page_alloc.c revision 88393161210493e317ae391696ee8ef463cb3c23
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51#include <linux/memory.h>
52#include <trace/events/kmem.h>
53#include <linux/ftrace_event.h>
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57#include "internal.h"
58
59/*
60 * Array of node states.
61 */
62nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63	[N_POSSIBLE] = NODE_MASK_ALL,
64	[N_ONLINE] = { { [0] = 1UL } },
65#ifndef CONFIG_NUMA
66	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
67#ifdef CONFIG_HIGHMEM
68	[N_HIGH_MEMORY] = { { [0] = 1UL } },
69#endif
70	[N_CPU] = { { [0] = 1UL } },
71#endif	/* NUMA */
72};
73EXPORT_SYMBOL(node_states);
74
75unsigned long totalram_pages __read_mostly;
76unsigned long totalreserve_pages __read_mostly;
77int percpu_pagelist_fraction;
78gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79
80#ifdef CONFIG_PM_SLEEP
81/*
82 * The following functions are used by the suspend/hibernate code to temporarily
83 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
84 * while devices are suspended.  To avoid races with the suspend/hibernate code,
85 * they should always be called with pm_mutex held (gfp_allowed_mask also should
86 * only be modified with pm_mutex held, unless the suspend/hibernate code is
87 * guaranteed not to run in parallel with that modification).
88 */
89void set_gfp_allowed_mask(gfp_t mask)
90{
91	WARN_ON(!mutex_is_locked(&pm_mutex));
92	gfp_allowed_mask = mask;
93}
94
95gfp_t clear_gfp_allowed_mask(gfp_t mask)
96{
97	gfp_t ret = gfp_allowed_mask;
98
99	WARN_ON(!mutex_is_locked(&pm_mutex));
100	gfp_allowed_mask &= ~mask;
101	return ret;
102}
103#endif /* CONFIG_PM_SLEEP */
104
105#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
106int pageblock_order __read_mostly;
107#endif
108
109static void __free_pages_ok(struct page *page, unsigned int order);
110
111/*
112 * results with 256, 32 in the lowmem_reserve sysctl:
113 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
114 *	1G machine -> (16M dma, 784M normal, 224M high)
115 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
116 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
117 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
118 *
119 * TBD: should special case ZONE_DMA32 machines here - in those we normally
120 * don't need any ZONE_NORMAL reservation
121 */
122int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
123#ifdef CONFIG_ZONE_DMA
124	 256,
125#endif
126#ifdef CONFIG_ZONE_DMA32
127	 256,
128#endif
129#ifdef CONFIG_HIGHMEM
130	 32,
131#endif
132	 32,
133};
134
135EXPORT_SYMBOL(totalram_pages);
136
137static char * const zone_names[MAX_NR_ZONES] = {
138#ifdef CONFIG_ZONE_DMA
139	 "DMA",
140#endif
141#ifdef CONFIG_ZONE_DMA32
142	 "DMA32",
143#endif
144	 "Normal",
145#ifdef CONFIG_HIGHMEM
146	 "HighMem",
147#endif
148	 "Movable",
149};
150
151int min_free_kbytes = 1024;
152
153static unsigned long __meminitdata nr_kernel_pages;
154static unsigned long __meminitdata nr_all_pages;
155static unsigned long __meminitdata dma_reserve;
156
157#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
158  /*
159   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
160   * ranges of memory (RAM) that may be registered with add_active_range().
161   * Ranges passed to add_active_range() will be merged if possible
162   * so the number of times add_active_range() can be called is
163   * related to the number of nodes and the number of holes
164   */
165  #ifdef CONFIG_MAX_ACTIVE_REGIONS
166    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
167    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
168  #else
169    #if MAX_NUMNODES >= 32
170      /* If there can be many nodes, allow up to 50 holes per node */
171      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
172    #else
173      /* By default, allow up to 256 distinct regions */
174      #define MAX_ACTIVE_REGIONS 256
175    #endif
176  #endif
177
178  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
179  static int __meminitdata nr_nodemap_entries;
180  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
181  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
182  static unsigned long __initdata required_kernelcore;
183  static unsigned long __initdata required_movablecore;
184  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
185
186  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
187  int movable_zone;
188  EXPORT_SYMBOL(movable_zone);
189#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
190
191#if MAX_NUMNODES > 1
192int nr_node_ids __read_mostly = MAX_NUMNODES;
193int nr_online_nodes __read_mostly = 1;
194EXPORT_SYMBOL(nr_node_ids);
195EXPORT_SYMBOL(nr_online_nodes);
196#endif
197
198int page_group_by_mobility_disabled __read_mostly;
199
200static void set_pageblock_migratetype(struct page *page, int migratetype)
201{
202
203	if (unlikely(page_group_by_mobility_disabled))
204		migratetype = MIGRATE_UNMOVABLE;
205
206	set_pageblock_flags_group(page, (unsigned long)migratetype,
207					PB_migrate, PB_migrate_end);
208}
209
210bool oom_killer_disabled __read_mostly;
211
212#ifdef CONFIG_DEBUG_VM
213static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
214{
215	int ret = 0;
216	unsigned seq;
217	unsigned long pfn = page_to_pfn(page);
218
219	do {
220		seq = zone_span_seqbegin(zone);
221		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
222			ret = 1;
223		else if (pfn < zone->zone_start_pfn)
224			ret = 1;
225	} while (zone_span_seqretry(zone, seq));
226
227	return ret;
228}
229
230static int page_is_consistent(struct zone *zone, struct page *page)
231{
232	if (!pfn_valid_within(page_to_pfn(page)))
233		return 0;
234	if (zone != page_zone(page))
235		return 0;
236
237	return 1;
238}
239/*
240 * Temporary debugging check for pages not lying within a given zone.
241 */
242static int bad_range(struct zone *zone, struct page *page)
243{
244	if (page_outside_zone_boundaries(zone, page))
245		return 1;
246	if (!page_is_consistent(zone, page))
247		return 1;
248
249	return 0;
250}
251#else
252static inline int bad_range(struct zone *zone, struct page *page)
253{
254	return 0;
255}
256#endif
257
258static void bad_page(struct page *page)
259{
260	static unsigned long resume;
261	static unsigned long nr_shown;
262	static unsigned long nr_unshown;
263
264	/* Don't complain about poisoned pages */
265	if (PageHWPoison(page)) {
266		__ClearPageBuddy(page);
267		return;
268	}
269
270	/*
271	 * Allow a burst of 60 reports, then keep quiet for that minute;
272	 * or allow a steady drip of one report per second.
273	 */
274	if (nr_shown == 60) {
275		if (time_before(jiffies, resume)) {
276			nr_unshown++;
277			goto out;
278		}
279		if (nr_unshown) {
280			printk(KERN_ALERT
281			      "BUG: Bad page state: %lu messages suppressed\n",
282				nr_unshown);
283			nr_unshown = 0;
284		}
285		nr_shown = 0;
286	}
287	if (nr_shown++ == 0)
288		resume = jiffies + 60 * HZ;
289
290	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
291		current->comm, page_to_pfn(page));
292	dump_page(page);
293
294	dump_stack();
295out:
296	/* Leave bad fields for debug, except PageBuddy could make trouble */
297	__ClearPageBuddy(page);
298	add_taint(TAINT_BAD_PAGE);
299}
300
301/*
302 * Higher-order pages are called "compound pages".  They are structured thusly:
303 *
304 * The first PAGE_SIZE page is called the "head page".
305 *
306 * The remaining PAGE_SIZE pages are called "tail pages".
307 *
308 * All pages have PG_compound set.  All pages have their ->private pointing at
309 * the head page (even the head page has this).
310 *
311 * The first tail page's ->lru.next holds the address of the compound page's
312 * put_page() function.  Its ->lru.prev holds the order of allocation.
313 * This usage means that zero-order pages may not be compound.
314 */
315
316static void free_compound_page(struct page *page)
317{
318	__free_pages_ok(page, compound_order(page));
319}
320
321void prep_compound_page(struct page *page, unsigned long order)
322{
323	int i;
324	int nr_pages = 1 << order;
325
326	set_compound_page_dtor(page, free_compound_page);
327	set_compound_order(page, order);
328	__SetPageHead(page);
329	for (i = 1; i < nr_pages; i++) {
330		struct page *p = page + i;
331
332		__SetPageTail(p);
333		p->first_page = page;
334	}
335}
336
337static int destroy_compound_page(struct page *page, unsigned long order)
338{
339	int i;
340	int nr_pages = 1 << order;
341	int bad = 0;
342
343	if (unlikely(compound_order(page) != order) ||
344	    unlikely(!PageHead(page))) {
345		bad_page(page);
346		bad++;
347	}
348
349	__ClearPageHead(page);
350
351	for (i = 1; i < nr_pages; i++) {
352		struct page *p = page + i;
353
354		if (unlikely(!PageTail(p) || (p->first_page != page))) {
355			bad_page(page);
356			bad++;
357		}
358		__ClearPageTail(p);
359	}
360
361	return bad;
362}
363
364static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
365{
366	int i;
367
368	/*
369	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
370	 * and __GFP_HIGHMEM from hard or soft interrupt context.
371	 */
372	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
373	for (i = 0; i < (1 << order); i++)
374		clear_highpage(page + i);
375}
376
377static inline void set_page_order(struct page *page, int order)
378{
379	set_page_private(page, order);
380	__SetPageBuddy(page);
381}
382
383static inline void rmv_page_order(struct page *page)
384{
385	__ClearPageBuddy(page);
386	set_page_private(page, 0);
387}
388
389/*
390 * Locate the struct page for both the matching buddy in our
391 * pair (buddy1) and the combined O(n+1) page they form (page).
392 *
393 * 1) Any buddy B1 will have an order O twin B2 which satisfies
394 * the following equation:
395 *     B2 = B1 ^ (1 << O)
396 * For example, if the starting buddy (buddy2) is #8 its order
397 * 1 buddy is #10:
398 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
399 *
400 * 2) Any buddy B will have an order O+1 parent P which
401 * satisfies the following equation:
402 *     P = B & ~(1 << O)
403 *
404 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
405 */
406static inline struct page *
407__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
408{
409	unsigned long buddy_idx = page_idx ^ (1 << order);
410
411	return page + (buddy_idx - page_idx);
412}
413
414static inline unsigned long
415__find_combined_index(unsigned long page_idx, unsigned int order)
416{
417	return (page_idx & ~(1 << order));
418}
419
420/*
421 * This function checks whether a page is free && is the buddy
422 * we can do coalesce a page and its buddy if
423 * (a) the buddy is not in a hole &&
424 * (b) the buddy is in the buddy system &&
425 * (c) a page and its buddy have the same order &&
426 * (d) a page and its buddy are in the same zone.
427 *
428 * For recording whether a page is in the buddy system, we use PG_buddy.
429 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
430 *
431 * For recording page's order, we use page_private(page).
432 */
433static inline int page_is_buddy(struct page *page, struct page *buddy,
434								int order)
435{
436	if (!pfn_valid_within(page_to_pfn(buddy)))
437		return 0;
438
439	if (page_zone_id(page) != page_zone_id(buddy))
440		return 0;
441
442	if (PageBuddy(buddy) && page_order(buddy) == order) {
443		VM_BUG_ON(page_count(buddy) != 0);
444		return 1;
445	}
446	return 0;
447}
448
449/*
450 * Freeing function for a buddy system allocator.
451 *
452 * The concept of a buddy system is to maintain direct-mapped table
453 * (containing bit values) for memory blocks of various "orders".
454 * The bottom level table contains the map for the smallest allocatable
455 * units of memory (here, pages), and each level above it describes
456 * pairs of units from the levels below, hence, "buddies".
457 * At a high level, all that happens here is marking the table entry
458 * at the bottom level available, and propagating the changes upward
459 * as necessary, plus some accounting needed to play nicely with other
460 * parts of the VM system.
461 * At each level, we keep a list of pages, which are heads of continuous
462 * free pages of length of (1 << order) and marked with PG_buddy. Page's
463 * order is recorded in page_private(page) field.
464 * So when we are allocating or freeing one, we can derive the state of the
465 * other.  That is, if we allocate a small block, and both were
466 * free, the remainder of the region must be split into blocks.
467 * If a block is freed, and its buddy is also free, then this
468 * triggers coalescing into a block of larger size.
469 *
470 * -- wli
471 */
472
473static inline void __free_one_page(struct page *page,
474		struct zone *zone, unsigned int order,
475		int migratetype)
476{
477	unsigned long page_idx;
478
479	if (unlikely(PageCompound(page)))
480		if (unlikely(destroy_compound_page(page, order)))
481			return;
482
483	VM_BUG_ON(migratetype == -1);
484
485	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
486
487	VM_BUG_ON(page_idx & ((1 << order) - 1));
488	VM_BUG_ON(bad_range(zone, page));
489
490	while (order < MAX_ORDER-1) {
491		unsigned long combined_idx;
492		struct page *buddy;
493
494		buddy = __page_find_buddy(page, page_idx, order);
495		if (!page_is_buddy(page, buddy, order))
496			break;
497
498		/* Our buddy is free, merge with it and move up one order. */
499		list_del(&buddy->lru);
500		zone->free_area[order].nr_free--;
501		rmv_page_order(buddy);
502		combined_idx = __find_combined_index(page_idx, order);
503		page = page + (combined_idx - page_idx);
504		page_idx = combined_idx;
505		order++;
506	}
507	set_page_order(page, order);
508	list_add(&page->lru,
509		&zone->free_area[order].free_list[migratetype]);
510	zone->free_area[order].nr_free++;
511}
512
513/*
514 * free_page_mlock() -- clean up attempts to free and mlocked() page.
515 * Page should not be on lru, so no need to fix that up.
516 * free_pages_check() will verify...
517 */
518static inline void free_page_mlock(struct page *page)
519{
520	__dec_zone_page_state(page, NR_MLOCK);
521	__count_vm_event(UNEVICTABLE_MLOCKFREED);
522}
523
524static inline int free_pages_check(struct page *page)
525{
526	if (unlikely(page_mapcount(page) |
527		(page->mapping != NULL)  |
528		(atomic_read(&page->_count) != 0) |
529		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
530		bad_page(page);
531		return 1;
532	}
533	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
534		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
535	return 0;
536}
537
538/*
539 * Frees a number of pages from the PCP lists
540 * Assumes all pages on list are in same zone, and of same order.
541 * count is the number of pages to free.
542 *
543 * If the zone was previously in an "all pages pinned" state then look to
544 * see if this freeing clears that state.
545 *
546 * And clear the zone's pages_scanned counter, to hold off the "all pages are
547 * pinned" detection logic.
548 */
549static void free_pcppages_bulk(struct zone *zone, int count,
550					struct per_cpu_pages *pcp)
551{
552	int migratetype = 0;
553	int batch_free = 0;
554
555	spin_lock(&zone->lock);
556	zone->all_unreclaimable = 0;
557	zone->pages_scanned = 0;
558
559	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
560	while (count) {
561		struct page *page;
562		struct list_head *list;
563
564		/*
565		 * Remove pages from lists in a round-robin fashion. A
566		 * batch_free count is maintained that is incremented when an
567		 * empty list is encountered.  This is so more pages are freed
568		 * off fuller lists instead of spinning excessively around empty
569		 * lists
570		 */
571		do {
572			batch_free++;
573			if (++migratetype == MIGRATE_PCPTYPES)
574				migratetype = 0;
575			list = &pcp->lists[migratetype];
576		} while (list_empty(list));
577
578		do {
579			page = list_entry(list->prev, struct page, lru);
580			/* must delete as __free_one_page list manipulates */
581			list_del(&page->lru);
582			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
583			__free_one_page(page, zone, 0, page_private(page));
584			trace_mm_page_pcpu_drain(page, 0, page_private(page));
585		} while (--count && --batch_free && !list_empty(list));
586	}
587	spin_unlock(&zone->lock);
588}
589
590static void free_one_page(struct zone *zone, struct page *page, int order,
591				int migratetype)
592{
593	spin_lock(&zone->lock);
594	zone->all_unreclaimable = 0;
595	zone->pages_scanned = 0;
596
597	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
598	__free_one_page(page, zone, order, migratetype);
599	spin_unlock(&zone->lock);
600}
601
602static void __free_pages_ok(struct page *page, unsigned int order)
603{
604	unsigned long flags;
605	int i;
606	int bad = 0;
607	int wasMlocked = __TestClearPageMlocked(page);
608
609	trace_mm_page_free_direct(page, order);
610	kmemcheck_free_shadow(page, order);
611
612	for (i = 0 ; i < (1 << order) ; ++i)
613		bad += free_pages_check(page + i);
614	if (bad)
615		return;
616
617	if (!PageHighMem(page)) {
618		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
619		debug_check_no_obj_freed(page_address(page),
620					   PAGE_SIZE << order);
621	}
622	arch_free_page(page, order);
623	kernel_map_pages(page, 1 << order, 0);
624
625	local_irq_save(flags);
626	if (unlikely(wasMlocked))
627		free_page_mlock(page);
628	__count_vm_events(PGFREE, 1 << order);
629	free_one_page(page_zone(page), page, order,
630					get_pageblock_migratetype(page));
631	local_irq_restore(flags);
632}
633
634/*
635 * permit the bootmem allocator to evade page validation on high-order frees
636 */
637void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
638{
639	if (order == 0) {
640		__ClearPageReserved(page);
641		set_page_count(page, 0);
642		set_page_refcounted(page);
643		__free_page(page);
644	} else {
645		int loop;
646
647		prefetchw(page);
648		for (loop = 0; loop < BITS_PER_LONG; loop++) {
649			struct page *p = &page[loop];
650
651			if (loop + 1 < BITS_PER_LONG)
652				prefetchw(p + 1);
653			__ClearPageReserved(p);
654			set_page_count(p, 0);
655		}
656
657		set_page_refcounted(page);
658		__free_pages(page, order);
659	}
660}
661
662
663/*
664 * The order of subdivision here is critical for the IO subsystem.
665 * Please do not alter this order without good reasons and regression
666 * testing. Specifically, as large blocks of memory are subdivided,
667 * the order in which smaller blocks are delivered depends on the order
668 * they're subdivided in this function. This is the primary factor
669 * influencing the order in which pages are delivered to the IO
670 * subsystem according to empirical testing, and this is also justified
671 * by considering the behavior of a buddy system containing a single
672 * large block of memory acted on by a series of small allocations.
673 * This behavior is a critical factor in sglist merging's success.
674 *
675 * -- wli
676 */
677static inline void expand(struct zone *zone, struct page *page,
678	int low, int high, struct free_area *area,
679	int migratetype)
680{
681	unsigned long size = 1 << high;
682
683	while (high > low) {
684		area--;
685		high--;
686		size >>= 1;
687		VM_BUG_ON(bad_range(zone, &page[size]));
688		list_add(&page[size].lru, &area->free_list[migratetype]);
689		area->nr_free++;
690		set_page_order(&page[size], high);
691	}
692}
693
694/*
695 * This page is about to be returned from the page allocator
696 */
697static inline int check_new_page(struct page *page)
698{
699	if (unlikely(page_mapcount(page) |
700		(page->mapping != NULL)  |
701		(atomic_read(&page->_count) != 0)  |
702		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
703		bad_page(page);
704		return 1;
705	}
706	return 0;
707}
708
709static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
710{
711	int i;
712
713	for (i = 0; i < (1 << order); i++) {
714		struct page *p = page + i;
715		if (unlikely(check_new_page(p)))
716			return 1;
717	}
718
719	set_page_private(page, 0);
720	set_page_refcounted(page);
721
722	arch_alloc_page(page, order);
723	kernel_map_pages(page, 1 << order, 1);
724
725	if (gfp_flags & __GFP_ZERO)
726		prep_zero_page(page, order, gfp_flags);
727
728	if (order && (gfp_flags & __GFP_COMP))
729		prep_compound_page(page, order);
730
731	return 0;
732}
733
734/*
735 * Go through the free lists for the given migratetype and remove
736 * the smallest available page from the freelists
737 */
738static inline
739struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
740						int migratetype)
741{
742	unsigned int current_order;
743	struct free_area * area;
744	struct page *page;
745
746	/* Find a page of the appropriate size in the preferred list */
747	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
748		area = &(zone->free_area[current_order]);
749		if (list_empty(&area->free_list[migratetype]))
750			continue;
751
752		page = list_entry(area->free_list[migratetype].next,
753							struct page, lru);
754		list_del(&page->lru);
755		rmv_page_order(page);
756		area->nr_free--;
757		expand(zone, page, order, current_order, area, migratetype);
758		return page;
759	}
760
761	return NULL;
762}
763
764
765/*
766 * This array describes the order lists are fallen back to when
767 * the free lists for the desirable migrate type are depleted
768 */
769static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
770	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
771	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
772	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
773	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
774};
775
776/*
777 * Move the free pages in a range to the free lists of the requested type.
778 * Note that start_page and end_pages are not aligned on a pageblock
779 * boundary. If alignment is required, use move_freepages_block()
780 */
781static int move_freepages(struct zone *zone,
782			  struct page *start_page, struct page *end_page,
783			  int migratetype)
784{
785	struct page *page;
786	unsigned long order;
787	int pages_moved = 0;
788
789#ifndef CONFIG_HOLES_IN_ZONE
790	/*
791	 * page_zone is not safe to call in this context when
792	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
793	 * anyway as we check zone boundaries in move_freepages_block().
794	 * Remove at a later date when no bug reports exist related to
795	 * grouping pages by mobility
796	 */
797	BUG_ON(page_zone(start_page) != page_zone(end_page));
798#endif
799
800	for (page = start_page; page <= end_page;) {
801		/* Make sure we are not inadvertently changing nodes */
802		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
803
804		if (!pfn_valid_within(page_to_pfn(page))) {
805			page++;
806			continue;
807		}
808
809		if (!PageBuddy(page)) {
810			page++;
811			continue;
812		}
813
814		order = page_order(page);
815		list_del(&page->lru);
816		list_add(&page->lru,
817			&zone->free_area[order].free_list[migratetype]);
818		page += 1 << order;
819		pages_moved += 1 << order;
820	}
821
822	return pages_moved;
823}
824
825static int move_freepages_block(struct zone *zone, struct page *page,
826				int migratetype)
827{
828	unsigned long start_pfn, end_pfn;
829	struct page *start_page, *end_page;
830
831	start_pfn = page_to_pfn(page);
832	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
833	start_page = pfn_to_page(start_pfn);
834	end_page = start_page + pageblock_nr_pages - 1;
835	end_pfn = start_pfn + pageblock_nr_pages - 1;
836
837	/* Do not cross zone boundaries */
838	if (start_pfn < zone->zone_start_pfn)
839		start_page = page;
840	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
841		return 0;
842
843	return move_freepages(zone, start_page, end_page, migratetype);
844}
845
846static void change_pageblock_range(struct page *pageblock_page,
847					int start_order, int migratetype)
848{
849	int nr_pageblocks = 1 << (start_order - pageblock_order);
850
851	while (nr_pageblocks--) {
852		set_pageblock_migratetype(pageblock_page, migratetype);
853		pageblock_page += pageblock_nr_pages;
854	}
855}
856
857/* Remove an element from the buddy allocator from the fallback list */
858static inline struct page *
859__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
860{
861	struct free_area * area;
862	int current_order;
863	struct page *page;
864	int migratetype, i;
865
866	/* Find the largest possible block of pages in the other list */
867	for (current_order = MAX_ORDER-1; current_order >= order;
868						--current_order) {
869		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
870			migratetype = fallbacks[start_migratetype][i];
871
872			/* MIGRATE_RESERVE handled later if necessary */
873			if (migratetype == MIGRATE_RESERVE)
874				continue;
875
876			area = &(zone->free_area[current_order]);
877			if (list_empty(&area->free_list[migratetype]))
878				continue;
879
880			page = list_entry(area->free_list[migratetype].next,
881					struct page, lru);
882			area->nr_free--;
883
884			/*
885			 * If breaking a large block of pages, move all free
886			 * pages to the preferred allocation list. If falling
887			 * back for a reclaimable kernel allocation, be more
888			 * agressive about taking ownership of free pages
889			 */
890			if (unlikely(current_order >= (pageblock_order >> 1)) ||
891					start_migratetype == MIGRATE_RECLAIMABLE ||
892					page_group_by_mobility_disabled) {
893				unsigned long pages;
894				pages = move_freepages_block(zone, page,
895								start_migratetype);
896
897				/* Claim the whole block if over half of it is free */
898				if (pages >= (1 << (pageblock_order-1)) ||
899						page_group_by_mobility_disabled)
900					set_pageblock_migratetype(page,
901								start_migratetype);
902
903				migratetype = start_migratetype;
904			}
905
906			/* Remove the page from the freelists */
907			list_del(&page->lru);
908			rmv_page_order(page);
909
910			/* Take ownership for orders >= pageblock_order */
911			if (current_order >= pageblock_order)
912				change_pageblock_range(page, current_order,
913							start_migratetype);
914
915			expand(zone, page, order, current_order, area, migratetype);
916
917			trace_mm_page_alloc_extfrag(page, order, current_order,
918				start_migratetype, migratetype);
919
920			return page;
921		}
922	}
923
924	return NULL;
925}
926
927/*
928 * Do the hard work of removing an element from the buddy allocator.
929 * Call me with the zone->lock already held.
930 */
931static struct page *__rmqueue(struct zone *zone, unsigned int order,
932						int migratetype)
933{
934	struct page *page;
935
936retry_reserve:
937	page = __rmqueue_smallest(zone, order, migratetype);
938
939	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
940		page = __rmqueue_fallback(zone, order, migratetype);
941
942		/*
943		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
944		 * is used because __rmqueue_smallest is an inline function
945		 * and we want just one call site
946		 */
947		if (!page) {
948			migratetype = MIGRATE_RESERVE;
949			goto retry_reserve;
950		}
951	}
952
953	trace_mm_page_alloc_zone_locked(page, order, migratetype);
954	return page;
955}
956
957/*
958 * Obtain a specified number of elements from the buddy allocator, all under
959 * a single hold of the lock, for efficiency.  Add them to the supplied list.
960 * Returns the number of new pages which were placed at *list.
961 */
962static int rmqueue_bulk(struct zone *zone, unsigned int order,
963			unsigned long count, struct list_head *list,
964			int migratetype, int cold)
965{
966	int i;
967
968	spin_lock(&zone->lock);
969	for (i = 0; i < count; ++i) {
970		struct page *page = __rmqueue(zone, order, migratetype);
971		if (unlikely(page == NULL))
972			break;
973
974		/*
975		 * Split buddy pages returned by expand() are received here
976		 * in physical page order. The page is added to the callers and
977		 * list and the list head then moves forward. From the callers
978		 * perspective, the linked list is ordered by page number in
979		 * some conditions. This is useful for IO devices that can
980		 * merge IO requests if the physical pages are ordered
981		 * properly.
982		 */
983		if (likely(cold == 0))
984			list_add(&page->lru, list);
985		else
986			list_add_tail(&page->lru, list);
987		set_page_private(page, migratetype);
988		list = &page->lru;
989	}
990	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
991	spin_unlock(&zone->lock);
992	return i;
993}
994
995#ifdef CONFIG_NUMA
996/*
997 * Called from the vmstat counter updater to drain pagesets of this
998 * currently executing processor on remote nodes after they have
999 * expired.
1000 *
1001 * Note that this function must be called with the thread pinned to
1002 * a single processor.
1003 */
1004void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1005{
1006	unsigned long flags;
1007	int to_drain;
1008
1009	local_irq_save(flags);
1010	if (pcp->count >= pcp->batch)
1011		to_drain = pcp->batch;
1012	else
1013		to_drain = pcp->count;
1014	free_pcppages_bulk(zone, to_drain, pcp);
1015	pcp->count -= to_drain;
1016	local_irq_restore(flags);
1017}
1018#endif
1019
1020/*
1021 * Drain pages of the indicated processor.
1022 *
1023 * The processor must either be the current processor and the
1024 * thread pinned to the current processor or a processor that
1025 * is not online.
1026 */
1027static void drain_pages(unsigned int cpu)
1028{
1029	unsigned long flags;
1030	struct zone *zone;
1031
1032	for_each_populated_zone(zone) {
1033		struct per_cpu_pageset *pset;
1034		struct per_cpu_pages *pcp;
1035
1036		local_irq_save(flags);
1037		pset = per_cpu_ptr(zone->pageset, cpu);
1038
1039		pcp = &pset->pcp;
1040		free_pcppages_bulk(zone, pcp->count, pcp);
1041		pcp->count = 0;
1042		local_irq_restore(flags);
1043	}
1044}
1045
1046/*
1047 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1048 */
1049void drain_local_pages(void *arg)
1050{
1051	drain_pages(smp_processor_id());
1052}
1053
1054/*
1055 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1056 */
1057void drain_all_pages(void)
1058{
1059	on_each_cpu(drain_local_pages, NULL, 1);
1060}
1061
1062#ifdef CONFIG_HIBERNATION
1063
1064void mark_free_pages(struct zone *zone)
1065{
1066	unsigned long pfn, max_zone_pfn;
1067	unsigned long flags;
1068	int order, t;
1069	struct list_head *curr;
1070
1071	if (!zone->spanned_pages)
1072		return;
1073
1074	spin_lock_irqsave(&zone->lock, flags);
1075
1076	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1077	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1078		if (pfn_valid(pfn)) {
1079			struct page *page = pfn_to_page(pfn);
1080
1081			if (!swsusp_page_is_forbidden(page))
1082				swsusp_unset_page_free(page);
1083		}
1084
1085	for_each_migratetype_order(order, t) {
1086		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1087			unsigned long i;
1088
1089			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1090			for (i = 0; i < (1UL << order); i++)
1091				swsusp_set_page_free(pfn_to_page(pfn + i));
1092		}
1093	}
1094	spin_unlock_irqrestore(&zone->lock, flags);
1095}
1096#endif /* CONFIG_PM */
1097
1098/*
1099 * Free a 0-order page
1100 * cold == 1 ? free a cold page : free a hot page
1101 */
1102void free_hot_cold_page(struct page *page, int cold)
1103{
1104	struct zone *zone = page_zone(page);
1105	struct per_cpu_pages *pcp;
1106	unsigned long flags;
1107	int migratetype;
1108	int wasMlocked = __TestClearPageMlocked(page);
1109
1110	trace_mm_page_free_direct(page, 0);
1111	kmemcheck_free_shadow(page, 0);
1112
1113	if (PageAnon(page))
1114		page->mapping = NULL;
1115	if (free_pages_check(page))
1116		return;
1117
1118	if (!PageHighMem(page)) {
1119		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1120		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1121	}
1122	arch_free_page(page, 0);
1123	kernel_map_pages(page, 1, 0);
1124
1125	migratetype = get_pageblock_migratetype(page);
1126	set_page_private(page, migratetype);
1127	local_irq_save(flags);
1128	if (unlikely(wasMlocked))
1129		free_page_mlock(page);
1130	__count_vm_event(PGFREE);
1131
1132	/*
1133	 * We only track unmovable, reclaimable and movable on pcp lists.
1134	 * Free ISOLATE pages back to the allocator because they are being
1135	 * offlined but treat RESERVE as movable pages so we can get those
1136	 * areas back if necessary. Otherwise, we may have to free
1137	 * excessively into the page allocator
1138	 */
1139	if (migratetype >= MIGRATE_PCPTYPES) {
1140		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1141			free_one_page(zone, page, 0, migratetype);
1142			goto out;
1143		}
1144		migratetype = MIGRATE_MOVABLE;
1145	}
1146
1147	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1148	if (cold)
1149		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1150	else
1151		list_add(&page->lru, &pcp->lists[migratetype]);
1152	pcp->count++;
1153	if (pcp->count >= pcp->high) {
1154		free_pcppages_bulk(zone, pcp->batch, pcp);
1155		pcp->count -= pcp->batch;
1156	}
1157
1158out:
1159	local_irq_restore(flags);
1160}
1161
1162/*
1163 * split_page takes a non-compound higher-order page, and splits it into
1164 * n (1<<order) sub-pages: page[0..n]
1165 * Each sub-page must be freed individually.
1166 *
1167 * Note: this is probably too low level an operation for use in drivers.
1168 * Please consult with lkml before using this in your driver.
1169 */
1170void split_page(struct page *page, unsigned int order)
1171{
1172	int i;
1173
1174	VM_BUG_ON(PageCompound(page));
1175	VM_BUG_ON(!page_count(page));
1176
1177#ifdef CONFIG_KMEMCHECK
1178	/*
1179	 * Split shadow pages too, because free(page[0]) would
1180	 * otherwise free the whole shadow.
1181	 */
1182	if (kmemcheck_page_is_tracked(page))
1183		split_page(virt_to_page(page[0].shadow), order);
1184#endif
1185
1186	for (i = 1; i < (1 << order); i++)
1187		set_page_refcounted(page + i);
1188}
1189
1190/*
1191 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1192 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1193 * or two.
1194 */
1195static inline
1196struct page *buffered_rmqueue(struct zone *preferred_zone,
1197			struct zone *zone, int order, gfp_t gfp_flags,
1198			int migratetype)
1199{
1200	unsigned long flags;
1201	struct page *page;
1202	int cold = !!(gfp_flags & __GFP_COLD);
1203
1204again:
1205	if (likely(order == 0)) {
1206		struct per_cpu_pages *pcp;
1207		struct list_head *list;
1208
1209		local_irq_save(flags);
1210		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1211		list = &pcp->lists[migratetype];
1212		if (list_empty(list)) {
1213			pcp->count += rmqueue_bulk(zone, 0,
1214					pcp->batch, list,
1215					migratetype, cold);
1216			if (unlikely(list_empty(list)))
1217				goto failed;
1218		}
1219
1220		if (cold)
1221			page = list_entry(list->prev, struct page, lru);
1222		else
1223			page = list_entry(list->next, struct page, lru);
1224
1225		list_del(&page->lru);
1226		pcp->count--;
1227	} else {
1228		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1229			/*
1230			 * __GFP_NOFAIL is not to be used in new code.
1231			 *
1232			 * All __GFP_NOFAIL callers should be fixed so that they
1233			 * properly detect and handle allocation failures.
1234			 *
1235			 * We most definitely don't want callers attempting to
1236			 * allocate greater than order-1 page units with
1237			 * __GFP_NOFAIL.
1238			 */
1239			WARN_ON_ONCE(order > 1);
1240		}
1241		spin_lock_irqsave(&zone->lock, flags);
1242		page = __rmqueue(zone, order, migratetype);
1243		spin_unlock(&zone->lock);
1244		if (!page)
1245			goto failed;
1246		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1247	}
1248
1249	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1250	zone_statistics(preferred_zone, zone);
1251	local_irq_restore(flags);
1252
1253	VM_BUG_ON(bad_range(zone, page));
1254	if (prep_new_page(page, order, gfp_flags))
1255		goto again;
1256	return page;
1257
1258failed:
1259	local_irq_restore(flags);
1260	return NULL;
1261}
1262
1263/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1264#define ALLOC_WMARK_MIN		WMARK_MIN
1265#define ALLOC_WMARK_LOW		WMARK_LOW
1266#define ALLOC_WMARK_HIGH	WMARK_HIGH
1267#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1268
1269/* Mask to get the watermark bits */
1270#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1271
1272#define ALLOC_HARDER		0x10 /* try to alloc harder */
1273#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1274#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1275
1276#ifdef CONFIG_FAIL_PAGE_ALLOC
1277
1278static struct fail_page_alloc_attr {
1279	struct fault_attr attr;
1280
1281	u32 ignore_gfp_highmem;
1282	u32 ignore_gfp_wait;
1283	u32 min_order;
1284
1285#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1286
1287	struct dentry *ignore_gfp_highmem_file;
1288	struct dentry *ignore_gfp_wait_file;
1289	struct dentry *min_order_file;
1290
1291#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1292
1293} fail_page_alloc = {
1294	.attr = FAULT_ATTR_INITIALIZER,
1295	.ignore_gfp_wait = 1,
1296	.ignore_gfp_highmem = 1,
1297	.min_order = 1,
1298};
1299
1300static int __init setup_fail_page_alloc(char *str)
1301{
1302	return setup_fault_attr(&fail_page_alloc.attr, str);
1303}
1304__setup("fail_page_alloc=", setup_fail_page_alloc);
1305
1306static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1307{
1308	if (order < fail_page_alloc.min_order)
1309		return 0;
1310	if (gfp_mask & __GFP_NOFAIL)
1311		return 0;
1312	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1313		return 0;
1314	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1315		return 0;
1316
1317	return should_fail(&fail_page_alloc.attr, 1 << order);
1318}
1319
1320#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1321
1322static int __init fail_page_alloc_debugfs(void)
1323{
1324	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1325	struct dentry *dir;
1326	int err;
1327
1328	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1329				       "fail_page_alloc");
1330	if (err)
1331		return err;
1332	dir = fail_page_alloc.attr.dentries.dir;
1333
1334	fail_page_alloc.ignore_gfp_wait_file =
1335		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1336				      &fail_page_alloc.ignore_gfp_wait);
1337
1338	fail_page_alloc.ignore_gfp_highmem_file =
1339		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1340				      &fail_page_alloc.ignore_gfp_highmem);
1341	fail_page_alloc.min_order_file =
1342		debugfs_create_u32("min-order", mode, dir,
1343				   &fail_page_alloc.min_order);
1344
1345	if (!fail_page_alloc.ignore_gfp_wait_file ||
1346            !fail_page_alloc.ignore_gfp_highmem_file ||
1347            !fail_page_alloc.min_order_file) {
1348		err = -ENOMEM;
1349		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1350		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1351		debugfs_remove(fail_page_alloc.min_order_file);
1352		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1353	}
1354
1355	return err;
1356}
1357
1358late_initcall(fail_page_alloc_debugfs);
1359
1360#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1361
1362#else /* CONFIG_FAIL_PAGE_ALLOC */
1363
1364static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1365{
1366	return 0;
1367}
1368
1369#endif /* CONFIG_FAIL_PAGE_ALLOC */
1370
1371/*
1372 * Return 1 if free pages are above 'mark'. This takes into account the order
1373 * of the allocation.
1374 */
1375int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1376		      int classzone_idx, int alloc_flags)
1377{
1378	/* free_pages my go negative - that's OK */
1379	long min = mark;
1380	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1381	int o;
1382
1383	if (alloc_flags & ALLOC_HIGH)
1384		min -= min / 2;
1385	if (alloc_flags & ALLOC_HARDER)
1386		min -= min / 4;
1387
1388	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1389		return 0;
1390	for (o = 0; o < order; o++) {
1391		/* At the next order, this order's pages become unavailable */
1392		free_pages -= z->free_area[o].nr_free << o;
1393
1394		/* Require fewer higher order pages to be free */
1395		min >>= 1;
1396
1397		if (free_pages <= min)
1398			return 0;
1399	}
1400	return 1;
1401}
1402
1403#ifdef CONFIG_NUMA
1404/*
1405 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1406 * skip over zones that are not allowed by the cpuset, or that have
1407 * been recently (in last second) found to be nearly full.  See further
1408 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1409 * that have to skip over a lot of full or unallowed zones.
1410 *
1411 * If the zonelist cache is present in the passed in zonelist, then
1412 * returns a pointer to the allowed node mask (either the current
1413 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1414 *
1415 * If the zonelist cache is not available for this zonelist, does
1416 * nothing and returns NULL.
1417 *
1418 * If the fullzones BITMAP in the zonelist cache is stale (more than
1419 * a second since last zap'd) then we zap it out (clear its bits.)
1420 *
1421 * We hold off even calling zlc_setup, until after we've checked the
1422 * first zone in the zonelist, on the theory that most allocations will
1423 * be satisfied from that first zone, so best to examine that zone as
1424 * quickly as we can.
1425 */
1426static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1427{
1428	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1429	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1430
1431	zlc = zonelist->zlcache_ptr;
1432	if (!zlc)
1433		return NULL;
1434
1435	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1436		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1437		zlc->last_full_zap = jiffies;
1438	}
1439
1440	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1441					&cpuset_current_mems_allowed :
1442					&node_states[N_HIGH_MEMORY];
1443	return allowednodes;
1444}
1445
1446/*
1447 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1448 * if it is worth looking at further for free memory:
1449 *  1) Check that the zone isn't thought to be full (doesn't have its
1450 *     bit set in the zonelist_cache fullzones BITMAP).
1451 *  2) Check that the zones node (obtained from the zonelist_cache
1452 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1453 * Return true (non-zero) if zone is worth looking at further, or
1454 * else return false (zero) if it is not.
1455 *
1456 * This check -ignores- the distinction between various watermarks,
1457 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1458 * found to be full for any variation of these watermarks, it will
1459 * be considered full for up to one second by all requests, unless
1460 * we are so low on memory on all allowed nodes that we are forced
1461 * into the second scan of the zonelist.
1462 *
1463 * In the second scan we ignore this zonelist cache and exactly
1464 * apply the watermarks to all zones, even it is slower to do so.
1465 * We are low on memory in the second scan, and should leave no stone
1466 * unturned looking for a free page.
1467 */
1468static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1469						nodemask_t *allowednodes)
1470{
1471	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1472	int i;				/* index of *z in zonelist zones */
1473	int n;				/* node that zone *z is on */
1474
1475	zlc = zonelist->zlcache_ptr;
1476	if (!zlc)
1477		return 1;
1478
1479	i = z - zonelist->_zonerefs;
1480	n = zlc->z_to_n[i];
1481
1482	/* This zone is worth trying if it is allowed but not full */
1483	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1484}
1485
1486/*
1487 * Given 'z' scanning a zonelist, set the corresponding bit in
1488 * zlc->fullzones, so that subsequent attempts to allocate a page
1489 * from that zone don't waste time re-examining it.
1490 */
1491static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1492{
1493	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1494	int i;				/* index of *z in zonelist zones */
1495
1496	zlc = zonelist->zlcache_ptr;
1497	if (!zlc)
1498		return;
1499
1500	i = z - zonelist->_zonerefs;
1501
1502	set_bit(i, zlc->fullzones);
1503}
1504
1505#else	/* CONFIG_NUMA */
1506
1507static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1508{
1509	return NULL;
1510}
1511
1512static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1513				nodemask_t *allowednodes)
1514{
1515	return 1;
1516}
1517
1518static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1519{
1520}
1521#endif	/* CONFIG_NUMA */
1522
1523/*
1524 * get_page_from_freelist goes through the zonelist trying to allocate
1525 * a page.
1526 */
1527static struct page *
1528get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1529		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1530		struct zone *preferred_zone, int migratetype)
1531{
1532	struct zoneref *z;
1533	struct page *page = NULL;
1534	int classzone_idx;
1535	struct zone *zone;
1536	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1537	int zlc_active = 0;		/* set if using zonelist_cache */
1538	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1539
1540	classzone_idx = zone_idx(preferred_zone);
1541zonelist_scan:
1542	/*
1543	 * Scan zonelist, looking for a zone with enough free.
1544	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1545	 */
1546	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1547						high_zoneidx, nodemask) {
1548		if (NUMA_BUILD && zlc_active &&
1549			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1550				continue;
1551		if ((alloc_flags & ALLOC_CPUSET) &&
1552			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1553				goto try_next_zone;
1554
1555		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1556		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1557			unsigned long mark;
1558			int ret;
1559
1560			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1561			if (zone_watermark_ok(zone, order, mark,
1562				    classzone_idx, alloc_flags))
1563				goto try_this_zone;
1564
1565			if (zone_reclaim_mode == 0)
1566				goto this_zone_full;
1567
1568			ret = zone_reclaim(zone, gfp_mask, order);
1569			switch (ret) {
1570			case ZONE_RECLAIM_NOSCAN:
1571				/* did not scan */
1572				goto try_next_zone;
1573			case ZONE_RECLAIM_FULL:
1574				/* scanned but unreclaimable */
1575				goto this_zone_full;
1576			default:
1577				/* did we reclaim enough */
1578				if (!zone_watermark_ok(zone, order, mark,
1579						classzone_idx, alloc_flags))
1580					goto this_zone_full;
1581			}
1582		}
1583
1584try_this_zone:
1585		page = buffered_rmqueue(preferred_zone, zone, order,
1586						gfp_mask, migratetype);
1587		if (page)
1588			break;
1589this_zone_full:
1590		if (NUMA_BUILD)
1591			zlc_mark_zone_full(zonelist, z);
1592try_next_zone:
1593		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1594			/*
1595			 * we do zlc_setup after the first zone is tried but only
1596			 * if there are multiple nodes make it worthwhile
1597			 */
1598			allowednodes = zlc_setup(zonelist, alloc_flags);
1599			zlc_active = 1;
1600			did_zlc_setup = 1;
1601		}
1602	}
1603
1604	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1605		/* Disable zlc cache for second zonelist scan */
1606		zlc_active = 0;
1607		goto zonelist_scan;
1608	}
1609	return page;
1610}
1611
1612static inline int
1613should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1614				unsigned long pages_reclaimed)
1615{
1616	/* Do not loop if specifically requested */
1617	if (gfp_mask & __GFP_NORETRY)
1618		return 0;
1619
1620	/*
1621	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1622	 * means __GFP_NOFAIL, but that may not be true in other
1623	 * implementations.
1624	 */
1625	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1626		return 1;
1627
1628	/*
1629	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1630	 * specified, then we retry until we no longer reclaim any pages
1631	 * (above), or we've reclaimed an order of pages at least as
1632	 * large as the allocation's order. In both cases, if the
1633	 * allocation still fails, we stop retrying.
1634	 */
1635	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1636		return 1;
1637
1638	/*
1639	 * Don't let big-order allocations loop unless the caller
1640	 * explicitly requests that.
1641	 */
1642	if (gfp_mask & __GFP_NOFAIL)
1643		return 1;
1644
1645	return 0;
1646}
1647
1648static inline struct page *
1649__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1650	struct zonelist *zonelist, enum zone_type high_zoneidx,
1651	nodemask_t *nodemask, struct zone *preferred_zone,
1652	int migratetype)
1653{
1654	struct page *page;
1655
1656	/* Acquire the OOM killer lock for the zones in zonelist */
1657	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1658		schedule_timeout_uninterruptible(1);
1659		return NULL;
1660	}
1661
1662	/*
1663	 * Go through the zonelist yet one more time, keep very high watermark
1664	 * here, this is only to catch a parallel oom killing, we must fail if
1665	 * we're still under heavy pressure.
1666	 */
1667	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1668		order, zonelist, high_zoneidx,
1669		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1670		preferred_zone, migratetype);
1671	if (page)
1672		goto out;
1673
1674	if (!(gfp_mask & __GFP_NOFAIL)) {
1675		/* The OOM killer will not help higher order allocs */
1676		if (order > PAGE_ALLOC_COSTLY_ORDER)
1677			goto out;
1678		/*
1679		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1680		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1681		 * The caller should handle page allocation failure by itself if
1682		 * it specifies __GFP_THISNODE.
1683		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1684		 */
1685		if (gfp_mask & __GFP_THISNODE)
1686			goto out;
1687	}
1688	/* Exhausted what can be done so it's blamo time */
1689	out_of_memory(zonelist, gfp_mask, order, nodemask);
1690
1691out:
1692	clear_zonelist_oom(zonelist, gfp_mask);
1693	return page;
1694}
1695
1696/* The really slow allocator path where we enter direct reclaim */
1697static inline struct page *
1698__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1699	struct zonelist *zonelist, enum zone_type high_zoneidx,
1700	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1701	int migratetype, unsigned long *did_some_progress)
1702{
1703	struct page *page = NULL;
1704	struct reclaim_state reclaim_state;
1705	struct task_struct *p = current;
1706
1707	cond_resched();
1708
1709	/* We now go into synchronous reclaim */
1710	cpuset_memory_pressure_bump();
1711	p->flags |= PF_MEMALLOC;
1712	lockdep_set_current_reclaim_state(gfp_mask);
1713	reclaim_state.reclaimed_slab = 0;
1714	p->reclaim_state = &reclaim_state;
1715
1716	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1717
1718	p->reclaim_state = NULL;
1719	lockdep_clear_current_reclaim_state();
1720	p->flags &= ~PF_MEMALLOC;
1721
1722	cond_resched();
1723
1724	if (order != 0)
1725		drain_all_pages();
1726
1727	if (likely(*did_some_progress))
1728		page = get_page_from_freelist(gfp_mask, nodemask, order,
1729					zonelist, high_zoneidx,
1730					alloc_flags, preferred_zone,
1731					migratetype);
1732	return page;
1733}
1734
1735/*
1736 * This is called in the allocator slow-path if the allocation request is of
1737 * sufficient urgency to ignore watermarks and take other desperate measures
1738 */
1739static inline struct page *
1740__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1741	struct zonelist *zonelist, enum zone_type high_zoneidx,
1742	nodemask_t *nodemask, struct zone *preferred_zone,
1743	int migratetype)
1744{
1745	struct page *page;
1746
1747	do {
1748		page = get_page_from_freelist(gfp_mask, nodemask, order,
1749			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1750			preferred_zone, migratetype);
1751
1752		if (!page && gfp_mask & __GFP_NOFAIL)
1753			congestion_wait(BLK_RW_ASYNC, HZ/50);
1754	} while (!page && (gfp_mask & __GFP_NOFAIL));
1755
1756	return page;
1757}
1758
1759static inline
1760void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1761						enum zone_type high_zoneidx)
1762{
1763	struct zoneref *z;
1764	struct zone *zone;
1765
1766	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1767		wakeup_kswapd(zone, order);
1768}
1769
1770static inline int
1771gfp_to_alloc_flags(gfp_t gfp_mask)
1772{
1773	struct task_struct *p = current;
1774	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1775	const gfp_t wait = gfp_mask & __GFP_WAIT;
1776
1777	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1778	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1779
1780	/*
1781	 * The caller may dip into page reserves a bit more if the caller
1782	 * cannot run direct reclaim, or if the caller has realtime scheduling
1783	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1784	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1785	 */
1786	alloc_flags |= (gfp_mask & __GFP_HIGH);
1787
1788	if (!wait) {
1789		alloc_flags |= ALLOC_HARDER;
1790		/*
1791		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1792		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1793		 */
1794		alloc_flags &= ~ALLOC_CPUSET;
1795	} else if (unlikely(rt_task(p)) && !in_interrupt())
1796		alloc_flags |= ALLOC_HARDER;
1797
1798	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1799		if (!in_interrupt() &&
1800		    ((p->flags & PF_MEMALLOC) ||
1801		     unlikely(test_thread_flag(TIF_MEMDIE))))
1802			alloc_flags |= ALLOC_NO_WATERMARKS;
1803	}
1804
1805	return alloc_flags;
1806}
1807
1808static inline struct page *
1809__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1810	struct zonelist *zonelist, enum zone_type high_zoneidx,
1811	nodemask_t *nodemask, struct zone *preferred_zone,
1812	int migratetype)
1813{
1814	const gfp_t wait = gfp_mask & __GFP_WAIT;
1815	struct page *page = NULL;
1816	int alloc_flags;
1817	unsigned long pages_reclaimed = 0;
1818	unsigned long did_some_progress;
1819	struct task_struct *p = current;
1820
1821	/*
1822	 * In the slowpath, we sanity check order to avoid ever trying to
1823	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1824	 * be using allocators in order of preference for an area that is
1825	 * too large.
1826	 */
1827	if (order >= MAX_ORDER) {
1828		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1829		return NULL;
1830	}
1831
1832	/*
1833	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1834	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1835	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1836	 * using a larger set of nodes after it has established that the
1837	 * allowed per node queues are empty and that nodes are
1838	 * over allocated.
1839	 */
1840	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1841		goto nopage;
1842
1843restart:
1844	wake_all_kswapd(order, zonelist, high_zoneidx);
1845
1846	/*
1847	 * OK, we're below the kswapd watermark and have kicked background
1848	 * reclaim. Now things get more complex, so set up alloc_flags according
1849	 * to how we want to proceed.
1850	 */
1851	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1852
1853	/* This is the last chance, in general, before the goto nopage. */
1854	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1855			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1856			preferred_zone, migratetype);
1857	if (page)
1858		goto got_pg;
1859
1860rebalance:
1861	/* Allocate without watermarks if the context allows */
1862	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1863		page = __alloc_pages_high_priority(gfp_mask, order,
1864				zonelist, high_zoneidx, nodemask,
1865				preferred_zone, migratetype);
1866		if (page)
1867			goto got_pg;
1868	}
1869
1870	/* Atomic allocations - we can't balance anything */
1871	if (!wait)
1872		goto nopage;
1873
1874	/* Avoid recursion of direct reclaim */
1875	if (p->flags & PF_MEMALLOC)
1876		goto nopage;
1877
1878	/* Avoid allocations with no watermarks from looping endlessly */
1879	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1880		goto nopage;
1881
1882	/* Try direct reclaim and then allocating */
1883	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1884					zonelist, high_zoneidx,
1885					nodemask,
1886					alloc_flags, preferred_zone,
1887					migratetype, &did_some_progress);
1888	if (page)
1889		goto got_pg;
1890
1891	/*
1892	 * If we failed to make any progress reclaiming, then we are
1893	 * running out of options and have to consider going OOM
1894	 */
1895	if (!did_some_progress) {
1896		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1897			if (oom_killer_disabled)
1898				goto nopage;
1899			page = __alloc_pages_may_oom(gfp_mask, order,
1900					zonelist, high_zoneidx,
1901					nodemask, preferred_zone,
1902					migratetype);
1903			if (page)
1904				goto got_pg;
1905
1906			/*
1907			 * The OOM killer does not trigger for high-order
1908			 * ~__GFP_NOFAIL allocations so if no progress is being
1909			 * made, there are no other options and retrying is
1910			 * unlikely to help.
1911			 */
1912			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1913						!(gfp_mask & __GFP_NOFAIL))
1914				goto nopage;
1915
1916			goto restart;
1917		}
1918	}
1919
1920	/* Check if we should retry the allocation */
1921	pages_reclaimed += did_some_progress;
1922	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1923		/* Wait for some write requests to complete then retry */
1924		congestion_wait(BLK_RW_ASYNC, HZ/50);
1925		goto rebalance;
1926	}
1927
1928nopage:
1929	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1930		printk(KERN_WARNING "%s: page allocation failure."
1931			" order:%d, mode:0x%x\n",
1932			p->comm, order, gfp_mask);
1933		dump_stack();
1934		show_mem();
1935	}
1936	return page;
1937got_pg:
1938	if (kmemcheck_enabled)
1939		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1940	return page;
1941
1942}
1943
1944/*
1945 * This is the 'heart' of the zoned buddy allocator.
1946 */
1947struct page *
1948__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1949			struct zonelist *zonelist, nodemask_t *nodemask)
1950{
1951	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1952	struct zone *preferred_zone;
1953	struct page *page;
1954	int migratetype = allocflags_to_migratetype(gfp_mask);
1955
1956	gfp_mask &= gfp_allowed_mask;
1957
1958	lockdep_trace_alloc(gfp_mask);
1959
1960	might_sleep_if(gfp_mask & __GFP_WAIT);
1961
1962	if (should_fail_alloc_page(gfp_mask, order))
1963		return NULL;
1964
1965	/*
1966	 * Check the zones suitable for the gfp_mask contain at least one
1967	 * valid zone. It's possible to have an empty zonelist as a result
1968	 * of GFP_THISNODE and a memoryless node
1969	 */
1970	if (unlikely(!zonelist->_zonerefs->zone))
1971		return NULL;
1972
1973	/* The preferred zone is used for statistics later */
1974	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1975	if (!preferred_zone)
1976		return NULL;
1977
1978	/* First allocation attempt */
1979	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1980			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1981			preferred_zone, migratetype);
1982	if (unlikely(!page))
1983		page = __alloc_pages_slowpath(gfp_mask, order,
1984				zonelist, high_zoneidx, nodemask,
1985				preferred_zone, migratetype);
1986
1987	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1988	return page;
1989}
1990EXPORT_SYMBOL(__alloc_pages_nodemask);
1991
1992/*
1993 * Common helper functions.
1994 */
1995unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1996{
1997	struct page *page;
1998
1999	/*
2000	 * __get_free_pages() returns a 32-bit address, which cannot represent
2001	 * a highmem page
2002	 */
2003	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2004
2005	page = alloc_pages(gfp_mask, order);
2006	if (!page)
2007		return 0;
2008	return (unsigned long) page_address(page);
2009}
2010EXPORT_SYMBOL(__get_free_pages);
2011
2012unsigned long get_zeroed_page(gfp_t gfp_mask)
2013{
2014	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2015}
2016EXPORT_SYMBOL(get_zeroed_page);
2017
2018void __pagevec_free(struct pagevec *pvec)
2019{
2020	int i = pagevec_count(pvec);
2021
2022	while (--i >= 0) {
2023		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2024		free_hot_cold_page(pvec->pages[i], pvec->cold);
2025	}
2026}
2027
2028void __free_pages(struct page *page, unsigned int order)
2029{
2030	if (put_page_testzero(page)) {
2031		if (order == 0)
2032			free_hot_cold_page(page, 0);
2033		else
2034			__free_pages_ok(page, order);
2035	}
2036}
2037
2038EXPORT_SYMBOL(__free_pages);
2039
2040void free_pages(unsigned long addr, unsigned int order)
2041{
2042	if (addr != 0) {
2043		VM_BUG_ON(!virt_addr_valid((void *)addr));
2044		__free_pages(virt_to_page((void *)addr), order);
2045	}
2046}
2047
2048EXPORT_SYMBOL(free_pages);
2049
2050/**
2051 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2052 * @size: the number of bytes to allocate
2053 * @gfp_mask: GFP flags for the allocation
2054 *
2055 * This function is similar to alloc_pages(), except that it allocates the
2056 * minimum number of pages to satisfy the request.  alloc_pages() can only
2057 * allocate memory in power-of-two pages.
2058 *
2059 * This function is also limited by MAX_ORDER.
2060 *
2061 * Memory allocated by this function must be released by free_pages_exact().
2062 */
2063void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2064{
2065	unsigned int order = get_order(size);
2066	unsigned long addr;
2067
2068	addr = __get_free_pages(gfp_mask, order);
2069	if (addr) {
2070		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2071		unsigned long used = addr + PAGE_ALIGN(size);
2072
2073		split_page(virt_to_page((void *)addr), order);
2074		while (used < alloc_end) {
2075			free_page(used);
2076			used += PAGE_SIZE;
2077		}
2078	}
2079
2080	return (void *)addr;
2081}
2082EXPORT_SYMBOL(alloc_pages_exact);
2083
2084/**
2085 * free_pages_exact - release memory allocated via alloc_pages_exact()
2086 * @virt: the value returned by alloc_pages_exact.
2087 * @size: size of allocation, same value as passed to alloc_pages_exact().
2088 *
2089 * Release the memory allocated by a previous call to alloc_pages_exact.
2090 */
2091void free_pages_exact(void *virt, size_t size)
2092{
2093	unsigned long addr = (unsigned long)virt;
2094	unsigned long end = addr + PAGE_ALIGN(size);
2095
2096	while (addr < end) {
2097		free_page(addr);
2098		addr += PAGE_SIZE;
2099	}
2100}
2101EXPORT_SYMBOL(free_pages_exact);
2102
2103static unsigned int nr_free_zone_pages(int offset)
2104{
2105	struct zoneref *z;
2106	struct zone *zone;
2107
2108	/* Just pick one node, since fallback list is circular */
2109	unsigned int sum = 0;
2110
2111	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2112
2113	for_each_zone_zonelist(zone, z, zonelist, offset) {
2114		unsigned long size = zone->present_pages;
2115		unsigned long high = high_wmark_pages(zone);
2116		if (size > high)
2117			sum += size - high;
2118	}
2119
2120	return sum;
2121}
2122
2123/*
2124 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2125 */
2126unsigned int nr_free_buffer_pages(void)
2127{
2128	return nr_free_zone_pages(gfp_zone(GFP_USER));
2129}
2130EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2131
2132/*
2133 * Amount of free RAM allocatable within all zones
2134 */
2135unsigned int nr_free_pagecache_pages(void)
2136{
2137	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2138}
2139
2140static inline void show_node(struct zone *zone)
2141{
2142	if (NUMA_BUILD)
2143		printk("Node %d ", zone_to_nid(zone));
2144}
2145
2146void si_meminfo(struct sysinfo *val)
2147{
2148	val->totalram = totalram_pages;
2149	val->sharedram = 0;
2150	val->freeram = global_page_state(NR_FREE_PAGES);
2151	val->bufferram = nr_blockdev_pages();
2152	val->totalhigh = totalhigh_pages;
2153	val->freehigh = nr_free_highpages();
2154	val->mem_unit = PAGE_SIZE;
2155}
2156
2157EXPORT_SYMBOL(si_meminfo);
2158
2159#ifdef CONFIG_NUMA
2160void si_meminfo_node(struct sysinfo *val, int nid)
2161{
2162	pg_data_t *pgdat = NODE_DATA(nid);
2163
2164	val->totalram = pgdat->node_present_pages;
2165	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2166#ifdef CONFIG_HIGHMEM
2167	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2168	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2169			NR_FREE_PAGES);
2170#else
2171	val->totalhigh = 0;
2172	val->freehigh = 0;
2173#endif
2174	val->mem_unit = PAGE_SIZE;
2175}
2176#endif
2177
2178#define K(x) ((x) << (PAGE_SHIFT-10))
2179
2180/*
2181 * Show free area list (used inside shift_scroll-lock stuff)
2182 * We also calculate the percentage fragmentation. We do this by counting the
2183 * memory on each free list with the exception of the first item on the list.
2184 */
2185void show_free_areas(void)
2186{
2187	int cpu;
2188	struct zone *zone;
2189
2190	for_each_populated_zone(zone) {
2191		show_node(zone);
2192		printk("%s per-cpu:\n", zone->name);
2193
2194		for_each_online_cpu(cpu) {
2195			struct per_cpu_pageset *pageset;
2196
2197			pageset = per_cpu_ptr(zone->pageset, cpu);
2198
2199			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2200			       cpu, pageset->pcp.high,
2201			       pageset->pcp.batch, pageset->pcp.count);
2202		}
2203	}
2204
2205	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2206		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2207		" unevictable:%lu"
2208		" dirty:%lu writeback:%lu unstable:%lu\n"
2209		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2210		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2211		global_page_state(NR_ACTIVE_ANON),
2212		global_page_state(NR_INACTIVE_ANON),
2213		global_page_state(NR_ISOLATED_ANON),
2214		global_page_state(NR_ACTIVE_FILE),
2215		global_page_state(NR_INACTIVE_FILE),
2216		global_page_state(NR_ISOLATED_FILE),
2217		global_page_state(NR_UNEVICTABLE),
2218		global_page_state(NR_FILE_DIRTY),
2219		global_page_state(NR_WRITEBACK),
2220		global_page_state(NR_UNSTABLE_NFS),
2221		global_page_state(NR_FREE_PAGES),
2222		global_page_state(NR_SLAB_RECLAIMABLE),
2223		global_page_state(NR_SLAB_UNRECLAIMABLE),
2224		global_page_state(NR_FILE_MAPPED),
2225		global_page_state(NR_SHMEM),
2226		global_page_state(NR_PAGETABLE),
2227		global_page_state(NR_BOUNCE));
2228
2229	for_each_populated_zone(zone) {
2230		int i;
2231
2232		show_node(zone);
2233		printk("%s"
2234			" free:%lukB"
2235			" min:%lukB"
2236			" low:%lukB"
2237			" high:%lukB"
2238			" active_anon:%lukB"
2239			" inactive_anon:%lukB"
2240			" active_file:%lukB"
2241			" inactive_file:%lukB"
2242			" unevictable:%lukB"
2243			" isolated(anon):%lukB"
2244			" isolated(file):%lukB"
2245			" present:%lukB"
2246			" mlocked:%lukB"
2247			" dirty:%lukB"
2248			" writeback:%lukB"
2249			" mapped:%lukB"
2250			" shmem:%lukB"
2251			" slab_reclaimable:%lukB"
2252			" slab_unreclaimable:%lukB"
2253			" kernel_stack:%lukB"
2254			" pagetables:%lukB"
2255			" unstable:%lukB"
2256			" bounce:%lukB"
2257			" writeback_tmp:%lukB"
2258			" pages_scanned:%lu"
2259			" all_unreclaimable? %s"
2260			"\n",
2261			zone->name,
2262			K(zone_page_state(zone, NR_FREE_PAGES)),
2263			K(min_wmark_pages(zone)),
2264			K(low_wmark_pages(zone)),
2265			K(high_wmark_pages(zone)),
2266			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2267			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2268			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2269			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2270			K(zone_page_state(zone, NR_UNEVICTABLE)),
2271			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2272			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2273			K(zone->present_pages),
2274			K(zone_page_state(zone, NR_MLOCK)),
2275			K(zone_page_state(zone, NR_FILE_DIRTY)),
2276			K(zone_page_state(zone, NR_WRITEBACK)),
2277			K(zone_page_state(zone, NR_FILE_MAPPED)),
2278			K(zone_page_state(zone, NR_SHMEM)),
2279			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2280			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2281			zone_page_state(zone, NR_KERNEL_STACK) *
2282				THREAD_SIZE / 1024,
2283			K(zone_page_state(zone, NR_PAGETABLE)),
2284			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2285			K(zone_page_state(zone, NR_BOUNCE)),
2286			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2287			zone->pages_scanned,
2288			(zone->all_unreclaimable ? "yes" : "no")
2289			);
2290		printk("lowmem_reserve[]:");
2291		for (i = 0; i < MAX_NR_ZONES; i++)
2292			printk(" %lu", zone->lowmem_reserve[i]);
2293		printk("\n");
2294	}
2295
2296	for_each_populated_zone(zone) {
2297 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2298
2299		show_node(zone);
2300		printk("%s: ", zone->name);
2301
2302		spin_lock_irqsave(&zone->lock, flags);
2303		for (order = 0; order < MAX_ORDER; order++) {
2304			nr[order] = zone->free_area[order].nr_free;
2305			total += nr[order] << order;
2306		}
2307		spin_unlock_irqrestore(&zone->lock, flags);
2308		for (order = 0; order < MAX_ORDER; order++)
2309			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2310		printk("= %lukB\n", K(total));
2311	}
2312
2313	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2314
2315	show_swap_cache_info();
2316}
2317
2318static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2319{
2320	zoneref->zone = zone;
2321	zoneref->zone_idx = zone_idx(zone);
2322}
2323
2324/*
2325 * Builds allocation fallback zone lists.
2326 *
2327 * Add all populated zones of a node to the zonelist.
2328 */
2329static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2330				int nr_zones, enum zone_type zone_type)
2331{
2332	struct zone *zone;
2333
2334	BUG_ON(zone_type >= MAX_NR_ZONES);
2335	zone_type++;
2336
2337	do {
2338		zone_type--;
2339		zone = pgdat->node_zones + zone_type;
2340		if (populated_zone(zone)) {
2341			zoneref_set_zone(zone,
2342				&zonelist->_zonerefs[nr_zones++]);
2343			check_highest_zone(zone_type);
2344		}
2345
2346	} while (zone_type);
2347	return nr_zones;
2348}
2349
2350
2351/*
2352 *  zonelist_order:
2353 *  0 = automatic detection of better ordering.
2354 *  1 = order by ([node] distance, -zonetype)
2355 *  2 = order by (-zonetype, [node] distance)
2356 *
2357 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2358 *  the same zonelist. So only NUMA can configure this param.
2359 */
2360#define ZONELIST_ORDER_DEFAULT  0
2361#define ZONELIST_ORDER_NODE     1
2362#define ZONELIST_ORDER_ZONE     2
2363
2364/* zonelist order in the kernel.
2365 * set_zonelist_order() will set this to NODE or ZONE.
2366 */
2367static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2368static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2369
2370
2371#ifdef CONFIG_NUMA
2372/* The value user specified ....changed by config */
2373static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2374/* string for sysctl */
2375#define NUMA_ZONELIST_ORDER_LEN	16
2376char numa_zonelist_order[16] = "default";
2377
2378/*
2379 * interface for configure zonelist ordering.
2380 * command line option "numa_zonelist_order"
2381 *	= "[dD]efault	- default, automatic configuration.
2382 *	= "[nN]ode 	- order by node locality, then by zone within node
2383 *	= "[zZ]one      - order by zone, then by locality within zone
2384 */
2385
2386static int __parse_numa_zonelist_order(char *s)
2387{
2388	if (*s == 'd' || *s == 'D') {
2389		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2390	} else if (*s == 'n' || *s == 'N') {
2391		user_zonelist_order = ZONELIST_ORDER_NODE;
2392	} else if (*s == 'z' || *s == 'Z') {
2393		user_zonelist_order = ZONELIST_ORDER_ZONE;
2394	} else {
2395		printk(KERN_WARNING
2396			"Ignoring invalid numa_zonelist_order value:  "
2397			"%s\n", s);
2398		return -EINVAL;
2399	}
2400	return 0;
2401}
2402
2403static __init int setup_numa_zonelist_order(char *s)
2404{
2405	if (s)
2406		return __parse_numa_zonelist_order(s);
2407	return 0;
2408}
2409early_param("numa_zonelist_order", setup_numa_zonelist_order);
2410
2411/*
2412 * sysctl handler for numa_zonelist_order
2413 */
2414int numa_zonelist_order_handler(ctl_table *table, int write,
2415		void __user *buffer, size_t *length,
2416		loff_t *ppos)
2417{
2418	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2419	int ret;
2420	static DEFINE_MUTEX(zl_order_mutex);
2421
2422	mutex_lock(&zl_order_mutex);
2423	if (write)
2424		strcpy(saved_string, (char*)table->data);
2425	ret = proc_dostring(table, write, buffer, length, ppos);
2426	if (ret)
2427		goto out;
2428	if (write) {
2429		int oldval = user_zonelist_order;
2430		if (__parse_numa_zonelist_order((char*)table->data)) {
2431			/*
2432			 * bogus value.  restore saved string
2433			 */
2434			strncpy((char*)table->data, saved_string,
2435				NUMA_ZONELIST_ORDER_LEN);
2436			user_zonelist_order = oldval;
2437		} else if (oldval != user_zonelist_order)
2438			build_all_zonelists();
2439	}
2440out:
2441	mutex_unlock(&zl_order_mutex);
2442	return ret;
2443}
2444
2445
2446#define MAX_NODE_LOAD (nr_online_nodes)
2447static int node_load[MAX_NUMNODES];
2448
2449/**
2450 * find_next_best_node - find the next node that should appear in a given node's fallback list
2451 * @node: node whose fallback list we're appending
2452 * @used_node_mask: nodemask_t of already used nodes
2453 *
2454 * We use a number of factors to determine which is the next node that should
2455 * appear on a given node's fallback list.  The node should not have appeared
2456 * already in @node's fallback list, and it should be the next closest node
2457 * according to the distance array (which contains arbitrary distance values
2458 * from each node to each node in the system), and should also prefer nodes
2459 * with no CPUs, since presumably they'll have very little allocation pressure
2460 * on them otherwise.
2461 * It returns -1 if no node is found.
2462 */
2463static int find_next_best_node(int node, nodemask_t *used_node_mask)
2464{
2465	int n, val;
2466	int min_val = INT_MAX;
2467	int best_node = -1;
2468	const struct cpumask *tmp = cpumask_of_node(0);
2469
2470	/* Use the local node if we haven't already */
2471	if (!node_isset(node, *used_node_mask)) {
2472		node_set(node, *used_node_mask);
2473		return node;
2474	}
2475
2476	for_each_node_state(n, N_HIGH_MEMORY) {
2477
2478		/* Don't want a node to appear more than once */
2479		if (node_isset(n, *used_node_mask))
2480			continue;
2481
2482		/* Use the distance array to find the distance */
2483		val = node_distance(node, n);
2484
2485		/* Penalize nodes under us ("prefer the next node") */
2486		val += (n < node);
2487
2488		/* Give preference to headless and unused nodes */
2489		tmp = cpumask_of_node(n);
2490		if (!cpumask_empty(tmp))
2491			val += PENALTY_FOR_NODE_WITH_CPUS;
2492
2493		/* Slight preference for less loaded node */
2494		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2495		val += node_load[n];
2496
2497		if (val < min_val) {
2498			min_val = val;
2499			best_node = n;
2500		}
2501	}
2502
2503	if (best_node >= 0)
2504		node_set(best_node, *used_node_mask);
2505
2506	return best_node;
2507}
2508
2509
2510/*
2511 * Build zonelists ordered by node and zones within node.
2512 * This results in maximum locality--normal zone overflows into local
2513 * DMA zone, if any--but risks exhausting DMA zone.
2514 */
2515static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2516{
2517	int j;
2518	struct zonelist *zonelist;
2519
2520	zonelist = &pgdat->node_zonelists[0];
2521	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2522		;
2523	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2524							MAX_NR_ZONES - 1);
2525	zonelist->_zonerefs[j].zone = NULL;
2526	zonelist->_zonerefs[j].zone_idx = 0;
2527}
2528
2529/*
2530 * Build gfp_thisnode zonelists
2531 */
2532static void build_thisnode_zonelists(pg_data_t *pgdat)
2533{
2534	int j;
2535	struct zonelist *zonelist;
2536
2537	zonelist = &pgdat->node_zonelists[1];
2538	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2539	zonelist->_zonerefs[j].zone = NULL;
2540	zonelist->_zonerefs[j].zone_idx = 0;
2541}
2542
2543/*
2544 * Build zonelists ordered by zone and nodes within zones.
2545 * This results in conserving DMA zone[s] until all Normal memory is
2546 * exhausted, but results in overflowing to remote node while memory
2547 * may still exist in local DMA zone.
2548 */
2549static int node_order[MAX_NUMNODES];
2550
2551static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2552{
2553	int pos, j, node;
2554	int zone_type;		/* needs to be signed */
2555	struct zone *z;
2556	struct zonelist *zonelist;
2557
2558	zonelist = &pgdat->node_zonelists[0];
2559	pos = 0;
2560	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2561		for (j = 0; j < nr_nodes; j++) {
2562			node = node_order[j];
2563			z = &NODE_DATA(node)->node_zones[zone_type];
2564			if (populated_zone(z)) {
2565				zoneref_set_zone(z,
2566					&zonelist->_zonerefs[pos++]);
2567				check_highest_zone(zone_type);
2568			}
2569		}
2570	}
2571	zonelist->_zonerefs[pos].zone = NULL;
2572	zonelist->_zonerefs[pos].zone_idx = 0;
2573}
2574
2575static int default_zonelist_order(void)
2576{
2577	int nid, zone_type;
2578	unsigned long low_kmem_size,total_size;
2579	struct zone *z;
2580	int average_size;
2581	/*
2582         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2583	 * If they are really small and used heavily, the system can fall
2584	 * into OOM very easily.
2585	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2586	 */
2587	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2588	low_kmem_size = 0;
2589	total_size = 0;
2590	for_each_online_node(nid) {
2591		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2592			z = &NODE_DATA(nid)->node_zones[zone_type];
2593			if (populated_zone(z)) {
2594				if (zone_type < ZONE_NORMAL)
2595					low_kmem_size += z->present_pages;
2596				total_size += z->present_pages;
2597			}
2598		}
2599	}
2600	if (!low_kmem_size ||  /* there are no DMA area. */
2601	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2602		return ZONELIST_ORDER_NODE;
2603	/*
2604	 * look into each node's config.
2605  	 * If there is a node whose DMA/DMA32 memory is very big area on
2606 	 * local memory, NODE_ORDER may be suitable.
2607         */
2608	average_size = total_size /
2609				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2610	for_each_online_node(nid) {
2611		low_kmem_size = 0;
2612		total_size = 0;
2613		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2614			z = &NODE_DATA(nid)->node_zones[zone_type];
2615			if (populated_zone(z)) {
2616				if (zone_type < ZONE_NORMAL)
2617					low_kmem_size += z->present_pages;
2618				total_size += z->present_pages;
2619			}
2620		}
2621		if (low_kmem_size &&
2622		    total_size > average_size && /* ignore small node */
2623		    low_kmem_size > total_size * 70/100)
2624			return ZONELIST_ORDER_NODE;
2625	}
2626	return ZONELIST_ORDER_ZONE;
2627}
2628
2629static void set_zonelist_order(void)
2630{
2631	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2632		current_zonelist_order = default_zonelist_order();
2633	else
2634		current_zonelist_order = user_zonelist_order;
2635}
2636
2637static void build_zonelists(pg_data_t *pgdat)
2638{
2639	int j, node, load;
2640	enum zone_type i;
2641	nodemask_t used_mask;
2642	int local_node, prev_node;
2643	struct zonelist *zonelist;
2644	int order = current_zonelist_order;
2645
2646	/* initialize zonelists */
2647	for (i = 0; i < MAX_ZONELISTS; i++) {
2648		zonelist = pgdat->node_zonelists + i;
2649		zonelist->_zonerefs[0].zone = NULL;
2650		zonelist->_zonerefs[0].zone_idx = 0;
2651	}
2652
2653	/* NUMA-aware ordering of nodes */
2654	local_node = pgdat->node_id;
2655	load = nr_online_nodes;
2656	prev_node = local_node;
2657	nodes_clear(used_mask);
2658
2659	memset(node_order, 0, sizeof(node_order));
2660	j = 0;
2661
2662	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2663		int distance = node_distance(local_node, node);
2664
2665		/*
2666		 * If another node is sufficiently far away then it is better
2667		 * to reclaim pages in a zone before going off node.
2668		 */
2669		if (distance > RECLAIM_DISTANCE)
2670			zone_reclaim_mode = 1;
2671
2672		/*
2673		 * We don't want to pressure a particular node.
2674		 * So adding penalty to the first node in same
2675		 * distance group to make it round-robin.
2676		 */
2677		if (distance != node_distance(local_node, prev_node))
2678			node_load[node] = load;
2679
2680		prev_node = node;
2681		load--;
2682		if (order == ZONELIST_ORDER_NODE)
2683			build_zonelists_in_node_order(pgdat, node);
2684		else
2685			node_order[j++] = node;	/* remember order */
2686	}
2687
2688	if (order == ZONELIST_ORDER_ZONE) {
2689		/* calculate node order -- i.e., DMA last! */
2690		build_zonelists_in_zone_order(pgdat, j);
2691	}
2692
2693	build_thisnode_zonelists(pgdat);
2694}
2695
2696/* Construct the zonelist performance cache - see further mmzone.h */
2697static void build_zonelist_cache(pg_data_t *pgdat)
2698{
2699	struct zonelist *zonelist;
2700	struct zonelist_cache *zlc;
2701	struct zoneref *z;
2702
2703	zonelist = &pgdat->node_zonelists[0];
2704	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2705	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2706	for (z = zonelist->_zonerefs; z->zone; z++)
2707		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2708}
2709
2710
2711#else	/* CONFIG_NUMA */
2712
2713static void set_zonelist_order(void)
2714{
2715	current_zonelist_order = ZONELIST_ORDER_ZONE;
2716}
2717
2718static void build_zonelists(pg_data_t *pgdat)
2719{
2720	int node, local_node;
2721	enum zone_type j;
2722	struct zonelist *zonelist;
2723
2724	local_node = pgdat->node_id;
2725
2726	zonelist = &pgdat->node_zonelists[0];
2727	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2728
2729	/*
2730	 * Now we build the zonelist so that it contains the zones
2731	 * of all the other nodes.
2732	 * We don't want to pressure a particular node, so when
2733	 * building the zones for node N, we make sure that the
2734	 * zones coming right after the local ones are those from
2735	 * node N+1 (modulo N)
2736	 */
2737	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2738		if (!node_online(node))
2739			continue;
2740		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2741							MAX_NR_ZONES - 1);
2742	}
2743	for (node = 0; node < local_node; node++) {
2744		if (!node_online(node))
2745			continue;
2746		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2747							MAX_NR_ZONES - 1);
2748	}
2749
2750	zonelist->_zonerefs[j].zone = NULL;
2751	zonelist->_zonerefs[j].zone_idx = 0;
2752}
2753
2754/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2755static void build_zonelist_cache(pg_data_t *pgdat)
2756{
2757	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2758}
2759
2760#endif	/* CONFIG_NUMA */
2761
2762/*
2763 * Boot pageset table. One per cpu which is going to be used for all
2764 * zones and all nodes. The parameters will be set in such a way
2765 * that an item put on a list will immediately be handed over to
2766 * the buddy list. This is safe since pageset manipulation is done
2767 * with interrupts disabled.
2768 *
2769 * The boot_pagesets must be kept even after bootup is complete for
2770 * unused processors and/or zones. They do play a role for bootstrapping
2771 * hotplugged processors.
2772 *
2773 * zoneinfo_show() and maybe other functions do
2774 * not check if the processor is online before following the pageset pointer.
2775 * Other parts of the kernel may not check if the zone is available.
2776 */
2777static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2778static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2779
2780/* return values int ....just for stop_machine() */
2781static int __build_all_zonelists(void *dummy)
2782{
2783	int nid;
2784	int cpu;
2785
2786#ifdef CONFIG_NUMA
2787	memset(node_load, 0, sizeof(node_load));
2788#endif
2789	for_each_online_node(nid) {
2790		pg_data_t *pgdat = NODE_DATA(nid);
2791
2792		build_zonelists(pgdat);
2793		build_zonelist_cache(pgdat);
2794	}
2795
2796	/*
2797	 * Initialize the boot_pagesets that are going to be used
2798	 * for bootstrapping processors. The real pagesets for
2799	 * each zone will be allocated later when the per cpu
2800	 * allocator is available.
2801	 *
2802	 * boot_pagesets are used also for bootstrapping offline
2803	 * cpus if the system is already booted because the pagesets
2804	 * are needed to initialize allocators on a specific cpu too.
2805	 * F.e. the percpu allocator needs the page allocator which
2806	 * needs the percpu allocator in order to allocate its pagesets
2807	 * (a chicken-egg dilemma).
2808	 */
2809	for_each_possible_cpu(cpu)
2810		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2811
2812	return 0;
2813}
2814
2815void build_all_zonelists(void)
2816{
2817	set_zonelist_order();
2818
2819	if (system_state == SYSTEM_BOOTING) {
2820		__build_all_zonelists(NULL);
2821		mminit_verify_zonelist();
2822		cpuset_init_current_mems_allowed();
2823	} else {
2824		/* we have to stop all cpus to guarantee there is no user
2825		   of zonelist */
2826		stop_machine(__build_all_zonelists, NULL, NULL);
2827		/* cpuset refresh routine should be here */
2828	}
2829	vm_total_pages = nr_free_pagecache_pages();
2830	/*
2831	 * Disable grouping by mobility if the number of pages in the
2832	 * system is too low to allow the mechanism to work. It would be
2833	 * more accurate, but expensive to check per-zone. This check is
2834	 * made on memory-hotadd so a system can start with mobility
2835	 * disabled and enable it later
2836	 */
2837	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2838		page_group_by_mobility_disabled = 1;
2839	else
2840		page_group_by_mobility_disabled = 0;
2841
2842	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2843		"Total pages: %ld\n",
2844			nr_online_nodes,
2845			zonelist_order_name[current_zonelist_order],
2846			page_group_by_mobility_disabled ? "off" : "on",
2847			vm_total_pages);
2848#ifdef CONFIG_NUMA
2849	printk("Policy zone: %s\n", zone_names[policy_zone]);
2850#endif
2851}
2852
2853/*
2854 * Helper functions to size the waitqueue hash table.
2855 * Essentially these want to choose hash table sizes sufficiently
2856 * large so that collisions trying to wait on pages are rare.
2857 * But in fact, the number of active page waitqueues on typical
2858 * systems is ridiculously low, less than 200. So this is even
2859 * conservative, even though it seems large.
2860 *
2861 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2862 * waitqueues, i.e. the size of the waitq table given the number of pages.
2863 */
2864#define PAGES_PER_WAITQUEUE	256
2865
2866#ifndef CONFIG_MEMORY_HOTPLUG
2867static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2868{
2869	unsigned long size = 1;
2870
2871	pages /= PAGES_PER_WAITQUEUE;
2872
2873	while (size < pages)
2874		size <<= 1;
2875
2876	/*
2877	 * Once we have dozens or even hundreds of threads sleeping
2878	 * on IO we've got bigger problems than wait queue collision.
2879	 * Limit the size of the wait table to a reasonable size.
2880	 */
2881	size = min(size, 4096UL);
2882
2883	return max(size, 4UL);
2884}
2885#else
2886/*
2887 * A zone's size might be changed by hot-add, so it is not possible to determine
2888 * a suitable size for its wait_table.  So we use the maximum size now.
2889 *
2890 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2891 *
2892 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2893 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2894 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2895 *
2896 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2897 * or more by the traditional way. (See above).  It equals:
2898 *
2899 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2900 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2901 *    powerpc (64K page size)             : =  (32G +16M)byte.
2902 */
2903static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2904{
2905	return 4096UL;
2906}
2907#endif
2908
2909/*
2910 * This is an integer logarithm so that shifts can be used later
2911 * to extract the more random high bits from the multiplicative
2912 * hash function before the remainder is taken.
2913 */
2914static inline unsigned long wait_table_bits(unsigned long size)
2915{
2916	return ffz(~size);
2917}
2918
2919#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2920
2921/*
2922 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2923 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2924 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2925 * higher will lead to a bigger reserve which will get freed as contiguous
2926 * blocks as reclaim kicks in
2927 */
2928static void setup_zone_migrate_reserve(struct zone *zone)
2929{
2930	unsigned long start_pfn, pfn, end_pfn;
2931	struct page *page;
2932	unsigned long block_migratetype;
2933	int reserve;
2934
2935	/* Get the start pfn, end pfn and the number of blocks to reserve */
2936	start_pfn = zone->zone_start_pfn;
2937	end_pfn = start_pfn + zone->spanned_pages;
2938	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2939							pageblock_order;
2940
2941	/*
2942	 * Reserve blocks are generally in place to help high-order atomic
2943	 * allocations that are short-lived. A min_free_kbytes value that
2944	 * would result in more than 2 reserve blocks for atomic allocations
2945	 * is assumed to be in place to help anti-fragmentation for the
2946	 * future allocation of hugepages at runtime.
2947	 */
2948	reserve = min(2, reserve);
2949
2950	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2951		if (!pfn_valid(pfn))
2952			continue;
2953		page = pfn_to_page(pfn);
2954
2955		/* Watch out for overlapping nodes */
2956		if (page_to_nid(page) != zone_to_nid(zone))
2957			continue;
2958
2959		/* Blocks with reserved pages will never free, skip them. */
2960		if (PageReserved(page))
2961			continue;
2962
2963		block_migratetype = get_pageblock_migratetype(page);
2964
2965		/* If this block is reserved, account for it */
2966		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2967			reserve--;
2968			continue;
2969		}
2970
2971		/* Suitable for reserving if this block is movable */
2972		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2973			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2974			move_freepages_block(zone, page, MIGRATE_RESERVE);
2975			reserve--;
2976			continue;
2977		}
2978
2979		/*
2980		 * If the reserve is met and this is a previous reserved block,
2981		 * take it back
2982		 */
2983		if (block_migratetype == MIGRATE_RESERVE) {
2984			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2985			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2986		}
2987	}
2988}
2989
2990/*
2991 * Initially all pages are reserved - free ones are freed
2992 * up by free_all_bootmem() once the early boot process is
2993 * done. Non-atomic initialization, single-pass.
2994 */
2995void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2996		unsigned long start_pfn, enum memmap_context context)
2997{
2998	struct page *page;
2999	unsigned long end_pfn = start_pfn + size;
3000	unsigned long pfn;
3001	struct zone *z;
3002
3003	if (highest_memmap_pfn < end_pfn - 1)
3004		highest_memmap_pfn = end_pfn - 1;
3005
3006	z = &NODE_DATA(nid)->node_zones[zone];
3007	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3008		/*
3009		 * There can be holes in boot-time mem_map[]s
3010		 * handed to this function.  They do not
3011		 * exist on hotplugged memory.
3012		 */
3013		if (context == MEMMAP_EARLY) {
3014			if (!early_pfn_valid(pfn))
3015				continue;
3016			if (!early_pfn_in_nid(pfn, nid))
3017				continue;
3018		}
3019		page = pfn_to_page(pfn);
3020		set_page_links(page, zone, nid, pfn);
3021		mminit_verify_page_links(page, zone, nid, pfn);
3022		init_page_count(page);
3023		reset_page_mapcount(page);
3024		SetPageReserved(page);
3025		/*
3026		 * Mark the block movable so that blocks are reserved for
3027		 * movable at startup. This will force kernel allocations
3028		 * to reserve their blocks rather than leaking throughout
3029		 * the address space during boot when many long-lived
3030		 * kernel allocations are made. Later some blocks near
3031		 * the start are marked MIGRATE_RESERVE by
3032		 * setup_zone_migrate_reserve()
3033		 *
3034		 * bitmap is created for zone's valid pfn range. but memmap
3035		 * can be created for invalid pages (for alignment)
3036		 * check here not to call set_pageblock_migratetype() against
3037		 * pfn out of zone.
3038		 */
3039		if ((z->zone_start_pfn <= pfn)
3040		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3041		    && !(pfn & (pageblock_nr_pages - 1)))
3042			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3043
3044		INIT_LIST_HEAD(&page->lru);
3045#ifdef WANT_PAGE_VIRTUAL
3046		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3047		if (!is_highmem_idx(zone))
3048			set_page_address(page, __va(pfn << PAGE_SHIFT));
3049#endif
3050	}
3051}
3052
3053static void __meminit zone_init_free_lists(struct zone *zone)
3054{
3055	int order, t;
3056	for_each_migratetype_order(order, t) {
3057		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3058		zone->free_area[order].nr_free = 0;
3059	}
3060}
3061
3062#ifndef __HAVE_ARCH_MEMMAP_INIT
3063#define memmap_init(size, nid, zone, start_pfn) \
3064	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3065#endif
3066
3067static int zone_batchsize(struct zone *zone)
3068{
3069#ifdef CONFIG_MMU
3070	int batch;
3071
3072	/*
3073	 * The per-cpu-pages pools are set to around 1000th of the
3074	 * size of the zone.  But no more than 1/2 of a meg.
3075	 *
3076	 * OK, so we don't know how big the cache is.  So guess.
3077	 */
3078	batch = zone->present_pages / 1024;
3079	if (batch * PAGE_SIZE > 512 * 1024)
3080		batch = (512 * 1024) / PAGE_SIZE;
3081	batch /= 4;		/* We effectively *= 4 below */
3082	if (batch < 1)
3083		batch = 1;
3084
3085	/*
3086	 * Clamp the batch to a 2^n - 1 value. Having a power
3087	 * of 2 value was found to be more likely to have
3088	 * suboptimal cache aliasing properties in some cases.
3089	 *
3090	 * For example if 2 tasks are alternately allocating
3091	 * batches of pages, one task can end up with a lot
3092	 * of pages of one half of the possible page colors
3093	 * and the other with pages of the other colors.
3094	 */
3095	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3096
3097	return batch;
3098
3099#else
3100	/* The deferral and batching of frees should be suppressed under NOMMU
3101	 * conditions.
3102	 *
3103	 * The problem is that NOMMU needs to be able to allocate large chunks
3104	 * of contiguous memory as there's no hardware page translation to
3105	 * assemble apparent contiguous memory from discontiguous pages.
3106	 *
3107	 * Queueing large contiguous runs of pages for batching, however,
3108	 * causes the pages to actually be freed in smaller chunks.  As there
3109	 * can be a significant delay between the individual batches being
3110	 * recycled, this leads to the once large chunks of space being
3111	 * fragmented and becoming unavailable for high-order allocations.
3112	 */
3113	return 0;
3114#endif
3115}
3116
3117static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3118{
3119	struct per_cpu_pages *pcp;
3120	int migratetype;
3121
3122	memset(p, 0, sizeof(*p));
3123
3124	pcp = &p->pcp;
3125	pcp->count = 0;
3126	pcp->high = 6 * batch;
3127	pcp->batch = max(1UL, 1 * batch);
3128	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3129		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3130}
3131
3132/*
3133 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3134 * to the value high for the pageset p.
3135 */
3136
3137static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3138				unsigned long high)
3139{
3140	struct per_cpu_pages *pcp;
3141
3142	pcp = &p->pcp;
3143	pcp->high = high;
3144	pcp->batch = max(1UL, high/4);
3145	if ((high/4) > (PAGE_SHIFT * 8))
3146		pcp->batch = PAGE_SHIFT * 8;
3147}
3148
3149/*
3150 * Allocate per cpu pagesets and initialize them.
3151 * Before this call only boot pagesets were available.
3152 * Boot pagesets will no longer be used by this processorr
3153 * after setup_per_cpu_pageset().
3154 */
3155void __init setup_per_cpu_pageset(void)
3156{
3157	struct zone *zone;
3158	int cpu;
3159
3160	for_each_populated_zone(zone) {
3161		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3162
3163		for_each_possible_cpu(cpu) {
3164			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3165
3166			setup_pageset(pcp, zone_batchsize(zone));
3167
3168			if (percpu_pagelist_fraction)
3169				setup_pagelist_highmark(pcp,
3170					(zone->present_pages /
3171						percpu_pagelist_fraction));
3172		}
3173	}
3174}
3175
3176static noinline __init_refok
3177int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3178{
3179	int i;
3180	struct pglist_data *pgdat = zone->zone_pgdat;
3181	size_t alloc_size;
3182
3183	/*
3184	 * The per-page waitqueue mechanism uses hashed waitqueues
3185	 * per zone.
3186	 */
3187	zone->wait_table_hash_nr_entries =
3188		 wait_table_hash_nr_entries(zone_size_pages);
3189	zone->wait_table_bits =
3190		wait_table_bits(zone->wait_table_hash_nr_entries);
3191	alloc_size = zone->wait_table_hash_nr_entries
3192					* sizeof(wait_queue_head_t);
3193
3194	if (!slab_is_available()) {
3195		zone->wait_table = (wait_queue_head_t *)
3196			alloc_bootmem_node(pgdat, alloc_size);
3197	} else {
3198		/*
3199		 * This case means that a zone whose size was 0 gets new memory
3200		 * via memory hot-add.
3201		 * But it may be the case that a new node was hot-added.  In
3202		 * this case vmalloc() will not be able to use this new node's
3203		 * memory - this wait_table must be initialized to use this new
3204		 * node itself as well.
3205		 * To use this new node's memory, further consideration will be
3206		 * necessary.
3207		 */
3208		zone->wait_table = vmalloc(alloc_size);
3209	}
3210	if (!zone->wait_table)
3211		return -ENOMEM;
3212
3213	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3214		init_waitqueue_head(zone->wait_table + i);
3215
3216	return 0;
3217}
3218
3219static int __zone_pcp_update(void *data)
3220{
3221	struct zone *zone = data;
3222	int cpu;
3223	unsigned long batch = zone_batchsize(zone), flags;
3224
3225	for_each_possible_cpu(cpu) {
3226		struct per_cpu_pageset *pset;
3227		struct per_cpu_pages *pcp;
3228
3229		pset = per_cpu_ptr(zone->pageset, cpu);
3230		pcp = &pset->pcp;
3231
3232		local_irq_save(flags);
3233		free_pcppages_bulk(zone, pcp->count, pcp);
3234		setup_pageset(pset, batch);
3235		local_irq_restore(flags);
3236	}
3237	return 0;
3238}
3239
3240void zone_pcp_update(struct zone *zone)
3241{
3242	stop_machine(__zone_pcp_update, zone, NULL);
3243}
3244
3245static __meminit void zone_pcp_init(struct zone *zone)
3246{
3247	/*
3248	 * per cpu subsystem is not up at this point. The following code
3249	 * relies on the ability of the linker to provide the
3250	 * offset of a (static) per cpu variable into the per cpu area.
3251	 */
3252	zone->pageset = &boot_pageset;
3253
3254	if (zone->present_pages)
3255		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3256			zone->name, zone->present_pages,
3257					 zone_batchsize(zone));
3258}
3259
3260__meminit int init_currently_empty_zone(struct zone *zone,
3261					unsigned long zone_start_pfn,
3262					unsigned long size,
3263					enum memmap_context context)
3264{
3265	struct pglist_data *pgdat = zone->zone_pgdat;
3266	int ret;
3267	ret = zone_wait_table_init(zone, size);
3268	if (ret)
3269		return ret;
3270	pgdat->nr_zones = zone_idx(zone) + 1;
3271
3272	zone->zone_start_pfn = zone_start_pfn;
3273
3274	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3275			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3276			pgdat->node_id,
3277			(unsigned long)zone_idx(zone),
3278			zone_start_pfn, (zone_start_pfn + size));
3279
3280	zone_init_free_lists(zone);
3281
3282	return 0;
3283}
3284
3285#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3286/*
3287 * Basic iterator support. Return the first range of PFNs for a node
3288 * Note: nid == MAX_NUMNODES returns first region regardless of node
3289 */
3290static int __meminit first_active_region_index_in_nid(int nid)
3291{
3292	int i;
3293
3294	for (i = 0; i < nr_nodemap_entries; i++)
3295		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3296			return i;
3297
3298	return -1;
3299}
3300
3301/*
3302 * Basic iterator support. Return the next active range of PFNs for a node
3303 * Note: nid == MAX_NUMNODES returns next region regardless of node
3304 */
3305static int __meminit next_active_region_index_in_nid(int index, int nid)
3306{
3307	for (index = index + 1; index < nr_nodemap_entries; index++)
3308		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3309			return index;
3310
3311	return -1;
3312}
3313
3314#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3315/*
3316 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3317 * Architectures may implement their own version but if add_active_range()
3318 * was used and there are no special requirements, this is a convenient
3319 * alternative
3320 */
3321int __meminit __early_pfn_to_nid(unsigned long pfn)
3322{
3323	int i;
3324
3325	for (i = 0; i < nr_nodemap_entries; i++) {
3326		unsigned long start_pfn = early_node_map[i].start_pfn;
3327		unsigned long end_pfn = early_node_map[i].end_pfn;
3328
3329		if (start_pfn <= pfn && pfn < end_pfn)
3330			return early_node_map[i].nid;
3331	}
3332	/* This is a memory hole */
3333	return -1;
3334}
3335#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3336
3337int __meminit early_pfn_to_nid(unsigned long pfn)
3338{
3339	int nid;
3340
3341	nid = __early_pfn_to_nid(pfn);
3342	if (nid >= 0)
3343		return nid;
3344	/* just returns 0 */
3345	return 0;
3346}
3347
3348#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3349bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3350{
3351	int nid;
3352
3353	nid = __early_pfn_to_nid(pfn);
3354	if (nid >= 0 && nid != node)
3355		return false;
3356	return true;
3357}
3358#endif
3359
3360/* Basic iterator support to walk early_node_map[] */
3361#define for_each_active_range_index_in_nid(i, nid) \
3362	for (i = first_active_region_index_in_nid(nid); i != -1; \
3363				i = next_active_region_index_in_nid(i, nid))
3364
3365/**
3366 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3367 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3368 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3369 *
3370 * If an architecture guarantees that all ranges registered with
3371 * add_active_ranges() contain no holes and may be freed, this
3372 * this function may be used instead of calling free_bootmem() manually.
3373 */
3374void __init free_bootmem_with_active_regions(int nid,
3375						unsigned long max_low_pfn)
3376{
3377	int i;
3378
3379	for_each_active_range_index_in_nid(i, nid) {
3380		unsigned long size_pages = 0;
3381		unsigned long end_pfn = early_node_map[i].end_pfn;
3382
3383		if (early_node_map[i].start_pfn >= max_low_pfn)
3384			continue;
3385
3386		if (end_pfn > max_low_pfn)
3387			end_pfn = max_low_pfn;
3388
3389		size_pages = end_pfn - early_node_map[i].start_pfn;
3390		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3391				PFN_PHYS(early_node_map[i].start_pfn),
3392				size_pages << PAGE_SHIFT);
3393	}
3394}
3395
3396int __init add_from_early_node_map(struct range *range, int az,
3397				   int nr_range, int nid)
3398{
3399	int i;
3400	u64 start, end;
3401
3402	/* need to go over early_node_map to find out good range for node */
3403	for_each_active_range_index_in_nid(i, nid) {
3404		start = early_node_map[i].start_pfn;
3405		end = early_node_map[i].end_pfn;
3406		nr_range = add_range(range, az, nr_range, start, end);
3407	}
3408	return nr_range;
3409}
3410
3411#ifdef CONFIG_NO_BOOTMEM
3412void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3413					u64 goal, u64 limit)
3414{
3415	int i;
3416	void *ptr;
3417
3418	/* need to go over early_node_map to find out good range for node */
3419	for_each_active_range_index_in_nid(i, nid) {
3420		u64 addr;
3421		u64 ei_start, ei_last;
3422
3423		ei_last = early_node_map[i].end_pfn;
3424		ei_last <<= PAGE_SHIFT;
3425		ei_start = early_node_map[i].start_pfn;
3426		ei_start <<= PAGE_SHIFT;
3427		addr = find_early_area(ei_start, ei_last,
3428					 goal, limit, size, align);
3429
3430		if (addr == -1ULL)
3431			continue;
3432
3433#if 0
3434		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3435				nid,
3436				ei_start, ei_last, goal, limit, size,
3437				align, addr);
3438#endif
3439
3440		ptr = phys_to_virt(addr);
3441		memset(ptr, 0, size);
3442		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3443		return ptr;
3444	}
3445
3446	return NULL;
3447}
3448#endif
3449
3450
3451void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3452{
3453	int i;
3454	int ret;
3455
3456	for_each_active_range_index_in_nid(i, nid) {
3457		ret = work_fn(early_node_map[i].start_pfn,
3458			      early_node_map[i].end_pfn, data);
3459		if (ret)
3460			break;
3461	}
3462}
3463/**
3464 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3465 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3466 *
3467 * If an architecture guarantees that all ranges registered with
3468 * add_active_ranges() contain no holes and may be freed, this
3469 * function may be used instead of calling memory_present() manually.
3470 */
3471void __init sparse_memory_present_with_active_regions(int nid)
3472{
3473	int i;
3474
3475	for_each_active_range_index_in_nid(i, nid)
3476		memory_present(early_node_map[i].nid,
3477				early_node_map[i].start_pfn,
3478				early_node_map[i].end_pfn);
3479}
3480
3481/**
3482 * get_pfn_range_for_nid - Return the start and end page frames for a node
3483 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3484 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3485 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3486 *
3487 * It returns the start and end page frame of a node based on information
3488 * provided by an arch calling add_active_range(). If called for a node
3489 * with no available memory, a warning is printed and the start and end
3490 * PFNs will be 0.
3491 */
3492void __meminit get_pfn_range_for_nid(unsigned int nid,
3493			unsigned long *start_pfn, unsigned long *end_pfn)
3494{
3495	int i;
3496	*start_pfn = -1UL;
3497	*end_pfn = 0;
3498
3499	for_each_active_range_index_in_nid(i, nid) {
3500		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3501		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3502	}
3503
3504	if (*start_pfn == -1UL)
3505		*start_pfn = 0;
3506}
3507
3508/*
3509 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3510 * assumption is made that zones within a node are ordered in monotonic
3511 * increasing memory addresses so that the "highest" populated zone is used
3512 */
3513static void __init find_usable_zone_for_movable(void)
3514{
3515	int zone_index;
3516	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3517		if (zone_index == ZONE_MOVABLE)
3518			continue;
3519
3520		if (arch_zone_highest_possible_pfn[zone_index] >
3521				arch_zone_lowest_possible_pfn[zone_index])
3522			break;
3523	}
3524
3525	VM_BUG_ON(zone_index == -1);
3526	movable_zone = zone_index;
3527}
3528
3529/*
3530 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3531 * because it is sized independant of architecture. Unlike the other zones,
3532 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3533 * in each node depending on the size of each node and how evenly kernelcore
3534 * is distributed. This helper function adjusts the zone ranges
3535 * provided by the architecture for a given node by using the end of the
3536 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3537 * zones within a node are in order of monotonic increases memory addresses
3538 */
3539static void __meminit adjust_zone_range_for_zone_movable(int nid,
3540					unsigned long zone_type,
3541					unsigned long node_start_pfn,
3542					unsigned long node_end_pfn,
3543					unsigned long *zone_start_pfn,
3544					unsigned long *zone_end_pfn)
3545{
3546	/* Only adjust if ZONE_MOVABLE is on this node */
3547	if (zone_movable_pfn[nid]) {
3548		/* Size ZONE_MOVABLE */
3549		if (zone_type == ZONE_MOVABLE) {
3550			*zone_start_pfn = zone_movable_pfn[nid];
3551			*zone_end_pfn = min(node_end_pfn,
3552				arch_zone_highest_possible_pfn[movable_zone]);
3553
3554		/* Adjust for ZONE_MOVABLE starting within this range */
3555		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3556				*zone_end_pfn > zone_movable_pfn[nid]) {
3557			*zone_end_pfn = zone_movable_pfn[nid];
3558
3559		/* Check if this whole range is within ZONE_MOVABLE */
3560		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3561			*zone_start_pfn = *zone_end_pfn;
3562	}
3563}
3564
3565/*
3566 * Return the number of pages a zone spans in a node, including holes
3567 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3568 */
3569static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3570					unsigned long zone_type,
3571					unsigned long *ignored)
3572{
3573	unsigned long node_start_pfn, node_end_pfn;
3574	unsigned long zone_start_pfn, zone_end_pfn;
3575
3576	/* Get the start and end of the node and zone */
3577	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3578	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3579	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3580	adjust_zone_range_for_zone_movable(nid, zone_type,
3581				node_start_pfn, node_end_pfn,
3582				&zone_start_pfn, &zone_end_pfn);
3583
3584	/* Check that this node has pages within the zone's required range */
3585	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3586		return 0;
3587
3588	/* Move the zone boundaries inside the node if necessary */
3589	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3590	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3591
3592	/* Return the spanned pages */
3593	return zone_end_pfn - zone_start_pfn;
3594}
3595
3596/*
3597 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3598 * then all holes in the requested range will be accounted for.
3599 */
3600unsigned long __meminit __absent_pages_in_range(int nid,
3601				unsigned long range_start_pfn,
3602				unsigned long range_end_pfn)
3603{
3604	int i = 0;
3605	unsigned long prev_end_pfn = 0, hole_pages = 0;
3606	unsigned long start_pfn;
3607
3608	/* Find the end_pfn of the first active range of pfns in the node */
3609	i = first_active_region_index_in_nid(nid);
3610	if (i == -1)
3611		return 0;
3612
3613	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3614
3615	/* Account for ranges before physical memory on this node */
3616	if (early_node_map[i].start_pfn > range_start_pfn)
3617		hole_pages = prev_end_pfn - range_start_pfn;
3618
3619	/* Find all holes for the zone within the node */
3620	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3621
3622		/* No need to continue if prev_end_pfn is outside the zone */
3623		if (prev_end_pfn >= range_end_pfn)
3624			break;
3625
3626		/* Make sure the end of the zone is not within the hole */
3627		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3628		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3629
3630		/* Update the hole size cound and move on */
3631		if (start_pfn > range_start_pfn) {
3632			BUG_ON(prev_end_pfn > start_pfn);
3633			hole_pages += start_pfn - prev_end_pfn;
3634		}
3635		prev_end_pfn = early_node_map[i].end_pfn;
3636	}
3637
3638	/* Account for ranges past physical memory on this node */
3639	if (range_end_pfn > prev_end_pfn)
3640		hole_pages += range_end_pfn -
3641				max(range_start_pfn, prev_end_pfn);
3642
3643	return hole_pages;
3644}
3645
3646/**
3647 * absent_pages_in_range - Return number of page frames in holes within a range
3648 * @start_pfn: The start PFN to start searching for holes
3649 * @end_pfn: The end PFN to stop searching for holes
3650 *
3651 * It returns the number of pages frames in memory holes within a range.
3652 */
3653unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3654							unsigned long end_pfn)
3655{
3656	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3657}
3658
3659/* Return the number of page frames in holes in a zone on a node */
3660static unsigned long __meminit zone_absent_pages_in_node(int nid,
3661					unsigned long zone_type,
3662					unsigned long *ignored)
3663{
3664	unsigned long node_start_pfn, node_end_pfn;
3665	unsigned long zone_start_pfn, zone_end_pfn;
3666
3667	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3668	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3669							node_start_pfn);
3670	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3671							node_end_pfn);
3672
3673	adjust_zone_range_for_zone_movable(nid, zone_type,
3674			node_start_pfn, node_end_pfn,
3675			&zone_start_pfn, &zone_end_pfn);
3676	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3677}
3678
3679#else
3680static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3681					unsigned long zone_type,
3682					unsigned long *zones_size)
3683{
3684	return zones_size[zone_type];
3685}
3686
3687static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3688						unsigned long zone_type,
3689						unsigned long *zholes_size)
3690{
3691	if (!zholes_size)
3692		return 0;
3693
3694	return zholes_size[zone_type];
3695}
3696
3697#endif
3698
3699static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3700		unsigned long *zones_size, unsigned long *zholes_size)
3701{
3702	unsigned long realtotalpages, totalpages = 0;
3703	enum zone_type i;
3704
3705	for (i = 0; i < MAX_NR_ZONES; i++)
3706		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3707								zones_size);
3708	pgdat->node_spanned_pages = totalpages;
3709
3710	realtotalpages = totalpages;
3711	for (i = 0; i < MAX_NR_ZONES; i++)
3712		realtotalpages -=
3713			zone_absent_pages_in_node(pgdat->node_id, i,
3714								zholes_size);
3715	pgdat->node_present_pages = realtotalpages;
3716	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3717							realtotalpages);
3718}
3719
3720#ifndef CONFIG_SPARSEMEM
3721/*
3722 * Calculate the size of the zone->blockflags rounded to an unsigned long
3723 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3724 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3725 * round what is now in bits to nearest long in bits, then return it in
3726 * bytes.
3727 */
3728static unsigned long __init usemap_size(unsigned long zonesize)
3729{
3730	unsigned long usemapsize;
3731
3732	usemapsize = roundup(zonesize, pageblock_nr_pages);
3733	usemapsize = usemapsize >> pageblock_order;
3734	usemapsize *= NR_PAGEBLOCK_BITS;
3735	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3736
3737	return usemapsize / 8;
3738}
3739
3740static void __init setup_usemap(struct pglist_data *pgdat,
3741				struct zone *zone, unsigned long zonesize)
3742{
3743	unsigned long usemapsize = usemap_size(zonesize);
3744	zone->pageblock_flags = NULL;
3745	if (usemapsize)
3746		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3747}
3748#else
3749static void inline setup_usemap(struct pglist_data *pgdat,
3750				struct zone *zone, unsigned long zonesize) {}
3751#endif /* CONFIG_SPARSEMEM */
3752
3753#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3754
3755/* Return a sensible default order for the pageblock size. */
3756static inline int pageblock_default_order(void)
3757{
3758	if (HPAGE_SHIFT > PAGE_SHIFT)
3759		return HUGETLB_PAGE_ORDER;
3760
3761	return MAX_ORDER-1;
3762}
3763
3764/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3765static inline void __init set_pageblock_order(unsigned int order)
3766{
3767	/* Check that pageblock_nr_pages has not already been setup */
3768	if (pageblock_order)
3769		return;
3770
3771	/*
3772	 * Assume the largest contiguous order of interest is a huge page.
3773	 * This value may be variable depending on boot parameters on IA64
3774	 */
3775	pageblock_order = order;
3776}
3777#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3778
3779/*
3780 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3781 * and pageblock_default_order() are unused as pageblock_order is set
3782 * at compile-time. See include/linux/pageblock-flags.h for the values of
3783 * pageblock_order based on the kernel config
3784 */
3785static inline int pageblock_default_order(unsigned int order)
3786{
3787	return MAX_ORDER-1;
3788}
3789#define set_pageblock_order(x)	do {} while (0)
3790
3791#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3792
3793/*
3794 * Set up the zone data structures:
3795 *   - mark all pages reserved
3796 *   - mark all memory queues empty
3797 *   - clear the memory bitmaps
3798 */
3799static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3800		unsigned long *zones_size, unsigned long *zholes_size)
3801{
3802	enum zone_type j;
3803	int nid = pgdat->node_id;
3804	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3805	int ret;
3806
3807	pgdat_resize_init(pgdat);
3808	pgdat->nr_zones = 0;
3809	init_waitqueue_head(&pgdat->kswapd_wait);
3810	pgdat->kswapd_max_order = 0;
3811	pgdat_page_cgroup_init(pgdat);
3812
3813	for (j = 0; j < MAX_NR_ZONES; j++) {
3814		struct zone *zone = pgdat->node_zones + j;
3815		unsigned long size, realsize, memmap_pages;
3816		enum lru_list l;
3817
3818		size = zone_spanned_pages_in_node(nid, j, zones_size);
3819		realsize = size - zone_absent_pages_in_node(nid, j,
3820								zholes_size);
3821
3822		/*
3823		 * Adjust realsize so that it accounts for how much memory
3824		 * is used by this zone for memmap. This affects the watermark
3825		 * and per-cpu initialisations
3826		 */
3827		memmap_pages =
3828			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3829		if (realsize >= memmap_pages) {
3830			realsize -= memmap_pages;
3831			if (memmap_pages)
3832				printk(KERN_DEBUG
3833				       "  %s zone: %lu pages used for memmap\n",
3834				       zone_names[j], memmap_pages);
3835		} else
3836			printk(KERN_WARNING
3837				"  %s zone: %lu pages exceeds realsize %lu\n",
3838				zone_names[j], memmap_pages, realsize);
3839
3840		/* Account for reserved pages */
3841		if (j == 0 && realsize > dma_reserve) {
3842			realsize -= dma_reserve;
3843			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3844					zone_names[0], dma_reserve);
3845		}
3846
3847		if (!is_highmem_idx(j))
3848			nr_kernel_pages += realsize;
3849		nr_all_pages += realsize;
3850
3851		zone->spanned_pages = size;
3852		zone->present_pages = realsize;
3853#ifdef CONFIG_NUMA
3854		zone->node = nid;
3855		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3856						/ 100;
3857		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3858#endif
3859		zone->name = zone_names[j];
3860		spin_lock_init(&zone->lock);
3861		spin_lock_init(&zone->lru_lock);
3862		zone_seqlock_init(zone);
3863		zone->zone_pgdat = pgdat;
3864
3865		zone->prev_priority = DEF_PRIORITY;
3866
3867		zone_pcp_init(zone);
3868		for_each_lru(l) {
3869			INIT_LIST_HEAD(&zone->lru[l].list);
3870			zone->reclaim_stat.nr_saved_scan[l] = 0;
3871		}
3872		zone->reclaim_stat.recent_rotated[0] = 0;
3873		zone->reclaim_stat.recent_rotated[1] = 0;
3874		zone->reclaim_stat.recent_scanned[0] = 0;
3875		zone->reclaim_stat.recent_scanned[1] = 0;
3876		zap_zone_vm_stats(zone);
3877		zone->flags = 0;
3878		if (!size)
3879			continue;
3880
3881		set_pageblock_order(pageblock_default_order());
3882		setup_usemap(pgdat, zone, size);
3883		ret = init_currently_empty_zone(zone, zone_start_pfn,
3884						size, MEMMAP_EARLY);
3885		BUG_ON(ret);
3886		memmap_init(size, nid, j, zone_start_pfn);
3887		zone_start_pfn += size;
3888	}
3889}
3890
3891static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3892{
3893	/* Skip empty nodes */
3894	if (!pgdat->node_spanned_pages)
3895		return;
3896
3897#ifdef CONFIG_FLAT_NODE_MEM_MAP
3898	/* ia64 gets its own node_mem_map, before this, without bootmem */
3899	if (!pgdat->node_mem_map) {
3900		unsigned long size, start, end;
3901		struct page *map;
3902
3903		/*
3904		 * The zone's endpoints aren't required to be MAX_ORDER
3905		 * aligned but the node_mem_map endpoints must be in order
3906		 * for the buddy allocator to function correctly.
3907		 */
3908		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3909		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3910		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3911		size =  (end - start) * sizeof(struct page);
3912		map = alloc_remap(pgdat->node_id, size);
3913		if (!map)
3914			map = alloc_bootmem_node(pgdat, size);
3915		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3916	}
3917#ifndef CONFIG_NEED_MULTIPLE_NODES
3918	/*
3919	 * With no DISCONTIG, the global mem_map is just set as node 0's
3920	 */
3921	if (pgdat == NODE_DATA(0)) {
3922		mem_map = NODE_DATA(0)->node_mem_map;
3923#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3924		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3925			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3926#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3927	}
3928#endif
3929#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3930}
3931
3932void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3933		unsigned long node_start_pfn, unsigned long *zholes_size)
3934{
3935	pg_data_t *pgdat = NODE_DATA(nid);
3936
3937	pgdat->node_id = nid;
3938	pgdat->node_start_pfn = node_start_pfn;
3939	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3940
3941	alloc_node_mem_map(pgdat);
3942#ifdef CONFIG_FLAT_NODE_MEM_MAP
3943	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3944		nid, (unsigned long)pgdat,
3945		(unsigned long)pgdat->node_mem_map);
3946#endif
3947
3948	free_area_init_core(pgdat, zones_size, zholes_size);
3949}
3950
3951#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3952
3953#if MAX_NUMNODES > 1
3954/*
3955 * Figure out the number of possible node ids.
3956 */
3957static void __init setup_nr_node_ids(void)
3958{
3959	unsigned int node;
3960	unsigned int highest = 0;
3961
3962	for_each_node_mask(node, node_possible_map)
3963		highest = node;
3964	nr_node_ids = highest + 1;
3965}
3966#else
3967static inline void setup_nr_node_ids(void)
3968{
3969}
3970#endif
3971
3972/**
3973 * add_active_range - Register a range of PFNs backed by physical memory
3974 * @nid: The node ID the range resides on
3975 * @start_pfn: The start PFN of the available physical memory
3976 * @end_pfn: The end PFN of the available physical memory
3977 *
3978 * These ranges are stored in an early_node_map[] and later used by
3979 * free_area_init_nodes() to calculate zone sizes and holes. If the
3980 * range spans a memory hole, it is up to the architecture to ensure
3981 * the memory is not freed by the bootmem allocator. If possible
3982 * the range being registered will be merged with existing ranges.
3983 */
3984void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3985						unsigned long end_pfn)
3986{
3987	int i;
3988
3989	mminit_dprintk(MMINIT_TRACE, "memory_register",
3990			"Entering add_active_range(%d, %#lx, %#lx) "
3991			"%d entries of %d used\n",
3992			nid, start_pfn, end_pfn,
3993			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3994
3995	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3996
3997	/* Merge with existing active regions if possible */
3998	for (i = 0; i < nr_nodemap_entries; i++) {
3999		if (early_node_map[i].nid != nid)
4000			continue;
4001
4002		/* Skip if an existing region covers this new one */
4003		if (start_pfn >= early_node_map[i].start_pfn &&
4004				end_pfn <= early_node_map[i].end_pfn)
4005			return;
4006
4007		/* Merge forward if suitable */
4008		if (start_pfn <= early_node_map[i].end_pfn &&
4009				end_pfn > early_node_map[i].end_pfn) {
4010			early_node_map[i].end_pfn = end_pfn;
4011			return;
4012		}
4013
4014		/* Merge backward if suitable */
4015		if (start_pfn < early_node_map[i].start_pfn &&
4016				end_pfn >= early_node_map[i].start_pfn) {
4017			early_node_map[i].start_pfn = start_pfn;
4018			return;
4019		}
4020	}
4021
4022	/* Check that early_node_map is large enough */
4023	if (i >= MAX_ACTIVE_REGIONS) {
4024		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4025							MAX_ACTIVE_REGIONS);
4026		return;
4027	}
4028
4029	early_node_map[i].nid = nid;
4030	early_node_map[i].start_pfn = start_pfn;
4031	early_node_map[i].end_pfn = end_pfn;
4032	nr_nodemap_entries = i + 1;
4033}
4034
4035/**
4036 * remove_active_range - Shrink an existing registered range of PFNs
4037 * @nid: The node id the range is on that should be shrunk
4038 * @start_pfn: The new PFN of the range
4039 * @end_pfn: The new PFN of the range
4040 *
4041 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4042 * The map is kept near the end physical page range that has already been
4043 * registered. This function allows an arch to shrink an existing registered
4044 * range.
4045 */
4046void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4047				unsigned long end_pfn)
4048{
4049	int i, j;
4050	int removed = 0;
4051
4052	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4053			  nid, start_pfn, end_pfn);
4054
4055	/* Find the old active region end and shrink */
4056	for_each_active_range_index_in_nid(i, nid) {
4057		if (early_node_map[i].start_pfn >= start_pfn &&
4058		    early_node_map[i].end_pfn <= end_pfn) {
4059			/* clear it */
4060			early_node_map[i].start_pfn = 0;
4061			early_node_map[i].end_pfn = 0;
4062			removed = 1;
4063			continue;
4064		}
4065		if (early_node_map[i].start_pfn < start_pfn &&
4066		    early_node_map[i].end_pfn > start_pfn) {
4067			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4068			early_node_map[i].end_pfn = start_pfn;
4069			if (temp_end_pfn > end_pfn)
4070				add_active_range(nid, end_pfn, temp_end_pfn);
4071			continue;
4072		}
4073		if (early_node_map[i].start_pfn >= start_pfn &&
4074		    early_node_map[i].end_pfn > end_pfn &&
4075		    early_node_map[i].start_pfn < end_pfn) {
4076			early_node_map[i].start_pfn = end_pfn;
4077			continue;
4078		}
4079	}
4080
4081	if (!removed)
4082		return;
4083
4084	/* remove the blank ones */
4085	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4086		if (early_node_map[i].nid != nid)
4087			continue;
4088		if (early_node_map[i].end_pfn)
4089			continue;
4090		/* we found it, get rid of it */
4091		for (j = i; j < nr_nodemap_entries - 1; j++)
4092			memcpy(&early_node_map[j], &early_node_map[j+1],
4093				sizeof(early_node_map[j]));
4094		j = nr_nodemap_entries - 1;
4095		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4096		nr_nodemap_entries--;
4097	}
4098}
4099
4100/**
4101 * remove_all_active_ranges - Remove all currently registered regions
4102 *
4103 * During discovery, it may be found that a table like SRAT is invalid
4104 * and an alternative discovery method must be used. This function removes
4105 * all currently registered regions.
4106 */
4107void __init remove_all_active_ranges(void)
4108{
4109	memset(early_node_map, 0, sizeof(early_node_map));
4110	nr_nodemap_entries = 0;
4111}
4112
4113/* Compare two active node_active_regions */
4114static int __init cmp_node_active_region(const void *a, const void *b)
4115{
4116	struct node_active_region *arange = (struct node_active_region *)a;
4117	struct node_active_region *brange = (struct node_active_region *)b;
4118
4119	/* Done this way to avoid overflows */
4120	if (arange->start_pfn > brange->start_pfn)
4121		return 1;
4122	if (arange->start_pfn < brange->start_pfn)
4123		return -1;
4124
4125	return 0;
4126}
4127
4128/* sort the node_map by start_pfn */
4129void __init sort_node_map(void)
4130{
4131	sort(early_node_map, (size_t)nr_nodemap_entries,
4132			sizeof(struct node_active_region),
4133			cmp_node_active_region, NULL);
4134}
4135
4136/* Find the lowest pfn for a node */
4137static unsigned long __init find_min_pfn_for_node(int nid)
4138{
4139	int i;
4140	unsigned long min_pfn = ULONG_MAX;
4141
4142	/* Assuming a sorted map, the first range found has the starting pfn */
4143	for_each_active_range_index_in_nid(i, nid)
4144		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4145
4146	if (min_pfn == ULONG_MAX) {
4147		printk(KERN_WARNING
4148			"Could not find start_pfn for node %d\n", nid);
4149		return 0;
4150	}
4151
4152	return min_pfn;
4153}
4154
4155/**
4156 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4157 *
4158 * It returns the minimum PFN based on information provided via
4159 * add_active_range().
4160 */
4161unsigned long __init find_min_pfn_with_active_regions(void)
4162{
4163	return find_min_pfn_for_node(MAX_NUMNODES);
4164}
4165
4166/*
4167 * early_calculate_totalpages()
4168 * Sum pages in active regions for movable zone.
4169 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4170 */
4171static unsigned long __init early_calculate_totalpages(void)
4172{
4173	int i;
4174	unsigned long totalpages = 0;
4175
4176	for (i = 0; i < nr_nodemap_entries; i++) {
4177		unsigned long pages = early_node_map[i].end_pfn -
4178						early_node_map[i].start_pfn;
4179		totalpages += pages;
4180		if (pages)
4181			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4182	}
4183  	return totalpages;
4184}
4185
4186/*
4187 * Find the PFN the Movable zone begins in each node. Kernel memory
4188 * is spread evenly between nodes as long as the nodes have enough
4189 * memory. When they don't, some nodes will have more kernelcore than
4190 * others
4191 */
4192static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4193{
4194	int i, nid;
4195	unsigned long usable_startpfn;
4196	unsigned long kernelcore_node, kernelcore_remaining;
4197	/* save the state before borrow the nodemask */
4198	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4199	unsigned long totalpages = early_calculate_totalpages();
4200	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4201
4202	/*
4203	 * If movablecore was specified, calculate what size of
4204	 * kernelcore that corresponds so that memory usable for
4205	 * any allocation type is evenly spread. If both kernelcore
4206	 * and movablecore are specified, then the value of kernelcore
4207	 * will be used for required_kernelcore if it's greater than
4208	 * what movablecore would have allowed.
4209	 */
4210	if (required_movablecore) {
4211		unsigned long corepages;
4212
4213		/*
4214		 * Round-up so that ZONE_MOVABLE is at least as large as what
4215		 * was requested by the user
4216		 */
4217		required_movablecore =
4218			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4219		corepages = totalpages - required_movablecore;
4220
4221		required_kernelcore = max(required_kernelcore, corepages);
4222	}
4223
4224	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4225	if (!required_kernelcore)
4226		goto out;
4227
4228	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4229	find_usable_zone_for_movable();
4230	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4231
4232restart:
4233	/* Spread kernelcore memory as evenly as possible throughout nodes */
4234	kernelcore_node = required_kernelcore / usable_nodes;
4235	for_each_node_state(nid, N_HIGH_MEMORY) {
4236		/*
4237		 * Recalculate kernelcore_node if the division per node
4238		 * now exceeds what is necessary to satisfy the requested
4239		 * amount of memory for the kernel
4240		 */
4241		if (required_kernelcore < kernelcore_node)
4242			kernelcore_node = required_kernelcore / usable_nodes;
4243
4244		/*
4245		 * As the map is walked, we track how much memory is usable
4246		 * by the kernel using kernelcore_remaining. When it is
4247		 * 0, the rest of the node is usable by ZONE_MOVABLE
4248		 */
4249		kernelcore_remaining = kernelcore_node;
4250
4251		/* Go through each range of PFNs within this node */
4252		for_each_active_range_index_in_nid(i, nid) {
4253			unsigned long start_pfn, end_pfn;
4254			unsigned long size_pages;
4255
4256			start_pfn = max(early_node_map[i].start_pfn,
4257						zone_movable_pfn[nid]);
4258			end_pfn = early_node_map[i].end_pfn;
4259			if (start_pfn >= end_pfn)
4260				continue;
4261
4262			/* Account for what is only usable for kernelcore */
4263			if (start_pfn < usable_startpfn) {
4264				unsigned long kernel_pages;
4265				kernel_pages = min(end_pfn, usable_startpfn)
4266								- start_pfn;
4267
4268				kernelcore_remaining -= min(kernel_pages,
4269							kernelcore_remaining);
4270				required_kernelcore -= min(kernel_pages,
4271							required_kernelcore);
4272
4273				/* Continue if range is now fully accounted */
4274				if (end_pfn <= usable_startpfn) {
4275
4276					/*
4277					 * Push zone_movable_pfn to the end so
4278					 * that if we have to rebalance
4279					 * kernelcore across nodes, we will
4280					 * not double account here
4281					 */
4282					zone_movable_pfn[nid] = end_pfn;
4283					continue;
4284				}
4285				start_pfn = usable_startpfn;
4286			}
4287
4288			/*
4289			 * The usable PFN range for ZONE_MOVABLE is from
4290			 * start_pfn->end_pfn. Calculate size_pages as the
4291			 * number of pages used as kernelcore
4292			 */
4293			size_pages = end_pfn - start_pfn;
4294			if (size_pages > kernelcore_remaining)
4295				size_pages = kernelcore_remaining;
4296			zone_movable_pfn[nid] = start_pfn + size_pages;
4297
4298			/*
4299			 * Some kernelcore has been met, update counts and
4300			 * break if the kernelcore for this node has been
4301			 * satisified
4302			 */
4303			required_kernelcore -= min(required_kernelcore,
4304								size_pages);
4305			kernelcore_remaining -= size_pages;
4306			if (!kernelcore_remaining)
4307				break;
4308		}
4309	}
4310
4311	/*
4312	 * If there is still required_kernelcore, we do another pass with one
4313	 * less node in the count. This will push zone_movable_pfn[nid] further
4314	 * along on the nodes that still have memory until kernelcore is
4315	 * satisified
4316	 */
4317	usable_nodes--;
4318	if (usable_nodes && required_kernelcore > usable_nodes)
4319		goto restart;
4320
4321	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4322	for (nid = 0; nid < MAX_NUMNODES; nid++)
4323		zone_movable_pfn[nid] =
4324			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4325
4326out:
4327	/* restore the node_state */
4328	node_states[N_HIGH_MEMORY] = saved_node_state;
4329}
4330
4331/* Any regular memory on that node ? */
4332static void check_for_regular_memory(pg_data_t *pgdat)
4333{
4334#ifdef CONFIG_HIGHMEM
4335	enum zone_type zone_type;
4336
4337	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4338		struct zone *zone = &pgdat->node_zones[zone_type];
4339		if (zone->present_pages)
4340			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4341	}
4342#endif
4343}
4344
4345/**
4346 * free_area_init_nodes - Initialise all pg_data_t and zone data
4347 * @max_zone_pfn: an array of max PFNs for each zone
4348 *
4349 * This will call free_area_init_node() for each active node in the system.
4350 * Using the page ranges provided by add_active_range(), the size of each
4351 * zone in each node and their holes is calculated. If the maximum PFN
4352 * between two adjacent zones match, it is assumed that the zone is empty.
4353 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4354 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4355 * starts where the previous one ended. For example, ZONE_DMA32 starts
4356 * at arch_max_dma_pfn.
4357 */
4358void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4359{
4360	unsigned long nid;
4361	int i;
4362
4363	/* Sort early_node_map as initialisation assumes it is sorted */
4364	sort_node_map();
4365
4366	/* Record where the zone boundaries are */
4367	memset(arch_zone_lowest_possible_pfn, 0,
4368				sizeof(arch_zone_lowest_possible_pfn));
4369	memset(arch_zone_highest_possible_pfn, 0,
4370				sizeof(arch_zone_highest_possible_pfn));
4371	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4372	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4373	for (i = 1; i < MAX_NR_ZONES; i++) {
4374		if (i == ZONE_MOVABLE)
4375			continue;
4376		arch_zone_lowest_possible_pfn[i] =
4377			arch_zone_highest_possible_pfn[i-1];
4378		arch_zone_highest_possible_pfn[i] =
4379			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4380	}
4381	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4382	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4383
4384	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4385	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4386	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4387
4388	/* Print out the zone ranges */
4389	printk("Zone PFN ranges:\n");
4390	for (i = 0; i < MAX_NR_ZONES; i++) {
4391		if (i == ZONE_MOVABLE)
4392			continue;
4393		printk("  %-8s ", zone_names[i]);
4394		if (arch_zone_lowest_possible_pfn[i] ==
4395				arch_zone_highest_possible_pfn[i])
4396			printk("empty\n");
4397		else
4398			printk("%0#10lx -> %0#10lx\n",
4399				arch_zone_lowest_possible_pfn[i],
4400				arch_zone_highest_possible_pfn[i]);
4401	}
4402
4403	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4404	printk("Movable zone start PFN for each node\n");
4405	for (i = 0; i < MAX_NUMNODES; i++) {
4406		if (zone_movable_pfn[i])
4407			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4408	}
4409
4410	/* Print out the early_node_map[] */
4411	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4412	for (i = 0; i < nr_nodemap_entries; i++)
4413		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4414						early_node_map[i].start_pfn,
4415						early_node_map[i].end_pfn);
4416
4417	/* Initialise every node */
4418	mminit_verify_pageflags_layout();
4419	setup_nr_node_ids();
4420	for_each_online_node(nid) {
4421		pg_data_t *pgdat = NODE_DATA(nid);
4422		free_area_init_node(nid, NULL,
4423				find_min_pfn_for_node(nid), NULL);
4424
4425		/* Any memory on that node */
4426		if (pgdat->node_present_pages)
4427			node_set_state(nid, N_HIGH_MEMORY);
4428		check_for_regular_memory(pgdat);
4429	}
4430}
4431
4432static int __init cmdline_parse_core(char *p, unsigned long *core)
4433{
4434	unsigned long long coremem;
4435	if (!p)
4436		return -EINVAL;
4437
4438	coremem = memparse(p, &p);
4439	*core = coremem >> PAGE_SHIFT;
4440
4441	/* Paranoid check that UL is enough for the coremem value */
4442	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4443
4444	return 0;
4445}
4446
4447/*
4448 * kernelcore=size sets the amount of memory for use for allocations that
4449 * cannot be reclaimed or migrated.
4450 */
4451static int __init cmdline_parse_kernelcore(char *p)
4452{
4453	return cmdline_parse_core(p, &required_kernelcore);
4454}
4455
4456/*
4457 * movablecore=size sets the amount of memory for use for allocations that
4458 * can be reclaimed or migrated.
4459 */
4460static int __init cmdline_parse_movablecore(char *p)
4461{
4462	return cmdline_parse_core(p, &required_movablecore);
4463}
4464
4465early_param("kernelcore", cmdline_parse_kernelcore);
4466early_param("movablecore", cmdline_parse_movablecore);
4467
4468#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4469
4470/**
4471 * set_dma_reserve - set the specified number of pages reserved in the first zone
4472 * @new_dma_reserve: The number of pages to mark reserved
4473 *
4474 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4475 * In the DMA zone, a significant percentage may be consumed by kernel image
4476 * and other unfreeable allocations which can skew the watermarks badly. This
4477 * function may optionally be used to account for unfreeable pages in the
4478 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4479 * smaller per-cpu batchsize.
4480 */
4481void __init set_dma_reserve(unsigned long new_dma_reserve)
4482{
4483	dma_reserve = new_dma_reserve;
4484}
4485
4486#ifndef CONFIG_NEED_MULTIPLE_NODES
4487struct pglist_data __refdata contig_page_data = {
4488#ifndef CONFIG_NO_BOOTMEM
4489 .bdata = &bootmem_node_data[0]
4490#endif
4491 };
4492EXPORT_SYMBOL(contig_page_data);
4493#endif
4494
4495void __init free_area_init(unsigned long *zones_size)
4496{
4497	free_area_init_node(0, zones_size,
4498			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4499}
4500
4501static int page_alloc_cpu_notify(struct notifier_block *self,
4502				 unsigned long action, void *hcpu)
4503{
4504	int cpu = (unsigned long)hcpu;
4505
4506	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4507		drain_pages(cpu);
4508
4509		/*
4510		 * Spill the event counters of the dead processor
4511		 * into the current processors event counters.
4512		 * This artificially elevates the count of the current
4513		 * processor.
4514		 */
4515		vm_events_fold_cpu(cpu);
4516
4517		/*
4518		 * Zero the differential counters of the dead processor
4519		 * so that the vm statistics are consistent.
4520		 *
4521		 * This is only okay since the processor is dead and cannot
4522		 * race with what we are doing.
4523		 */
4524		refresh_cpu_vm_stats(cpu);
4525	}
4526	return NOTIFY_OK;
4527}
4528
4529void __init page_alloc_init(void)
4530{
4531	hotcpu_notifier(page_alloc_cpu_notify, 0);
4532}
4533
4534/*
4535 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4536 *	or min_free_kbytes changes.
4537 */
4538static void calculate_totalreserve_pages(void)
4539{
4540	struct pglist_data *pgdat;
4541	unsigned long reserve_pages = 0;
4542	enum zone_type i, j;
4543
4544	for_each_online_pgdat(pgdat) {
4545		for (i = 0; i < MAX_NR_ZONES; i++) {
4546			struct zone *zone = pgdat->node_zones + i;
4547			unsigned long max = 0;
4548
4549			/* Find valid and maximum lowmem_reserve in the zone */
4550			for (j = i; j < MAX_NR_ZONES; j++) {
4551				if (zone->lowmem_reserve[j] > max)
4552					max = zone->lowmem_reserve[j];
4553			}
4554
4555			/* we treat the high watermark as reserved pages. */
4556			max += high_wmark_pages(zone);
4557
4558			if (max > zone->present_pages)
4559				max = zone->present_pages;
4560			reserve_pages += max;
4561		}
4562	}
4563	totalreserve_pages = reserve_pages;
4564}
4565
4566/*
4567 * setup_per_zone_lowmem_reserve - called whenever
4568 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4569 *	has a correct pages reserved value, so an adequate number of
4570 *	pages are left in the zone after a successful __alloc_pages().
4571 */
4572static void setup_per_zone_lowmem_reserve(void)
4573{
4574	struct pglist_data *pgdat;
4575	enum zone_type j, idx;
4576
4577	for_each_online_pgdat(pgdat) {
4578		for (j = 0; j < MAX_NR_ZONES; j++) {
4579			struct zone *zone = pgdat->node_zones + j;
4580			unsigned long present_pages = zone->present_pages;
4581
4582			zone->lowmem_reserve[j] = 0;
4583
4584			idx = j;
4585			while (idx) {
4586				struct zone *lower_zone;
4587
4588				idx--;
4589
4590				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4591					sysctl_lowmem_reserve_ratio[idx] = 1;
4592
4593				lower_zone = pgdat->node_zones + idx;
4594				lower_zone->lowmem_reserve[j] = present_pages /
4595					sysctl_lowmem_reserve_ratio[idx];
4596				present_pages += lower_zone->present_pages;
4597			}
4598		}
4599	}
4600
4601	/* update totalreserve_pages */
4602	calculate_totalreserve_pages();
4603}
4604
4605/**
4606 * setup_per_zone_wmarks - called when min_free_kbytes changes
4607 * or when memory is hot-{added|removed}
4608 *
4609 * Ensures that the watermark[min,low,high] values for each zone are set
4610 * correctly with respect to min_free_kbytes.
4611 */
4612void setup_per_zone_wmarks(void)
4613{
4614	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4615	unsigned long lowmem_pages = 0;
4616	struct zone *zone;
4617	unsigned long flags;
4618
4619	/* Calculate total number of !ZONE_HIGHMEM pages */
4620	for_each_zone(zone) {
4621		if (!is_highmem(zone))
4622			lowmem_pages += zone->present_pages;
4623	}
4624
4625	for_each_zone(zone) {
4626		u64 tmp;
4627
4628		spin_lock_irqsave(&zone->lock, flags);
4629		tmp = (u64)pages_min * zone->present_pages;
4630		do_div(tmp, lowmem_pages);
4631		if (is_highmem(zone)) {
4632			/*
4633			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4634			 * need highmem pages, so cap pages_min to a small
4635			 * value here.
4636			 *
4637			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4638			 * deltas controls asynch page reclaim, and so should
4639			 * not be capped for highmem.
4640			 */
4641			int min_pages;
4642
4643			min_pages = zone->present_pages / 1024;
4644			if (min_pages < SWAP_CLUSTER_MAX)
4645				min_pages = SWAP_CLUSTER_MAX;
4646			if (min_pages > 128)
4647				min_pages = 128;
4648			zone->watermark[WMARK_MIN] = min_pages;
4649		} else {
4650			/*
4651			 * If it's a lowmem zone, reserve a number of pages
4652			 * proportionate to the zone's size.
4653			 */
4654			zone->watermark[WMARK_MIN] = tmp;
4655		}
4656
4657		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4658		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4659		setup_zone_migrate_reserve(zone);
4660		spin_unlock_irqrestore(&zone->lock, flags);
4661	}
4662
4663	/* update totalreserve_pages */
4664	calculate_totalreserve_pages();
4665}
4666
4667/*
4668 * The inactive anon list should be small enough that the VM never has to
4669 * do too much work, but large enough that each inactive page has a chance
4670 * to be referenced again before it is swapped out.
4671 *
4672 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4673 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4674 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4675 * the anonymous pages are kept on the inactive list.
4676 *
4677 * total     target    max
4678 * memory    ratio     inactive anon
4679 * -------------------------------------
4680 *   10MB       1         5MB
4681 *  100MB       1        50MB
4682 *    1GB       3       250MB
4683 *   10GB      10       0.9GB
4684 *  100GB      31         3GB
4685 *    1TB     101        10GB
4686 *   10TB     320        32GB
4687 */
4688void calculate_zone_inactive_ratio(struct zone *zone)
4689{
4690	unsigned int gb, ratio;
4691
4692	/* Zone size in gigabytes */
4693	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4694	if (gb)
4695		ratio = int_sqrt(10 * gb);
4696	else
4697		ratio = 1;
4698
4699	zone->inactive_ratio = ratio;
4700}
4701
4702static void __init setup_per_zone_inactive_ratio(void)
4703{
4704	struct zone *zone;
4705
4706	for_each_zone(zone)
4707		calculate_zone_inactive_ratio(zone);
4708}
4709
4710/*
4711 * Initialise min_free_kbytes.
4712 *
4713 * For small machines we want it small (128k min).  For large machines
4714 * we want it large (64MB max).  But it is not linear, because network
4715 * bandwidth does not increase linearly with machine size.  We use
4716 *
4717 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4718 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4719 *
4720 * which yields
4721 *
4722 * 16MB:	512k
4723 * 32MB:	724k
4724 * 64MB:	1024k
4725 * 128MB:	1448k
4726 * 256MB:	2048k
4727 * 512MB:	2896k
4728 * 1024MB:	4096k
4729 * 2048MB:	5792k
4730 * 4096MB:	8192k
4731 * 8192MB:	11584k
4732 * 16384MB:	16384k
4733 */
4734static int __init init_per_zone_wmark_min(void)
4735{
4736	unsigned long lowmem_kbytes;
4737
4738	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4739
4740	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4741	if (min_free_kbytes < 128)
4742		min_free_kbytes = 128;
4743	if (min_free_kbytes > 65536)
4744		min_free_kbytes = 65536;
4745	setup_per_zone_wmarks();
4746	setup_per_zone_lowmem_reserve();
4747	setup_per_zone_inactive_ratio();
4748	return 0;
4749}
4750module_init(init_per_zone_wmark_min)
4751
4752/*
4753 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4754 *	that we can call two helper functions whenever min_free_kbytes
4755 *	changes.
4756 */
4757int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4758	void __user *buffer, size_t *length, loff_t *ppos)
4759{
4760	proc_dointvec(table, write, buffer, length, ppos);
4761	if (write)
4762		setup_per_zone_wmarks();
4763	return 0;
4764}
4765
4766#ifdef CONFIG_NUMA
4767int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4768	void __user *buffer, size_t *length, loff_t *ppos)
4769{
4770	struct zone *zone;
4771	int rc;
4772
4773	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4774	if (rc)
4775		return rc;
4776
4777	for_each_zone(zone)
4778		zone->min_unmapped_pages = (zone->present_pages *
4779				sysctl_min_unmapped_ratio) / 100;
4780	return 0;
4781}
4782
4783int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4784	void __user *buffer, size_t *length, loff_t *ppos)
4785{
4786	struct zone *zone;
4787	int rc;
4788
4789	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4790	if (rc)
4791		return rc;
4792
4793	for_each_zone(zone)
4794		zone->min_slab_pages = (zone->present_pages *
4795				sysctl_min_slab_ratio) / 100;
4796	return 0;
4797}
4798#endif
4799
4800/*
4801 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4802 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4803 *	whenever sysctl_lowmem_reserve_ratio changes.
4804 *
4805 * The reserve ratio obviously has absolutely no relation with the
4806 * minimum watermarks. The lowmem reserve ratio can only make sense
4807 * if in function of the boot time zone sizes.
4808 */
4809int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4810	void __user *buffer, size_t *length, loff_t *ppos)
4811{
4812	proc_dointvec_minmax(table, write, buffer, length, ppos);
4813	setup_per_zone_lowmem_reserve();
4814	return 0;
4815}
4816
4817/*
4818 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4819 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4820 * can have before it gets flushed back to buddy allocator.
4821 */
4822
4823int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4824	void __user *buffer, size_t *length, loff_t *ppos)
4825{
4826	struct zone *zone;
4827	unsigned int cpu;
4828	int ret;
4829
4830	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4831	if (!write || (ret == -EINVAL))
4832		return ret;
4833	for_each_populated_zone(zone) {
4834		for_each_possible_cpu(cpu) {
4835			unsigned long  high;
4836			high = zone->present_pages / percpu_pagelist_fraction;
4837			setup_pagelist_highmark(
4838				per_cpu_ptr(zone->pageset, cpu), high);
4839		}
4840	}
4841	return 0;
4842}
4843
4844int hashdist = HASHDIST_DEFAULT;
4845
4846#ifdef CONFIG_NUMA
4847static int __init set_hashdist(char *str)
4848{
4849	if (!str)
4850		return 0;
4851	hashdist = simple_strtoul(str, &str, 0);
4852	return 1;
4853}
4854__setup("hashdist=", set_hashdist);
4855#endif
4856
4857/*
4858 * allocate a large system hash table from bootmem
4859 * - it is assumed that the hash table must contain an exact power-of-2
4860 *   quantity of entries
4861 * - limit is the number of hash buckets, not the total allocation size
4862 */
4863void *__init alloc_large_system_hash(const char *tablename,
4864				     unsigned long bucketsize,
4865				     unsigned long numentries,
4866				     int scale,
4867				     int flags,
4868				     unsigned int *_hash_shift,
4869				     unsigned int *_hash_mask,
4870				     unsigned long limit)
4871{
4872	unsigned long long max = limit;
4873	unsigned long log2qty, size;
4874	void *table = NULL;
4875
4876	/* allow the kernel cmdline to have a say */
4877	if (!numentries) {
4878		/* round applicable memory size up to nearest megabyte */
4879		numentries = nr_kernel_pages;
4880		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4881		numentries >>= 20 - PAGE_SHIFT;
4882		numentries <<= 20 - PAGE_SHIFT;
4883
4884		/* limit to 1 bucket per 2^scale bytes of low memory */
4885		if (scale > PAGE_SHIFT)
4886			numentries >>= (scale - PAGE_SHIFT);
4887		else
4888			numentries <<= (PAGE_SHIFT - scale);
4889
4890		/* Make sure we've got at least a 0-order allocation.. */
4891		if (unlikely(flags & HASH_SMALL)) {
4892			/* Makes no sense without HASH_EARLY */
4893			WARN_ON(!(flags & HASH_EARLY));
4894			if (!(numentries >> *_hash_shift)) {
4895				numentries = 1UL << *_hash_shift;
4896				BUG_ON(!numentries);
4897			}
4898		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4899			numentries = PAGE_SIZE / bucketsize;
4900	}
4901	numentries = roundup_pow_of_two(numentries);
4902
4903	/* limit allocation size to 1/16 total memory by default */
4904	if (max == 0) {
4905		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4906		do_div(max, bucketsize);
4907	}
4908
4909	if (numentries > max)
4910		numentries = max;
4911
4912	log2qty = ilog2(numentries);
4913
4914	do {
4915		size = bucketsize << log2qty;
4916		if (flags & HASH_EARLY)
4917			table = alloc_bootmem_nopanic(size);
4918		else if (hashdist)
4919			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4920		else {
4921			/*
4922			 * If bucketsize is not a power-of-two, we may free
4923			 * some pages at the end of hash table which
4924			 * alloc_pages_exact() automatically does
4925			 */
4926			if (get_order(size) < MAX_ORDER) {
4927				table = alloc_pages_exact(size, GFP_ATOMIC);
4928				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4929			}
4930		}
4931	} while (!table && size > PAGE_SIZE && --log2qty);
4932
4933	if (!table)
4934		panic("Failed to allocate %s hash table\n", tablename);
4935
4936	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4937	       tablename,
4938	       (1U << log2qty),
4939	       ilog2(size) - PAGE_SHIFT,
4940	       size);
4941
4942	if (_hash_shift)
4943		*_hash_shift = log2qty;
4944	if (_hash_mask)
4945		*_hash_mask = (1 << log2qty) - 1;
4946
4947	return table;
4948}
4949
4950/* Return a pointer to the bitmap storing bits affecting a block of pages */
4951static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4952							unsigned long pfn)
4953{
4954#ifdef CONFIG_SPARSEMEM
4955	return __pfn_to_section(pfn)->pageblock_flags;
4956#else
4957	return zone->pageblock_flags;
4958#endif /* CONFIG_SPARSEMEM */
4959}
4960
4961static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4962{
4963#ifdef CONFIG_SPARSEMEM
4964	pfn &= (PAGES_PER_SECTION-1);
4965	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4966#else
4967	pfn = pfn - zone->zone_start_pfn;
4968	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4969#endif /* CONFIG_SPARSEMEM */
4970}
4971
4972/**
4973 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4974 * @page: The page within the block of interest
4975 * @start_bitidx: The first bit of interest to retrieve
4976 * @end_bitidx: The last bit of interest
4977 * returns pageblock_bits flags
4978 */
4979unsigned long get_pageblock_flags_group(struct page *page,
4980					int start_bitidx, int end_bitidx)
4981{
4982	struct zone *zone;
4983	unsigned long *bitmap;
4984	unsigned long pfn, bitidx;
4985	unsigned long flags = 0;
4986	unsigned long value = 1;
4987
4988	zone = page_zone(page);
4989	pfn = page_to_pfn(page);
4990	bitmap = get_pageblock_bitmap(zone, pfn);
4991	bitidx = pfn_to_bitidx(zone, pfn);
4992
4993	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4994		if (test_bit(bitidx + start_bitidx, bitmap))
4995			flags |= value;
4996
4997	return flags;
4998}
4999
5000/**
5001 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5002 * @page: The page within the block of interest
5003 * @start_bitidx: The first bit of interest
5004 * @end_bitidx: The last bit of interest
5005 * @flags: The flags to set
5006 */
5007void set_pageblock_flags_group(struct page *page, unsigned long flags,
5008					int start_bitidx, int end_bitidx)
5009{
5010	struct zone *zone;
5011	unsigned long *bitmap;
5012	unsigned long pfn, bitidx;
5013	unsigned long value = 1;
5014
5015	zone = page_zone(page);
5016	pfn = page_to_pfn(page);
5017	bitmap = get_pageblock_bitmap(zone, pfn);
5018	bitidx = pfn_to_bitidx(zone, pfn);
5019	VM_BUG_ON(pfn < zone->zone_start_pfn);
5020	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5021
5022	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5023		if (flags & value)
5024			__set_bit(bitidx + start_bitidx, bitmap);
5025		else
5026			__clear_bit(bitidx + start_bitidx, bitmap);
5027}
5028
5029/*
5030 * This is designed as sub function...plz see page_isolation.c also.
5031 * set/clear page block's type to be ISOLATE.
5032 * page allocater never alloc memory from ISOLATE block.
5033 */
5034
5035int set_migratetype_isolate(struct page *page)
5036{
5037	struct zone *zone;
5038	struct page *curr_page;
5039	unsigned long flags, pfn, iter;
5040	unsigned long immobile = 0;
5041	struct memory_isolate_notify arg;
5042	int notifier_ret;
5043	int ret = -EBUSY;
5044	int zone_idx;
5045
5046	zone = page_zone(page);
5047	zone_idx = zone_idx(zone);
5048
5049	spin_lock_irqsave(&zone->lock, flags);
5050	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5051	    zone_idx == ZONE_MOVABLE) {
5052		ret = 0;
5053		goto out;
5054	}
5055
5056	pfn = page_to_pfn(page);
5057	arg.start_pfn = pfn;
5058	arg.nr_pages = pageblock_nr_pages;
5059	arg.pages_found = 0;
5060
5061	/*
5062	 * It may be possible to isolate a pageblock even if the
5063	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5064	 * notifier chain is used by balloon drivers to return the
5065	 * number of pages in a range that are held by the balloon
5066	 * driver to shrink memory. If all the pages are accounted for
5067	 * by balloons, are free, or on the LRU, isolation can continue.
5068	 * Later, for example, when memory hotplug notifier runs, these
5069	 * pages reported as "can be isolated" should be isolated(freed)
5070	 * by the balloon driver through the memory notifier chain.
5071	 */
5072	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5073	notifier_ret = notifier_to_errno(notifier_ret);
5074	if (notifier_ret || !arg.pages_found)
5075		goto out;
5076
5077	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5078		if (!pfn_valid_within(pfn))
5079			continue;
5080
5081		curr_page = pfn_to_page(iter);
5082		if (!page_count(curr_page) || PageLRU(curr_page))
5083			continue;
5084
5085		immobile++;
5086	}
5087
5088	if (arg.pages_found == immobile)
5089		ret = 0;
5090
5091out:
5092	if (!ret) {
5093		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5094		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5095	}
5096
5097	spin_unlock_irqrestore(&zone->lock, flags);
5098	if (!ret)
5099		drain_all_pages();
5100	return ret;
5101}
5102
5103void unset_migratetype_isolate(struct page *page)
5104{
5105	struct zone *zone;
5106	unsigned long flags;
5107	zone = page_zone(page);
5108	spin_lock_irqsave(&zone->lock, flags);
5109	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5110		goto out;
5111	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5112	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5113out:
5114	spin_unlock_irqrestore(&zone->lock, flags);
5115}
5116
5117#ifdef CONFIG_MEMORY_HOTREMOVE
5118/*
5119 * All pages in the range must be isolated before calling this.
5120 */
5121void
5122__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5123{
5124	struct page *page;
5125	struct zone *zone;
5126	int order, i;
5127	unsigned long pfn;
5128	unsigned long flags;
5129	/* find the first valid pfn */
5130	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5131		if (pfn_valid(pfn))
5132			break;
5133	if (pfn == end_pfn)
5134		return;
5135	zone = page_zone(pfn_to_page(pfn));
5136	spin_lock_irqsave(&zone->lock, flags);
5137	pfn = start_pfn;
5138	while (pfn < end_pfn) {
5139		if (!pfn_valid(pfn)) {
5140			pfn++;
5141			continue;
5142		}
5143		page = pfn_to_page(pfn);
5144		BUG_ON(page_count(page));
5145		BUG_ON(!PageBuddy(page));
5146		order = page_order(page);
5147#ifdef CONFIG_DEBUG_VM
5148		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5149		       pfn, 1 << order, end_pfn);
5150#endif
5151		list_del(&page->lru);
5152		rmv_page_order(page);
5153		zone->free_area[order].nr_free--;
5154		__mod_zone_page_state(zone, NR_FREE_PAGES,
5155				      - (1UL << order));
5156		for (i = 0; i < (1 << order); i++)
5157			SetPageReserved((page+i));
5158		pfn += (1 << order);
5159	}
5160	spin_unlock_irqrestore(&zone->lock, flags);
5161}
5162#endif
5163
5164#ifdef CONFIG_MEMORY_FAILURE
5165bool is_free_buddy_page(struct page *page)
5166{
5167	struct zone *zone = page_zone(page);
5168	unsigned long pfn = page_to_pfn(page);
5169	unsigned long flags;
5170	int order;
5171
5172	spin_lock_irqsave(&zone->lock, flags);
5173	for (order = 0; order < MAX_ORDER; order++) {
5174		struct page *page_head = page - (pfn & ((1 << order) - 1));
5175
5176		if (PageBuddy(page_head) && page_order(page_head) >= order)
5177			break;
5178	}
5179	spin_unlock_irqrestore(&zone->lock, flags);
5180
5181	return order < MAX_ORDER;
5182}
5183#endif
5184
5185static struct trace_print_flags pageflag_names[] = {
5186	{1UL << PG_locked,		"locked"	},
5187	{1UL << PG_error,		"error"		},
5188	{1UL << PG_referenced,		"referenced"	},
5189	{1UL << PG_uptodate,		"uptodate"	},
5190	{1UL << PG_dirty,		"dirty"		},
5191	{1UL << PG_lru,			"lru"		},
5192	{1UL << PG_active,		"active"	},
5193	{1UL << PG_slab,		"slab"		},
5194	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5195	{1UL << PG_arch_1,		"arch_1"	},
5196	{1UL << PG_reserved,		"reserved"	},
5197	{1UL << PG_private,		"private"	},
5198	{1UL << PG_private_2,		"private_2"	},
5199	{1UL << PG_writeback,		"writeback"	},
5200#ifdef CONFIG_PAGEFLAGS_EXTENDED
5201	{1UL << PG_head,		"head"		},
5202	{1UL << PG_tail,		"tail"		},
5203#else
5204	{1UL << PG_compound,		"compound"	},
5205#endif
5206	{1UL << PG_swapcache,		"swapcache"	},
5207	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5208	{1UL << PG_reclaim,		"reclaim"	},
5209	{1UL << PG_buddy,		"buddy"		},
5210	{1UL << PG_swapbacked,		"swapbacked"	},
5211	{1UL << PG_unevictable,		"unevictable"	},
5212#ifdef CONFIG_MMU
5213	{1UL << PG_mlocked,		"mlocked"	},
5214#endif
5215#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5216	{1UL << PG_uncached,		"uncached"	},
5217#endif
5218#ifdef CONFIG_MEMORY_FAILURE
5219	{1UL << PG_hwpoison,		"hwpoison"	},
5220#endif
5221	{-1UL,				NULL		},
5222};
5223
5224static void dump_page_flags(unsigned long flags)
5225{
5226	const char *delim = "";
5227	unsigned long mask;
5228	int i;
5229
5230	printk(KERN_ALERT "page flags: %#lx(", flags);
5231
5232	/* remove zone id */
5233	flags &= (1UL << NR_PAGEFLAGS) - 1;
5234
5235	for (i = 0; pageflag_names[i].name && flags; i++) {
5236
5237		mask = pageflag_names[i].mask;
5238		if ((flags & mask) != mask)
5239			continue;
5240
5241		flags &= ~mask;
5242		printk("%s%s", delim, pageflag_names[i].name);
5243		delim = "|";
5244	}
5245
5246	/* check for left over flags */
5247	if (flags)
5248		printk("%s%#lx", delim, flags);
5249
5250	printk(")\n");
5251}
5252
5253void dump_page(struct page *page)
5254{
5255	printk(KERN_ALERT
5256	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5257		page, page_count(page), page_mapcount(page),
5258		page->mapping, page->index);
5259	dump_page_flags(page->flags);
5260}
5261