page_alloc.c revision 8417bba4b151346ed475fcc923693c9e3be89063
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50EXPORT_SYMBOL(node_online_map);
51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52EXPORT_SYMBOL(node_possible_map);
53unsigned long totalram_pages __read_mostly;
54unsigned long totalreserve_pages __read_mostly;
55long nr_swap_pages;
56int percpu_pagelist_fraction;
57
58static void __free_pages_ok(struct page *page, unsigned int order);
59
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 *	1G machine -> (16M dma, 784M normal, 224M high)
64 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72	 256,
73#ifdef CONFIG_ZONE_DMA32
74	 256,
75#endif
76#ifdef CONFIG_HIGHMEM
77	 32
78#endif
79};
80
81EXPORT_SYMBOL(totalram_pages);
82
83/*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
87struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
88EXPORT_SYMBOL(zone_table);
89
90static char *zone_names[MAX_NR_ZONES] = {
91	 "DMA",
92#ifdef CONFIG_ZONE_DMA32
93	 "DMA32",
94#endif
95	 "Normal",
96#ifdef CONFIG_HIGHMEM
97	 "HighMem"
98#endif
99};
100
101int min_free_kbytes = 1024;
102
103unsigned long __meminitdata nr_kernel_pages;
104unsigned long __meminitdata nr_all_pages;
105
106#ifdef CONFIG_DEBUG_VM
107static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
108{
109	int ret = 0;
110	unsigned seq;
111	unsigned long pfn = page_to_pfn(page);
112
113	do {
114		seq = zone_span_seqbegin(zone);
115		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116			ret = 1;
117		else if (pfn < zone->zone_start_pfn)
118			ret = 1;
119	} while (zone_span_seqretry(zone, seq));
120
121	return ret;
122}
123
124static int page_is_consistent(struct zone *zone, struct page *page)
125{
126#ifdef CONFIG_HOLES_IN_ZONE
127	if (!pfn_valid(page_to_pfn(page)))
128		return 0;
129#endif
130	if (zone != page_zone(page))
131		return 0;
132
133	return 1;
134}
135/*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138static int bad_range(struct zone *zone, struct page *page)
139{
140	if (page_outside_zone_boundaries(zone, page))
141		return 1;
142	if (!page_is_consistent(zone, page))
143		return 1;
144
145	return 0;
146}
147#else
148static inline int bad_range(struct zone *zone, struct page *page)
149{
150	return 0;
151}
152#endif
153
154static void bad_page(struct page *page)
155{
156	printk(KERN_EMERG "Bad page state in process '%s'\n"
157		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159		KERN_EMERG "Backtrace:\n",
160		current->comm, page, (int)(2*sizeof(unsigned long)),
161		(unsigned long)page->flags, page->mapping,
162		page_mapcount(page), page_count(page));
163	dump_stack();
164	page->flags &= ~(1 << PG_lru	|
165			1 << PG_private |
166			1 << PG_locked	|
167			1 << PG_active	|
168			1 << PG_dirty	|
169			1 << PG_reclaim |
170			1 << PG_slab    |
171			1 << PG_swapcache |
172			1 << PG_writeback |
173			1 << PG_buddy );
174	set_page_count(page, 0);
175	reset_page_mapcount(page);
176	page->mapping = NULL;
177	add_taint(TAINT_BAD_PAGE);
178}
179
180/*
181 * Higher-order pages are called "compound pages".  They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set.  All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function.  Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
193 */
194
195static void free_compound_page(struct page *page)
196{
197	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
198}
199
200static void prep_compound_page(struct page *page, unsigned long order)
201{
202	int i;
203	int nr_pages = 1 << order;
204
205	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
206	page[1].lru.prev = (void *)order;
207	for (i = 0; i < nr_pages; i++) {
208		struct page *p = page + i;
209
210		__SetPageCompound(p);
211		set_page_private(p, (unsigned long)page);
212	}
213}
214
215static void destroy_compound_page(struct page *page, unsigned long order)
216{
217	int i;
218	int nr_pages = 1 << order;
219
220	if (unlikely((unsigned long)page[1].lru.prev != order))
221		bad_page(page);
222
223	for (i = 0; i < nr_pages; i++) {
224		struct page *p = page + i;
225
226		if (unlikely(!PageCompound(p) |
227				(page_private(p) != (unsigned long)page)))
228			bad_page(page);
229		__ClearPageCompound(p);
230	}
231}
232
233static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234{
235	int i;
236
237	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
238	/*
239	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240	 * and __GFP_HIGHMEM from hard or soft interrupt context.
241	 */
242	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
243	for (i = 0; i < (1 << order); i++)
244		clear_highpage(page + i);
245}
246
247/*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
252static inline unsigned long page_order(struct page *page)
253{
254	return page_private(page);
255}
256
257static inline void set_page_order(struct page *page, int order)
258{
259	set_page_private(page, order);
260	__SetPageBuddy(page);
261}
262
263static inline void rmv_page_order(struct page *page)
264{
265	__ClearPageBuddy(page);
266	set_page_private(page, 0);
267}
268
269/*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 *     B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 *     P = B & ~(1 << O)
283 *
284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
285 */
286static inline struct page *
287__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288{
289	unsigned long buddy_idx = page_idx ^ (1 << order);
290
291	return page + (buddy_idx - page_idx);
292}
293
294static inline unsigned long
295__find_combined_index(unsigned long page_idx, unsigned int order)
296{
297	return (page_idx & ~(1 << order));
298}
299
300/*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
303 * (a) the buddy is not in a hole &&
304 * (b) the buddy is in the buddy system &&
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
310 *
311 * For recording page's order, we use page_private(page).
312 */
313static inline int page_is_buddy(struct page *page, struct page *buddy,
314								int order)
315{
316#ifdef CONFIG_HOLES_IN_ZONE
317	if (!pfn_valid(page_to_pfn(buddy)))
318		return 0;
319#endif
320
321	if (page_zone_id(page) != page_zone_id(buddy))
322		return 0;
323
324	if (PageBuddy(buddy) && page_order(buddy) == order) {
325		BUG_ON(page_count(buddy) != 0);
326		return 1;
327	}
328	return 0;
329}
330
331/*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
345 * order is recorded in page_private(page) field.
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other.  That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
355static inline void __free_one_page(struct page *page,
356		struct zone *zone, unsigned int order)
357{
358	unsigned long page_idx;
359	int order_size = 1 << order;
360
361	if (unlikely(PageCompound(page)))
362		destroy_compound_page(page, order);
363
364	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
366	VM_BUG_ON(page_idx & (order_size - 1));
367	VM_BUG_ON(bad_range(zone, page));
368
369	zone->free_pages += order_size;
370	while (order < MAX_ORDER-1) {
371		unsigned long combined_idx;
372		struct free_area *area;
373		struct page *buddy;
374
375		buddy = __page_find_buddy(page, page_idx, order);
376		if (!page_is_buddy(page, buddy, order))
377			break;		/* Move the buddy up one level. */
378
379		list_del(&buddy->lru);
380		area = zone->free_area + order;
381		area->nr_free--;
382		rmv_page_order(buddy);
383		combined_idx = __find_combined_index(page_idx, order);
384		page = page + (combined_idx - page_idx);
385		page_idx = combined_idx;
386		order++;
387	}
388	set_page_order(page, order);
389	list_add(&page->lru, &zone->free_area[order].free_list);
390	zone->free_area[order].nr_free++;
391}
392
393static inline int free_pages_check(struct page *page)
394{
395	if (unlikely(page_mapcount(page) |
396		(page->mapping != NULL)  |
397		(page_count(page) != 0)  |
398		(page->flags & (
399			1 << PG_lru	|
400			1 << PG_private |
401			1 << PG_locked	|
402			1 << PG_active	|
403			1 << PG_reclaim	|
404			1 << PG_slab	|
405			1 << PG_swapcache |
406			1 << PG_writeback |
407			1 << PG_reserved |
408			1 << PG_buddy ))))
409		bad_page(page);
410	if (PageDirty(page))
411		__ClearPageDirty(page);
412	/*
413	 * For now, we report if PG_reserved was found set, but do not
414	 * clear it, and do not free the page.  But we shall soon need
415	 * to do more, for when the ZERO_PAGE count wraps negative.
416	 */
417	return PageReserved(page);
418}
419
420/*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
423 * count is the number of pages to free.
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
431static void free_pages_bulk(struct zone *zone, int count,
432					struct list_head *list, int order)
433{
434	spin_lock(&zone->lock);
435	zone->all_unreclaimable = 0;
436	zone->pages_scanned = 0;
437	while (count--) {
438		struct page *page;
439
440		VM_BUG_ON(list_empty(list));
441		page = list_entry(list->prev, struct page, lru);
442		/* have to delete it as __free_one_page list manipulates */
443		list_del(&page->lru);
444		__free_one_page(page, zone, order);
445	}
446	spin_unlock(&zone->lock);
447}
448
449static void free_one_page(struct zone *zone, struct page *page, int order)
450{
451	spin_lock(&zone->lock);
452	zone->all_unreclaimable = 0;
453	zone->pages_scanned = 0;
454	__free_one_page(page, zone ,order);
455	spin_unlock(&zone->lock);
456}
457
458static void __free_pages_ok(struct page *page, unsigned int order)
459{
460	unsigned long flags;
461	int i;
462	int reserved = 0;
463
464	arch_free_page(page, order);
465	if (!PageHighMem(page))
466		debug_check_no_locks_freed(page_address(page),
467					   PAGE_SIZE<<order);
468
469	for (i = 0 ; i < (1 << order) ; ++i)
470		reserved += free_pages_check(page + i);
471	if (reserved)
472		return;
473
474	kernel_map_pages(page, 1 << order, 0);
475	local_irq_save(flags);
476	__count_vm_events(PGFREE, 1 << order);
477	free_one_page(page_zone(page), page, order);
478	local_irq_restore(flags);
479}
480
481/*
482 * permit the bootmem allocator to evade page validation on high-order frees
483 */
484void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
485{
486	if (order == 0) {
487		__ClearPageReserved(page);
488		set_page_count(page, 0);
489		set_page_refcounted(page);
490		__free_page(page);
491	} else {
492		int loop;
493
494		prefetchw(page);
495		for (loop = 0; loop < BITS_PER_LONG; loop++) {
496			struct page *p = &page[loop];
497
498			if (loop + 1 < BITS_PER_LONG)
499				prefetchw(p + 1);
500			__ClearPageReserved(p);
501			set_page_count(p, 0);
502		}
503
504		set_page_refcounted(page);
505		__free_pages(page, order);
506	}
507}
508
509
510/*
511 * The order of subdivision here is critical for the IO subsystem.
512 * Please do not alter this order without good reasons and regression
513 * testing. Specifically, as large blocks of memory are subdivided,
514 * the order in which smaller blocks are delivered depends on the order
515 * they're subdivided in this function. This is the primary factor
516 * influencing the order in which pages are delivered to the IO
517 * subsystem according to empirical testing, and this is also justified
518 * by considering the behavior of a buddy system containing a single
519 * large block of memory acted on by a series of small allocations.
520 * This behavior is a critical factor in sglist merging's success.
521 *
522 * -- wli
523 */
524static inline void expand(struct zone *zone, struct page *page,
525 	int low, int high, struct free_area *area)
526{
527	unsigned long size = 1 << high;
528
529	while (high > low) {
530		area--;
531		high--;
532		size >>= 1;
533		VM_BUG_ON(bad_range(zone, &page[size]));
534		list_add(&page[size].lru, &area->free_list);
535		area->nr_free++;
536		set_page_order(&page[size], high);
537	}
538}
539
540/*
541 * This page is about to be returned from the page allocator
542 */
543static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
544{
545	if (unlikely(page_mapcount(page) |
546		(page->mapping != NULL)  |
547		(page_count(page) != 0)  |
548		(page->flags & (
549			1 << PG_lru	|
550			1 << PG_private	|
551			1 << PG_locked	|
552			1 << PG_active	|
553			1 << PG_dirty	|
554			1 << PG_reclaim	|
555			1 << PG_slab    |
556			1 << PG_swapcache |
557			1 << PG_writeback |
558			1 << PG_reserved |
559			1 << PG_buddy ))))
560		bad_page(page);
561
562	/*
563	 * For now, we report if PG_reserved was found set, but do not
564	 * clear it, and do not allocate the page: as a safety net.
565	 */
566	if (PageReserved(page))
567		return 1;
568
569	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
570			1 << PG_referenced | 1 << PG_arch_1 |
571			1 << PG_checked | 1 << PG_mappedtodisk);
572	set_page_private(page, 0);
573	set_page_refcounted(page);
574	kernel_map_pages(page, 1 << order, 1);
575
576	if (gfp_flags & __GFP_ZERO)
577		prep_zero_page(page, order, gfp_flags);
578
579	if (order && (gfp_flags & __GFP_COMP))
580		prep_compound_page(page, order);
581
582	return 0;
583}
584
585/*
586 * Do the hard work of removing an element from the buddy allocator.
587 * Call me with the zone->lock already held.
588 */
589static struct page *__rmqueue(struct zone *zone, unsigned int order)
590{
591	struct free_area * area;
592	unsigned int current_order;
593	struct page *page;
594
595	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
596		area = zone->free_area + current_order;
597		if (list_empty(&area->free_list))
598			continue;
599
600		page = list_entry(area->free_list.next, struct page, lru);
601		list_del(&page->lru);
602		rmv_page_order(page);
603		area->nr_free--;
604		zone->free_pages -= 1UL << order;
605		expand(zone, page, order, current_order, area);
606		return page;
607	}
608
609	return NULL;
610}
611
612/*
613 * Obtain a specified number of elements from the buddy allocator, all under
614 * a single hold of the lock, for efficiency.  Add them to the supplied list.
615 * Returns the number of new pages which were placed at *list.
616 */
617static int rmqueue_bulk(struct zone *zone, unsigned int order,
618			unsigned long count, struct list_head *list)
619{
620	int i;
621
622	spin_lock(&zone->lock);
623	for (i = 0; i < count; ++i) {
624		struct page *page = __rmqueue(zone, order);
625		if (unlikely(page == NULL))
626			break;
627		list_add_tail(&page->lru, list);
628	}
629	spin_unlock(&zone->lock);
630	return i;
631}
632
633#ifdef CONFIG_NUMA
634/*
635 * Called from the slab reaper to drain pagesets on a particular node that
636 * belongs to the currently executing processor.
637 * Note that this function must be called with the thread pinned to
638 * a single processor.
639 */
640void drain_node_pages(int nodeid)
641{
642	int i;
643	enum zone_type z;
644	unsigned long flags;
645
646	for (z = 0; z < MAX_NR_ZONES; z++) {
647		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
648		struct per_cpu_pageset *pset;
649
650		if (!populated_zone(zone))
651			continue;
652
653		pset = zone_pcp(zone, smp_processor_id());
654		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
655			struct per_cpu_pages *pcp;
656
657			pcp = &pset->pcp[i];
658			if (pcp->count) {
659				local_irq_save(flags);
660				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
661				pcp->count = 0;
662				local_irq_restore(flags);
663			}
664		}
665	}
666}
667#endif
668
669#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
670static void __drain_pages(unsigned int cpu)
671{
672	unsigned long flags;
673	struct zone *zone;
674	int i;
675
676	for_each_zone(zone) {
677		struct per_cpu_pageset *pset;
678
679		pset = zone_pcp(zone, cpu);
680		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
681			struct per_cpu_pages *pcp;
682
683			pcp = &pset->pcp[i];
684			local_irq_save(flags);
685			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
686			pcp->count = 0;
687			local_irq_restore(flags);
688		}
689	}
690}
691#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
692
693#ifdef CONFIG_PM
694
695void mark_free_pages(struct zone *zone)
696{
697	unsigned long zone_pfn, flags;
698	int order;
699	struct list_head *curr;
700
701	if (!zone->spanned_pages)
702		return;
703
704	spin_lock_irqsave(&zone->lock, flags);
705	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
706		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
707
708	for (order = MAX_ORDER - 1; order >= 0; --order)
709		list_for_each(curr, &zone->free_area[order].free_list) {
710			unsigned long start_pfn, i;
711
712			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
713
714			for (i=0; i < (1<<order); i++)
715				SetPageNosaveFree(pfn_to_page(start_pfn+i));
716	}
717	spin_unlock_irqrestore(&zone->lock, flags);
718}
719
720/*
721 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
722 */
723void drain_local_pages(void)
724{
725	unsigned long flags;
726
727	local_irq_save(flags);
728	__drain_pages(smp_processor_id());
729	local_irq_restore(flags);
730}
731#endif /* CONFIG_PM */
732
733/*
734 * Free a 0-order page
735 */
736static void fastcall free_hot_cold_page(struct page *page, int cold)
737{
738	struct zone *zone = page_zone(page);
739	struct per_cpu_pages *pcp;
740	unsigned long flags;
741
742	arch_free_page(page, 0);
743
744	if (PageAnon(page))
745		page->mapping = NULL;
746	if (free_pages_check(page))
747		return;
748
749	kernel_map_pages(page, 1, 0);
750
751	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
752	local_irq_save(flags);
753	__count_vm_event(PGFREE);
754	list_add(&page->lru, &pcp->list);
755	pcp->count++;
756	if (pcp->count >= pcp->high) {
757		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
758		pcp->count -= pcp->batch;
759	}
760	local_irq_restore(flags);
761	put_cpu();
762}
763
764void fastcall free_hot_page(struct page *page)
765{
766	free_hot_cold_page(page, 0);
767}
768
769void fastcall free_cold_page(struct page *page)
770{
771	free_hot_cold_page(page, 1);
772}
773
774/*
775 * split_page takes a non-compound higher-order page, and splits it into
776 * n (1<<order) sub-pages: page[0..n]
777 * Each sub-page must be freed individually.
778 *
779 * Note: this is probably too low level an operation for use in drivers.
780 * Please consult with lkml before using this in your driver.
781 */
782void split_page(struct page *page, unsigned int order)
783{
784	int i;
785
786	VM_BUG_ON(PageCompound(page));
787	VM_BUG_ON(!page_count(page));
788	for (i = 1; i < (1 << order); i++)
789		set_page_refcounted(page + i);
790}
791
792/*
793 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
794 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
795 * or two.
796 */
797static struct page *buffered_rmqueue(struct zonelist *zonelist,
798			struct zone *zone, int order, gfp_t gfp_flags)
799{
800	unsigned long flags;
801	struct page *page;
802	int cold = !!(gfp_flags & __GFP_COLD);
803	int cpu;
804
805again:
806	cpu  = get_cpu();
807	if (likely(order == 0)) {
808		struct per_cpu_pages *pcp;
809
810		pcp = &zone_pcp(zone, cpu)->pcp[cold];
811		local_irq_save(flags);
812		if (!pcp->count) {
813			pcp->count += rmqueue_bulk(zone, 0,
814						pcp->batch, &pcp->list);
815			if (unlikely(!pcp->count))
816				goto failed;
817		}
818		page = list_entry(pcp->list.next, struct page, lru);
819		list_del(&page->lru);
820		pcp->count--;
821	} else {
822		spin_lock_irqsave(&zone->lock, flags);
823		page = __rmqueue(zone, order);
824		spin_unlock(&zone->lock);
825		if (!page)
826			goto failed;
827	}
828
829	__count_zone_vm_events(PGALLOC, zone, 1 << order);
830	zone_statistics(zonelist, zone);
831	local_irq_restore(flags);
832	put_cpu();
833
834	VM_BUG_ON(bad_range(zone, page));
835	if (prep_new_page(page, order, gfp_flags))
836		goto again;
837	return page;
838
839failed:
840	local_irq_restore(flags);
841	put_cpu();
842	return NULL;
843}
844
845#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
846#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
847#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
848#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
849#define ALLOC_HARDER		0x10 /* try to alloc harder */
850#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
851#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
852
853/*
854 * Return 1 if free pages are above 'mark'. This takes into account the order
855 * of the allocation.
856 */
857int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
858		      int classzone_idx, int alloc_flags)
859{
860	/* free_pages my go negative - that's OK */
861	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
862	int o;
863
864	if (alloc_flags & ALLOC_HIGH)
865		min -= min / 2;
866	if (alloc_flags & ALLOC_HARDER)
867		min -= min / 4;
868
869	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
870		return 0;
871	for (o = 0; o < order; o++) {
872		/* At the next order, this order's pages become unavailable */
873		free_pages -= z->free_area[o].nr_free << o;
874
875		/* Require fewer higher order pages to be free */
876		min >>= 1;
877
878		if (free_pages <= min)
879			return 0;
880	}
881	return 1;
882}
883
884/*
885 * get_page_from_freeliest goes through the zonelist trying to allocate
886 * a page.
887 */
888static struct page *
889get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
890		struct zonelist *zonelist, int alloc_flags)
891{
892	struct zone **z = zonelist->zones;
893	struct page *page = NULL;
894	int classzone_idx = zone_idx(*z);
895	struct zone *zone;
896
897	/*
898	 * Go through the zonelist once, looking for a zone with enough free.
899	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
900	 */
901	do {
902		zone = *z;
903		if (unlikely((gfp_mask & __GFP_THISNODE) &&
904			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
905				break;
906		if ((alloc_flags & ALLOC_CPUSET) &&
907				!cpuset_zone_allowed(zone, gfp_mask))
908			continue;
909
910		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
911			unsigned long mark;
912			if (alloc_flags & ALLOC_WMARK_MIN)
913				mark = zone->pages_min;
914			else if (alloc_flags & ALLOC_WMARK_LOW)
915				mark = zone->pages_low;
916			else
917				mark = zone->pages_high;
918			if (!zone_watermark_ok(zone , order, mark,
919				    classzone_idx, alloc_flags))
920				if (!zone_reclaim_mode ||
921				    !zone_reclaim(zone, gfp_mask, order))
922					continue;
923		}
924
925		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
926		if (page) {
927			break;
928		}
929	} while (*(++z) != NULL);
930	return page;
931}
932
933/*
934 * This is the 'heart' of the zoned buddy allocator.
935 */
936struct page * fastcall
937__alloc_pages(gfp_t gfp_mask, unsigned int order,
938		struct zonelist *zonelist)
939{
940	const gfp_t wait = gfp_mask & __GFP_WAIT;
941	struct zone **z;
942	struct page *page;
943	struct reclaim_state reclaim_state;
944	struct task_struct *p = current;
945	int do_retry;
946	int alloc_flags;
947	int did_some_progress;
948
949	might_sleep_if(wait);
950
951restart:
952	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
953
954	if (unlikely(*z == NULL)) {
955		/* Should this ever happen?? */
956		return NULL;
957	}
958
959	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
960				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
961	if (page)
962		goto got_pg;
963
964	do {
965		wakeup_kswapd(*z, order);
966	} while (*(++z));
967
968	/*
969	 * OK, we're below the kswapd watermark and have kicked background
970	 * reclaim. Now things get more complex, so set up alloc_flags according
971	 * to how we want to proceed.
972	 *
973	 * The caller may dip into page reserves a bit more if the caller
974	 * cannot run direct reclaim, or if the caller has realtime scheduling
975	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
976	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
977	 */
978	alloc_flags = ALLOC_WMARK_MIN;
979	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
980		alloc_flags |= ALLOC_HARDER;
981	if (gfp_mask & __GFP_HIGH)
982		alloc_flags |= ALLOC_HIGH;
983	if (wait)
984		alloc_flags |= ALLOC_CPUSET;
985
986	/*
987	 * Go through the zonelist again. Let __GFP_HIGH and allocations
988	 * coming from realtime tasks go deeper into reserves.
989	 *
990	 * This is the last chance, in general, before the goto nopage.
991	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
992	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
993	 */
994	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
995	if (page)
996		goto got_pg;
997
998	/* This allocation should allow future memory freeing. */
999
1000	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1001			&& !in_interrupt()) {
1002		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1003nofail_alloc:
1004			/* go through the zonelist yet again, ignoring mins */
1005			page = get_page_from_freelist(gfp_mask, order,
1006				zonelist, ALLOC_NO_WATERMARKS);
1007			if (page)
1008				goto got_pg;
1009			if (gfp_mask & __GFP_NOFAIL) {
1010				blk_congestion_wait(WRITE, HZ/50);
1011				goto nofail_alloc;
1012			}
1013		}
1014		goto nopage;
1015	}
1016
1017	/* Atomic allocations - we can't balance anything */
1018	if (!wait)
1019		goto nopage;
1020
1021rebalance:
1022	cond_resched();
1023
1024	/* We now go into synchronous reclaim */
1025	cpuset_memory_pressure_bump();
1026	p->flags |= PF_MEMALLOC;
1027	reclaim_state.reclaimed_slab = 0;
1028	p->reclaim_state = &reclaim_state;
1029
1030	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1031
1032	p->reclaim_state = NULL;
1033	p->flags &= ~PF_MEMALLOC;
1034
1035	cond_resched();
1036
1037	if (likely(did_some_progress)) {
1038		page = get_page_from_freelist(gfp_mask, order,
1039						zonelist, alloc_flags);
1040		if (page)
1041			goto got_pg;
1042	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1043		/*
1044		 * Go through the zonelist yet one more time, keep
1045		 * very high watermark here, this is only to catch
1046		 * a parallel oom killing, we must fail if we're still
1047		 * under heavy pressure.
1048		 */
1049		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1050				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1051		if (page)
1052			goto got_pg;
1053
1054		out_of_memory(zonelist, gfp_mask, order);
1055		goto restart;
1056	}
1057
1058	/*
1059	 * Don't let big-order allocations loop unless the caller explicitly
1060	 * requests that.  Wait for some write requests to complete then retry.
1061	 *
1062	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1063	 * <= 3, but that may not be true in other implementations.
1064	 */
1065	do_retry = 0;
1066	if (!(gfp_mask & __GFP_NORETRY)) {
1067		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1068			do_retry = 1;
1069		if (gfp_mask & __GFP_NOFAIL)
1070			do_retry = 1;
1071	}
1072	if (do_retry) {
1073		blk_congestion_wait(WRITE, HZ/50);
1074		goto rebalance;
1075	}
1076
1077nopage:
1078	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1079		printk(KERN_WARNING "%s: page allocation failure."
1080			" order:%d, mode:0x%x\n",
1081			p->comm, order, gfp_mask);
1082		dump_stack();
1083		show_mem();
1084	}
1085got_pg:
1086	return page;
1087}
1088
1089EXPORT_SYMBOL(__alloc_pages);
1090
1091/*
1092 * Common helper functions.
1093 */
1094fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1095{
1096	struct page * page;
1097	page = alloc_pages(gfp_mask, order);
1098	if (!page)
1099		return 0;
1100	return (unsigned long) page_address(page);
1101}
1102
1103EXPORT_SYMBOL(__get_free_pages);
1104
1105fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1106{
1107	struct page * page;
1108
1109	/*
1110	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1111	 * a highmem page
1112	 */
1113	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1114
1115	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1116	if (page)
1117		return (unsigned long) page_address(page);
1118	return 0;
1119}
1120
1121EXPORT_SYMBOL(get_zeroed_page);
1122
1123void __pagevec_free(struct pagevec *pvec)
1124{
1125	int i = pagevec_count(pvec);
1126
1127	while (--i >= 0)
1128		free_hot_cold_page(pvec->pages[i], pvec->cold);
1129}
1130
1131fastcall void __free_pages(struct page *page, unsigned int order)
1132{
1133	if (put_page_testzero(page)) {
1134		if (order == 0)
1135			free_hot_page(page);
1136		else
1137			__free_pages_ok(page, order);
1138	}
1139}
1140
1141EXPORT_SYMBOL(__free_pages);
1142
1143fastcall void free_pages(unsigned long addr, unsigned int order)
1144{
1145	if (addr != 0) {
1146		VM_BUG_ON(!virt_addr_valid((void *)addr));
1147		__free_pages(virt_to_page((void *)addr), order);
1148	}
1149}
1150
1151EXPORT_SYMBOL(free_pages);
1152
1153/*
1154 * Total amount of free (allocatable) RAM:
1155 */
1156unsigned int nr_free_pages(void)
1157{
1158	unsigned int sum = 0;
1159	struct zone *zone;
1160
1161	for_each_zone(zone)
1162		sum += zone->free_pages;
1163
1164	return sum;
1165}
1166
1167EXPORT_SYMBOL(nr_free_pages);
1168
1169#ifdef CONFIG_NUMA
1170unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1171{
1172	unsigned int sum = 0;
1173	enum zone_type i;
1174
1175	for (i = 0; i < MAX_NR_ZONES; i++)
1176		sum += pgdat->node_zones[i].free_pages;
1177
1178	return sum;
1179}
1180#endif
1181
1182static unsigned int nr_free_zone_pages(int offset)
1183{
1184	/* Just pick one node, since fallback list is circular */
1185	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1186	unsigned int sum = 0;
1187
1188	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1189	struct zone **zonep = zonelist->zones;
1190	struct zone *zone;
1191
1192	for (zone = *zonep++; zone; zone = *zonep++) {
1193		unsigned long size = zone->present_pages;
1194		unsigned long high = zone->pages_high;
1195		if (size > high)
1196			sum += size - high;
1197	}
1198
1199	return sum;
1200}
1201
1202/*
1203 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1204 */
1205unsigned int nr_free_buffer_pages(void)
1206{
1207	return nr_free_zone_pages(gfp_zone(GFP_USER));
1208}
1209
1210/*
1211 * Amount of free RAM allocatable within all zones
1212 */
1213unsigned int nr_free_pagecache_pages(void)
1214{
1215	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1216}
1217#ifdef CONFIG_NUMA
1218static void show_node(struct zone *zone)
1219{
1220	printk("Node %d ", zone->zone_pgdat->node_id);
1221}
1222#else
1223#define show_node(zone)	do { } while (0)
1224#endif
1225
1226void si_meminfo(struct sysinfo *val)
1227{
1228	val->totalram = totalram_pages;
1229	val->sharedram = 0;
1230	val->freeram = nr_free_pages();
1231	val->bufferram = nr_blockdev_pages();
1232	val->totalhigh = totalhigh_pages;
1233	val->freehigh = nr_free_highpages();
1234	val->mem_unit = PAGE_SIZE;
1235}
1236
1237EXPORT_SYMBOL(si_meminfo);
1238
1239#ifdef CONFIG_NUMA
1240void si_meminfo_node(struct sysinfo *val, int nid)
1241{
1242	pg_data_t *pgdat = NODE_DATA(nid);
1243
1244	val->totalram = pgdat->node_present_pages;
1245	val->freeram = nr_free_pages_pgdat(pgdat);
1246#ifdef CONFIG_HIGHMEM
1247	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1248	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1249#else
1250	val->totalhigh = 0;
1251	val->freehigh = 0;
1252#endif
1253	val->mem_unit = PAGE_SIZE;
1254}
1255#endif
1256
1257#define K(x) ((x) << (PAGE_SHIFT-10))
1258
1259/*
1260 * Show free area list (used inside shift_scroll-lock stuff)
1261 * We also calculate the percentage fragmentation. We do this by counting the
1262 * memory on each free list with the exception of the first item on the list.
1263 */
1264void show_free_areas(void)
1265{
1266	int cpu, temperature;
1267	unsigned long active;
1268	unsigned long inactive;
1269	unsigned long free;
1270	struct zone *zone;
1271
1272	for_each_zone(zone) {
1273		show_node(zone);
1274		printk("%s per-cpu:", zone->name);
1275
1276		if (!populated_zone(zone)) {
1277			printk(" empty\n");
1278			continue;
1279		} else
1280			printk("\n");
1281
1282		for_each_online_cpu(cpu) {
1283			struct per_cpu_pageset *pageset;
1284
1285			pageset = zone_pcp(zone, cpu);
1286
1287			for (temperature = 0; temperature < 2; temperature++)
1288				printk("cpu %d %s: high %d, batch %d used:%d\n",
1289					cpu,
1290					temperature ? "cold" : "hot",
1291					pageset->pcp[temperature].high,
1292					pageset->pcp[temperature].batch,
1293					pageset->pcp[temperature].count);
1294		}
1295	}
1296
1297	get_zone_counts(&active, &inactive, &free);
1298
1299	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1300		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1301		active,
1302		inactive,
1303		global_page_state(NR_FILE_DIRTY),
1304		global_page_state(NR_WRITEBACK),
1305		global_page_state(NR_UNSTABLE_NFS),
1306		nr_free_pages(),
1307		global_page_state(NR_SLAB),
1308		global_page_state(NR_FILE_MAPPED),
1309		global_page_state(NR_PAGETABLE));
1310
1311	for_each_zone(zone) {
1312		int i;
1313
1314		show_node(zone);
1315		printk("%s"
1316			" free:%lukB"
1317			" min:%lukB"
1318			" low:%lukB"
1319			" high:%lukB"
1320			" active:%lukB"
1321			" inactive:%lukB"
1322			" present:%lukB"
1323			" pages_scanned:%lu"
1324			" all_unreclaimable? %s"
1325			"\n",
1326			zone->name,
1327			K(zone->free_pages),
1328			K(zone->pages_min),
1329			K(zone->pages_low),
1330			K(zone->pages_high),
1331			K(zone->nr_active),
1332			K(zone->nr_inactive),
1333			K(zone->present_pages),
1334			zone->pages_scanned,
1335			(zone->all_unreclaimable ? "yes" : "no")
1336			);
1337		printk("lowmem_reserve[]:");
1338		for (i = 0; i < MAX_NR_ZONES; i++)
1339			printk(" %lu", zone->lowmem_reserve[i]);
1340		printk("\n");
1341	}
1342
1343	for_each_zone(zone) {
1344 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1345
1346		show_node(zone);
1347		printk("%s: ", zone->name);
1348		if (!populated_zone(zone)) {
1349			printk("empty\n");
1350			continue;
1351		}
1352
1353		spin_lock_irqsave(&zone->lock, flags);
1354		for (order = 0; order < MAX_ORDER; order++) {
1355			nr[order] = zone->free_area[order].nr_free;
1356			total += nr[order] << order;
1357		}
1358		spin_unlock_irqrestore(&zone->lock, flags);
1359		for (order = 0; order < MAX_ORDER; order++)
1360			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1361		printk("= %lukB\n", K(total));
1362	}
1363
1364	show_swap_cache_info();
1365}
1366
1367/*
1368 * Builds allocation fallback zone lists.
1369 *
1370 * Add all populated zones of a node to the zonelist.
1371 */
1372static int __meminit build_zonelists_node(pg_data_t *pgdat,
1373			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1374{
1375	struct zone *zone;
1376
1377	BUG_ON(zone_type >= MAX_NR_ZONES);
1378	zone_type++;
1379
1380	do {
1381		zone_type--;
1382		zone = pgdat->node_zones + zone_type;
1383		if (populated_zone(zone)) {
1384			zonelist->zones[nr_zones++] = zone;
1385			check_highest_zone(zone_type);
1386		}
1387
1388	} while (zone_type);
1389	return nr_zones;
1390}
1391
1392#ifdef CONFIG_NUMA
1393#define MAX_NODE_LOAD (num_online_nodes())
1394static int __meminitdata node_load[MAX_NUMNODES];
1395/**
1396 * find_next_best_node - find the next node that should appear in a given node's fallback list
1397 * @node: node whose fallback list we're appending
1398 * @used_node_mask: nodemask_t of already used nodes
1399 *
1400 * We use a number of factors to determine which is the next node that should
1401 * appear on a given node's fallback list.  The node should not have appeared
1402 * already in @node's fallback list, and it should be the next closest node
1403 * according to the distance array (which contains arbitrary distance values
1404 * from each node to each node in the system), and should also prefer nodes
1405 * with no CPUs, since presumably they'll have very little allocation pressure
1406 * on them otherwise.
1407 * It returns -1 if no node is found.
1408 */
1409static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1410{
1411	int n, val;
1412	int min_val = INT_MAX;
1413	int best_node = -1;
1414
1415	/* Use the local node if we haven't already */
1416	if (!node_isset(node, *used_node_mask)) {
1417		node_set(node, *used_node_mask);
1418		return node;
1419	}
1420
1421	for_each_online_node(n) {
1422		cpumask_t tmp;
1423
1424		/* Don't want a node to appear more than once */
1425		if (node_isset(n, *used_node_mask))
1426			continue;
1427
1428		/* Use the distance array to find the distance */
1429		val = node_distance(node, n);
1430
1431		/* Penalize nodes under us ("prefer the next node") */
1432		val += (n < node);
1433
1434		/* Give preference to headless and unused nodes */
1435		tmp = node_to_cpumask(n);
1436		if (!cpus_empty(tmp))
1437			val += PENALTY_FOR_NODE_WITH_CPUS;
1438
1439		/* Slight preference for less loaded node */
1440		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1441		val += node_load[n];
1442
1443		if (val < min_val) {
1444			min_val = val;
1445			best_node = n;
1446		}
1447	}
1448
1449	if (best_node >= 0)
1450		node_set(best_node, *used_node_mask);
1451
1452	return best_node;
1453}
1454
1455static void __meminit build_zonelists(pg_data_t *pgdat)
1456{
1457	int j, node, local_node;
1458	enum zone_type i;
1459	int prev_node, load;
1460	struct zonelist *zonelist;
1461	nodemask_t used_mask;
1462
1463	/* initialize zonelists */
1464	for (i = 0; i < MAX_NR_ZONES; i++) {
1465		zonelist = pgdat->node_zonelists + i;
1466		zonelist->zones[0] = NULL;
1467	}
1468
1469	/* NUMA-aware ordering of nodes */
1470	local_node = pgdat->node_id;
1471	load = num_online_nodes();
1472	prev_node = local_node;
1473	nodes_clear(used_mask);
1474	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1475		int distance = node_distance(local_node, node);
1476
1477		/*
1478		 * If another node is sufficiently far away then it is better
1479		 * to reclaim pages in a zone before going off node.
1480		 */
1481		if (distance > RECLAIM_DISTANCE)
1482			zone_reclaim_mode = 1;
1483
1484		/*
1485		 * We don't want to pressure a particular node.
1486		 * So adding penalty to the first node in same
1487		 * distance group to make it round-robin.
1488		 */
1489
1490		if (distance != node_distance(local_node, prev_node))
1491			node_load[node] += load;
1492		prev_node = node;
1493		load--;
1494		for (i = 0; i < MAX_NR_ZONES; i++) {
1495			zonelist = pgdat->node_zonelists + i;
1496			for (j = 0; zonelist->zones[j] != NULL; j++);
1497
1498	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1499			zonelist->zones[j] = NULL;
1500		}
1501	}
1502}
1503
1504#else	/* CONFIG_NUMA */
1505
1506static void __meminit build_zonelists(pg_data_t *pgdat)
1507{
1508	int node, local_node;
1509	enum zone_type i,j;
1510
1511	local_node = pgdat->node_id;
1512	for (i = 0; i < MAX_NR_ZONES; i++) {
1513		struct zonelist *zonelist;
1514
1515		zonelist = pgdat->node_zonelists + i;
1516
1517 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1518 		/*
1519 		 * Now we build the zonelist so that it contains the zones
1520 		 * of all the other nodes.
1521 		 * We don't want to pressure a particular node, so when
1522 		 * building the zones for node N, we make sure that the
1523 		 * zones coming right after the local ones are those from
1524 		 * node N+1 (modulo N)
1525 		 */
1526		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1527			if (!node_online(node))
1528				continue;
1529			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1530		}
1531		for (node = 0; node < local_node; node++) {
1532			if (!node_online(node))
1533				continue;
1534			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1535		}
1536
1537		zonelist->zones[j] = NULL;
1538	}
1539}
1540
1541#endif	/* CONFIG_NUMA */
1542
1543/* return values int ....just for stop_machine_run() */
1544static int __meminit __build_all_zonelists(void *dummy)
1545{
1546	int nid;
1547	for_each_online_node(nid)
1548		build_zonelists(NODE_DATA(nid));
1549	return 0;
1550}
1551
1552void __meminit build_all_zonelists(void)
1553{
1554	if (system_state == SYSTEM_BOOTING) {
1555		__build_all_zonelists(0);
1556		cpuset_init_current_mems_allowed();
1557	} else {
1558		/* we have to stop all cpus to guaranntee there is no user
1559		   of zonelist */
1560		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1561		/* cpuset refresh routine should be here */
1562	}
1563	vm_total_pages = nr_free_pagecache_pages();
1564	printk("Built %i zonelists.  Total pages: %ld\n",
1565			num_online_nodes(), vm_total_pages);
1566}
1567
1568/*
1569 * Helper functions to size the waitqueue hash table.
1570 * Essentially these want to choose hash table sizes sufficiently
1571 * large so that collisions trying to wait on pages are rare.
1572 * But in fact, the number of active page waitqueues on typical
1573 * systems is ridiculously low, less than 200. So this is even
1574 * conservative, even though it seems large.
1575 *
1576 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1577 * waitqueues, i.e. the size of the waitq table given the number of pages.
1578 */
1579#define PAGES_PER_WAITQUEUE	256
1580
1581#ifndef CONFIG_MEMORY_HOTPLUG
1582static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1583{
1584	unsigned long size = 1;
1585
1586	pages /= PAGES_PER_WAITQUEUE;
1587
1588	while (size < pages)
1589		size <<= 1;
1590
1591	/*
1592	 * Once we have dozens or even hundreds of threads sleeping
1593	 * on IO we've got bigger problems than wait queue collision.
1594	 * Limit the size of the wait table to a reasonable size.
1595	 */
1596	size = min(size, 4096UL);
1597
1598	return max(size, 4UL);
1599}
1600#else
1601/*
1602 * A zone's size might be changed by hot-add, so it is not possible to determine
1603 * a suitable size for its wait_table.  So we use the maximum size now.
1604 *
1605 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1606 *
1607 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1608 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1609 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1610 *
1611 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1612 * or more by the traditional way. (See above).  It equals:
1613 *
1614 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1615 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1616 *    powerpc (64K page size)             : =  (32G +16M)byte.
1617 */
1618static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1619{
1620	return 4096UL;
1621}
1622#endif
1623
1624/*
1625 * This is an integer logarithm so that shifts can be used later
1626 * to extract the more random high bits from the multiplicative
1627 * hash function before the remainder is taken.
1628 */
1629static inline unsigned long wait_table_bits(unsigned long size)
1630{
1631	return ffz(~size);
1632}
1633
1634#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1635
1636static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1637		unsigned long *zones_size, unsigned long *zholes_size)
1638{
1639	unsigned long realtotalpages, totalpages = 0;
1640	enum zone_type i;
1641
1642	for (i = 0; i < MAX_NR_ZONES; i++)
1643		totalpages += zones_size[i];
1644	pgdat->node_spanned_pages = totalpages;
1645
1646	realtotalpages = totalpages;
1647	if (zholes_size)
1648		for (i = 0; i < MAX_NR_ZONES; i++)
1649			realtotalpages -= zholes_size[i];
1650	pgdat->node_present_pages = realtotalpages;
1651	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1652}
1653
1654
1655/*
1656 * Initially all pages are reserved - free ones are freed
1657 * up by free_all_bootmem() once the early boot process is
1658 * done. Non-atomic initialization, single-pass.
1659 */
1660void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1661		unsigned long start_pfn)
1662{
1663	struct page *page;
1664	unsigned long end_pfn = start_pfn + size;
1665	unsigned long pfn;
1666
1667	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1668		if (!early_pfn_valid(pfn))
1669			continue;
1670		page = pfn_to_page(pfn);
1671		set_page_links(page, zone, nid, pfn);
1672		init_page_count(page);
1673		reset_page_mapcount(page);
1674		SetPageReserved(page);
1675		INIT_LIST_HEAD(&page->lru);
1676#ifdef WANT_PAGE_VIRTUAL
1677		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1678		if (!is_highmem_idx(zone))
1679			set_page_address(page, __va(pfn << PAGE_SHIFT));
1680#endif
1681	}
1682}
1683
1684void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1685				unsigned long size)
1686{
1687	int order;
1688	for (order = 0; order < MAX_ORDER ; order++) {
1689		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1690		zone->free_area[order].nr_free = 0;
1691	}
1692}
1693
1694#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1695void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1696		unsigned long pfn, unsigned long size)
1697{
1698	unsigned long snum = pfn_to_section_nr(pfn);
1699	unsigned long end = pfn_to_section_nr(pfn + size);
1700
1701	if (FLAGS_HAS_NODE)
1702		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1703	else
1704		for (; snum <= end; snum++)
1705			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1706}
1707
1708#ifndef __HAVE_ARCH_MEMMAP_INIT
1709#define memmap_init(size, nid, zone, start_pfn) \
1710	memmap_init_zone((size), (nid), (zone), (start_pfn))
1711#endif
1712
1713static int __cpuinit zone_batchsize(struct zone *zone)
1714{
1715	int batch;
1716
1717	/*
1718	 * The per-cpu-pages pools are set to around 1000th of the
1719	 * size of the zone.  But no more than 1/2 of a meg.
1720	 *
1721	 * OK, so we don't know how big the cache is.  So guess.
1722	 */
1723	batch = zone->present_pages / 1024;
1724	if (batch * PAGE_SIZE > 512 * 1024)
1725		batch = (512 * 1024) / PAGE_SIZE;
1726	batch /= 4;		/* We effectively *= 4 below */
1727	if (batch < 1)
1728		batch = 1;
1729
1730	/*
1731	 * Clamp the batch to a 2^n - 1 value. Having a power
1732	 * of 2 value was found to be more likely to have
1733	 * suboptimal cache aliasing properties in some cases.
1734	 *
1735	 * For example if 2 tasks are alternately allocating
1736	 * batches of pages, one task can end up with a lot
1737	 * of pages of one half of the possible page colors
1738	 * and the other with pages of the other colors.
1739	 */
1740	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1741
1742	return batch;
1743}
1744
1745inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1746{
1747	struct per_cpu_pages *pcp;
1748
1749	memset(p, 0, sizeof(*p));
1750
1751	pcp = &p->pcp[0];		/* hot */
1752	pcp->count = 0;
1753	pcp->high = 6 * batch;
1754	pcp->batch = max(1UL, 1 * batch);
1755	INIT_LIST_HEAD(&pcp->list);
1756
1757	pcp = &p->pcp[1];		/* cold*/
1758	pcp->count = 0;
1759	pcp->high = 2 * batch;
1760	pcp->batch = max(1UL, batch/2);
1761	INIT_LIST_HEAD(&pcp->list);
1762}
1763
1764/*
1765 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1766 * to the value high for the pageset p.
1767 */
1768
1769static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1770				unsigned long high)
1771{
1772	struct per_cpu_pages *pcp;
1773
1774	pcp = &p->pcp[0]; /* hot list */
1775	pcp->high = high;
1776	pcp->batch = max(1UL, high/4);
1777	if ((high/4) > (PAGE_SHIFT * 8))
1778		pcp->batch = PAGE_SHIFT * 8;
1779}
1780
1781
1782#ifdef CONFIG_NUMA
1783/*
1784 * Boot pageset table. One per cpu which is going to be used for all
1785 * zones and all nodes. The parameters will be set in such a way
1786 * that an item put on a list will immediately be handed over to
1787 * the buddy list. This is safe since pageset manipulation is done
1788 * with interrupts disabled.
1789 *
1790 * Some NUMA counter updates may also be caught by the boot pagesets.
1791 *
1792 * The boot_pagesets must be kept even after bootup is complete for
1793 * unused processors and/or zones. They do play a role for bootstrapping
1794 * hotplugged processors.
1795 *
1796 * zoneinfo_show() and maybe other functions do
1797 * not check if the processor is online before following the pageset pointer.
1798 * Other parts of the kernel may not check if the zone is available.
1799 */
1800static struct per_cpu_pageset boot_pageset[NR_CPUS];
1801
1802/*
1803 * Dynamically allocate memory for the
1804 * per cpu pageset array in struct zone.
1805 */
1806static int __cpuinit process_zones(int cpu)
1807{
1808	struct zone *zone, *dzone;
1809
1810	for_each_zone(zone) {
1811
1812		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1813					 GFP_KERNEL, cpu_to_node(cpu));
1814		if (!zone_pcp(zone, cpu))
1815			goto bad;
1816
1817		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1818
1819		if (percpu_pagelist_fraction)
1820			setup_pagelist_highmark(zone_pcp(zone, cpu),
1821			 	(zone->present_pages / percpu_pagelist_fraction));
1822	}
1823
1824	return 0;
1825bad:
1826	for_each_zone(dzone) {
1827		if (dzone == zone)
1828			break;
1829		kfree(zone_pcp(dzone, cpu));
1830		zone_pcp(dzone, cpu) = NULL;
1831	}
1832	return -ENOMEM;
1833}
1834
1835static inline void free_zone_pagesets(int cpu)
1836{
1837	struct zone *zone;
1838
1839	for_each_zone(zone) {
1840		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1841
1842		/* Free per_cpu_pageset if it is slab allocated */
1843		if (pset != &boot_pageset[cpu])
1844			kfree(pset);
1845		zone_pcp(zone, cpu) = NULL;
1846	}
1847}
1848
1849static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1850		unsigned long action,
1851		void *hcpu)
1852{
1853	int cpu = (long)hcpu;
1854	int ret = NOTIFY_OK;
1855
1856	switch (action) {
1857		case CPU_UP_PREPARE:
1858			if (process_zones(cpu))
1859				ret = NOTIFY_BAD;
1860			break;
1861		case CPU_UP_CANCELED:
1862		case CPU_DEAD:
1863			free_zone_pagesets(cpu);
1864			break;
1865		default:
1866			break;
1867	}
1868	return ret;
1869}
1870
1871static struct notifier_block __cpuinitdata pageset_notifier =
1872	{ &pageset_cpuup_callback, NULL, 0 };
1873
1874void __init setup_per_cpu_pageset(void)
1875{
1876	int err;
1877
1878	/* Initialize per_cpu_pageset for cpu 0.
1879	 * A cpuup callback will do this for every cpu
1880	 * as it comes online
1881	 */
1882	err = process_zones(smp_processor_id());
1883	BUG_ON(err);
1884	register_cpu_notifier(&pageset_notifier);
1885}
1886
1887#endif
1888
1889static __meminit
1890int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1891{
1892	int i;
1893	struct pglist_data *pgdat = zone->zone_pgdat;
1894	size_t alloc_size;
1895
1896	/*
1897	 * The per-page waitqueue mechanism uses hashed waitqueues
1898	 * per zone.
1899	 */
1900	zone->wait_table_hash_nr_entries =
1901		 wait_table_hash_nr_entries(zone_size_pages);
1902	zone->wait_table_bits =
1903		wait_table_bits(zone->wait_table_hash_nr_entries);
1904	alloc_size = zone->wait_table_hash_nr_entries
1905					* sizeof(wait_queue_head_t);
1906
1907 	if (system_state == SYSTEM_BOOTING) {
1908		zone->wait_table = (wait_queue_head_t *)
1909			alloc_bootmem_node(pgdat, alloc_size);
1910	} else {
1911		/*
1912		 * This case means that a zone whose size was 0 gets new memory
1913		 * via memory hot-add.
1914		 * But it may be the case that a new node was hot-added.  In
1915		 * this case vmalloc() will not be able to use this new node's
1916		 * memory - this wait_table must be initialized to use this new
1917		 * node itself as well.
1918		 * To use this new node's memory, further consideration will be
1919		 * necessary.
1920		 */
1921		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1922	}
1923	if (!zone->wait_table)
1924		return -ENOMEM;
1925
1926	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1927		init_waitqueue_head(zone->wait_table + i);
1928
1929	return 0;
1930}
1931
1932static __meminit void zone_pcp_init(struct zone *zone)
1933{
1934	int cpu;
1935	unsigned long batch = zone_batchsize(zone);
1936
1937	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1938#ifdef CONFIG_NUMA
1939		/* Early boot. Slab allocator not functional yet */
1940		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1941		setup_pageset(&boot_pageset[cpu],0);
1942#else
1943		setup_pageset(zone_pcp(zone,cpu), batch);
1944#endif
1945	}
1946	if (zone->present_pages)
1947		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1948			zone->name, zone->present_pages, batch);
1949}
1950
1951__meminit int init_currently_empty_zone(struct zone *zone,
1952					unsigned long zone_start_pfn,
1953					unsigned long size)
1954{
1955	struct pglist_data *pgdat = zone->zone_pgdat;
1956	int ret;
1957	ret = zone_wait_table_init(zone, size);
1958	if (ret)
1959		return ret;
1960	pgdat->nr_zones = zone_idx(zone) + 1;
1961
1962	zone->zone_start_pfn = zone_start_pfn;
1963
1964	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1965
1966	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1967
1968	return 0;
1969}
1970
1971/*
1972 * Set up the zone data structures:
1973 *   - mark all pages reserved
1974 *   - mark all memory queues empty
1975 *   - clear the memory bitmaps
1976 */
1977static void __meminit free_area_init_core(struct pglist_data *pgdat,
1978		unsigned long *zones_size, unsigned long *zholes_size)
1979{
1980	enum zone_type j;
1981	int nid = pgdat->node_id;
1982	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1983	int ret;
1984
1985	pgdat_resize_init(pgdat);
1986	pgdat->nr_zones = 0;
1987	init_waitqueue_head(&pgdat->kswapd_wait);
1988	pgdat->kswapd_max_order = 0;
1989
1990	for (j = 0; j < MAX_NR_ZONES; j++) {
1991		struct zone *zone = pgdat->node_zones + j;
1992		unsigned long size, realsize;
1993
1994		realsize = size = zones_size[j];
1995		if (zholes_size)
1996			realsize -= zholes_size[j];
1997
1998		if (!is_highmem_idx(j))
1999			nr_kernel_pages += realsize;
2000		nr_all_pages += realsize;
2001
2002		zone->spanned_pages = size;
2003		zone->present_pages = realsize;
2004#ifdef CONFIG_NUMA
2005		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2006						/ 100;
2007#endif
2008		zone->name = zone_names[j];
2009		spin_lock_init(&zone->lock);
2010		spin_lock_init(&zone->lru_lock);
2011		zone_seqlock_init(zone);
2012		zone->zone_pgdat = pgdat;
2013		zone->free_pages = 0;
2014
2015		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2016
2017		zone_pcp_init(zone);
2018		INIT_LIST_HEAD(&zone->active_list);
2019		INIT_LIST_HEAD(&zone->inactive_list);
2020		zone->nr_scan_active = 0;
2021		zone->nr_scan_inactive = 0;
2022		zone->nr_active = 0;
2023		zone->nr_inactive = 0;
2024		zap_zone_vm_stats(zone);
2025		atomic_set(&zone->reclaim_in_progress, 0);
2026		if (!size)
2027			continue;
2028
2029		zonetable_add(zone, nid, j, zone_start_pfn, size);
2030		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2031		BUG_ON(ret);
2032		zone_start_pfn += size;
2033	}
2034}
2035
2036static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2037{
2038	/* Skip empty nodes */
2039	if (!pgdat->node_spanned_pages)
2040		return;
2041
2042#ifdef CONFIG_FLAT_NODE_MEM_MAP
2043	/* ia64 gets its own node_mem_map, before this, without bootmem */
2044	if (!pgdat->node_mem_map) {
2045		unsigned long size, start, end;
2046		struct page *map;
2047
2048		/*
2049		 * The zone's endpoints aren't required to be MAX_ORDER
2050		 * aligned but the node_mem_map endpoints must be in order
2051		 * for the buddy allocator to function correctly.
2052		 */
2053		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2054		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2055		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2056		size =  (end - start) * sizeof(struct page);
2057		map = alloc_remap(pgdat->node_id, size);
2058		if (!map)
2059			map = alloc_bootmem_node(pgdat, size);
2060		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2061	}
2062#ifdef CONFIG_FLATMEM
2063	/*
2064	 * With no DISCONTIG, the global mem_map is just set as node 0's
2065	 */
2066	if (pgdat == NODE_DATA(0))
2067		mem_map = NODE_DATA(0)->node_mem_map;
2068#endif
2069#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2070}
2071
2072void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2073		unsigned long *zones_size, unsigned long node_start_pfn,
2074		unsigned long *zholes_size)
2075{
2076	pgdat->node_id = nid;
2077	pgdat->node_start_pfn = node_start_pfn;
2078	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2079
2080	alloc_node_mem_map(pgdat);
2081
2082	free_area_init_core(pgdat, zones_size, zholes_size);
2083}
2084
2085#ifndef CONFIG_NEED_MULTIPLE_NODES
2086static bootmem_data_t contig_bootmem_data;
2087struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2088
2089EXPORT_SYMBOL(contig_page_data);
2090#endif
2091
2092void __init free_area_init(unsigned long *zones_size)
2093{
2094	free_area_init_node(0, NODE_DATA(0), zones_size,
2095			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2096}
2097
2098#ifdef CONFIG_HOTPLUG_CPU
2099static int page_alloc_cpu_notify(struct notifier_block *self,
2100				 unsigned long action, void *hcpu)
2101{
2102	int cpu = (unsigned long)hcpu;
2103
2104	if (action == CPU_DEAD) {
2105		local_irq_disable();
2106		__drain_pages(cpu);
2107		vm_events_fold_cpu(cpu);
2108		local_irq_enable();
2109		refresh_cpu_vm_stats(cpu);
2110	}
2111	return NOTIFY_OK;
2112}
2113#endif /* CONFIG_HOTPLUG_CPU */
2114
2115void __init page_alloc_init(void)
2116{
2117	hotcpu_notifier(page_alloc_cpu_notify, 0);
2118}
2119
2120/*
2121 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2122 *	or min_free_kbytes changes.
2123 */
2124static void calculate_totalreserve_pages(void)
2125{
2126	struct pglist_data *pgdat;
2127	unsigned long reserve_pages = 0;
2128	enum zone_type i, j;
2129
2130	for_each_online_pgdat(pgdat) {
2131		for (i = 0; i < MAX_NR_ZONES; i++) {
2132			struct zone *zone = pgdat->node_zones + i;
2133			unsigned long max = 0;
2134
2135			/* Find valid and maximum lowmem_reserve in the zone */
2136			for (j = i; j < MAX_NR_ZONES; j++) {
2137				if (zone->lowmem_reserve[j] > max)
2138					max = zone->lowmem_reserve[j];
2139			}
2140
2141			/* we treat pages_high as reserved pages. */
2142			max += zone->pages_high;
2143
2144			if (max > zone->present_pages)
2145				max = zone->present_pages;
2146			reserve_pages += max;
2147		}
2148	}
2149	totalreserve_pages = reserve_pages;
2150}
2151
2152/*
2153 * setup_per_zone_lowmem_reserve - called whenever
2154 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2155 *	has a correct pages reserved value, so an adequate number of
2156 *	pages are left in the zone after a successful __alloc_pages().
2157 */
2158static void setup_per_zone_lowmem_reserve(void)
2159{
2160	struct pglist_data *pgdat;
2161	enum zone_type j, idx;
2162
2163	for_each_online_pgdat(pgdat) {
2164		for (j = 0; j < MAX_NR_ZONES; j++) {
2165			struct zone *zone = pgdat->node_zones + j;
2166			unsigned long present_pages = zone->present_pages;
2167
2168			zone->lowmem_reserve[j] = 0;
2169
2170			idx = j;
2171			while (idx) {
2172				struct zone *lower_zone;
2173
2174				idx--;
2175
2176				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2177					sysctl_lowmem_reserve_ratio[idx] = 1;
2178
2179				lower_zone = pgdat->node_zones + idx;
2180				lower_zone->lowmem_reserve[j] = present_pages /
2181					sysctl_lowmem_reserve_ratio[idx];
2182				present_pages += lower_zone->present_pages;
2183			}
2184		}
2185	}
2186
2187	/* update totalreserve_pages */
2188	calculate_totalreserve_pages();
2189}
2190
2191/*
2192 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2193 *	that the pages_{min,low,high} values for each zone are set correctly
2194 *	with respect to min_free_kbytes.
2195 */
2196void setup_per_zone_pages_min(void)
2197{
2198	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2199	unsigned long lowmem_pages = 0;
2200	struct zone *zone;
2201	unsigned long flags;
2202
2203	/* Calculate total number of !ZONE_HIGHMEM pages */
2204	for_each_zone(zone) {
2205		if (!is_highmem(zone))
2206			lowmem_pages += zone->present_pages;
2207	}
2208
2209	for_each_zone(zone) {
2210		u64 tmp;
2211
2212		spin_lock_irqsave(&zone->lru_lock, flags);
2213		tmp = (u64)pages_min * zone->present_pages;
2214		do_div(tmp, lowmem_pages);
2215		if (is_highmem(zone)) {
2216			/*
2217			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2218			 * need highmem pages, so cap pages_min to a small
2219			 * value here.
2220			 *
2221			 * The (pages_high-pages_low) and (pages_low-pages_min)
2222			 * deltas controls asynch page reclaim, and so should
2223			 * not be capped for highmem.
2224			 */
2225			int min_pages;
2226
2227			min_pages = zone->present_pages / 1024;
2228			if (min_pages < SWAP_CLUSTER_MAX)
2229				min_pages = SWAP_CLUSTER_MAX;
2230			if (min_pages > 128)
2231				min_pages = 128;
2232			zone->pages_min = min_pages;
2233		} else {
2234			/*
2235			 * If it's a lowmem zone, reserve a number of pages
2236			 * proportionate to the zone's size.
2237			 */
2238			zone->pages_min = tmp;
2239		}
2240
2241		zone->pages_low   = zone->pages_min + (tmp >> 2);
2242		zone->pages_high  = zone->pages_min + (tmp >> 1);
2243		spin_unlock_irqrestore(&zone->lru_lock, flags);
2244	}
2245
2246	/* update totalreserve_pages */
2247	calculate_totalreserve_pages();
2248}
2249
2250/*
2251 * Initialise min_free_kbytes.
2252 *
2253 * For small machines we want it small (128k min).  For large machines
2254 * we want it large (64MB max).  But it is not linear, because network
2255 * bandwidth does not increase linearly with machine size.  We use
2256 *
2257 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2258 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2259 *
2260 * which yields
2261 *
2262 * 16MB:	512k
2263 * 32MB:	724k
2264 * 64MB:	1024k
2265 * 128MB:	1448k
2266 * 256MB:	2048k
2267 * 512MB:	2896k
2268 * 1024MB:	4096k
2269 * 2048MB:	5792k
2270 * 4096MB:	8192k
2271 * 8192MB:	11584k
2272 * 16384MB:	16384k
2273 */
2274static int __init init_per_zone_pages_min(void)
2275{
2276	unsigned long lowmem_kbytes;
2277
2278	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2279
2280	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2281	if (min_free_kbytes < 128)
2282		min_free_kbytes = 128;
2283	if (min_free_kbytes > 65536)
2284		min_free_kbytes = 65536;
2285	setup_per_zone_pages_min();
2286	setup_per_zone_lowmem_reserve();
2287	return 0;
2288}
2289module_init(init_per_zone_pages_min)
2290
2291/*
2292 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2293 *	that we can call two helper functions whenever min_free_kbytes
2294 *	changes.
2295 */
2296int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2297	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2298{
2299	proc_dointvec(table, write, file, buffer, length, ppos);
2300	setup_per_zone_pages_min();
2301	return 0;
2302}
2303
2304#ifdef CONFIG_NUMA
2305int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2306	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2307{
2308	struct zone *zone;
2309	int rc;
2310
2311	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2312	if (rc)
2313		return rc;
2314
2315	for_each_zone(zone)
2316		zone->min_unmapped_pages = (zone->present_pages *
2317				sysctl_min_unmapped_ratio) / 100;
2318	return 0;
2319}
2320#endif
2321
2322/*
2323 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2324 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2325 *	whenever sysctl_lowmem_reserve_ratio changes.
2326 *
2327 * The reserve ratio obviously has absolutely no relation with the
2328 * pages_min watermarks. The lowmem reserve ratio can only make sense
2329 * if in function of the boot time zone sizes.
2330 */
2331int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2332	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2333{
2334	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2335	setup_per_zone_lowmem_reserve();
2336	return 0;
2337}
2338
2339/*
2340 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2341 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2342 * can have before it gets flushed back to buddy allocator.
2343 */
2344
2345int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2346	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2347{
2348	struct zone *zone;
2349	unsigned int cpu;
2350	int ret;
2351
2352	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2353	if (!write || (ret == -EINVAL))
2354		return ret;
2355	for_each_zone(zone) {
2356		for_each_online_cpu(cpu) {
2357			unsigned long  high;
2358			high = zone->present_pages / percpu_pagelist_fraction;
2359			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2360		}
2361	}
2362	return 0;
2363}
2364
2365int hashdist = HASHDIST_DEFAULT;
2366
2367#ifdef CONFIG_NUMA
2368static int __init set_hashdist(char *str)
2369{
2370	if (!str)
2371		return 0;
2372	hashdist = simple_strtoul(str, &str, 0);
2373	return 1;
2374}
2375__setup("hashdist=", set_hashdist);
2376#endif
2377
2378/*
2379 * allocate a large system hash table from bootmem
2380 * - it is assumed that the hash table must contain an exact power-of-2
2381 *   quantity of entries
2382 * - limit is the number of hash buckets, not the total allocation size
2383 */
2384void *__init alloc_large_system_hash(const char *tablename,
2385				     unsigned long bucketsize,
2386				     unsigned long numentries,
2387				     int scale,
2388				     int flags,
2389				     unsigned int *_hash_shift,
2390				     unsigned int *_hash_mask,
2391				     unsigned long limit)
2392{
2393	unsigned long long max = limit;
2394	unsigned long log2qty, size;
2395	void *table = NULL;
2396
2397	/* allow the kernel cmdline to have a say */
2398	if (!numentries) {
2399		/* round applicable memory size up to nearest megabyte */
2400		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2401		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2402		numentries >>= 20 - PAGE_SHIFT;
2403		numentries <<= 20 - PAGE_SHIFT;
2404
2405		/* limit to 1 bucket per 2^scale bytes of low memory */
2406		if (scale > PAGE_SHIFT)
2407			numentries >>= (scale - PAGE_SHIFT);
2408		else
2409			numentries <<= (PAGE_SHIFT - scale);
2410	}
2411	numentries = roundup_pow_of_two(numentries);
2412
2413	/* limit allocation size to 1/16 total memory by default */
2414	if (max == 0) {
2415		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2416		do_div(max, bucketsize);
2417	}
2418
2419	if (numentries > max)
2420		numentries = max;
2421
2422	log2qty = long_log2(numentries);
2423
2424	do {
2425		size = bucketsize << log2qty;
2426		if (flags & HASH_EARLY)
2427			table = alloc_bootmem(size);
2428		else if (hashdist)
2429			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2430		else {
2431			unsigned long order;
2432			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2433				;
2434			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2435		}
2436	} while (!table && size > PAGE_SIZE && --log2qty);
2437
2438	if (!table)
2439		panic("Failed to allocate %s hash table\n", tablename);
2440
2441	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2442	       tablename,
2443	       (1U << log2qty),
2444	       long_log2(size) - PAGE_SHIFT,
2445	       size);
2446
2447	if (_hash_shift)
2448		*_hash_shift = log2qty;
2449	if (_hash_mask)
2450		*_hash_mask = (1 << log2qty) - 1;
2451
2452	return table;
2453}
2454
2455#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2456struct page *pfn_to_page(unsigned long pfn)
2457{
2458	return __pfn_to_page(pfn);
2459}
2460unsigned long page_to_pfn(struct page *page)
2461{
2462	return __page_to_pfn(page);
2463}
2464EXPORT_SYMBOL(pfn_to_page);
2465EXPORT_SYMBOL(page_to_pfn);
2466#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2467