, i,
3521								zholes_size);
3522	pgdat->node_present_pages = realtotalpages;
3523	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3524							realtotalpages);
3525}
3526
3527#ifndef CONFIG_SPARSEMEM
3528/*
3529 * Calculate the size of the zone->blockflags rounded to an unsigned long
3530 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3531 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3532 * round what is now in bits to nearest long in bits, then return it in
3533 * bytes.
3534 */
3535static unsigned long __init usemap_size(unsigned long zonesize)
3536{
3537	unsigned long usemapsize;
3538
3539	usemapsize = roundup(zonesize, pageblock_nr_pages);
3540	usemapsize = usemapsize >> pageblock_order;
3541	usemapsize *= NR_PAGEBLOCK_BITS;
3542	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3543
3544	return usemapsize / 8;
3545}
3546
3547static void __init setup_usemap(struct pglist_data *pgdat,
3548				struct zone *zone, unsigned long zonesize)
3549{
3550	unsigned long usemapsize = usemap_size(zonesize);
3551	zone->pageblock_flags = NULL;
3552	if (usemapsize)
3553		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3554}
3555#else
3556static void inline setup_usemap(struct pglist_data *pgdat,
3557				struct zone *zone, unsigned long zonesize) {}
3558#endif /* CONFIG_SPARSEMEM */
3559
3560#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3561
3562/* Return a sensible default order for the pageblock size. */
3563static inline int pageblock_default_order(void)
3564{
3565	if (HPAGE_SHIFT > PAGE_SHIFT)
3566		return HUGETLB_PAGE_ORDER;
3567
3568	return MAX_ORDER-1;
3569}
3570
3571/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3572static inline void __init set_pageblock_order(unsigned int order)
3573{
3574	/* Check that pageblock_nr_pages has not already been setup */
3575	if (pageblock_order)
3576		return;
3577
3578	/*
3579	 * Assume the largest contiguous order of interest is a huge page.
3580	 * This value may be variable depending on boot parameters on IA64
3581	 */
3582	pageblock_order = order;
3583}
3584#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3585
3586/*
3587 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3588 * and pageblock_default_order() are unused as pageblock_order is set
3589 * at compile-time. See include/linux/pageblock-flags.h for the values of
3590 * pageblock_order based on the kernel config
3591 */
3592static inline int pageblock_default_order(unsigned int order)
3593{
3594	return MAX_ORDER-1;
3595}
3596#define set_pageblock_order(x)	do {} while (0)
3597
3598#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3599
3600/*
3601 * Set up the zone data structures:
3602 *   - mark all pages reserved
3603 *   - mark all memory queues empty
3604 *   - clear the memory bitmaps
3605 */
3606static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3607		unsigned long *zones_size, unsigned long *zholes_size)
3608{
3609	enum zone_type j;
3610	int nid = pgdat->node_id;
3611	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3612	int ret;
3613
3614	pgdat_resize_init(pgdat);
3615	pgdat->nr_zones = 0;
3616	init_waitqueue_head(&pgdat->kswapd_wait);
3617	pgdat->kswapd_max_order = 0;
3618	pgdat_page_cgroup_init(pgdat);
3619
3620	for (j = 0; j < MAX_NR_ZONES; j++) {
3621		struct zone *zone = pgdat->node_zones + j;
3622		unsigned long size, realsize, memmap_pages;
3623		enum lru_list l;
3624
3625		size = zone_spanned_pages_in_node(nid, j, zones_size);
3626		realsize = size - zone_absent_pages_in_node(nid, j,
3627								zholes_size);
3628
3629		/*
3630		 * Adjust realsize so that it accounts for how much memory
3631		 * is used by this zone for memmap. This affects the watermark
3632		 * and per-cpu initialisations
3633		 */
3634		memmap_pages =
3635			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3636		if (realsize >= memmap_pages) {
3637			realsize -= memmap_pages;
3638			if (memmap_pages)
3639				printk(KERN_DEBUG
3640				       "  %s zone: %lu pages used for memmap\n",
3641				       zone_names[j], memmap_pages);
3642		} else
3643			printk(KERN_WARNING
3644				"  %s zone: %lu pages exceeds realsize %lu\n",
3645				zone_names[j], memmap_pages, realsize);
3646
3647		/* Account for reserved pages */
3648		if (j == 0 && realsize > dma_reserve) {
3649			realsize -= dma_reserve;
3650			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3651					zone_names[0], dma_reserve);
3652		}
3653
3654		if (!is_highmem_idx(j))
3655			nr_kernel_pages += realsize;
3656		nr_all_pages += realsize;
3657
3658		zone->spanned_pages = size;
3659		zone->present_pages = realsize;
3660#ifdef CONFIG_NUMA
3661		zone->node = nid;
3662		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3663						/ 100;
3664		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3665#endif
3666		zone->name = zone_names[j];
3667		spin_lock_init(&zone->lock);
3668		spin_lock_init(&zone->lru_lock);
3669		zone_seqlock_init(zone);
3670		zone->zone_pgdat = pgdat;
3671
3672		zone->prev_priority = DEF_PRIORITY;
3673
3674		zone_pcp_init(zone);
3675		for_each_lru(l) {
3676			INIT_LIST_HEAD(&zone->lru[l].list);
3677			zone->lru[l].nr_saved_scan = 0;
3678		}
3679		zone->reclaim_stat.recent_rotated[0] = 0;
3680		zone->reclaim_stat.recent_rotated[1] = 0;
3681		zone->reclaim_stat.recent_scanned[0] = 0;
3682		zone->reclaim_stat.recent_scanned[1] = 0;
3683		zap_zone_vm_stats(zone);
3684		zone->flags = 0;
3685		if (!size)
3686			continue;
3687
3688		set_pageblock_order(pageblock_default_order());
3689		setup_usemap(pgdat, zone, size);
3690		ret = init_currently_empty_zone(zone, zone_start_pfn,
3691						size, MEMMAP_EARLY);
3692		BUG_ON(ret);
3693		memmap_init(size, nid, j, zone_start_pfn);
3694		zone_start_pfn += size;
3695	}
3696}
3697
3698static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3699{
3700	/* Skip empty nodes */
3701	if (!pgdat->node_spanned_pages)
3702		return;
3703
3704#ifdef CONFIG_FLAT_NODE_MEM_MAP
3705	/* ia64 gets its own node_mem_map, before this, without bootmem */
3706	if (!pgdat->node_mem_map) {
3707		unsigned long size, start, end;
3708		struct page *map;
3709
3710		/*
3711		 * The zone's endpoints aren't required to be MAX_ORDER
3712		 * aligned but the node_mem_map endpoints must be in order
3713		 * for the buddy allocator to function correctly.
3714		 */
3715		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3716		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3717		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3718		size =  (end - start) * sizeof(struct page);
3719		map = alloc_remap(pgdat->node_id, size);
3720		if (!map)
3721			map = alloc_bootmem_node(pgdat, size);
3722		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3723	}
3724#ifndef CONFIG_NEED_MULTIPLE_NODES
3725	/*
3726	 * With no DISCONTIG, the global mem_map is just set as node 0's
3727	 */
3728	if (pgdat == NODE_DATA(0)) {
3729		mem_map = NODE_DATA(0)->node_mem_map;
3730#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3731		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3732			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3733#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3734	}
3735#endif
3736#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3737}
3738
3739void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3740		unsigned long node_start_pfn, unsigned long *zholes_size)
3741{
3742	pg_data_t *pgdat = NODE_DATA(nid);
3743
3744	pgdat->node_id = nid;
3745	pgdat->node_start_pfn = node_start_pfn;
3746	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3747
3748	alloc_node_mem_map(pgdat);
3749#ifdef CONFIG_FLAT_NODE_MEM_MAP
3750	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3751		nid, (unsigned long)pgdat,
3752		(unsigned long)pgdat->node_mem_map);
3753#endif
3754
3755	free_area_init_core(pgdat, zones_size, zholes_size);
3756}
3757
3758#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3759
3760#if MAX_NUMNODES > 1
3761/*
3762 * Figure out the number of possible node ids.
3763 */
3764static void __init setup_nr_node_ids(void)
3765{
3766	unsigned int node;
3767	unsigned int highest = 0;
3768
3769	for_each_node_mask(node, node_possible_map)
3770		highest = node;
3771	nr_node_ids = highest + 1;
3772}
3773#else
3774static inline void setup_nr_node_ids(void)
3775{
3776}
3777#endif
3778
3779/**
3780 * add_active_range - Register a range of PFNs backed by physical memory
3781 * @nid: The node ID the range resides on
3782 * @start_pfn: The start PFN of the available physical memory
3783 * @end_pfn: The end PFN of the available physical memory
3784 *
3785 * These ranges are stored in an early_node_map[] and later used by
3786 * free_area_init_nodes() to calculate zone sizes and holes. If the
3787 * range spans a memory hole, it is up to the architecture to ensure
3788 * the memory is not freed by the bootmem allocator. If possible
3789 * the range being registered will be merged with existing ranges.
3790 */
3791void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3792						unsigned long end_pfn)
3793{
3794	int i;
3795
3796	mminit_dprintk(MMINIT_TRACE, "memory_register",
3797			"Entering add_active_range(%d, %#lx, %#lx) "
3798			"%d entries of %d used\n",
3799			nid, start_pfn, end_pfn,
3800			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3801
3802	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3803
3804	/* Merge with existing active regions if possible */
3805	for (i = 0; i < nr_nodemap_entries; i++) {
3806		if (early_node_map[i].nid != nid)
3807			continue;
3808
3809		/* Skip if an existing region covers this new one */
3810		if (start_pfn >= early_node_map[i].start_pfn &&
3811				end_pfn <= early_node_map[i].end_pfn)
3812			return;
3813
3814		/* Merge forward if suitable */
3815		if (start_pfn <= early_node_map[i].end_pfn &&
3816				end_pfn > early_node_map[i].end_pfn) {
3817			early_node_map[i].end_pfn = end_pfn;
3818			return;
3819		}
3820
3821		/* Merge backward if suitable */
3822		if (start_pfn < early_node_map[i].end_pfn &&
3823				end_pfn >= early_node_map[i].start_pfn) {
3824			early_node_map[i].start_pfn = start_pfn;
3825			return;
3826		}
3827	}
3828
3829	/* Check that early_node_map is large enough */
3830	if (i >= MAX_ACTIVE_REGIONS) {
3831		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3832							MAX_ACTIVE_REGIONS);
3833		return;
3834	}
3835
3836	early_node_map[i].nid = nid;
3837	early_node_map[i].start_pfn = start_pfn;
3838	early_node_map[i].end_pfn = end_pfn;
3839	nr_nodemap_entries = i + 1;
3840}
3841
3842/**
3843 * remove_active_range - Shrink an existing registered range of PFNs
3844 * @nid: The node id the range is on that should be shrunk
3845 * @start_pfn: The new PFN of the range
3846 * @end_pfn: The new PFN of the range
3847 *
3848 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3849 * The map is kept near the end physical page range that has already been
3850 * registered. This function allows an arch to shrink an existing registered
3851 * range.
3852 */
3853void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3854				unsigned long end_pfn)
3855{
3856	int i, j;
3857	int removed = 0;
3858
3859	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3860			  nid, start_pfn, end_pfn);
3861
3862	/* Find the old active region end and shrink */
3863	for_each_active_range_index_in_nid(i, nid) {
3864		if (early_node_map[i].start_pfn >= start_pfn &&
3865		    early_node_map[i].end_pfn <= end_pfn) {
3866			/* clear it */
3867			early_node_map[i].start_pfn = 0;
3868			early_node_map[i].end_pfn = 0;
3869			removed = 1;
3870			continue;
3871		}
3872		if (early_node_map[i].start_pfn < start_pfn &&
3873		    early_node_map[i].end_pfn > start_pfn) {
3874			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3875			early_node_map[i].end_pfn = start_pfn;
3876			if (temp_end_pfn > end_pfn)
3877				add_active_range(nid, end_pfn, temp_end_pfn);
3878			continue;
3879		}
3880		if (early_node_map[i].start_pfn >= start_pfn &&
3881		    early_node_map[i].end_pfn > end_pfn &&
3882		    early_node_map[i].start_pfn < end_pfn) {
3883			early_node_map[i].start_pfn = end_pfn;
3884			continue;
3885		}
3886	}
3887
3888	if (!removed)
3889		return;
3890
3891	/* remove the blank ones */
3892	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3893		if (early_node_map[i].nid != nid)
3894			continue;
3895		if (early_node_map[i].end_pfn)
3896			continue;
3897		/* we found it, get rid of it */
3898		for (j = i; j < nr_nodemap_entries - 1; j++)
3899			memcpy(&early_node_map[j], &early_node_map[j+1],
3900				sizeof(early_node_map[j]));
3901		j = nr_nodemap_entries - 1;
3902		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3903		nr_nodemap_entries--;
3904	}
3905}
3906
3907/**
3908 * remove_all_active_ranges - Remove all currently registered regions
3909 *
3910 * During discovery, it may be found that a table like SRAT is invalid
3911 * and an alternative discovery method must be used. This function removes
3912 * all currently registered regions.
3913 */
3914void __init remove_all_active_ranges(void)
3915{
3916	memset(early_node_map, 0, sizeof(early_node_map));
3917	nr_nodemap_entries = 0;
3918}
3919
3920/* Compare two active node_active_regions */
3921static int __init cmp_node_active_region(const void *a, const void *b)
3922{
3923	struct node_active_region *arange = (struct node_active_region *)a;
3924	struct node_active_region *brange = (struct node_active_region *)b;
3925
3926	/* Done this way to avoid overflows */
3927	if (arange->start_pfn > brange->start_pfn)
3928		return 1;
3929	if (arange->start_pfn < brange->start_pfn)
3930		return -1;
3931
3932	return 0;
3933}
3934
3935/* sort the node_map by start_pfn */
3936static void __init sort_node_map(void)
3937{
3938	sort(early_node_map, (size_t)nr_nodemap_entries,
3939			sizeof(struct node_active_region),
3940			cmp_node_active_region, NULL);
3941}
3942
3943/* Find the lowest pfn for a node */
3944static unsigned long __init find_min_pfn_for_node(int nid)
3945{
3946	int i;
3947	unsigned long min_pfn = ULONG_MAX;
3948
3949	/* Assuming a sorted map, the first range found has the starting pfn */
3950	for_each_active_range_index_in_nid(i, nid)
3951		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3952
3953	if (min_pfn == ULONG_MAX) {
3954		printk(KERN_WARNING
3955			"Could not find start_pfn for node %d\n", nid);
3956		return 0;
3957	}
3958
3959	return min_pfn;
3960}
3961
3962/**
3963 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3964 *
3965 * It returns the minimum PFN based on information provided via
3966 * add_active_range().
3967 */
3968unsigned long __init find_min_pfn_with_active_regions(void)
3969{
3970	return find_min_pfn_for_node(MAX_NUMNODES);
3971}
3972
3973/*
3974 * early_calculate_totalpages()
3975 * Sum pages in active regions for movable zone.
3976 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3977 */
3978static unsigned long __init early_calculate_totalpages(void)
3979{
3980	int i;
3981	unsigned long totalpages = 0;
3982
3983	for (i = 0; i < nr_nodemap_entries; i++) {
3984		unsigned long pages = early_node_map[i].end_pfn -
3985						early_node_map[i].start_pfn;
3986		totalpages += pages;
3987		if (pages)
3988			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3989	}
3990  	return totalpages;
3991}
3992
3993/*
3994 * Find the PFN the Movable zone begins in each node. Kernel memory
3995 * is spread evenly between nodes as long as the nodes have enough
3996 * memory. When they don't, some nodes will have more kernelcore than
3997 * others
3998 */
3999static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4000{
4001	int i, nid;
4002	unsigned long usable_startpfn;
4003	unsigned long kernelcore_node, kernelcore_remaining;
4004	unsigned long totalpages = early_calculate_totalpages();
4005	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4006
4007	/*
4008	 * If movablecore was specified, calculate what size of
4009	 * kernelcore that corresponds so that memory usable for
4010	 * any allocation type is evenly spread. If both kernelcore
4011	 * and movablecore are specified, then the value of kernelcore
4012	 * will be used for required_kernelcore if it's greater than
4013	 * what movablecore would have allowed.
4014	 */
4015	if (required_movablecore) {
4016		unsigned long corepages;
4017
4018		/*
4019		 * Round-up so that ZONE_MOVABLE is at least as large as what
4020		 * was requested by the user
4021		 */
4022		required_movablecore =
4023			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4024		corepages = totalpages - required_movablecore;
4025
4026		required_kernelcore = max(required_kernelcore, corepages);
4027	}
4028
4029	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4030	if (!required_kernelcore)
4031		return;
4032
4033	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4034	find_usable_zone_for_movable();
4035	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4036
4037restart:
4038	/* Spread kernelcore memory as evenly as possible throughout nodes */
4039	kernelcore_node = required_kernelcore / usable_nodes;
4040	for_each_node_state(nid, N_HIGH_MEMORY) {
4041		/*
4042		 * Recalculate kernelcore_node if the division per node
4043		 * now exceeds what is necessary to satisfy the requested
4044		 * amount of memory for the kernel
4045		 */
4046		if (required_kernelcore < kernelcore_node)
4047			kernelcore_node = required_kernelcore / usable_nodes;
4048
4049		/*
4050		 * As the map is walked, we track how much memory is usable
4051		 * by the kernel using kernelcore_remaining. When it is
4052		 * 0, the rest of the node is usable by ZONE_MOVABLE
4053		 */
4054		kernelcore_remaining = kernelcore_node;
4055
4056		/* Go through each range of PFNs within this node */
4057		for_each_active_range_index_in_nid(i, nid) {
4058			unsigned long start_pfn, end_pfn;
4059			unsigned long size_pages;
4060
4061			start_pfn = max(early_node_map[i].start_pfn,
4062						zone_movable_pfn[nid]);
4063			end_pfn = early_node_map[i].end_pfn;
4064			if (start_pfn >= end_pfn)
4065				continue;
4066
4067			/* Account for what is only usable for kernelcore */
4068			if (start_pfn < usable_startpfn) {
4069				unsigned long kernel_pages;
4070				kernel_pages = min(end_pfn, usable_startpfn)
4071								- start_pfn;
4072
4073				kernelcore_remaining -= min(kernel_pages,
4074							kernelcore_remaining);
4075				required_kernelcore -= min(kernel_pages,
4076							required_kernelcore);
4077
4078				/* Continue if range is now fully accounted */
4079				if (end_pfn <= usable_startpfn) {
4080
4081					/*
4082					 * Push zone_movable_pfn to the end so
4083					 * that if we have to rebalance
4084					 * kernelcore across nodes, we will
4085					 * not double account here
4086					 */
4087					zone_movable_pfn[nid] = end_pfn;
4088					continue;
4089				}
4090				start_pfn = usable_startpfn;
4091			}
4092
4093			/*
4094			 * The usable PFN range for ZONE_MOVABLE is from
4095			 * start_pfn->end_pfn. Calculate size_pages as the
4096			 * number of pages used as kernelcore
4097			 */
4098			size_pages = end_pfn - start_pfn;
4099			if (size_pages > kernelcore_remaining)
4100				size_pages = kernelcore_remaining;
4101			zone_movable_pfn[nid] = start_pfn + size_pages;
4102
4103			/*
4104			 * Some kernelcore has been met, update counts and
4105			 * break if the kernelcore for this node has been
4106			 * satisified
4107			 */
4108			required_kernelcore -= min(required_kernelcore,
4109								size_pages);
4110			kernelcore_remaining -= size_pages;
4111			if (!kernelcore_remaining)
4112				break;
4113		}
4114	}
4115
4116	/*
4117	 * If there is still required_kernelcore, we do another pass with one
4118	 * less node in the count. This will push zone_movable_pfn[nid] further
4119	 * along on the nodes that still have memory until kernelcore is
4120	 * satisified
4121	 */
4122	usable_nodes--;
4123	if (usable_nodes && required_kernelcore > usable_nodes)
4124		goto restart;
4125
4126	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4127	for (nid = 0; nid < MAX_NUMNODES; nid++)
4128		zone_movable_pfn[nid] =
4129			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4130}
4131
4132/* Any regular memory on that node ? */
4133static void check_for_regular_memory(pg_data_t *pgdat)
4134{
4135#ifdef CONFIG_HIGHMEM
4136	enum zone_type zone_type;
4137
4138	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4139		struct zone *zone = &pgdat->node_zones[zone_type];
4140		if (zone->present_pages)
4141			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4142	}
4143#endif
4144}
4145
4146/**
4147 * free_area_init_nodes - Initialise all pg_data_t and zone data
4148 * @max_zone_pfn: an array of max PFNs for each zone
4149 *
4150 * This will call free_area_init_node() for each active node in the system.
4151 * Using the page ranges provided by add_active_range(), the size of each
4152 * zone in each node and their holes is calculated. If the maximum PFN
4153 * between two adjacent zones match, it is assumed that the zone is empty.
4154 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4155 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4156 * starts where the previous one ended. For example, ZONE_DMA32 starts
4157 * at arch_max_dma_pfn.
4158 */
4159void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4160{
4161	unsigned long nid;
4162	int i;
4163
4164	/* Sort early_node_map as initialisation assumes it is sorted */
4165	sort_node_map();
4166
4167	/* Record where the zone boundaries are */
4168	memset(arch_zone_lowest_possible_pfn, 0,
4169				sizeof(arch_zone_lowest_possible_pfn));
4170	memset(arch_zone_highest_possible_pfn, 0,
4171				sizeof(arch_zone_highest_possible_pfn));
4172	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4173	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4174	for (i = 1; i < MAX_NR_ZONES; i++) {
4175		if (i == ZONE_MOVABLE)
4176			continue;
4177		arch_zone_lowest_possible_pfn[i] =
4178			arch_zone_highest_possible_pfn[i-1];
4179		arch_zone_highest_possible_pfn[i] =
4180			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4181	}
4182	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4183	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4184
4185	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4186	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4187	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4188
4189	/* Print out the zone ranges */
4190	printk("Zone PFN ranges:\n");
4191	for (i = 0; i < MAX_NR_ZONES; i++) {
4192		if (i == ZONE_MOVABLE)
4193			continue;
4194		printk("  %-8s %0#10lx -> %0#10lx\n",
4195				zone_names[i],
4196				arch_zone_lowest_possible_pfn[i],
4197				arch_zone_highest_possible_pfn[i]);
4198	}
4199
4200	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4201	printk("Movable zone start PFN for each node\n");
4202	for (i = 0; i < MAX_NUMNODES; i++) {
4203		if (zone_movable_pfn[i])
4204			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4205	}
4206
4207	/* Print out the early_node_map[] */
4208	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4209	for (i = 0; i < nr_nodemap_entries; i++)
4210		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4211						early_node_map[i].start_pfn,
4212						early_node_map[i].end_pfn);
4213
4214	/* Initialise every node */
4215	mminit_verify_pageflags_layout();
4216	setup_nr_node_ids();
4217	for_each_online_node(nid) {
4218		pg_data_t *pgdat = NODE_DATA(nid);
4219		free_area_init_node(nid, NULL,
4220				find_min_pfn_for_node(nid), NULL);
4221
4222		/* Any memory on that node */
4223		if (pgdat->node_present_pages)
4224			node_set_state(nid, N_HIGH_MEMORY);
4225		check_for_regular_memory(pgdat);
4226	}
4227}
4228
4229static int __init cmdline_parse_core(char *p, unsigned long *core)
4230{
4231	unsigned long long coremem;
4232	if (!p)
4233		return -EINVAL;
4234
4235	coremem = memparse(p, &p);
4236	*core = coremem >> PAGE_SHIFT;
4237
4238	/* Paranoid check that UL is enough for the coremem value */
4239	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4240
4241	return 0;
4242}
4243
4244/*
4245 * kernelcore=size sets the amount of memory for use for allocations that
4246 * cannot be reclaimed or migrated.
4247 */
4248static int __init cmdline_parse_kernelcore(char *p)
4249{
4250	return cmdline_parse_core(p, &required_kernelcore);
4251}
4252
4253/*
4254 * movablecore=size sets the amount of memory for use for allocations that
4255 * can be reclaimed or migrated.
4256 */
4257static int __init cmdline_parse_movablecore(char *p)
4258{
4259	return cmdline_parse_core(p, &required_movablecore);
4260}
4261
4262early_param("kernelcore", cmdline_parse_kernelcore);
4263early_param("movablecore", cmdline_parse_movablecore);
4264
4265#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4266
4267/**
4268 * set_dma_reserve - set the specified number of pages reserved in the first zone
4269 * @new_dma_reserve: The number of pages to mark reserved
4270 *
4271 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4272 * In the DMA zone, a significant percentage may be consumed by kernel image
4273 * and other unfreeable allocations which can skew the watermarks badly. This
4274 * function may optionally be used to account for unfreeable pages in the
4275 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4276 * smaller per-cpu batchsize.
4277 */
4278void __init set_dma_reserve(unsigned long new_dma_reserve)
4279{
4280	dma_reserve = new_dma_reserve;
4281}
4282
4283#ifndef CONFIG_NEED_MULTIPLE_NODES
4284struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4285EXPORT_SYMBOL(contig_page_data);
4286#endif
4287
4288void __init free_area_init(unsigned long *zones_size)
4289{
4290	free_area_init_node(0, zones_size,
4291			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4292}
4293
4294static int page_alloc_cpu_notify(struct notifier_block *self,
4295				 unsigned long action, void *hcpu)
4296{
4297	int cpu = (unsigned long)hcpu;
4298
4299	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4300		drain_pages(cpu);
4301
4302		/*
4303		 * Spill the event counters of the dead processor
4304		 * into the current processors event counters.
4305		 * This artificially elevates the count of the current
4306		 * processor.
4307		 */
4308		vm_events_fold_cpu(cpu);
4309
4310		/*
4311		 * Zero the differential counters of the dead processor
4312		 * so that the vm statistics are consistent.
4313		 *
4314		 * This is only okay since the processor is dead and cannot
4315		 * race with what we are doing.
4316		 */
4317		refresh_cpu_vm_stats(cpu);
4318	}
4319	return NOTIFY_OK;
4320}
4321
4322void __init page_alloc_init(void)
4323{
4324	hotcpu_notifier(page_alloc_cpu_notify, 0);
4325}
4326
4327/*
4328 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4329 *	or min_free_kbytes changes.
4330 */
4331static void calculate_totalreserve_pages(void)
4332{
4333	struct pglist_data *pgdat;
4334	unsigned long reserve_pages = 0;
4335	enum zone_type i, j;
4336
4337	for_each_online_pgdat(pgdat) {
4338		for (i = 0; i < MAX_NR_ZONES; i++) {
4339			struct zone *zone = pgdat->node_zones + i;
4340			unsigned long max = 0;
4341
4342			/* Find valid and maximum lowmem_reserve in the zone */
4343			for (j = i; j < MAX_NR_ZONES; j++) {
4344				if (zone->lowmem_reserve[j] > max)
4345					max = zone->lowmem_reserve[j];
4346			}
4347
4348			/* we treat the high watermark as reserved pages. */
4349			max += high_wmark_pages(zone);
4350
4351			if (max > zone->present_pages)
4352				max = zone->present_pages;
4353			reserve_pages += max;
4354		}
4355	}
4356	totalreserve_pages = reserve_pages;
4357}
4358
4359/*
4360 * setup_per_zone_lowmem_reserve - called whenever
4361 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4362 *	has a correct pages reserved value, so an adequate number of
4363 *	pages are left in the zone after a successful __alloc_pages().
4364 */
4365static void setup_per_zone_lowmem_reserve(void)
4366{
4367	struct pglist_data *pgdat;
4368	enum zone_type j, idx;
4369
4370	for_each_online_pgdat(pgdat) {
4371		for (j = 0; j < MAX_NR_ZONES; j++) {
4372			struct zone *zone = pgdat->node_zones + j;
4373			unsigned long present_pages = zone->present_pages;
4374
4375			zone->lowmem_reserve[j] = 0;
4376
4377			idx = j;
4378			while (idx) {
4379				struct zone *lower_zone;
4380
4381				idx--;
4382
4383				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4384					sysctl_lowmem_reserve_ratio[idx] = 1;
4385
4386				lower_zone = pgdat->node_zones + idx;
4387				lower_zone->lowmem_reserve[j] = present_pages /
4388					sysctl_lowmem_reserve_ratio[idx];
4389				present_pages += lower_zone->present_pages;
4390			}
4391		}
4392	}
4393
4394	/* update totalreserve_pages */
4395	calculate_totalreserve_pages();
4396}
4397
4398/**
4399 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4400 *
4401 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4402 * with respect to min_free_kbytes.
4403 */
4404void setup_per_zone_pages_min(void)
4405{
4406	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4407	unsigned long lowmem_pages = 0;
4408	struct zone *zone;
4409	unsigned long flags;
4410
4411	/* Calculate total number of !ZONE_HIGHMEM pages */
4412	for_each_zone(zone) {
4413		if (!is_highmem(zone))
4414			lowmem_pages += zone->present_pages;
4415	}
4416
4417	for_each_zone(zone) {
4418		u64 tmp;
4419
4420		spin_lock_irqsave(&zone->lock, flags);
4421		tmp = (u64)pages_min * zone->present_pages;
4422		do_div(tmp, lowmem_pages);
4423		if (is_highmem(zone)) {
4424			/*
4425			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4426			 * need highmem pages, so cap pages_min to a small
4427			 * value here.
4428			 *
4429			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4430			 * deltas controls asynch page reclaim, and so should
4431			 * not be capped for highmem.
4432			 */
4433			int min_pages;
4434
4435			min_pages = zone->present_pages / 1024;
4436			if (min_pages < SWAP_CLUSTER_MAX)
4437				min_pages = SWAP_CLUSTER_MAX;
4438			if (min_pages > 128)
4439				min_pages = 128;
4440			zone->watermark[WMARK_MIN] = min_pages;
4441		} else {
4442			/*
4443			 * If it's a lowmem zone, reserve a number of pages
4444			 * proportionate to the zone's size.
4445			 */
4446			zone->watermark[WMARK_MIN] = tmp;
4447		}
4448
4449		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4450		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4451		setup_zone_migrate_reserve(zone);
4452		spin_unlock_irqrestore(&zone->lock, flags);
4453	}
4454
4455	/* update totalreserve_pages */
4456	calculate_totalreserve_pages();
4457}
4458
4459/**
4460 * The inactive anon list should be small enough that the VM never has to
4461 * do too much work, but large enough that each inactive page has a chance
4462 * to be referenced again before it is swapped out.
4463 *
4464 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4465 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4466 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4467 * the anonymous pages are kept on the inactive list.
4468 *
4469 * total     target    max
4470 * memory    ratio     inactive anon
4471 * -------------------------------------
4472 *   10MB       1         5MB
4473 *  100MB       1        50MB
4474 *    1GB       3       250MB
4475 *   10GB      10       0.9GB
4476 *  100GB      31         3GB
4477 *    1TB     101        10GB
4478 *   10TB     320        32GB
4479 */
4480static void __init setup_per_zone_inactive_ratio(void)
4481{
4482	struct zone *zone;
4483
4484	for_each_zone(zone) {
4485		unsigned int gb, ratio;
4486
4487		/* Zone size in gigabytes */
4488		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4489		if (gb)
4490			ratio = int_sqrt(10 * gb);
4491		else
4492			ratio = 1;
4493
4494		zone->inactive_ratio = ratio;
4495	}
4496}
4497
4498/*
4499 * Initialise min_free_kbytes.
4500 *
4501 * For small machines we want it small (128k min).  For large machines
4502 * we want it large (64MB max).  But it is not linear, because network
4503 * bandwidth does not increase linearly with machine size.  We use
4504 *
4505 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4506 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4507 *
4508 * which yields
4509 *
4510 * 16MB:	512k
4511 * 32MB:	724k
4512 * 64MB:	1024k
4513 * 128MB:	1448k
4514 * 256MB:	2048k
4515 * 512MB:	2896k
4516 * 1024MB:	4096k
4517 * 2048MB:	5792k
4518 * 4096MB:	8192k
4519 * 8192MB:	11584k
4520 * 16384MB:	16384k
4521 */
4522static int __init init_per_zone_pages_min(void)
4523{
4524	unsigned long lowmem_kbytes;
4525
4526	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4527
4528	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4529	if (min_free_kbytes < 128)
4530		min_free_kbytes = 128;
4531	if (min_free_kbytes > 65536)
4532		min_free_kbytes = 65536;
4533	setup_per_zone_pages_min();
4534	setup_per_zone_lowmem_reserve();
4535	setup_per_zone_inactive_ratio();
4536	return 0;
4537}
4538module_init(init_per_zone_pages_min)
4539
4540/*
4541 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4542 *	that we can call two helper functions whenever min_free_kbytes
4543 *	changes.
4544 */
4545int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4546	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4547{
4548	proc_dointvec(table, write, file, buffer, length, ppos);
4549	if (write)
4550		setup_per_zone_pages_min();
4551	return 0;
4552}
4553
4554#ifdef CONFIG_NUMA
4555int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4556	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4557{
4558	struct zone *zone;
4559	int rc;
4560
4561	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4562	if (rc)
4563		return rc;
4564
4565	for_each_zone(zone)
4566		zone->min_unmapped_pages = (zone->present_pages *
4567				sysctl_min_unmapped_ratio) / 100;
4568	return 0;
4569}
4570
4571int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4572	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4573{
4574	struct zone *zone;
4575	int rc;
4576
4577	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4578	if (rc)
4579		return rc;
4580
4581	for_each_zone(zone)
4582		zone->min_slab_pages = (zone->present_pages *
4583				sysctl_min_slab_ratio) / 100;
4584	return 0;
4585}
4586#endif
4587
4588/*
4589 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4590 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4591 *	whenever sysctl_lowmem_reserve_ratio changes.
4592 *
4593 * The reserve ratio obviously has absolutely no relation with the
4594 * minimum watermarks. The lowmem reserve ratio can only make sense
4595 * if in function of the boot time zone sizes.
4596 */
4597int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4598	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4599{
4600	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4601	setup_per_zone_lowmem_reserve();
4602	return 0;
4603}
4604
4605/*
4606 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4607 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4608 * can have before it gets flushed back to buddy allocator.
4609 */
4610
4611int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4612	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4613{
4614	struct zone *zone;
4615	unsigned int cpu;
4616	int ret;
4617
4618	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4619	if (!write || (ret == -EINVAL))
4620		return ret;
4621	for_each_zone(zone) {
4622		for_each_online_cpu(cpu) {
4623			unsigned long  high;
4624			high = zone->present_pages / percpu_pagelist_fraction;
4625			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4626		}
4627	}
4628	return 0;
4629}
4630
4631int hashdist = HASHDIST_DEFAULT;
4632
4633#ifdef CONFIG_NUMA
4634static int __init set_hashdist(char *str)
4635{
4636	if (!str)
4637		return 0;
4638	hashdist = simple_strtoul(str, &str, 0);
4639	return 1;
4640}
4641__setup("hashdist=", set_hashdist);
4642#endif
4643
4644/*
4645 * allocate a large system hash table from bootmem
4646 * - it is assumed that the hash table must contain an exact power-of-2
4647 *   quantity of entries
4648 * - limit is the number of hash buckets, not the total allocation size
4649 */
4650void *__init alloc_large_system_hash(const char *tablename,
4651				     unsigned long bucketsize,
4652				     unsigned long numentries,
4653				     int scale,
4654				     int flags,
4655				     unsigned int *_hash_shift,
4656				     unsigned int *_hash_mask,
4657				     unsigned long limit)
4658{
4659	unsigned long long max = limit;
4660	unsigned long log2qty, size;
4661	void *table = NULL;
4662
4663	/* allow the kernel cmdline to have a say */
4664	if (!numentries) {
4665		/* round applicable memory size up to nearest megabyte */
4666		numentries = nr_kernel_pages;
4667		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4668		numentries >>= 20 - PAGE_SHIFT;
4669		numentries <<= 20 - PAGE_SHIFT;
4670
4671		/* limit to 1 bucket per 2^scale bytes of low memory */
4672		if (scale > PAGE_SHIFT)
4673			numentries >>= (scale - PAGE_SHIFT);
4674		else
4675			numentries <<= (PAGE_SHIFT - scale);
4676
4677		/* Make sure we've got at least a 0-order allocation.. */
4678		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4679			numentries = PAGE_SIZE / bucketsize;
4680	}
4681	numentries = roundup_pow_of_two(numentries);
4682
4683	/* limit allocation size to 1/16 total memory by default */
4684	if (max == 0) {
4685		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4686		do_div(max, bucketsize);
4687	}
4688
4689	if (numentries > max)
4690		numentries = max;
4691
4692	log2qty = ilog2(numentries);
4693
4694	do {
4695		size = bucketsize << log2qty;
4696		if (flags & HASH_EARLY)
4697			table = alloc_bootmem_nopanic(size);
4698		else if (hashdist)
4699			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4700		else {
4701			/*
4702			 * If bucketsize is not a power-of-two, we may free
4703			 * some pages at the end of hash table which
4704			 * alloc_pages_exact() automatically does
4705			 */
4706			if (get_order(size) < MAX_ORDER)
4707				table = alloc_pages_exact(size, GFP_ATOMIC);
4708		}
4709	} while (!table && size > PAGE_SIZE && --log2qty);
4710
4711	if (!table)
4712		panic("Failed to allocate %s hash table\n", tablename);
4713
4714	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4715	       tablename,
4716	       (1U << log2qty),
4717	       ilog2(size) - PAGE_SHIFT,
4718	       size);
4719
4720	if (_hash_shift)
4721		*_hash_shift = log2qty;
4722	if (_hash_mask)
4723		*_hash_mask = (1 << log2qty) - 1;
4724
4725	/*
4726	 * If hashdist is set, the table allocation is done with __vmalloc()
4727	 * which invokes the kmemleak_alloc() callback. This function may also
4728	 * be called before the slab and kmemleak are initialised when
4729	 * kmemleak simply buffers the request to be executed later
4730	 * (GFP_ATOMIC flag ignored in this case).
4731	 */
4732	if (!hashdist)
4733		kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4734
4735	return table;
4736}
4737
4738/* Return a pointer to the bitmap storing bits affecting a block of pages */
4739static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4740							unsigned long pfn)
4741{
4742#ifdef CONFIG_SPARSEMEM
4743	return __pfn_to_section(pfn)->pageblock_flags;
4744#else
4745	return zone->pageblock_flags;
4746#endif /* CONFIG_SPARSEMEM */
4747}
4748
4749static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4750{
4751#ifdef CONFIG_SPARSEMEM
4752	pfn &= (PAGES_PER_SECTION-1);
4753	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4754#else
4755	pfn = pfn - zone->zone_start_pfn;
4756	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4757#endif /* CONFIG_SPARSEMEM */
4758}
4759
4760/**
4761 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4762 * @page: The page within the block of interest
4763 * @start_bitidx: The first bit of interest to retrieve
4764 * @end_bitidx: The last bit of interest
4765 * returns pageblock_bits flags
4766 */
4767unsigned long get_pageblock_flags_group(struct page *page,
4768					int start_bitidx, int end_bitidx)
4769{
4770	struct zone *zone;
4771	unsigned long *bitmap;
4772	unsigned long pfn, bitidx;
4773	unsigned long flags = 0;
4774	unsigned long value = 1;
4775
4776	zone = page_zone(page);
4777	pfn = page_to_pfn(page);
4778	bitmap = get_pageblock_bitmap(zone, pfn);
4779	bitidx = pfn_to_bitidx(zone, pfn);
4780
4781	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4782		if (test_bit(bitidx + start_bitidx, bitmap))
4783			flags |= value;
4784
4785	return flags;
4786}
4787
4788/**
4789 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4790 * @page: The page within the block of interest
4791 * @start_bitidx: The first bit of interest
4792 * @end_bitidx: The last bit of interest
4793 * @flags: The flags to set
4794 */
4795void set_pageblock_flags_group(struct page *page, unsigned long flags,
4796					int start_bitidx, int end_bitidx)
4797{
4798	struct zone *zone;
4799	unsigned long *bitmap;
4800	unsigned long pfn, bitidx;
4801	unsigned long value = 1;
4802
4803	zone = page_zone(page);
4804	pfn = page_to_pfn(page);
4805	bitmap = get_pageblock_bitmap(zone, pfn);
4806	bitidx = pfn_to_bitidx(zone, pfn);
4807	VM_BUG_ON(pfn < zone->zone_start_pfn);
4808	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4809
4810	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4811		if (flags & value)
4812			__set_bit(bitidx + start_bitidx, bitmap);
4813		else
4814			__clear_bit(bitidx + start_bitidx, bitmap);
4815}
4816
4817/*
4818 * This is designed as sub function...plz see page_isolation.c also.
4819 * set/clear page block's type to be ISOLATE.
4820 * page allocater never alloc memory from ISOLATE block.
4821 */
4822
4823int set_migratetype_isolate(struct page *page)
4824{
4825	struct zone *zone;
4826	unsigned long flags;
4827	int ret = -EBUSY;
4828
4829	zone = page_zone(page);
4830	spin_lock_irqsave(&zone->lock, flags);
4831	/*
4832	 * In future, more migrate types will be able to be isolation target.
4833	 */
4834	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4835		goto out;
4836	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4837	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4838	ret = 0;
4839out:
4840	spin_unlock_irqrestore(&zone->lock, flags);
4841	if (!ret)
4842		drain_all_pages();
4843	return ret;
4844}
4845
4846void unset_migratetype_isolate(struct page *page)
4847{
4848	struct zone *zone;
4849	unsigned long flags;
4850	zone = page_zone(page);
4851	spin_lock_irqsave(&zone->lock, flags);
4852	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4853		goto out;
4854	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4855	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4856out:
4857	spin_unlock_irqrestore(&zone->lock, flags);
4858}
4859
4860#ifdef CONFIG_MEMORY_HOTREMOVE
4861/*
4862 * All pages in the range must be isolated before calling this.
4863 */
4864void
4865__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4866{
4867	struct page *page;
4868	struct zone *zone;
4869	int order, i;
4870	unsigned long pfn;
4871	unsigned long flags;
4872	/* find the first valid pfn */
4873	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4874		if (pfn_valid(pfn))
4875			break;
4876	if (pfn == end_pfn)
4877		return;
4878	zone = page_zone(pfn_to_page(pfn));
4879	spin_lock_irqsave(&zone->lock, flags);
4880	pfn = start_pfn;
4881	while (pfn < end_pfn) {
4882		if (!pfn_valid(pfn)) {
4883			pfn++;
4884			continue;
4885		}
4886		page = pfn_to_page(pfn);
4887		BUG_ON(page_count(page));
4888		BUG_ON(!PageBuddy(page));
4889		order = page_order(page);
4890#ifdef CONFIG_DEBUG_VM
4891		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4892		       pfn, 1 << order, end_pfn);
4893#endif
4894		list_del(&page->lru);
4895		rmv_page_order(page);
4896		zone->free_area[order].nr_free--;
4897		__mod_zone_page_state(zone, NR_FREE_PAGES,
4898				      - (1UL << order));
4899		for (i = 0; i < (1 << order); i++)
4900			SetPageReserved((page+i));
4901		pfn += (1 << order);
4902	}
4903	spin_unlock_irqrestore(&zone->lock, flags);
4904}
4905#endif
4906