page_alloc.c revision 933e312e73f8fc39652bd4d216a5393cc3a014b9
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76	 256,
77#ifdef CONFIG_ZONE_DMA32
78	 256,
79#endif
80#ifdef CONFIG_HIGHMEM
81	 32
82#endif
83};
84
85EXPORT_SYMBOL(totalram_pages);
86
87static char * const zone_names[MAX_NR_ZONES] = {
88	 "DMA",
89#ifdef CONFIG_ZONE_DMA32
90	 "DMA32",
91#endif
92	 "Normal",
93#ifdef CONFIG_HIGHMEM
94	 "HighMem"
95#endif
96};
97
98int min_free_kbytes = 1024;
99
100unsigned long __meminitdata nr_kernel_pages;
101unsigned long __meminitdata nr_all_pages;
102static unsigned long __initdata dma_reserve;
103
104#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105  /*
106   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107   * ranges of memory (RAM) that may be registered with add_active_range().
108   * Ranges passed to add_active_range() will be merged if possible
109   * so the number of times add_active_range() can be called is
110   * related to the number of nodes and the number of holes
111   */
112  #ifdef CONFIG_MAX_ACTIVE_REGIONS
113    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115  #else
116    #if MAX_NUMNODES >= 32
117      /* If there can be many nodes, allow up to 50 holes per node */
118      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119    #else
120      /* By default, allow up to 256 distinct regions */
121      #define MAX_ACTIVE_REGIONS 256
122    #endif
123  #endif
124
125  struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126  int __initdata nr_nodemap_entries;
127  unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128  unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
129#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
135#ifdef CONFIG_DEBUG_VM
136static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
137{
138	int ret = 0;
139	unsigned seq;
140	unsigned long pfn = page_to_pfn(page);
141
142	do {
143		seq = zone_span_seqbegin(zone);
144		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145			ret = 1;
146		else if (pfn < zone->zone_start_pfn)
147			ret = 1;
148	} while (zone_span_seqretry(zone, seq));
149
150	return ret;
151}
152
153static int page_is_consistent(struct zone *zone, struct page *page)
154{
155#ifdef CONFIG_HOLES_IN_ZONE
156	if (!pfn_valid(page_to_pfn(page)))
157		return 0;
158#endif
159	if (zone != page_zone(page))
160		return 0;
161
162	return 1;
163}
164/*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167static int bad_range(struct zone *zone, struct page *page)
168{
169	if (page_outside_zone_boundaries(zone, page))
170		return 1;
171	if (!page_is_consistent(zone, page))
172		return 1;
173
174	return 0;
175}
176#else
177static inline int bad_range(struct zone *zone, struct page *page)
178{
179	return 0;
180}
181#endif
182
183static void bad_page(struct page *page)
184{
185	printk(KERN_EMERG "Bad page state in process '%s'\n"
186		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188		KERN_EMERG "Backtrace:\n",
189		current->comm, page, (int)(2*sizeof(unsigned long)),
190		(unsigned long)page->flags, page->mapping,
191		page_mapcount(page), page_count(page));
192	dump_stack();
193	page->flags &= ~(1 << PG_lru	|
194			1 << PG_private |
195			1 << PG_locked	|
196			1 << PG_active	|
197			1 << PG_dirty	|
198			1 << PG_reclaim |
199			1 << PG_slab    |
200			1 << PG_swapcache |
201			1 << PG_writeback |
202			1 << PG_buddy );
203	set_page_count(page, 0);
204	reset_page_mapcount(page);
205	page->mapping = NULL;
206	add_taint(TAINT_BAD_PAGE);
207}
208
209/*
210 * Higher-order pages are called "compound pages".  They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set.  All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function.  Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
222 */
223
224static void free_compound_page(struct page *page)
225{
226	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
227}
228
229static void prep_compound_page(struct page *page, unsigned long order)
230{
231	int i;
232	int nr_pages = 1 << order;
233
234	set_compound_page_dtor(page, free_compound_page);
235	page[1].lru.prev = (void *)order;
236	for (i = 0; i < nr_pages; i++) {
237		struct page *p = page + i;
238
239		__SetPageCompound(p);
240		set_page_private(p, (unsigned long)page);
241	}
242}
243
244static void destroy_compound_page(struct page *page, unsigned long order)
245{
246	int i;
247	int nr_pages = 1 << order;
248
249	if (unlikely((unsigned long)page[1].lru.prev != order))
250		bad_page(page);
251
252	for (i = 0; i < nr_pages; i++) {
253		struct page *p = page + i;
254
255		if (unlikely(!PageCompound(p) |
256				(page_private(p) != (unsigned long)page)))
257			bad_page(page);
258		__ClearPageCompound(p);
259	}
260}
261
262static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263{
264	int i;
265
266	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
267	/*
268	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269	 * and __GFP_HIGHMEM from hard or soft interrupt context.
270	 */
271	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
272	for (i = 0; i < (1 << order); i++)
273		clear_highpage(page + i);
274}
275
276/*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
281static inline unsigned long page_order(struct page *page)
282{
283	return page_private(page);
284}
285
286static inline void set_page_order(struct page *page, int order)
287{
288	set_page_private(page, order);
289	__SetPageBuddy(page);
290}
291
292static inline void rmv_page_order(struct page *page)
293{
294	__ClearPageBuddy(page);
295	set_page_private(page, 0);
296}
297
298/*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 *     B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 *     P = B & ~(1 << O)
312 *
313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
314 */
315static inline struct page *
316__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317{
318	unsigned long buddy_idx = page_idx ^ (1 << order);
319
320	return page + (buddy_idx - page_idx);
321}
322
323static inline unsigned long
324__find_combined_index(unsigned long page_idx, unsigned int order)
325{
326	return (page_idx & ~(1 << order));
327}
328
329/*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
332 * (a) the buddy is not in a hole &&
333 * (b) the buddy is in the buddy system &&
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
339 *
340 * For recording page's order, we use page_private(page).
341 */
342static inline int page_is_buddy(struct page *page, struct page *buddy,
343								int order)
344{
345#ifdef CONFIG_HOLES_IN_ZONE
346	if (!pfn_valid(page_to_pfn(buddy)))
347		return 0;
348#endif
349
350	if (page_zone_id(page) != page_zone_id(buddy))
351		return 0;
352
353	if (PageBuddy(buddy) && page_order(buddy) == order) {
354		BUG_ON(page_count(buddy) != 0);
355		return 1;
356	}
357	return 0;
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other.  That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
384static inline void __free_one_page(struct page *page,
385		struct zone *zone, unsigned int order)
386{
387	unsigned long page_idx;
388	int order_size = 1 << order;
389
390	if (unlikely(PageCompound(page)))
391		destroy_compound_page(page, order);
392
393	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
395	VM_BUG_ON(page_idx & (order_size - 1));
396	VM_BUG_ON(bad_range(zone, page));
397
398	zone->free_pages += order_size;
399	while (order < MAX_ORDER-1) {
400		unsigned long combined_idx;
401		struct free_area *area;
402		struct page *buddy;
403
404		buddy = __page_find_buddy(page, page_idx, order);
405		if (!page_is_buddy(page, buddy, order))
406			break;		/* Move the buddy up one level. */
407
408		list_del(&buddy->lru);
409		area = zone->free_area + order;
410		area->nr_free--;
411		rmv_page_order(buddy);
412		combined_idx = __find_combined_index(page_idx, order);
413		page = page + (combined_idx - page_idx);
414		page_idx = combined_idx;
415		order++;
416	}
417	set_page_order(page, order);
418	list_add(&page->lru, &zone->free_area[order].free_list);
419	zone->free_area[order].nr_free++;
420}
421
422static inline int free_pages_check(struct page *page)
423{
424	if (unlikely(page_mapcount(page) |
425		(page->mapping != NULL)  |
426		(page_count(page) != 0)  |
427		(page->flags & (
428			1 << PG_lru	|
429			1 << PG_private |
430			1 << PG_locked	|
431			1 << PG_active	|
432			1 << PG_reclaim	|
433			1 << PG_slab	|
434			1 << PG_swapcache |
435			1 << PG_writeback |
436			1 << PG_reserved |
437			1 << PG_buddy ))))
438		bad_page(page);
439	if (PageDirty(page))
440		__ClearPageDirty(page);
441	/*
442	 * For now, we report if PG_reserved was found set, but do not
443	 * clear it, and do not free the page.  But we shall soon need
444	 * to do more, for when the ZERO_PAGE count wraps negative.
445	 */
446	return PageReserved(page);
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
460static void free_pages_bulk(struct zone *zone, int count,
461					struct list_head *list, int order)
462{
463	spin_lock(&zone->lock);
464	zone->all_unreclaimable = 0;
465	zone->pages_scanned = 0;
466	while (count--) {
467		struct page *page;
468
469		VM_BUG_ON(list_empty(list));
470		page = list_entry(list->prev, struct page, lru);
471		/* have to delete it as __free_one_page list manipulates */
472		list_del(&page->lru);
473		__free_one_page(page, zone, order);
474	}
475	spin_unlock(&zone->lock);
476}
477
478static void free_one_page(struct zone *zone, struct page *page, int order)
479{
480	spin_lock(&zone->lock);
481	zone->all_unreclaimable = 0;
482	zone->pages_scanned = 0;
483	__free_one_page(page, zone, order);
484	spin_unlock(&zone->lock);
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489	unsigned long flags;
490	int i;
491	int reserved = 0;
492
493	for (i = 0 ; i < (1 << order) ; ++i)
494		reserved += free_pages_check(page + i);
495	if (reserved)
496		return;
497
498	if (!PageHighMem(page))
499		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500	arch_free_page(page, order);
501	kernel_map_pages(page, 1 << order, 0);
502
503	local_irq_save(flags);
504	__count_vm_events(PGFREE, 1 << order);
505	free_one_page(page_zone(page), page, order);
506	local_irq_restore(flags);
507}
508
509/*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513{
514	if (order == 0) {
515		__ClearPageReserved(page);
516		set_page_count(page, 0);
517		set_page_refcounted(page);
518		__free_page(page);
519	} else {
520		int loop;
521
522		prefetchw(page);
523		for (loop = 0; loop < BITS_PER_LONG; loop++) {
524			struct page *p = &page[loop];
525
526			if (loop + 1 < BITS_PER_LONG)
527				prefetchw(p + 1);
528			__ClearPageReserved(p);
529			set_page_count(p, 0);
530		}
531
532		set_page_refcounted(page);
533		__free_pages(page, order);
534	}
535}
536
537
538/*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
552static inline void expand(struct zone *zone, struct page *page,
553 	int low, int high, struct free_area *area)
554{
555	unsigned long size = 1 << high;
556
557	while (high > low) {
558		area--;
559		high--;
560		size >>= 1;
561		VM_BUG_ON(bad_range(zone, &page[size]));
562		list_add(&page[size].lru, &area->free_list);
563		area->nr_free++;
564		set_page_order(&page[size], high);
565	}
566}
567
568/*
569 * This page is about to be returned from the page allocator
570 */
571static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572{
573	if (unlikely(page_mapcount(page) |
574		(page->mapping != NULL)  |
575		(page_count(page) != 0)  |
576		(page->flags & (
577			1 << PG_lru	|
578			1 << PG_private	|
579			1 << PG_locked	|
580			1 << PG_active	|
581			1 << PG_dirty	|
582			1 << PG_reclaim	|
583			1 << PG_slab    |
584			1 << PG_swapcache |
585			1 << PG_writeback |
586			1 << PG_reserved |
587			1 << PG_buddy ))))
588		bad_page(page);
589
590	/*
591	 * For now, we report if PG_reserved was found set, but do not
592	 * clear it, and do not allocate the page: as a safety net.
593	 */
594	if (PageReserved(page))
595		return 1;
596
597	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598			1 << PG_referenced | 1 << PG_arch_1 |
599			1 << PG_checked | 1 << PG_mappedtodisk);
600	set_page_private(page, 0);
601	set_page_refcounted(page);
602
603	arch_alloc_page(page, order);
604	kernel_map_pages(page, 1 << order, 1);
605
606	if (gfp_flags & __GFP_ZERO)
607		prep_zero_page(page, order, gfp_flags);
608
609	if (order && (gfp_flags & __GFP_COMP))
610		prep_compound_page(page, order);
611
612	return 0;
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621	struct free_area * area;
622	unsigned int current_order;
623	struct page *page;
624
625	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626		area = zone->free_area + current_order;
627		if (list_empty(&area->free_list))
628			continue;
629
630		page = list_entry(area->free_list.next, struct page, lru);
631		list_del(&page->lru);
632		rmv_page_order(page);
633		area->nr_free--;
634		zone->free_pages -= 1UL << order;
635		expand(zone, page, order, current_order, area);
636		return page;
637	}
638
639	return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency.  Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648			unsigned long count, struct list_head *list)
649{
650	int i;
651
652	spin_lock(&zone->lock);
653	for (i = 0; i < count; ++i) {
654		struct page *page = __rmqueue(zone, order);
655		if (unlikely(page == NULL))
656			break;
657		list_add_tail(&page->lru, list);
658	}
659	spin_unlock(&zone->lock);
660	return i;
661}
662
663#ifdef CONFIG_NUMA
664/*
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
669 */
670void drain_node_pages(int nodeid)
671{
672	int i;
673	enum zone_type z;
674	unsigned long flags;
675
676	for (z = 0; z < MAX_NR_ZONES; z++) {
677		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678		struct per_cpu_pageset *pset;
679
680		if (!populated_zone(zone))
681			continue;
682
683		pset = zone_pcp(zone, smp_processor_id());
684		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685			struct per_cpu_pages *pcp;
686
687			pcp = &pset->pcp[i];
688			if (pcp->count) {
689				int to_drain;
690
691				local_irq_save(flags);
692				if (pcp->count >= pcp->batch)
693					to_drain = pcp->batch;
694				else
695					to_drain = pcp->count;
696				free_pages_bulk(zone, to_drain, &pcp->list, 0);
697				pcp->count -= to_drain;
698				local_irq_restore(flags);
699			}
700		}
701	}
702}
703#endif
704
705static void __drain_pages(unsigned int cpu)
706{
707	unsigned long flags;
708	struct zone *zone;
709	int i;
710
711	for_each_zone(zone) {
712		struct per_cpu_pageset *pset;
713
714		pset = zone_pcp(zone, cpu);
715		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716			struct per_cpu_pages *pcp;
717
718			pcp = &pset->pcp[i];
719			local_irq_save(flags);
720			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721			pcp->count = 0;
722			local_irq_restore(flags);
723		}
724	}
725}
726
727#ifdef CONFIG_PM
728
729void mark_free_pages(struct zone *zone)
730{
731	unsigned long pfn, max_zone_pfn;
732	unsigned long flags;
733	int order;
734	struct list_head *curr;
735
736	if (!zone->spanned_pages)
737		return;
738
739	spin_lock_irqsave(&zone->lock, flags);
740
741	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743		if (pfn_valid(pfn)) {
744			struct page *page = pfn_to_page(pfn);
745
746			if (!PageNosave(page))
747				ClearPageNosaveFree(page);
748		}
749
750	for (order = MAX_ORDER - 1; order >= 0; --order)
751		list_for_each(curr, &zone->free_area[order].free_list) {
752			unsigned long i;
753
754			pfn = page_to_pfn(list_entry(curr, struct page, lru));
755			for (i = 0; i < (1UL << order); i++)
756				SetPageNosaveFree(pfn_to_page(pfn + i));
757		}
758
759	spin_unlock_irqrestore(&zone->lock, flags);
760}
761
762/*
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764 */
765void drain_local_pages(void)
766{
767	unsigned long flags;
768
769	local_irq_save(flags);
770	__drain_pages(smp_processor_id());
771	local_irq_restore(flags);
772}
773#endif /* CONFIG_PM */
774
775/*
776 * Free a 0-order page
777 */
778static void fastcall free_hot_cold_page(struct page *page, int cold)
779{
780	struct zone *zone = page_zone(page);
781	struct per_cpu_pages *pcp;
782	unsigned long flags;
783
784	if (PageAnon(page))
785		page->mapping = NULL;
786	if (free_pages_check(page))
787		return;
788
789	if (!PageHighMem(page))
790		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791	arch_free_page(page, 0);
792	kernel_map_pages(page, 1, 0);
793
794	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795	local_irq_save(flags);
796	__count_vm_event(PGFREE);
797	list_add(&page->lru, &pcp->list);
798	pcp->count++;
799	if (pcp->count >= pcp->high) {
800		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801		pcp->count -= pcp->batch;
802	}
803	local_irq_restore(flags);
804	put_cpu();
805}
806
807void fastcall free_hot_page(struct page *page)
808{
809	free_hot_cold_page(page, 0);
810}
811
812void fastcall free_cold_page(struct page *page)
813{
814	free_hot_cold_page(page, 1);
815}
816
817/*
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
821 *
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
824 */
825void split_page(struct page *page, unsigned int order)
826{
827	int i;
828
829	VM_BUG_ON(PageCompound(page));
830	VM_BUG_ON(!page_count(page));
831	for (i = 1; i < (1 << order); i++)
832		set_page_refcounted(page + i);
833}
834
835/*
836 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
837 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
838 * or two.
839 */
840static struct page *buffered_rmqueue(struct zonelist *zonelist,
841			struct zone *zone, int order, gfp_t gfp_flags)
842{
843	unsigned long flags;
844	struct page *page;
845	int cold = !!(gfp_flags & __GFP_COLD);
846	int cpu;
847
848again:
849	cpu  = get_cpu();
850	if (likely(order == 0)) {
851		struct per_cpu_pages *pcp;
852
853		pcp = &zone_pcp(zone, cpu)->pcp[cold];
854		local_irq_save(flags);
855		if (!pcp->count) {
856			pcp->count = rmqueue_bulk(zone, 0,
857						pcp->batch, &pcp->list);
858			if (unlikely(!pcp->count))
859				goto failed;
860		}
861		page = list_entry(pcp->list.next, struct page, lru);
862		list_del(&page->lru);
863		pcp->count--;
864	} else {
865		spin_lock_irqsave(&zone->lock, flags);
866		page = __rmqueue(zone, order);
867		spin_unlock(&zone->lock);
868		if (!page)
869			goto failed;
870	}
871
872	__count_zone_vm_events(PGALLOC, zone, 1 << order);
873	zone_statistics(zonelist, zone);
874	local_irq_restore(flags);
875	put_cpu();
876
877	VM_BUG_ON(bad_range(zone, page));
878	if (prep_new_page(page, order, gfp_flags))
879		goto again;
880	return page;
881
882failed:
883	local_irq_restore(flags);
884	put_cpu();
885	return NULL;
886}
887
888#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
889#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
890#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
891#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
892#define ALLOC_HARDER		0x10 /* try to alloc harder */
893#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
894#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
895
896#ifdef CONFIG_FAIL_PAGE_ALLOC
897
898static struct fail_page_alloc_attr {
899	struct fault_attr attr;
900
901	u32 ignore_gfp_highmem;
902	u32 ignore_gfp_wait;
903
904#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
905
906	struct dentry *ignore_gfp_highmem_file;
907	struct dentry *ignore_gfp_wait_file;
908
909#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
910
911} fail_page_alloc = {
912	.attr = FAULT_ATTR_INITIALIZER,
913};
914
915static int __init setup_fail_page_alloc(char *str)
916{
917	return setup_fault_attr(&fail_page_alloc.attr, str);
918}
919__setup("fail_page_alloc=", setup_fail_page_alloc);
920
921static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
922{
923	if (gfp_mask & __GFP_NOFAIL)
924		return 0;
925	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
926		return 0;
927	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
928		return 0;
929
930	return should_fail(&fail_page_alloc.attr, 1 << order);
931}
932
933#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
934
935static int __init fail_page_alloc_debugfs(void)
936{
937	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
938	struct dentry *dir;
939	int err;
940
941	err = init_fault_attr_dentries(&fail_page_alloc.attr,
942				       "fail_page_alloc");
943	if (err)
944		return err;
945	dir = fail_page_alloc.attr.dentries.dir;
946
947	fail_page_alloc.ignore_gfp_wait_file =
948		debugfs_create_bool("ignore-gfp-wait", mode, dir,
949				      &fail_page_alloc.ignore_gfp_wait);
950
951	fail_page_alloc.ignore_gfp_highmem_file =
952		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
953				      &fail_page_alloc.ignore_gfp_highmem);
954
955	if (!fail_page_alloc.ignore_gfp_wait_file ||
956			!fail_page_alloc.ignore_gfp_highmem_file) {
957		err = -ENOMEM;
958		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
959		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
960		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
961	}
962
963	return err;
964}
965
966late_initcall(fail_page_alloc_debugfs);
967
968#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
969
970#else /* CONFIG_FAIL_PAGE_ALLOC */
971
972static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
973{
974	return 0;
975}
976
977#endif /* CONFIG_FAIL_PAGE_ALLOC */
978
979/*
980 * Return 1 if free pages are above 'mark'. This takes into account the order
981 * of the allocation.
982 */
983int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
984		      int classzone_idx, int alloc_flags)
985{
986	/* free_pages my go negative - that's OK */
987	unsigned long min = mark;
988	long free_pages = z->free_pages - (1 << order) + 1;
989	int o;
990
991	if (alloc_flags & ALLOC_HIGH)
992		min -= min / 2;
993	if (alloc_flags & ALLOC_HARDER)
994		min -= min / 4;
995
996	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
997		return 0;
998	for (o = 0; o < order; o++) {
999		/* At the next order, this order's pages become unavailable */
1000		free_pages -= z->free_area[o].nr_free << o;
1001
1002		/* Require fewer higher order pages to be free */
1003		min >>= 1;
1004
1005		if (free_pages <= min)
1006			return 0;
1007	}
1008	return 1;
1009}
1010
1011#ifdef CONFIG_NUMA
1012/*
1013 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1014 * skip over zones that are not allowed by the cpuset, or that have
1015 * been recently (in last second) found to be nearly full.  See further
1016 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1017 * that have to skip over alot of full or unallowed zones.
1018 *
1019 * If the zonelist cache is present in the passed in zonelist, then
1020 * returns a pointer to the allowed node mask (either the current
1021 * tasks mems_allowed, or node_online_map.)
1022 *
1023 * If the zonelist cache is not available for this zonelist, does
1024 * nothing and returns NULL.
1025 *
1026 * If the fullzones BITMAP in the zonelist cache is stale (more than
1027 * a second since last zap'd) then we zap it out (clear its bits.)
1028 *
1029 * We hold off even calling zlc_setup, until after we've checked the
1030 * first zone in the zonelist, on the theory that most allocations will
1031 * be satisfied from that first zone, so best to examine that zone as
1032 * quickly as we can.
1033 */
1034static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1035{
1036	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1037	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1038
1039	zlc = zonelist->zlcache_ptr;
1040	if (!zlc)
1041		return NULL;
1042
1043	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1044		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1045		zlc->last_full_zap = jiffies;
1046	}
1047
1048	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1049					&cpuset_current_mems_allowed :
1050					&node_online_map;
1051	return allowednodes;
1052}
1053
1054/*
1055 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1056 * if it is worth looking at further for free memory:
1057 *  1) Check that the zone isn't thought to be full (doesn't have its
1058 *     bit set in the zonelist_cache fullzones BITMAP).
1059 *  2) Check that the zones node (obtained from the zonelist_cache
1060 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1061 * Return true (non-zero) if zone is worth looking at further, or
1062 * else return false (zero) if it is not.
1063 *
1064 * This check -ignores- the distinction between various watermarks,
1065 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1066 * found to be full for any variation of these watermarks, it will
1067 * be considered full for up to one second by all requests, unless
1068 * we are so low on memory on all allowed nodes that we are forced
1069 * into the second scan of the zonelist.
1070 *
1071 * In the second scan we ignore this zonelist cache and exactly
1072 * apply the watermarks to all zones, even it is slower to do so.
1073 * We are low on memory in the second scan, and should leave no stone
1074 * unturned looking for a free page.
1075 */
1076static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1077						nodemask_t *allowednodes)
1078{
1079	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1080	int i;				/* index of *z in zonelist zones */
1081	int n;				/* node that zone *z is on */
1082
1083	zlc = zonelist->zlcache_ptr;
1084	if (!zlc)
1085		return 1;
1086
1087	i = z - zonelist->zones;
1088	n = zlc->z_to_n[i];
1089
1090	/* This zone is worth trying if it is allowed but not full */
1091	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1092}
1093
1094/*
1095 * Given 'z' scanning a zonelist, set the corresponding bit in
1096 * zlc->fullzones, so that subsequent attempts to allocate a page
1097 * from that zone don't waste time re-examining it.
1098 */
1099static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1100{
1101	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1102	int i;				/* index of *z in zonelist zones */
1103
1104	zlc = zonelist->zlcache_ptr;
1105	if (!zlc)
1106		return;
1107
1108	i = z - zonelist->zones;
1109
1110	set_bit(i, zlc->fullzones);
1111}
1112
1113#else	/* CONFIG_NUMA */
1114
1115static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1116{
1117	return NULL;
1118}
1119
1120static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1121				nodemask_t *allowednodes)
1122{
1123	return 1;
1124}
1125
1126static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1127{
1128}
1129#endif	/* CONFIG_NUMA */
1130
1131/*
1132 * get_page_from_freelist goes through the zonelist trying to allocate
1133 * a page.
1134 */
1135static struct page *
1136get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1137		struct zonelist *zonelist, int alloc_flags)
1138{
1139	struct zone **z;
1140	struct page *page = NULL;
1141	int classzone_idx = zone_idx(zonelist->zones[0]);
1142	struct zone *zone;
1143	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1144	int zlc_active = 0;		/* set if using zonelist_cache */
1145	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1146
1147zonelist_scan:
1148	/*
1149	 * Scan zonelist, looking for a zone with enough free.
1150	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1151	 */
1152	z = zonelist->zones;
1153
1154	do {
1155		if (NUMA_BUILD && zlc_active &&
1156			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1157				continue;
1158		zone = *z;
1159		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1160			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1161				break;
1162		if ((alloc_flags & ALLOC_CPUSET) &&
1163			!cpuset_zone_allowed(zone, gfp_mask))
1164				goto try_next_zone;
1165
1166		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1167			unsigned long mark;
1168			if (alloc_flags & ALLOC_WMARK_MIN)
1169				mark = zone->pages_min;
1170			else if (alloc_flags & ALLOC_WMARK_LOW)
1171				mark = zone->pages_low;
1172			else
1173				mark = zone->pages_high;
1174			if (!zone_watermark_ok(zone, order, mark,
1175				    classzone_idx, alloc_flags)) {
1176				if (!zone_reclaim_mode ||
1177				    !zone_reclaim(zone, gfp_mask, order))
1178					goto this_zone_full;
1179			}
1180		}
1181
1182		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1183		if (page)
1184			break;
1185this_zone_full:
1186		if (NUMA_BUILD)
1187			zlc_mark_zone_full(zonelist, z);
1188try_next_zone:
1189		if (NUMA_BUILD && !did_zlc_setup) {
1190			/* we do zlc_setup after the first zone is tried */
1191			allowednodes = zlc_setup(zonelist, alloc_flags);
1192			zlc_active = 1;
1193			did_zlc_setup = 1;
1194		}
1195	} while (*(++z) != NULL);
1196
1197	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1198		/* Disable zlc cache for second zonelist scan */
1199		zlc_active = 0;
1200		goto zonelist_scan;
1201	}
1202	return page;
1203}
1204
1205/*
1206 * This is the 'heart' of the zoned buddy allocator.
1207 */
1208struct page * fastcall
1209__alloc_pages(gfp_t gfp_mask, unsigned int order,
1210		struct zonelist *zonelist)
1211{
1212	const gfp_t wait = gfp_mask & __GFP_WAIT;
1213	struct zone **z;
1214	struct page *page;
1215	struct reclaim_state reclaim_state;
1216	struct task_struct *p = current;
1217	int do_retry;
1218	int alloc_flags;
1219	int did_some_progress;
1220
1221	might_sleep_if(wait);
1222
1223	if (should_fail_alloc_page(gfp_mask, order))
1224		return NULL;
1225
1226restart:
1227	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1228
1229	if (unlikely(*z == NULL)) {
1230		/* Should this ever happen?? */
1231		return NULL;
1232	}
1233
1234	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1235				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1236	if (page)
1237		goto got_pg;
1238
1239	/*
1240	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1241	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1242	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1243	 * using a larger set of nodes after it has established that the
1244	 * allowed per node queues are empty and that nodes are
1245	 * over allocated.
1246	 */
1247	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1248		goto nopage;
1249
1250	for (z = zonelist->zones; *z; z++)
1251		wakeup_kswapd(*z, order);
1252
1253	/*
1254	 * OK, we're below the kswapd watermark and have kicked background
1255	 * reclaim. Now things get more complex, so set up alloc_flags according
1256	 * to how we want to proceed.
1257	 *
1258	 * The caller may dip into page reserves a bit more if the caller
1259	 * cannot run direct reclaim, or if the caller has realtime scheduling
1260	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1261	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1262	 */
1263	alloc_flags = ALLOC_WMARK_MIN;
1264	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1265		alloc_flags |= ALLOC_HARDER;
1266	if (gfp_mask & __GFP_HIGH)
1267		alloc_flags |= ALLOC_HIGH;
1268	if (wait)
1269		alloc_flags |= ALLOC_CPUSET;
1270
1271	/*
1272	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1273	 * coming from realtime tasks go deeper into reserves.
1274	 *
1275	 * This is the last chance, in general, before the goto nopage.
1276	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1277	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1278	 */
1279	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1280	if (page)
1281		goto got_pg;
1282
1283	/* This allocation should allow future memory freeing. */
1284
1285rebalance:
1286	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1287			&& !in_interrupt()) {
1288		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1289nofail_alloc:
1290			/* go through the zonelist yet again, ignoring mins */
1291			page = get_page_from_freelist(gfp_mask, order,
1292				zonelist, ALLOC_NO_WATERMARKS);
1293			if (page)
1294				goto got_pg;
1295			if (gfp_mask & __GFP_NOFAIL) {
1296				congestion_wait(WRITE, HZ/50);
1297				goto nofail_alloc;
1298			}
1299		}
1300		goto nopage;
1301	}
1302
1303	/* Atomic allocations - we can't balance anything */
1304	if (!wait)
1305		goto nopage;
1306
1307	cond_resched();
1308
1309	/* We now go into synchronous reclaim */
1310	cpuset_memory_pressure_bump();
1311	p->flags |= PF_MEMALLOC;
1312	reclaim_state.reclaimed_slab = 0;
1313	p->reclaim_state = &reclaim_state;
1314
1315	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1316
1317	p->reclaim_state = NULL;
1318	p->flags &= ~PF_MEMALLOC;
1319
1320	cond_resched();
1321
1322	if (likely(did_some_progress)) {
1323		page = get_page_from_freelist(gfp_mask, order,
1324						zonelist, alloc_flags);
1325		if (page)
1326			goto got_pg;
1327	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1328		/*
1329		 * Go through the zonelist yet one more time, keep
1330		 * very high watermark here, this is only to catch
1331		 * a parallel oom killing, we must fail if we're still
1332		 * under heavy pressure.
1333		 */
1334		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1335				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1336		if (page)
1337			goto got_pg;
1338
1339		out_of_memory(zonelist, gfp_mask, order);
1340		goto restart;
1341	}
1342
1343	/*
1344	 * Don't let big-order allocations loop unless the caller explicitly
1345	 * requests that.  Wait for some write requests to complete then retry.
1346	 *
1347	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1348	 * <= 3, but that may not be true in other implementations.
1349	 */
1350	do_retry = 0;
1351	if (!(gfp_mask & __GFP_NORETRY)) {
1352		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1353			do_retry = 1;
1354		if (gfp_mask & __GFP_NOFAIL)
1355			do_retry = 1;
1356	}
1357	if (do_retry) {
1358		congestion_wait(WRITE, HZ/50);
1359		goto rebalance;
1360	}
1361
1362nopage:
1363	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1364		printk(KERN_WARNING "%s: page allocation failure."
1365			" order:%d, mode:0x%x\n",
1366			p->comm, order, gfp_mask);
1367		dump_stack();
1368		show_mem();
1369	}
1370got_pg:
1371	return page;
1372}
1373
1374EXPORT_SYMBOL(__alloc_pages);
1375
1376/*
1377 * Common helper functions.
1378 */
1379fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1380{
1381	struct page * page;
1382	page = alloc_pages(gfp_mask, order);
1383	if (!page)
1384		return 0;
1385	return (unsigned long) page_address(page);
1386}
1387
1388EXPORT_SYMBOL(__get_free_pages);
1389
1390fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1391{
1392	struct page * page;
1393
1394	/*
1395	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1396	 * a highmem page
1397	 */
1398	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1399
1400	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1401	if (page)
1402		return (unsigned long) page_address(page);
1403	return 0;
1404}
1405
1406EXPORT_SYMBOL(get_zeroed_page);
1407
1408void __pagevec_free(struct pagevec *pvec)
1409{
1410	int i = pagevec_count(pvec);
1411
1412	while (--i >= 0)
1413		free_hot_cold_page(pvec->pages[i], pvec->cold);
1414}
1415
1416fastcall void __free_pages(struct page *page, unsigned int order)
1417{
1418	if (put_page_testzero(page)) {
1419		if (order == 0)
1420			free_hot_page(page);
1421		else
1422			__free_pages_ok(page, order);
1423	}
1424}
1425
1426EXPORT_SYMBOL(__free_pages);
1427
1428fastcall void free_pages(unsigned long addr, unsigned int order)
1429{
1430	if (addr != 0) {
1431		VM_BUG_ON(!virt_addr_valid((void *)addr));
1432		__free_pages(virt_to_page((void *)addr), order);
1433	}
1434}
1435
1436EXPORT_SYMBOL(free_pages);
1437
1438/*
1439 * Total amount of free (allocatable) RAM:
1440 */
1441unsigned int nr_free_pages(void)
1442{
1443	unsigned int sum = 0;
1444	struct zone *zone;
1445
1446	for_each_zone(zone)
1447		sum += zone->free_pages;
1448
1449	return sum;
1450}
1451
1452EXPORT_SYMBOL(nr_free_pages);
1453
1454#ifdef CONFIG_NUMA
1455unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1456{
1457	unsigned int sum = 0;
1458	enum zone_type i;
1459
1460	for (i = 0; i < MAX_NR_ZONES; i++)
1461		sum += pgdat->node_zones[i].free_pages;
1462
1463	return sum;
1464}
1465#endif
1466
1467static unsigned int nr_free_zone_pages(int offset)
1468{
1469	/* Just pick one node, since fallback list is circular */
1470	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1471	unsigned int sum = 0;
1472
1473	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1474	struct zone **zonep = zonelist->zones;
1475	struct zone *zone;
1476
1477	for (zone = *zonep++; zone; zone = *zonep++) {
1478		unsigned long size = zone->present_pages;
1479		unsigned long high = zone->pages_high;
1480		if (size > high)
1481			sum += size - high;
1482	}
1483
1484	return sum;
1485}
1486
1487/*
1488 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1489 */
1490unsigned int nr_free_buffer_pages(void)
1491{
1492	return nr_free_zone_pages(gfp_zone(GFP_USER));
1493}
1494
1495/*
1496 * Amount of free RAM allocatable within all zones
1497 */
1498unsigned int nr_free_pagecache_pages(void)
1499{
1500	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1501}
1502
1503static inline void show_node(struct zone *zone)
1504{
1505	if (NUMA_BUILD)
1506		printk("Node %d ", zone_to_nid(zone));
1507}
1508
1509void si_meminfo(struct sysinfo *val)
1510{
1511	val->totalram = totalram_pages;
1512	val->sharedram = 0;
1513	val->freeram = nr_free_pages();
1514	val->bufferram = nr_blockdev_pages();
1515	val->totalhigh = totalhigh_pages;
1516	val->freehigh = nr_free_highpages();
1517	val->mem_unit = PAGE_SIZE;
1518}
1519
1520EXPORT_SYMBOL(si_meminfo);
1521
1522#ifdef CONFIG_NUMA
1523void si_meminfo_node(struct sysinfo *val, int nid)
1524{
1525	pg_data_t *pgdat = NODE_DATA(nid);
1526
1527	val->totalram = pgdat->node_present_pages;
1528	val->freeram = nr_free_pages_pgdat(pgdat);
1529#ifdef CONFIG_HIGHMEM
1530	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1531	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1532#else
1533	val->totalhigh = 0;
1534	val->freehigh = 0;
1535#endif
1536	val->mem_unit = PAGE_SIZE;
1537}
1538#endif
1539
1540#define K(x) ((x) << (PAGE_SHIFT-10))
1541
1542/*
1543 * Show free area list (used inside shift_scroll-lock stuff)
1544 * We also calculate the percentage fragmentation. We do this by counting the
1545 * memory on each free list with the exception of the first item on the list.
1546 */
1547void show_free_areas(void)
1548{
1549	int cpu;
1550	unsigned long active;
1551	unsigned long inactive;
1552	unsigned long free;
1553	struct zone *zone;
1554
1555	for_each_zone(zone) {
1556		if (!populated_zone(zone))
1557			continue;
1558
1559		show_node(zone);
1560		printk("%s per-cpu:\n", zone->name);
1561
1562		for_each_online_cpu(cpu) {
1563			struct per_cpu_pageset *pageset;
1564
1565			pageset = zone_pcp(zone, cpu);
1566
1567			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1568			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1569			       cpu, pageset->pcp[0].high,
1570			       pageset->pcp[0].batch, pageset->pcp[0].count,
1571			       pageset->pcp[1].high, pageset->pcp[1].batch,
1572			       pageset->pcp[1].count);
1573		}
1574	}
1575
1576	get_zone_counts(&active, &inactive, &free);
1577
1578	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1579		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1580		active,
1581		inactive,
1582		global_page_state(NR_FILE_DIRTY),
1583		global_page_state(NR_WRITEBACK),
1584		global_page_state(NR_UNSTABLE_NFS),
1585		nr_free_pages(),
1586		global_page_state(NR_SLAB_RECLAIMABLE) +
1587			global_page_state(NR_SLAB_UNRECLAIMABLE),
1588		global_page_state(NR_FILE_MAPPED),
1589		global_page_state(NR_PAGETABLE));
1590
1591	for_each_zone(zone) {
1592		int i;
1593
1594		if (!populated_zone(zone))
1595			continue;
1596
1597		show_node(zone);
1598		printk("%s"
1599			" free:%lukB"
1600			" min:%lukB"
1601			" low:%lukB"
1602			" high:%lukB"
1603			" active:%lukB"
1604			" inactive:%lukB"
1605			" present:%lukB"
1606			" pages_scanned:%lu"
1607			" all_unreclaimable? %s"
1608			"\n",
1609			zone->name,
1610			K(zone->free_pages),
1611			K(zone->pages_min),
1612			K(zone->pages_low),
1613			K(zone->pages_high),
1614			K(zone->nr_active),
1615			K(zone->nr_inactive),
1616			K(zone->present_pages),
1617			zone->pages_scanned,
1618			(zone->all_unreclaimable ? "yes" : "no")
1619			);
1620		printk("lowmem_reserve[]:");
1621		for (i = 0; i < MAX_NR_ZONES; i++)
1622			printk(" %lu", zone->lowmem_reserve[i]);
1623		printk("\n");
1624	}
1625
1626	for_each_zone(zone) {
1627 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1628
1629		if (!populated_zone(zone))
1630			continue;
1631
1632		show_node(zone);
1633		printk("%s: ", zone->name);
1634
1635		spin_lock_irqsave(&zone->lock, flags);
1636		for (order = 0; order < MAX_ORDER; order++) {
1637			nr[order] = zone->free_area[order].nr_free;
1638			total += nr[order] << order;
1639		}
1640		spin_unlock_irqrestore(&zone->lock, flags);
1641		for (order = 0; order < MAX_ORDER; order++)
1642			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1643		printk("= %lukB\n", K(total));
1644	}
1645
1646	show_swap_cache_info();
1647}
1648
1649/*
1650 * Builds allocation fallback zone lists.
1651 *
1652 * Add all populated zones of a node to the zonelist.
1653 */
1654static int __meminit build_zonelists_node(pg_data_t *pgdat,
1655			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1656{
1657	struct zone *zone;
1658
1659	BUG_ON(zone_type >= MAX_NR_ZONES);
1660	zone_type++;
1661
1662	do {
1663		zone_type--;
1664		zone = pgdat->node_zones + zone_type;
1665		if (populated_zone(zone)) {
1666			zonelist->zones[nr_zones++] = zone;
1667			check_highest_zone(zone_type);
1668		}
1669
1670	} while (zone_type);
1671	return nr_zones;
1672}
1673
1674#ifdef CONFIG_NUMA
1675#define MAX_NODE_LOAD (num_online_nodes())
1676static int __meminitdata node_load[MAX_NUMNODES];
1677/**
1678 * find_next_best_node - find the next node that should appear in a given node's fallback list
1679 * @node: node whose fallback list we're appending
1680 * @used_node_mask: nodemask_t of already used nodes
1681 *
1682 * We use a number of factors to determine which is the next node that should
1683 * appear on a given node's fallback list.  The node should not have appeared
1684 * already in @node's fallback list, and it should be the next closest node
1685 * according to the distance array (which contains arbitrary distance values
1686 * from each node to each node in the system), and should also prefer nodes
1687 * with no CPUs, since presumably they'll have very little allocation pressure
1688 * on them otherwise.
1689 * It returns -1 if no node is found.
1690 */
1691static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1692{
1693	int n, val;
1694	int min_val = INT_MAX;
1695	int best_node = -1;
1696
1697	/* Use the local node if we haven't already */
1698	if (!node_isset(node, *used_node_mask)) {
1699		node_set(node, *used_node_mask);
1700		return node;
1701	}
1702
1703	for_each_online_node(n) {
1704		cpumask_t tmp;
1705
1706		/* Don't want a node to appear more than once */
1707		if (node_isset(n, *used_node_mask))
1708			continue;
1709
1710		/* Use the distance array to find the distance */
1711		val = node_distance(node, n);
1712
1713		/* Penalize nodes under us ("prefer the next node") */
1714		val += (n < node);
1715
1716		/* Give preference to headless and unused nodes */
1717		tmp = node_to_cpumask(n);
1718		if (!cpus_empty(tmp))
1719			val += PENALTY_FOR_NODE_WITH_CPUS;
1720
1721		/* Slight preference for less loaded node */
1722		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1723		val += node_load[n];
1724
1725		if (val < min_val) {
1726			min_val = val;
1727			best_node = n;
1728		}
1729	}
1730
1731	if (best_node >= 0)
1732		node_set(best_node, *used_node_mask);
1733
1734	return best_node;
1735}
1736
1737static void __meminit build_zonelists(pg_data_t *pgdat)
1738{
1739	int j, node, local_node;
1740	enum zone_type i;
1741	int prev_node, load;
1742	struct zonelist *zonelist;
1743	nodemask_t used_mask;
1744
1745	/* initialize zonelists */
1746	for (i = 0; i < MAX_NR_ZONES; i++) {
1747		zonelist = pgdat->node_zonelists + i;
1748		zonelist->zones[0] = NULL;
1749	}
1750
1751	/* NUMA-aware ordering of nodes */
1752	local_node = pgdat->node_id;
1753	load = num_online_nodes();
1754	prev_node = local_node;
1755	nodes_clear(used_mask);
1756	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1757		int distance = node_distance(local_node, node);
1758
1759		/*
1760		 * If another node is sufficiently far away then it is better
1761		 * to reclaim pages in a zone before going off node.
1762		 */
1763		if (distance > RECLAIM_DISTANCE)
1764			zone_reclaim_mode = 1;
1765
1766		/*
1767		 * We don't want to pressure a particular node.
1768		 * So adding penalty to the first node in same
1769		 * distance group to make it round-robin.
1770		 */
1771
1772		if (distance != node_distance(local_node, prev_node))
1773			node_load[node] += load;
1774		prev_node = node;
1775		load--;
1776		for (i = 0; i < MAX_NR_ZONES; i++) {
1777			zonelist = pgdat->node_zonelists + i;
1778			for (j = 0; zonelist->zones[j] != NULL; j++);
1779
1780	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1781			zonelist->zones[j] = NULL;
1782		}
1783	}
1784}
1785
1786/* Construct the zonelist performance cache - see further mmzone.h */
1787static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1788{
1789	int i;
1790
1791	for (i = 0; i < MAX_NR_ZONES; i++) {
1792		struct zonelist *zonelist;
1793		struct zonelist_cache *zlc;
1794		struct zone **z;
1795
1796		zonelist = pgdat->node_zonelists + i;
1797		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1798		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1799		for (z = zonelist->zones; *z; z++)
1800			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1801	}
1802}
1803
1804#else	/* CONFIG_NUMA */
1805
1806static void __meminit build_zonelists(pg_data_t *pgdat)
1807{
1808	int node, local_node;
1809	enum zone_type i,j;
1810
1811	local_node = pgdat->node_id;
1812	for (i = 0; i < MAX_NR_ZONES; i++) {
1813		struct zonelist *zonelist;
1814
1815		zonelist = pgdat->node_zonelists + i;
1816
1817 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1818 		/*
1819 		 * Now we build the zonelist so that it contains the zones
1820 		 * of all the other nodes.
1821 		 * We don't want to pressure a particular node, so when
1822 		 * building the zones for node N, we make sure that the
1823 		 * zones coming right after the local ones are those from
1824 		 * node N+1 (modulo N)
1825 		 */
1826		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1827			if (!node_online(node))
1828				continue;
1829			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1830		}
1831		for (node = 0; node < local_node; node++) {
1832			if (!node_online(node))
1833				continue;
1834			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1835		}
1836
1837		zonelist->zones[j] = NULL;
1838	}
1839}
1840
1841/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1842static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1843{
1844	int i;
1845
1846	for (i = 0; i < MAX_NR_ZONES; i++)
1847		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1848}
1849
1850#endif	/* CONFIG_NUMA */
1851
1852/* return values int ....just for stop_machine_run() */
1853static int __meminit __build_all_zonelists(void *dummy)
1854{
1855	int nid;
1856
1857	for_each_online_node(nid) {
1858		build_zonelists(NODE_DATA(nid));
1859		build_zonelist_cache(NODE_DATA(nid));
1860	}
1861	return 0;
1862}
1863
1864void __meminit build_all_zonelists(void)
1865{
1866	if (system_state == SYSTEM_BOOTING) {
1867		__build_all_zonelists(NULL);
1868		cpuset_init_current_mems_allowed();
1869	} else {
1870		/* we have to stop all cpus to guaranntee there is no user
1871		   of zonelist */
1872		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1873		/* cpuset refresh routine should be here */
1874	}
1875	vm_total_pages = nr_free_pagecache_pages();
1876	printk("Built %i zonelists.  Total pages: %ld\n",
1877			num_online_nodes(), vm_total_pages);
1878}
1879
1880/*
1881 * Helper functions to size the waitqueue hash table.
1882 * Essentially these want to choose hash table sizes sufficiently
1883 * large so that collisions trying to wait on pages are rare.
1884 * But in fact, the number of active page waitqueues on typical
1885 * systems is ridiculously low, less than 200. So this is even
1886 * conservative, even though it seems large.
1887 *
1888 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1889 * waitqueues, i.e. the size of the waitq table given the number of pages.
1890 */
1891#define PAGES_PER_WAITQUEUE	256
1892
1893#ifndef CONFIG_MEMORY_HOTPLUG
1894static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1895{
1896	unsigned long size = 1;
1897
1898	pages /= PAGES_PER_WAITQUEUE;
1899
1900	while (size < pages)
1901		size <<= 1;
1902
1903	/*
1904	 * Once we have dozens or even hundreds of threads sleeping
1905	 * on IO we've got bigger problems than wait queue collision.
1906	 * Limit the size of the wait table to a reasonable size.
1907	 */
1908	size = min(size, 4096UL);
1909
1910	return max(size, 4UL);
1911}
1912#else
1913/*
1914 * A zone's size might be changed by hot-add, so it is not possible to determine
1915 * a suitable size for its wait_table.  So we use the maximum size now.
1916 *
1917 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1918 *
1919 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1920 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1921 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1922 *
1923 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1924 * or more by the traditional way. (See above).  It equals:
1925 *
1926 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1927 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1928 *    powerpc (64K page size)             : =  (32G +16M)byte.
1929 */
1930static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1931{
1932	return 4096UL;
1933}
1934#endif
1935
1936/*
1937 * This is an integer logarithm so that shifts can be used later
1938 * to extract the more random high bits from the multiplicative
1939 * hash function before the remainder is taken.
1940 */
1941static inline unsigned long wait_table_bits(unsigned long size)
1942{
1943	return ffz(~size);
1944}
1945
1946#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1947
1948/*
1949 * Initially all pages are reserved - free ones are freed
1950 * up by free_all_bootmem() once the early boot process is
1951 * done. Non-atomic initialization, single-pass.
1952 */
1953void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1954		unsigned long start_pfn)
1955{
1956	struct page *page;
1957	unsigned long end_pfn = start_pfn + size;
1958	unsigned long pfn;
1959
1960	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1961		if (!early_pfn_valid(pfn))
1962			continue;
1963		if (!early_pfn_in_nid(pfn, nid))
1964			continue;
1965		page = pfn_to_page(pfn);
1966		set_page_links(page, zone, nid, pfn);
1967		init_page_count(page);
1968		reset_page_mapcount(page);
1969		SetPageReserved(page);
1970		INIT_LIST_HEAD(&page->lru);
1971#ifdef WANT_PAGE_VIRTUAL
1972		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1973		if (!is_highmem_idx(zone))
1974			set_page_address(page, __va(pfn << PAGE_SHIFT));
1975#endif
1976	}
1977}
1978
1979void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1980				unsigned long size)
1981{
1982	int order;
1983	for (order = 0; order < MAX_ORDER ; order++) {
1984		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1985		zone->free_area[order].nr_free = 0;
1986	}
1987}
1988
1989#ifndef __HAVE_ARCH_MEMMAP_INIT
1990#define memmap_init(size, nid, zone, start_pfn) \
1991	memmap_init_zone((size), (nid), (zone), (start_pfn))
1992#endif
1993
1994static int __cpuinit zone_batchsize(struct zone *zone)
1995{
1996	int batch;
1997
1998	/*
1999	 * The per-cpu-pages pools are set to around 1000th of the
2000	 * size of the zone.  But no more than 1/2 of a meg.
2001	 *
2002	 * OK, so we don't know how big the cache is.  So guess.
2003	 */
2004	batch = zone->present_pages / 1024;
2005	if (batch * PAGE_SIZE > 512 * 1024)
2006		batch = (512 * 1024) / PAGE_SIZE;
2007	batch /= 4;		/* We effectively *= 4 below */
2008	if (batch < 1)
2009		batch = 1;
2010
2011	/*
2012	 * Clamp the batch to a 2^n - 1 value. Having a power
2013	 * of 2 value was found to be more likely to have
2014	 * suboptimal cache aliasing properties in some cases.
2015	 *
2016	 * For example if 2 tasks are alternately allocating
2017	 * batches of pages, one task can end up with a lot
2018	 * of pages of one half of the possible page colors
2019	 * and the other with pages of the other colors.
2020	 */
2021	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2022
2023	return batch;
2024}
2025
2026inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2027{
2028	struct per_cpu_pages *pcp;
2029
2030	memset(p, 0, sizeof(*p));
2031
2032	pcp = &p->pcp[0];		/* hot */
2033	pcp->count = 0;
2034	pcp->high = 6 * batch;
2035	pcp->batch = max(1UL, 1 * batch);
2036	INIT_LIST_HEAD(&pcp->list);
2037
2038	pcp = &p->pcp[1];		/* cold*/
2039	pcp->count = 0;
2040	pcp->high = 2 * batch;
2041	pcp->batch = max(1UL, batch/2);
2042	INIT_LIST_HEAD(&pcp->list);
2043}
2044
2045/*
2046 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2047 * to the value high for the pageset p.
2048 */
2049
2050static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2051				unsigned long high)
2052{
2053	struct per_cpu_pages *pcp;
2054
2055	pcp = &p->pcp[0]; /* hot list */
2056	pcp->high = high;
2057	pcp->batch = max(1UL, high/4);
2058	if ((high/4) > (PAGE_SHIFT * 8))
2059		pcp->batch = PAGE_SHIFT * 8;
2060}
2061
2062
2063#ifdef CONFIG_NUMA
2064/*
2065 * Boot pageset table. One per cpu which is going to be used for all
2066 * zones and all nodes. The parameters will be set in such a way
2067 * that an item put on a list will immediately be handed over to
2068 * the buddy list. This is safe since pageset manipulation is done
2069 * with interrupts disabled.
2070 *
2071 * Some NUMA counter updates may also be caught by the boot pagesets.
2072 *
2073 * The boot_pagesets must be kept even after bootup is complete for
2074 * unused processors and/or zones. They do play a role for bootstrapping
2075 * hotplugged processors.
2076 *
2077 * zoneinfo_show() and maybe other functions do
2078 * not check if the processor is online before following the pageset pointer.
2079 * Other parts of the kernel may not check if the zone is available.
2080 */
2081static struct per_cpu_pageset boot_pageset[NR_CPUS];
2082
2083/*
2084 * Dynamically allocate memory for the
2085 * per cpu pageset array in struct zone.
2086 */
2087static int __cpuinit process_zones(int cpu)
2088{
2089	struct zone *zone, *dzone;
2090
2091	for_each_zone(zone) {
2092
2093		if (!populated_zone(zone))
2094			continue;
2095
2096		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2097					 GFP_KERNEL, cpu_to_node(cpu));
2098		if (!zone_pcp(zone, cpu))
2099			goto bad;
2100
2101		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2102
2103		if (percpu_pagelist_fraction)
2104			setup_pagelist_highmark(zone_pcp(zone, cpu),
2105			 	(zone->present_pages / percpu_pagelist_fraction));
2106	}
2107
2108	return 0;
2109bad:
2110	for_each_zone(dzone) {
2111		if (dzone == zone)
2112			break;
2113		kfree(zone_pcp(dzone, cpu));
2114		zone_pcp(dzone, cpu) = NULL;
2115	}
2116	return -ENOMEM;
2117}
2118
2119static inline void free_zone_pagesets(int cpu)
2120{
2121	struct zone *zone;
2122
2123	for_each_zone(zone) {
2124		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2125
2126		/* Free per_cpu_pageset if it is slab allocated */
2127		if (pset != &boot_pageset[cpu])
2128			kfree(pset);
2129		zone_pcp(zone, cpu) = NULL;
2130	}
2131}
2132
2133static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2134		unsigned long action,
2135		void *hcpu)
2136{
2137	int cpu = (long)hcpu;
2138	int ret = NOTIFY_OK;
2139
2140	switch (action) {
2141	case CPU_UP_PREPARE:
2142		if (process_zones(cpu))
2143			ret = NOTIFY_BAD;
2144		break;
2145	case CPU_UP_CANCELED:
2146	case CPU_DEAD:
2147		free_zone_pagesets(cpu);
2148		break;
2149	default:
2150		break;
2151	}
2152	return ret;
2153}
2154
2155static struct notifier_block __cpuinitdata pageset_notifier =
2156	{ &pageset_cpuup_callback, NULL, 0 };
2157
2158void __init setup_per_cpu_pageset(void)
2159{
2160	int err;
2161
2162	/* Initialize per_cpu_pageset for cpu 0.
2163	 * A cpuup callback will do this for every cpu
2164	 * as it comes online
2165	 */
2166	err = process_zones(smp_processor_id());
2167	BUG_ON(err);
2168	register_cpu_notifier(&pageset_notifier);
2169}
2170
2171#endif
2172
2173static __meminit
2174int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2175{
2176	int i;
2177	struct pglist_data *pgdat = zone->zone_pgdat;
2178	size_t alloc_size;
2179
2180	/*
2181	 * The per-page waitqueue mechanism uses hashed waitqueues
2182	 * per zone.
2183	 */
2184	zone->wait_table_hash_nr_entries =
2185		 wait_table_hash_nr_entries(zone_size_pages);
2186	zone->wait_table_bits =
2187		wait_table_bits(zone->wait_table_hash_nr_entries);
2188	alloc_size = zone->wait_table_hash_nr_entries
2189					* sizeof(wait_queue_head_t);
2190
2191 	if (system_state == SYSTEM_BOOTING) {
2192		zone->wait_table = (wait_queue_head_t *)
2193			alloc_bootmem_node(pgdat, alloc_size);
2194	} else {
2195		/*
2196		 * This case means that a zone whose size was 0 gets new memory
2197		 * via memory hot-add.
2198		 * But it may be the case that a new node was hot-added.  In
2199		 * this case vmalloc() will not be able to use this new node's
2200		 * memory - this wait_table must be initialized to use this new
2201		 * node itself as well.
2202		 * To use this new node's memory, further consideration will be
2203		 * necessary.
2204		 */
2205		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2206	}
2207	if (!zone->wait_table)
2208		return -ENOMEM;
2209
2210	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2211		init_waitqueue_head(zone->wait_table + i);
2212
2213	return 0;
2214}
2215
2216static __meminit void zone_pcp_init(struct zone *zone)
2217{
2218	int cpu;
2219	unsigned long batch = zone_batchsize(zone);
2220
2221	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2222#ifdef CONFIG_NUMA
2223		/* Early boot. Slab allocator not functional yet */
2224		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2225		setup_pageset(&boot_pageset[cpu],0);
2226#else
2227		setup_pageset(zone_pcp(zone,cpu), batch);
2228#endif
2229	}
2230	if (zone->present_pages)
2231		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2232			zone->name, zone->present_pages, batch);
2233}
2234
2235__meminit int init_currently_empty_zone(struct zone *zone,
2236					unsigned long zone_start_pfn,
2237					unsigned long size)
2238{
2239	struct pglist_data *pgdat = zone->zone_pgdat;
2240	int ret;
2241	ret = zone_wait_table_init(zone, size);
2242	if (ret)
2243		return ret;
2244	pgdat->nr_zones = zone_idx(zone) + 1;
2245
2246	zone->zone_start_pfn = zone_start_pfn;
2247
2248	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2249
2250	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2251
2252	return 0;
2253}
2254
2255#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2256/*
2257 * Basic iterator support. Return the first range of PFNs for a node
2258 * Note: nid == MAX_NUMNODES returns first region regardless of node
2259 */
2260static int __init first_active_region_index_in_nid(int nid)
2261{
2262	int i;
2263
2264	for (i = 0; i < nr_nodemap_entries; i++)
2265		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2266			return i;
2267
2268	return -1;
2269}
2270
2271/*
2272 * Basic iterator support. Return the next active range of PFNs for a node
2273 * Note: nid == MAX_NUMNODES returns next region regardles of node
2274 */
2275static int __init next_active_region_index_in_nid(int index, int nid)
2276{
2277	for (index = index + 1; index < nr_nodemap_entries; index++)
2278		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2279			return index;
2280
2281	return -1;
2282}
2283
2284#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2285/*
2286 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2287 * Architectures may implement their own version but if add_active_range()
2288 * was used and there are no special requirements, this is a convenient
2289 * alternative
2290 */
2291int __init early_pfn_to_nid(unsigned long pfn)
2292{
2293	int i;
2294
2295	for (i = 0; i < nr_nodemap_entries; i++) {
2296		unsigned long start_pfn = early_node_map[i].start_pfn;
2297		unsigned long end_pfn = early_node_map[i].end_pfn;
2298
2299		if (start_pfn <= pfn && pfn < end_pfn)
2300			return early_node_map[i].nid;
2301	}
2302
2303	return 0;
2304}
2305#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2306
2307/* Basic iterator support to walk early_node_map[] */
2308#define for_each_active_range_index_in_nid(i, nid) \
2309	for (i = first_active_region_index_in_nid(nid); i != -1; \
2310				i = next_active_region_index_in_nid(i, nid))
2311
2312/**
2313 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2314 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2315 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2316 *
2317 * If an architecture guarantees that all ranges registered with
2318 * add_active_ranges() contain no holes and may be freed, this
2319 * this function may be used instead of calling free_bootmem() manually.
2320 */
2321void __init free_bootmem_with_active_regions(int nid,
2322						unsigned long max_low_pfn)
2323{
2324	int i;
2325
2326	for_each_active_range_index_in_nid(i, nid) {
2327		unsigned long size_pages = 0;
2328		unsigned long end_pfn = early_node_map[i].end_pfn;
2329
2330		if (early_node_map[i].start_pfn >= max_low_pfn)
2331			continue;
2332
2333		if (end_pfn > max_low_pfn)
2334			end_pfn = max_low_pfn;
2335
2336		size_pages = end_pfn - early_node_map[i].start_pfn;
2337		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2338				PFN_PHYS(early_node_map[i].start_pfn),
2339				size_pages << PAGE_SHIFT);
2340	}
2341}
2342
2343/**
2344 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2345 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2346 *
2347 * If an architecture guarantees that all ranges registered with
2348 * add_active_ranges() contain no holes and may be freed, this
2349 * function may be used instead of calling memory_present() manually.
2350 */
2351void __init sparse_memory_present_with_active_regions(int nid)
2352{
2353	int i;
2354
2355	for_each_active_range_index_in_nid(i, nid)
2356		memory_present(early_node_map[i].nid,
2357				early_node_map[i].start_pfn,
2358				early_node_map[i].end_pfn);
2359}
2360
2361/**
2362 * push_node_boundaries - Push node boundaries to at least the requested boundary
2363 * @nid: The nid of the node to push the boundary for
2364 * @start_pfn: The start pfn of the node
2365 * @end_pfn: The end pfn of the node
2366 *
2367 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2368 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2369 * be hotplugged even though no physical memory exists. This function allows
2370 * an arch to push out the node boundaries so mem_map is allocated that can
2371 * be used later.
2372 */
2373#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2374void __init push_node_boundaries(unsigned int nid,
2375		unsigned long start_pfn, unsigned long end_pfn)
2376{
2377	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2378			nid, start_pfn, end_pfn);
2379
2380	/* Initialise the boundary for this node if necessary */
2381	if (node_boundary_end_pfn[nid] == 0)
2382		node_boundary_start_pfn[nid] = -1UL;
2383
2384	/* Update the boundaries */
2385	if (node_boundary_start_pfn[nid] > start_pfn)
2386		node_boundary_start_pfn[nid] = start_pfn;
2387	if (node_boundary_end_pfn[nid] < end_pfn)
2388		node_boundary_end_pfn[nid] = end_pfn;
2389}
2390
2391/* If necessary, push the node boundary out for reserve hotadd */
2392static void __init account_node_boundary(unsigned int nid,
2393		unsigned long *start_pfn, unsigned long *end_pfn)
2394{
2395	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2396			nid, *start_pfn, *end_pfn);
2397
2398	/* Return if boundary information has not been provided */
2399	if (node_boundary_end_pfn[nid] == 0)
2400		return;
2401
2402	/* Check the boundaries and update if necessary */
2403	if (node_boundary_start_pfn[nid] < *start_pfn)
2404		*start_pfn = node_boundary_start_pfn[nid];
2405	if (node_boundary_end_pfn[nid] > *end_pfn)
2406		*end_pfn = node_boundary_end_pfn[nid];
2407}
2408#else
2409void __init push_node_boundaries(unsigned int nid,
2410		unsigned long start_pfn, unsigned long end_pfn) {}
2411
2412static void __init account_node_boundary(unsigned int nid,
2413		unsigned long *start_pfn, unsigned long *end_pfn) {}
2414#endif
2415
2416
2417/**
2418 * get_pfn_range_for_nid - Return the start and end page frames for a node
2419 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2420 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2421 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2422 *
2423 * It returns the start and end page frame of a node based on information
2424 * provided by an arch calling add_active_range(). If called for a node
2425 * with no available memory, a warning is printed and the start and end
2426 * PFNs will be 0.
2427 */
2428void __init get_pfn_range_for_nid(unsigned int nid,
2429			unsigned long *start_pfn, unsigned long *end_pfn)
2430{
2431	int i;
2432	*start_pfn = -1UL;
2433	*end_pfn = 0;
2434
2435	for_each_active_range_index_in_nid(i, nid) {
2436		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2437		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2438	}
2439
2440	if (*start_pfn == -1UL) {
2441		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2442		*start_pfn = 0;
2443	}
2444
2445	/* Push the node boundaries out if requested */
2446	account_node_boundary(nid, start_pfn, end_pfn);
2447}
2448
2449/*
2450 * Return the number of pages a zone spans in a node, including holes
2451 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2452 */
2453unsigned long __init zone_spanned_pages_in_node(int nid,
2454					unsigned long zone_type,
2455					unsigned long *ignored)
2456{
2457	unsigned long node_start_pfn, node_end_pfn;
2458	unsigned long zone_start_pfn, zone_end_pfn;
2459
2460	/* Get the start and end of the node and zone */
2461	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2462	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2463	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2464
2465	/* Check that this node has pages within the zone's required range */
2466	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2467		return 0;
2468
2469	/* Move the zone boundaries inside the node if necessary */
2470	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2471	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2472
2473	/* Return the spanned pages */
2474	return zone_end_pfn - zone_start_pfn;
2475}
2476
2477/*
2478 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2479 * then all holes in the requested range will be accounted for.
2480 */
2481unsigned long __init __absent_pages_in_range(int nid,
2482				unsigned long range_start_pfn,
2483				unsigned long range_end_pfn)
2484{
2485	int i = 0;
2486	unsigned long prev_end_pfn = 0, hole_pages = 0;
2487	unsigned long start_pfn;
2488
2489	/* Find the end_pfn of the first active range of pfns in the node */
2490	i = first_active_region_index_in_nid(nid);
2491	if (i == -1)
2492		return 0;
2493
2494	/* Account for ranges before physical memory on this node */
2495	if (early_node_map[i].start_pfn > range_start_pfn)
2496		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2497
2498	prev_end_pfn = early_node_map[i].start_pfn;
2499
2500	/* Find all holes for the zone within the node */
2501	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2502
2503		/* No need to continue if prev_end_pfn is outside the zone */
2504		if (prev_end_pfn >= range_end_pfn)
2505			break;
2506
2507		/* Make sure the end of the zone is not within the hole */
2508		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2509		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2510
2511		/* Update the hole size cound and move on */
2512		if (start_pfn > range_start_pfn) {
2513			BUG_ON(prev_end_pfn > start_pfn);
2514			hole_pages += start_pfn - prev_end_pfn;
2515		}
2516		prev_end_pfn = early_node_map[i].end_pfn;
2517	}
2518
2519	/* Account for ranges past physical memory on this node */
2520	if (range_end_pfn > prev_end_pfn)
2521		hole_pages += range_end_pfn -
2522				max(range_start_pfn, prev_end_pfn);
2523
2524	return hole_pages;
2525}
2526
2527/**
2528 * absent_pages_in_range - Return number of page frames in holes within a range
2529 * @start_pfn: The start PFN to start searching for holes
2530 * @end_pfn: The end PFN to stop searching for holes
2531 *
2532 * It returns the number of pages frames in memory holes within a range.
2533 */
2534unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2535							unsigned long end_pfn)
2536{
2537	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2538}
2539
2540/* Return the number of page frames in holes in a zone on a node */
2541unsigned long __init zone_absent_pages_in_node(int nid,
2542					unsigned long zone_type,
2543					unsigned long *ignored)
2544{
2545	unsigned long node_start_pfn, node_end_pfn;
2546	unsigned long zone_start_pfn, zone_end_pfn;
2547
2548	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2549	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2550							node_start_pfn);
2551	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2552							node_end_pfn);
2553
2554	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2555}
2556
2557#else
2558static inline unsigned long zone_spanned_pages_in_node(int nid,
2559					unsigned long zone_type,
2560					unsigned long *zones_size)
2561{
2562	return zones_size[zone_type];
2563}
2564
2565static inline unsigned long zone_absent_pages_in_node(int nid,
2566						unsigned long zone_type,
2567						unsigned long *zholes_size)
2568{
2569	if (!zholes_size)
2570		return 0;
2571
2572	return zholes_size[zone_type];
2573}
2574
2575#endif
2576
2577static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2578		unsigned long *zones_size, unsigned long *zholes_size)
2579{
2580	unsigned long realtotalpages, totalpages = 0;
2581	enum zone_type i;
2582
2583	for (i = 0; i < MAX_NR_ZONES; i++)
2584		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2585								zones_size);
2586	pgdat->node_spanned_pages = totalpages;
2587
2588	realtotalpages = totalpages;
2589	for (i = 0; i < MAX_NR_ZONES; i++)
2590		realtotalpages -=
2591			zone_absent_pages_in_node(pgdat->node_id, i,
2592								zholes_size);
2593	pgdat->node_present_pages = realtotalpages;
2594	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2595							realtotalpages);
2596}
2597
2598/*
2599 * Set up the zone data structures:
2600 *   - mark all pages reserved
2601 *   - mark all memory queues empty
2602 *   - clear the memory bitmaps
2603 */
2604static void __meminit free_area_init_core(struct pglist_data *pgdat,
2605		unsigned long *zones_size, unsigned long *zholes_size)
2606{
2607	enum zone_type j;
2608	int nid = pgdat->node_id;
2609	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2610	int ret;
2611
2612	pgdat_resize_init(pgdat);
2613	pgdat->nr_zones = 0;
2614	init_waitqueue_head(&pgdat->kswapd_wait);
2615	pgdat->kswapd_max_order = 0;
2616
2617	for (j = 0; j < MAX_NR_ZONES; j++) {
2618		struct zone *zone = pgdat->node_zones + j;
2619		unsigned long size, realsize, memmap_pages;
2620
2621		size = zone_spanned_pages_in_node(nid, j, zones_size);
2622		realsize = size - zone_absent_pages_in_node(nid, j,
2623								zholes_size);
2624
2625		/*
2626		 * Adjust realsize so that it accounts for how much memory
2627		 * is used by this zone for memmap. This affects the watermark
2628		 * and per-cpu initialisations
2629		 */
2630		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2631		if (realsize >= memmap_pages) {
2632			realsize -= memmap_pages;
2633			printk(KERN_DEBUG
2634				"  %s zone: %lu pages used for memmap\n",
2635				zone_names[j], memmap_pages);
2636		} else
2637			printk(KERN_WARNING
2638				"  %s zone: %lu pages exceeds realsize %lu\n",
2639				zone_names[j], memmap_pages, realsize);
2640
2641		/* Account for reserved DMA pages */
2642		if (j == ZONE_DMA && realsize > dma_reserve) {
2643			realsize -= dma_reserve;
2644			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2645								dma_reserve);
2646		}
2647
2648		if (!is_highmem_idx(j))
2649			nr_kernel_pages += realsize;
2650		nr_all_pages += realsize;
2651
2652		zone->spanned_pages = size;
2653		zone->present_pages = realsize;
2654#ifdef CONFIG_NUMA
2655		zone->node = nid;
2656		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2657						/ 100;
2658		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2659#endif
2660		zone->name = zone_names[j];
2661		spin_lock_init(&zone->lock);
2662		spin_lock_init(&zone->lru_lock);
2663		zone_seqlock_init(zone);
2664		zone->zone_pgdat = pgdat;
2665		zone->free_pages = 0;
2666
2667		zone->prev_priority = DEF_PRIORITY;
2668
2669		zone_pcp_init(zone);
2670		INIT_LIST_HEAD(&zone->active_list);
2671		INIT_LIST_HEAD(&zone->inactive_list);
2672		zone->nr_scan_active = 0;
2673		zone->nr_scan_inactive = 0;
2674		zone->nr_active = 0;
2675		zone->nr_inactive = 0;
2676		zap_zone_vm_stats(zone);
2677		atomic_set(&zone->reclaim_in_progress, 0);
2678		if (!size)
2679			continue;
2680
2681		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2682		BUG_ON(ret);
2683		zone_start_pfn += size;
2684	}
2685}
2686
2687static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2688{
2689	/* Skip empty nodes */
2690	if (!pgdat->node_spanned_pages)
2691		return;
2692
2693#ifdef CONFIG_FLAT_NODE_MEM_MAP
2694	/* ia64 gets its own node_mem_map, before this, without bootmem */
2695	if (!pgdat->node_mem_map) {
2696		unsigned long size, start, end;
2697		struct page *map;
2698
2699		/*
2700		 * The zone's endpoints aren't required to be MAX_ORDER
2701		 * aligned but the node_mem_map endpoints must be in order
2702		 * for the buddy allocator to function correctly.
2703		 */
2704		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2705		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2706		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2707		size =  (end - start) * sizeof(struct page);
2708		map = alloc_remap(pgdat->node_id, size);
2709		if (!map)
2710			map = alloc_bootmem_node(pgdat, size);
2711		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2712	}
2713#ifdef CONFIG_FLATMEM
2714	/*
2715	 * With no DISCONTIG, the global mem_map is just set as node 0's
2716	 */
2717	if (pgdat == NODE_DATA(0)) {
2718		mem_map = NODE_DATA(0)->node_mem_map;
2719#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2720		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2721			mem_map -= pgdat->node_start_pfn;
2722#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2723	}
2724#endif
2725#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2726}
2727
2728void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2729		unsigned long *zones_size, unsigned long node_start_pfn,
2730		unsigned long *zholes_size)
2731{
2732	pgdat->node_id = nid;
2733	pgdat->node_start_pfn = node_start_pfn;
2734	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2735
2736	alloc_node_mem_map(pgdat);
2737
2738	free_area_init_core(pgdat, zones_size, zholes_size);
2739}
2740
2741#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2742/**
2743 * add_active_range - Register a range of PFNs backed by physical memory
2744 * @nid: The node ID the range resides on
2745 * @start_pfn: The start PFN of the available physical memory
2746 * @end_pfn: The end PFN of the available physical memory
2747 *
2748 * These ranges are stored in an early_node_map[] and later used by
2749 * free_area_init_nodes() to calculate zone sizes and holes. If the
2750 * range spans a memory hole, it is up to the architecture to ensure
2751 * the memory is not freed by the bootmem allocator. If possible
2752 * the range being registered will be merged with existing ranges.
2753 */
2754void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2755						unsigned long end_pfn)
2756{
2757	int i;
2758
2759	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2760			  "%d entries of %d used\n",
2761			  nid, start_pfn, end_pfn,
2762			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2763
2764	/* Merge with existing active regions if possible */
2765	for (i = 0; i < nr_nodemap_entries; i++) {
2766		if (early_node_map[i].nid != nid)
2767			continue;
2768
2769		/* Skip if an existing region covers this new one */
2770		if (start_pfn >= early_node_map[i].start_pfn &&
2771				end_pfn <= early_node_map[i].end_pfn)
2772			return;
2773
2774		/* Merge forward if suitable */
2775		if (start_pfn <= early_node_map[i].end_pfn &&
2776				end_pfn > early_node_map[i].end_pfn) {
2777			early_node_map[i].end_pfn = end_pfn;
2778			return;
2779		}
2780
2781		/* Merge backward if suitable */
2782		if (start_pfn < early_node_map[i].end_pfn &&
2783				end_pfn >= early_node_map[i].start_pfn) {
2784			early_node_map[i].start_pfn = start_pfn;
2785			return;
2786		}
2787	}
2788
2789	/* Check that early_node_map is large enough */
2790	if (i >= MAX_ACTIVE_REGIONS) {
2791		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2792							MAX_ACTIVE_REGIONS);
2793		return;
2794	}
2795
2796	early_node_map[i].nid = nid;
2797	early_node_map[i].start_pfn = start_pfn;
2798	early_node_map[i].end_pfn = end_pfn;
2799	nr_nodemap_entries = i + 1;
2800}
2801
2802/**
2803 * shrink_active_range - Shrink an existing registered range of PFNs
2804 * @nid: The node id the range is on that should be shrunk
2805 * @old_end_pfn: The old end PFN of the range
2806 * @new_end_pfn: The new PFN of the range
2807 *
2808 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2809 * The map is kept at the end physical page range that has already been
2810 * registered with add_active_range(). This function allows an arch to shrink
2811 * an existing registered range.
2812 */
2813void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2814						unsigned long new_end_pfn)
2815{
2816	int i;
2817
2818	/* Find the old active region end and shrink */
2819	for_each_active_range_index_in_nid(i, nid)
2820		if (early_node_map[i].end_pfn == old_end_pfn) {
2821			early_node_map[i].end_pfn = new_end_pfn;
2822			break;
2823		}
2824}
2825
2826/**
2827 * remove_all_active_ranges - Remove all currently registered regions
2828 *
2829 * During discovery, it may be found that a table like SRAT is invalid
2830 * and an alternative discovery method must be used. This function removes
2831 * all currently registered regions.
2832 */
2833void __init remove_all_active_ranges(void)
2834{
2835	memset(early_node_map, 0, sizeof(early_node_map));
2836	nr_nodemap_entries = 0;
2837#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2838	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2839	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2840#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2841}
2842
2843/* Compare two active node_active_regions */
2844static int __init cmp_node_active_region(const void *a, const void *b)
2845{
2846	struct node_active_region *arange = (struct node_active_region *)a;
2847	struct node_active_region *brange = (struct node_active_region *)b;
2848
2849	/* Done this way to avoid overflows */
2850	if (arange->start_pfn > brange->start_pfn)
2851		return 1;
2852	if (arange->start_pfn < brange->start_pfn)
2853		return -1;
2854
2855	return 0;
2856}
2857
2858/* sort the node_map by start_pfn */
2859static void __init sort_node_map(void)
2860{
2861	sort(early_node_map, (size_t)nr_nodemap_entries,
2862			sizeof(struct node_active_region),
2863			cmp_node_active_region, NULL);
2864}
2865
2866/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2867unsigned long __init find_min_pfn_for_node(unsigned long nid)
2868{
2869	int i;
2870
2871	/* Regions in the early_node_map can be in any order */
2872	sort_node_map();
2873
2874	/* Assuming a sorted map, the first range found has the starting pfn */
2875	for_each_active_range_index_in_nid(i, nid)
2876		return early_node_map[i].start_pfn;
2877
2878	printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2879	return 0;
2880}
2881
2882/**
2883 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2884 *
2885 * It returns the minimum PFN based on information provided via
2886 * add_active_range().
2887 */
2888unsigned long __init find_min_pfn_with_active_regions(void)
2889{
2890	return find_min_pfn_for_node(MAX_NUMNODES);
2891}
2892
2893/**
2894 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2895 *
2896 * It returns the maximum PFN based on information provided via
2897 * add_active_range().
2898 */
2899unsigned long __init find_max_pfn_with_active_regions(void)
2900{
2901	int i;
2902	unsigned long max_pfn = 0;
2903
2904	for (i = 0; i < nr_nodemap_entries; i++)
2905		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2906
2907	return max_pfn;
2908}
2909
2910/**
2911 * free_area_init_nodes - Initialise all pg_data_t and zone data
2912 * @max_zone_pfn: an array of max PFNs for each zone
2913 *
2914 * This will call free_area_init_node() for each active node in the system.
2915 * Using the page ranges provided by add_active_range(), the size of each
2916 * zone in each node and their holes is calculated. If the maximum PFN
2917 * between two adjacent zones match, it is assumed that the zone is empty.
2918 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2919 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2920 * starts where the previous one ended. For example, ZONE_DMA32 starts
2921 * at arch_max_dma_pfn.
2922 */
2923void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2924{
2925	unsigned long nid;
2926	enum zone_type i;
2927
2928	/* Record where the zone boundaries are */
2929	memset(arch_zone_lowest_possible_pfn, 0,
2930				sizeof(arch_zone_lowest_possible_pfn));
2931	memset(arch_zone_highest_possible_pfn, 0,
2932				sizeof(arch_zone_highest_possible_pfn));
2933	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2934	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2935	for (i = 1; i < MAX_NR_ZONES; i++) {
2936		arch_zone_lowest_possible_pfn[i] =
2937			arch_zone_highest_possible_pfn[i-1];
2938		arch_zone_highest_possible_pfn[i] =
2939			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2940	}
2941
2942	/* Print out the zone ranges */
2943	printk("Zone PFN ranges:\n");
2944	for (i = 0; i < MAX_NR_ZONES; i++)
2945		printk("  %-8s %8lu -> %8lu\n",
2946				zone_names[i],
2947				arch_zone_lowest_possible_pfn[i],
2948				arch_zone_highest_possible_pfn[i]);
2949
2950	/* Print out the early_node_map[] */
2951	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2952	for (i = 0; i < nr_nodemap_entries; i++)
2953		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2954						early_node_map[i].start_pfn,
2955						early_node_map[i].end_pfn);
2956
2957	/* Initialise every node */
2958	for_each_online_node(nid) {
2959		pg_data_t *pgdat = NODE_DATA(nid);
2960		free_area_init_node(nid, pgdat, NULL,
2961				find_min_pfn_for_node(nid), NULL);
2962	}
2963}
2964#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2965
2966/**
2967 * set_dma_reserve - set the specified number of pages reserved in the first zone
2968 * @new_dma_reserve: The number of pages to mark reserved
2969 *
2970 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2971 * In the DMA zone, a significant percentage may be consumed by kernel image
2972 * and other unfreeable allocations which can skew the watermarks badly. This
2973 * function may optionally be used to account for unfreeable pages in the
2974 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2975 * smaller per-cpu batchsize.
2976 */
2977void __init set_dma_reserve(unsigned long new_dma_reserve)
2978{
2979	dma_reserve = new_dma_reserve;
2980}
2981
2982#ifndef CONFIG_NEED_MULTIPLE_NODES
2983static bootmem_data_t contig_bootmem_data;
2984struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2985
2986EXPORT_SYMBOL(contig_page_data);
2987#endif
2988
2989void __init free_area_init(unsigned long *zones_size)
2990{
2991	free_area_init_node(0, NODE_DATA(0), zones_size,
2992			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2993}
2994
2995static int page_alloc_cpu_notify(struct notifier_block *self,
2996				 unsigned long action, void *hcpu)
2997{
2998	int cpu = (unsigned long)hcpu;
2999
3000	if (action == CPU_DEAD) {
3001		local_irq_disable();
3002		__drain_pages(cpu);
3003		vm_events_fold_cpu(cpu);
3004		local_irq_enable();
3005		refresh_cpu_vm_stats(cpu);
3006	}
3007	return NOTIFY_OK;
3008}
3009
3010void __init page_alloc_init(void)
3011{
3012	hotcpu_notifier(page_alloc_cpu_notify, 0);
3013}
3014
3015/*
3016 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3017 *	or min_free_kbytes changes.
3018 */
3019static void calculate_totalreserve_pages(void)
3020{
3021	struct pglist_data *pgdat;
3022	unsigned long reserve_pages = 0;
3023	enum zone_type i, j;
3024
3025	for_each_online_pgdat(pgdat) {
3026		for (i = 0; i < MAX_NR_ZONES; i++) {
3027			struct zone *zone = pgdat->node_zones + i;
3028			unsigned long max = 0;
3029
3030			/* Find valid and maximum lowmem_reserve in the zone */
3031			for (j = i; j < MAX_NR_ZONES; j++) {
3032				if (zone->lowmem_reserve[j] > max)
3033					max = zone->lowmem_reserve[j];
3034			}
3035
3036			/* we treat pages_high as reserved pages. */
3037			max += zone->pages_high;
3038
3039			if (max > zone->present_pages)
3040				max = zone->present_pages;
3041			reserve_pages += max;
3042		}
3043	}
3044	totalreserve_pages = reserve_pages;
3045}
3046
3047/*
3048 * setup_per_zone_lowmem_reserve - called whenever
3049 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3050 *	has a correct pages reserved value, so an adequate number of
3051 *	pages are left in the zone after a successful __alloc_pages().
3052 */
3053static void setup_per_zone_lowmem_reserve(void)
3054{
3055	struct pglist_data *pgdat;
3056	enum zone_type j, idx;
3057
3058	for_each_online_pgdat(pgdat) {
3059		for (j = 0; j < MAX_NR_ZONES; j++) {
3060			struct zone *zone = pgdat->node_zones + j;
3061			unsigned long present_pages = zone->present_pages;
3062
3063			zone->lowmem_reserve[j] = 0;
3064
3065			idx = j;
3066			while (idx) {
3067				struct zone *lower_zone;
3068
3069				idx--;
3070
3071				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3072					sysctl_lowmem_reserve_ratio[idx] = 1;
3073
3074				lower_zone = pgdat->node_zones + idx;
3075				lower_zone->lowmem_reserve[j] = present_pages /
3076					sysctl_lowmem_reserve_ratio[idx];
3077				present_pages += lower_zone->present_pages;
3078			}
3079		}
3080	}
3081
3082	/* update totalreserve_pages */
3083	calculate_totalreserve_pages();
3084}
3085
3086/**
3087 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3088 *
3089 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3090 * with respect to min_free_kbytes.
3091 */
3092void setup_per_zone_pages_min(void)
3093{
3094	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3095	unsigned long lowmem_pages = 0;
3096	struct zone *zone;
3097	unsigned long flags;
3098
3099	/* Calculate total number of !ZONE_HIGHMEM pages */
3100	for_each_zone(zone) {
3101		if (!is_highmem(zone))
3102			lowmem_pages += zone->present_pages;
3103	}
3104
3105	for_each_zone(zone) {
3106		u64 tmp;
3107
3108		spin_lock_irqsave(&zone->lru_lock, flags);
3109		tmp = (u64)pages_min * zone->present_pages;
3110		do_div(tmp, lowmem_pages);
3111		if (is_highmem(zone)) {
3112			/*
3113			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3114			 * need highmem pages, so cap pages_min to a small
3115			 * value here.
3116			 *
3117			 * The (pages_high-pages_low) and (pages_low-pages_min)
3118			 * deltas controls asynch page reclaim, and so should
3119			 * not be capped for highmem.
3120			 */
3121			int min_pages;
3122
3123			min_pages = zone->present_pages / 1024;
3124			if (min_pages < SWAP_CLUSTER_MAX)
3125				min_pages = SWAP_CLUSTER_MAX;
3126			if (min_pages > 128)
3127				min_pages = 128;
3128			zone->pages_min = min_pages;
3129		} else {
3130			/*
3131			 * If it's a lowmem zone, reserve a number of pages
3132			 * proportionate to the zone's size.
3133			 */
3134			zone->pages_min = tmp;
3135		}
3136
3137		zone->pages_low   = zone->pages_min + (tmp >> 2);
3138		zone->pages_high  = zone->pages_min + (tmp >> 1);
3139		spin_unlock_irqrestore(&zone->lru_lock, flags);
3140	}
3141
3142	/* update totalreserve_pages */
3143	calculate_totalreserve_pages();
3144}
3145
3146/*
3147 * Initialise min_free_kbytes.
3148 *
3149 * For small machines we want it small (128k min).  For large machines
3150 * we want it large (64MB max).  But it is not linear, because network
3151 * bandwidth does not increase linearly with machine size.  We use
3152 *
3153 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3154 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3155 *
3156 * which yields
3157 *
3158 * 16MB:	512k
3159 * 32MB:	724k
3160 * 64MB:	1024k
3161 * 128MB:	1448k
3162 * 256MB:	2048k
3163 * 512MB:	2896k
3164 * 1024MB:	4096k
3165 * 2048MB:	5792k
3166 * 4096MB:	8192k
3167 * 8192MB:	11584k
3168 * 16384MB:	16384k
3169 */
3170static int __init init_per_zone_pages_min(void)
3171{
3172	unsigned long lowmem_kbytes;
3173
3174	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3175
3176	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3177	if (min_free_kbytes < 128)
3178		min_free_kbytes = 128;
3179	if (min_free_kbytes > 65536)
3180		min_free_kbytes = 65536;
3181	setup_per_zone_pages_min();
3182	setup_per_zone_lowmem_reserve();
3183	return 0;
3184}
3185module_init(init_per_zone_pages_min)
3186
3187/*
3188 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3189 *	that we can call two helper functions whenever min_free_kbytes
3190 *	changes.
3191 */
3192int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3193	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3194{
3195	proc_dointvec(table, write, file, buffer, length, ppos);
3196	setup_per_zone_pages_min();
3197	return 0;
3198}
3199
3200#ifdef CONFIG_NUMA
3201int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3202	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3203{
3204	struct zone *zone;
3205	int rc;
3206
3207	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3208	if (rc)
3209		return rc;
3210
3211	for_each_zone(zone)
3212		zone->min_unmapped_pages = (zone->present_pages *
3213				sysctl_min_unmapped_ratio) / 100;
3214	return 0;
3215}
3216
3217int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3218	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3219{
3220	struct zone *zone;
3221	int rc;
3222
3223	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3224	if (rc)
3225		return rc;
3226
3227	for_each_zone(zone)
3228		zone->min_slab_pages = (zone->present_pages *
3229				sysctl_min_slab_ratio) / 100;
3230	return 0;
3231}
3232#endif
3233
3234/*
3235 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3236 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3237 *	whenever sysctl_lowmem_reserve_ratio changes.
3238 *
3239 * The reserve ratio obviously has absolutely no relation with the
3240 * pages_min watermarks. The lowmem reserve ratio can only make sense
3241 * if in function of the boot time zone sizes.
3242 */
3243int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3244	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3245{
3246	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3247	setup_per_zone_lowmem_reserve();
3248	return 0;
3249}
3250
3251/*
3252 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3253 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3254 * can have before it gets flushed back to buddy allocator.
3255 */
3256
3257int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3258	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3259{
3260	struct zone *zone;
3261	unsigned int cpu;
3262	int ret;
3263
3264	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3265	if (!write || (ret == -EINVAL))
3266		return ret;
3267	for_each_zone(zone) {
3268		for_each_online_cpu(cpu) {
3269			unsigned long  high;
3270			high = zone->present_pages / percpu_pagelist_fraction;
3271			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3272		}
3273	}
3274	return 0;
3275}
3276
3277int hashdist = HASHDIST_DEFAULT;
3278
3279#ifdef CONFIG_NUMA
3280static int __init set_hashdist(char *str)
3281{
3282	if (!str)
3283		return 0;
3284	hashdist = simple_strtoul(str, &str, 0);
3285	return 1;
3286}
3287__setup("hashdist=", set_hashdist);
3288#endif
3289
3290/*
3291 * allocate a large system hash table from bootmem
3292 * - it is assumed that the hash table must contain an exact power-of-2
3293 *   quantity of entries
3294 * - limit is the number of hash buckets, not the total allocation size
3295 */
3296void *__init alloc_large_system_hash(const char *tablename,
3297				     unsigned long bucketsize,
3298				     unsigned long numentries,
3299				     int scale,
3300				     int flags,
3301				     unsigned int *_hash_shift,
3302				     unsigned int *_hash_mask,
3303				     unsigned long limit)
3304{
3305	unsigned long long max = limit;
3306	unsigned long log2qty, size;
3307	void *table = NULL;
3308
3309	/* allow the kernel cmdline to have a say */
3310	if (!numentries) {
3311		/* round applicable memory size up to nearest megabyte */
3312		numentries = nr_kernel_pages;
3313		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3314		numentries >>= 20 - PAGE_SHIFT;
3315		numentries <<= 20 - PAGE_SHIFT;
3316
3317		/* limit to 1 bucket per 2^scale bytes of low memory */
3318		if (scale > PAGE_SHIFT)
3319			numentries >>= (scale - PAGE_SHIFT);
3320		else
3321			numentries <<= (PAGE_SHIFT - scale);
3322	}
3323	numentries = roundup_pow_of_two(numentries);
3324
3325	/* limit allocation size to 1/16 total memory by default */
3326	if (max == 0) {
3327		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3328		do_div(max, bucketsize);
3329	}
3330
3331	if (numentries > max)
3332		numentries = max;
3333
3334	log2qty = ilog2(numentries);
3335
3336	do {
3337		size = bucketsize << log2qty;
3338		if (flags & HASH_EARLY)
3339			table = alloc_bootmem(size);
3340		else if (hashdist)
3341			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3342		else {
3343			unsigned long order;
3344			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3345				;
3346			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3347		}
3348	} while (!table && size > PAGE_SIZE && --log2qty);
3349
3350	if (!table)
3351		panic("Failed to allocate %s hash table\n", tablename);
3352
3353	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3354	       tablename,
3355	       (1U << log2qty),
3356	       ilog2(size) - PAGE_SHIFT,
3357	       size);
3358
3359	if (_hash_shift)
3360		*_hash_shift = log2qty;
3361	if (_hash_mask)
3362		*_hash_mask = (1 << log2qty) - 1;
3363
3364	return table;
3365}
3366
3367#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3368struct page *pfn_to_page(unsigned long pfn)
3369{
3370	return __pfn_to_page(pfn);
3371}
3372unsigned long page_to_pfn(struct page *page)
3373{
3374	return __page_to_pfn(page);
3375}
3376EXPORT_SYMBOL(pfn_to_page);
3377EXPORT_SYMBOL(page_to_pfn);
3378#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3379
3380#if MAX_NUMNODES > 1
3381/*
3382 * Find the highest possible node id.
3383 */
3384int highest_possible_node_id(void)
3385{
3386	unsigned int node;
3387	unsigned int highest = 0;
3388
3389	for_each_node_mask(node, node_possible_map)
3390		highest = node;
3391	return highest;
3392}
3393EXPORT_SYMBOL(highest_possible_node_id);
3394#endif
3395