page_alloc.c revision 89689ae7f95995723fbcd5c116c47933a3bb8b13
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46#include "internal.h"
47
48/*
49 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
50 * initializer cleaner
51 */
52nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
53EXPORT_SYMBOL(node_online_map);
54nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
55EXPORT_SYMBOL(node_possible_map);
56unsigned long totalram_pages __read_mostly;
57unsigned long totalreserve_pages __read_mostly;
58long nr_swap_pages;
59int percpu_pagelist_fraction;
60
61static void __free_pages_ok(struct page *page, unsigned int order);
62
63/*
64 * results with 256, 32 in the lowmem_reserve sysctl:
65 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
66 *	1G machine -> (16M dma, 784M normal, 224M high)
67 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
68 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
69 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
70 *
71 * TBD: should special case ZONE_DMA32 machines here - in those we normally
72 * don't need any ZONE_NORMAL reservation
73 */
74int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
75	 256,
76#ifdef CONFIG_ZONE_DMA32
77	 256,
78#endif
79#ifdef CONFIG_HIGHMEM
80	 32
81#endif
82};
83
84EXPORT_SYMBOL(totalram_pages);
85
86static char *zone_names[MAX_NR_ZONES] = {
87	 "DMA",
88#ifdef CONFIG_ZONE_DMA32
89	 "DMA32",
90#endif
91	 "Normal",
92#ifdef CONFIG_HIGHMEM
93	 "HighMem"
94#endif
95};
96
97int min_free_kbytes = 1024;
98
99unsigned long __meminitdata nr_kernel_pages;
100unsigned long __meminitdata nr_all_pages;
101static unsigned long __initdata dma_reserve;
102
103#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
104  /*
105   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
106   * ranges of memory (RAM) that may be registered with add_active_range().
107   * Ranges passed to add_active_range() will be merged if possible
108   * so the number of times add_active_range() can be called is
109   * related to the number of nodes and the number of holes
110   */
111  #ifdef CONFIG_MAX_ACTIVE_REGIONS
112    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
113    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
114  #else
115    #if MAX_NUMNODES >= 32
116      /* If there can be many nodes, allow up to 50 holes per node */
117      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
118    #else
119      /* By default, allow up to 256 distinct regions */
120      #define MAX_ACTIVE_REGIONS 256
121    #endif
122  #endif
123
124  struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
125  int __initdata nr_nodemap_entries;
126  unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
127  unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
128#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
129  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
130  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
131#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
132#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
133
134#ifdef CONFIG_DEBUG_VM
135static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
136{
137	int ret = 0;
138	unsigned seq;
139	unsigned long pfn = page_to_pfn(page);
140
141	do {
142		seq = zone_span_seqbegin(zone);
143		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
144			ret = 1;
145		else if (pfn < zone->zone_start_pfn)
146			ret = 1;
147	} while (zone_span_seqretry(zone, seq));
148
149	return ret;
150}
151
152static int page_is_consistent(struct zone *zone, struct page *page)
153{
154#ifdef CONFIG_HOLES_IN_ZONE
155	if (!pfn_valid(page_to_pfn(page)))
156		return 0;
157#endif
158	if (zone != page_zone(page))
159		return 0;
160
161	return 1;
162}
163/*
164 * Temporary debugging check for pages not lying within a given zone.
165 */
166static int bad_range(struct zone *zone, struct page *page)
167{
168	if (page_outside_zone_boundaries(zone, page))
169		return 1;
170	if (!page_is_consistent(zone, page))
171		return 1;
172
173	return 0;
174}
175#else
176static inline int bad_range(struct zone *zone, struct page *page)
177{
178	return 0;
179}
180#endif
181
182static void bad_page(struct page *page)
183{
184	printk(KERN_EMERG "Bad page state in process '%s'\n"
185		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
186		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
187		KERN_EMERG "Backtrace:\n",
188		current->comm, page, (int)(2*sizeof(unsigned long)),
189		(unsigned long)page->flags, page->mapping,
190		page_mapcount(page), page_count(page));
191	dump_stack();
192	page->flags &= ~(1 << PG_lru	|
193			1 << PG_private |
194			1 << PG_locked	|
195			1 << PG_active	|
196			1 << PG_dirty	|
197			1 << PG_reclaim |
198			1 << PG_slab    |
199			1 << PG_swapcache |
200			1 << PG_writeback |
201			1 << PG_buddy );
202	set_page_count(page, 0);
203	reset_page_mapcount(page);
204	page->mapping = NULL;
205	add_taint(TAINT_BAD_PAGE);
206}
207
208/*
209 * Higher-order pages are called "compound pages".  They are structured thusly:
210 *
211 * The first PAGE_SIZE page is called the "head page".
212 *
213 * The remaining PAGE_SIZE pages are called "tail pages".
214 *
215 * All pages have PG_compound set.  All pages have their ->private pointing at
216 * the head page (even the head page has this).
217 *
218 * The first tail page's ->lru.next holds the address of the compound page's
219 * put_page() function.  Its ->lru.prev holds the order of allocation.
220 * This usage means that zero-order pages may not be compound.
221 */
222
223static void free_compound_page(struct page *page)
224{
225	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
226}
227
228static void prep_compound_page(struct page *page, unsigned long order)
229{
230	int i;
231	int nr_pages = 1 << order;
232
233	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
234	page[1].lru.prev = (void *)order;
235	for (i = 0; i < nr_pages; i++) {
236		struct page *p = page + i;
237
238		__SetPageCompound(p);
239		set_page_private(p, (unsigned long)page);
240	}
241}
242
243static void destroy_compound_page(struct page *page, unsigned long order)
244{
245	int i;
246	int nr_pages = 1 << order;
247
248	if (unlikely((unsigned long)page[1].lru.prev != order))
249		bad_page(page);
250
251	for (i = 0; i < nr_pages; i++) {
252		struct page *p = page + i;
253
254		if (unlikely(!PageCompound(p) |
255				(page_private(p) != (unsigned long)page)))
256			bad_page(page);
257		__ClearPageCompound(p);
258	}
259}
260
261static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
262{
263	int i;
264
265	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
266	/*
267	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
268	 * and __GFP_HIGHMEM from hard or soft interrupt context.
269	 */
270	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
271	for (i = 0; i < (1 << order); i++)
272		clear_highpage(page + i);
273}
274
275/*
276 * function for dealing with page's order in buddy system.
277 * zone->lock is already acquired when we use these.
278 * So, we don't need atomic page->flags operations here.
279 */
280static inline unsigned long page_order(struct page *page)
281{
282	return page_private(page);
283}
284
285static inline void set_page_order(struct page *page, int order)
286{
287	set_page_private(page, order);
288	__SetPageBuddy(page);
289}
290
291static inline void rmv_page_order(struct page *page)
292{
293	__ClearPageBuddy(page);
294	set_page_private(page, 0);
295}
296
297/*
298 * Locate the struct page for both the matching buddy in our
299 * pair (buddy1) and the combined O(n+1) page they form (page).
300 *
301 * 1) Any buddy B1 will have an order O twin B2 which satisfies
302 * the following equation:
303 *     B2 = B1 ^ (1 << O)
304 * For example, if the starting buddy (buddy2) is #8 its order
305 * 1 buddy is #10:
306 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
307 *
308 * 2) Any buddy B will have an order O+1 parent P which
309 * satisfies the following equation:
310 *     P = B & ~(1 << O)
311 *
312 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
313 */
314static inline struct page *
315__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
316{
317	unsigned long buddy_idx = page_idx ^ (1 << order);
318
319	return page + (buddy_idx - page_idx);
320}
321
322static inline unsigned long
323__find_combined_index(unsigned long page_idx, unsigned int order)
324{
325	return (page_idx & ~(1 << order));
326}
327
328/*
329 * This function checks whether a page is free && is the buddy
330 * we can do coalesce a page and its buddy if
331 * (a) the buddy is not in a hole &&
332 * (b) the buddy is in the buddy system &&
333 * (c) a page and its buddy have the same order &&
334 * (d) a page and its buddy are in the same zone.
335 *
336 * For recording whether a page is in the buddy system, we use PG_buddy.
337 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
338 *
339 * For recording page's order, we use page_private(page).
340 */
341static inline int page_is_buddy(struct page *page, struct page *buddy,
342								int order)
343{
344#ifdef CONFIG_HOLES_IN_ZONE
345	if (!pfn_valid(page_to_pfn(buddy)))
346		return 0;
347#endif
348
349	if (page_zone_id(page) != page_zone_id(buddy))
350		return 0;
351
352	if (PageBuddy(buddy) && page_order(buddy) == order) {
353		BUG_ON(page_count(buddy) != 0);
354		return 1;
355	}
356	return 0;
357}
358
359/*
360 * Freeing function for a buddy system allocator.
361 *
362 * The concept of a buddy system is to maintain direct-mapped table
363 * (containing bit values) for memory blocks of various "orders".
364 * The bottom level table contains the map for the smallest allocatable
365 * units of memory (here, pages), and each level above it describes
366 * pairs of units from the levels below, hence, "buddies".
367 * At a high level, all that happens here is marking the table entry
368 * at the bottom level available, and propagating the changes upward
369 * as necessary, plus some accounting needed to play nicely with other
370 * parts of the VM system.
371 * At each level, we keep a list of pages, which are heads of continuous
372 * free pages of length of (1 << order) and marked with PG_buddy. Page's
373 * order is recorded in page_private(page) field.
374 * So when we are allocating or freeing one, we can derive the state of the
375 * other.  That is, if we allocate a small block, and both were
376 * free, the remainder of the region must be split into blocks.
377 * If a block is freed, and its buddy is also free, then this
378 * triggers coalescing into a block of larger size.
379 *
380 * -- wli
381 */
382
383static inline void __free_one_page(struct page *page,
384		struct zone *zone, unsigned int order)
385{
386	unsigned long page_idx;
387	int order_size = 1 << order;
388
389	if (unlikely(PageCompound(page)))
390		destroy_compound_page(page, order);
391
392	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
393
394	VM_BUG_ON(page_idx & (order_size - 1));
395	VM_BUG_ON(bad_range(zone, page));
396
397	zone->free_pages += order_size;
398	while (order < MAX_ORDER-1) {
399		unsigned long combined_idx;
400		struct free_area *area;
401		struct page *buddy;
402
403		buddy = __page_find_buddy(page, page_idx, order);
404		if (!page_is_buddy(page, buddy, order))
405			break;		/* Move the buddy up one level. */
406
407		list_del(&buddy->lru);
408		area = zone->free_area + order;
409		area->nr_free--;
410		rmv_page_order(buddy);
411		combined_idx = __find_combined_index(page_idx, order);
412		page = page + (combined_idx - page_idx);
413		page_idx = combined_idx;
414		order++;
415	}
416	set_page_order(page, order);
417	list_add(&page->lru, &zone->free_area[order].free_list);
418	zone->free_area[order].nr_free++;
419}
420
421static inline int free_pages_check(struct page *page)
422{
423	if (unlikely(page_mapcount(page) |
424		(page->mapping != NULL)  |
425		(page_count(page) != 0)  |
426		(page->flags & (
427			1 << PG_lru	|
428			1 << PG_private |
429			1 << PG_locked	|
430			1 << PG_active	|
431			1 << PG_reclaim	|
432			1 << PG_slab	|
433			1 << PG_swapcache |
434			1 << PG_writeback |
435			1 << PG_reserved |
436			1 << PG_buddy ))))
437		bad_page(page);
438	if (PageDirty(page))
439		__ClearPageDirty(page);
440	/*
441	 * For now, we report if PG_reserved was found set, but do not
442	 * clear it, and do not free the page.  But we shall soon need
443	 * to do more, for when the ZERO_PAGE count wraps negative.
444	 */
445	return PageReserved(page);
446}
447
448/*
449 * Frees a list of pages.
450 * Assumes all pages on list are in same zone, and of same order.
451 * count is the number of pages to free.
452 *
453 * If the zone was previously in an "all pages pinned" state then look to
454 * see if this freeing clears that state.
455 *
456 * And clear the zone's pages_scanned counter, to hold off the "all pages are
457 * pinned" detection logic.
458 */
459static void free_pages_bulk(struct zone *zone, int count,
460					struct list_head *list, int order)
461{
462	spin_lock(&zone->lock);
463	zone->all_unreclaimable = 0;
464	zone->pages_scanned = 0;
465	while (count--) {
466		struct page *page;
467
468		VM_BUG_ON(list_empty(list));
469		page = list_entry(list->prev, struct page, lru);
470		/* have to delete it as __free_one_page list manipulates */
471		list_del(&page->lru);
472		__free_one_page(page, zone, order);
473	}
474	spin_unlock(&zone->lock);
475}
476
477static void free_one_page(struct zone *zone, struct page *page, int order)
478{
479	spin_lock(&zone->lock);
480	zone->all_unreclaimable = 0;
481	zone->pages_scanned = 0;
482	__free_one_page(page, zone, order);
483	spin_unlock(&zone->lock);
484}
485
486static void __free_pages_ok(struct page *page, unsigned int order)
487{
488	unsigned long flags;
489	int i;
490	int reserved = 0;
491
492	for (i = 0 ; i < (1 << order) ; ++i)
493		reserved += free_pages_check(page + i);
494	if (reserved)
495		return;
496
497	if (!PageHighMem(page))
498		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
499	arch_free_page(page, order);
500	kernel_map_pages(page, 1 << order, 0);
501
502	local_irq_save(flags);
503	__count_vm_events(PGFREE, 1 << order);
504	free_one_page(page_zone(page), page, order);
505	local_irq_restore(flags);
506}
507
508/*
509 * permit the bootmem allocator to evade page validation on high-order frees
510 */
511void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
512{
513	if (order == 0) {
514		__ClearPageReserved(page);
515		set_page_count(page, 0);
516		set_page_refcounted(page);
517		__free_page(page);
518	} else {
519		int loop;
520
521		prefetchw(page);
522		for (loop = 0; loop < BITS_PER_LONG; loop++) {
523			struct page *p = &page[loop];
524
525			if (loop + 1 < BITS_PER_LONG)
526				prefetchw(p + 1);
527			__ClearPageReserved(p);
528			set_page_count(p, 0);
529		}
530
531		set_page_refcounted(page);
532		__free_pages(page, order);
533	}
534}
535
536
537/*
538 * The order of subdivision here is critical for the IO subsystem.
539 * Please do not alter this order without good reasons and regression
540 * testing. Specifically, as large blocks of memory are subdivided,
541 * the order in which smaller blocks are delivered depends on the order
542 * they're subdivided in this function. This is the primary factor
543 * influencing the order in which pages are delivered to the IO
544 * subsystem according to empirical testing, and this is also justified
545 * by considering the behavior of a buddy system containing a single
546 * large block of memory acted on by a series of small allocations.
547 * This behavior is a critical factor in sglist merging's success.
548 *
549 * -- wli
550 */
551static inline void expand(struct zone *zone, struct page *page,
552 	int low, int high, struct free_area *area)
553{
554	unsigned long size = 1 << high;
555
556	while (high > low) {
557		area--;
558		high--;
559		size >>= 1;
560		VM_BUG_ON(bad_range(zone, &page[size]));
561		list_add(&page[size].lru, &area->free_list);
562		area->nr_free++;
563		set_page_order(&page[size], high);
564	}
565}
566
567/*
568 * This page is about to be returned from the page allocator
569 */
570static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
571{
572	if (unlikely(page_mapcount(page) |
573		(page->mapping != NULL)  |
574		(page_count(page) != 0)  |
575		(page->flags & (
576			1 << PG_lru	|
577			1 << PG_private	|
578			1 << PG_locked	|
579			1 << PG_active	|
580			1 << PG_dirty	|
581			1 << PG_reclaim	|
582			1 << PG_slab    |
583			1 << PG_swapcache |
584			1 << PG_writeback |
585			1 << PG_reserved |
586			1 << PG_buddy ))))
587		bad_page(page);
588
589	/*
590	 * For now, we report if PG_reserved was found set, but do not
591	 * clear it, and do not allocate the page: as a safety net.
592	 */
593	if (PageReserved(page))
594		return 1;
595
596	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
597			1 << PG_referenced | 1 << PG_arch_1 |
598			1 << PG_checked | 1 << PG_mappedtodisk);
599	set_page_private(page, 0);
600	set_page_refcounted(page);
601	kernel_map_pages(page, 1 << order, 1);
602
603	if (gfp_flags & __GFP_ZERO)
604		prep_zero_page(page, order, gfp_flags);
605
606	if (order && (gfp_flags & __GFP_COMP))
607		prep_compound_page(page, order);
608
609	return 0;
610}
611
612/*
613 * Do the hard work of removing an element from the buddy allocator.
614 * Call me with the zone->lock already held.
615 */
616static struct page *__rmqueue(struct zone *zone, unsigned int order)
617{
618	struct free_area * area;
619	unsigned int current_order;
620	struct page *page;
621
622	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
623		area = zone->free_area + current_order;
624		if (list_empty(&area->free_list))
625			continue;
626
627		page = list_entry(area->free_list.next, struct page, lru);
628		list_del(&page->lru);
629		rmv_page_order(page);
630		area->nr_free--;
631		zone->free_pages -= 1UL << order;
632		expand(zone, page, order, current_order, area);
633		return page;
634	}
635
636	return NULL;
637}
638
639/*
640 * Obtain a specified number of elements from the buddy allocator, all under
641 * a single hold of the lock, for efficiency.  Add them to the supplied list.
642 * Returns the number of new pages which were placed at *list.
643 */
644static int rmqueue_bulk(struct zone *zone, unsigned int order,
645			unsigned long count, struct list_head *list)
646{
647	int i;
648
649	spin_lock(&zone->lock);
650	for (i = 0; i < count; ++i) {
651		struct page *page = __rmqueue(zone, order);
652		if (unlikely(page == NULL))
653			break;
654		list_add_tail(&page->lru, list);
655	}
656	spin_unlock(&zone->lock);
657	return i;
658}
659
660#ifdef CONFIG_NUMA
661/*
662 * Called from the slab reaper to drain pagesets on a particular node that
663 * belongs to the currently executing processor.
664 * Note that this function must be called with the thread pinned to
665 * a single processor.
666 */
667void drain_node_pages(int nodeid)
668{
669	int i;
670	enum zone_type z;
671	unsigned long flags;
672
673	for (z = 0; z < MAX_NR_ZONES; z++) {
674		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
675		struct per_cpu_pageset *pset;
676
677		if (!populated_zone(zone))
678			continue;
679
680		pset = zone_pcp(zone, smp_processor_id());
681		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
682			struct per_cpu_pages *pcp;
683
684			pcp = &pset->pcp[i];
685			if (pcp->count) {
686				local_irq_save(flags);
687				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
688				pcp->count = 0;
689				local_irq_restore(flags);
690			}
691		}
692	}
693}
694#endif
695
696#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
697static void __drain_pages(unsigned int cpu)
698{
699	unsigned long flags;
700	struct zone *zone;
701	int i;
702
703	for_each_zone(zone) {
704		struct per_cpu_pageset *pset;
705
706		pset = zone_pcp(zone, cpu);
707		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
708			struct per_cpu_pages *pcp;
709
710			pcp = &pset->pcp[i];
711			local_irq_save(flags);
712			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
713			pcp->count = 0;
714			local_irq_restore(flags);
715		}
716	}
717}
718#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
719
720#ifdef CONFIG_PM
721
722void mark_free_pages(struct zone *zone)
723{
724	unsigned long pfn, max_zone_pfn;
725	unsigned long flags;
726	int order;
727	struct list_head *curr;
728
729	if (!zone->spanned_pages)
730		return;
731
732	spin_lock_irqsave(&zone->lock, flags);
733
734	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
735	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
736		if (pfn_valid(pfn)) {
737			struct page *page = pfn_to_page(pfn);
738
739			if (!PageNosave(page))
740				ClearPageNosaveFree(page);
741		}
742
743	for (order = MAX_ORDER - 1; order >= 0; --order)
744		list_for_each(curr, &zone->free_area[order].free_list) {
745			unsigned long i;
746
747			pfn = page_to_pfn(list_entry(curr, struct page, lru));
748			for (i = 0; i < (1UL << order); i++)
749				SetPageNosaveFree(pfn_to_page(pfn + i));
750		}
751
752	spin_unlock_irqrestore(&zone->lock, flags);
753}
754
755/*
756 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
757 */
758void drain_local_pages(void)
759{
760	unsigned long flags;
761
762	local_irq_save(flags);
763	__drain_pages(smp_processor_id());
764	local_irq_restore(flags);
765}
766#endif /* CONFIG_PM */
767
768/*
769 * Free a 0-order page
770 */
771static void fastcall free_hot_cold_page(struct page *page, int cold)
772{
773	struct zone *zone = page_zone(page);
774	struct per_cpu_pages *pcp;
775	unsigned long flags;
776
777	if (PageAnon(page))
778		page->mapping = NULL;
779	if (free_pages_check(page))
780		return;
781
782	if (!PageHighMem(page))
783		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
784	arch_free_page(page, 0);
785	kernel_map_pages(page, 1, 0);
786
787	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
788	local_irq_save(flags);
789	__count_vm_event(PGFREE);
790	list_add(&page->lru, &pcp->list);
791	pcp->count++;
792	if (pcp->count >= pcp->high) {
793		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
794		pcp->count -= pcp->batch;
795	}
796	local_irq_restore(flags);
797	put_cpu();
798}
799
800void fastcall free_hot_page(struct page *page)
801{
802	free_hot_cold_page(page, 0);
803}
804
805void fastcall free_cold_page(struct page *page)
806{
807	free_hot_cold_page(page, 1);
808}
809
810/*
811 * split_page takes a non-compound higher-order page, and splits it into
812 * n (1<<order) sub-pages: page[0..n]
813 * Each sub-page must be freed individually.
814 *
815 * Note: this is probably too low level an operation for use in drivers.
816 * Please consult with lkml before using this in your driver.
817 */
818void split_page(struct page *page, unsigned int order)
819{
820	int i;
821
822	VM_BUG_ON(PageCompound(page));
823	VM_BUG_ON(!page_count(page));
824	for (i = 1; i < (1 << order); i++)
825		set_page_refcounted(page + i);
826}
827
828/*
829 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
830 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
831 * or two.
832 */
833static struct page *buffered_rmqueue(struct zonelist *zonelist,
834			struct zone *zone, int order, gfp_t gfp_flags)
835{
836	unsigned long flags;
837	struct page *page;
838	int cold = !!(gfp_flags & __GFP_COLD);
839	int cpu;
840
841again:
842	cpu  = get_cpu();
843	if (likely(order == 0)) {
844		struct per_cpu_pages *pcp;
845
846		pcp = &zone_pcp(zone, cpu)->pcp[cold];
847		local_irq_save(flags);
848		if (!pcp->count) {
849			pcp->count = rmqueue_bulk(zone, 0,
850						pcp->batch, &pcp->list);
851			if (unlikely(!pcp->count))
852				goto failed;
853		}
854		page = list_entry(pcp->list.next, struct page, lru);
855		list_del(&page->lru);
856		pcp->count--;
857	} else {
858		spin_lock_irqsave(&zone->lock, flags);
859		page = __rmqueue(zone, order);
860		spin_unlock(&zone->lock);
861		if (!page)
862			goto failed;
863	}
864
865	__count_zone_vm_events(PGALLOC, zone, 1 << order);
866	zone_statistics(zonelist, zone);
867	local_irq_restore(flags);
868	put_cpu();
869
870	VM_BUG_ON(bad_range(zone, page));
871	if (prep_new_page(page, order, gfp_flags))
872		goto again;
873	return page;
874
875failed:
876	local_irq_restore(flags);
877	put_cpu();
878	return NULL;
879}
880
881#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
882#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
883#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
884#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
885#define ALLOC_HARDER		0x10 /* try to alloc harder */
886#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
887#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
888
889/*
890 * Return 1 if free pages are above 'mark'. This takes into account the order
891 * of the allocation.
892 */
893int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
894		      int classzone_idx, int alloc_flags)
895{
896	/* free_pages my go negative - that's OK */
897	unsigned long min = mark;
898	long free_pages = z->free_pages - (1 << order) + 1;
899	int o;
900
901	if (alloc_flags & ALLOC_HIGH)
902		min -= min / 2;
903	if (alloc_flags & ALLOC_HARDER)
904		min -= min / 4;
905
906	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
907		return 0;
908	for (o = 0; o < order; o++) {
909		/* At the next order, this order's pages become unavailable */
910		free_pages -= z->free_area[o].nr_free << o;
911
912		/* Require fewer higher order pages to be free */
913		min >>= 1;
914
915		if (free_pages <= min)
916			return 0;
917	}
918	return 1;
919}
920
921/*
922 * get_page_from_freelist goes through the zonelist trying to allocate
923 * a page.
924 */
925static struct page *
926get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
927		struct zonelist *zonelist, int alloc_flags)
928{
929	struct zone **z = zonelist->zones;
930	struct page *page = NULL;
931	int classzone_idx = zone_idx(*z);
932	struct zone *zone;
933
934	/*
935	 * Go through the zonelist once, looking for a zone with enough free.
936	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
937	 */
938	do {
939		zone = *z;
940		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
941			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
942				break;
943		if ((alloc_flags & ALLOC_CPUSET) &&
944			!cpuset_zone_allowed(zone, gfp_mask))
945				continue;
946
947		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
948			unsigned long mark;
949			if (alloc_flags & ALLOC_WMARK_MIN)
950				mark = zone->pages_min;
951			else if (alloc_flags & ALLOC_WMARK_LOW)
952				mark = zone->pages_low;
953			else
954				mark = zone->pages_high;
955			if (!zone_watermark_ok(zone, order, mark,
956				    classzone_idx, alloc_flags)) {
957				if (!zone_reclaim_mode ||
958				    !zone_reclaim(zone, gfp_mask, order))
959					continue;
960			}
961		}
962
963		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
964		if (page)
965			break;
966
967	} while (*(++z) != NULL);
968	return page;
969}
970
971/*
972 * This is the 'heart' of the zoned buddy allocator.
973 */
974struct page * fastcall
975__alloc_pages(gfp_t gfp_mask, unsigned int order,
976		struct zonelist *zonelist)
977{
978	const gfp_t wait = gfp_mask & __GFP_WAIT;
979	struct zone **z;
980	struct page *page;
981	struct reclaim_state reclaim_state;
982	struct task_struct *p = current;
983	int do_retry;
984	int alloc_flags;
985	int did_some_progress;
986
987	might_sleep_if(wait);
988
989restart:
990	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
991
992	if (unlikely(*z == NULL)) {
993		/* Should this ever happen?? */
994		return NULL;
995	}
996
997	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
998				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
999	if (page)
1000		goto got_pg;
1001
1002	for (z = zonelist->zones; *z; z++)
1003		wakeup_kswapd(*z, order);
1004
1005	/*
1006	 * OK, we're below the kswapd watermark and have kicked background
1007	 * reclaim. Now things get more complex, so set up alloc_flags according
1008	 * to how we want to proceed.
1009	 *
1010	 * The caller may dip into page reserves a bit more if the caller
1011	 * cannot run direct reclaim, or if the caller has realtime scheduling
1012	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1013	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1014	 */
1015	alloc_flags = ALLOC_WMARK_MIN;
1016	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1017		alloc_flags |= ALLOC_HARDER;
1018	if (gfp_mask & __GFP_HIGH)
1019		alloc_flags |= ALLOC_HIGH;
1020	if (wait)
1021		alloc_flags |= ALLOC_CPUSET;
1022
1023	/*
1024	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1025	 * coming from realtime tasks go deeper into reserves.
1026	 *
1027	 * This is the last chance, in general, before the goto nopage.
1028	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1029	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1030	 */
1031	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1032	if (page)
1033		goto got_pg;
1034
1035	/* This allocation should allow future memory freeing. */
1036
1037	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1038			&& !in_interrupt()) {
1039		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1040nofail_alloc:
1041			/* go through the zonelist yet again, ignoring mins */
1042			page = get_page_from_freelist(gfp_mask, order,
1043				zonelist, ALLOC_NO_WATERMARKS);
1044			if (page)
1045				goto got_pg;
1046			if (gfp_mask & __GFP_NOFAIL) {
1047				congestion_wait(WRITE, HZ/50);
1048				goto nofail_alloc;
1049			}
1050		}
1051		goto nopage;
1052	}
1053
1054	/* Atomic allocations - we can't balance anything */
1055	if (!wait)
1056		goto nopage;
1057
1058rebalance:
1059	cond_resched();
1060
1061	/* We now go into synchronous reclaim */
1062	cpuset_memory_pressure_bump();
1063	p->flags |= PF_MEMALLOC;
1064	reclaim_state.reclaimed_slab = 0;
1065	p->reclaim_state = &reclaim_state;
1066
1067	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1068
1069	p->reclaim_state = NULL;
1070	p->flags &= ~PF_MEMALLOC;
1071
1072	cond_resched();
1073
1074	if (likely(did_some_progress)) {
1075		page = get_page_from_freelist(gfp_mask, order,
1076						zonelist, alloc_flags);
1077		if (page)
1078			goto got_pg;
1079	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1080		/*
1081		 * Go through the zonelist yet one more time, keep
1082		 * very high watermark here, this is only to catch
1083		 * a parallel oom killing, we must fail if we're still
1084		 * under heavy pressure.
1085		 */
1086		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1087				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1088		if (page)
1089			goto got_pg;
1090
1091		out_of_memory(zonelist, gfp_mask, order);
1092		goto restart;
1093	}
1094
1095	/*
1096	 * Don't let big-order allocations loop unless the caller explicitly
1097	 * requests that.  Wait for some write requests to complete then retry.
1098	 *
1099	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1100	 * <= 3, but that may not be true in other implementations.
1101	 */
1102	do_retry = 0;
1103	if (!(gfp_mask & __GFP_NORETRY)) {
1104		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1105			do_retry = 1;
1106		if (gfp_mask & __GFP_NOFAIL)
1107			do_retry = 1;
1108	}
1109	if (do_retry) {
1110		congestion_wait(WRITE, HZ/50);
1111		goto rebalance;
1112	}
1113
1114nopage:
1115	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1116		printk(KERN_WARNING "%s: page allocation failure."
1117			" order:%d, mode:0x%x\n",
1118			p->comm, order, gfp_mask);
1119		dump_stack();
1120		show_mem();
1121	}
1122got_pg:
1123	return page;
1124}
1125
1126EXPORT_SYMBOL(__alloc_pages);
1127
1128/*
1129 * Common helper functions.
1130 */
1131fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1132{
1133	struct page * page;
1134	page = alloc_pages(gfp_mask, order);
1135	if (!page)
1136		return 0;
1137	return (unsigned long) page_address(page);
1138}
1139
1140EXPORT_SYMBOL(__get_free_pages);
1141
1142fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1143{
1144	struct page * page;
1145
1146	/*
1147	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1148	 * a highmem page
1149	 */
1150	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1151
1152	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1153	if (page)
1154		return (unsigned long) page_address(page);
1155	return 0;
1156}
1157
1158EXPORT_SYMBOL(get_zeroed_page);
1159
1160void __pagevec_free(struct pagevec *pvec)
1161{
1162	int i = pagevec_count(pvec);
1163
1164	while (--i >= 0)
1165		free_hot_cold_page(pvec->pages[i], pvec->cold);
1166}
1167
1168fastcall void __free_pages(struct page *page, unsigned int order)
1169{
1170	if (put_page_testzero(page)) {
1171		if (order == 0)
1172			free_hot_page(page);
1173		else
1174			__free_pages_ok(page, order);
1175	}
1176}
1177
1178EXPORT_SYMBOL(__free_pages);
1179
1180fastcall void free_pages(unsigned long addr, unsigned int order)
1181{
1182	if (addr != 0) {
1183		VM_BUG_ON(!virt_addr_valid((void *)addr));
1184		__free_pages(virt_to_page((void *)addr), order);
1185	}
1186}
1187
1188EXPORT_SYMBOL(free_pages);
1189
1190/*
1191 * Total amount of free (allocatable) RAM:
1192 */
1193unsigned int nr_free_pages(void)
1194{
1195	unsigned int sum = 0;
1196	struct zone *zone;
1197
1198	for_each_zone(zone)
1199		sum += zone->free_pages;
1200
1201	return sum;
1202}
1203
1204EXPORT_SYMBOL(nr_free_pages);
1205
1206#ifdef CONFIG_NUMA
1207unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1208{
1209	unsigned int sum = 0;
1210	enum zone_type i;
1211
1212	for (i = 0; i < MAX_NR_ZONES; i++)
1213		sum += pgdat->node_zones[i].free_pages;
1214
1215	return sum;
1216}
1217#endif
1218
1219static unsigned int nr_free_zone_pages(int offset)
1220{
1221	/* Just pick one node, since fallback list is circular */
1222	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1223	unsigned int sum = 0;
1224
1225	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1226	struct zone **zonep = zonelist->zones;
1227	struct zone *zone;
1228
1229	for (zone = *zonep++; zone; zone = *zonep++) {
1230		unsigned long size = zone->present_pages;
1231		unsigned long high = zone->pages_high;
1232		if (size > high)
1233			sum += size - high;
1234	}
1235
1236	return sum;
1237}
1238
1239/*
1240 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1241 */
1242unsigned int nr_free_buffer_pages(void)
1243{
1244	return nr_free_zone_pages(gfp_zone(GFP_USER));
1245}
1246
1247/*
1248 * Amount of free RAM allocatable within all zones
1249 */
1250unsigned int nr_free_pagecache_pages(void)
1251{
1252	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1253}
1254
1255static inline void show_node(struct zone *zone)
1256{
1257	if (NUMA_BUILD)
1258		printk("Node %ld ", zone_to_nid(zone));
1259}
1260
1261void si_meminfo(struct sysinfo *val)
1262{
1263	val->totalram = totalram_pages;
1264	val->sharedram = 0;
1265	val->freeram = nr_free_pages();
1266	val->bufferram = nr_blockdev_pages();
1267	val->totalhigh = totalhigh_pages;
1268	val->freehigh = nr_free_highpages();
1269	val->mem_unit = PAGE_SIZE;
1270}
1271
1272EXPORT_SYMBOL(si_meminfo);
1273
1274#ifdef CONFIG_NUMA
1275void si_meminfo_node(struct sysinfo *val, int nid)
1276{
1277	pg_data_t *pgdat = NODE_DATA(nid);
1278
1279	val->totalram = pgdat->node_present_pages;
1280	val->freeram = nr_free_pages_pgdat(pgdat);
1281#ifdef CONFIG_HIGHMEM
1282	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1283	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1284#else
1285	val->totalhigh = 0;
1286	val->freehigh = 0;
1287#endif
1288	val->mem_unit = PAGE_SIZE;
1289}
1290#endif
1291
1292#define K(x) ((x) << (PAGE_SHIFT-10))
1293
1294/*
1295 * Show free area list (used inside shift_scroll-lock stuff)
1296 * We also calculate the percentage fragmentation. We do this by counting the
1297 * memory on each free list with the exception of the first item on the list.
1298 */
1299void show_free_areas(void)
1300{
1301	int cpu;
1302	unsigned long active;
1303	unsigned long inactive;
1304	unsigned long free;
1305	struct zone *zone;
1306
1307	for_each_zone(zone) {
1308		if (!populated_zone(zone))
1309			continue;
1310
1311		show_node(zone);
1312		printk("%s per-cpu:\n", zone->name);
1313
1314		for_each_online_cpu(cpu) {
1315			struct per_cpu_pageset *pageset;
1316
1317			pageset = zone_pcp(zone, cpu);
1318
1319			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1320			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1321			       cpu, pageset->pcp[0].high,
1322			       pageset->pcp[0].batch, pageset->pcp[0].count,
1323			       pageset->pcp[1].high, pageset->pcp[1].batch,
1324			       pageset->pcp[1].count);
1325		}
1326	}
1327
1328	get_zone_counts(&active, &inactive, &free);
1329
1330	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1331		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1332		active,
1333		inactive,
1334		global_page_state(NR_FILE_DIRTY),
1335		global_page_state(NR_WRITEBACK),
1336		global_page_state(NR_UNSTABLE_NFS),
1337		nr_free_pages(),
1338		global_page_state(NR_SLAB_RECLAIMABLE) +
1339			global_page_state(NR_SLAB_UNRECLAIMABLE),
1340		global_page_state(NR_FILE_MAPPED),
1341		global_page_state(NR_PAGETABLE));
1342
1343	for_each_zone(zone) {
1344		int i;
1345
1346		if (!populated_zone(zone))
1347			continue;
1348
1349		show_node(zone);
1350		printk("%s"
1351			" free:%lukB"
1352			" min:%lukB"
1353			" low:%lukB"
1354			" high:%lukB"
1355			" active:%lukB"
1356			" inactive:%lukB"
1357			" present:%lukB"
1358			" pages_scanned:%lu"
1359			" all_unreclaimable? %s"
1360			"\n",
1361			zone->name,
1362			K(zone->free_pages),
1363			K(zone->pages_min),
1364			K(zone->pages_low),
1365			K(zone->pages_high),
1366			K(zone->nr_active),
1367			K(zone->nr_inactive),
1368			K(zone->present_pages),
1369			zone->pages_scanned,
1370			(zone->all_unreclaimable ? "yes" : "no")
1371			);
1372		printk("lowmem_reserve[]:");
1373		for (i = 0; i < MAX_NR_ZONES; i++)
1374			printk(" %lu", zone->lowmem_reserve[i]);
1375		printk("\n");
1376	}
1377
1378	for_each_zone(zone) {
1379 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1380
1381		if (!populated_zone(zone))
1382			continue;
1383
1384		show_node(zone);
1385		printk("%s: ", zone->name);
1386
1387		spin_lock_irqsave(&zone->lock, flags);
1388		for (order = 0; order < MAX_ORDER; order++) {
1389			nr[order] = zone->free_area[order].nr_free;
1390			total += nr[order] << order;
1391		}
1392		spin_unlock_irqrestore(&zone->lock, flags);
1393		for (order = 0; order < MAX_ORDER; order++)
1394			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1395		printk("= %lukB\n", K(total));
1396	}
1397
1398	show_swap_cache_info();
1399}
1400
1401/*
1402 * Builds allocation fallback zone lists.
1403 *
1404 * Add all populated zones of a node to the zonelist.
1405 */
1406static int __meminit build_zonelists_node(pg_data_t *pgdat,
1407			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1408{
1409	struct zone *zone;
1410
1411	BUG_ON(zone_type >= MAX_NR_ZONES);
1412	zone_type++;
1413
1414	do {
1415		zone_type--;
1416		zone = pgdat->node_zones + zone_type;
1417		if (populated_zone(zone)) {
1418			zonelist->zones[nr_zones++] = zone;
1419			check_highest_zone(zone_type);
1420		}
1421
1422	} while (zone_type);
1423	return nr_zones;
1424}
1425
1426#ifdef CONFIG_NUMA
1427#define MAX_NODE_LOAD (num_online_nodes())
1428static int __meminitdata node_load[MAX_NUMNODES];
1429/**
1430 * find_next_best_node - find the next node that should appear in a given node's fallback list
1431 * @node: node whose fallback list we're appending
1432 * @used_node_mask: nodemask_t of already used nodes
1433 *
1434 * We use a number of factors to determine which is the next node that should
1435 * appear on a given node's fallback list.  The node should not have appeared
1436 * already in @node's fallback list, and it should be the next closest node
1437 * according to the distance array (which contains arbitrary distance values
1438 * from each node to each node in the system), and should also prefer nodes
1439 * with no CPUs, since presumably they'll have very little allocation pressure
1440 * on them otherwise.
1441 * It returns -1 if no node is found.
1442 */
1443static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1444{
1445	int n, val;
1446	int min_val = INT_MAX;
1447	int best_node = -1;
1448
1449	/* Use the local node if we haven't already */
1450	if (!node_isset(node, *used_node_mask)) {
1451		node_set(node, *used_node_mask);
1452		return node;
1453	}
1454
1455	for_each_online_node(n) {
1456		cpumask_t tmp;
1457
1458		/* Don't want a node to appear more than once */
1459		if (node_isset(n, *used_node_mask))
1460			continue;
1461
1462		/* Use the distance array to find the distance */
1463		val = node_distance(node, n);
1464
1465		/* Penalize nodes under us ("prefer the next node") */
1466		val += (n < node);
1467
1468		/* Give preference to headless and unused nodes */
1469		tmp = node_to_cpumask(n);
1470		if (!cpus_empty(tmp))
1471			val += PENALTY_FOR_NODE_WITH_CPUS;
1472
1473		/* Slight preference for less loaded node */
1474		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1475		val += node_load[n];
1476
1477		if (val < min_val) {
1478			min_val = val;
1479			best_node = n;
1480		}
1481	}
1482
1483	if (best_node >= 0)
1484		node_set(best_node, *used_node_mask);
1485
1486	return best_node;
1487}
1488
1489static void __meminit build_zonelists(pg_data_t *pgdat)
1490{
1491	int j, node, local_node;
1492	enum zone_type i;
1493	int prev_node, load;
1494	struct zonelist *zonelist;
1495	nodemask_t used_mask;
1496
1497	/* initialize zonelists */
1498	for (i = 0; i < MAX_NR_ZONES; i++) {
1499		zonelist = pgdat->node_zonelists + i;
1500		zonelist->zones[0] = NULL;
1501	}
1502
1503	/* NUMA-aware ordering of nodes */
1504	local_node = pgdat->node_id;
1505	load = num_online_nodes();
1506	prev_node = local_node;
1507	nodes_clear(used_mask);
1508	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1509		int distance = node_distance(local_node, node);
1510
1511		/*
1512		 * If another node is sufficiently far away then it is better
1513		 * to reclaim pages in a zone before going off node.
1514		 */
1515		if (distance > RECLAIM_DISTANCE)
1516			zone_reclaim_mode = 1;
1517
1518		/*
1519		 * We don't want to pressure a particular node.
1520		 * So adding penalty to the first node in same
1521		 * distance group to make it round-robin.
1522		 */
1523
1524		if (distance != node_distance(local_node, prev_node))
1525			node_load[node] += load;
1526		prev_node = node;
1527		load--;
1528		for (i = 0; i < MAX_NR_ZONES; i++) {
1529			zonelist = pgdat->node_zonelists + i;
1530			for (j = 0; zonelist->zones[j] != NULL; j++);
1531
1532	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1533			zonelist->zones[j] = NULL;
1534		}
1535	}
1536}
1537
1538#else	/* CONFIG_NUMA */
1539
1540static void __meminit build_zonelists(pg_data_t *pgdat)
1541{
1542	int node, local_node;
1543	enum zone_type i,j;
1544
1545	local_node = pgdat->node_id;
1546	for (i = 0; i < MAX_NR_ZONES; i++) {
1547		struct zonelist *zonelist;
1548
1549		zonelist = pgdat->node_zonelists + i;
1550
1551 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1552 		/*
1553 		 * Now we build the zonelist so that it contains the zones
1554 		 * of all the other nodes.
1555 		 * We don't want to pressure a particular node, so when
1556 		 * building the zones for node N, we make sure that the
1557 		 * zones coming right after the local ones are those from
1558 		 * node N+1 (modulo N)
1559 		 */
1560		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1561			if (!node_online(node))
1562				continue;
1563			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1564		}
1565		for (node = 0; node < local_node; node++) {
1566			if (!node_online(node))
1567				continue;
1568			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1569		}
1570
1571		zonelist->zones[j] = NULL;
1572	}
1573}
1574
1575#endif	/* CONFIG_NUMA */
1576
1577/* return values int ....just for stop_machine_run() */
1578static int __meminit __build_all_zonelists(void *dummy)
1579{
1580	int nid;
1581	for_each_online_node(nid)
1582		build_zonelists(NODE_DATA(nid));
1583	return 0;
1584}
1585
1586void __meminit build_all_zonelists(void)
1587{
1588	if (system_state == SYSTEM_BOOTING) {
1589		__build_all_zonelists(NULL);
1590		cpuset_init_current_mems_allowed();
1591	} else {
1592		/* we have to stop all cpus to guaranntee there is no user
1593		   of zonelist */
1594		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1595		/* cpuset refresh routine should be here */
1596	}
1597	vm_total_pages = nr_free_pagecache_pages();
1598	printk("Built %i zonelists.  Total pages: %ld\n",
1599			num_online_nodes(), vm_total_pages);
1600}
1601
1602/*
1603 * Helper functions to size the waitqueue hash table.
1604 * Essentially these want to choose hash table sizes sufficiently
1605 * large so that collisions trying to wait on pages are rare.
1606 * But in fact, the number of active page waitqueues on typical
1607 * systems is ridiculously low, less than 200. So this is even
1608 * conservative, even though it seems large.
1609 *
1610 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1611 * waitqueues, i.e. the size of the waitq table given the number of pages.
1612 */
1613#define PAGES_PER_WAITQUEUE	256
1614
1615#ifndef CONFIG_MEMORY_HOTPLUG
1616static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1617{
1618	unsigned long size = 1;
1619
1620	pages /= PAGES_PER_WAITQUEUE;
1621
1622	while (size < pages)
1623		size <<= 1;
1624
1625	/*
1626	 * Once we have dozens or even hundreds of threads sleeping
1627	 * on IO we've got bigger problems than wait queue collision.
1628	 * Limit the size of the wait table to a reasonable size.
1629	 */
1630	size = min(size, 4096UL);
1631
1632	return max(size, 4UL);
1633}
1634#else
1635/*
1636 * A zone's size might be changed by hot-add, so it is not possible to determine
1637 * a suitable size for its wait_table.  So we use the maximum size now.
1638 *
1639 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1640 *
1641 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1642 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1643 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1644 *
1645 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1646 * or more by the traditional way. (See above).  It equals:
1647 *
1648 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1649 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1650 *    powerpc (64K page size)             : =  (32G +16M)byte.
1651 */
1652static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1653{
1654	return 4096UL;
1655}
1656#endif
1657
1658/*
1659 * This is an integer logarithm so that shifts can be used later
1660 * to extract the more random high bits from the multiplicative
1661 * hash function before the remainder is taken.
1662 */
1663static inline unsigned long wait_table_bits(unsigned long size)
1664{
1665	return ffz(~size);
1666}
1667
1668#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1669
1670/*
1671 * Initially all pages are reserved - free ones are freed
1672 * up by free_all_bootmem() once the early boot process is
1673 * done. Non-atomic initialization, single-pass.
1674 */
1675void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1676		unsigned long start_pfn)
1677{
1678	struct page *page;
1679	unsigned long end_pfn = start_pfn + size;
1680	unsigned long pfn;
1681
1682	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1683		if (!early_pfn_valid(pfn))
1684			continue;
1685		if (!early_pfn_in_nid(pfn, nid))
1686			continue;
1687		page = pfn_to_page(pfn);
1688		set_page_links(page, zone, nid, pfn);
1689		init_page_count(page);
1690		reset_page_mapcount(page);
1691		SetPageReserved(page);
1692		INIT_LIST_HEAD(&page->lru);
1693#ifdef WANT_PAGE_VIRTUAL
1694		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1695		if (!is_highmem_idx(zone))
1696			set_page_address(page, __va(pfn << PAGE_SHIFT));
1697#endif
1698	}
1699}
1700
1701void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1702				unsigned long size)
1703{
1704	int order;
1705	for (order = 0; order < MAX_ORDER ; order++) {
1706		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1707		zone->free_area[order].nr_free = 0;
1708	}
1709}
1710
1711#ifndef __HAVE_ARCH_MEMMAP_INIT
1712#define memmap_init(size, nid, zone, start_pfn) \
1713	memmap_init_zone((size), (nid), (zone), (start_pfn))
1714#endif
1715
1716static int __cpuinit zone_batchsize(struct zone *zone)
1717{
1718	int batch;
1719
1720	/*
1721	 * The per-cpu-pages pools are set to around 1000th of the
1722	 * size of the zone.  But no more than 1/2 of a meg.
1723	 *
1724	 * OK, so we don't know how big the cache is.  So guess.
1725	 */
1726	batch = zone->present_pages / 1024;
1727	if (batch * PAGE_SIZE > 512 * 1024)
1728		batch = (512 * 1024) / PAGE_SIZE;
1729	batch /= 4;		/* We effectively *= 4 below */
1730	if (batch < 1)
1731		batch = 1;
1732
1733	/*
1734	 * Clamp the batch to a 2^n - 1 value. Having a power
1735	 * of 2 value was found to be more likely to have
1736	 * suboptimal cache aliasing properties in some cases.
1737	 *
1738	 * For example if 2 tasks are alternately allocating
1739	 * batches of pages, one task can end up with a lot
1740	 * of pages of one half of the possible page colors
1741	 * and the other with pages of the other colors.
1742	 */
1743	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1744
1745	return batch;
1746}
1747
1748inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1749{
1750	struct per_cpu_pages *pcp;
1751
1752	memset(p, 0, sizeof(*p));
1753
1754	pcp = &p->pcp[0];		/* hot */
1755	pcp->count = 0;
1756	pcp->high = 6 * batch;
1757	pcp->batch = max(1UL, 1 * batch);
1758	INIT_LIST_HEAD(&pcp->list);
1759
1760	pcp = &p->pcp[1];		/* cold*/
1761	pcp->count = 0;
1762	pcp->high = 2 * batch;
1763	pcp->batch = max(1UL, batch/2);
1764	INIT_LIST_HEAD(&pcp->list);
1765}
1766
1767/*
1768 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1769 * to the value high for the pageset p.
1770 */
1771
1772static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1773				unsigned long high)
1774{
1775	struct per_cpu_pages *pcp;
1776
1777	pcp = &p->pcp[0]; /* hot list */
1778	pcp->high = high;
1779	pcp->batch = max(1UL, high/4);
1780	if ((high/4) > (PAGE_SHIFT * 8))
1781		pcp->batch = PAGE_SHIFT * 8;
1782}
1783
1784
1785#ifdef CONFIG_NUMA
1786/*
1787 * Boot pageset table. One per cpu which is going to be used for all
1788 * zones and all nodes. The parameters will be set in such a way
1789 * that an item put on a list will immediately be handed over to
1790 * the buddy list. This is safe since pageset manipulation is done
1791 * with interrupts disabled.
1792 *
1793 * Some NUMA counter updates may also be caught by the boot pagesets.
1794 *
1795 * The boot_pagesets must be kept even after bootup is complete for
1796 * unused processors and/or zones. They do play a role for bootstrapping
1797 * hotplugged processors.
1798 *
1799 * zoneinfo_show() and maybe other functions do
1800 * not check if the processor is online before following the pageset pointer.
1801 * Other parts of the kernel may not check if the zone is available.
1802 */
1803static struct per_cpu_pageset boot_pageset[NR_CPUS];
1804
1805/*
1806 * Dynamically allocate memory for the
1807 * per cpu pageset array in struct zone.
1808 */
1809static int __cpuinit process_zones(int cpu)
1810{
1811	struct zone *zone, *dzone;
1812
1813	for_each_zone(zone) {
1814
1815		if (!populated_zone(zone))
1816			continue;
1817
1818		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1819					 GFP_KERNEL, cpu_to_node(cpu));
1820		if (!zone_pcp(zone, cpu))
1821			goto bad;
1822
1823		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1824
1825		if (percpu_pagelist_fraction)
1826			setup_pagelist_highmark(zone_pcp(zone, cpu),
1827			 	(zone->present_pages / percpu_pagelist_fraction));
1828	}
1829
1830	return 0;
1831bad:
1832	for_each_zone(dzone) {
1833		if (dzone == zone)
1834			break;
1835		kfree(zone_pcp(dzone, cpu));
1836		zone_pcp(dzone, cpu) = NULL;
1837	}
1838	return -ENOMEM;
1839}
1840
1841static inline void free_zone_pagesets(int cpu)
1842{
1843	struct zone *zone;
1844
1845	for_each_zone(zone) {
1846		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1847
1848		/* Free per_cpu_pageset if it is slab allocated */
1849		if (pset != &boot_pageset[cpu])
1850			kfree(pset);
1851		zone_pcp(zone, cpu) = NULL;
1852	}
1853}
1854
1855static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1856		unsigned long action,
1857		void *hcpu)
1858{
1859	int cpu = (long)hcpu;
1860	int ret = NOTIFY_OK;
1861
1862	switch (action) {
1863		case CPU_UP_PREPARE:
1864			if (process_zones(cpu))
1865				ret = NOTIFY_BAD;
1866			break;
1867		case CPU_UP_CANCELED:
1868		case CPU_DEAD:
1869			free_zone_pagesets(cpu);
1870			break;
1871		default:
1872			break;
1873	}
1874	return ret;
1875}
1876
1877static struct notifier_block __cpuinitdata pageset_notifier =
1878	{ &pageset_cpuup_callback, NULL, 0 };
1879
1880void __init setup_per_cpu_pageset(void)
1881{
1882	int err;
1883
1884	/* Initialize per_cpu_pageset for cpu 0.
1885	 * A cpuup callback will do this for every cpu
1886	 * as it comes online
1887	 */
1888	err = process_zones(smp_processor_id());
1889	BUG_ON(err);
1890	register_cpu_notifier(&pageset_notifier);
1891}
1892
1893#endif
1894
1895static __meminit
1896int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1897{
1898	int i;
1899	struct pglist_data *pgdat = zone->zone_pgdat;
1900	size_t alloc_size;
1901
1902	/*
1903	 * The per-page waitqueue mechanism uses hashed waitqueues
1904	 * per zone.
1905	 */
1906	zone->wait_table_hash_nr_entries =
1907		 wait_table_hash_nr_entries(zone_size_pages);
1908	zone->wait_table_bits =
1909		wait_table_bits(zone->wait_table_hash_nr_entries);
1910	alloc_size = zone->wait_table_hash_nr_entries
1911					* sizeof(wait_queue_head_t);
1912
1913 	if (system_state == SYSTEM_BOOTING) {
1914		zone->wait_table = (wait_queue_head_t *)
1915			alloc_bootmem_node(pgdat, alloc_size);
1916	} else {
1917		/*
1918		 * This case means that a zone whose size was 0 gets new memory
1919		 * via memory hot-add.
1920		 * But it may be the case that a new node was hot-added.  In
1921		 * this case vmalloc() will not be able to use this new node's
1922		 * memory - this wait_table must be initialized to use this new
1923		 * node itself as well.
1924		 * To use this new node's memory, further consideration will be
1925		 * necessary.
1926		 */
1927		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1928	}
1929	if (!zone->wait_table)
1930		return -ENOMEM;
1931
1932	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1933		init_waitqueue_head(zone->wait_table + i);
1934
1935	return 0;
1936}
1937
1938static __meminit void zone_pcp_init(struct zone *zone)
1939{
1940	int cpu;
1941	unsigned long batch = zone_batchsize(zone);
1942
1943	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1944#ifdef CONFIG_NUMA
1945		/* Early boot. Slab allocator not functional yet */
1946		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1947		setup_pageset(&boot_pageset[cpu],0);
1948#else
1949		setup_pageset(zone_pcp(zone,cpu), batch);
1950#endif
1951	}
1952	if (zone->present_pages)
1953		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1954			zone->name, zone->present_pages, batch);
1955}
1956
1957__meminit int init_currently_empty_zone(struct zone *zone,
1958					unsigned long zone_start_pfn,
1959					unsigned long size)
1960{
1961	struct pglist_data *pgdat = zone->zone_pgdat;
1962	int ret;
1963	ret = zone_wait_table_init(zone, size);
1964	if (ret)
1965		return ret;
1966	pgdat->nr_zones = zone_idx(zone) + 1;
1967
1968	zone->zone_start_pfn = zone_start_pfn;
1969
1970	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1971
1972	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1973
1974	return 0;
1975}
1976
1977#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1978/*
1979 * Basic iterator support. Return the first range of PFNs for a node
1980 * Note: nid == MAX_NUMNODES returns first region regardless of node
1981 */
1982static int __init first_active_region_index_in_nid(int nid)
1983{
1984	int i;
1985
1986	for (i = 0; i < nr_nodemap_entries; i++)
1987		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
1988			return i;
1989
1990	return -1;
1991}
1992
1993/*
1994 * Basic iterator support. Return the next active range of PFNs for a node
1995 * Note: nid == MAX_NUMNODES returns next region regardles of node
1996 */
1997static int __init next_active_region_index_in_nid(int index, int nid)
1998{
1999	for (index = index + 1; index < nr_nodemap_entries; index++)
2000		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2001			return index;
2002
2003	return -1;
2004}
2005
2006#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2007/*
2008 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2009 * Architectures may implement their own version but if add_active_range()
2010 * was used and there are no special requirements, this is a convenient
2011 * alternative
2012 */
2013int __init early_pfn_to_nid(unsigned long pfn)
2014{
2015	int i;
2016
2017	for (i = 0; i < nr_nodemap_entries; i++) {
2018		unsigned long start_pfn = early_node_map[i].start_pfn;
2019		unsigned long end_pfn = early_node_map[i].end_pfn;
2020
2021		if (start_pfn <= pfn && pfn < end_pfn)
2022			return early_node_map[i].nid;
2023	}
2024
2025	return 0;
2026}
2027#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2028
2029/* Basic iterator support to walk early_node_map[] */
2030#define for_each_active_range_index_in_nid(i, nid) \
2031	for (i = first_active_region_index_in_nid(nid); i != -1; \
2032				i = next_active_region_index_in_nid(i, nid))
2033
2034/**
2035 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2036 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2037 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2038 *
2039 * If an architecture guarantees that all ranges registered with
2040 * add_active_ranges() contain no holes and may be freed, this
2041 * this function may be used instead of calling free_bootmem() manually.
2042 */
2043void __init free_bootmem_with_active_regions(int nid,
2044						unsigned long max_low_pfn)
2045{
2046	int i;
2047
2048	for_each_active_range_index_in_nid(i, nid) {
2049		unsigned long size_pages = 0;
2050		unsigned long end_pfn = early_node_map[i].end_pfn;
2051
2052		if (early_node_map[i].start_pfn >= max_low_pfn)
2053			continue;
2054
2055		if (end_pfn > max_low_pfn)
2056			end_pfn = max_low_pfn;
2057
2058		size_pages = end_pfn - early_node_map[i].start_pfn;
2059		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2060				PFN_PHYS(early_node_map[i].start_pfn),
2061				size_pages << PAGE_SHIFT);
2062	}
2063}
2064
2065/**
2066 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2067 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2068 *
2069 * If an architecture guarantees that all ranges registered with
2070 * add_active_ranges() contain no holes and may be freed, this
2071 * function may be used instead of calling memory_present() manually.
2072 */
2073void __init sparse_memory_present_with_active_regions(int nid)
2074{
2075	int i;
2076
2077	for_each_active_range_index_in_nid(i, nid)
2078		memory_present(early_node_map[i].nid,
2079				early_node_map[i].start_pfn,
2080				early_node_map[i].end_pfn);
2081}
2082
2083/**
2084 * push_node_boundaries - Push node boundaries to at least the requested boundary
2085 * @nid: The nid of the node to push the boundary for
2086 * @start_pfn: The start pfn of the node
2087 * @end_pfn: The end pfn of the node
2088 *
2089 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2090 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2091 * be hotplugged even though no physical memory exists. This function allows
2092 * an arch to push out the node boundaries so mem_map is allocated that can
2093 * be used later.
2094 */
2095#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2096void __init push_node_boundaries(unsigned int nid,
2097		unsigned long start_pfn, unsigned long end_pfn)
2098{
2099	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2100			nid, start_pfn, end_pfn);
2101
2102	/* Initialise the boundary for this node if necessary */
2103	if (node_boundary_end_pfn[nid] == 0)
2104		node_boundary_start_pfn[nid] = -1UL;
2105
2106	/* Update the boundaries */
2107	if (node_boundary_start_pfn[nid] > start_pfn)
2108		node_boundary_start_pfn[nid] = start_pfn;
2109	if (node_boundary_end_pfn[nid] < end_pfn)
2110		node_boundary_end_pfn[nid] = end_pfn;
2111}
2112
2113/* If necessary, push the node boundary out for reserve hotadd */
2114static void __init account_node_boundary(unsigned int nid,
2115		unsigned long *start_pfn, unsigned long *end_pfn)
2116{
2117	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2118			nid, *start_pfn, *end_pfn);
2119
2120	/* Return if boundary information has not been provided */
2121	if (node_boundary_end_pfn[nid] == 0)
2122		return;
2123
2124	/* Check the boundaries and update if necessary */
2125	if (node_boundary_start_pfn[nid] < *start_pfn)
2126		*start_pfn = node_boundary_start_pfn[nid];
2127	if (node_boundary_end_pfn[nid] > *end_pfn)
2128		*end_pfn = node_boundary_end_pfn[nid];
2129}
2130#else
2131void __init push_node_boundaries(unsigned int nid,
2132		unsigned long start_pfn, unsigned long end_pfn) {}
2133
2134static void __init account_node_boundary(unsigned int nid,
2135		unsigned long *start_pfn, unsigned long *end_pfn) {}
2136#endif
2137
2138
2139/**
2140 * get_pfn_range_for_nid - Return the start and end page frames for a node
2141 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2142 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2143 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2144 *
2145 * It returns the start and end page frame of a node based on information
2146 * provided by an arch calling add_active_range(). If called for a node
2147 * with no available memory, a warning is printed and the start and end
2148 * PFNs will be 0.
2149 */
2150void __init get_pfn_range_for_nid(unsigned int nid,
2151			unsigned long *start_pfn, unsigned long *end_pfn)
2152{
2153	int i;
2154	*start_pfn = -1UL;
2155	*end_pfn = 0;
2156
2157	for_each_active_range_index_in_nid(i, nid) {
2158		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2159		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2160	}
2161
2162	if (*start_pfn == -1UL) {
2163		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2164		*start_pfn = 0;
2165	}
2166
2167	/* Push the node boundaries out if requested */
2168	account_node_boundary(nid, start_pfn, end_pfn);
2169}
2170
2171/*
2172 * Return the number of pages a zone spans in a node, including holes
2173 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2174 */
2175unsigned long __init zone_spanned_pages_in_node(int nid,
2176					unsigned long zone_type,
2177					unsigned long *ignored)
2178{
2179	unsigned long node_start_pfn, node_end_pfn;
2180	unsigned long zone_start_pfn, zone_end_pfn;
2181
2182	/* Get the start and end of the node and zone */
2183	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2184	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2185	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2186
2187	/* Check that this node has pages within the zone's required range */
2188	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2189		return 0;
2190
2191	/* Move the zone boundaries inside the node if necessary */
2192	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2193	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2194
2195	/* Return the spanned pages */
2196	return zone_end_pfn - zone_start_pfn;
2197}
2198
2199/*
2200 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2201 * then all holes in the requested range will be accounted for.
2202 */
2203unsigned long __init __absent_pages_in_range(int nid,
2204				unsigned long range_start_pfn,
2205				unsigned long range_end_pfn)
2206{
2207	int i = 0;
2208	unsigned long prev_end_pfn = 0, hole_pages = 0;
2209	unsigned long start_pfn;
2210
2211	/* Find the end_pfn of the first active range of pfns in the node */
2212	i = first_active_region_index_in_nid(nid);
2213	if (i == -1)
2214		return 0;
2215
2216	/* Account for ranges before physical memory on this node */
2217	if (early_node_map[i].start_pfn > range_start_pfn)
2218		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2219
2220	prev_end_pfn = early_node_map[i].start_pfn;
2221
2222	/* Find all holes for the zone within the node */
2223	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2224
2225		/* No need to continue if prev_end_pfn is outside the zone */
2226		if (prev_end_pfn >= range_end_pfn)
2227			break;
2228
2229		/* Make sure the end of the zone is not within the hole */
2230		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2231		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2232
2233		/* Update the hole size cound and move on */
2234		if (start_pfn > range_start_pfn) {
2235			BUG_ON(prev_end_pfn > start_pfn);
2236			hole_pages += start_pfn - prev_end_pfn;
2237		}
2238		prev_end_pfn = early_node_map[i].end_pfn;
2239	}
2240
2241	/* Account for ranges past physical memory on this node */
2242	if (range_end_pfn > prev_end_pfn)
2243		hole_pages += range_end_pfn -
2244				max(range_start_pfn, prev_end_pfn);
2245
2246	return hole_pages;
2247}
2248
2249/**
2250 * absent_pages_in_range - Return number of page frames in holes within a range
2251 * @start_pfn: The start PFN to start searching for holes
2252 * @end_pfn: The end PFN to stop searching for holes
2253 *
2254 * It returns the number of pages frames in memory holes within a range.
2255 */
2256unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2257							unsigned long end_pfn)
2258{
2259	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2260}
2261
2262/* Return the number of page frames in holes in a zone on a node */
2263unsigned long __init zone_absent_pages_in_node(int nid,
2264					unsigned long zone_type,
2265					unsigned long *ignored)
2266{
2267	unsigned long node_start_pfn, node_end_pfn;
2268	unsigned long zone_start_pfn, zone_end_pfn;
2269
2270	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2271	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2272							node_start_pfn);
2273	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2274							node_end_pfn);
2275
2276	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2277}
2278
2279#else
2280static inline unsigned long zone_spanned_pages_in_node(int nid,
2281					unsigned long zone_type,
2282					unsigned long *zones_size)
2283{
2284	return zones_size[zone_type];
2285}
2286
2287static inline unsigned long zone_absent_pages_in_node(int nid,
2288						unsigned long zone_type,
2289						unsigned long *zholes_size)
2290{
2291	if (!zholes_size)
2292		return 0;
2293
2294	return zholes_size[zone_type];
2295}
2296
2297#endif
2298
2299static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2300		unsigned long *zones_size, unsigned long *zholes_size)
2301{
2302	unsigned long realtotalpages, totalpages = 0;
2303	enum zone_type i;
2304
2305	for (i = 0; i < MAX_NR_ZONES; i++)
2306		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2307								zones_size);
2308	pgdat->node_spanned_pages = totalpages;
2309
2310	realtotalpages = totalpages;
2311	for (i = 0; i < MAX_NR_ZONES; i++)
2312		realtotalpages -=
2313			zone_absent_pages_in_node(pgdat->node_id, i,
2314								zholes_size);
2315	pgdat->node_present_pages = realtotalpages;
2316	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2317							realtotalpages);
2318}
2319
2320/*
2321 * Set up the zone data structures:
2322 *   - mark all pages reserved
2323 *   - mark all memory queues empty
2324 *   - clear the memory bitmaps
2325 */
2326static void __meminit free_area_init_core(struct pglist_data *pgdat,
2327		unsigned long *zones_size, unsigned long *zholes_size)
2328{
2329	enum zone_type j;
2330	int nid = pgdat->node_id;
2331	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2332	int ret;
2333
2334	pgdat_resize_init(pgdat);
2335	pgdat->nr_zones = 0;
2336	init_waitqueue_head(&pgdat->kswapd_wait);
2337	pgdat->kswapd_max_order = 0;
2338
2339	for (j = 0; j < MAX_NR_ZONES; j++) {
2340		struct zone *zone = pgdat->node_zones + j;
2341		unsigned long size, realsize, memmap_pages;
2342
2343		size = zone_spanned_pages_in_node(nid, j, zones_size);
2344		realsize = size - zone_absent_pages_in_node(nid, j,
2345								zholes_size);
2346
2347		/*
2348		 * Adjust realsize so that it accounts for how much memory
2349		 * is used by this zone for memmap. This affects the watermark
2350		 * and per-cpu initialisations
2351		 */
2352		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2353		if (realsize >= memmap_pages) {
2354			realsize -= memmap_pages;
2355			printk(KERN_DEBUG
2356				"  %s zone: %lu pages used for memmap\n",
2357				zone_names[j], memmap_pages);
2358		} else
2359			printk(KERN_WARNING
2360				"  %s zone: %lu pages exceeds realsize %lu\n",
2361				zone_names[j], memmap_pages, realsize);
2362
2363		/* Account for reserved DMA pages */
2364		if (j == ZONE_DMA && realsize > dma_reserve) {
2365			realsize -= dma_reserve;
2366			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2367								dma_reserve);
2368		}
2369
2370		if (!is_highmem_idx(j))
2371			nr_kernel_pages += realsize;
2372		nr_all_pages += realsize;
2373
2374		zone->spanned_pages = size;
2375		zone->present_pages = realsize;
2376#ifdef CONFIG_NUMA
2377		zone->node = nid;
2378		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2379						/ 100;
2380		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2381#endif
2382		zone->name = zone_names[j];
2383		spin_lock_init(&zone->lock);
2384		spin_lock_init(&zone->lru_lock);
2385		zone_seqlock_init(zone);
2386		zone->zone_pgdat = pgdat;
2387		zone->free_pages = 0;
2388
2389		zone->prev_priority = DEF_PRIORITY;
2390
2391		zone_pcp_init(zone);
2392		INIT_LIST_HEAD(&zone->active_list);
2393		INIT_LIST_HEAD(&zone->inactive_list);
2394		zone->nr_scan_active = 0;
2395		zone->nr_scan_inactive = 0;
2396		zone->nr_active = 0;
2397		zone->nr_inactive = 0;
2398		zap_zone_vm_stats(zone);
2399		atomic_set(&zone->reclaim_in_progress, 0);
2400		if (!size)
2401			continue;
2402
2403		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2404		BUG_ON(ret);
2405		zone_start_pfn += size;
2406	}
2407}
2408
2409static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2410{
2411	/* Skip empty nodes */
2412	if (!pgdat->node_spanned_pages)
2413		return;
2414
2415#ifdef CONFIG_FLAT_NODE_MEM_MAP
2416	/* ia64 gets its own node_mem_map, before this, without bootmem */
2417	if (!pgdat->node_mem_map) {
2418		unsigned long size, start, end;
2419		struct page *map;
2420
2421		/*
2422		 * The zone's endpoints aren't required to be MAX_ORDER
2423		 * aligned but the node_mem_map endpoints must be in order
2424		 * for the buddy allocator to function correctly.
2425		 */
2426		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2427		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2428		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2429		size =  (end - start) * sizeof(struct page);
2430		map = alloc_remap(pgdat->node_id, size);
2431		if (!map)
2432			map = alloc_bootmem_node(pgdat, size);
2433		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2434	}
2435#ifdef CONFIG_FLATMEM
2436	/*
2437	 * With no DISCONTIG, the global mem_map is just set as node 0's
2438	 */
2439	if (pgdat == NODE_DATA(0)) {
2440		mem_map = NODE_DATA(0)->node_mem_map;
2441#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2442		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2443			mem_map -= pgdat->node_start_pfn;
2444#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2445	}
2446#endif
2447#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2448}
2449
2450void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2451		unsigned long *zones_size, unsigned long node_start_pfn,
2452		unsigned long *zholes_size)
2453{
2454	pgdat->node_id = nid;
2455	pgdat->node_start_pfn = node_start_pfn;
2456	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2457
2458	alloc_node_mem_map(pgdat);
2459
2460	free_area_init_core(pgdat, zones_size, zholes_size);
2461}
2462
2463#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2464/**
2465 * add_active_range - Register a range of PFNs backed by physical memory
2466 * @nid: The node ID the range resides on
2467 * @start_pfn: The start PFN of the available physical memory
2468 * @end_pfn: The end PFN of the available physical memory
2469 *
2470 * These ranges are stored in an early_node_map[] and later used by
2471 * free_area_init_nodes() to calculate zone sizes and holes. If the
2472 * range spans a memory hole, it is up to the architecture to ensure
2473 * the memory is not freed by the bootmem allocator. If possible
2474 * the range being registered will be merged with existing ranges.
2475 */
2476void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2477						unsigned long end_pfn)
2478{
2479	int i;
2480
2481	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2482			  "%d entries of %d used\n",
2483			  nid, start_pfn, end_pfn,
2484			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2485
2486	/* Merge with existing active regions if possible */
2487	for (i = 0; i < nr_nodemap_entries; i++) {
2488		if (early_node_map[i].nid != nid)
2489			continue;
2490
2491		/* Skip if an existing region covers this new one */
2492		if (start_pfn >= early_node_map[i].start_pfn &&
2493				end_pfn <= early_node_map[i].end_pfn)
2494			return;
2495
2496		/* Merge forward if suitable */
2497		if (start_pfn <= early_node_map[i].end_pfn &&
2498				end_pfn > early_node_map[i].end_pfn) {
2499			early_node_map[i].end_pfn = end_pfn;
2500			return;
2501		}
2502
2503		/* Merge backward if suitable */
2504		if (start_pfn < early_node_map[i].end_pfn &&
2505				end_pfn >= early_node_map[i].start_pfn) {
2506			early_node_map[i].start_pfn = start_pfn;
2507			return;
2508		}
2509	}
2510
2511	/* Check that early_node_map is large enough */
2512	if (i >= MAX_ACTIVE_REGIONS) {
2513		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2514							MAX_ACTIVE_REGIONS);
2515		return;
2516	}
2517
2518	early_node_map[i].nid = nid;
2519	early_node_map[i].start_pfn = start_pfn;
2520	early_node_map[i].end_pfn = end_pfn;
2521	nr_nodemap_entries = i + 1;
2522}
2523
2524/**
2525 * shrink_active_range - Shrink an existing registered range of PFNs
2526 * @nid: The node id the range is on that should be shrunk
2527 * @old_end_pfn: The old end PFN of the range
2528 * @new_end_pfn: The new PFN of the range
2529 *
2530 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2531 * The map is kept at the end physical page range that has already been
2532 * registered with add_active_range(). This function allows an arch to shrink
2533 * an existing registered range.
2534 */
2535void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2536						unsigned long new_end_pfn)
2537{
2538	int i;
2539
2540	/* Find the old active region end and shrink */
2541	for_each_active_range_index_in_nid(i, nid)
2542		if (early_node_map[i].end_pfn == old_end_pfn) {
2543			early_node_map[i].end_pfn = new_end_pfn;
2544			break;
2545		}
2546}
2547
2548/**
2549 * remove_all_active_ranges - Remove all currently registered regions
2550 *
2551 * During discovery, it may be found that a table like SRAT is invalid
2552 * and an alternative discovery method must be used. This function removes
2553 * all currently registered regions.
2554 */
2555void __init remove_all_active_ranges(void)
2556{
2557	memset(early_node_map, 0, sizeof(early_node_map));
2558	nr_nodemap_entries = 0;
2559#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2560	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2561	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2562#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2563}
2564
2565/* Compare two active node_active_regions */
2566static int __init cmp_node_active_region(const void *a, const void *b)
2567{
2568	struct node_active_region *arange = (struct node_active_region *)a;
2569	struct node_active_region *brange = (struct node_active_region *)b;
2570
2571	/* Done this way to avoid overflows */
2572	if (arange->start_pfn > brange->start_pfn)
2573		return 1;
2574	if (arange->start_pfn < brange->start_pfn)
2575		return -1;
2576
2577	return 0;
2578}
2579
2580/* sort the node_map by start_pfn */
2581static void __init sort_node_map(void)
2582{
2583	sort(early_node_map, (size_t)nr_nodemap_entries,
2584			sizeof(struct node_active_region),
2585			cmp_node_active_region, NULL);
2586}
2587
2588/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2589unsigned long __init find_min_pfn_for_node(unsigned long nid)
2590{
2591	int i;
2592
2593	/* Regions in the early_node_map can be in any order */
2594	sort_node_map();
2595
2596	/* Assuming a sorted map, the first range found has the starting pfn */
2597	for_each_active_range_index_in_nid(i, nid)
2598		return early_node_map[i].start_pfn;
2599
2600	printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2601	return 0;
2602}
2603
2604/**
2605 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2606 *
2607 * It returns the minimum PFN based on information provided via
2608 * add_active_range().
2609 */
2610unsigned long __init find_min_pfn_with_active_regions(void)
2611{
2612	return find_min_pfn_for_node(MAX_NUMNODES);
2613}
2614
2615/**
2616 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2617 *
2618 * It returns the maximum PFN based on information provided via
2619 * add_active_range().
2620 */
2621unsigned long __init find_max_pfn_with_active_regions(void)
2622{
2623	int i;
2624	unsigned long max_pfn = 0;
2625
2626	for (i = 0; i < nr_nodemap_entries; i++)
2627		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2628
2629	return max_pfn;
2630}
2631
2632/**
2633 * free_area_init_nodes - Initialise all pg_data_t and zone data
2634 * @max_zone_pfn: an array of max PFNs for each zone
2635 *
2636 * This will call free_area_init_node() for each active node in the system.
2637 * Using the page ranges provided by add_active_range(), the size of each
2638 * zone in each node and their holes is calculated. If the maximum PFN
2639 * between two adjacent zones match, it is assumed that the zone is empty.
2640 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2641 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2642 * starts where the previous one ended. For example, ZONE_DMA32 starts
2643 * at arch_max_dma_pfn.
2644 */
2645void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2646{
2647	unsigned long nid;
2648	enum zone_type i;
2649
2650	/* Record where the zone boundaries are */
2651	memset(arch_zone_lowest_possible_pfn, 0,
2652				sizeof(arch_zone_lowest_possible_pfn));
2653	memset(arch_zone_highest_possible_pfn, 0,
2654				sizeof(arch_zone_highest_possible_pfn));
2655	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2656	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2657	for (i = 1; i < MAX_NR_ZONES; i++) {
2658		arch_zone_lowest_possible_pfn[i] =
2659			arch_zone_highest_possible_pfn[i-1];
2660		arch_zone_highest_possible_pfn[i] =
2661			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2662	}
2663
2664	/* Print out the zone ranges */
2665	printk("Zone PFN ranges:\n");
2666	for (i = 0; i < MAX_NR_ZONES; i++)
2667		printk("  %-8s %8lu -> %8lu\n",
2668				zone_names[i],
2669				arch_zone_lowest_possible_pfn[i],
2670				arch_zone_highest_possible_pfn[i]);
2671
2672	/* Print out the early_node_map[] */
2673	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2674	for (i = 0; i < nr_nodemap_entries; i++)
2675		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2676						early_node_map[i].start_pfn,
2677						early_node_map[i].end_pfn);
2678
2679	/* Initialise every node */
2680	for_each_online_node(nid) {
2681		pg_data_t *pgdat = NODE_DATA(nid);
2682		free_area_init_node(nid, pgdat, NULL,
2683				find_min_pfn_for_node(nid), NULL);
2684	}
2685}
2686#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2687
2688/**
2689 * set_dma_reserve - set the specified number of pages reserved in the first zone
2690 * @new_dma_reserve: The number of pages to mark reserved
2691 *
2692 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2693 * In the DMA zone, a significant percentage may be consumed by kernel image
2694 * and other unfreeable allocations which can skew the watermarks badly. This
2695 * function may optionally be used to account for unfreeable pages in the
2696 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2697 * smaller per-cpu batchsize.
2698 */
2699void __init set_dma_reserve(unsigned long new_dma_reserve)
2700{
2701	dma_reserve = new_dma_reserve;
2702}
2703
2704#ifndef CONFIG_NEED_MULTIPLE_NODES
2705static bootmem_data_t contig_bootmem_data;
2706struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2707
2708EXPORT_SYMBOL(contig_page_data);
2709#endif
2710
2711void __init free_area_init(unsigned long *zones_size)
2712{
2713	free_area_init_node(0, NODE_DATA(0), zones_size,
2714			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2715}
2716
2717#ifdef CONFIG_HOTPLUG_CPU
2718static int page_alloc_cpu_notify(struct notifier_block *self,
2719				 unsigned long action, void *hcpu)
2720{
2721	int cpu = (unsigned long)hcpu;
2722
2723	if (action == CPU_DEAD) {
2724		local_irq_disable();
2725		__drain_pages(cpu);
2726		vm_events_fold_cpu(cpu);
2727		local_irq_enable();
2728		refresh_cpu_vm_stats(cpu);
2729	}
2730	return NOTIFY_OK;
2731}
2732#endif /* CONFIG_HOTPLUG_CPU */
2733
2734void __init page_alloc_init(void)
2735{
2736	hotcpu_notifier(page_alloc_cpu_notify, 0);
2737}
2738
2739/*
2740 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2741 *	or min_free_kbytes changes.
2742 */
2743static void calculate_totalreserve_pages(void)
2744{
2745	struct pglist_data *pgdat;
2746	unsigned long reserve_pages = 0;
2747	enum zone_type i, j;
2748
2749	for_each_online_pgdat(pgdat) {
2750		for (i = 0; i < MAX_NR_ZONES; i++) {
2751			struct zone *zone = pgdat->node_zones + i;
2752			unsigned long max = 0;
2753
2754			/* Find valid and maximum lowmem_reserve in the zone */
2755			for (j = i; j < MAX_NR_ZONES; j++) {
2756				if (zone->lowmem_reserve[j] > max)
2757					max = zone->lowmem_reserve[j];
2758			}
2759
2760			/* we treat pages_high as reserved pages. */
2761			max += zone->pages_high;
2762
2763			if (max > zone->present_pages)
2764				max = zone->present_pages;
2765			reserve_pages += max;
2766		}
2767	}
2768	totalreserve_pages = reserve_pages;
2769}
2770
2771/*
2772 * setup_per_zone_lowmem_reserve - called whenever
2773 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2774 *	has a correct pages reserved value, so an adequate number of
2775 *	pages are left in the zone after a successful __alloc_pages().
2776 */
2777static void setup_per_zone_lowmem_reserve(void)
2778{
2779	struct pglist_data *pgdat;
2780	enum zone_type j, idx;
2781
2782	for_each_online_pgdat(pgdat) {
2783		for (j = 0; j < MAX_NR_ZONES; j++) {
2784			struct zone *zone = pgdat->node_zones + j;
2785			unsigned long present_pages = zone->present_pages;
2786
2787			zone->lowmem_reserve[j] = 0;
2788
2789			idx = j;
2790			while (idx) {
2791				struct zone *lower_zone;
2792
2793				idx--;
2794
2795				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2796					sysctl_lowmem_reserve_ratio[idx] = 1;
2797
2798				lower_zone = pgdat->node_zones + idx;
2799				lower_zone->lowmem_reserve[j] = present_pages /
2800					sysctl_lowmem_reserve_ratio[idx];
2801				present_pages += lower_zone->present_pages;
2802			}
2803		}
2804	}
2805
2806	/* update totalreserve_pages */
2807	calculate_totalreserve_pages();
2808}
2809
2810/**
2811 * setup_per_zone_pages_min - called when min_free_kbytes changes.
2812 *
2813 * Ensures that the pages_{min,low,high} values for each zone are set correctly
2814 * with respect to min_free_kbytes.
2815 */
2816void setup_per_zone_pages_min(void)
2817{
2818	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2819	unsigned long lowmem_pages = 0;
2820	struct zone *zone;
2821	unsigned long flags;
2822
2823	/* Calculate total number of !ZONE_HIGHMEM pages */
2824	for_each_zone(zone) {
2825		if (!is_highmem(zone))
2826			lowmem_pages += zone->present_pages;
2827	}
2828
2829	for_each_zone(zone) {
2830		u64 tmp;
2831
2832		spin_lock_irqsave(&zone->lru_lock, flags);
2833		tmp = (u64)pages_min * zone->present_pages;
2834		do_div(tmp, lowmem_pages);
2835		if (is_highmem(zone)) {
2836			/*
2837			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2838			 * need highmem pages, so cap pages_min to a small
2839			 * value here.
2840			 *
2841			 * The (pages_high-pages_low) and (pages_low-pages_min)
2842			 * deltas controls asynch page reclaim, and so should
2843			 * not be capped for highmem.
2844			 */
2845			int min_pages;
2846
2847			min_pages = zone->present_pages / 1024;
2848			if (min_pages < SWAP_CLUSTER_MAX)
2849				min_pages = SWAP_CLUSTER_MAX;
2850			if (min_pages > 128)
2851				min_pages = 128;
2852			zone->pages_min = min_pages;
2853		} else {
2854			/*
2855			 * If it's a lowmem zone, reserve a number of pages
2856			 * proportionate to the zone's size.
2857			 */
2858			zone->pages_min = tmp;
2859		}
2860
2861		zone->pages_low   = zone->pages_min + (tmp >> 2);
2862		zone->pages_high  = zone->pages_min + (tmp >> 1);
2863		spin_unlock_irqrestore(&zone->lru_lock, flags);
2864	}
2865
2866	/* update totalreserve_pages */
2867	calculate_totalreserve_pages();
2868}
2869
2870/*
2871 * Initialise min_free_kbytes.
2872 *
2873 * For small machines we want it small (128k min).  For large machines
2874 * we want it large (64MB max).  But it is not linear, because network
2875 * bandwidth does not increase linearly with machine size.  We use
2876 *
2877 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2878 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2879 *
2880 * which yields
2881 *
2882 * 16MB:	512k
2883 * 32MB:	724k
2884 * 64MB:	1024k
2885 * 128MB:	1448k
2886 * 256MB:	2048k
2887 * 512MB:	2896k
2888 * 1024MB:	4096k
2889 * 2048MB:	5792k
2890 * 4096MB:	8192k
2891 * 8192MB:	11584k
2892 * 16384MB:	16384k
2893 */
2894static int __init init_per_zone_pages_min(void)
2895{
2896	unsigned long lowmem_kbytes;
2897
2898	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2899
2900	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2901	if (min_free_kbytes < 128)
2902		min_free_kbytes = 128;
2903	if (min_free_kbytes > 65536)
2904		min_free_kbytes = 65536;
2905	setup_per_zone_pages_min();
2906	setup_per_zone_lowmem_reserve();
2907	return 0;
2908}
2909module_init(init_per_zone_pages_min)
2910
2911/*
2912 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2913 *	that we can call two helper functions whenever min_free_kbytes
2914 *	changes.
2915 */
2916int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2917	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2918{
2919	proc_dointvec(table, write, file, buffer, length, ppos);
2920	setup_per_zone_pages_min();
2921	return 0;
2922}
2923
2924#ifdef CONFIG_NUMA
2925int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2926	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2927{
2928	struct zone *zone;
2929	int rc;
2930
2931	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2932	if (rc)
2933		return rc;
2934
2935	for_each_zone(zone)
2936		zone->min_unmapped_pages = (zone->present_pages *
2937				sysctl_min_unmapped_ratio) / 100;
2938	return 0;
2939}
2940
2941int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2942	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2943{
2944	struct zone *zone;
2945	int rc;
2946
2947	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2948	if (rc)
2949		return rc;
2950
2951	for_each_zone(zone)
2952		zone->min_slab_pages = (zone->present_pages *
2953				sysctl_min_slab_ratio) / 100;
2954	return 0;
2955}
2956#endif
2957
2958/*
2959 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2960 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2961 *	whenever sysctl_lowmem_reserve_ratio changes.
2962 *
2963 * The reserve ratio obviously has absolutely no relation with the
2964 * pages_min watermarks. The lowmem reserve ratio can only make sense
2965 * if in function of the boot time zone sizes.
2966 */
2967int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2968	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2969{
2970	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2971	setup_per_zone_lowmem_reserve();
2972	return 0;
2973}
2974
2975/*
2976 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2977 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2978 * can have before it gets flushed back to buddy allocator.
2979 */
2980
2981int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2982	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2983{
2984	struct zone *zone;
2985	unsigned int cpu;
2986	int ret;
2987
2988	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2989	if (!write || (ret == -EINVAL))
2990		return ret;
2991	for_each_zone(zone) {
2992		for_each_online_cpu(cpu) {
2993			unsigned long  high;
2994			high = zone->present_pages / percpu_pagelist_fraction;
2995			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2996		}
2997	}
2998	return 0;
2999}
3000
3001int hashdist = HASHDIST_DEFAULT;
3002
3003#ifdef CONFIG_NUMA
3004static int __init set_hashdist(char *str)
3005{
3006	if (!str)
3007		return 0;
3008	hashdist = simple_strtoul(str, &str, 0);
3009	return 1;
3010}
3011__setup("hashdist=", set_hashdist);
3012#endif
3013
3014/*
3015 * allocate a large system hash table from bootmem
3016 * - it is assumed that the hash table must contain an exact power-of-2
3017 *   quantity of entries
3018 * - limit is the number of hash buckets, not the total allocation size
3019 */
3020void *__init alloc_large_system_hash(const char *tablename,
3021				     unsigned long bucketsize,
3022				     unsigned long numentries,
3023				     int scale,
3024				     int flags,
3025				     unsigned int *_hash_shift,
3026				     unsigned int *_hash_mask,
3027				     unsigned long limit)
3028{
3029	unsigned long long max = limit;
3030	unsigned long log2qty, size;
3031	void *table = NULL;
3032
3033	/* allow the kernel cmdline to have a say */
3034	if (!numentries) {
3035		/* round applicable memory size up to nearest megabyte */
3036		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
3037		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3038		numentries >>= 20 - PAGE_SHIFT;
3039		numentries <<= 20 - PAGE_SHIFT;
3040
3041		/* limit to 1 bucket per 2^scale bytes of low memory */
3042		if (scale > PAGE_SHIFT)
3043			numentries >>= (scale - PAGE_SHIFT);
3044		else
3045			numentries <<= (PAGE_SHIFT - scale);
3046	}
3047	numentries = roundup_pow_of_two(numentries);
3048
3049	/* limit allocation size to 1/16 total memory by default */
3050	if (max == 0) {
3051		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3052		do_div(max, bucketsize);
3053	}
3054
3055	if (numentries > max)
3056		numentries = max;
3057
3058	log2qty = long_log2(numentries);
3059
3060	do {
3061		size = bucketsize << log2qty;
3062		if (flags & HASH_EARLY)
3063			table = alloc_bootmem(size);
3064		else if (hashdist)
3065			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3066		else {
3067			unsigned long order;
3068			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3069				;
3070			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3071		}
3072	} while (!table && size > PAGE_SIZE && --log2qty);
3073
3074	if (!table)
3075		panic("Failed to allocate %s hash table\n", tablename);
3076
3077	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3078	       tablename,
3079	       (1U << log2qty),
3080	       long_log2(size) - PAGE_SHIFT,
3081	       size);
3082
3083	if (_hash_shift)
3084		*_hash_shift = log2qty;
3085	if (_hash_mask)
3086		*_hash_mask = (1 << log2qty) - 1;
3087
3088	return table;
3089}
3090
3091#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3092struct page *pfn_to_page(unsigned long pfn)
3093{
3094	return __pfn_to_page(pfn);
3095}
3096unsigned long page_to_pfn(struct page *page)
3097{
3098	return __page_to_pfn(page);
3099}
3100EXPORT_SYMBOL(pfn_to_page);
3101EXPORT_SYMBOL(page_to_pfn);
3102#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3103
3104#if MAX_NUMNODES > 1
3105/*
3106 * Find the highest possible node id.
3107 */
3108int highest_possible_node_id(void)
3109{
3110	unsigned int node;
3111	unsigned int highest = 0;
3112
3113	for_each_node_mask(node, node_possible_map)
3114		highest = node;
3115	return highest;
3116}
3117EXPORT_SYMBOL(highest_possible_node_id);
3118#endif
3119