page_alloc.c revision 82553a937f12352c26fe457510ebab3f512cd3fa
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49#include <linux/kmemleak.h>
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53#include "internal.h"
54
55/*
56 * Array of node states.
57 */
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59	[N_POSSIBLE] = NODE_MASK_ALL,
60	[N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64	[N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66	[N_CPU] = { { [0] = 1UL } },
67#endif	/* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
71unsigned long totalram_pages __read_mostly;
72unsigned long totalreserve_pages __read_mostly;
73unsigned long highest_memmap_pfn __read_mostly;
74int percpu_pagelist_fraction;
75
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
80static void __free_pages_ok(struct page *page, unsigned int order);
81
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 *	1G machine -> (16M dma, 784M normal, 224M high)
86 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94#ifdef CONFIG_ZONE_DMA
95	 256,
96#endif
97#ifdef CONFIG_ZONE_DMA32
98	 256,
99#endif
100#ifdef CONFIG_HIGHMEM
101	 32,
102#endif
103	 32,
104};
105
106EXPORT_SYMBOL(totalram_pages);
107
108static char * const zone_names[MAX_NR_ZONES] = {
109#ifdef CONFIG_ZONE_DMA
110	 "DMA",
111#endif
112#ifdef CONFIG_ZONE_DMA32
113	 "DMA32",
114#endif
115	 "Normal",
116#ifdef CONFIG_HIGHMEM
117	 "HighMem",
118#endif
119	 "Movable",
120};
121
122int min_free_kbytes = 1024;
123
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
126static unsigned long __meminitdata dma_reserve;
127
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129  /*
130   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131   * ranges of memory (RAM) that may be registered with add_active_range().
132   * Ranges passed to add_active_range() will be merged if possible
133   * so the number of times add_active_range() can be called is
134   * related to the number of nodes and the number of holes
135   */
136  #ifdef CONFIG_MAX_ACTIVE_REGIONS
137    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139  #else
140    #if MAX_NUMNODES >= 32
141      /* If there can be many nodes, allow up to 50 holes per node */
142      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143    #else
144      /* By default, allow up to 256 distinct regions */
145      #define MAX_ACTIVE_REGIONS 256
146    #endif
147  #endif
148
149  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150  static int __meminitdata nr_nodemap_entries;
151  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153  static unsigned long __initdata required_kernelcore;
154  static unsigned long __initdata required_movablecore;
155  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158  int movable_zone;
159  EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164int nr_online_nodes __read_mostly = 1;
165EXPORT_SYMBOL(nr_node_ids);
166EXPORT_SYMBOL(nr_online_nodes);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173
174	if (unlikely(page_group_by_mobility_disabled))
175		migratetype = MIGRATE_UNMOVABLE;
176
177	set_pageblock_flags_group(page, (unsigned long)migratetype,
178					PB_migrate, PB_migrate_end);
179}
180
181bool oom_killer_disabled __read_mostly;
182
183#ifdef CONFIG_DEBUG_VM
184static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
185{
186	int ret = 0;
187	unsigned seq;
188	unsigned long pfn = page_to_pfn(page);
189
190	do {
191		seq = zone_span_seqbegin(zone);
192		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
193			ret = 1;
194		else if (pfn < zone->zone_start_pfn)
195			ret = 1;
196	} while (zone_span_seqretry(zone, seq));
197
198	return ret;
199}
200
201static int page_is_consistent(struct zone *zone, struct page *page)
202{
203	if (!pfn_valid_within(page_to_pfn(page)))
204		return 0;
205	if (zone != page_zone(page))
206		return 0;
207
208	return 1;
209}
210/*
211 * Temporary debugging check for pages not lying within a given zone.
212 */
213static int bad_range(struct zone *zone, struct page *page)
214{
215	if (page_outside_zone_boundaries(zone, page))
216		return 1;
217	if (!page_is_consistent(zone, page))
218		return 1;
219
220	return 0;
221}
222#else
223static inline int bad_range(struct zone *zone, struct page *page)
224{
225	return 0;
226}
227#endif
228
229static void bad_page(struct page *page)
230{
231	static unsigned long resume;
232	static unsigned long nr_shown;
233	static unsigned long nr_unshown;
234
235	/*
236	 * Allow a burst of 60 reports, then keep quiet for that minute;
237	 * or allow a steady drip of one report per second.
238	 */
239	if (nr_shown == 60) {
240		if (time_before(jiffies, resume)) {
241			nr_unshown++;
242			goto out;
243		}
244		if (nr_unshown) {
245			printk(KERN_ALERT
246			      "BUG: Bad page state: %lu messages suppressed\n",
247				nr_unshown);
248			nr_unshown = 0;
249		}
250		nr_shown = 0;
251	}
252	if (nr_shown++ == 0)
253		resume = jiffies + 60 * HZ;
254
255	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
256		current->comm, page_to_pfn(page));
257	printk(KERN_ALERT
258		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
259		page, (void *)page->flags, page_count(page),
260		page_mapcount(page), page->mapping, page->index);
261
262	dump_stack();
263out:
264	/* Leave bad fields for debug, except PageBuddy could make trouble */
265	__ClearPageBuddy(page);
266	add_taint(TAINT_BAD_PAGE);
267}
268
269/*
270 * Higher-order pages are called "compound pages".  They are structured thusly:
271 *
272 * The first PAGE_SIZE page is called the "head page".
273 *
274 * The remaining PAGE_SIZE pages are called "tail pages".
275 *
276 * All pages have PG_compound set.  All pages have their ->private pointing at
277 * the head page (even the head page has this).
278 *
279 * The first tail page's ->lru.next holds the address of the compound page's
280 * put_page() function.  Its ->lru.prev holds the order of allocation.
281 * This usage means that zero-order pages may not be compound.
282 */
283
284static void free_compound_page(struct page *page)
285{
286	__free_pages_ok(page, compound_order(page));
287}
288
289void prep_compound_page(struct page *page, unsigned long order)
290{
291	int i;
292	int nr_pages = 1 << order;
293
294	set_compound_page_dtor(page, free_compound_page);
295	set_compound_order(page, order);
296	__SetPageHead(page);
297	for (i = 1; i < nr_pages; i++) {
298		struct page *p = page + i;
299
300		__SetPageTail(p);
301		p->first_page = page;
302	}
303}
304
305static int destroy_compound_page(struct page *page, unsigned long order)
306{
307	int i;
308	int nr_pages = 1 << order;
309	int bad = 0;
310
311	if (unlikely(compound_order(page) != order) ||
312	    unlikely(!PageHead(page))) {
313		bad_page(page);
314		bad++;
315	}
316
317	__ClearPageHead(page);
318
319	for (i = 1; i < nr_pages; i++) {
320		struct page *p = page + i;
321
322		if (unlikely(!PageTail(p) || (p->first_page != page))) {
323			bad_page(page);
324			bad++;
325		}
326		__ClearPageTail(p);
327	}
328
329	return bad;
330}
331
332static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
333{
334	int i;
335
336	/*
337	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
338	 * and __GFP_HIGHMEM from hard or soft interrupt context.
339	 */
340	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
341	for (i = 0; i < (1 << order); i++)
342		clear_highpage(page + i);
343}
344
345static inline void set_page_order(struct page *page, int order)
346{
347	set_page_private(page, order);
348	__SetPageBuddy(page);
349}
350
351static inline void rmv_page_order(struct page *page)
352{
353	__ClearPageBuddy(page);
354	set_page_private(page, 0);
355}
356
357/*
358 * Locate the struct page for both the matching buddy in our
359 * pair (buddy1) and the combined O(n+1) page they form (page).
360 *
361 * 1) Any buddy B1 will have an order O twin B2 which satisfies
362 * the following equation:
363 *     B2 = B1 ^ (1 << O)
364 * For example, if the starting buddy (buddy2) is #8 its order
365 * 1 buddy is #10:
366 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
367 *
368 * 2) Any buddy B will have an order O+1 parent P which
369 * satisfies the following equation:
370 *     P = B & ~(1 << O)
371 *
372 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
373 */
374static inline struct page *
375__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
376{
377	unsigned long buddy_idx = page_idx ^ (1 << order);
378
379	return page + (buddy_idx - page_idx);
380}
381
382static inline unsigned long
383__find_combined_index(unsigned long page_idx, unsigned int order)
384{
385	return (page_idx & ~(1 << order));
386}
387
388/*
389 * This function checks whether a page is free && is the buddy
390 * we can do coalesce a page and its buddy if
391 * (a) the buddy is not in a hole &&
392 * (b) the buddy is in the buddy system &&
393 * (c) a page and its buddy have the same order &&
394 * (d) a page and its buddy are in the same zone.
395 *
396 * For recording whether a page is in the buddy system, we use PG_buddy.
397 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
398 *
399 * For recording page's order, we use page_private(page).
400 */
401static inline int page_is_buddy(struct page *page, struct page *buddy,
402								int order)
403{
404	if (!pfn_valid_within(page_to_pfn(buddy)))
405		return 0;
406
407	if (page_zone_id(page) != page_zone_id(buddy))
408		return 0;
409
410	if (PageBuddy(buddy) && page_order(buddy) == order) {
411		VM_BUG_ON(page_count(buddy) != 0);
412		return 1;
413	}
414	return 0;
415}
416
417/*
418 * Freeing function for a buddy system allocator.
419 *
420 * The concept of a buddy system is to maintain direct-mapped table
421 * (containing bit values) for memory blocks of various "orders".
422 * The bottom level table contains the map for the smallest allocatable
423 * units of memory (here, pages), and each level above it describes
424 * pairs of units from the levels below, hence, "buddies".
425 * At a high level, all that happens here is marking the table entry
426 * at the bottom level available, and propagating the changes upward
427 * as necessary, plus some accounting needed to play nicely with other
428 * parts of the VM system.
429 * At each level, we keep a list of pages, which are heads of continuous
430 * free pages of length of (1 << order) and marked with PG_buddy. Page's
431 * order is recorded in page_private(page) field.
432 * So when we are allocating or freeing one, we can derive the state of the
433 * other.  That is, if we allocate a small block, and both were
434 * free, the remainder of the region must be split into blocks.
435 * If a block is freed, and its buddy is also free, then this
436 * triggers coalescing into a block of larger size.
437 *
438 * -- wli
439 */
440
441static inline void __free_one_page(struct page *page,
442		struct zone *zone, unsigned int order,
443		int migratetype)
444{
445	unsigned long page_idx;
446
447	if (unlikely(PageCompound(page)))
448		if (unlikely(destroy_compound_page(page, order)))
449			return;
450
451	VM_BUG_ON(migratetype == -1);
452
453	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
454
455	VM_BUG_ON(page_idx & ((1 << order) - 1));
456	VM_BUG_ON(bad_range(zone, page));
457
458	while (order < MAX_ORDER-1) {
459		unsigned long combined_idx;
460		struct page *buddy;
461
462		buddy = __page_find_buddy(page, page_idx, order);
463		if (!page_is_buddy(page, buddy, order))
464			break;
465
466		/* Our buddy is free, merge with it and move up one order. */
467		list_del(&buddy->lru);
468		zone->free_area[order].nr_free--;
469		rmv_page_order(buddy);
470		combined_idx = __find_combined_index(page_idx, order);
471		page = page + (combined_idx - page_idx);
472		page_idx = combined_idx;
473		order++;
474	}
475	set_page_order(page, order);
476	list_add(&page->lru,
477		&zone->free_area[order].free_list[migratetype]);
478	zone->free_area[order].nr_free++;
479}
480
481#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
482/*
483 * free_page_mlock() -- clean up attempts to free and mlocked() page.
484 * Page should not be on lru, so no need to fix that up.
485 * free_pages_check() will verify...
486 */
487static inline void free_page_mlock(struct page *page)
488{
489	__ClearPageMlocked(page);
490	__dec_zone_page_state(page, NR_MLOCK);
491	__count_vm_event(UNEVICTABLE_MLOCKFREED);
492}
493#else
494static void free_page_mlock(struct page *page) { }
495#endif
496
497static inline int free_pages_check(struct page *page)
498{
499	if (unlikely(page_mapcount(page) |
500		(page->mapping != NULL)  |
501		(atomic_read(&page->_count) != 0) |
502		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
503		bad_page(page);
504		return 1;
505	}
506	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
507		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
508	return 0;
509}
510
511/*
512 * Frees a list of pages.
513 * Assumes all pages on list are in same zone, and of same order.
514 * count is the number of pages to free.
515 *
516 * If the zone was previously in an "all pages pinned" state then look to
517 * see if this freeing clears that state.
518 *
519 * And clear the zone's pages_scanned counter, to hold off the "all pages are
520 * pinned" detection logic.
521 */
522static void free_pages_bulk(struct zone *zone, int count,
523					struct list_head *list, int order)
524{
525	spin_lock(&zone->lock);
526	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
527	zone->pages_scanned = 0;
528
529	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
530	while (count--) {
531		struct page *page;
532
533		VM_BUG_ON(list_empty(list));
534		page = list_entry(list->prev, struct page, lru);
535		/* have to delete it as __free_one_page list manipulates */
536		list_del(&page->lru);
537		__free_one_page(page, zone, order, page_private(page));
538	}
539	spin_unlock(&zone->lock);
540}
541
542static void free_one_page(struct zone *zone, struct page *page, int order,
543				int migratetype)
544{
545	spin_lock(&zone->lock);
546	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
547	zone->pages_scanned = 0;
548
549	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
550	__free_one_page(page, zone, order, migratetype);
551	spin_unlock(&zone->lock);
552}
553
554static void __free_pages_ok(struct page *page, unsigned int order)
555{
556	unsigned long flags;
557	int i;
558	int bad = 0;
559	int clearMlocked = PageMlocked(page);
560
561	for (i = 0 ; i < (1 << order) ; ++i)
562		bad += free_pages_check(page + i);
563	if (bad)
564		return;
565
566	if (!PageHighMem(page)) {
567		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
568		debug_check_no_obj_freed(page_address(page),
569					   PAGE_SIZE << order);
570	}
571	arch_free_page(page, order);
572	kernel_map_pages(page, 1 << order, 0);
573
574	local_irq_save(flags);
575	if (unlikely(clearMlocked))
576		free_page_mlock(page);
577	__count_vm_events(PGFREE, 1 << order);
578	free_one_page(page_zone(page), page, order,
579					get_pageblock_migratetype(page));
580	local_irq_restore(flags);
581}
582
583/*
584 * permit the bootmem allocator to evade page validation on high-order frees
585 */
586void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
587{
588	if (order == 0) {
589		__ClearPageReserved(page);
590		set_page_count(page, 0);
591		set_page_refcounted(page);
592		__free_page(page);
593	} else {
594		int loop;
595
596		prefetchw(page);
597		for (loop = 0; loop < BITS_PER_LONG; loop++) {
598			struct page *p = &page[loop];
599
600			if (loop + 1 < BITS_PER_LONG)
601				prefetchw(p + 1);
602			__ClearPageReserved(p);
603			set_page_count(p, 0);
604		}
605
606		set_page_refcounted(page);
607		__free_pages(page, order);
608	}
609}
610
611
612/*
613 * The order of subdivision here is critical for the IO subsystem.
614 * Please do not alter this order without good reasons and regression
615 * testing. Specifically, as large blocks of memory are subdivided,
616 * the order in which smaller blocks are delivered depends on the order
617 * they're subdivided in this function. This is the primary factor
618 * influencing the order in which pages are delivered to the IO
619 * subsystem according to empirical testing, and this is also justified
620 * by considering the behavior of a buddy system containing a single
621 * large block of memory acted on by a series of small allocations.
622 * This behavior is a critical factor in sglist merging's success.
623 *
624 * -- wli
625 */
626static inline void expand(struct zone *zone, struct page *page,
627	int low, int high, struct free_area *area,
628	int migratetype)
629{
630	unsigned long size = 1 << high;
631
632	while (high > low) {
633		area--;
634		high--;
635		size >>= 1;
636		VM_BUG_ON(bad_range(zone, &page[size]));
637		list_add(&page[size].lru, &area->free_list[migratetype]);
638		area->nr_free++;
639		set_page_order(&page[size], high);
640	}
641}
642
643/*
644 * This page is about to be returned from the page allocator
645 */
646static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
647{
648	if (unlikely(page_mapcount(page) |
649		(page->mapping != NULL)  |
650		(atomic_read(&page->_count) != 0)  |
651		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
652		bad_page(page);
653		return 1;
654	}
655
656	set_page_private(page, 0);
657	set_page_refcounted(page);
658
659	arch_alloc_page(page, order);
660	kernel_map_pages(page, 1 << order, 1);
661
662	if (gfp_flags & __GFP_ZERO)
663		prep_zero_page(page, order, gfp_flags);
664
665	if (order && (gfp_flags & __GFP_COMP))
666		prep_compound_page(page, order);
667
668	return 0;
669}
670
671/*
672 * Go through the free lists for the given migratetype and remove
673 * the smallest available page from the freelists
674 */
675static inline
676struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
677						int migratetype)
678{
679	unsigned int current_order;
680	struct free_area * area;
681	struct page *page;
682
683	/* Find a page of the appropriate size in the preferred list */
684	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
685		area = &(zone->free_area[current_order]);
686		if (list_empty(&area->free_list[migratetype]))
687			continue;
688
689		page = list_entry(area->free_list[migratetype].next,
690							struct page, lru);
691		list_del(&page->lru);
692		rmv_page_order(page);
693		area->nr_free--;
694		expand(zone, page, order, current_order, area, migratetype);
695		return page;
696	}
697
698	return NULL;
699}
700
701
702/*
703 * This array describes the order lists are fallen back to when
704 * the free lists for the desirable migrate type are depleted
705 */
706static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
707	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
708	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
709	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
710	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
711};
712
713/*
714 * Move the free pages in a range to the free lists of the requested type.
715 * Note that start_page and end_pages are not aligned on a pageblock
716 * boundary. If alignment is required, use move_freepages_block()
717 */
718static int move_freepages(struct zone *zone,
719			  struct page *start_page, struct page *end_page,
720			  int migratetype)
721{
722	struct page *page;
723	unsigned long order;
724	int pages_moved = 0;
725
726#ifndef CONFIG_HOLES_IN_ZONE
727	/*
728	 * page_zone is not safe to call in this context when
729	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
730	 * anyway as we check zone boundaries in move_freepages_block().
731	 * Remove at a later date when no bug reports exist related to
732	 * grouping pages by mobility
733	 */
734	BUG_ON(page_zone(start_page) != page_zone(end_page));
735#endif
736
737	for (page = start_page; page <= end_page;) {
738		/* Make sure we are not inadvertently changing nodes */
739		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
740
741		if (!pfn_valid_within(page_to_pfn(page))) {
742			page++;
743			continue;
744		}
745
746		if (!PageBuddy(page)) {
747			page++;
748			continue;
749		}
750
751		order = page_order(page);
752		list_del(&page->lru);
753		list_add(&page->lru,
754			&zone->free_area[order].free_list[migratetype]);
755		page += 1 << order;
756		pages_moved += 1 << order;
757	}
758
759	return pages_moved;
760}
761
762static int move_freepages_block(struct zone *zone, struct page *page,
763				int migratetype)
764{
765	unsigned long start_pfn, end_pfn;
766	struct page *start_page, *end_page;
767
768	start_pfn = page_to_pfn(page);
769	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
770	start_page = pfn_to_page(start_pfn);
771	end_page = start_page + pageblock_nr_pages - 1;
772	end_pfn = start_pfn + pageblock_nr_pages - 1;
773
774	/* Do not cross zone boundaries */
775	if (start_pfn < zone->zone_start_pfn)
776		start_page = page;
777	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
778		return 0;
779
780	return move_freepages(zone, start_page, end_page, migratetype);
781}
782
783/* Remove an element from the buddy allocator from the fallback list */
784static inline struct page *
785__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
786{
787	struct free_area * area;
788	int current_order;
789	struct page *page;
790	int migratetype, i;
791
792	/* Find the largest possible block of pages in the other list */
793	for (current_order = MAX_ORDER-1; current_order >= order;
794						--current_order) {
795		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
796			migratetype = fallbacks[start_migratetype][i];
797
798			/* MIGRATE_RESERVE handled later if necessary */
799			if (migratetype == MIGRATE_RESERVE)
800				continue;
801
802			area = &(zone->free_area[current_order]);
803			if (list_empty(&area->free_list[migratetype]))
804				continue;
805
806			page = list_entry(area->free_list[migratetype].next,
807					struct page, lru);
808			area->nr_free--;
809
810			/*
811			 * If breaking a large block of pages, move all free
812			 * pages to the preferred allocation list. If falling
813			 * back for a reclaimable kernel allocation, be more
814			 * agressive about taking ownership of free pages
815			 */
816			if (unlikely(current_order >= (pageblock_order >> 1)) ||
817					start_migratetype == MIGRATE_RECLAIMABLE) {
818				unsigned long pages;
819				pages = move_freepages_block(zone, page,
820								start_migratetype);
821
822				/* Claim the whole block if over half of it is free */
823				if (pages >= (1 << (pageblock_order-1)))
824					set_pageblock_migratetype(page,
825								start_migratetype);
826
827				migratetype = start_migratetype;
828			}
829
830			/* Remove the page from the freelists */
831			list_del(&page->lru);
832			rmv_page_order(page);
833
834			if (current_order == pageblock_order)
835				set_pageblock_migratetype(page,
836							start_migratetype);
837
838			expand(zone, page, order, current_order, area, migratetype);
839			return page;
840		}
841	}
842
843	return NULL;
844}
845
846/*
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
849 */
850static struct page *__rmqueue(struct zone *zone, unsigned int order,
851						int migratetype)
852{
853	struct page *page;
854
855retry_reserve:
856	page = __rmqueue_smallest(zone, order, migratetype);
857
858	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
859		page = __rmqueue_fallback(zone, order, migratetype);
860
861		/*
862		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
863		 * is used because __rmqueue_smallest is an inline function
864		 * and we want just one call site
865		 */
866		if (!page) {
867			migratetype = MIGRATE_RESERVE;
868			goto retry_reserve;
869		}
870	}
871
872	return page;
873}
874
875/*
876 * Obtain a specified number of elements from the buddy allocator, all under
877 * a single hold of the lock, for efficiency.  Add them to the supplied list.
878 * Returns the number of new pages which were placed at *list.
879 */
880static int rmqueue_bulk(struct zone *zone, unsigned int order,
881			unsigned long count, struct list_head *list,
882			int migratetype)
883{
884	int i;
885
886	spin_lock(&zone->lock);
887	for (i = 0; i < count; ++i) {
888		struct page *page = __rmqueue(zone, order, migratetype);
889		if (unlikely(page == NULL))
890			break;
891
892		/*
893		 * Split buddy pages returned by expand() are received here
894		 * in physical page order. The page is added to the callers and
895		 * list and the list head then moves forward. From the callers
896		 * perspective, the linked list is ordered by page number in
897		 * some conditions. This is useful for IO devices that can
898		 * merge IO requests if the physical pages are ordered
899		 * properly.
900		 */
901		list_add(&page->lru, list);
902		set_page_private(page, migratetype);
903		list = &page->lru;
904	}
905	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
906	spin_unlock(&zone->lock);
907	return i;
908}
909
910#ifdef CONFIG_NUMA
911/*
912 * Called from the vmstat counter updater to drain pagesets of this
913 * currently executing processor on remote nodes after they have
914 * expired.
915 *
916 * Note that this function must be called with the thread pinned to
917 * a single processor.
918 */
919void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
920{
921	unsigned long flags;
922	int to_drain;
923
924	local_irq_save(flags);
925	if (pcp->count >= pcp->batch)
926		to_drain = pcp->batch;
927	else
928		to_drain = pcp->count;
929	free_pages_bulk(zone, to_drain, &pcp->list, 0);
930	pcp->count -= to_drain;
931	local_irq_restore(flags);
932}
933#endif
934
935/*
936 * Drain pages of the indicated processor.
937 *
938 * The processor must either be the current processor and the
939 * thread pinned to the current processor or a processor that
940 * is not online.
941 */
942static void drain_pages(unsigned int cpu)
943{
944	unsigned long flags;
945	struct zone *zone;
946
947	for_each_populated_zone(zone) {
948		struct per_cpu_pageset *pset;
949		struct per_cpu_pages *pcp;
950
951		pset = zone_pcp(zone, cpu);
952
953		pcp = &pset->pcp;
954		local_irq_save(flags);
955		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
956		pcp->count = 0;
957		local_irq_restore(flags);
958	}
959}
960
961/*
962 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
963 */
964void drain_local_pages(void *arg)
965{
966	drain_pages(smp_processor_id());
967}
968
969/*
970 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
971 */
972void drain_all_pages(void)
973{
974	on_each_cpu(drain_local_pages, NULL, 1);
975}
976
977#ifdef CONFIG_HIBERNATION
978
979void mark_free_pages(struct zone *zone)
980{
981	unsigned long pfn, max_zone_pfn;
982	unsigned long flags;
983	int order, t;
984	struct list_head *curr;
985
986	if (!zone->spanned_pages)
987		return;
988
989	spin_lock_irqsave(&zone->lock, flags);
990
991	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
992	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
993		if (pfn_valid(pfn)) {
994			struct page *page = pfn_to_page(pfn);
995
996			if (!swsusp_page_is_forbidden(page))
997				swsusp_unset_page_free(page);
998		}
999
1000	for_each_migratetype_order(order, t) {
1001		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1002			unsigned long i;
1003
1004			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1005			for (i = 0; i < (1UL << order); i++)
1006				swsusp_set_page_free(pfn_to_page(pfn + i));
1007		}
1008	}
1009	spin_unlock_irqrestore(&zone->lock, flags);
1010}
1011#endif /* CONFIG_PM */
1012
1013/*
1014 * Free a 0-order page
1015 */
1016static void free_hot_cold_page(struct page *page, int cold)
1017{
1018	struct zone *zone = page_zone(page);
1019	struct per_cpu_pages *pcp;
1020	unsigned long flags;
1021	int clearMlocked = PageMlocked(page);
1022
1023	if (PageAnon(page))
1024		page->mapping = NULL;
1025	if (free_pages_check(page))
1026		return;
1027
1028	if (!PageHighMem(page)) {
1029		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1030		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1031	}
1032	arch_free_page(page, 0);
1033	kernel_map_pages(page, 1, 0);
1034
1035	pcp = &zone_pcp(zone, get_cpu())->pcp;
1036	set_page_private(page, get_pageblock_migratetype(page));
1037	local_irq_save(flags);
1038	if (unlikely(clearMlocked))
1039		free_page_mlock(page);
1040	__count_vm_event(PGFREE);
1041
1042	if (cold)
1043		list_add_tail(&page->lru, &pcp->list);
1044	else
1045		list_add(&page->lru, &pcp->list);
1046	pcp->count++;
1047	if (pcp->count >= pcp->high) {
1048		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1049		pcp->count -= pcp->batch;
1050	}
1051	local_irq_restore(flags);
1052	put_cpu();
1053}
1054
1055void free_hot_page(struct page *page)
1056{
1057	free_hot_cold_page(page, 0);
1058}
1059
1060void free_cold_page(struct page *page)
1061{
1062	free_hot_cold_page(page, 1);
1063}
1064
1065/*
1066 * split_page takes a non-compound higher-order page, and splits it into
1067 * n (1<<order) sub-pages: page[0..n]
1068 * Each sub-page must be freed individually.
1069 *
1070 * Note: this is probably too low level an operation for use in drivers.
1071 * Please consult with lkml before using this in your driver.
1072 */
1073void split_page(struct page *page, unsigned int order)
1074{
1075	int i;
1076
1077	VM_BUG_ON(PageCompound(page));
1078	VM_BUG_ON(!page_count(page));
1079	for (i = 1; i < (1 << order); i++)
1080		set_page_refcounted(page + i);
1081}
1082
1083/*
1084 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1085 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1086 * or two.
1087 */
1088static inline
1089struct page *buffered_rmqueue(struct zone *preferred_zone,
1090			struct zone *zone, int order, gfp_t gfp_flags,
1091			int migratetype)
1092{
1093	unsigned long flags;
1094	struct page *page;
1095	int cold = !!(gfp_flags & __GFP_COLD);
1096	int cpu;
1097
1098again:
1099	cpu  = get_cpu();
1100	if (likely(order == 0)) {
1101		struct per_cpu_pages *pcp;
1102
1103		pcp = &zone_pcp(zone, cpu)->pcp;
1104		local_irq_save(flags);
1105		if (!pcp->count) {
1106			pcp->count = rmqueue_bulk(zone, 0,
1107					pcp->batch, &pcp->list, migratetype);
1108			if (unlikely(!pcp->count))
1109				goto failed;
1110		}
1111
1112		/* Find a page of the appropriate migrate type */
1113		if (cold) {
1114			list_for_each_entry_reverse(page, &pcp->list, lru)
1115				if (page_private(page) == migratetype)
1116					break;
1117		} else {
1118			list_for_each_entry(page, &pcp->list, lru)
1119				if (page_private(page) == migratetype)
1120					break;
1121		}
1122
1123		/* Allocate more to the pcp list if necessary */
1124		if (unlikely(&page->lru == &pcp->list)) {
1125			pcp->count += rmqueue_bulk(zone, 0,
1126					pcp->batch, &pcp->list, migratetype);
1127			page = list_entry(pcp->list.next, struct page, lru);
1128		}
1129
1130		list_del(&page->lru);
1131		pcp->count--;
1132	} else {
1133		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1134			/*
1135			 * __GFP_NOFAIL is not to be used in new code.
1136			 *
1137			 * All __GFP_NOFAIL callers should be fixed so that they
1138			 * properly detect and handle allocation failures.
1139			 *
1140			 * We most definitely don't want callers attempting to
1141			 * allocate greater than single-page units with
1142			 * __GFP_NOFAIL.
1143			 */
1144			WARN_ON_ONCE(order > 0);
1145		}
1146		spin_lock_irqsave(&zone->lock, flags);
1147		page = __rmqueue(zone, order, migratetype);
1148		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1149		spin_unlock(&zone->lock);
1150		if (!page)
1151			goto failed;
1152	}
1153
1154	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1155	zone_statistics(preferred_zone, zone);
1156	local_irq_restore(flags);
1157	put_cpu();
1158
1159	VM_BUG_ON(bad_range(zone, page));
1160	if (prep_new_page(page, order, gfp_flags))
1161		goto again;
1162	return page;
1163
1164failed:
1165	local_irq_restore(flags);
1166	put_cpu();
1167	return NULL;
1168}
1169
1170/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1171#define ALLOC_WMARK_MIN		WMARK_MIN
1172#define ALLOC_WMARK_LOW		WMARK_LOW
1173#define ALLOC_WMARK_HIGH	WMARK_HIGH
1174#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1175
1176/* Mask to get the watermark bits */
1177#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1178
1179#define ALLOC_HARDER		0x10 /* try to alloc harder */
1180#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1181#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1182
1183#ifdef CONFIG_FAIL_PAGE_ALLOC
1184
1185static struct fail_page_alloc_attr {
1186	struct fault_attr attr;
1187
1188	u32 ignore_gfp_highmem;
1189	u32 ignore_gfp_wait;
1190	u32 min_order;
1191
1192#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1193
1194	struct dentry *ignore_gfp_highmem_file;
1195	struct dentry *ignore_gfp_wait_file;
1196	struct dentry *min_order_file;
1197
1198#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1199
1200} fail_page_alloc = {
1201	.attr = FAULT_ATTR_INITIALIZER,
1202	.ignore_gfp_wait = 1,
1203	.ignore_gfp_highmem = 1,
1204	.min_order = 1,
1205};
1206
1207static int __init setup_fail_page_alloc(char *str)
1208{
1209	return setup_fault_attr(&fail_page_alloc.attr, str);
1210}
1211__setup("fail_page_alloc=", setup_fail_page_alloc);
1212
1213static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1214{
1215	if (order < fail_page_alloc.min_order)
1216		return 0;
1217	if (gfp_mask & __GFP_NOFAIL)
1218		return 0;
1219	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1220		return 0;
1221	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1222		return 0;
1223
1224	return should_fail(&fail_page_alloc.attr, 1 << order);
1225}
1226
1227#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1228
1229static int __init fail_page_alloc_debugfs(void)
1230{
1231	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1232	struct dentry *dir;
1233	int err;
1234
1235	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1236				       "fail_page_alloc");
1237	if (err)
1238		return err;
1239	dir = fail_page_alloc.attr.dentries.dir;
1240
1241	fail_page_alloc.ignore_gfp_wait_file =
1242		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1243				      &fail_page_alloc.ignore_gfp_wait);
1244
1245	fail_page_alloc.ignore_gfp_highmem_file =
1246		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1247				      &fail_page_alloc.ignore_gfp_highmem);
1248	fail_page_alloc.min_order_file =
1249		debugfs_create_u32("min-order", mode, dir,
1250				   &fail_page_alloc.min_order);
1251
1252	if (!fail_page_alloc.ignore_gfp_wait_file ||
1253            !fail_page_alloc.ignore_gfp_highmem_file ||
1254            !fail_page_alloc.min_order_file) {
1255		err = -ENOMEM;
1256		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1257		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1258		debugfs_remove(fail_page_alloc.min_order_file);
1259		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1260	}
1261
1262	return err;
1263}
1264
1265late_initcall(fail_page_alloc_debugfs);
1266
1267#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1268
1269#else /* CONFIG_FAIL_PAGE_ALLOC */
1270
1271static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1272{
1273	return 0;
1274}
1275
1276#endif /* CONFIG_FAIL_PAGE_ALLOC */
1277
1278/*
1279 * Return 1 if free pages are above 'mark'. This takes into account the order
1280 * of the allocation.
1281 */
1282int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1283		      int classzone_idx, int alloc_flags)
1284{
1285	/* free_pages my go negative - that's OK */
1286	long min = mark;
1287	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1288	int o;
1289
1290	if (alloc_flags & ALLOC_HIGH)
1291		min -= min / 2;
1292	if (alloc_flags & ALLOC_HARDER)
1293		min -= min / 4;
1294
1295	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1296		return 0;
1297	for (o = 0; o < order; o++) {
1298		/* At the next order, this order's pages become unavailable */
1299		free_pages -= z->free_area[o].nr_free << o;
1300
1301		/* Require fewer higher order pages to be free */
1302		min >>= 1;
1303
1304		if (free_pages <= min)
1305			return 0;
1306	}
1307	return 1;
1308}
1309
1310#ifdef CONFIG_NUMA
1311/*
1312 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1313 * skip over zones that are not allowed by the cpuset, or that have
1314 * been recently (in last second) found to be nearly full.  See further
1315 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1316 * that have to skip over a lot of full or unallowed zones.
1317 *
1318 * If the zonelist cache is present in the passed in zonelist, then
1319 * returns a pointer to the allowed node mask (either the current
1320 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1321 *
1322 * If the zonelist cache is not available for this zonelist, does
1323 * nothing and returns NULL.
1324 *
1325 * If the fullzones BITMAP in the zonelist cache is stale (more than
1326 * a second since last zap'd) then we zap it out (clear its bits.)
1327 *
1328 * We hold off even calling zlc_setup, until after we've checked the
1329 * first zone in the zonelist, on the theory that most allocations will
1330 * be satisfied from that first zone, so best to examine that zone as
1331 * quickly as we can.
1332 */
1333static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1334{
1335	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1336	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1337
1338	zlc = zonelist->zlcache_ptr;
1339	if (!zlc)
1340		return NULL;
1341
1342	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1343		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1344		zlc->last_full_zap = jiffies;
1345	}
1346
1347	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1348					&cpuset_current_mems_allowed :
1349					&node_states[N_HIGH_MEMORY];
1350	return allowednodes;
1351}
1352
1353/*
1354 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1355 * if it is worth looking at further for free memory:
1356 *  1) Check that the zone isn't thought to be full (doesn't have its
1357 *     bit set in the zonelist_cache fullzones BITMAP).
1358 *  2) Check that the zones node (obtained from the zonelist_cache
1359 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1360 * Return true (non-zero) if zone is worth looking at further, or
1361 * else return false (zero) if it is not.
1362 *
1363 * This check -ignores- the distinction between various watermarks,
1364 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1365 * found to be full for any variation of these watermarks, it will
1366 * be considered full for up to one second by all requests, unless
1367 * we are so low on memory on all allowed nodes that we are forced
1368 * into the second scan of the zonelist.
1369 *
1370 * In the second scan we ignore this zonelist cache and exactly
1371 * apply the watermarks to all zones, even it is slower to do so.
1372 * We are low on memory in the second scan, and should leave no stone
1373 * unturned looking for a free page.
1374 */
1375static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1376						nodemask_t *allowednodes)
1377{
1378	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1379	int i;				/* index of *z in zonelist zones */
1380	int n;				/* node that zone *z is on */
1381
1382	zlc = zonelist->zlcache_ptr;
1383	if (!zlc)
1384		return 1;
1385
1386	i = z - zonelist->_zonerefs;
1387	n = zlc->z_to_n[i];
1388
1389	/* This zone is worth trying if it is allowed but not full */
1390	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1391}
1392
1393/*
1394 * Given 'z' scanning a zonelist, set the corresponding bit in
1395 * zlc->fullzones, so that subsequent attempts to allocate a page
1396 * from that zone don't waste time re-examining it.
1397 */
1398static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1399{
1400	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1401	int i;				/* index of *z in zonelist zones */
1402
1403	zlc = zonelist->zlcache_ptr;
1404	if (!zlc)
1405		return;
1406
1407	i = z - zonelist->_zonerefs;
1408
1409	set_bit(i, zlc->fullzones);
1410}
1411
1412#else	/* CONFIG_NUMA */
1413
1414static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1415{
1416	return NULL;
1417}
1418
1419static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1420				nodemask_t *allowednodes)
1421{
1422	return 1;
1423}
1424
1425static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1426{
1427}
1428#endif	/* CONFIG_NUMA */
1429
1430/*
1431 * get_page_from_freelist goes through the zonelist trying to allocate
1432 * a page.
1433 */
1434static struct page *
1435get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1436		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1437		struct zone *preferred_zone, int migratetype)
1438{
1439	struct zoneref *z;
1440	struct page *page = NULL;
1441	int classzone_idx;
1442	struct zone *zone;
1443	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1444	int zlc_active = 0;		/* set if using zonelist_cache */
1445	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1446
1447	classzone_idx = zone_idx(preferred_zone);
1448zonelist_scan:
1449	/*
1450	 * Scan zonelist, looking for a zone with enough free.
1451	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1452	 */
1453	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1454						high_zoneidx, nodemask) {
1455		if (NUMA_BUILD && zlc_active &&
1456			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1457				continue;
1458		if ((alloc_flags & ALLOC_CPUSET) &&
1459			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1460				goto try_next_zone;
1461
1462		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1463		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1464			unsigned long mark;
1465			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1466			if (!zone_watermark_ok(zone, order, mark,
1467				    classzone_idx, alloc_flags)) {
1468				if (!zone_reclaim_mode ||
1469				    !zone_reclaim(zone, gfp_mask, order))
1470					goto this_zone_full;
1471			}
1472		}
1473
1474		page = buffered_rmqueue(preferred_zone, zone, order,
1475						gfp_mask, migratetype);
1476		if (page)
1477			break;
1478this_zone_full:
1479		if (NUMA_BUILD)
1480			zlc_mark_zone_full(zonelist, z);
1481try_next_zone:
1482		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1483			/*
1484			 * we do zlc_setup after the first zone is tried but only
1485			 * if there are multiple nodes make it worthwhile
1486			 */
1487			allowednodes = zlc_setup(zonelist, alloc_flags);
1488			zlc_active = 1;
1489			did_zlc_setup = 1;
1490		}
1491	}
1492
1493	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1494		/* Disable zlc cache for second zonelist scan */
1495		zlc_active = 0;
1496		goto zonelist_scan;
1497	}
1498	return page;
1499}
1500
1501static inline int
1502should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1503				unsigned long pages_reclaimed)
1504{
1505	/* Do not loop if specifically requested */
1506	if (gfp_mask & __GFP_NORETRY)
1507		return 0;
1508
1509	/*
1510	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1511	 * means __GFP_NOFAIL, but that may not be true in other
1512	 * implementations.
1513	 */
1514	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1515		return 1;
1516
1517	/*
1518	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1519	 * specified, then we retry until we no longer reclaim any pages
1520	 * (above), or we've reclaimed an order of pages at least as
1521	 * large as the allocation's order. In both cases, if the
1522	 * allocation still fails, we stop retrying.
1523	 */
1524	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1525		return 1;
1526
1527	/*
1528	 * Don't let big-order allocations loop unless the caller
1529	 * explicitly requests that.
1530	 */
1531	if (gfp_mask & __GFP_NOFAIL)
1532		return 1;
1533
1534	return 0;
1535}
1536
1537static inline struct page *
1538__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1539	struct zonelist *zonelist, enum zone_type high_zoneidx,
1540	nodemask_t *nodemask, struct zone *preferred_zone,
1541	int migratetype)
1542{
1543	struct page *page;
1544
1545	/* Acquire the OOM killer lock for the zones in zonelist */
1546	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1547		schedule_timeout_uninterruptible(1);
1548		return NULL;
1549	}
1550
1551	/*
1552	 * Go through the zonelist yet one more time, keep very high watermark
1553	 * here, this is only to catch a parallel oom killing, we must fail if
1554	 * we're still under heavy pressure.
1555	 */
1556	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1557		order, zonelist, high_zoneidx,
1558		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1559		preferred_zone, migratetype);
1560	if (page)
1561		goto out;
1562
1563	/* The OOM killer will not help higher order allocs */
1564	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1565		goto out;
1566
1567	/* Exhausted what can be done so it's blamo time */
1568	out_of_memory(zonelist, gfp_mask, order);
1569
1570out:
1571	clear_zonelist_oom(zonelist, gfp_mask);
1572	return page;
1573}
1574
1575/* The really slow allocator path where we enter direct reclaim */
1576static inline struct page *
1577__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1578	struct zonelist *zonelist, enum zone_type high_zoneidx,
1579	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1580	int migratetype, unsigned long *did_some_progress)
1581{
1582	struct page *page = NULL;
1583	struct reclaim_state reclaim_state;
1584	struct task_struct *p = current;
1585
1586	cond_resched();
1587
1588	/* We now go into synchronous reclaim */
1589	cpuset_memory_pressure_bump();
1590
1591	/*
1592	 * The task's cpuset might have expanded its set of allowable nodes
1593	 */
1594	p->flags |= PF_MEMALLOC;
1595	lockdep_set_current_reclaim_state(gfp_mask);
1596	reclaim_state.reclaimed_slab = 0;
1597	p->reclaim_state = &reclaim_state;
1598
1599	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1600
1601	p->reclaim_state = NULL;
1602	lockdep_clear_current_reclaim_state();
1603	p->flags &= ~PF_MEMALLOC;
1604
1605	cond_resched();
1606
1607	if (order != 0)
1608		drain_all_pages();
1609
1610	if (likely(*did_some_progress))
1611		page = get_page_from_freelist(gfp_mask, nodemask, order,
1612					zonelist, high_zoneidx,
1613					alloc_flags, preferred_zone,
1614					migratetype);
1615	return page;
1616}
1617
1618/*
1619 * This is called in the allocator slow-path if the allocation request is of
1620 * sufficient urgency to ignore watermarks and take other desperate measures
1621 */
1622static inline struct page *
1623__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1624	struct zonelist *zonelist, enum zone_type high_zoneidx,
1625	nodemask_t *nodemask, struct zone *preferred_zone,
1626	int migratetype)
1627{
1628	struct page *page;
1629
1630	do {
1631		page = get_page_from_freelist(gfp_mask, nodemask, order,
1632			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1633			preferred_zone, migratetype);
1634
1635		if (!page && gfp_mask & __GFP_NOFAIL)
1636			congestion_wait(WRITE, HZ/50);
1637	} while (!page && (gfp_mask & __GFP_NOFAIL));
1638
1639	return page;
1640}
1641
1642static inline
1643void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1644						enum zone_type high_zoneidx)
1645{
1646	struct zoneref *z;
1647	struct zone *zone;
1648
1649	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1650		wakeup_kswapd(zone, order);
1651}
1652
1653static inline int
1654gfp_to_alloc_flags(gfp_t gfp_mask)
1655{
1656	struct task_struct *p = current;
1657	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1658	const gfp_t wait = gfp_mask & __GFP_WAIT;
1659
1660	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1661	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1662
1663	/*
1664	 * The caller may dip into page reserves a bit more if the caller
1665	 * cannot run direct reclaim, or if the caller has realtime scheduling
1666	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1667	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1668	 */
1669	alloc_flags |= (gfp_mask & __GFP_HIGH);
1670
1671	if (!wait) {
1672		alloc_flags |= ALLOC_HARDER;
1673		/*
1674		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1675		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1676		 */
1677		alloc_flags &= ~ALLOC_CPUSET;
1678	} else if (unlikely(rt_task(p)))
1679		alloc_flags |= ALLOC_HARDER;
1680
1681	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1682		if (!in_interrupt() &&
1683		    ((p->flags & PF_MEMALLOC) ||
1684		     unlikely(test_thread_flag(TIF_MEMDIE))))
1685			alloc_flags |= ALLOC_NO_WATERMARKS;
1686	}
1687
1688	return alloc_flags;
1689}
1690
1691static inline struct page *
1692__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1693	struct zonelist *zonelist, enum zone_type high_zoneidx,
1694	nodemask_t *nodemask, struct zone *preferred_zone,
1695	int migratetype)
1696{
1697	const gfp_t wait = gfp_mask & __GFP_WAIT;
1698	struct page *page = NULL;
1699	int alloc_flags;
1700	unsigned long pages_reclaimed = 0;
1701	unsigned long did_some_progress;
1702	struct task_struct *p = current;
1703
1704	/*
1705	 * In the slowpath, we sanity check order to avoid ever trying to
1706	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1707	 * be using allocators in order of preference for an area that is
1708	 * too large.
1709	 */
1710	if (WARN_ON_ONCE(order >= MAX_ORDER))
1711		return NULL;
1712
1713	/*
1714	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1715	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1716	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1717	 * using a larger set of nodes after it has established that the
1718	 * allowed per node queues are empty and that nodes are
1719	 * over allocated.
1720	 */
1721	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1722		goto nopage;
1723
1724	wake_all_kswapd(order, zonelist, high_zoneidx);
1725
1726	/*
1727	 * OK, we're below the kswapd watermark and have kicked background
1728	 * reclaim. Now things get more complex, so set up alloc_flags according
1729	 * to how we want to proceed.
1730	 */
1731	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1732
1733restart:
1734	/* This is the last chance, in general, before the goto nopage. */
1735	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1736			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1737			preferred_zone, migratetype);
1738	if (page)
1739		goto got_pg;
1740
1741rebalance:
1742	/* Allocate without watermarks if the context allows */
1743	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1744		page = __alloc_pages_high_priority(gfp_mask, order,
1745				zonelist, high_zoneidx, nodemask,
1746				preferred_zone, migratetype);
1747		if (page)
1748			goto got_pg;
1749	}
1750
1751	/* Atomic allocations - we can't balance anything */
1752	if (!wait)
1753		goto nopage;
1754
1755	/* Avoid recursion of direct reclaim */
1756	if (p->flags & PF_MEMALLOC)
1757		goto nopage;
1758
1759	/* Try direct reclaim and then allocating */
1760	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1761					zonelist, high_zoneidx,
1762					nodemask,
1763					alloc_flags, preferred_zone,
1764					migratetype, &did_some_progress);
1765	if (page)
1766		goto got_pg;
1767
1768	/*
1769	 * If we failed to make any progress reclaiming, then we are
1770	 * running out of options and have to consider going OOM
1771	 */
1772	if (!did_some_progress) {
1773		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1774			if (oom_killer_disabled)
1775				goto nopage;
1776			page = __alloc_pages_may_oom(gfp_mask, order,
1777					zonelist, high_zoneidx,
1778					nodemask, preferred_zone,
1779					migratetype);
1780			if (page)
1781				goto got_pg;
1782
1783			/*
1784			 * The OOM killer does not trigger for high-order
1785			 * ~__GFP_NOFAIL allocations so if no progress is being
1786			 * made, there are no other options and retrying is
1787			 * unlikely to help.
1788			 */
1789			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1790						!(gfp_mask & __GFP_NOFAIL))
1791				goto nopage;
1792
1793			goto restart;
1794		}
1795	}
1796
1797	/* Check if we should retry the allocation */
1798	pages_reclaimed += did_some_progress;
1799	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1800		/* Wait for some write requests to complete then retry */
1801		congestion_wait(WRITE, HZ/50);
1802		goto rebalance;
1803	}
1804
1805nopage:
1806	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1807		printk(KERN_WARNING "%s: page allocation failure."
1808			" order:%d, mode:0x%x\n",
1809			p->comm, order, gfp_mask);
1810		dump_stack();
1811		show_mem();
1812	}
1813got_pg:
1814	return page;
1815
1816}
1817
1818/*
1819 * This is the 'heart' of the zoned buddy allocator.
1820 */
1821struct page *
1822__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1823			struct zonelist *zonelist, nodemask_t *nodemask)
1824{
1825	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1826	struct zone *preferred_zone;
1827	struct page *page;
1828	int migratetype = allocflags_to_migratetype(gfp_mask);
1829
1830	lockdep_trace_alloc(gfp_mask);
1831
1832	might_sleep_if(gfp_mask & __GFP_WAIT);
1833
1834	if (should_fail_alloc_page(gfp_mask, order))
1835		return NULL;
1836
1837	/*
1838	 * Check the zones suitable for the gfp_mask contain at least one
1839	 * valid zone. It's possible to have an empty zonelist as a result
1840	 * of GFP_THISNODE and a memoryless node
1841	 */
1842	if (unlikely(!zonelist->_zonerefs->zone))
1843		return NULL;
1844
1845	/* The preferred zone is used for statistics later */
1846	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1847	if (!preferred_zone)
1848		return NULL;
1849
1850	/* First allocation attempt */
1851	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1852			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1853			preferred_zone, migratetype);
1854	if (unlikely(!page))
1855		page = __alloc_pages_slowpath(gfp_mask, order,
1856				zonelist, high_zoneidx, nodemask,
1857				preferred_zone, migratetype);
1858
1859	return page;
1860}
1861EXPORT_SYMBOL(__alloc_pages_nodemask);
1862
1863/*
1864 * Common helper functions.
1865 */
1866unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1867{
1868	struct page * page;
1869	page = alloc_pages(gfp_mask, order);
1870	if (!page)
1871		return 0;
1872	return (unsigned long) page_address(page);
1873}
1874
1875EXPORT_SYMBOL(__get_free_pages);
1876
1877unsigned long get_zeroed_page(gfp_t gfp_mask)
1878{
1879	struct page * page;
1880
1881	/*
1882	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1883	 * a highmem page
1884	 */
1885	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1886
1887	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1888	if (page)
1889		return (unsigned long) page_address(page);
1890	return 0;
1891}
1892
1893EXPORT_SYMBOL(get_zeroed_page);
1894
1895void __pagevec_free(struct pagevec *pvec)
1896{
1897	int i = pagevec_count(pvec);
1898
1899	while (--i >= 0)
1900		free_hot_cold_page(pvec->pages[i], pvec->cold);
1901}
1902
1903void __free_pages(struct page *page, unsigned int order)
1904{
1905	if (put_page_testzero(page)) {
1906		if (order == 0)
1907			free_hot_page(page);
1908		else
1909			__free_pages_ok(page, order);
1910	}
1911}
1912
1913EXPORT_SYMBOL(__free_pages);
1914
1915void free_pages(unsigned long addr, unsigned int order)
1916{
1917	if (addr != 0) {
1918		VM_BUG_ON(!virt_addr_valid((void *)addr));
1919		__free_pages(virt_to_page((void *)addr), order);
1920	}
1921}
1922
1923EXPORT_SYMBOL(free_pages);
1924
1925/**
1926 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1927 * @size: the number of bytes to allocate
1928 * @gfp_mask: GFP flags for the allocation
1929 *
1930 * This function is similar to alloc_pages(), except that it allocates the
1931 * minimum number of pages to satisfy the request.  alloc_pages() can only
1932 * allocate memory in power-of-two pages.
1933 *
1934 * This function is also limited by MAX_ORDER.
1935 *
1936 * Memory allocated by this function must be released by free_pages_exact().
1937 */
1938void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1939{
1940	unsigned int order = get_order(size);
1941	unsigned long addr;
1942
1943	addr = __get_free_pages(gfp_mask, order);
1944	if (addr) {
1945		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1946		unsigned long used = addr + PAGE_ALIGN(size);
1947
1948		split_page(virt_to_page(addr), order);
1949		while (used < alloc_end) {
1950			free_page(used);
1951			used += PAGE_SIZE;
1952		}
1953	}
1954
1955	return (void *)addr;
1956}
1957EXPORT_SYMBOL(alloc_pages_exact);
1958
1959/**
1960 * free_pages_exact - release memory allocated via alloc_pages_exact()
1961 * @virt: the value returned by alloc_pages_exact.
1962 * @size: size of allocation, same value as passed to alloc_pages_exact().
1963 *
1964 * Release the memory allocated by a previous call to alloc_pages_exact.
1965 */
1966void free_pages_exact(void *virt, size_t size)
1967{
1968	unsigned long addr = (unsigned long)virt;
1969	unsigned long end = addr + PAGE_ALIGN(size);
1970
1971	while (addr < end) {
1972		free_page(addr);
1973		addr += PAGE_SIZE;
1974	}
1975}
1976EXPORT_SYMBOL(free_pages_exact);
1977
1978static unsigned int nr_free_zone_pages(int offset)
1979{
1980	struct zoneref *z;
1981	struct zone *zone;
1982
1983	/* Just pick one node, since fallback list is circular */
1984	unsigned int sum = 0;
1985
1986	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1987
1988	for_each_zone_zonelist(zone, z, zonelist, offset) {
1989		unsigned long size = zone->present_pages;
1990		unsigned long high = high_wmark_pages(zone);
1991		if (size > high)
1992			sum += size - high;
1993	}
1994
1995	return sum;
1996}
1997
1998/*
1999 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2000 */
2001unsigned int nr_free_buffer_pages(void)
2002{
2003	return nr_free_zone_pages(gfp_zone(GFP_USER));
2004}
2005EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2006
2007/*
2008 * Amount of free RAM allocatable within all zones
2009 */
2010unsigned int nr_free_pagecache_pages(void)
2011{
2012	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2013}
2014
2015static inline void show_node(struct zone *zone)
2016{
2017	if (NUMA_BUILD)
2018		printk("Node %d ", zone_to_nid(zone));
2019}
2020
2021void si_meminfo(struct sysinfo *val)
2022{
2023	val->totalram = totalram_pages;
2024	val->sharedram = 0;
2025	val->freeram = global_page_state(NR_FREE_PAGES);
2026	val->bufferram = nr_blockdev_pages();
2027	val->totalhigh = totalhigh_pages;
2028	val->freehigh = nr_free_highpages();
2029	val->mem_unit = PAGE_SIZE;
2030}
2031
2032EXPORT_SYMBOL(si_meminfo);
2033
2034#ifdef CONFIG_NUMA
2035void si_meminfo_node(struct sysinfo *val, int nid)
2036{
2037	pg_data_t *pgdat = NODE_DATA(nid);
2038
2039	val->totalram = pgdat->node_present_pages;
2040	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2041#ifdef CONFIG_HIGHMEM
2042	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2043	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2044			NR_FREE_PAGES);
2045#else
2046	val->totalhigh = 0;
2047	val->freehigh = 0;
2048#endif
2049	val->mem_unit = PAGE_SIZE;
2050}
2051#endif
2052
2053#define K(x) ((x) << (PAGE_SHIFT-10))
2054
2055/*
2056 * Show free area list (used inside shift_scroll-lock stuff)
2057 * We also calculate the percentage fragmentation. We do this by counting the
2058 * memory on each free list with the exception of the first item on the list.
2059 */
2060void show_free_areas(void)
2061{
2062	int cpu;
2063	struct zone *zone;
2064
2065	for_each_populated_zone(zone) {
2066		show_node(zone);
2067		printk("%s per-cpu:\n", zone->name);
2068
2069		for_each_online_cpu(cpu) {
2070			struct per_cpu_pageset *pageset;
2071
2072			pageset = zone_pcp(zone, cpu);
2073
2074			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2075			       cpu, pageset->pcp.high,
2076			       pageset->pcp.batch, pageset->pcp.count);
2077		}
2078	}
2079
2080	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2081		" inactive_file:%lu"
2082		" unevictable:%lu"
2083		" dirty:%lu writeback:%lu unstable:%lu\n"
2084		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2085		global_page_state(NR_ACTIVE_ANON),
2086		global_page_state(NR_ACTIVE_FILE),
2087		global_page_state(NR_INACTIVE_ANON),
2088		global_page_state(NR_INACTIVE_FILE),
2089		global_page_state(NR_UNEVICTABLE),
2090		global_page_state(NR_FILE_DIRTY),
2091		global_page_state(NR_WRITEBACK),
2092		global_page_state(NR_UNSTABLE_NFS),
2093		global_page_state(NR_FREE_PAGES),
2094		global_page_state(NR_SLAB_RECLAIMABLE) +
2095			global_page_state(NR_SLAB_UNRECLAIMABLE),
2096		global_page_state(NR_FILE_MAPPED),
2097		global_page_state(NR_PAGETABLE),
2098		global_page_state(NR_BOUNCE));
2099
2100	for_each_populated_zone(zone) {
2101		int i;
2102
2103		show_node(zone);
2104		printk("%s"
2105			" free:%lukB"
2106			" min:%lukB"
2107			" low:%lukB"
2108			" high:%lukB"
2109			" active_anon:%lukB"
2110			" inactive_anon:%lukB"
2111			" active_file:%lukB"
2112			" inactive_file:%lukB"
2113			" unevictable:%lukB"
2114			" present:%lukB"
2115			" pages_scanned:%lu"
2116			" all_unreclaimable? %s"
2117			"\n",
2118			zone->name,
2119			K(zone_page_state(zone, NR_FREE_PAGES)),
2120			K(min_wmark_pages(zone)),
2121			K(low_wmark_pages(zone)),
2122			K(high_wmark_pages(zone)),
2123			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2124			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2125			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2126			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2127			K(zone_page_state(zone, NR_UNEVICTABLE)),
2128			K(zone->present_pages),
2129			zone->pages_scanned,
2130			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2131			);
2132		printk("lowmem_reserve[]:");
2133		for (i = 0; i < MAX_NR_ZONES; i++)
2134			printk(" %lu", zone->lowmem_reserve[i]);
2135		printk("\n");
2136	}
2137
2138	for_each_populated_zone(zone) {
2139 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2140
2141		show_node(zone);
2142		printk("%s: ", zone->name);
2143
2144		spin_lock_irqsave(&zone->lock, flags);
2145		for (order = 0; order < MAX_ORDER; order++) {
2146			nr[order] = zone->free_area[order].nr_free;
2147			total += nr[order] << order;
2148		}
2149		spin_unlock_irqrestore(&zone->lock, flags);
2150		for (order = 0; order < MAX_ORDER; order++)
2151			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2152		printk("= %lukB\n", K(total));
2153	}
2154
2155	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2156
2157	show_swap_cache_info();
2158}
2159
2160static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2161{
2162	zoneref->zone = zone;
2163	zoneref->zone_idx = zone_idx(zone);
2164}
2165
2166/*
2167 * Builds allocation fallback zone lists.
2168 *
2169 * Add all populated zones of a node to the zonelist.
2170 */
2171static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2172				int nr_zones, enum zone_type zone_type)
2173{
2174	struct zone *zone;
2175
2176	BUG_ON(zone_type >= MAX_NR_ZONES);
2177	zone_type++;
2178
2179	do {
2180		zone_type--;
2181		zone = pgdat->node_zones + zone_type;
2182		if (populated_zone(zone)) {
2183			zoneref_set_zone(zone,
2184				&zonelist->_zonerefs[nr_zones++]);
2185			check_highest_zone(zone_type);
2186		}
2187
2188	} while (zone_type);
2189	return nr_zones;
2190}
2191
2192
2193/*
2194 *  zonelist_order:
2195 *  0 = automatic detection of better ordering.
2196 *  1 = order by ([node] distance, -zonetype)
2197 *  2 = order by (-zonetype, [node] distance)
2198 *
2199 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2200 *  the same zonelist. So only NUMA can configure this param.
2201 */
2202#define ZONELIST_ORDER_DEFAULT  0
2203#define ZONELIST_ORDER_NODE     1
2204#define ZONELIST_ORDER_ZONE     2
2205
2206/* zonelist order in the kernel.
2207 * set_zonelist_order() will set this to NODE or ZONE.
2208 */
2209static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2210static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2211
2212
2213#ifdef CONFIG_NUMA
2214/* The value user specified ....changed by config */
2215static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2216/* string for sysctl */
2217#define NUMA_ZONELIST_ORDER_LEN	16
2218char numa_zonelist_order[16] = "default";
2219
2220/*
2221 * interface for configure zonelist ordering.
2222 * command line option "numa_zonelist_order"
2223 *	= "[dD]efault	- default, automatic configuration.
2224 *	= "[nN]ode 	- order by node locality, then by zone within node
2225 *	= "[zZ]one      - order by zone, then by locality within zone
2226 */
2227
2228static int __parse_numa_zonelist_order(char *s)
2229{
2230	if (*s == 'd' || *s == 'D') {
2231		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2232	} else if (*s == 'n' || *s == 'N') {
2233		user_zonelist_order = ZONELIST_ORDER_NODE;
2234	} else if (*s == 'z' || *s == 'Z') {
2235		user_zonelist_order = ZONELIST_ORDER_ZONE;
2236	} else {
2237		printk(KERN_WARNING
2238			"Ignoring invalid numa_zonelist_order value:  "
2239			"%s\n", s);
2240		return -EINVAL;
2241	}
2242	return 0;
2243}
2244
2245static __init int setup_numa_zonelist_order(char *s)
2246{
2247	if (s)
2248		return __parse_numa_zonelist_order(s);
2249	return 0;
2250}
2251early_param("numa_zonelist_order", setup_numa_zonelist_order);
2252
2253/*
2254 * sysctl handler for numa_zonelist_order
2255 */
2256int numa_zonelist_order_handler(ctl_table *table, int write,
2257		struct file *file, void __user *buffer, size_t *length,
2258		loff_t *ppos)
2259{
2260	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2261	int ret;
2262
2263	if (write)
2264		strncpy(saved_string, (char*)table->data,
2265			NUMA_ZONELIST_ORDER_LEN);
2266	ret = proc_dostring(table, write, file, buffer, length, ppos);
2267	if (ret)
2268		return ret;
2269	if (write) {
2270		int oldval = user_zonelist_order;
2271		if (__parse_numa_zonelist_order((char*)table->data)) {
2272			/*
2273			 * bogus value.  restore saved string
2274			 */
2275			strncpy((char*)table->data, saved_string,
2276				NUMA_ZONELIST_ORDER_LEN);
2277			user_zonelist_order = oldval;
2278		} else if (oldval != user_zonelist_order)
2279			build_all_zonelists();
2280	}
2281	return 0;
2282}
2283
2284
2285#define MAX_NODE_LOAD (nr_online_nodes)
2286static int node_load[MAX_NUMNODES];
2287
2288/**
2289 * find_next_best_node - find the next node that should appear in a given node's fallback list
2290 * @node: node whose fallback list we're appending
2291 * @used_node_mask: nodemask_t of already used nodes
2292 *
2293 * We use a number of factors to determine which is the next node that should
2294 * appear on a given node's fallback list.  The node should not have appeared
2295 * already in @node's fallback list, and it should be the next closest node
2296 * according to the distance array (which contains arbitrary distance values
2297 * from each node to each node in the system), and should also prefer nodes
2298 * with no CPUs, since presumably they'll have very little allocation pressure
2299 * on them otherwise.
2300 * It returns -1 if no node is found.
2301 */
2302static int find_next_best_node(int node, nodemask_t *used_node_mask)
2303{
2304	int n, val;
2305	int min_val = INT_MAX;
2306	int best_node = -1;
2307	const struct cpumask *tmp = cpumask_of_node(0);
2308
2309	/* Use the local node if we haven't already */
2310	if (!node_isset(node, *used_node_mask)) {
2311		node_set(node, *used_node_mask);
2312		return node;
2313	}
2314
2315	for_each_node_state(n, N_HIGH_MEMORY) {
2316
2317		/* Don't want a node to appear more than once */
2318		if (node_isset(n, *used_node_mask))
2319			continue;
2320
2321		/* Use the distance array to find the distance */
2322		val = node_distance(node, n);
2323
2324		/* Penalize nodes under us ("prefer the next node") */
2325		val += (n < node);
2326
2327		/* Give preference to headless and unused nodes */
2328		tmp = cpumask_of_node(n);
2329		if (!cpumask_empty(tmp))
2330			val += PENALTY_FOR_NODE_WITH_CPUS;
2331
2332		/* Slight preference for less loaded node */
2333		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2334		val += node_load[n];
2335
2336		if (val < min_val) {
2337			min_val = val;
2338			best_node = n;
2339		}
2340	}
2341
2342	if (best_node >= 0)
2343		node_set(best_node, *used_node_mask);
2344
2345	return best_node;
2346}
2347
2348
2349/*
2350 * Build zonelists ordered by node and zones within node.
2351 * This results in maximum locality--normal zone overflows into local
2352 * DMA zone, if any--but risks exhausting DMA zone.
2353 */
2354static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2355{
2356	int j;
2357	struct zonelist *zonelist;
2358
2359	zonelist = &pgdat->node_zonelists[0];
2360	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2361		;
2362	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2363							MAX_NR_ZONES - 1);
2364	zonelist->_zonerefs[j].zone = NULL;
2365	zonelist->_zonerefs[j].zone_idx = 0;
2366}
2367
2368/*
2369 * Build gfp_thisnode zonelists
2370 */
2371static void build_thisnode_zonelists(pg_data_t *pgdat)
2372{
2373	int j;
2374	struct zonelist *zonelist;
2375
2376	zonelist = &pgdat->node_zonelists[1];
2377	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2378	zonelist->_zonerefs[j].zone = NULL;
2379	zonelist->_zonerefs[j].zone_idx = 0;
2380}
2381
2382/*
2383 * Build zonelists ordered by zone and nodes within zones.
2384 * This results in conserving DMA zone[s] until all Normal memory is
2385 * exhausted, but results in overflowing to remote node while memory
2386 * may still exist in local DMA zone.
2387 */
2388static int node_order[MAX_NUMNODES];
2389
2390static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2391{
2392	int pos, j, node;
2393	int zone_type;		/* needs to be signed */
2394	struct zone *z;
2395	struct zonelist *zonelist;
2396
2397	zonelist = &pgdat->node_zonelists[0];
2398	pos = 0;
2399	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2400		for (j = 0; j < nr_nodes; j++) {
2401			node = node_order[j];
2402			z = &NODE_DATA(node)->node_zones[zone_type];
2403			if (populated_zone(z)) {
2404				zoneref_set_zone(z,
2405					&zonelist->_zonerefs[pos++]);
2406				check_highest_zone(zone_type);
2407			}
2408		}
2409	}
2410	zonelist->_zonerefs[pos].zone = NULL;
2411	zonelist->_zonerefs[pos].zone_idx = 0;
2412}
2413
2414static int default_zonelist_order(void)
2415{
2416	int nid, zone_type;
2417	unsigned long low_kmem_size,total_size;
2418	struct zone *z;
2419	int average_size;
2420	/*
2421         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2422	 * If they are really small and used heavily, the system can fall
2423	 * into OOM very easily.
2424	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2425	 */
2426	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2427	low_kmem_size = 0;
2428	total_size = 0;
2429	for_each_online_node(nid) {
2430		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2431			z = &NODE_DATA(nid)->node_zones[zone_type];
2432			if (populated_zone(z)) {
2433				if (zone_type < ZONE_NORMAL)
2434					low_kmem_size += z->present_pages;
2435				total_size += z->present_pages;
2436			}
2437		}
2438	}
2439	if (!low_kmem_size ||  /* there are no DMA area. */
2440	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2441		return ZONELIST_ORDER_NODE;
2442	/*
2443	 * look into each node's config.
2444  	 * If there is a node whose DMA/DMA32 memory is very big area on
2445 	 * local memory, NODE_ORDER may be suitable.
2446         */
2447	average_size = total_size /
2448				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2449	for_each_online_node(nid) {
2450		low_kmem_size = 0;
2451		total_size = 0;
2452		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2453			z = &NODE_DATA(nid)->node_zones[zone_type];
2454			if (populated_zone(z)) {
2455				if (zone_type < ZONE_NORMAL)
2456					low_kmem_size += z->present_pages;
2457				total_size += z->present_pages;
2458			}
2459		}
2460		if (low_kmem_size &&
2461		    total_size > average_size && /* ignore small node */
2462		    low_kmem_size > total_size * 70/100)
2463			return ZONELIST_ORDER_NODE;
2464	}
2465	return ZONELIST_ORDER_ZONE;
2466}
2467
2468static void set_zonelist_order(void)
2469{
2470	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2471		current_zonelist_order = default_zonelist_order();
2472	else
2473		current_zonelist_order = user_zonelist_order;
2474}
2475
2476static void build_zonelists(pg_data_t *pgdat)
2477{
2478	int j, node, load;
2479	enum zone_type i;
2480	nodemask_t used_mask;
2481	int local_node, prev_node;
2482	struct zonelist *zonelist;
2483	int order = current_zonelist_order;
2484
2485	/* initialize zonelists */
2486	for (i = 0; i < MAX_ZONELISTS; i++) {
2487		zonelist = pgdat->node_zonelists + i;
2488		zonelist->_zonerefs[0].zone = NULL;
2489		zonelist->_zonerefs[0].zone_idx = 0;
2490	}
2491
2492	/* NUMA-aware ordering of nodes */
2493	local_node = pgdat->node_id;
2494	load = nr_online_nodes;
2495	prev_node = local_node;
2496	nodes_clear(used_mask);
2497
2498	memset(node_load, 0, sizeof(node_load));
2499	memset(node_order, 0, sizeof(node_order));
2500	j = 0;
2501
2502	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2503		int distance = node_distance(local_node, node);
2504
2505		/*
2506		 * If another node is sufficiently far away then it is better
2507		 * to reclaim pages in a zone before going off node.
2508		 */
2509		if (distance > RECLAIM_DISTANCE)
2510			zone_reclaim_mode = 1;
2511
2512		/*
2513		 * We don't want to pressure a particular node.
2514		 * So adding penalty to the first node in same
2515		 * distance group to make it round-robin.
2516		 */
2517		if (distance != node_distance(local_node, prev_node))
2518			node_load[node] = load;
2519
2520		prev_node = node;
2521		load--;
2522		if (order == ZONELIST_ORDER_NODE)
2523			build_zonelists_in_node_order(pgdat, node);
2524		else
2525			node_order[j++] = node;	/* remember order */
2526	}
2527
2528	if (order == ZONELIST_ORDER_ZONE) {
2529		/* calculate node order -- i.e., DMA last! */
2530		build_zonelists_in_zone_order(pgdat, j);
2531	}
2532
2533	build_thisnode_zonelists(pgdat);
2534}
2535
2536/* Construct the zonelist performance cache - see further mmzone.h */
2537static void build_zonelist_cache(pg_data_t *pgdat)
2538{
2539	struct zonelist *zonelist;
2540	struct zonelist_cache *zlc;
2541	struct zoneref *z;
2542
2543	zonelist = &pgdat->node_zonelists[0];
2544	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2545	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2546	for (z = zonelist->_zonerefs; z->zone; z++)
2547		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2548}
2549
2550
2551#else	/* CONFIG_NUMA */
2552
2553static void set_zonelist_order(void)
2554{
2555	current_zonelist_order = ZONELIST_ORDER_ZONE;
2556}
2557
2558static void build_zonelists(pg_data_t *pgdat)
2559{
2560	int node, local_node;
2561	enum zone_type j;
2562	struct zonelist *zonelist;
2563
2564	local_node = pgdat->node_id;
2565
2566	zonelist = &pgdat->node_zonelists[0];
2567	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2568
2569	/*
2570	 * Now we build the zonelist so that it contains the zones
2571	 * of all the other nodes.
2572	 * We don't want to pressure a particular node, so when
2573	 * building the zones for node N, we make sure that the
2574	 * zones coming right after the local ones are those from
2575	 * node N+1 (modulo N)
2576	 */
2577	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2578		if (!node_online(node))
2579			continue;
2580		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2581							MAX_NR_ZONES - 1);
2582	}
2583	for (node = 0; node < local_node; node++) {
2584		if (!node_online(node))
2585			continue;
2586		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2587							MAX_NR_ZONES - 1);
2588	}
2589
2590	zonelist->_zonerefs[j].zone = NULL;
2591	zonelist->_zonerefs[j].zone_idx = 0;
2592}
2593
2594/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2595static void build_zonelist_cache(pg_data_t *pgdat)
2596{
2597	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2598}
2599
2600#endif	/* CONFIG_NUMA */
2601
2602/* return values int ....just for stop_machine() */
2603static int __build_all_zonelists(void *dummy)
2604{
2605	int nid;
2606
2607	for_each_online_node(nid) {
2608		pg_data_t *pgdat = NODE_DATA(nid);
2609
2610		build_zonelists(pgdat);
2611		build_zonelist_cache(pgdat);
2612	}
2613	return 0;
2614}
2615
2616void build_all_zonelists(void)
2617{
2618	set_zonelist_order();
2619
2620	if (system_state == SYSTEM_BOOTING) {
2621		__build_all_zonelists(NULL);
2622		mminit_verify_zonelist();
2623		cpuset_init_current_mems_allowed();
2624	} else {
2625		/* we have to stop all cpus to guarantee there is no user
2626		   of zonelist */
2627		stop_machine(__build_all_zonelists, NULL, NULL);
2628		/* cpuset refresh routine should be here */
2629	}
2630	vm_total_pages = nr_free_pagecache_pages();
2631	/*
2632	 * Disable grouping by mobility if the number of pages in the
2633	 * system is too low to allow the mechanism to work. It would be
2634	 * more accurate, but expensive to check per-zone. This check is
2635	 * made on memory-hotadd so a system can start with mobility
2636	 * disabled and enable it later
2637	 */
2638	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2639		page_group_by_mobility_disabled = 1;
2640	else
2641		page_group_by_mobility_disabled = 0;
2642
2643	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2644		"Total pages: %ld\n",
2645			nr_online_nodes,
2646			zonelist_order_name[current_zonelist_order],
2647			page_group_by_mobility_disabled ? "off" : "on",
2648			vm_total_pages);
2649#ifdef CONFIG_NUMA
2650	printk("Policy zone: %s\n", zone_names[policy_zone]);
2651#endif
2652}
2653
2654/*
2655 * Helper functions to size the waitqueue hash table.
2656 * Essentially these want to choose hash table sizes sufficiently
2657 * large so that collisions trying to wait on pages are rare.
2658 * But in fact, the number of active page waitqueues on typical
2659 * systems is ridiculously low, less than 200. So this is even
2660 * conservative, even though it seems large.
2661 *
2662 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2663 * waitqueues, i.e. the size of the waitq table given the number of pages.
2664 */
2665#define PAGES_PER_WAITQUEUE	256
2666
2667#ifndef CONFIG_MEMORY_HOTPLUG
2668static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2669{
2670	unsigned long size = 1;
2671
2672	pages /= PAGES_PER_WAITQUEUE;
2673
2674	while (size < pages)
2675		size <<= 1;
2676
2677	/*
2678	 * Once we have dozens or even hundreds of threads sleeping
2679	 * on IO we've got bigger problems than wait queue collision.
2680	 * Limit the size of the wait table to a reasonable size.
2681	 */
2682	size = min(size, 4096UL);
2683
2684	return max(size, 4UL);
2685}
2686#else
2687/*
2688 * A zone's size might be changed by hot-add, so it is not possible to determine
2689 * a suitable size for its wait_table.  So we use the maximum size now.
2690 *
2691 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2692 *
2693 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2694 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2695 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2696 *
2697 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2698 * or more by the traditional way. (See above).  It equals:
2699 *
2700 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2701 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2702 *    powerpc (64K page size)             : =  (32G +16M)byte.
2703 */
2704static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2705{
2706	return 4096UL;
2707}
2708#endif
2709
2710/*
2711 * This is an integer logarithm so that shifts can be used later
2712 * to extract the more random high bits from the multiplicative
2713 * hash function before the remainder is taken.
2714 */
2715static inline unsigned long wait_table_bits(unsigned long size)
2716{
2717	return ffz(~size);
2718}
2719
2720#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2721
2722/*
2723 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2724 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2725 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2726 * higher will lead to a bigger reserve which will get freed as contiguous
2727 * blocks as reclaim kicks in
2728 */
2729static void setup_zone_migrate_reserve(struct zone *zone)
2730{
2731	unsigned long start_pfn, pfn, end_pfn;
2732	struct page *page;
2733	unsigned long reserve, block_migratetype;
2734
2735	/* Get the start pfn, end pfn and the number of blocks to reserve */
2736	start_pfn = zone->zone_start_pfn;
2737	end_pfn = start_pfn + zone->spanned_pages;
2738	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2739							pageblock_order;
2740
2741	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2742		if (!pfn_valid(pfn))
2743			continue;
2744		page = pfn_to_page(pfn);
2745
2746		/* Watch out for overlapping nodes */
2747		if (page_to_nid(page) != zone_to_nid(zone))
2748			continue;
2749
2750		/* Blocks with reserved pages will never free, skip them. */
2751		if (PageReserved(page))
2752			continue;
2753
2754		block_migratetype = get_pageblock_migratetype(page);
2755
2756		/* If this block is reserved, account for it */
2757		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2758			reserve--;
2759			continue;
2760		}
2761
2762		/* Suitable for reserving if this block is movable */
2763		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2764			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2765			move_freepages_block(zone, page, MIGRATE_RESERVE);
2766			reserve--;
2767			continue;
2768		}
2769
2770		/*
2771		 * If the reserve is met and this is a previous reserved block,
2772		 * take it back
2773		 */
2774		if (block_migratetype == MIGRATE_RESERVE) {
2775			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2776			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2777		}
2778	}
2779}
2780
2781/*
2782 * Initially all pages are reserved - free ones are freed
2783 * up by free_all_bootmem() once the early boot process is
2784 * done. Non-atomic initialization, single-pass.
2785 */
2786void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2787		unsigned long start_pfn, enum memmap_context context)
2788{
2789	struct page *page;
2790	unsigned long end_pfn = start_pfn + size;
2791	unsigned long pfn;
2792	struct zone *z;
2793
2794	if (highest_memmap_pfn < end_pfn - 1)
2795		highest_memmap_pfn = end_pfn - 1;
2796
2797	z = &NODE_DATA(nid)->node_zones[zone];
2798	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2799		/*
2800		 * There can be holes in boot-time mem_map[]s
2801		 * handed to this function.  They do not
2802		 * exist on hotplugged memory.
2803		 */
2804		if (context == MEMMAP_EARLY) {
2805			if (!early_pfn_valid(pfn))
2806				continue;
2807			if (!early_pfn_in_nid(pfn, nid))
2808				continue;
2809		}
2810		page = pfn_to_page(pfn);
2811		set_page_links(page, zone, nid, pfn);
2812		mminit_verify_page_links(page, zone, nid, pfn);
2813		init_page_count(page);
2814		reset_page_mapcount(page);
2815		SetPageReserved(page);
2816		/*
2817		 * Mark the block movable so that blocks are reserved for
2818		 * movable at startup. This will force kernel allocations
2819		 * to reserve their blocks rather than leaking throughout
2820		 * the address space during boot when many long-lived
2821		 * kernel allocations are made. Later some blocks near
2822		 * the start are marked MIGRATE_RESERVE by
2823		 * setup_zone_migrate_reserve()
2824		 *
2825		 * bitmap is created for zone's valid pfn range. but memmap
2826		 * can be created for invalid pages (for alignment)
2827		 * check here not to call set_pageblock_migratetype() against
2828		 * pfn out of zone.
2829		 */
2830		if ((z->zone_start_pfn <= pfn)
2831		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2832		    && !(pfn & (pageblock_nr_pages - 1)))
2833			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2834
2835		INIT_LIST_HEAD(&page->lru);
2836#ifdef WANT_PAGE_VIRTUAL
2837		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2838		if (!is_highmem_idx(zone))
2839			set_page_address(page, __va(pfn << PAGE_SHIFT));
2840#endif
2841	}
2842}
2843
2844static void __meminit zone_init_free_lists(struct zone *zone)
2845{
2846	int order, t;
2847	for_each_migratetype_order(order, t) {
2848		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2849		zone->free_area[order].nr_free = 0;
2850	}
2851}
2852
2853#ifndef __HAVE_ARCH_MEMMAP_INIT
2854#define memmap_init(size, nid, zone, start_pfn) \
2855	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2856#endif
2857
2858static int zone_batchsize(struct zone *zone)
2859{
2860#ifdef CONFIG_MMU
2861	int batch;
2862
2863	/*
2864	 * The per-cpu-pages pools are set to around 1000th of the
2865	 * size of the zone.  But no more than 1/2 of a meg.
2866	 *
2867	 * OK, so we don't know how big the cache is.  So guess.
2868	 */
2869	batch = zone->present_pages / 1024;
2870	if (batch * PAGE_SIZE > 512 * 1024)
2871		batch = (512 * 1024) / PAGE_SIZE;
2872	batch /= 4;		/* We effectively *= 4 below */
2873	if (batch < 1)
2874		batch = 1;
2875
2876	/*
2877	 * Clamp the batch to a 2^n - 1 value. Having a power
2878	 * of 2 value was found to be more likely to have
2879	 * suboptimal cache aliasing properties in some cases.
2880	 *
2881	 * For example if 2 tasks are alternately allocating
2882	 * batches of pages, one task can end up with a lot
2883	 * of pages of one half of the possible page colors
2884	 * and the other with pages of the other colors.
2885	 */
2886	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2887
2888	return batch;
2889
2890#else
2891	/* The deferral and batching of frees should be suppressed under NOMMU
2892	 * conditions.
2893	 *
2894	 * The problem is that NOMMU needs to be able to allocate large chunks
2895	 * of contiguous memory as there's no hardware page translation to
2896	 * assemble apparent contiguous memory from discontiguous pages.
2897	 *
2898	 * Queueing large contiguous runs of pages for batching, however,
2899	 * causes the pages to actually be freed in smaller chunks.  As there
2900	 * can be a significant delay between the individual batches being
2901	 * recycled, this leads to the once large chunks of space being
2902	 * fragmented and becoming unavailable for high-order allocations.
2903	 */
2904	return 0;
2905#endif
2906}
2907
2908static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2909{
2910	struct per_cpu_pages *pcp;
2911
2912	memset(p, 0, sizeof(*p));
2913
2914	pcp = &p->pcp;
2915	pcp->count = 0;
2916	pcp->high = 6 * batch;
2917	pcp->batch = max(1UL, 1 * batch);
2918	INIT_LIST_HEAD(&pcp->list);
2919}
2920
2921/*
2922 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2923 * to the value high for the pageset p.
2924 */
2925
2926static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2927				unsigned long high)
2928{
2929	struct per_cpu_pages *pcp;
2930
2931	pcp = &p->pcp;
2932	pcp->high = high;
2933	pcp->batch = max(1UL, high/4);
2934	if ((high/4) > (PAGE_SHIFT * 8))
2935		pcp->batch = PAGE_SHIFT * 8;
2936}
2937
2938
2939#ifdef CONFIG_NUMA
2940/*
2941 * Boot pageset table. One per cpu which is going to be used for all
2942 * zones and all nodes. The parameters will be set in such a way
2943 * that an item put on a list will immediately be handed over to
2944 * the buddy list. This is safe since pageset manipulation is done
2945 * with interrupts disabled.
2946 *
2947 * Some NUMA counter updates may also be caught by the boot pagesets.
2948 *
2949 * The boot_pagesets must be kept even after bootup is complete for
2950 * unused processors and/or zones. They do play a role for bootstrapping
2951 * hotplugged processors.
2952 *
2953 * zoneinfo_show() and maybe other functions do
2954 * not check if the processor is online before following the pageset pointer.
2955 * Other parts of the kernel may not check if the zone is available.
2956 */
2957static struct per_cpu_pageset boot_pageset[NR_CPUS];
2958
2959/*
2960 * Dynamically allocate memory for the
2961 * per cpu pageset array in struct zone.
2962 */
2963static int __cpuinit process_zones(int cpu)
2964{
2965	struct zone *zone, *dzone;
2966	int node = cpu_to_node(cpu);
2967
2968	node_set_state(node, N_CPU);	/* this node has a cpu */
2969
2970	for_each_populated_zone(zone) {
2971		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2972					 GFP_KERNEL, node);
2973		if (!zone_pcp(zone, cpu))
2974			goto bad;
2975
2976		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2977
2978		if (percpu_pagelist_fraction)
2979			setup_pagelist_highmark(zone_pcp(zone, cpu),
2980			 	(zone->present_pages / percpu_pagelist_fraction));
2981	}
2982
2983	return 0;
2984bad:
2985	for_each_zone(dzone) {
2986		if (!populated_zone(dzone))
2987			continue;
2988		if (dzone == zone)
2989			break;
2990		kfree(zone_pcp(dzone, cpu));
2991		zone_pcp(dzone, cpu) = NULL;
2992	}
2993	return -ENOMEM;
2994}
2995
2996static inline void free_zone_pagesets(int cpu)
2997{
2998	struct zone *zone;
2999
3000	for_each_zone(zone) {
3001		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3002
3003		/* Free per_cpu_pageset if it is slab allocated */
3004		if (pset != &boot_pageset[cpu])
3005			kfree(pset);
3006		zone_pcp(zone, cpu) = NULL;
3007	}
3008}
3009
3010static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3011		unsigned long action,
3012		void *hcpu)
3013{
3014	int cpu = (long)hcpu;
3015	int ret = NOTIFY_OK;
3016
3017	switch (action) {
3018	case CPU_UP_PREPARE:
3019	case CPU_UP_PREPARE_FROZEN:
3020		if (process_zones(cpu))
3021			ret = NOTIFY_BAD;
3022		break;
3023	case CPU_UP_CANCELED:
3024	case CPU_UP_CANCELED_FROZEN:
3025	case CPU_DEAD:
3026	case CPU_DEAD_FROZEN:
3027		free_zone_pagesets(cpu);
3028		break;
3029	default:
3030		break;
3031	}
3032	return ret;
3033}
3034
3035static struct notifier_block __cpuinitdata pageset_notifier =
3036	{ &pageset_cpuup_callback, NULL, 0 };
3037
3038void __init setup_per_cpu_pageset(void)
3039{
3040	int err;
3041
3042	/* Initialize per_cpu_pageset for cpu 0.
3043	 * A cpuup callback will do this for every cpu
3044	 * as it comes online
3045	 */
3046	err = process_zones(smp_processor_id());
3047	BUG_ON(err);
3048	register_cpu_notifier(&pageset_notifier);
3049}
3050
3051#endif
3052
3053static noinline __init_refok
3054int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3055{
3056	int i;
3057	struct pglist_data *pgdat = zone->zone_pgdat;
3058	size_t alloc_size;
3059
3060	/*
3061	 * The per-page waitqueue mechanism uses hashed waitqueues
3062	 * per zone.
3063	 */
3064	zone->wait_table_hash_nr_entries =
3065		 wait_table_hash_nr_entries(zone_size_pages);
3066	zone->wait_table_bits =
3067		wait_table_bits(zone->wait_table_hash_nr_entries);
3068	alloc_size = zone->wait_table_hash_nr_entries
3069					* sizeof(wait_queue_head_t);
3070
3071	if (!slab_is_available()) {
3072		zone->wait_table = (wait_queue_head_t *)
3073			alloc_bootmem_node(pgdat, alloc_size);
3074	} else {
3075		/*
3076		 * This case means that a zone whose size was 0 gets new memory
3077		 * via memory hot-add.
3078		 * But it may be the case that a new node was hot-added.  In
3079		 * this case vmalloc() will not be able to use this new node's
3080		 * memory - this wait_table must be initialized to use this new
3081		 * node itself as well.
3082		 * To use this new node's memory, further consideration will be
3083		 * necessary.
3084		 */
3085		zone->wait_table = vmalloc(alloc_size);
3086	}
3087	if (!zone->wait_table)
3088		return -ENOMEM;
3089
3090	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3091		init_waitqueue_head(zone->wait_table + i);
3092
3093	return 0;
3094}
3095
3096static __meminit void zone_pcp_init(struct zone *zone)
3097{
3098	int cpu;
3099	unsigned long batch = zone_batchsize(zone);
3100
3101	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3102#ifdef CONFIG_NUMA
3103		/* Early boot. Slab allocator not functional yet */
3104		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3105		setup_pageset(&boot_pageset[cpu],0);
3106#else
3107		setup_pageset(zone_pcp(zone,cpu), batch);
3108#endif
3109	}
3110	if (zone->present_pages)
3111		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3112			zone->name, zone->present_pages, batch);
3113}
3114
3115__meminit int init_currently_empty_zone(struct zone *zone,
3116					unsigned long zone_start_pfn,
3117					unsigned long size,
3118					enum memmap_context context)
3119{
3120	struct pglist_data *pgdat = zone->zone_pgdat;
3121	int ret;
3122	ret = zone_wait_table_init(zone, size);
3123	if (ret)
3124		return ret;
3125	pgdat->nr_zones = zone_idx(zone) + 1;
3126
3127	zone->zone_start_pfn = zone_start_pfn;
3128
3129	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3130			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3131			pgdat->node_id,
3132			(unsigned long)zone_idx(zone),
3133			zone_start_pfn, (zone_start_pfn + size));
3134
3135	zone_init_free_lists(zone);
3136
3137	return 0;
3138}
3139
3140#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3141/*
3142 * Basic iterator support. Return the first range of PFNs for a node
3143 * Note: nid == MAX_NUMNODES returns first region regardless of node
3144 */
3145static int __meminit first_active_region_index_in_nid(int nid)
3146{
3147	int i;
3148
3149	for (i = 0; i < nr_nodemap_entries; i++)
3150		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3151			return i;
3152
3153	return -1;
3154}
3155
3156/*
3157 * Basic iterator support. Return the next active range of PFNs for a node
3158 * Note: nid == MAX_NUMNODES returns next region regardless of node
3159 */
3160static int __meminit next_active_region_index_in_nid(int index, int nid)
3161{
3162	for (index = index + 1; index < nr_nodemap_entries; index++)
3163		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3164			return index;
3165
3166	return -1;
3167}
3168
3169#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3170/*
3171 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3172 * Architectures may implement their own version but if add_active_range()
3173 * was used and there are no special requirements, this is a convenient
3174 * alternative
3175 */
3176int __meminit __early_pfn_to_nid(unsigned long pfn)
3177{
3178	int i;
3179
3180	for (i = 0; i < nr_nodemap_entries; i++) {
3181		unsigned long start_pfn = early_node_map[i].start_pfn;
3182		unsigned long end_pfn = early_node_map[i].end_pfn;
3183
3184		if (start_pfn <= pfn && pfn < end_pfn)
3185			return early_node_map[i].nid;
3186	}
3187	/* This is a memory hole */
3188	return -1;
3189}
3190#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3191
3192int __meminit early_pfn_to_nid(unsigned long pfn)
3193{
3194	int nid;
3195
3196	nid = __early_pfn_to_nid(pfn);
3197	if (nid >= 0)
3198		return nid;
3199	/* just returns 0 */
3200	return 0;
3201}
3202
3203#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3204bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3205{
3206	int nid;
3207
3208	nid = __early_pfn_to_nid(pfn);
3209	if (nid >= 0 && nid != node)
3210		return false;
3211	return true;
3212}
3213#endif
3214
3215/* Basic iterator support to walk early_node_map[] */
3216#define for_each_active_range_index_in_nid(i, nid) \
3217	for (i = first_active_region_index_in_nid(nid); i != -1; \
3218				i = next_active_region_index_in_nid(i, nid))
3219
3220/**
3221 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3222 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3223 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3224 *
3225 * If an architecture guarantees that all ranges registered with
3226 * add_active_ranges() contain no holes and may be freed, this
3227 * this function may be used instead of calling free_bootmem() manually.
3228 */
3229void __init free_bootmem_with_active_regions(int nid,
3230						unsigned long max_low_pfn)
3231{
3232	int i;
3233
3234	for_each_active_range_index_in_nid(i, nid) {
3235		unsigned long size_pages = 0;
3236		unsigned long end_pfn = early_node_map[i].end_pfn;
3237
3238		if (early_node_map[i].start_pfn >= max_low_pfn)
3239			continue;
3240
3241		if (end_pfn > max_low_pfn)
3242			end_pfn = max_low_pfn;
3243
3244		size_pages = end_pfn - early_node_map[i].start_pfn;
3245		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3246				PFN_PHYS(early_node_map[i].start_pfn),
3247				size_pages << PAGE_SHIFT);
3248	}
3249}
3250
3251void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3252{
3253	int i;
3254	int ret;
3255
3256	for_each_active_range_index_in_nid(i, nid) {
3257		ret = work_fn(early_node_map[i].start_pfn,
3258			      early_node_map[i].end_pfn, data);
3259		if (ret)
3260			break;
3261	}
3262}
3263/**
3264 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3265 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3266 *
3267 * If an architecture guarantees that all ranges registered with
3268 * add_active_ranges() contain no holes and may be freed, this
3269 * function may be used instead of calling memory_present() manually.
3270 */
3271void __init sparse_memory_present_with_active_regions(int nid)
3272{
3273	int i;
3274
3275	for_each_active_range_index_in_nid(i, nid)
3276		memory_present(early_node_map[i].nid,
3277				early_node_map[i].start_pfn,
3278				early_node_map[i].end_pfn);
3279}
3280
3281/**
3282 * get_pfn_range_for_nid - Return the start and end page frames for a node
3283 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3284 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3285 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3286 *
3287 * It returns the start and end page frame of a node based on information
3288 * provided by an arch calling add_active_range(). If called for a node
3289 * with no available memory, a warning is printed and the start and end
3290 * PFNs will be 0.
3291 */
3292void __meminit get_pfn_range_for_nid(unsigned int nid,
3293			unsigned long *start_pfn, unsigned long *end_pfn)
3294{
3295	int i;
3296	*start_pfn = -1UL;
3297	*end_pfn = 0;
3298
3299	for_each_active_range_index_in_nid(i, nid) {
3300		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3301		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3302	}
3303
3304	if (*start_pfn == -1UL)
3305		*start_pfn = 0;
3306}
3307
3308/*
3309 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3310 * assumption is made that zones within a node are ordered in monotonic
3311 * increasing memory addresses so that the "highest" populated zone is used
3312 */
3313static void __init find_usable_zone_for_movable(void)
3314{
3315	int zone_index;
3316	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3317		if (zone_index == ZONE_MOVABLE)
3318			continue;
3319
3320		if (arch_zone_highest_possible_pfn[zone_index] >
3321				arch_zone_lowest_possible_pfn[zone_index])
3322			break;
3323	}
3324
3325	VM_BUG_ON(zone_index == -1);
3326	movable_zone = zone_index;
3327}
3328
3329/*
3330 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3331 * because it is sized independant of architecture. Unlike the other zones,
3332 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3333 * in each node depending on the size of each node and how evenly kernelcore
3334 * is distributed. This helper function adjusts the zone ranges
3335 * provided by the architecture for a given node by using the end of the
3336 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3337 * zones within a node are in order of monotonic increases memory addresses
3338 */
3339static void __meminit adjust_zone_range_for_zone_movable(int nid,
3340					unsigned long zone_type,
3341					unsigned long node_start_pfn,
3342					unsigned long node_end_pfn,
3343					unsigned long *zone_start_pfn,
3344					unsigned long *zone_end_pfn)
3345{
3346	/* Only adjust if ZONE_MOVABLE is on this node */
3347	if (zone_movable_pfn[nid]) {
3348		/* Size ZONE_MOVABLE */
3349		if (zone_type == ZONE_MOVABLE) {
3350			*zone_start_pfn = zone_movable_pfn[nid];
3351			*zone_end_pfn = min(node_end_pfn,
3352				arch_zone_highest_possible_pfn[movable_zone]);
3353
3354		/* Adjust for ZONE_MOVABLE starting within this range */
3355		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3356				*zone_end_pfn > zone_movable_pfn[nid]) {
3357			*zone_end_pfn = zone_movable_pfn[nid];
3358
3359		/* Check if this whole range is within ZONE_MOVABLE */
3360		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3361			*zone_start_pfn = *zone_end_pfn;
3362	}
3363}
3364
3365/*
3366 * Return the number of pages a zone spans in a node, including holes
3367 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3368 */
3369static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3370					unsigned long zone_type,
3371					unsigned long *ignored)
3372{
3373	unsigned long node_start_pfn, node_end_pfn;
3374	unsigned long zone_start_pfn, zone_end_pfn;
3375
3376	/* Get the start and end of the node and zone */
3377	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3378	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3379	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3380	adjust_zone_range_for_zone_movable(nid, zone_type,
3381				node_start_pfn, node_end_pfn,
3382				&zone_start_pfn, &zone_end_pfn);
3383
3384	/* Check that this node has pages within the zone's required range */
3385	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3386		return 0;
3387
3388	/* Move the zone boundaries inside the node if necessary */
3389	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3390	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3391
3392	/* Return the spanned pages */
3393	return zone_end_pfn - zone_start_pfn;
3394}
3395
3396/*
3397 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3398 * then all holes in the requested range will be accounted for.
3399 */
3400static unsigned long __meminit __absent_pages_in_range(int nid,
3401				unsigned long range_start_pfn,
3402				unsigned long range_end_pfn)
3403{
3404	int i = 0;
3405	unsigned long prev_end_pfn = 0, hole_pages = 0;
3406	unsigned long start_pfn;
3407
3408	/* Find the end_pfn of the first active range of pfns in the node */
3409	i = first_active_region_index_in_nid(nid);
3410	if (i == -1)
3411		return 0;
3412
3413	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3414
3415	/* Account for ranges before physical memory on this node */
3416	if (early_node_map[i].start_pfn > range_start_pfn)
3417		hole_pages = prev_end_pfn - range_start_pfn;
3418
3419	/* Find all holes for the zone within the node */
3420	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3421
3422		/* No need to continue if prev_end_pfn is outside the zone */
3423		if (prev_end_pfn >= range_end_pfn)
3424			break;
3425
3426		/* Make sure the end of the zone is not within the hole */
3427		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3428		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3429
3430		/* Update the hole size cound and move on */
3431		if (start_pfn > range_start_pfn) {
3432			BUG_ON(prev_end_pfn > start_pfn);
3433			hole_pages += start_pfn - prev_end_pfn;
3434		}
3435		prev_end_pfn = early_node_map[i].end_pfn;
3436	}
3437
3438	/* Account for ranges past physical memory on this node */
3439	if (range_end_pfn > prev_end_pfn)
3440		hole_pages += range_end_pfn -
3441				max(range_start_pfn, prev_end_pfn);
3442
3443	return hole_pages;
3444}
3445
3446/**
3447 * absent_pages_in_range - Return number of page frames in holes within a range
3448 * @start_pfn: The start PFN to start searching for holes
3449 * @end_pfn: The end PFN to stop searching for holes
3450 *
3451 * It returns the number of pages frames in memory holes within a range.
3452 */
3453unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3454							unsigned long end_pfn)
3455{
3456	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3457}
3458
3459/* Return the number of page frames in holes in a zone on a node */
3460static unsigned long __meminit zone_absent_pages_in_node(int nid,
3461					unsigned long zone_type,
3462					unsigned long *ignored)
3463{
3464	unsigned long node_start_pfn, node_end_pfn;
3465	unsigned long zone_start_pfn, zone_end_pfn;
3466
3467	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3468	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3469							node_start_pfn);
3470	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3471							node_end_pfn);
3472
3473	adjust_zone_range_for_zone_movable(nid, zone_type,
3474			node_start_pfn, node_end_pfn,
3475			&zone_start_pfn, &zone_end_pfn);
3476	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3477}
3478
3479#else
3480static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3481					unsigned long zone_type,
3482					unsigned long *zones_size)
3483{
3484	return zones_size[zone_type];
3485}
3486
3487static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3488						unsigned long zone_type,
3489						unsigned long *zholes_size)
3490{
3491	if (!zholes_size)
3492		return 0;
3493
3494	return zholes_size[zone_type];
3495}
3496
3497#endif
3498
3499static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3500		unsigned long *zones_size, unsigned long *zholes_size)
3501{
3502	unsigned long realtotalpages, totalpages = 0;
3503	enum zone_type i;
3504
3505	for (i = 0; i < MAX_NR_ZONES; i++)
3506		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3507								zones_size);
3508	pgdat->node_spanned_pages = totalpages;
3509
3510	realtotalpages = totalpages;
3511	for (i = 0; i < MAX_NR_ZONES; i++)
3512		realtotalpages -=
3513			zone_absent_pages_in_node(pgdat->node_id, i,
3514								zholes_size);
3515	pgdat->node_present_pages = realtotalpages;
3516	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3517							realtotalpages);
3518}
3519
3520#ifndef CONFIG_SPARSEMEM
3521/*
3522 * Calculate the size of the zone->blockflags rounded to an unsigned long
3523 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3524 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3525 * round what is now in bits to nearest long in bits, then return it in
3526 * bytes.
3527 */
3528static unsigned long __init usemap_size(unsigned long zonesize)
3529{
3530	unsigned long usemapsize;
3531
3532	usemapsize = roundup(zonesize, pageblock_nr_pages);
3533	usemapsize = usemapsize >> pageblock_order;
3534	usemapsize *= NR_PAGEBLOCK_BITS;
3535	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3536
3537	return usemapsize / 8;
3538}
3539
3540static void __init setup_usemap(struct pglist_data *pgdat,
3541				struct zone *zone, unsigned long zonesize)
3542{
3543	unsigned long usemapsize = usemap_size(zonesize);
3544	zone->pageblock_flags = NULL;
3545	if (usemapsize)
3546		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3547}
3548#else
3549static void inline setup_usemap(struct pglist_data *pgdat,
3550				struct zone *zone, unsigned long zonesize) {}
3551#endif /* CONFIG_SPARSEMEM */
3552
3553#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3554
3555/* Return a sensible default order for the pageblock size. */
3556static inline int pageblock_default_order(void)
3557{
3558	if (HPAGE_SHIFT > PAGE_SHIFT)
3559		return HUGETLB_PAGE_ORDER;
3560
3561	return MAX_ORDER-1;
3562}
3563
3564/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3565static inline void __init set_pageblock_order(unsigned int order)
3566{
3567	/* Check that pageblock_nr_pages has not already been setup */
3568	if (pageblock_order)
3569		return;
3570
3571	/*
3572	 * Assume the largest contiguous order of interest is a huge page.
3573	 * This value may be variable depending on boot parameters on IA64
3574	 */
3575	pageblock_order = order;
3576}
3577#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3578
3579/*
3580 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3581 * and pageblock_default_order() are unused as pageblock_order is set
3582 * at compile-time. See include/linux/pageblock-flags.h for the values of
3583 * pageblock_order based on the kernel config
3584 */
3585static inline int pageblock_default_order(unsigned int order)
3586{
3587	return MAX_ORDER-1;
3588}
3589#define set_pageblock_order(x)	do {} while (0)
3590
3591#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3592
3593/*
3594 * Set up the zone data structures:
3595 *   - mark all pages reserved
3596 *   - mark all memory queues empty
3597 *   - clear the memory bitmaps
3598 */
3599static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3600		unsigned long *zones_size, unsigned long *zholes_size)
3601{
3602	enum zone_type j;
3603	int nid = pgdat->node_id;
3604	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3605	int ret;
3606
3607	pgdat_resize_init(pgdat);
3608	pgdat->nr_zones = 0;
3609	init_waitqueue_head(&pgdat->kswapd_wait);
3610	pgdat->kswapd_max_order = 0;
3611	pgdat_page_cgroup_init(pgdat);
3612
3613	for (j = 0; j < MAX_NR_ZONES; j++) {
3614		struct zone *zone = pgdat->node_zones + j;
3615		unsigned long size, realsize, memmap_pages;
3616		enum lru_list l;
3617
3618		size = zone_spanned_pages_in_node(nid, j, zones_size);
3619		realsize = size - zone_absent_pages_in_node(nid, j,
3620								zholes_size);
3621
3622		/*
3623		 * Adjust realsize so that it accounts for how much memory
3624		 * is used by this zone for memmap. This affects the watermark
3625		 * and per-cpu initialisations
3626		 */
3627		memmap_pages =
3628			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3629		if (realsize >= memmap_pages) {
3630			realsize -= memmap_pages;
3631			if (memmap_pages)
3632				printk(KERN_DEBUG
3633				       "  %s zone: %lu pages used for memmap\n",
3634				       zone_names[j], memmap_pages);
3635		} else
3636			printk(KERN_WARNING
3637				"  %s zone: %lu pages exceeds realsize %lu\n",
3638				zone_names[j], memmap_pages, realsize);
3639
3640		/* Account for reserved pages */
3641		if (j == 0 && realsize > dma_reserve) {
3642			realsize -= dma_reserve;
3643			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3644					zone_names[0], dma_reserve);
3645		}
3646
3647		if (!is_highmem_idx(j))
3648			nr_kernel_pages += realsize;
3649		nr_all_pages += realsize;
3650
3651		zone->spanned_pages = size;
3652		zone->present_pages = realsize;
3653#ifdef CONFIG_NUMA
3654		zone->node = nid;
3655		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3656						/ 100;
3657		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3658#endif
3659		zone->name = zone_names[j];
3660		spin_lock_init(&zone->lock);
3661		spin_lock_init(&zone->lru_lock);
3662		zone_seqlock_init(zone);
3663		zone->zone_pgdat = pgdat;
3664
3665		zone->prev_priority = DEF_PRIORITY;
3666
3667		zone_pcp_init(zone);
3668		for_each_lru(l) {
3669			INIT_LIST_HEAD(&zone->lru[l].list);
3670			zone->lru[l].nr_saved_scan = 0;
3671		}
3672		zone->reclaim_stat.recent_rotated[0] = 0;
3673		zone->reclaim_stat.recent_rotated[1] = 0;
3674		zone->reclaim_stat.recent_scanned[0] = 0;
3675		zone->reclaim_stat.recent_scanned[1] = 0;
3676		zap_zone_vm_stats(zone);
3677		zone->flags = 0;
3678		if (!size)
3679			continue;
3680
3681		set_pageblock_order(pageblock_default_order());
3682		setup_usemap(pgdat, zone, size);
3683		ret = init_currently_empty_zone(zone, zone_start_pfn,
3684						size, MEMMAP_EARLY);
3685		BUG_ON(ret);
3686		memmap_init(size, nid, j, zone_start_pfn);
3687		zone_start_pfn += size;
3688	}
3689}
3690
3691static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3692{
3693	/* Skip empty nodes */
3694	if (!pgdat->node_spanned_pages)
3695		return;
3696
3697#ifdef CONFIG_FLAT_NODE_MEM_MAP
3698	/* ia64 gets its own node_mem_map, before this, without bootmem */
3699	if (!pgdat->node_mem_map) {
3700		unsigned long size, start, end;
3701		struct page *map;
3702
3703		/*
3704		 * The zone's endpoints aren't required to be MAX_ORDER
3705		 * aligned but the node_mem_map endpoints must be in order
3706		 * for the buddy allocator to function correctly.
3707		 */
3708		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3709		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3710		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3711		size =  (end - start) * sizeof(struct page);
3712		map = alloc_remap(pgdat->node_id, size);
3713		if (!map)
3714			map = alloc_bootmem_node(pgdat, size);
3715		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3716	}
3717#ifndef CONFIG_NEED_MULTIPLE_NODES
3718	/*
3719	 * With no DISCONTIG, the global mem_map is just set as node 0's
3720	 */
3721	if (pgdat == NODE_DATA(0)) {
3722		mem_map = NODE_DATA(0)->node_mem_map;
3723#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3724		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3725			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3726#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3727	}
3728#endif
3729#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3730}
3731
3732void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3733		unsigned long node_start_pfn, unsigned long *zholes_size)
3734{
3735	pg_data_t *pgdat = NODE_DATA(nid);
3736
3737	pgdat->node_id = nid;
3738	pgdat->node_start_pfn = node_start_pfn;
3739	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3740
3741	alloc_node_mem_map(pgdat);
3742#ifdef CONFIG_FLAT_NODE_MEM_MAP
3743	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3744		nid, (unsigned long)pgdat,
3745		(unsigned long)pgdat->node_mem_map);
3746#endif
3747
3748	free_area_init_core(pgdat, zones_size, zholes_size);
3749}
3750
3751#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3752
3753#if MAX_NUMNODES > 1
3754/*
3755 * Figure out the number of possible node ids.
3756 */
3757static void __init setup_nr_node_ids(void)
3758{
3759	unsigned int node;
3760	unsigned int highest = 0;
3761
3762	for_each_node_mask(node, node_possible_map)
3763		highest = node;
3764	nr_node_ids = highest + 1;
3765}
3766#else
3767static inline void setup_nr_node_ids(void)
3768{
3769}
3770#endif
3771
3772/**
3773 * add_active_range - Register a range of PFNs backed by physical memory
3774 * @nid: The node ID the range resides on
3775 * @start_pfn: The start PFN of the available physical memory
3776 * @end_pfn: The end PFN of the available physical memory
3777 *
3778 * These ranges are stored in an early_node_map[] and later used by
3779 * free_area_init_nodes() to calculate zone sizes and holes. If the
3780 * range spans a memory hole, it is up to the architecture to ensure
3781 * the memory is not freed by the bootmem allocator. If possible
3782 * the range being registered will be merged with existing ranges.
3783 */
3784void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3785						unsigned long end_pfn)
3786{
3787	int i;
3788
3789	mminit_dprintk(MMINIT_TRACE, "memory_register",
3790			"Entering add_active_range(%d, %#lx, %#lx) "
3791			"%d entries of %d used\n",
3792			nid, start_pfn, end_pfn,
3793			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3794
3795	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3796
3797	/* Merge with existing active regions if possible */
3798	for (i = 0; i < nr_nodemap_entries; i++) {
3799		if (early_node_map[i].nid != nid)
3800			continue;
3801
3802		/* Skip if an existing region covers this new one */
3803		if (start_pfn >= early_node_map[i].start_pfn &&
3804				end_pfn <= early_node_map[i].end_pfn)
3805			return;
3806
3807		/* Merge forward if suitable */
3808		if (start_pfn <= early_node_map[i].end_pfn &&
3809				end_pfn > early_node_map[i].end_pfn) {
3810			early_node_map[i].end_pfn = end_pfn;
3811			return;
3812		}
3813
3814		/* Merge backward if suitable */
3815		if (start_pfn < early_node_map[i].end_pfn &&
3816				end_pfn >= early_node_map[i].start_pfn) {
3817			early_node_map[i].start_pfn = start_pfn;
3818			return;
3819		}
3820	}
3821
3822	/* Check that early_node_map is large enough */
3823	if (i >= MAX_ACTIVE_REGIONS) {
3824		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3825							MAX_ACTIVE_REGIONS);
3826		return;
3827	}
3828
3829	early_node_map[i].nid = nid;
3830	early_node_map[i].start_pfn = start_pfn;
3831	early_node_map[i].end_pfn = end_pfn;
3832	nr_nodemap_entries = i + 1;
3833}
3834
3835/**
3836 * remove_active_range - Shrink an existing registered range of PFNs
3837 * @nid: The node id the range is on that should be shrunk
3838 * @start_pfn: The new PFN of the range
3839 * @end_pfn: The new PFN of the range
3840 *
3841 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3842 * The map is kept near the end physical page range that has already been
3843 * registered. This function allows an arch to shrink an existing registered
3844 * range.
3845 */
3846void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3847				unsigned long end_pfn)
3848{
3849	int i, j;
3850	int removed = 0;
3851
3852	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3853			  nid, start_pfn, end_pfn);
3854
3855	/* Find the old active region end and shrink */
3856	for_each_active_range_index_in_nid(i, nid) {
3857		if (early_node_map[i].start_pfn >= start_pfn &&
3858		    early_node_map[i].end_pfn <= end_pfn) {
3859			/* clear it */
3860			early_node_map[i].start_pfn = 0;
3861			early_node_map[i].end_pfn = 0;
3862			removed = 1;
3863			continue;
3864		}
3865		if (early_node_map[i].start_pfn < start_pfn &&
3866		    early_node_map[i].end_pfn > start_pfn) {
3867			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3868			early_node_map[i].end_pfn = start_pfn;
3869			if (temp_end_pfn > end_pfn)
3870				add_active_range(nid, end_pfn, temp_end_pfn);
3871			continue;
3872		}
3873		if (early_node_map[i].start_pfn >= start_pfn &&
3874		    early_node_map[i].end_pfn > end_pfn &&
3875		    early_node_map[i].start_pfn < end_pfn) {
3876			early_node_map[i].start_pfn = end_pfn;
3877			continue;
3878		}
3879	}
3880
3881	if (!removed)
3882		return;
3883
3884	/* remove the blank ones */
3885	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3886		if (early_node_map[i].nid != nid)
3887			continue;
3888		if (early_node_map[i].end_pfn)
3889			continue;
3890		/* we found it, get rid of it */
3891		for (j = i; j < nr_nodemap_entries - 1; j++)
3892			memcpy(&early_node_map[j], &early_node_map[j+1],
3893				sizeof(early_node_map[j]));
3894		j = nr_nodemap_entries - 1;
3895		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3896		nr_nodemap_entries--;
3897	}
3898}
3899
3900/**
3901 * remove_all_active_ranges - Remove all currently registered regions
3902 *
3903 * During discovery, it may be found that a table like SRAT is invalid
3904 * and an alternative discovery method must be used. This function removes
3905 * all currently registered regions.
3906 */
3907void __init remove_all_active_ranges(void)
3908{
3909	memset(early_node_map, 0, sizeof(early_node_map));
3910	nr_nodemap_entries = 0;
3911}
3912
3913/* Compare two active node_active_regions */
3914static int __init cmp_node_active_region(const void *a, const void *b)
3915{
3916	struct node_active_region *arange = (struct node_active_region *)a;
3917	struct node_active_region *brange = (struct node_active_region *)b;
3918
3919	/* Done this way to avoid overflows */
3920	if (arange->start_pfn > brange->start_pfn)
3921		return 1;
3922	if (arange->start_pfn < brange->start_pfn)
3923		return -1;
3924
3925	return 0;
3926}
3927
3928/* sort the node_map by start_pfn */
3929static void __init sort_node_map(void)
3930{
3931	sort(early_node_map, (size_t)nr_nodemap_entries,
3932			sizeof(struct node_active_region),
3933			cmp_node_active_region, NULL);
3934}
3935
3936/* Find the lowest pfn for a node */
3937static unsigned long __init find_min_pfn_for_node(int nid)
3938{
3939	int i;
3940	unsigned long min_pfn = ULONG_MAX;
3941
3942	/* Assuming a sorted map, the first range found has the starting pfn */
3943	for_each_active_range_index_in_nid(i, nid)
3944		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3945
3946	if (min_pfn == ULONG_MAX) {
3947		printk(KERN_WARNING
3948			"Could not find start_pfn for node %d\n", nid);
3949		return 0;
3950	}
3951
3952	return min_pfn;
3953}
3954
3955/**
3956 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3957 *
3958 * It returns the minimum PFN based on information provided via
3959 * add_active_range().
3960 */
3961unsigned long __init find_min_pfn_with_active_regions(void)
3962{
3963	return find_min_pfn_for_node(MAX_NUMNODES);
3964}
3965
3966/*
3967 * early_calculate_totalpages()
3968 * Sum pages in active regions for movable zone.
3969 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3970 */
3971static unsigned long __init early_calculate_totalpages(void)
3972{
3973	int i;
3974	unsigned long totalpages = 0;
3975
3976	for (i = 0; i < nr_nodemap_entries; i++) {
3977		unsigned long pages = early_node_map[i].end_pfn -
3978						early_node_map[i].start_pfn;
3979		totalpages += pages;
3980		if (pages)
3981			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3982	}
3983  	return totalpages;
3984}
3985
3986/*
3987 * Find the PFN the Movable zone begins in each node. Kernel memory
3988 * is spread evenly between nodes as long as the nodes have enough
3989 * memory. When they don't, some nodes will have more kernelcore than
3990 * others
3991 */
3992static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3993{
3994	int i, nid;
3995	unsigned long usable_startpfn;
3996	unsigned long kernelcore_node, kernelcore_remaining;
3997	unsigned long totalpages = early_calculate_totalpages();
3998	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3999
4000	/*
4001	 * If movablecore was specified, calculate what size of
4002	 * kernelcore that corresponds so that memory usable for
4003	 * any allocation type is evenly spread. If both kernelcore
4004	 * and movablecore are specified, then the value of kernelcore
4005	 * will be used for required_kernelcore if it's greater than
4006	 * what movablecore would have allowed.
4007	 */
4008	if (required_movablecore) {
4009		unsigned long corepages;
4010
4011		/*
4012		 * Round-up so that ZONE_MOVABLE is at least as large as what
4013		 * was requested by the user
4014		 */
4015		required_movablecore =
4016			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4017		corepages = totalpages - required_movablecore;
4018
4019		required_kernelcore = max(required_kernelcore, corepages);
4020	}
4021
4022	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4023	if (!required_kernelcore)
4024		return;
4025
4026	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4027	find_usable_zone_for_movable();
4028	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4029
4030restart:
4031	/* Spread kernelcore memory as evenly as possible throughout nodes */
4032	kernelcore_node = required_kernelcore / usable_nodes;
4033	for_each_node_state(nid, N_HIGH_MEMORY) {
4034		/*
4035		 * Recalculate kernelcore_node if the division per node
4036		 * now exceeds what is necessary to satisfy the requested
4037		 * amount of memory for the kernel
4038		 */
4039		if (required_kernelcore < kernelcore_node)
4040			kernelcore_node = required_kernelcore / usable_nodes;
4041
4042		/*
4043		 * As the map is walked, we track how much memory is usable
4044		 * by the kernel using kernelcore_remaining. When it is
4045		 * 0, the rest of the node is usable by ZONE_MOVABLE
4046		 */
4047		kernelcore_remaining = kernelcore_node;
4048
4049		/* Go through each range of PFNs within this node */
4050		for_each_active_range_index_in_nid(i, nid) {
4051			unsigned long start_pfn, end_pfn;
4052			unsigned long size_pages;
4053
4054			start_pfn = max(early_node_map[i].start_pfn,
4055						zone_movable_pfn[nid]);
4056			end_pfn = early_node_map[i].end_pfn;
4057			if (start_pfn >= end_pfn)
4058				continue;
4059
4060			/* Account for what is only usable for kernelcore */
4061			if (start_pfn < usable_startpfn) {
4062				unsigned long kernel_pages;
4063				kernel_pages = min(end_pfn, usable_startpfn)
4064								- start_pfn;
4065
4066				kernelcore_remaining -= min(kernel_pages,
4067							kernelcore_remaining);
4068				required_kernelcore -= min(kernel_pages,
4069							required_kernelcore);
4070
4071				/* Continue if range is now fully accounted */
4072				if (end_pfn <= usable_startpfn) {
4073
4074					/*
4075					 * Push zone_movable_pfn to the end so
4076					 * that if we have to rebalance
4077					 * kernelcore across nodes, we will
4078					 * not double account here
4079					 */
4080					zone_movable_pfn[nid] = end_pfn;
4081					continue;
4082				}
4083				start_pfn = usable_startpfn;
4084			}
4085
4086			/*
4087			 * The usable PFN range for ZONE_MOVABLE is from
4088			 * start_pfn->end_pfn. Calculate size_pages as the
4089			 * number of pages used as kernelcore
4090			 */
4091			size_pages = end_pfn - start_pfn;
4092			if (size_pages > kernelcore_remaining)
4093				size_pages = kernelcore_remaining;
4094			zone_movable_pfn[nid] = start_pfn + size_pages;
4095
4096			/*
4097			 * Some kernelcore has been met, update counts and
4098			 * break if the kernelcore for this node has been
4099			 * satisified
4100			 */
4101			required_kernelcore -= min(required_kernelcore,
4102								size_pages);
4103			kernelcore_remaining -= size_pages;
4104			if (!kernelcore_remaining)
4105				break;
4106		}
4107	}
4108
4109	/*
4110	 * If there is still required_kernelcore, we do another pass with one
4111	 * less node in the count. This will push zone_movable_pfn[nid] further
4112	 * along on the nodes that still have memory until kernelcore is
4113	 * satisified
4114	 */
4115	usable_nodes--;
4116	if (usable_nodes && required_kernelcore > usable_nodes)
4117		goto restart;
4118
4119	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4120	for (nid = 0; nid < MAX_NUMNODES; nid++)
4121		zone_movable_pfn[nid] =
4122			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4123}
4124
4125/* Any regular memory on that node ? */
4126static void check_for_regular_memory(pg_data_t *pgdat)
4127{
4128#ifdef CONFIG_HIGHMEM
4129	enum zone_type zone_type;
4130
4131	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4132		struct zone *zone = &pgdat->node_zones[zone_type];
4133		if (zone->present_pages)
4134			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4135	}
4136#endif
4137}
4138
4139/**
4140 * free_area_init_nodes - Initialise all pg_data_t and zone data
4141 * @max_zone_pfn: an array of max PFNs for each zone
4142 *
4143 * This will call free_area_init_node() for each active node in the system.
4144 * Using the page ranges provided by add_active_range(), the size of each
4145 * zone in each node and their holes is calculated. If the maximum PFN
4146 * between two adjacent zones match, it is assumed that the zone is empty.
4147 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4148 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4149 * starts where the previous one ended. For example, ZONE_DMA32 starts
4150 * at arch_max_dma_pfn.
4151 */
4152void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4153{
4154	unsigned long nid;
4155	int i;
4156
4157	/* Sort early_node_map as initialisation assumes it is sorted */
4158	sort_node_map();
4159
4160	/* Record where the zone boundaries are */
4161	memset(arch_zone_lowest_possible_pfn, 0,
4162				sizeof(arch_zone_lowest_possible_pfn));
4163	memset(arch_zone_highest_possible_pfn, 0,
4164				sizeof(arch_zone_highest_possible_pfn));
4165	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4166	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4167	for (i = 1; i < MAX_NR_ZONES; i++) {
4168		if (i == ZONE_MOVABLE)
4169			continue;
4170		arch_zone_lowest_possible_pfn[i] =
4171			arch_zone_highest_possible_pfn[i-1];
4172		arch_zone_highest_possible_pfn[i] =
4173			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4174	}
4175	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4176	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4177
4178	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4179	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4180	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4181
4182	/* Print out the zone ranges */
4183	printk("Zone PFN ranges:\n");
4184	for (i = 0; i < MAX_NR_ZONES; i++) {
4185		if (i == ZONE_MOVABLE)
4186			continue;
4187		printk("  %-8s %0#10lx -> %0#10lx\n",
4188				zone_names[i],
4189				arch_zone_lowest_possible_pfn[i],
4190				arch_zone_highest_possible_pfn[i]);
4191	}
4192
4193	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4194	printk("Movable zone start PFN for each node\n");
4195	for (i = 0; i < MAX_NUMNODES; i++) {
4196		if (zone_movable_pfn[i])
4197			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4198	}
4199
4200	/* Print out the early_node_map[] */
4201	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4202	for (i = 0; i < nr_nodemap_entries; i++)
4203		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4204						early_node_map[i].start_pfn,
4205						early_node_map[i].end_pfn);
4206
4207	/* Initialise every node */
4208	mminit_verify_pageflags_layout();
4209	setup_nr_node_ids();
4210	for_each_online_node(nid) {
4211		pg_data_t *pgdat = NODE_DATA(nid);
4212		free_area_init_node(nid, NULL,
4213				find_min_pfn_for_node(nid), NULL);
4214
4215		/* Any memory on that node */
4216		if (pgdat->node_present_pages)
4217			node_set_state(nid, N_HIGH_MEMORY);
4218		check_for_regular_memory(pgdat);
4219	}
4220}
4221
4222static int __init cmdline_parse_core(char *p, unsigned long *core)
4223{
4224	unsigned long long coremem;
4225	if (!p)
4226		return -EINVAL;
4227
4228	coremem = memparse(p, &p);
4229	*core = coremem >> PAGE_SHIFT;
4230
4231	/* Paranoid check that UL is enough for the coremem value */
4232	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4233
4234	return 0;
4235}
4236
4237/*
4238 * kernelcore=size sets the amount of memory for use for allocations that
4239 * cannot be reclaimed or migrated.
4240 */
4241static int __init cmdline_parse_kernelcore(char *p)
4242{
4243	return cmdline_parse_core(p, &required_kernelcore);
4244}
4245
4246/*
4247 * movablecore=size sets the amount of memory for use for allocations that
4248 * can be reclaimed or migrated.
4249 */
4250static int __init cmdline_parse_movablecore(char *p)
4251{
4252	return cmdline_parse_core(p, &required_movablecore);
4253}
4254
4255early_param("kernelcore", cmdline_parse_kernelcore);
4256early_param("movablecore", cmdline_parse_movablecore);
4257
4258#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4259
4260/**
4261 * set_dma_reserve - set the specified number of pages reserved in the first zone
4262 * @new_dma_reserve: The number of pages to mark reserved
4263 *
4264 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4265 * In the DMA zone, a significant percentage may be consumed by kernel image
4266 * and other unfreeable allocations which can skew the watermarks badly. This
4267 * function may optionally be used to account for unfreeable pages in the
4268 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4269 * smaller per-cpu batchsize.
4270 */
4271void __init set_dma_reserve(unsigned long new_dma_reserve)
4272{
4273	dma_reserve = new_dma_reserve;
4274}
4275
4276#ifndef CONFIG_NEED_MULTIPLE_NODES
4277struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4278EXPORT_SYMBOL(contig_page_data);
4279#endif
4280
4281void __init free_area_init(unsigned long *zones_size)
4282{
4283	free_area_init_node(0, zones_size,
4284			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4285}
4286
4287static int page_alloc_cpu_notify(struct notifier_block *self,
4288				 unsigned long action, void *hcpu)
4289{
4290	int cpu = (unsigned long)hcpu;
4291
4292	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4293		drain_pages(cpu);
4294
4295		/*
4296		 * Spill the event counters of the dead processor
4297		 * into the current processors event counters.
4298		 * This artificially elevates the count of the current
4299		 * processor.
4300		 */
4301		vm_events_fold_cpu(cpu);
4302
4303		/*
4304		 * Zero the differential counters of the dead processor
4305		 * so that the vm statistics are consistent.
4306		 *
4307		 * This is only okay since the processor is dead and cannot
4308		 * race with what we are doing.
4309		 */
4310		refresh_cpu_vm_stats(cpu);
4311	}
4312	return NOTIFY_OK;
4313}
4314
4315void __init page_alloc_init(void)
4316{
4317	hotcpu_notifier(page_alloc_cpu_notify, 0);
4318}
4319
4320/*
4321 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4322 *	or min_free_kbytes changes.
4323 */
4324static void calculate_totalreserve_pages(void)
4325{
4326	struct pglist_data *pgdat;
4327	unsigned long reserve_pages = 0;
4328	enum zone_type i, j;
4329
4330	for_each_online_pgdat(pgdat) {
4331		for (i = 0; i < MAX_NR_ZONES; i++) {
4332			struct zone *zone = pgdat->node_zones + i;
4333			unsigned long max = 0;
4334
4335			/* Find valid and maximum lowmem_reserve in the zone */
4336			for (j = i; j < MAX_NR_ZONES; j++) {
4337				if (zone->lowmem_reserve[j] > max)
4338					max = zone->lowmem_reserve[j];
4339			}
4340
4341			/* we treat the high watermark as reserved pages. */
4342			max += high_wmark_pages(zone);
4343
4344			if (max > zone->present_pages)
4345				max = zone->present_pages;
4346			reserve_pages += max;
4347		}
4348	}
4349	totalreserve_pages = reserve_pages;
4350}
4351
4352/*
4353 * setup_per_zone_lowmem_reserve - called whenever
4354 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4355 *	has a correct pages reserved value, so an adequate number of
4356 *	pages are left in the zone after a successful __alloc_pages().
4357 */
4358static void setup_per_zone_lowmem_reserve(void)
4359{
4360	struct pglist_data *pgdat;
4361	enum zone_type j, idx;
4362
4363	for_each_online_pgdat(pgdat) {
4364		for (j = 0; j < MAX_NR_ZONES; j++) {
4365			struct zone *zone = pgdat->node_zones + j;
4366			unsigned long present_pages = zone->present_pages;
4367
4368			zone->lowmem_reserve[j] = 0;
4369
4370			idx = j;
4371			while (idx) {
4372				struct zone *lower_zone;
4373
4374				idx--;
4375
4376				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4377					sysctl_lowmem_reserve_ratio[idx] = 1;
4378
4379				lower_zone = pgdat->node_zones + idx;
4380				lower_zone->lowmem_reserve[j] = present_pages /
4381					sysctl_lowmem_reserve_ratio[idx];
4382				present_pages += lower_zone->present_pages;
4383			}
4384		}
4385	}
4386
4387	/* update totalreserve_pages */
4388	calculate_totalreserve_pages();
4389}
4390
4391/**
4392 * setup_per_zone_wmarks - called when min_free_kbytes changes
4393 * or when memory is hot-{added|removed}
4394 *
4395 * Ensures that the watermark[min,low,high] values for each zone are set
4396 * correctly with respect to min_free_kbytes.
4397 */
4398void setup_per_zone_wmarks(void)
4399{
4400	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4401	unsigned long lowmem_pages = 0;
4402	struct zone *zone;
4403	unsigned long flags;
4404
4405	/* Calculate total number of !ZONE_HIGHMEM pages */
4406	for_each_zone(zone) {
4407		if (!is_highmem(zone))
4408			lowmem_pages += zone->present_pages;
4409	}
4410
4411	for_each_zone(zone) {
4412		u64 tmp;
4413
4414		spin_lock_irqsave(&zone->lock, flags);
4415		tmp = (u64)pages_min * zone->present_pages;
4416		do_div(tmp, lowmem_pages);
4417		if (is_highmem(zone)) {
4418			/*
4419			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4420			 * need highmem pages, so cap pages_min to a small
4421			 * value here.
4422			 *
4423			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4424			 * deltas controls asynch page reclaim, and so should
4425			 * not be capped for highmem.
4426			 */
4427			int min_pages;
4428
4429			min_pages = zone->present_pages / 1024;
4430			if (min_pages < SWAP_CLUSTER_MAX)
4431				min_pages = SWAP_CLUSTER_MAX;
4432			if (min_pages > 128)
4433				min_pages = 128;
4434			zone->watermark[WMARK_MIN] = min_pages;
4435		} else {
4436			/*
4437			 * If it's a lowmem zone, reserve a number of pages
4438			 * proportionate to the zone's size.
4439			 */
4440			zone->watermark[WMARK_MIN] = tmp;
4441		}
4442
4443		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4444		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4445		setup_zone_migrate_reserve(zone);
4446		spin_unlock_irqrestore(&zone->lock, flags);
4447	}
4448
4449	/* update totalreserve_pages */
4450	calculate_totalreserve_pages();
4451}
4452
4453/**
4454 * The inactive anon list should be small enough that the VM never has to
4455 * do too much work, but large enough that each inactive page has a chance
4456 * to be referenced again before it is swapped out.
4457 *
4458 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4459 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4460 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4461 * the anonymous pages are kept on the inactive list.
4462 *
4463 * total     target    max
4464 * memory    ratio     inactive anon
4465 * -------------------------------------
4466 *   10MB       1         5MB
4467 *  100MB       1        50MB
4468 *    1GB       3       250MB
4469 *   10GB      10       0.9GB
4470 *  100GB      31         3GB
4471 *    1TB     101        10GB
4472 *   10TB     320        32GB
4473 */
4474void calculate_zone_inactive_ratio(struct zone *zone)
4475{
4476	unsigned int gb, ratio;
4477
4478	/* Zone size in gigabytes */
4479	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4480	if (gb)
4481		ratio = int_sqrt(10 * gb);
4482	else
4483		ratio = 1;
4484
4485	zone->inactive_ratio = ratio;
4486}
4487
4488static void __init setup_per_zone_inactive_ratio(void)
4489{
4490	struct zone *zone;
4491
4492	for_each_zone(zone)
4493		calculate_zone_inactive_ratio(zone);
4494}
4495
4496/*
4497 * Initialise min_free_kbytes.
4498 *
4499 * For small machines we want it small (128k min).  For large machines
4500 * we want it large (64MB max).  But it is not linear, because network
4501 * bandwidth does not increase linearly with machine size.  We use
4502 *
4503 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4504 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4505 *
4506 * which yields
4507 *
4508 * 16MB:	512k
4509 * 32MB:	724k
4510 * 64MB:	1024k
4511 * 128MB:	1448k
4512 * 256MB:	2048k
4513 * 512MB:	2896k
4514 * 1024MB:	4096k
4515 * 2048MB:	5792k
4516 * 4096MB:	8192k
4517 * 8192MB:	11584k
4518 * 16384MB:	16384k
4519 */
4520static int __init init_per_zone_wmark_min(void)
4521{
4522	unsigned long lowmem_kbytes;
4523
4524	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4525
4526	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4527	if (min_free_kbytes < 128)
4528		min_free_kbytes = 128;
4529	if (min_free_kbytes > 65536)
4530		min_free_kbytes = 65536;
4531	setup_per_zone_wmarks();
4532	setup_per_zone_lowmem_reserve();
4533	setup_per_zone_inactive_ratio();
4534	return 0;
4535}
4536module_init(init_per_zone_wmark_min)
4537
4538/*
4539 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4540 *	that we can call two helper functions whenever min_free_kbytes
4541 *	changes.
4542 */
4543int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4544	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4545{
4546	proc_dointvec(table, write, file, buffer, length, ppos);
4547	if (write)
4548		setup_per_zone_wmarks();
4549	return 0;
4550}
4551
4552#ifdef CONFIG_NUMA
4553int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4554	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4555{
4556	struct zone *zone;
4557	int rc;
4558
4559	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4560	if (rc)
4561		return rc;
4562
4563	for_each_zone(zone)
4564		zone->min_unmapped_pages = (zone->present_pages *
4565				sysctl_min_unmapped_ratio) / 100;
4566	return 0;
4567}
4568
4569int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4570	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4571{
4572	struct zone *zone;
4573	int rc;
4574
4575	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4576	if (rc)
4577		return rc;
4578
4579	for_each_zone(zone)
4580		zone->min_slab_pages = (zone->present_pages *
4581				sysctl_min_slab_ratio) / 100;
4582	return 0;
4583}
4584#endif
4585
4586/*
4587 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4588 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4589 *	whenever sysctl_lowmem_reserve_ratio changes.
4590 *
4591 * The reserve ratio obviously has absolutely no relation with the
4592 * minimum watermarks. The lowmem reserve ratio can only make sense
4593 * if in function of the boot time zone sizes.
4594 */
4595int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4596	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4597{
4598	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4599	setup_per_zone_lowmem_reserve();
4600	return 0;
4601}
4602
4603/*
4604 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4605 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4606 * can have before it gets flushed back to buddy allocator.
4607 */
4608
4609int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4610	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4611{
4612	struct zone *zone;
4613	unsigned int cpu;
4614	int ret;
4615
4616	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4617	if (!write || (ret == -EINVAL))
4618		return ret;
4619	for_each_zone(zone) {
4620		for_each_online_cpu(cpu) {
4621			unsigned long  high;
4622			high = zone->present_pages / percpu_pagelist_fraction;
4623			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4624		}
4625	}
4626	return 0;
4627}
4628
4629int hashdist = HASHDIST_DEFAULT;
4630
4631#ifdef CONFIG_NUMA
4632static int __init set_hashdist(char *str)
4633{
4634	if (!str)
4635		return 0;
4636	hashdist = simple_strtoul(str, &str, 0);
4637	return 1;
4638}
4639__setup("hashdist=", set_hashdist);
4640#endif
4641
4642/*
4643 * allocate a large system hash table from bootmem
4644 * - it is assumed that the hash table must contain an exact power-of-2
4645 *   quantity of entries
4646 * - limit is the number of hash buckets, not the total allocation size
4647 */
4648void *__init alloc_large_system_hash(const char *tablename,
4649				     unsigned long bucketsize,
4650				     unsigned long numentries,
4651				     int scale,
4652				     int flags,
4653				     unsigned int *_hash_shift,
4654				     unsigned int *_hash_mask,
4655				     unsigned long limit)
4656{
4657	unsigned long long max = limit;
4658	unsigned long log2qty, size;
4659	void *table = NULL;
4660
4661	/* allow the kernel cmdline to have a say */
4662	if (!numentries) {
4663		/* round applicable memory size up to nearest megabyte */
4664		numentries = nr_kernel_pages;
4665		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4666		numentries >>= 20 - PAGE_SHIFT;
4667		numentries <<= 20 - PAGE_SHIFT;
4668
4669		/* limit to 1 bucket per 2^scale bytes of low memory */
4670		if (scale > PAGE_SHIFT)
4671			numentries >>= (scale - PAGE_SHIFT);
4672		else
4673			numentries <<= (PAGE_SHIFT - scale);
4674
4675		/* Make sure we've got at least a 0-order allocation.. */
4676		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4677			numentries = PAGE_SIZE / bucketsize;
4678	}
4679	numentries = roundup_pow_of_two(numentries);
4680
4681	/* limit allocation size to 1/16 total memory by default */
4682	if (max == 0) {
4683		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4684		do_div(max, bucketsize);
4685	}
4686
4687	if (numentries > max)
4688		numentries = max;
4689
4690	log2qty = ilog2(numentries);
4691
4692	do {
4693		size = bucketsize << log2qty;
4694		if (flags & HASH_EARLY)
4695			table = alloc_bootmem_nopanic(size);
4696		else if (hashdist)
4697			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4698		else {
4699			/*
4700			 * If bucketsize is not a power-of-two, we may free
4701			 * some pages at the end of hash table which
4702			 * alloc_pages_exact() automatically does
4703			 */
4704			if (get_order(size) < MAX_ORDER)
4705				table = alloc_pages_exact(size, GFP_ATOMIC);
4706		}
4707	} while (!table && size > PAGE_SIZE && --log2qty);
4708
4709	if (!table)
4710		panic("Failed to allocate %s hash table\n", tablename);
4711
4712	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4713	       tablename,
4714	       (1U << log2qty),
4715	       ilog2(size) - PAGE_SHIFT,
4716	       size);
4717
4718	if (_hash_shift)
4719		*_hash_shift = log2qty;
4720	if (_hash_mask)
4721		*_hash_mask = (1 << log2qty) - 1;
4722
4723	/*
4724	 * If hashdist is set, the table allocation is done with __vmalloc()
4725	 * which invokes the kmemleak_alloc() callback. This function may also
4726	 * be called before the slab and kmemleak are initialised when
4727	 * kmemleak simply buffers the request to be executed later
4728	 * (GFP_ATOMIC flag ignored in this case).
4729	 */
4730	if (!hashdist)
4731		kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4732
4733	return table;
4734}
4735
4736/* Return a pointer to the bitmap storing bits affecting a block of pages */
4737static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4738							unsigned long pfn)
4739{
4740#ifdef CONFIG_SPARSEMEM
4741	return __pfn_to_section(pfn)->pageblock_flags;
4742#else
4743	return zone->pageblock_flags;
4744#endif /* CONFIG_SPARSEMEM */
4745}
4746
4747static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4748{
4749#ifdef CONFIG_SPARSEMEM
4750	pfn &= (PAGES_PER_SECTION-1);
4751	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4752#else
4753	pfn = pfn - zone->zone_start_pfn;
4754	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4755#endif /* CONFIG_SPARSEMEM */
4756}
4757
4758/**
4759 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4760 * @page: The page within the block of interest
4761 * @start_bitidx: The first bit of interest to retrieve
4762 * @end_bitidx: The last bit of interest
4763 * returns pageblock_bits flags
4764 */
4765unsigned long get_pageblock_flags_group(struct page *page,
4766					int start_bitidx, int end_bitidx)
4767{
4768	struct zone *zone;
4769	unsigned long *bitmap;
4770	unsigned long pfn, bitidx;
4771	unsigned long flags = 0;
4772	unsigned long value = 1;
4773
4774	zone = page_zone(page);
4775	pfn = page_to_pfn(page);
4776	bitmap = get_pageblock_bitmap(zone, pfn);
4777	bitidx = pfn_to_bitidx(zone, pfn);
4778
4779	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4780		if (test_bit(bitidx + start_bitidx, bitmap))
4781			flags |= value;
4782
4783	return flags;
4784}
4785
4786/**
4787 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4788 * @page: The page within the block of interest
4789 * @start_bitidx: The first bit of interest
4790 * @end_bitidx: The last bit of interest
4791 * @flags: The flags to set
4792 */
4793void set_pageblock_flags_group(struct page *page, unsigned long flags,
4794					int start_bitidx, int end_bitidx)
4795{
4796	struct zone *zone;
4797	unsigned long *bitmap;
4798	unsigned long pfn, bitidx;
4799	unsigned long value = 1;
4800
4801	zone = page_zone(page);
4802	pfn = page_to_pfn(page);
4803	bitmap = get_pageblock_bitmap(zone, pfn);
4804	bitidx = pfn_to_bitidx(zone, pfn);
4805	VM_BUG_ON(pfn < zone->zone_start_pfn);
4806	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4807
4808	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4809		if (flags & value)
4810			__set_bit(bitidx + start_bitidx, bitmap);
4811		else
4812			__clear_bit(bitidx + start_bitidx, bitmap);
4813}
4814
4815/*
4816 * This is designed as sub function...plz see page_isolation.c also.
4817 * set/clear page block's type to be ISOLATE.
4818 * page allocater never alloc memory from ISOLATE block.
4819 */
4820
4821int set_migratetype_isolate(struct page *page)
4822{
4823	struct zone *zone;
4824	unsigned long flags;
4825	int ret = -EBUSY;
4826
4827	zone = page_zone(page);
4828	spin_lock_irqsave(&zone->lock, flags);
4829	/*
4830	 * In future, more migrate types will be able to be isolation target.
4831	 */
4832	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4833		goto out;
4834	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4835	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4836	ret = 0;
4837out:
4838	spin_unlock_irqrestore(&zone->lock, flags);
4839	if (!ret)
4840		drain_all_pages();
4841	return ret;
4842}
4843
4844void unset_migratetype_isolate(struct page *page)
4845{
4846	struct zone *zone;
4847	unsigned long flags;
4848	zone = page_zone(page);
4849	spin_lock_irqsave(&zone->lock, flags);
4850	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4851		goto out;
4852	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4853	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4854out:
4855	spin_unlock_irqrestore(&zone->lock, flags);
4856}
4857
4858#ifdef CONFIG_MEMORY_HOTREMOVE
4859/*
4860 * All pages in the range must be isolated before calling this.
4861 */
4862void
4863__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4864{
4865	struct page *page;
4866	struct zone *zone;
4867	int order, i;
4868	unsigned long pfn;
4869	unsigned long flags;
4870	/* find the first valid pfn */
4871	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4872		if (pfn_valid(pfn))
4873			break;
4874	if (pfn == end_pfn)
4875		return;
4876	zone = page_zone(pfn_to_page(pfn));
4877	spin_lock_irqsave(&zone->lock, flags);
4878	pfn = start_pfn;
4879	while (pfn < end_pfn) {
4880		if (!pfn_valid(pfn)) {
4881			pfn++;
4882			continue;
4883		}
4884		page = pfn_to_page(pfn);
4885		BUG_ON(page_count(page));
4886		BUG_ON(!PageBuddy(page));
4887		order = page_order(page);
4888#ifdef CONFIG_DEBUG_VM
4889		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4890		       pfn, 1 << order, end_pfn);
4891#endif
4892		list_del(&page->lru);
4893		rmv_page_order(page);
4894		zone->free_area[order].nr_free--;
4895		__mod_zone_page_state(zone, NR_FREE_PAGES,
4896				      - (1UL << order));
4897		for (i = 0; i < (1 << order); i++)
4898			SetPageReserved((page+i));
4899		pfn += (1 << order);
4900	}
4901	spin_unlock_irqrestore(&zone->lock, flags);
4902}
4903#endif
4904