page_alloc.c revision 938929f14cb595f43cd1a4e63e22d36cab1e4a1f
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/memory.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <linux/ftrace_event.h>
58#include <linux/memcontrol.h>
59#include <linux/prefetch.h>
60
61#include <asm/tlbflush.h>
62#include <asm/div64.h>
63#include "internal.h"
64
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
81/*
82 * Array of node states.
83 */
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85	[N_POSSIBLE] = NODE_MASK_ALL,
86	[N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90	[N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92	[N_CPU] = { { [0] = 1UL } },
93#endif	/* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
97unsigned long totalram_pages __read_mostly;
98unsigned long totalreserve_pages __read_mostly;
99int percpu_pagelist_fraction;
100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended.  To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
115{
116	WARN_ON(!mutex_is_locked(&pm_mutex));
117	if (saved_gfp_mask) {
118		gfp_allowed_mask = saved_gfp_mask;
119		saved_gfp_mask = 0;
120	}
121}
122
123void pm_restrict_gfp_mask(void)
124{
125	WARN_ON(!mutex_is_locked(&pm_mutex));
126	WARN_ON(saved_gfp_mask);
127	saved_gfp_mask = gfp_allowed_mask;
128	gfp_allowed_mask &= ~GFP_IOFS;
129}
130#endif /* CONFIG_PM_SLEEP */
131
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
136static void __free_pages_ok(struct page *page, unsigned int order);
137
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 *	1G machine -> (16M dma, 784M normal, 224M high)
142 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
148 */
149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150#ifdef CONFIG_ZONE_DMA
151	 256,
152#endif
153#ifdef CONFIG_ZONE_DMA32
154	 256,
155#endif
156#ifdef CONFIG_HIGHMEM
157	 32,
158#endif
159	 32,
160};
161
162EXPORT_SYMBOL(totalram_pages);
163
164static char * const zone_names[MAX_NR_ZONES] = {
165#ifdef CONFIG_ZONE_DMA
166	 "DMA",
167#endif
168#ifdef CONFIG_ZONE_DMA32
169	 "DMA32",
170#endif
171	 "Normal",
172#ifdef CONFIG_HIGHMEM
173	 "HighMem",
174#endif
175	 "Movable",
176};
177
178int min_free_kbytes = 1024;
179
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
182static unsigned long __meminitdata dma_reserve;
183
184#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
185static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
186static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
187static unsigned long __initdata required_kernelcore;
188static unsigned long __initdata required_movablecore;
189static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
190
191/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
192int movable_zone;
193EXPORT_SYMBOL(movable_zone);
194#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
195
196#if MAX_NUMNODES > 1
197int nr_node_ids __read_mostly = MAX_NUMNODES;
198int nr_online_nodes __read_mostly = 1;
199EXPORT_SYMBOL(nr_node_ids);
200EXPORT_SYMBOL(nr_online_nodes);
201#endif
202
203int page_group_by_mobility_disabled __read_mostly;
204
205static void set_pageblock_migratetype(struct page *page, int migratetype)
206{
207
208	if (unlikely(page_group_by_mobility_disabled))
209		migratetype = MIGRATE_UNMOVABLE;
210
211	set_pageblock_flags_group(page, (unsigned long)migratetype,
212					PB_migrate, PB_migrate_end);
213}
214
215bool oom_killer_disabled __read_mostly;
216
217#ifdef CONFIG_DEBUG_VM
218static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
219{
220	int ret = 0;
221	unsigned seq;
222	unsigned long pfn = page_to_pfn(page);
223
224	do {
225		seq = zone_span_seqbegin(zone);
226		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
227			ret = 1;
228		else if (pfn < zone->zone_start_pfn)
229			ret = 1;
230	} while (zone_span_seqretry(zone, seq));
231
232	return ret;
233}
234
235static int page_is_consistent(struct zone *zone, struct page *page)
236{
237	if (!pfn_valid_within(page_to_pfn(page)))
238		return 0;
239	if (zone != page_zone(page))
240		return 0;
241
242	return 1;
243}
244/*
245 * Temporary debugging check for pages not lying within a given zone.
246 */
247static int bad_range(struct zone *zone, struct page *page)
248{
249	if (page_outside_zone_boundaries(zone, page))
250		return 1;
251	if (!page_is_consistent(zone, page))
252		return 1;
253
254	return 0;
255}
256#else
257static inline int bad_range(struct zone *zone, struct page *page)
258{
259	return 0;
260}
261#endif
262
263static void bad_page(struct page *page)
264{
265	static unsigned long resume;
266	static unsigned long nr_shown;
267	static unsigned long nr_unshown;
268
269	/* Don't complain about poisoned pages */
270	if (PageHWPoison(page)) {
271		reset_page_mapcount(page); /* remove PageBuddy */
272		return;
273	}
274
275	/*
276	 * Allow a burst of 60 reports, then keep quiet for that minute;
277	 * or allow a steady drip of one report per second.
278	 */
279	if (nr_shown == 60) {
280		if (time_before(jiffies, resume)) {
281			nr_unshown++;
282			goto out;
283		}
284		if (nr_unshown) {
285			printk(KERN_ALERT
286			      "BUG: Bad page state: %lu messages suppressed\n",
287				nr_unshown);
288			nr_unshown = 0;
289		}
290		nr_shown = 0;
291	}
292	if (nr_shown++ == 0)
293		resume = jiffies + 60 * HZ;
294
295	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
296		current->comm, page_to_pfn(page));
297	dump_page(page);
298
299	print_modules();
300	dump_stack();
301out:
302	/* Leave bad fields for debug, except PageBuddy could make trouble */
303	reset_page_mapcount(page); /* remove PageBuddy */
304	add_taint(TAINT_BAD_PAGE);
305}
306
307/*
308 * Higher-order pages are called "compound pages".  They are structured thusly:
309 *
310 * The first PAGE_SIZE page is called the "head page".
311 *
312 * The remaining PAGE_SIZE pages are called "tail pages".
313 *
314 * All pages have PG_compound set.  All tail pages have their ->first_page
315 * pointing at the head page.
316 *
317 * The first tail page's ->lru.next holds the address of the compound page's
318 * put_page() function.  Its ->lru.prev holds the order of allocation.
319 * This usage means that zero-order pages may not be compound.
320 */
321
322static void free_compound_page(struct page *page)
323{
324	__free_pages_ok(page, compound_order(page));
325}
326
327void prep_compound_page(struct page *page, unsigned long order)
328{
329	int i;
330	int nr_pages = 1 << order;
331
332	set_compound_page_dtor(page, free_compound_page);
333	set_compound_order(page, order);
334	__SetPageHead(page);
335	for (i = 1; i < nr_pages; i++) {
336		struct page *p = page + i;
337		__SetPageTail(p);
338		set_page_count(p, 0);
339		p->first_page = page;
340	}
341}
342
343/* update __split_huge_page_refcount if you change this function */
344static int destroy_compound_page(struct page *page, unsigned long order)
345{
346	int i;
347	int nr_pages = 1 << order;
348	int bad = 0;
349
350	if (unlikely(compound_order(page) != order) ||
351	    unlikely(!PageHead(page))) {
352		bad_page(page);
353		bad++;
354	}
355
356	__ClearPageHead(page);
357
358	for (i = 1; i < nr_pages; i++) {
359		struct page *p = page + i;
360
361		if (unlikely(!PageTail(p) || (p->first_page != page))) {
362			bad_page(page);
363			bad++;
364		}
365		__ClearPageTail(p);
366	}
367
368	return bad;
369}
370
371static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
372{
373	int i;
374
375	/*
376	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
377	 * and __GFP_HIGHMEM from hard or soft interrupt context.
378	 */
379	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
380	for (i = 0; i < (1 << order); i++)
381		clear_highpage(page + i);
382}
383
384static inline void set_page_order(struct page *page, int order)
385{
386	set_page_private(page, order);
387	__SetPageBuddy(page);
388}
389
390static inline void rmv_page_order(struct page *page)
391{
392	__ClearPageBuddy(page);
393	set_page_private(page, 0);
394}
395
396/*
397 * Locate the struct page for both the matching buddy in our
398 * pair (buddy1) and the combined O(n+1) page they form (page).
399 *
400 * 1) Any buddy B1 will have an order O twin B2 which satisfies
401 * the following equation:
402 *     B2 = B1 ^ (1 << O)
403 * For example, if the starting buddy (buddy2) is #8 its order
404 * 1 buddy is #10:
405 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
406 *
407 * 2) Any buddy B will have an order O+1 parent P which
408 * satisfies the following equation:
409 *     P = B & ~(1 << O)
410 *
411 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
412 */
413static inline unsigned long
414__find_buddy_index(unsigned long page_idx, unsigned int order)
415{
416	return page_idx ^ (1 << order);
417}
418
419/*
420 * This function checks whether a page is free && is the buddy
421 * we can do coalesce a page and its buddy if
422 * (a) the buddy is not in a hole &&
423 * (b) the buddy is in the buddy system &&
424 * (c) a page and its buddy have the same order &&
425 * (d) a page and its buddy are in the same zone.
426 *
427 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
428 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
429 *
430 * For recording page's order, we use page_private(page).
431 */
432static inline int page_is_buddy(struct page *page, struct page *buddy,
433								int order)
434{
435	if (!pfn_valid_within(page_to_pfn(buddy)))
436		return 0;
437
438	if (page_zone_id(page) != page_zone_id(buddy))
439		return 0;
440
441	if (PageBuddy(buddy) && page_order(buddy) == order) {
442		VM_BUG_ON(page_count(buddy) != 0);
443		return 1;
444	}
445	return 0;
446}
447
448/*
449 * Freeing function for a buddy system allocator.
450 *
451 * The concept of a buddy system is to maintain direct-mapped table
452 * (containing bit values) for memory blocks of various "orders".
453 * The bottom level table contains the map for the smallest allocatable
454 * units of memory (here, pages), and each level above it describes
455 * pairs of units from the levels below, hence, "buddies".
456 * At a high level, all that happens here is marking the table entry
457 * at the bottom level available, and propagating the changes upward
458 * as necessary, plus some accounting needed to play nicely with other
459 * parts of the VM system.
460 * At each level, we keep a list of pages, which are heads of continuous
461 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
462 * order is recorded in page_private(page) field.
463 * So when we are allocating or freeing one, we can derive the state of the
464 * other.  That is, if we allocate a small block, and both were
465 * free, the remainder of the region must be split into blocks.
466 * If a block is freed, and its buddy is also free, then this
467 * triggers coalescing into a block of larger size.
468 *
469 * -- wli
470 */
471
472static inline void __free_one_page(struct page *page,
473		struct zone *zone, unsigned int order,
474		int migratetype)
475{
476	unsigned long page_idx;
477	unsigned long combined_idx;
478	unsigned long uninitialized_var(buddy_idx);
479	struct page *buddy;
480
481	if (unlikely(PageCompound(page)))
482		if (unlikely(destroy_compound_page(page, order)))
483			return;
484
485	VM_BUG_ON(migratetype == -1);
486
487	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488
489	VM_BUG_ON(page_idx & ((1 << order) - 1));
490	VM_BUG_ON(bad_range(zone, page));
491
492	while (order < MAX_ORDER-1) {
493		buddy_idx = __find_buddy_index(page_idx, order);
494		buddy = page + (buddy_idx - page_idx);
495		if (!page_is_buddy(page, buddy, order))
496			break;
497
498		/* Our buddy is free, merge with it and move up one order. */
499		list_del(&buddy->lru);
500		zone->free_area[order].nr_free--;
501		rmv_page_order(buddy);
502		combined_idx = buddy_idx & page_idx;
503		page = page + (combined_idx - page_idx);
504		page_idx = combined_idx;
505		order++;
506	}
507	set_page_order(page, order);
508
509	/*
510	 * If this is not the largest possible page, check if the buddy
511	 * of the next-highest order is free. If it is, it's possible
512	 * that pages are being freed that will coalesce soon. In case,
513	 * that is happening, add the free page to the tail of the list
514	 * so it's less likely to be used soon and more likely to be merged
515	 * as a higher order page
516	 */
517	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
518		struct page *higher_page, *higher_buddy;
519		combined_idx = buddy_idx & page_idx;
520		higher_page = page + (combined_idx - page_idx);
521		buddy_idx = __find_buddy_index(combined_idx, order + 1);
522		higher_buddy = page + (buddy_idx - combined_idx);
523		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
524			list_add_tail(&page->lru,
525				&zone->free_area[order].free_list[migratetype]);
526			goto out;
527		}
528	}
529
530	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
531out:
532	zone->free_area[order].nr_free++;
533}
534
535/*
536 * free_page_mlock() -- clean up attempts to free and mlocked() page.
537 * Page should not be on lru, so no need to fix that up.
538 * free_pages_check() will verify...
539 */
540static inline void free_page_mlock(struct page *page)
541{
542	__dec_zone_page_state(page, NR_MLOCK);
543	__count_vm_event(UNEVICTABLE_MLOCKFREED);
544}
545
546static inline int free_pages_check(struct page *page)
547{
548	if (unlikely(page_mapcount(page) |
549		(page->mapping != NULL)  |
550		(atomic_read(&page->_count) != 0) |
551		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
552		(mem_cgroup_bad_page_check(page)))) {
553		bad_page(page);
554		return 1;
555	}
556	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
557		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
558	return 0;
559}
560
561/*
562 * Frees a number of pages from the PCP lists
563 * Assumes all pages on list are in same zone, and of same order.
564 * count is the number of pages to free.
565 *
566 * If the zone was previously in an "all pages pinned" state then look to
567 * see if this freeing clears that state.
568 *
569 * And clear the zone's pages_scanned counter, to hold off the "all pages are
570 * pinned" detection logic.
571 */
572static void free_pcppages_bulk(struct zone *zone, int count,
573					struct per_cpu_pages *pcp)
574{
575	int migratetype = 0;
576	int batch_free = 0;
577	int to_free = count;
578
579	spin_lock(&zone->lock);
580	zone->all_unreclaimable = 0;
581	zone->pages_scanned = 0;
582
583	while (to_free) {
584		struct page *page;
585		struct list_head *list;
586
587		/*
588		 * Remove pages from lists in a round-robin fashion. A
589		 * batch_free count is maintained that is incremented when an
590		 * empty list is encountered.  This is so more pages are freed
591		 * off fuller lists instead of spinning excessively around empty
592		 * lists
593		 */
594		do {
595			batch_free++;
596			if (++migratetype == MIGRATE_PCPTYPES)
597				migratetype = 0;
598			list = &pcp->lists[migratetype];
599		} while (list_empty(list));
600
601		/* This is the only non-empty list. Free them all. */
602		if (batch_free == MIGRATE_PCPTYPES)
603			batch_free = to_free;
604
605		do {
606			page = list_entry(list->prev, struct page, lru);
607			/* must delete as __free_one_page list manipulates */
608			list_del(&page->lru);
609			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
610			__free_one_page(page, zone, 0, page_private(page));
611			trace_mm_page_pcpu_drain(page, 0, page_private(page));
612		} while (--to_free && --batch_free && !list_empty(list));
613	}
614	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
615	spin_unlock(&zone->lock);
616}
617
618static void free_one_page(struct zone *zone, struct page *page, int order,
619				int migratetype)
620{
621	spin_lock(&zone->lock);
622	zone->all_unreclaimable = 0;
623	zone->pages_scanned = 0;
624
625	__free_one_page(page, zone, order, migratetype);
626	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
627	spin_unlock(&zone->lock);
628}
629
630static bool free_pages_prepare(struct page *page, unsigned int order)
631{
632	int i;
633	int bad = 0;
634
635	trace_mm_page_free(page, order);
636	kmemcheck_free_shadow(page, order);
637
638	if (PageAnon(page))
639		page->mapping = NULL;
640	for (i = 0; i < (1 << order); i++)
641		bad += free_pages_check(page + i);
642	if (bad)
643		return false;
644
645	if (!PageHighMem(page)) {
646		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
647		debug_check_no_obj_freed(page_address(page),
648					   PAGE_SIZE << order);
649	}
650	arch_free_page(page, order);
651	kernel_map_pages(page, 1 << order, 0);
652
653	return true;
654}
655
656static void __free_pages_ok(struct page *page, unsigned int order)
657{
658	unsigned long flags;
659	int wasMlocked = __TestClearPageMlocked(page);
660
661	if (!free_pages_prepare(page, order))
662		return;
663
664	local_irq_save(flags);
665	if (unlikely(wasMlocked))
666		free_page_mlock(page);
667	__count_vm_events(PGFREE, 1 << order);
668	free_one_page(page_zone(page), page, order,
669					get_pageblock_migratetype(page));
670	local_irq_restore(flags);
671}
672
673/*
674 * permit the bootmem allocator to evade page validation on high-order frees
675 */
676void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
677{
678	if (order == 0) {
679		__ClearPageReserved(page);
680		set_page_count(page, 0);
681		set_page_refcounted(page);
682		__free_page(page);
683	} else {
684		int loop;
685
686		prefetchw(page);
687		for (loop = 0; loop < (1 << order); loop++) {
688			struct page *p = &page[loop];
689
690			if (loop + 1 < (1 << order))
691				prefetchw(p + 1);
692			__ClearPageReserved(p);
693			set_page_count(p, 0);
694		}
695
696		set_page_refcounted(page);
697		__free_pages(page, order);
698	}
699}
700
701
702/*
703 * The order of subdivision here is critical for the IO subsystem.
704 * Please do not alter this order without good reasons and regression
705 * testing. Specifically, as large blocks of memory are subdivided,
706 * the order in which smaller blocks are delivered depends on the order
707 * they're subdivided in this function. This is the primary factor
708 * influencing the order in which pages are delivered to the IO
709 * subsystem according to empirical testing, and this is also justified
710 * by considering the behavior of a buddy system containing a single
711 * large block of memory acted on by a series of small allocations.
712 * This behavior is a critical factor in sglist merging's success.
713 *
714 * -- wli
715 */
716static inline void expand(struct zone *zone, struct page *page,
717	int low, int high, struct free_area *area,
718	int migratetype)
719{
720	unsigned long size = 1 << high;
721
722	while (high > low) {
723		area--;
724		high--;
725		size >>= 1;
726		VM_BUG_ON(bad_range(zone, &page[size]));
727		list_add(&page[size].lru, &area->free_list[migratetype]);
728		area->nr_free++;
729		set_page_order(&page[size], high);
730	}
731}
732
733/*
734 * This page is about to be returned from the page allocator
735 */
736static inline int check_new_page(struct page *page)
737{
738	if (unlikely(page_mapcount(page) |
739		(page->mapping != NULL)  |
740		(atomic_read(&page->_count) != 0)  |
741		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
742		(mem_cgroup_bad_page_check(page)))) {
743		bad_page(page);
744		return 1;
745	}
746	return 0;
747}
748
749static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
750{
751	int i;
752
753	for (i = 0; i < (1 << order); i++) {
754		struct page *p = page + i;
755		if (unlikely(check_new_page(p)))
756			return 1;
757	}
758
759	set_page_private(page, 0);
760	set_page_refcounted(page);
761
762	arch_alloc_page(page, order);
763	kernel_map_pages(page, 1 << order, 1);
764
765	if (gfp_flags & __GFP_ZERO)
766		prep_zero_page(page, order, gfp_flags);
767
768	if (order && (gfp_flags & __GFP_COMP))
769		prep_compound_page(page, order);
770
771	return 0;
772}
773
774/*
775 * Go through the free lists for the given migratetype and remove
776 * the smallest available page from the freelists
777 */
778static inline
779struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
780						int migratetype)
781{
782	unsigned int current_order;
783	struct free_area * area;
784	struct page *page;
785
786	/* Find a page of the appropriate size in the preferred list */
787	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
788		area = &(zone->free_area[current_order]);
789		if (list_empty(&area->free_list[migratetype]))
790			continue;
791
792		page = list_entry(area->free_list[migratetype].next,
793							struct page, lru);
794		list_del(&page->lru);
795		rmv_page_order(page);
796		area->nr_free--;
797		expand(zone, page, order, current_order, area, migratetype);
798		return page;
799	}
800
801	return NULL;
802}
803
804
805/*
806 * This array describes the order lists are fallen back to when
807 * the free lists for the desirable migrate type are depleted
808 */
809static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
810	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
811	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
812	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
813	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
814};
815
816/*
817 * Move the free pages in a range to the free lists of the requested type.
818 * Note that start_page and end_pages are not aligned on a pageblock
819 * boundary. If alignment is required, use move_freepages_block()
820 */
821static int move_freepages(struct zone *zone,
822			  struct page *start_page, struct page *end_page,
823			  int migratetype)
824{
825	struct page *page;
826	unsigned long order;
827	int pages_moved = 0;
828
829#ifndef CONFIG_HOLES_IN_ZONE
830	/*
831	 * page_zone is not safe to call in this context when
832	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
833	 * anyway as we check zone boundaries in move_freepages_block().
834	 * Remove at a later date when no bug reports exist related to
835	 * grouping pages by mobility
836	 */
837	BUG_ON(page_zone(start_page) != page_zone(end_page));
838#endif
839
840	for (page = start_page; page <= end_page;) {
841		/* Make sure we are not inadvertently changing nodes */
842		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
843
844		if (!pfn_valid_within(page_to_pfn(page))) {
845			page++;
846			continue;
847		}
848
849		if (!PageBuddy(page)) {
850			page++;
851			continue;
852		}
853
854		order = page_order(page);
855		list_move(&page->lru,
856			  &zone->free_area[order].free_list[migratetype]);
857		page += 1 << order;
858		pages_moved += 1 << order;
859	}
860
861	return pages_moved;
862}
863
864static int move_freepages_block(struct zone *zone, struct page *page,
865				int migratetype)
866{
867	unsigned long start_pfn, end_pfn;
868	struct page *start_page, *end_page;
869
870	start_pfn = page_to_pfn(page);
871	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
872	start_page = pfn_to_page(start_pfn);
873	end_page = start_page + pageblock_nr_pages - 1;
874	end_pfn = start_pfn + pageblock_nr_pages - 1;
875
876	/* Do not cross zone boundaries */
877	if (start_pfn < zone->zone_start_pfn)
878		start_page = page;
879	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
880		return 0;
881
882	return move_freepages(zone, start_page, end_page, migratetype);
883}
884
885static void change_pageblock_range(struct page *pageblock_page,
886					int start_order, int migratetype)
887{
888	int nr_pageblocks = 1 << (start_order - pageblock_order);
889
890	while (nr_pageblocks--) {
891		set_pageblock_migratetype(pageblock_page, migratetype);
892		pageblock_page += pageblock_nr_pages;
893	}
894}
895
896/* Remove an element from the buddy allocator from the fallback list */
897static inline struct page *
898__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
899{
900	struct free_area * area;
901	int current_order;
902	struct page *page;
903	int migratetype, i;
904
905	/* Find the largest possible block of pages in the other list */
906	for (current_order = MAX_ORDER-1; current_order >= order;
907						--current_order) {
908		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
909			migratetype = fallbacks[start_migratetype][i];
910
911			/* MIGRATE_RESERVE handled later if necessary */
912			if (migratetype == MIGRATE_RESERVE)
913				continue;
914
915			area = &(zone->free_area[current_order]);
916			if (list_empty(&area->free_list[migratetype]))
917				continue;
918
919			page = list_entry(area->free_list[migratetype].next,
920					struct page, lru);
921			area->nr_free--;
922
923			/*
924			 * If breaking a large block of pages, move all free
925			 * pages to the preferred allocation list. If falling
926			 * back for a reclaimable kernel allocation, be more
927			 * aggressive about taking ownership of free pages
928			 */
929			if (unlikely(current_order >= (pageblock_order >> 1)) ||
930					start_migratetype == MIGRATE_RECLAIMABLE ||
931					page_group_by_mobility_disabled) {
932				unsigned long pages;
933				pages = move_freepages_block(zone, page,
934								start_migratetype);
935
936				/* Claim the whole block if over half of it is free */
937				if (pages >= (1 << (pageblock_order-1)) ||
938						page_group_by_mobility_disabled)
939					set_pageblock_migratetype(page,
940								start_migratetype);
941
942				migratetype = start_migratetype;
943			}
944
945			/* Remove the page from the freelists */
946			list_del(&page->lru);
947			rmv_page_order(page);
948
949			/* Take ownership for orders >= pageblock_order */
950			if (current_order >= pageblock_order)
951				change_pageblock_range(page, current_order,
952							start_migratetype);
953
954			expand(zone, page, order, current_order, area, migratetype);
955
956			trace_mm_page_alloc_extfrag(page, order, current_order,
957				start_migratetype, migratetype);
958
959			return page;
960		}
961	}
962
963	return NULL;
964}
965
966/*
967 * Do the hard work of removing an element from the buddy allocator.
968 * Call me with the zone->lock already held.
969 */
970static struct page *__rmqueue(struct zone *zone, unsigned int order,
971						int migratetype)
972{
973	struct page *page;
974
975retry_reserve:
976	page = __rmqueue_smallest(zone, order, migratetype);
977
978	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
979		page = __rmqueue_fallback(zone, order, migratetype);
980
981		/*
982		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
983		 * is used because __rmqueue_smallest is an inline function
984		 * and we want just one call site
985		 */
986		if (!page) {
987			migratetype = MIGRATE_RESERVE;
988			goto retry_reserve;
989		}
990	}
991
992	trace_mm_page_alloc_zone_locked(page, order, migratetype);
993	return page;
994}
995
996/*
997 * Obtain a specified number of elements from the buddy allocator, all under
998 * a single hold of the lock, for efficiency.  Add them to the supplied list.
999 * Returns the number of new pages which were placed at *list.
1000 */
1001static int rmqueue_bulk(struct zone *zone, unsigned int order,
1002			unsigned long count, struct list_head *list,
1003			int migratetype, int cold)
1004{
1005	int i;
1006
1007	spin_lock(&zone->lock);
1008	for (i = 0; i < count; ++i) {
1009		struct page *page = __rmqueue(zone, order, migratetype);
1010		if (unlikely(page == NULL))
1011			break;
1012
1013		/*
1014		 * Split buddy pages returned by expand() are received here
1015		 * in physical page order. The page is added to the callers and
1016		 * list and the list head then moves forward. From the callers
1017		 * perspective, the linked list is ordered by page number in
1018		 * some conditions. This is useful for IO devices that can
1019		 * merge IO requests if the physical pages are ordered
1020		 * properly.
1021		 */
1022		if (likely(cold == 0))
1023			list_add(&page->lru, list);
1024		else
1025			list_add_tail(&page->lru, list);
1026		set_page_private(page, migratetype);
1027		list = &page->lru;
1028	}
1029	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1030	spin_unlock(&zone->lock);
1031	return i;
1032}
1033
1034#ifdef CONFIG_NUMA
1035/*
1036 * Called from the vmstat counter updater to drain pagesets of this
1037 * currently executing processor on remote nodes after they have
1038 * expired.
1039 *
1040 * Note that this function must be called with the thread pinned to
1041 * a single processor.
1042 */
1043void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1044{
1045	unsigned long flags;
1046	int to_drain;
1047
1048	local_irq_save(flags);
1049	if (pcp->count >= pcp->batch)
1050		to_drain = pcp->batch;
1051	else
1052		to_drain = pcp->count;
1053	free_pcppages_bulk(zone, to_drain, pcp);
1054	pcp->count -= to_drain;
1055	local_irq_restore(flags);
1056}
1057#endif
1058
1059/*
1060 * Drain pages of the indicated processor.
1061 *
1062 * The processor must either be the current processor and the
1063 * thread pinned to the current processor or a processor that
1064 * is not online.
1065 */
1066static void drain_pages(unsigned int cpu)
1067{
1068	unsigned long flags;
1069	struct zone *zone;
1070
1071	for_each_populated_zone(zone) {
1072		struct per_cpu_pageset *pset;
1073		struct per_cpu_pages *pcp;
1074
1075		local_irq_save(flags);
1076		pset = per_cpu_ptr(zone->pageset, cpu);
1077
1078		pcp = &pset->pcp;
1079		if (pcp->count) {
1080			free_pcppages_bulk(zone, pcp->count, pcp);
1081			pcp->count = 0;
1082		}
1083		local_irq_restore(flags);
1084	}
1085}
1086
1087/*
1088 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1089 */
1090void drain_local_pages(void *arg)
1091{
1092	drain_pages(smp_processor_id());
1093}
1094
1095/*
1096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1097 */
1098void drain_all_pages(void)
1099{
1100	on_each_cpu(drain_local_pages, NULL, 1);
1101}
1102
1103#ifdef CONFIG_HIBERNATION
1104
1105void mark_free_pages(struct zone *zone)
1106{
1107	unsigned long pfn, max_zone_pfn;
1108	unsigned long flags;
1109	int order, t;
1110	struct list_head *curr;
1111
1112	if (!zone->spanned_pages)
1113		return;
1114
1115	spin_lock_irqsave(&zone->lock, flags);
1116
1117	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1118	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1119		if (pfn_valid(pfn)) {
1120			struct page *page = pfn_to_page(pfn);
1121
1122			if (!swsusp_page_is_forbidden(page))
1123				swsusp_unset_page_free(page);
1124		}
1125
1126	for_each_migratetype_order(order, t) {
1127		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1128			unsigned long i;
1129
1130			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1131			for (i = 0; i < (1UL << order); i++)
1132				swsusp_set_page_free(pfn_to_page(pfn + i));
1133		}
1134	}
1135	spin_unlock_irqrestore(&zone->lock, flags);
1136}
1137#endif /* CONFIG_PM */
1138
1139/*
1140 * Free a 0-order page
1141 * cold == 1 ? free a cold page : free a hot page
1142 */
1143void free_hot_cold_page(struct page *page, int cold)
1144{
1145	struct zone *zone = page_zone(page);
1146	struct per_cpu_pages *pcp;
1147	unsigned long flags;
1148	int migratetype;
1149	int wasMlocked = __TestClearPageMlocked(page);
1150
1151	if (!free_pages_prepare(page, 0))
1152		return;
1153
1154	migratetype = get_pageblock_migratetype(page);
1155	set_page_private(page, migratetype);
1156	local_irq_save(flags);
1157	if (unlikely(wasMlocked))
1158		free_page_mlock(page);
1159	__count_vm_event(PGFREE);
1160
1161	/*
1162	 * We only track unmovable, reclaimable and movable on pcp lists.
1163	 * Free ISOLATE pages back to the allocator because they are being
1164	 * offlined but treat RESERVE as movable pages so we can get those
1165	 * areas back if necessary. Otherwise, we may have to free
1166	 * excessively into the page allocator
1167	 */
1168	if (migratetype >= MIGRATE_PCPTYPES) {
1169		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1170			free_one_page(zone, page, 0, migratetype);
1171			goto out;
1172		}
1173		migratetype = MIGRATE_MOVABLE;
1174	}
1175
1176	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1177	if (cold)
1178		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1179	else
1180		list_add(&page->lru, &pcp->lists[migratetype]);
1181	pcp->count++;
1182	if (pcp->count >= pcp->high) {
1183		free_pcppages_bulk(zone, pcp->batch, pcp);
1184		pcp->count -= pcp->batch;
1185	}
1186
1187out:
1188	local_irq_restore(flags);
1189}
1190
1191/*
1192 * Free a list of 0-order pages
1193 */
1194void free_hot_cold_page_list(struct list_head *list, int cold)
1195{
1196	struct page *page, *next;
1197
1198	list_for_each_entry_safe(page, next, list, lru) {
1199		trace_mm_page_free_batched(page, cold);
1200		free_hot_cold_page(page, cold);
1201	}
1202}
1203
1204/*
1205 * split_page takes a non-compound higher-order page, and splits it into
1206 * n (1<<order) sub-pages: page[0..n]
1207 * Each sub-page must be freed individually.
1208 *
1209 * Note: this is probably too low level an operation for use in drivers.
1210 * Please consult with lkml before using this in your driver.
1211 */
1212void split_page(struct page *page, unsigned int order)
1213{
1214	int i;
1215
1216	VM_BUG_ON(PageCompound(page));
1217	VM_BUG_ON(!page_count(page));
1218
1219#ifdef CONFIG_KMEMCHECK
1220	/*
1221	 * Split shadow pages too, because free(page[0]) would
1222	 * otherwise free the whole shadow.
1223	 */
1224	if (kmemcheck_page_is_tracked(page))
1225		split_page(virt_to_page(page[0].shadow), order);
1226#endif
1227
1228	for (i = 1; i < (1 << order); i++)
1229		set_page_refcounted(page + i);
1230}
1231
1232/*
1233 * Similar to split_page except the page is already free. As this is only
1234 * being used for migration, the migratetype of the block also changes.
1235 * As this is called with interrupts disabled, the caller is responsible
1236 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1237 * are enabled.
1238 *
1239 * Note: this is probably too low level an operation for use in drivers.
1240 * Please consult with lkml before using this in your driver.
1241 */
1242int split_free_page(struct page *page)
1243{
1244	unsigned int order;
1245	unsigned long watermark;
1246	struct zone *zone;
1247
1248	BUG_ON(!PageBuddy(page));
1249
1250	zone = page_zone(page);
1251	order = page_order(page);
1252
1253	/* Obey watermarks as if the page was being allocated */
1254	watermark = low_wmark_pages(zone) + (1 << order);
1255	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1256		return 0;
1257
1258	/* Remove page from free list */
1259	list_del(&page->lru);
1260	zone->free_area[order].nr_free--;
1261	rmv_page_order(page);
1262	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1263
1264	/* Split into individual pages */
1265	set_page_refcounted(page);
1266	split_page(page, order);
1267
1268	if (order >= pageblock_order - 1) {
1269		struct page *endpage = page + (1 << order) - 1;
1270		for (; page < endpage; page += pageblock_nr_pages)
1271			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1272	}
1273
1274	return 1 << order;
1275}
1276
1277/*
1278 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1279 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1280 * or two.
1281 */
1282static inline
1283struct page *buffered_rmqueue(struct zone *preferred_zone,
1284			struct zone *zone, int order, gfp_t gfp_flags,
1285			int migratetype)
1286{
1287	unsigned long flags;
1288	struct page *page;
1289	int cold = !!(gfp_flags & __GFP_COLD);
1290
1291again:
1292	if (likely(order == 0)) {
1293		struct per_cpu_pages *pcp;
1294		struct list_head *list;
1295
1296		local_irq_save(flags);
1297		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1298		list = &pcp->lists[migratetype];
1299		if (list_empty(list)) {
1300			pcp->count += rmqueue_bulk(zone, 0,
1301					pcp->batch, list,
1302					migratetype, cold);
1303			if (unlikely(list_empty(list)))
1304				goto failed;
1305		}
1306
1307		if (cold)
1308			page = list_entry(list->prev, struct page, lru);
1309		else
1310			page = list_entry(list->next, struct page, lru);
1311
1312		list_del(&page->lru);
1313		pcp->count--;
1314	} else {
1315		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1316			/*
1317			 * __GFP_NOFAIL is not to be used in new code.
1318			 *
1319			 * All __GFP_NOFAIL callers should be fixed so that they
1320			 * properly detect and handle allocation failures.
1321			 *
1322			 * We most definitely don't want callers attempting to
1323			 * allocate greater than order-1 page units with
1324			 * __GFP_NOFAIL.
1325			 */
1326			WARN_ON_ONCE(order > 1);
1327		}
1328		spin_lock_irqsave(&zone->lock, flags);
1329		page = __rmqueue(zone, order, migratetype);
1330		spin_unlock(&zone->lock);
1331		if (!page)
1332			goto failed;
1333		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1334	}
1335
1336	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1337	zone_statistics(preferred_zone, zone, gfp_flags);
1338	local_irq_restore(flags);
1339
1340	VM_BUG_ON(bad_range(zone, page));
1341	if (prep_new_page(page, order, gfp_flags))
1342		goto again;
1343	return page;
1344
1345failed:
1346	local_irq_restore(flags);
1347	return NULL;
1348}
1349
1350/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1351#define ALLOC_WMARK_MIN		WMARK_MIN
1352#define ALLOC_WMARK_LOW		WMARK_LOW
1353#define ALLOC_WMARK_HIGH	WMARK_HIGH
1354#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1355
1356/* Mask to get the watermark bits */
1357#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1358
1359#define ALLOC_HARDER		0x10 /* try to alloc harder */
1360#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1361#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1362
1363#ifdef CONFIG_FAIL_PAGE_ALLOC
1364
1365static struct {
1366	struct fault_attr attr;
1367
1368	u32 ignore_gfp_highmem;
1369	u32 ignore_gfp_wait;
1370	u32 min_order;
1371} fail_page_alloc = {
1372	.attr = FAULT_ATTR_INITIALIZER,
1373	.ignore_gfp_wait = 1,
1374	.ignore_gfp_highmem = 1,
1375	.min_order = 1,
1376};
1377
1378static int __init setup_fail_page_alloc(char *str)
1379{
1380	return setup_fault_attr(&fail_page_alloc.attr, str);
1381}
1382__setup("fail_page_alloc=", setup_fail_page_alloc);
1383
1384static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1385{
1386	if (order < fail_page_alloc.min_order)
1387		return 0;
1388	if (gfp_mask & __GFP_NOFAIL)
1389		return 0;
1390	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1391		return 0;
1392	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1393		return 0;
1394
1395	return should_fail(&fail_page_alloc.attr, 1 << order);
1396}
1397
1398#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1399
1400static int __init fail_page_alloc_debugfs(void)
1401{
1402	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1403	struct dentry *dir;
1404
1405	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1406					&fail_page_alloc.attr);
1407	if (IS_ERR(dir))
1408		return PTR_ERR(dir);
1409
1410	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1411				&fail_page_alloc.ignore_gfp_wait))
1412		goto fail;
1413	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1414				&fail_page_alloc.ignore_gfp_highmem))
1415		goto fail;
1416	if (!debugfs_create_u32("min-order", mode, dir,
1417				&fail_page_alloc.min_order))
1418		goto fail;
1419
1420	return 0;
1421fail:
1422	debugfs_remove_recursive(dir);
1423
1424	return -ENOMEM;
1425}
1426
1427late_initcall(fail_page_alloc_debugfs);
1428
1429#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1430
1431#else /* CONFIG_FAIL_PAGE_ALLOC */
1432
1433static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1434{
1435	return 0;
1436}
1437
1438#endif /* CONFIG_FAIL_PAGE_ALLOC */
1439
1440/*
1441 * Return true if free pages are above 'mark'. This takes into account the order
1442 * of the allocation.
1443 */
1444static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1445		      int classzone_idx, int alloc_flags, long free_pages)
1446{
1447	/* free_pages my go negative - that's OK */
1448	long min = mark;
1449	int o;
1450
1451	free_pages -= (1 << order) + 1;
1452	if (alloc_flags & ALLOC_HIGH)
1453		min -= min / 2;
1454	if (alloc_flags & ALLOC_HARDER)
1455		min -= min / 4;
1456
1457	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1458		return false;
1459	for (o = 0; o < order; o++) {
1460		/* At the next order, this order's pages become unavailable */
1461		free_pages -= z->free_area[o].nr_free << o;
1462
1463		/* Require fewer higher order pages to be free */
1464		min >>= 1;
1465
1466		if (free_pages <= min)
1467			return false;
1468	}
1469	return true;
1470}
1471
1472bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1473		      int classzone_idx, int alloc_flags)
1474{
1475	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1476					zone_page_state(z, NR_FREE_PAGES));
1477}
1478
1479bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1480		      int classzone_idx, int alloc_flags)
1481{
1482	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1483
1484	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1485		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1486
1487	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1488								free_pages);
1489}
1490
1491#ifdef CONFIG_NUMA
1492/*
1493 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1494 * skip over zones that are not allowed by the cpuset, or that have
1495 * been recently (in last second) found to be nearly full.  See further
1496 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1497 * that have to skip over a lot of full or unallowed zones.
1498 *
1499 * If the zonelist cache is present in the passed in zonelist, then
1500 * returns a pointer to the allowed node mask (either the current
1501 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1502 *
1503 * If the zonelist cache is not available for this zonelist, does
1504 * nothing and returns NULL.
1505 *
1506 * If the fullzones BITMAP in the zonelist cache is stale (more than
1507 * a second since last zap'd) then we zap it out (clear its bits.)
1508 *
1509 * We hold off even calling zlc_setup, until after we've checked the
1510 * first zone in the zonelist, on the theory that most allocations will
1511 * be satisfied from that first zone, so best to examine that zone as
1512 * quickly as we can.
1513 */
1514static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1515{
1516	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1517	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1518
1519	zlc = zonelist->zlcache_ptr;
1520	if (!zlc)
1521		return NULL;
1522
1523	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1524		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1525		zlc->last_full_zap = jiffies;
1526	}
1527
1528	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1529					&cpuset_current_mems_allowed :
1530					&node_states[N_HIGH_MEMORY];
1531	return allowednodes;
1532}
1533
1534/*
1535 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1536 * if it is worth looking at further for free memory:
1537 *  1) Check that the zone isn't thought to be full (doesn't have its
1538 *     bit set in the zonelist_cache fullzones BITMAP).
1539 *  2) Check that the zones node (obtained from the zonelist_cache
1540 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1541 * Return true (non-zero) if zone is worth looking at further, or
1542 * else return false (zero) if it is not.
1543 *
1544 * This check -ignores- the distinction between various watermarks,
1545 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1546 * found to be full for any variation of these watermarks, it will
1547 * be considered full for up to one second by all requests, unless
1548 * we are so low on memory on all allowed nodes that we are forced
1549 * into the second scan of the zonelist.
1550 *
1551 * In the second scan we ignore this zonelist cache and exactly
1552 * apply the watermarks to all zones, even it is slower to do so.
1553 * We are low on memory in the second scan, and should leave no stone
1554 * unturned looking for a free page.
1555 */
1556static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1557						nodemask_t *allowednodes)
1558{
1559	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1560	int i;				/* index of *z in zonelist zones */
1561	int n;				/* node that zone *z is on */
1562
1563	zlc = zonelist->zlcache_ptr;
1564	if (!zlc)
1565		return 1;
1566
1567	i = z - zonelist->_zonerefs;
1568	n = zlc->z_to_n[i];
1569
1570	/* This zone is worth trying if it is allowed but not full */
1571	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1572}
1573
1574/*
1575 * Given 'z' scanning a zonelist, set the corresponding bit in
1576 * zlc->fullzones, so that subsequent attempts to allocate a page
1577 * from that zone don't waste time re-examining it.
1578 */
1579static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1580{
1581	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1582	int i;				/* index of *z in zonelist zones */
1583
1584	zlc = zonelist->zlcache_ptr;
1585	if (!zlc)
1586		return;
1587
1588	i = z - zonelist->_zonerefs;
1589
1590	set_bit(i, zlc->fullzones);
1591}
1592
1593/*
1594 * clear all zones full, called after direct reclaim makes progress so that
1595 * a zone that was recently full is not skipped over for up to a second
1596 */
1597static void zlc_clear_zones_full(struct zonelist *zonelist)
1598{
1599	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1600
1601	zlc = zonelist->zlcache_ptr;
1602	if (!zlc)
1603		return;
1604
1605	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1606}
1607
1608#else	/* CONFIG_NUMA */
1609
1610static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1611{
1612	return NULL;
1613}
1614
1615static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1616				nodemask_t *allowednodes)
1617{
1618	return 1;
1619}
1620
1621static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1622{
1623}
1624
1625static void zlc_clear_zones_full(struct zonelist *zonelist)
1626{
1627}
1628#endif	/* CONFIG_NUMA */
1629
1630/*
1631 * get_page_from_freelist goes through the zonelist trying to allocate
1632 * a page.
1633 */
1634static struct page *
1635get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1636		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1637		struct zone *preferred_zone, int migratetype)
1638{
1639	struct zoneref *z;
1640	struct page *page = NULL;
1641	int classzone_idx;
1642	struct zone *zone;
1643	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1644	int zlc_active = 0;		/* set if using zonelist_cache */
1645	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1646
1647	classzone_idx = zone_idx(preferred_zone);
1648zonelist_scan:
1649	/*
1650	 * Scan zonelist, looking for a zone with enough free.
1651	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1652	 */
1653	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1654						high_zoneidx, nodemask) {
1655		if (NUMA_BUILD && zlc_active &&
1656			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1657				continue;
1658		if ((alloc_flags & ALLOC_CPUSET) &&
1659			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1660				continue;
1661
1662		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1663		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1664			unsigned long mark;
1665			int ret;
1666
1667			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1668			if (zone_watermark_ok(zone, order, mark,
1669				    classzone_idx, alloc_flags))
1670				goto try_this_zone;
1671
1672			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1673				/*
1674				 * we do zlc_setup if there are multiple nodes
1675				 * and before considering the first zone allowed
1676				 * by the cpuset.
1677				 */
1678				allowednodes = zlc_setup(zonelist, alloc_flags);
1679				zlc_active = 1;
1680				did_zlc_setup = 1;
1681			}
1682
1683			if (zone_reclaim_mode == 0)
1684				goto this_zone_full;
1685
1686			/*
1687			 * As we may have just activated ZLC, check if the first
1688			 * eligible zone has failed zone_reclaim recently.
1689			 */
1690			if (NUMA_BUILD && zlc_active &&
1691				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1692				continue;
1693
1694			ret = zone_reclaim(zone, gfp_mask, order);
1695			switch (ret) {
1696			case ZONE_RECLAIM_NOSCAN:
1697				/* did not scan */
1698				continue;
1699			case ZONE_RECLAIM_FULL:
1700				/* scanned but unreclaimable */
1701				continue;
1702			default:
1703				/* did we reclaim enough */
1704				if (!zone_watermark_ok(zone, order, mark,
1705						classzone_idx, alloc_flags))
1706					goto this_zone_full;
1707			}
1708		}
1709
1710try_this_zone:
1711		page = buffered_rmqueue(preferred_zone, zone, order,
1712						gfp_mask, migratetype);
1713		if (page)
1714			break;
1715this_zone_full:
1716		if (NUMA_BUILD)
1717			zlc_mark_zone_full(zonelist, z);
1718	}
1719
1720	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1721		/* Disable zlc cache for second zonelist scan */
1722		zlc_active = 0;
1723		goto zonelist_scan;
1724	}
1725	return page;
1726}
1727
1728/*
1729 * Large machines with many possible nodes should not always dump per-node
1730 * meminfo in irq context.
1731 */
1732static inline bool should_suppress_show_mem(void)
1733{
1734	bool ret = false;
1735
1736#if NODES_SHIFT > 8
1737	ret = in_interrupt();
1738#endif
1739	return ret;
1740}
1741
1742static DEFINE_RATELIMIT_STATE(nopage_rs,
1743		DEFAULT_RATELIMIT_INTERVAL,
1744		DEFAULT_RATELIMIT_BURST);
1745
1746void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1747{
1748	unsigned int filter = SHOW_MEM_FILTER_NODES;
1749
1750	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1751		return;
1752
1753	/*
1754	 * This documents exceptions given to allocations in certain
1755	 * contexts that are allowed to allocate outside current's set
1756	 * of allowed nodes.
1757	 */
1758	if (!(gfp_mask & __GFP_NOMEMALLOC))
1759		if (test_thread_flag(TIF_MEMDIE) ||
1760		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1761			filter &= ~SHOW_MEM_FILTER_NODES;
1762	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1763		filter &= ~SHOW_MEM_FILTER_NODES;
1764
1765	if (fmt) {
1766		struct va_format vaf;
1767		va_list args;
1768
1769		va_start(args, fmt);
1770
1771		vaf.fmt = fmt;
1772		vaf.va = &args;
1773
1774		pr_warn("%pV", &vaf);
1775
1776		va_end(args);
1777	}
1778
1779	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1780		current->comm, order, gfp_mask);
1781
1782	dump_stack();
1783	if (!should_suppress_show_mem())
1784		show_mem(filter);
1785}
1786
1787static inline int
1788should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1789				unsigned long pages_reclaimed)
1790{
1791	/* Do not loop if specifically requested */
1792	if (gfp_mask & __GFP_NORETRY)
1793		return 0;
1794
1795	/*
1796	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1797	 * means __GFP_NOFAIL, but that may not be true in other
1798	 * implementations.
1799	 */
1800	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1801		return 1;
1802
1803	/*
1804	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1805	 * specified, then we retry until we no longer reclaim any pages
1806	 * (above), or we've reclaimed an order of pages at least as
1807	 * large as the allocation's order. In both cases, if the
1808	 * allocation still fails, we stop retrying.
1809	 */
1810	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1811		return 1;
1812
1813	/*
1814	 * Don't let big-order allocations loop unless the caller
1815	 * explicitly requests that.
1816	 */
1817	if (gfp_mask & __GFP_NOFAIL)
1818		return 1;
1819
1820	return 0;
1821}
1822
1823static inline struct page *
1824__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1825	struct zonelist *zonelist, enum zone_type high_zoneidx,
1826	nodemask_t *nodemask, struct zone *preferred_zone,
1827	int migratetype)
1828{
1829	struct page *page;
1830
1831	/* Acquire the OOM killer lock for the zones in zonelist */
1832	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1833		schedule_timeout_uninterruptible(1);
1834		return NULL;
1835	}
1836
1837	/*
1838	 * Go through the zonelist yet one more time, keep very high watermark
1839	 * here, this is only to catch a parallel oom killing, we must fail if
1840	 * we're still under heavy pressure.
1841	 */
1842	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1843		order, zonelist, high_zoneidx,
1844		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1845		preferred_zone, migratetype);
1846	if (page)
1847		goto out;
1848
1849	if (!(gfp_mask & __GFP_NOFAIL)) {
1850		/* The OOM killer will not help higher order allocs */
1851		if (order > PAGE_ALLOC_COSTLY_ORDER)
1852			goto out;
1853		/* The OOM killer does not needlessly kill tasks for lowmem */
1854		if (high_zoneidx < ZONE_NORMAL)
1855			goto out;
1856		/*
1857		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1858		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1859		 * The caller should handle page allocation failure by itself if
1860		 * it specifies __GFP_THISNODE.
1861		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1862		 */
1863		if (gfp_mask & __GFP_THISNODE)
1864			goto out;
1865	}
1866	/* Exhausted what can be done so it's blamo time */
1867	out_of_memory(zonelist, gfp_mask, order, nodemask);
1868
1869out:
1870	clear_zonelist_oom(zonelist, gfp_mask);
1871	return page;
1872}
1873
1874#ifdef CONFIG_COMPACTION
1875/* Try memory compaction for high-order allocations before reclaim */
1876static struct page *
1877__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1878	struct zonelist *zonelist, enum zone_type high_zoneidx,
1879	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1880	int migratetype, unsigned long *did_some_progress,
1881	bool sync_migration)
1882{
1883	struct page *page;
1884
1885	if (!order || compaction_deferred(preferred_zone))
1886		return NULL;
1887
1888	current->flags |= PF_MEMALLOC;
1889	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1890						nodemask, sync_migration);
1891	current->flags &= ~PF_MEMALLOC;
1892	if (*did_some_progress != COMPACT_SKIPPED) {
1893
1894		/* Page migration frees to the PCP lists but we want merging */
1895		drain_pages(get_cpu());
1896		put_cpu();
1897
1898		page = get_page_from_freelist(gfp_mask, nodemask,
1899				order, zonelist, high_zoneidx,
1900				alloc_flags, preferred_zone,
1901				migratetype);
1902		if (page) {
1903			preferred_zone->compact_considered = 0;
1904			preferred_zone->compact_defer_shift = 0;
1905			count_vm_event(COMPACTSUCCESS);
1906			return page;
1907		}
1908
1909		/*
1910		 * It's bad if compaction run occurs and fails.
1911		 * The most likely reason is that pages exist,
1912		 * but not enough to satisfy watermarks.
1913		 */
1914		count_vm_event(COMPACTFAIL);
1915		defer_compaction(preferred_zone);
1916
1917		cond_resched();
1918	}
1919
1920	return NULL;
1921}
1922#else
1923static inline struct page *
1924__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1925	struct zonelist *zonelist, enum zone_type high_zoneidx,
1926	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1927	int migratetype, unsigned long *did_some_progress,
1928	bool sync_migration)
1929{
1930	return NULL;
1931}
1932#endif /* CONFIG_COMPACTION */
1933
1934/* The really slow allocator path where we enter direct reclaim */
1935static inline struct page *
1936__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1937	struct zonelist *zonelist, enum zone_type high_zoneidx,
1938	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1939	int migratetype, unsigned long *did_some_progress)
1940{
1941	struct page *page = NULL;
1942	struct reclaim_state reclaim_state;
1943	bool drained = false;
1944
1945	cond_resched();
1946
1947	/* We now go into synchronous reclaim */
1948	cpuset_memory_pressure_bump();
1949	current->flags |= PF_MEMALLOC;
1950	lockdep_set_current_reclaim_state(gfp_mask);
1951	reclaim_state.reclaimed_slab = 0;
1952	current->reclaim_state = &reclaim_state;
1953
1954	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1955
1956	current->reclaim_state = NULL;
1957	lockdep_clear_current_reclaim_state();
1958	current->flags &= ~PF_MEMALLOC;
1959
1960	cond_resched();
1961
1962	if (unlikely(!(*did_some_progress)))
1963		return NULL;
1964
1965	/* After successful reclaim, reconsider all zones for allocation */
1966	if (NUMA_BUILD)
1967		zlc_clear_zones_full(zonelist);
1968
1969retry:
1970	page = get_page_from_freelist(gfp_mask, nodemask, order,
1971					zonelist, high_zoneidx,
1972					alloc_flags, preferred_zone,
1973					migratetype);
1974
1975	/*
1976	 * If an allocation failed after direct reclaim, it could be because
1977	 * pages are pinned on the per-cpu lists. Drain them and try again
1978	 */
1979	if (!page && !drained) {
1980		drain_all_pages();
1981		drained = true;
1982		goto retry;
1983	}
1984
1985	return page;
1986}
1987
1988/*
1989 * This is called in the allocator slow-path if the allocation request is of
1990 * sufficient urgency to ignore watermarks and take other desperate measures
1991 */
1992static inline struct page *
1993__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1994	struct zonelist *zonelist, enum zone_type high_zoneidx,
1995	nodemask_t *nodemask, struct zone *preferred_zone,
1996	int migratetype)
1997{
1998	struct page *page;
1999
2000	do {
2001		page = get_page_from_freelist(gfp_mask, nodemask, order,
2002			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2003			preferred_zone, migratetype);
2004
2005		if (!page && gfp_mask & __GFP_NOFAIL)
2006			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2007	} while (!page && (gfp_mask & __GFP_NOFAIL));
2008
2009	return page;
2010}
2011
2012static inline
2013void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2014						enum zone_type high_zoneidx,
2015						enum zone_type classzone_idx)
2016{
2017	struct zoneref *z;
2018	struct zone *zone;
2019
2020	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2021		wakeup_kswapd(zone, order, classzone_idx);
2022}
2023
2024static inline int
2025gfp_to_alloc_flags(gfp_t gfp_mask)
2026{
2027	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2028	const gfp_t wait = gfp_mask & __GFP_WAIT;
2029
2030	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2031	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2032
2033	/*
2034	 * The caller may dip into page reserves a bit more if the caller
2035	 * cannot run direct reclaim, or if the caller has realtime scheduling
2036	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2037	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2038	 */
2039	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2040
2041	if (!wait) {
2042		/*
2043		 * Not worth trying to allocate harder for
2044		 * __GFP_NOMEMALLOC even if it can't schedule.
2045		 */
2046		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2047			alloc_flags |= ALLOC_HARDER;
2048		/*
2049		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2050		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2051		 */
2052		alloc_flags &= ~ALLOC_CPUSET;
2053	} else if (unlikely(rt_task(current)) && !in_interrupt())
2054		alloc_flags |= ALLOC_HARDER;
2055
2056	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2057		if (!in_interrupt() &&
2058		    ((current->flags & PF_MEMALLOC) ||
2059		     unlikely(test_thread_flag(TIF_MEMDIE))))
2060			alloc_flags |= ALLOC_NO_WATERMARKS;
2061	}
2062
2063	return alloc_flags;
2064}
2065
2066static inline struct page *
2067__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2068	struct zonelist *zonelist, enum zone_type high_zoneidx,
2069	nodemask_t *nodemask, struct zone *preferred_zone,
2070	int migratetype)
2071{
2072	const gfp_t wait = gfp_mask & __GFP_WAIT;
2073	struct page *page = NULL;
2074	int alloc_flags;
2075	unsigned long pages_reclaimed = 0;
2076	unsigned long did_some_progress;
2077	bool sync_migration = false;
2078
2079	/*
2080	 * In the slowpath, we sanity check order to avoid ever trying to
2081	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2082	 * be using allocators in order of preference for an area that is
2083	 * too large.
2084	 */
2085	if (order >= MAX_ORDER) {
2086		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2087		return NULL;
2088	}
2089
2090	/*
2091	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2092	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2093	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2094	 * using a larger set of nodes after it has established that the
2095	 * allowed per node queues are empty and that nodes are
2096	 * over allocated.
2097	 */
2098	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2099		goto nopage;
2100
2101restart:
2102	if (!(gfp_mask & __GFP_NO_KSWAPD))
2103		wake_all_kswapd(order, zonelist, high_zoneidx,
2104						zone_idx(preferred_zone));
2105
2106	/*
2107	 * OK, we're below the kswapd watermark and have kicked background
2108	 * reclaim. Now things get more complex, so set up alloc_flags according
2109	 * to how we want to proceed.
2110	 */
2111	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2112
2113	/*
2114	 * Find the true preferred zone if the allocation is unconstrained by
2115	 * cpusets.
2116	 */
2117	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2118		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2119					&preferred_zone);
2120
2121rebalance:
2122	/* This is the last chance, in general, before the goto nopage. */
2123	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2124			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2125			preferred_zone, migratetype);
2126	if (page)
2127		goto got_pg;
2128
2129	/* Allocate without watermarks if the context allows */
2130	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2131		page = __alloc_pages_high_priority(gfp_mask, order,
2132				zonelist, high_zoneidx, nodemask,
2133				preferred_zone, migratetype);
2134		if (page)
2135			goto got_pg;
2136	}
2137
2138	/* Atomic allocations - we can't balance anything */
2139	if (!wait)
2140		goto nopage;
2141
2142	/* Avoid recursion of direct reclaim */
2143	if (current->flags & PF_MEMALLOC)
2144		goto nopage;
2145
2146	/* Avoid allocations with no watermarks from looping endlessly */
2147	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2148		goto nopage;
2149
2150	/*
2151	 * Try direct compaction. The first pass is asynchronous. Subsequent
2152	 * attempts after direct reclaim are synchronous
2153	 */
2154	page = __alloc_pages_direct_compact(gfp_mask, order,
2155					zonelist, high_zoneidx,
2156					nodemask,
2157					alloc_flags, preferred_zone,
2158					migratetype, &did_some_progress,
2159					sync_migration);
2160	if (page)
2161		goto got_pg;
2162	sync_migration = true;
2163
2164	/* Try direct reclaim and then allocating */
2165	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2166					zonelist, high_zoneidx,
2167					nodemask,
2168					alloc_flags, preferred_zone,
2169					migratetype, &did_some_progress);
2170	if (page)
2171		goto got_pg;
2172
2173	/*
2174	 * If we failed to make any progress reclaiming, then we are
2175	 * running out of options and have to consider going OOM
2176	 */
2177	if (!did_some_progress) {
2178		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2179			if (oom_killer_disabled)
2180				goto nopage;
2181			page = __alloc_pages_may_oom(gfp_mask, order,
2182					zonelist, high_zoneidx,
2183					nodemask, preferred_zone,
2184					migratetype);
2185			if (page)
2186				goto got_pg;
2187
2188			if (!(gfp_mask & __GFP_NOFAIL)) {
2189				/*
2190				 * The oom killer is not called for high-order
2191				 * allocations that may fail, so if no progress
2192				 * is being made, there are no other options and
2193				 * retrying is unlikely to help.
2194				 */
2195				if (order > PAGE_ALLOC_COSTLY_ORDER)
2196					goto nopage;
2197				/*
2198				 * The oom killer is not called for lowmem
2199				 * allocations to prevent needlessly killing
2200				 * innocent tasks.
2201				 */
2202				if (high_zoneidx < ZONE_NORMAL)
2203					goto nopage;
2204			}
2205
2206			goto restart;
2207		}
2208	}
2209
2210	/* Check if we should retry the allocation */
2211	pages_reclaimed += did_some_progress;
2212	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2213		/* Wait for some write requests to complete then retry */
2214		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2215		goto rebalance;
2216	} else {
2217		/*
2218		 * High-order allocations do not necessarily loop after
2219		 * direct reclaim and reclaim/compaction depends on compaction
2220		 * being called after reclaim so call directly if necessary
2221		 */
2222		page = __alloc_pages_direct_compact(gfp_mask, order,
2223					zonelist, high_zoneidx,
2224					nodemask,
2225					alloc_flags, preferred_zone,
2226					migratetype, &did_some_progress,
2227					sync_migration);
2228		if (page)
2229			goto got_pg;
2230	}
2231
2232nopage:
2233	warn_alloc_failed(gfp_mask, order, NULL);
2234	return page;
2235got_pg:
2236	if (kmemcheck_enabled)
2237		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2238	return page;
2239
2240}
2241
2242/*
2243 * This is the 'heart' of the zoned buddy allocator.
2244 */
2245struct page *
2246__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2247			struct zonelist *zonelist, nodemask_t *nodemask)
2248{
2249	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2250	struct zone *preferred_zone;
2251	struct page *page;
2252	int migratetype = allocflags_to_migratetype(gfp_mask);
2253
2254	gfp_mask &= gfp_allowed_mask;
2255
2256	lockdep_trace_alloc(gfp_mask);
2257
2258	might_sleep_if(gfp_mask & __GFP_WAIT);
2259
2260	if (should_fail_alloc_page(gfp_mask, order))
2261		return NULL;
2262
2263	/*
2264	 * Check the zones suitable for the gfp_mask contain at least one
2265	 * valid zone. It's possible to have an empty zonelist as a result
2266	 * of GFP_THISNODE and a memoryless node
2267	 */
2268	if (unlikely(!zonelist->_zonerefs->zone))
2269		return NULL;
2270
2271	get_mems_allowed();
2272	/* The preferred zone is used for statistics later */
2273	first_zones_zonelist(zonelist, high_zoneidx,
2274				nodemask ? : &cpuset_current_mems_allowed,
2275				&preferred_zone);
2276	if (!preferred_zone) {
2277		put_mems_allowed();
2278		return NULL;
2279	}
2280
2281	/* First allocation attempt */
2282	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2283			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2284			preferred_zone, migratetype);
2285	if (unlikely(!page))
2286		page = __alloc_pages_slowpath(gfp_mask, order,
2287				zonelist, high_zoneidx, nodemask,
2288				preferred_zone, migratetype);
2289	put_mems_allowed();
2290
2291	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2292	return page;
2293}
2294EXPORT_SYMBOL(__alloc_pages_nodemask);
2295
2296/*
2297 * Common helper functions.
2298 */
2299unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2300{
2301	struct page *page;
2302
2303	/*
2304	 * __get_free_pages() returns a 32-bit address, which cannot represent
2305	 * a highmem page
2306	 */
2307	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2308
2309	page = alloc_pages(gfp_mask, order);
2310	if (!page)
2311		return 0;
2312	return (unsigned long) page_address(page);
2313}
2314EXPORT_SYMBOL(__get_free_pages);
2315
2316unsigned long get_zeroed_page(gfp_t gfp_mask)
2317{
2318	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2319}
2320EXPORT_SYMBOL(get_zeroed_page);
2321
2322void __free_pages(struct page *page, unsigned int order)
2323{
2324	if (put_page_testzero(page)) {
2325		if (order == 0)
2326			free_hot_cold_page(page, 0);
2327		else
2328			__free_pages_ok(page, order);
2329	}
2330}
2331
2332EXPORT_SYMBOL(__free_pages);
2333
2334void free_pages(unsigned long addr, unsigned int order)
2335{
2336	if (addr != 0) {
2337		VM_BUG_ON(!virt_addr_valid((void *)addr));
2338		__free_pages(virt_to_page((void *)addr), order);
2339	}
2340}
2341
2342EXPORT_SYMBOL(free_pages);
2343
2344static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2345{
2346	if (addr) {
2347		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2348		unsigned long used = addr + PAGE_ALIGN(size);
2349
2350		split_page(virt_to_page((void *)addr), order);
2351		while (used < alloc_end) {
2352			free_page(used);
2353			used += PAGE_SIZE;
2354		}
2355	}
2356	return (void *)addr;
2357}
2358
2359/**
2360 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2361 * @size: the number of bytes to allocate
2362 * @gfp_mask: GFP flags for the allocation
2363 *
2364 * This function is similar to alloc_pages(), except that it allocates the
2365 * minimum number of pages to satisfy the request.  alloc_pages() can only
2366 * allocate memory in power-of-two pages.
2367 *
2368 * This function is also limited by MAX_ORDER.
2369 *
2370 * Memory allocated by this function must be released by free_pages_exact().
2371 */
2372void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2373{
2374	unsigned int order = get_order(size);
2375	unsigned long addr;
2376
2377	addr = __get_free_pages(gfp_mask, order);
2378	return make_alloc_exact(addr, order, size);
2379}
2380EXPORT_SYMBOL(alloc_pages_exact);
2381
2382/**
2383 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2384 *			   pages on a node.
2385 * @nid: the preferred node ID where memory should be allocated
2386 * @size: the number of bytes to allocate
2387 * @gfp_mask: GFP flags for the allocation
2388 *
2389 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2390 * back.
2391 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2392 * but is not exact.
2393 */
2394void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2395{
2396	unsigned order = get_order(size);
2397	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2398	if (!p)
2399		return NULL;
2400	return make_alloc_exact((unsigned long)page_address(p), order, size);
2401}
2402EXPORT_SYMBOL(alloc_pages_exact_nid);
2403
2404/**
2405 * free_pages_exact - release memory allocated via alloc_pages_exact()
2406 * @virt: the value returned by alloc_pages_exact.
2407 * @size: size of allocation, same value as passed to alloc_pages_exact().
2408 *
2409 * Release the memory allocated by a previous call to alloc_pages_exact.
2410 */
2411void free_pages_exact(void *virt, size_t size)
2412{
2413	unsigned long addr = (unsigned long)virt;
2414	unsigned long end = addr + PAGE_ALIGN(size);
2415
2416	while (addr < end) {
2417		free_page(addr);
2418		addr += PAGE_SIZE;
2419	}
2420}
2421EXPORT_SYMBOL(free_pages_exact);
2422
2423static unsigned int nr_free_zone_pages(int offset)
2424{
2425	struct zoneref *z;
2426	struct zone *zone;
2427
2428	/* Just pick one node, since fallback list is circular */
2429	unsigned int sum = 0;
2430
2431	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2432
2433	for_each_zone_zonelist(zone, z, zonelist, offset) {
2434		unsigned long size = zone->present_pages;
2435		unsigned long high = high_wmark_pages(zone);
2436		if (size > high)
2437			sum += size - high;
2438	}
2439
2440	return sum;
2441}
2442
2443/*
2444 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2445 */
2446unsigned int nr_free_buffer_pages(void)
2447{
2448	return nr_free_zone_pages(gfp_zone(GFP_USER));
2449}
2450EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2451
2452/*
2453 * Amount of free RAM allocatable within all zones
2454 */
2455unsigned int nr_free_pagecache_pages(void)
2456{
2457	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2458}
2459
2460static inline void show_node(struct zone *zone)
2461{
2462	if (NUMA_BUILD)
2463		printk("Node %d ", zone_to_nid(zone));
2464}
2465
2466void si_meminfo(struct sysinfo *val)
2467{
2468	val->totalram = totalram_pages;
2469	val->sharedram = 0;
2470	val->freeram = global_page_state(NR_FREE_PAGES);
2471	val->bufferram = nr_blockdev_pages();
2472	val->totalhigh = totalhigh_pages;
2473	val->freehigh = nr_free_highpages();
2474	val->mem_unit = PAGE_SIZE;
2475}
2476
2477EXPORT_SYMBOL(si_meminfo);
2478
2479#ifdef CONFIG_NUMA
2480void si_meminfo_node(struct sysinfo *val, int nid)
2481{
2482	pg_data_t *pgdat = NODE_DATA(nid);
2483
2484	val->totalram = pgdat->node_present_pages;
2485	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2486#ifdef CONFIG_HIGHMEM
2487	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2488	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2489			NR_FREE_PAGES);
2490#else
2491	val->totalhigh = 0;
2492	val->freehigh = 0;
2493#endif
2494	val->mem_unit = PAGE_SIZE;
2495}
2496#endif
2497
2498/*
2499 * Determine whether the node should be displayed or not, depending on whether
2500 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2501 */
2502bool skip_free_areas_node(unsigned int flags, int nid)
2503{
2504	bool ret = false;
2505
2506	if (!(flags & SHOW_MEM_FILTER_NODES))
2507		goto out;
2508
2509	get_mems_allowed();
2510	ret = !node_isset(nid, cpuset_current_mems_allowed);
2511	put_mems_allowed();
2512out:
2513	return ret;
2514}
2515
2516#define K(x) ((x) << (PAGE_SHIFT-10))
2517
2518/*
2519 * Show free area list (used inside shift_scroll-lock stuff)
2520 * We also calculate the percentage fragmentation. We do this by counting the
2521 * memory on each free list with the exception of the first item on the list.
2522 * Suppresses nodes that are not allowed by current's cpuset if
2523 * SHOW_MEM_FILTER_NODES is passed.
2524 */
2525void show_free_areas(unsigned int filter)
2526{
2527	int cpu;
2528	struct zone *zone;
2529
2530	for_each_populated_zone(zone) {
2531		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2532			continue;
2533		show_node(zone);
2534		printk("%s per-cpu:\n", zone->name);
2535
2536		for_each_online_cpu(cpu) {
2537			struct per_cpu_pageset *pageset;
2538
2539			pageset = per_cpu_ptr(zone->pageset, cpu);
2540
2541			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2542			       cpu, pageset->pcp.high,
2543			       pageset->pcp.batch, pageset->pcp.count);
2544		}
2545	}
2546
2547	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2548		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2549		" unevictable:%lu"
2550		" dirty:%lu writeback:%lu unstable:%lu\n"
2551		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2552		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2553		global_page_state(NR_ACTIVE_ANON),
2554		global_page_state(NR_INACTIVE_ANON),
2555		global_page_state(NR_ISOLATED_ANON),
2556		global_page_state(NR_ACTIVE_FILE),
2557		global_page_state(NR_INACTIVE_FILE),
2558		global_page_state(NR_ISOLATED_FILE),
2559		global_page_state(NR_UNEVICTABLE),
2560		global_page_state(NR_FILE_DIRTY),
2561		global_page_state(NR_WRITEBACK),
2562		global_page_state(NR_UNSTABLE_NFS),
2563		global_page_state(NR_FREE_PAGES),
2564		global_page_state(NR_SLAB_RECLAIMABLE),
2565		global_page_state(NR_SLAB_UNRECLAIMABLE),
2566		global_page_state(NR_FILE_MAPPED),
2567		global_page_state(NR_SHMEM),
2568		global_page_state(NR_PAGETABLE),
2569		global_page_state(NR_BOUNCE));
2570
2571	for_each_populated_zone(zone) {
2572		int i;
2573
2574		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2575			continue;
2576		show_node(zone);
2577		printk("%s"
2578			" free:%lukB"
2579			" min:%lukB"
2580			" low:%lukB"
2581			" high:%lukB"
2582			" active_anon:%lukB"
2583			" inactive_anon:%lukB"
2584			" active_file:%lukB"
2585			" inactive_file:%lukB"
2586			" unevictable:%lukB"
2587			" isolated(anon):%lukB"
2588			" isolated(file):%lukB"
2589			" present:%lukB"
2590			" mlocked:%lukB"
2591			" dirty:%lukB"
2592			" writeback:%lukB"
2593			" mapped:%lukB"
2594			" shmem:%lukB"
2595			" slab_reclaimable:%lukB"
2596			" slab_unreclaimable:%lukB"
2597			" kernel_stack:%lukB"
2598			" pagetables:%lukB"
2599			" unstable:%lukB"
2600			" bounce:%lukB"
2601			" writeback_tmp:%lukB"
2602			" pages_scanned:%lu"
2603			" all_unreclaimable? %s"
2604			"\n",
2605			zone->name,
2606			K(zone_page_state(zone, NR_FREE_PAGES)),
2607			K(min_wmark_pages(zone)),
2608			K(low_wmark_pages(zone)),
2609			K(high_wmark_pages(zone)),
2610			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2611			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2612			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2613			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2614			K(zone_page_state(zone, NR_UNEVICTABLE)),
2615			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2616			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2617			K(zone->present_pages),
2618			K(zone_page_state(zone, NR_MLOCK)),
2619			K(zone_page_state(zone, NR_FILE_DIRTY)),
2620			K(zone_page_state(zone, NR_WRITEBACK)),
2621			K(zone_page_state(zone, NR_FILE_MAPPED)),
2622			K(zone_page_state(zone, NR_SHMEM)),
2623			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2624			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2625			zone_page_state(zone, NR_KERNEL_STACK) *
2626				THREAD_SIZE / 1024,
2627			K(zone_page_state(zone, NR_PAGETABLE)),
2628			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2629			K(zone_page_state(zone, NR_BOUNCE)),
2630			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2631			zone->pages_scanned,
2632			(zone->all_unreclaimable ? "yes" : "no")
2633			);
2634		printk("lowmem_reserve[]:");
2635		for (i = 0; i < MAX_NR_ZONES; i++)
2636			printk(" %lu", zone->lowmem_reserve[i]);
2637		printk("\n");
2638	}
2639
2640	for_each_populated_zone(zone) {
2641 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2642
2643		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2644			continue;
2645		show_node(zone);
2646		printk("%s: ", zone->name);
2647
2648		spin_lock_irqsave(&zone->lock, flags);
2649		for (order = 0; order < MAX_ORDER; order++) {
2650			nr[order] = zone->free_area[order].nr_free;
2651			total += nr[order] << order;
2652		}
2653		spin_unlock_irqrestore(&zone->lock, flags);
2654		for (order = 0; order < MAX_ORDER; order++)
2655			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2656		printk("= %lukB\n", K(total));
2657	}
2658
2659	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2660
2661	show_swap_cache_info();
2662}
2663
2664static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2665{
2666	zoneref->zone = zone;
2667	zoneref->zone_idx = zone_idx(zone);
2668}
2669
2670/*
2671 * Builds allocation fallback zone lists.
2672 *
2673 * Add all populated zones of a node to the zonelist.
2674 */
2675static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2676				int nr_zones, enum zone_type zone_type)
2677{
2678	struct zone *zone;
2679
2680	BUG_ON(zone_type >= MAX_NR_ZONES);
2681	zone_type++;
2682
2683	do {
2684		zone_type--;
2685		zone = pgdat->node_zones + zone_type;
2686		if (populated_zone(zone)) {
2687			zoneref_set_zone(zone,
2688				&zonelist->_zonerefs[nr_zones++]);
2689			check_highest_zone(zone_type);
2690		}
2691
2692	} while (zone_type);
2693	return nr_zones;
2694}
2695
2696
2697/*
2698 *  zonelist_order:
2699 *  0 = automatic detection of better ordering.
2700 *  1 = order by ([node] distance, -zonetype)
2701 *  2 = order by (-zonetype, [node] distance)
2702 *
2703 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2704 *  the same zonelist. So only NUMA can configure this param.
2705 */
2706#define ZONELIST_ORDER_DEFAULT  0
2707#define ZONELIST_ORDER_NODE     1
2708#define ZONELIST_ORDER_ZONE     2
2709
2710/* zonelist order in the kernel.
2711 * set_zonelist_order() will set this to NODE or ZONE.
2712 */
2713static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2714static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2715
2716
2717#ifdef CONFIG_NUMA
2718/* The value user specified ....changed by config */
2719static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2720/* string for sysctl */
2721#define NUMA_ZONELIST_ORDER_LEN	16
2722char numa_zonelist_order[16] = "default";
2723
2724/*
2725 * interface for configure zonelist ordering.
2726 * command line option "numa_zonelist_order"
2727 *	= "[dD]efault	- default, automatic configuration.
2728 *	= "[nN]ode 	- order by node locality, then by zone within node
2729 *	= "[zZ]one      - order by zone, then by locality within zone
2730 */
2731
2732static int __parse_numa_zonelist_order(char *s)
2733{
2734	if (*s == 'd' || *s == 'D') {
2735		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2736	} else if (*s == 'n' || *s == 'N') {
2737		user_zonelist_order = ZONELIST_ORDER_NODE;
2738	} else if (*s == 'z' || *s == 'Z') {
2739		user_zonelist_order = ZONELIST_ORDER_ZONE;
2740	} else {
2741		printk(KERN_WARNING
2742			"Ignoring invalid numa_zonelist_order value:  "
2743			"%s\n", s);
2744		return -EINVAL;
2745	}
2746	return 0;
2747}
2748
2749static __init int setup_numa_zonelist_order(char *s)
2750{
2751	int ret;
2752
2753	if (!s)
2754		return 0;
2755
2756	ret = __parse_numa_zonelist_order(s);
2757	if (ret == 0)
2758		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2759
2760	return ret;
2761}
2762early_param("numa_zonelist_order", setup_numa_zonelist_order);
2763
2764/*
2765 * sysctl handler for numa_zonelist_order
2766 */
2767int numa_zonelist_order_handler(ctl_table *table, int write,
2768		void __user *buffer, size_t *length,
2769		loff_t *ppos)
2770{
2771	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2772	int ret;
2773	static DEFINE_MUTEX(zl_order_mutex);
2774
2775	mutex_lock(&zl_order_mutex);
2776	if (write)
2777		strcpy(saved_string, (char*)table->data);
2778	ret = proc_dostring(table, write, buffer, length, ppos);
2779	if (ret)
2780		goto out;
2781	if (write) {
2782		int oldval = user_zonelist_order;
2783		if (__parse_numa_zonelist_order((char*)table->data)) {
2784			/*
2785			 * bogus value.  restore saved string
2786			 */
2787			strncpy((char*)table->data, saved_string,
2788				NUMA_ZONELIST_ORDER_LEN);
2789			user_zonelist_order = oldval;
2790		} else if (oldval != user_zonelist_order) {
2791			mutex_lock(&zonelists_mutex);
2792			build_all_zonelists(NULL);
2793			mutex_unlock(&zonelists_mutex);
2794		}
2795	}
2796out:
2797	mutex_unlock(&zl_order_mutex);
2798	return ret;
2799}
2800
2801
2802#define MAX_NODE_LOAD (nr_online_nodes)
2803static int node_load[MAX_NUMNODES];
2804
2805/**
2806 * find_next_best_node - find the next node that should appear in a given node's fallback list
2807 * @node: node whose fallback list we're appending
2808 * @used_node_mask: nodemask_t of already used nodes
2809 *
2810 * We use a number of factors to determine which is the next node that should
2811 * appear on a given node's fallback list.  The node should not have appeared
2812 * already in @node's fallback list, and it should be the next closest node
2813 * according to the distance array (which contains arbitrary distance values
2814 * from each node to each node in the system), and should also prefer nodes
2815 * with no CPUs, since presumably they'll have very little allocation pressure
2816 * on them otherwise.
2817 * It returns -1 if no node is found.
2818 */
2819static int find_next_best_node(int node, nodemask_t *used_node_mask)
2820{
2821	int n, val;
2822	int min_val = INT_MAX;
2823	int best_node = -1;
2824	const struct cpumask *tmp = cpumask_of_node(0);
2825
2826	/* Use the local node if we haven't already */
2827	if (!node_isset(node, *used_node_mask)) {
2828		node_set(node, *used_node_mask);
2829		return node;
2830	}
2831
2832	for_each_node_state(n, N_HIGH_MEMORY) {
2833
2834		/* Don't want a node to appear more than once */
2835		if (node_isset(n, *used_node_mask))
2836			continue;
2837
2838		/* Use the distance array to find the distance */
2839		val = node_distance(node, n);
2840
2841		/* Penalize nodes under us ("prefer the next node") */
2842		val += (n < node);
2843
2844		/* Give preference to headless and unused nodes */
2845		tmp = cpumask_of_node(n);
2846		if (!cpumask_empty(tmp))
2847			val += PENALTY_FOR_NODE_WITH_CPUS;
2848
2849		/* Slight preference for less loaded node */
2850		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2851		val += node_load[n];
2852
2853		if (val < min_val) {
2854			min_val = val;
2855			best_node = n;
2856		}
2857	}
2858
2859	if (best_node >= 0)
2860		node_set(best_node, *used_node_mask);
2861
2862	return best_node;
2863}
2864
2865
2866/*
2867 * Build zonelists ordered by node and zones within node.
2868 * This results in maximum locality--normal zone overflows into local
2869 * DMA zone, if any--but risks exhausting DMA zone.
2870 */
2871static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2872{
2873	int j;
2874	struct zonelist *zonelist;
2875
2876	zonelist = &pgdat->node_zonelists[0];
2877	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2878		;
2879	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2880							MAX_NR_ZONES - 1);
2881	zonelist->_zonerefs[j].zone = NULL;
2882	zonelist->_zonerefs[j].zone_idx = 0;
2883}
2884
2885/*
2886 * Build gfp_thisnode zonelists
2887 */
2888static void build_thisnode_zonelists(pg_data_t *pgdat)
2889{
2890	int j;
2891	struct zonelist *zonelist;
2892
2893	zonelist = &pgdat->node_zonelists[1];
2894	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2895	zonelist->_zonerefs[j].zone = NULL;
2896	zonelist->_zonerefs[j].zone_idx = 0;
2897}
2898
2899/*
2900 * Build zonelists ordered by zone and nodes within zones.
2901 * This results in conserving DMA zone[s] until all Normal memory is
2902 * exhausted, but results in overflowing to remote node while memory
2903 * may still exist in local DMA zone.
2904 */
2905static int node_order[MAX_NUMNODES];
2906
2907static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2908{
2909	int pos, j, node;
2910	int zone_type;		/* needs to be signed */
2911	struct zone *z;
2912	struct zonelist *zonelist;
2913
2914	zonelist = &pgdat->node_zonelists[0];
2915	pos = 0;
2916	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2917		for (j = 0; j < nr_nodes; j++) {
2918			node = node_order[j];
2919			z = &NODE_DATA(node)->node_zones[zone_type];
2920			if (populated_zone(z)) {
2921				zoneref_set_zone(z,
2922					&zonelist->_zonerefs[pos++]);
2923				check_highest_zone(zone_type);
2924			}
2925		}
2926	}
2927	zonelist->_zonerefs[pos].zone = NULL;
2928	zonelist->_zonerefs[pos].zone_idx = 0;
2929}
2930
2931static int default_zonelist_order(void)
2932{
2933	int nid, zone_type;
2934	unsigned long low_kmem_size,total_size;
2935	struct zone *z;
2936	int average_size;
2937	/*
2938         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2939	 * If they are really small and used heavily, the system can fall
2940	 * into OOM very easily.
2941	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2942	 */
2943	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2944	low_kmem_size = 0;
2945	total_size = 0;
2946	for_each_online_node(nid) {
2947		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2948			z = &NODE_DATA(nid)->node_zones[zone_type];
2949			if (populated_zone(z)) {
2950				if (zone_type < ZONE_NORMAL)
2951					low_kmem_size += z->present_pages;
2952				total_size += z->present_pages;
2953			} else if (zone_type == ZONE_NORMAL) {
2954				/*
2955				 * If any node has only lowmem, then node order
2956				 * is preferred to allow kernel allocations
2957				 * locally; otherwise, they can easily infringe
2958				 * on other nodes when there is an abundance of
2959				 * lowmem available to allocate from.
2960				 */
2961				return ZONELIST_ORDER_NODE;
2962			}
2963		}
2964	}
2965	if (!low_kmem_size ||  /* there are no DMA area. */
2966	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2967		return ZONELIST_ORDER_NODE;
2968	/*
2969	 * look into each node's config.
2970  	 * If there is a node whose DMA/DMA32 memory is very big area on
2971 	 * local memory, NODE_ORDER may be suitable.
2972         */
2973	average_size = total_size /
2974				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2975	for_each_online_node(nid) {
2976		low_kmem_size = 0;
2977		total_size = 0;
2978		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2979			z = &NODE_DATA(nid)->node_zones[zone_type];
2980			if (populated_zone(z)) {
2981				if (zone_type < ZONE_NORMAL)
2982					low_kmem_size += z->present_pages;
2983				total_size += z->present_pages;
2984			}
2985		}
2986		if (low_kmem_size &&
2987		    total_size > average_size && /* ignore small node */
2988		    low_kmem_size > total_size * 70/100)
2989			return ZONELIST_ORDER_NODE;
2990	}
2991	return ZONELIST_ORDER_ZONE;
2992}
2993
2994static void set_zonelist_order(void)
2995{
2996	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2997		current_zonelist_order = default_zonelist_order();
2998	else
2999		current_zonelist_order = user_zonelist_order;
3000}
3001
3002static void build_zonelists(pg_data_t *pgdat)
3003{
3004	int j, node, load;
3005	enum zone_type i;
3006	nodemask_t used_mask;
3007	int local_node, prev_node;
3008	struct zonelist *zonelist;
3009	int order = current_zonelist_order;
3010
3011	/* initialize zonelists */
3012	for (i = 0; i < MAX_ZONELISTS; i++) {
3013		zonelist = pgdat->node_zonelists + i;
3014		zonelist->_zonerefs[0].zone = NULL;
3015		zonelist->_zonerefs[0].zone_idx = 0;
3016	}
3017
3018	/* NUMA-aware ordering of nodes */
3019	local_node = pgdat->node_id;
3020	load = nr_online_nodes;
3021	prev_node = local_node;
3022	nodes_clear(used_mask);
3023
3024	memset(node_order, 0, sizeof(node_order));
3025	j = 0;
3026
3027	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3028		int distance = node_distance(local_node, node);
3029
3030		/*
3031		 * If another node is sufficiently far away then it is better
3032		 * to reclaim pages in a zone before going off node.
3033		 */
3034		if (distance > RECLAIM_DISTANCE)
3035			zone_reclaim_mode = 1;
3036
3037		/*
3038		 * We don't want to pressure a particular node.
3039		 * So adding penalty to the first node in same
3040		 * distance group to make it round-robin.
3041		 */
3042		if (distance != node_distance(local_node, prev_node))
3043			node_load[node] = load;
3044
3045		prev_node = node;
3046		load--;
3047		if (order == ZONELIST_ORDER_NODE)
3048			build_zonelists_in_node_order(pgdat, node);
3049		else
3050			node_order[j++] = node;	/* remember order */
3051	}
3052
3053	if (order == ZONELIST_ORDER_ZONE) {
3054		/* calculate node order -- i.e., DMA last! */
3055		build_zonelists_in_zone_order(pgdat, j);
3056	}
3057
3058	build_thisnode_zonelists(pgdat);
3059}
3060
3061/* Construct the zonelist performance cache - see further mmzone.h */
3062static void build_zonelist_cache(pg_data_t *pgdat)
3063{
3064	struct zonelist *zonelist;
3065	struct zonelist_cache *zlc;
3066	struct zoneref *z;
3067
3068	zonelist = &pgdat->node_zonelists[0];
3069	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3070	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3071	for (z = zonelist->_zonerefs; z->zone; z++)
3072		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3073}
3074
3075#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3076/*
3077 * Return node id of node used for "local" allocations.
3078 * I.e., first node id of first zone in arg node's generic zonelist.
3079 * Used for initializing percpu 'numa_mem', which is used primarily
3080 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3081 */
3082int local_memory_node(int node)
3083{
3084	struct zone *zone;
3085
3086	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3087				   gfp_zone(GFP_KERNEL),
3088				   NULL,
3089				   &zone);
3090	return zone->node;
3091}
3092#endif
3093
3094#else	/* CONFIG_NUMA */
3095
3096static void set_zonelist_order(void)
3097{
3098	current_zonelist_order = ZONELIST_ORDER_ZONE;
3099}
3100
3101static void build_zonelists(pg_data_t *pgdat)
3102{
3103	int node, local_node;
3104	enum zone_type j;
3105	struct zonelist *zonelist;
3106
3107	local_node = pgdat->node_id;
3108
3109	zonelist = &pgdat->node_zonelists[0];
3110	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3111
3112	/*
3113	 * Now we build the zonelist so that it contains the zones
3114	 * of all the other nodes.
3115	 * We don't want to pressure a particular node, so when
3116	 * building the zones for node N, we make sure that the
3117	 * zones coming right after the local ones are those from
3118	 * node N+1 (modulo N)
3119	 */
3120	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3121		if (!node_online(node))
3122			continue;
3123		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3124							MAX_NR_ZONES - 1);
3125	}
3126	for (node = 0; node < local_node; node++) {
3127		if (!node_online(node))
3128			continue;
3129		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3130							MAX_NR_ZONES - 1);
3131	}
3132
3133	zonelist->_zonerefs[j].zone = NULL;
3134	zonelist->_zonerefs[j].zone_idx = 0;
3135}
3136
3137/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3138static void build_zonelist_cache(pg_data_t *pgdat)
3139{
3140	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3141}
3142
3143#endif	/* CONFIG_NUMA */
3144
3145/*
3146 * Boot pageset table. One per cpu which is going to be used for all
3147 * zones and all nodes. The parameters will be set in such a way
3148 * that an item put on a list will immediately be handed over to
3149 * the buddy list. This is safe since pageset manipulation is done
3150 * with interrupts disabled.
3151 *
3152 * The boot_pagesets must be kept even after bootup is complete for
3153 * unused processors and/or zones. They do play a role for bootstrapping
3154 * hotplugged processors.
3155 *
3156 * zoneinfo_show() and maybe other functions do
3157 * not check if the processor is online before following the pageset pointer.
3158 * Other parts of the kernel may not check if the zone is available.
3159 */
3160static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3161static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3162static void setup_zone_pageset(struct zone *zone);
3163
3164/*
3165 * Global mutex to protect against size modification of zonelists
3166 * as well as to serialize pageset setup for the new populated zone.
3167 */
3168DEFINE_MUTEX(zonelists_mutex);
3169
3170/* return values int ....just for stop_machine() */
3171static __init_refok int __build_all_zonelists(void *data)
3172{
3173	int nid;
3174	int cpu;
3175
3176#ifdef CONFIG_NUMA
3177	memset(node_load, 0, sizeof(node_load));
3178#endif
3179	for_each_online_node(nid) {
3180		pg_data_t *pgdat = NODE_DATA(nid);
3181
3182		build_zonelists(pgdat);
3183		build_zonelist_cache(pgdat);
3184	}
3185
3186	/*
3187	 * Initialize the boot_pagesets that are going to be used
3188	 * for bootstrapping processors. The real pagesets for
3189	 * each zone will be allocated later when the per cpu
3190	 * allocator is available.
3191	 *
3192	 * boot_pagesets are used also for bootstrapping offline
3193	 * cpus if the system is already booted because the pagesets
3194	 * are needed to initialize allocators on a specific cpu too.
3195	 * F.e. the percpu allocator needs the page allocator which
3196	 * needs the percpu allocator in order to allocate its pagesets
3197	 * (a chicken-egg dilemma).
3198	 */
3199	for_each_possible_cpu(cpu) {
3200		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3201
3202#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3203		/*
3204		 * We now know the "local memory node" for each node--
3205		 * i.e., the node of the first zone in the generic zonelist.
3206		 * Set up numa_mem percpu variable for on-line cpus.  During
3207		 * boot, only the boot cpu should be on-line;  we'll init the
3208		 * secondary cpus' numa_mem as they come on-line.  During
3209		 * node/memory hotplug, we'll fixup all on-line cpus.
3210		 */
3211		if (cpu_online(cpu))
3212			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3213#endif
3214	}
3215
3216	return 0;
3217}
3218
3219/*
3220 * Called with zonelists_mutex held always
3221 * unless system_state == SYSTEM_BOOTING.
3222 */
3223void __ref build_all_zonelists(void *data)
3224{
3225	set_zonelist_order();
3226
3227	if (system_state == SYSTEM_BOOTING) {
3228		__build_all_zonelists(NULL);
3229		mminit_verify_zonelist();
3230		cpuset_init_current_mems_allowed();
3231	} else {
3232		/* we have to stop all cpus to guarantee there is no user
3233		   of zonelist */
3234#ifdef CONFIG_MEMORY_HOTPLUG
3235		if (data)
3236			setup_zone_pageset((struct zone *)data);
3237#endif
3238		stop_machine(__build_all_zonelists, NULL, NULL);
3239		/* cpuset refresh routine should be here */
3240	}
3241	vm_total_pages = nr_free_pagecache_pages();
3242	/*
3243	 * Disable grouping by mobility if the number of pages in the
3244	 * system is too low to allow the mechanism to work. It would be
3245	 * more accurate, but expensive to check per-zone. This check is
3246	 * made on memory-hotadd so a system can start with mobility
3247	 * disabled and enable it later
3248	 */
3249	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3250		page_group_by_mobility_disabled = 1;
3251	else
3252		page_group_by_mobility_disabled = 0;
3253
3254	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3255		"Total pages: %ld\n",
3256			nr_online_nodes,
3257			zonelist_order_name[current_zonelist_order],
3258			page_group_by_mobility_disabled ? "off" : "on",
3259			vm_total_pages);
3260#ifdef CONFIG_NUMA
3261	printk("Policy zone: %s\n", zone_names[policy_zone]);
3262#endif
3263}
3264
3265/*
3266 * Helper functions to size the waitqueue hash table.
3267 * Essentially these want to choose hash table sizes sufficiently
3268 * large so that collisions trying to wait on pages are rare.
3269 * But in fact, the number of active page waitqueues on typical
3270 * systems is ridiculously low, less than 200. So this is even
3271 * conservative, even though it seems large.
3272 *
3273 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3274 * waitqueues, i.e. the size of the waitq table given the number of pages.
3275 */
3276#define PAGES_PER_WAITQUEUE	256
3277
3278#ifndef CONFIG_MEMORY_HOTPLUG
3279static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3280{
3281	unsigned long size = 1;
3282
3283	pages /= PAGES_PER_WAITQUEUE;
3284
3285	while (size < pages)
3286		size <<= 1;
3287
3288	/*
3289	 * Once we have dozens or even hundreds of threads sleeping
3290	 * on IO we've got bigger problems than wait queue collision.
3291	 * Limit the size of the wait table to a reasonable size.
3292	 */
3293	size = min(size, 4096UL);
3294
3295	return max(size, 4UL);
3296}
3297#else
3298/*
3299 * A zone's size might be changed by hot-add, so it is not possible to determine
3300 * a suitable size for its wait_table.  So we use the maximum size now.
3301 *
3302 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3303 *
3304 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3305 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3306 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3307 *
3308 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3309 * or more by the traditional way. (See above).  It equals:
3310 *
3311 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3312 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3313 *    powerpc (64K page size)             : =  (32G +16M)byte.
3314 */
3315static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3316{
3317	return 4096UL;
3318}
3319#endif
3320
3321/*
3322 * This is an integer logarithm so that shifts can be used later
3323 * to extract the more random high bits from the multiplicative
3324 * hash function before the remainder is taken.
3325 */
3326static inline unsigned long wait_table_bits(unsigned long size)
3327{
3328	return ffz(~size);
3329}
3330
3331#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3332
3333/*
3334 * Check if a pageblock contains reserved pages
3335 */
3336static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3337{
3338	unsigned long pfn;
3339
3340	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3341		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3342			return 1;
3343	}
3344	return 0;
3345}
3346
3347/*
3348 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3349 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3350 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3351 * higher will lead to a bigger reserve which will get freed as contiguous
3352 * blocks as reclaim kicks in
3353 */
3354static void setup_zone_migrate_reserve(struct zone *zone)
3355{
3356	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3357	struct page *page;
3358	unsigned long block_migratetype;
3359	int reserve;
3360
3361	/*
3362	 * Get the start pfn, end pfn and the number of blocks to reserve
3363	 * We have to be careful to be aligned to pageblock_nr_pages to
3364	 * make sure that we always check pfn_valid for the first page in
3365	 * the block.
3366	 */
3367	start_pfn = zone->zone_start_pfn;
3368	end_pfn = start_pfn + zone->spanned_pages;
3369	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3370	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3371							pageblock_order;
3372
3373	/*
3374	 * Reserve blocks are generally in place to help high-order atomic
3375	 * allocations that are short-lived. A min_free_kbytes value that
3376	 * would result in more than 2 reserve blocks for atomic allocations
3377	 * is assumed to be in place to help anti-fragmentation for the
3378	 * future allocation of hugepages at runtime.
3379	 */
3380	reserve = min(2, reserve);
3381
3382	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3383		if (!pfn_valid(pfn))
3384			continue;
3385		page = pfn_to_page(pfn);
3386
3387		/* Watch out for overlapping nodes */
3388		if (page_to_nid(page) != zone_to_nid(zone))
3389			continue;
3390
3391		block_migratetype = get_pageblock_migratetype(page);
3392
3393		/* Only test what is necessary when the reserves are not met */
3394		if (reserve > 0) {
3395			/*
3396			 * Blocks with reserved pages will never free, skip
3397			 * them.
3398			 */
3399			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3400			if (pageblock_is_reserved(pfn, block_end_pfn))
3401				continue;
3402
3403			/* If this block is reserved, account for it */
3404			if (block_migratetype == MIGRATE_RESERVE) {
3405				reserve--;
3406				continue;
3407			}
3408
3409			/* Suitable for reserving if this block is movable */
3410			if (block_migratetype == MIGRATE_MOVABLE) {
3411				set_pageblock_migratetype(page,
3412							MIGRATE_RESERVE);
3413				move_freepages_block(zone, page,
3414							MIGRATE_RESERVE);
3415				reserve--;
3416				continue;
3417			}
3418		}
3419
3420		/*
3421		 * If the reserve is met and this is a previous reserved block,
3422		 * take it back
3423		 */
3424		if (block_migratetype == MIGRATE_RESERVE) {
3425			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3426			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3427		}
3428	}
3429}
3430
3431/*
3432 * Initially all pages are reserved - free ones are freed
3433 * up by free_all_bootmem() once the early boot process is
3434 * done. Non-atomic initialization, single-pass.
3435 */
3436void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3437		unsigned long start_pfn, enum memmap_context context)
3438{
3439	struct page *page;
3440	unsigned long end_pfn = start_pfn + size;
3441	unsigned long pfn;
3442	struct zone *z;
3443
3444	if (highest_memmap_pfn < end_pfn - 1)
3445		highest_memmap_pfn = end_pfn - 1;
3446
3447	z = &NODE_DATA(nid)->node_zones[zone];
3448	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3449		/*
3450		 * There can be holes in boot-time mem_map[]s
3451		 * handed to this function.  They do not
3452		 * exist on hotplugged memory.
3453		 */
3454		if (context == MEMMAP_EARLY) {
3455			if (!early_pfn_valid(pfn))
3456				continue;
3457			if (!early_pfn_in_nid(pfn, nid))
3458				continue;
3459		}
3460		page = pfn_to_page(pfn);
3461		set_page_links(page, zone, nid, pfn);
3462		mminit_verify_page_links(page, zone, nid, pfn);
3463		init_page_count(page);
3464		reset_page_mapcount(page);
3465		SetPageReserved(page);
3466		/*
3467		 * Mark the block movable so that blocks are reserved for
3468		 * movable at startup. This will force kernel allocations
3469		 * to reserve their blocks rather than leaking throughout
3470		 * the address space during boot when many long-lived
3471		 * kernel allocations are made. Later some blocks near
3472		 * the start are marked MIGRATE_RESERVE by
3473		 * setup_zone_migrate_reserve()
3474		 *
3475		 * bitmap is created for zone's valid pfn range. but memmap
3476		 * can be created for invalid pages (for alignment)
3477		 * check here not to call set_pageblock_migratetype() against
3478		 * pfn out of zone.
3479		 */
3480		if ((z->zone_start_pfn <= pfn)
3481		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3482		    && !(pfn & (pageblock_nr_pages - 1)))
3483			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3484
3485		INIT_LIST_HEAD(&page->lru);
3486#ifdef WANT_PAGE_VIRTUAL
3487		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3488		if (!is_highmem_idx(zone))
3489			set_page_address(page, __va(pfn << PAGE_SHIFT));
3490#endif
3491	}
3492}
3493
3494static void __meminit zone_init_free_lists(struct zone *zone)
3495{
3496	int order, t;
3497	for_each_migratetype_order(order, t) {
3498		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3499		zone->free_area[order].nr_free = 0;
3500	}
3501}
3502
3503#ifndef __HAVE_ARCH_MEMMAP_INIT
3504#define memmap_init(size, nid, zone, start_pfn) \
3505	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3506#endif
3507
3508static int zone_batchsize(struct zone *zone)
3509{
3510#ifdef CONFIG_MMU
3511	int batch;
3512
3513	/*
3514	 * The per-cpu-pages pools are set to around 1000th of the
3515	 * size of the zone.  But no more than 1/2 of a meg.
3516	 *
3517	 * OK, so we don't know how big the cache is.  So guess.
3518	 */
3519	batch = zone->present_pages / 1024;
3520	if (batch * PAGE_SIZE > 512 * 1024)
3521		batch = (512 * 1024) / PAGE_SIZE;
3522	batch /= 4;		/* We effectively *= 4 below */
3523	if (batch < 1)
3524		batch = 1;
3525
3526	/*
3527	 * Clamp the batch to a 2^n - 1 value. Having a power
3528	 * of 2 value was found to be more likely to have
3529	 * suboptimal cache aliasing properties in some cases.
3530	 *
3531	 * For example if 2 tasks are alternately allocating
3532	 * batches of pages, one task can end up with a lot
3533	 * of pages of one half of the possible page colors
3534	 * and the other with pages of the other colors.
3535	 */
3536	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3537
3538	return batch;
3539
3540#else
3541	/* The deferral and batching of frees should be suppressed under NOMMU
3542	 * conditions.
3543	 *
3544	 * The problem is that NOMMU needs to be able to allocate large chunks
3545	 * of contiguous memory as there's no hardware page translation to
3546	 * assemble apparent contiguous memory from discontiguous pages.
3547	 *
3548	 * Queueing large contiguous runs of pages for batching, however,
3549	 * causes the pages to actually be freed in smaller chunks.  As there
3550	 * can be a significant delay between the individual batches being
3551	 * recycled, this leads to the once large chunks of space being
3552	 * fragmented and becoming unavailable for high-order allocations.
3553	 */
3554	return 0;
3555#endif
3556}
3557
3558static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3559{
3560	struct per_cpu_pages *pcp;
3561	int migratetype;
3562
3563	memset(p, 0, sizeof(*p));
3564
3565	pcp = &p->pcp;
3566	pcp->count = 0;
3567	pcp->high = 6 * batch;
3568	pcp->batch = max(1UL, 1 * batch);
3569	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3570		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3571}
3572
3573/*
3574 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3575 * to the value high for the pageset p.
3576 */
3577
3578static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3579				unsigned long high)
3580{
3581	struct per_cpu_pages *pcp;
3582
3583	pcp = &p->pcp;
3584	pcp->high = high;
3585	pcp->batch = max(1UL, high/4);
3586	if ((high/4) > (PAGE_SHIFT * 8))
3587		pcp->batch = PAGE_SHIFT * 8;
3588}
3589
3590static void setup_zone_pageset(struct zone *zone)
3591{
3592	int cpu;
3593
3594	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3595
3596	for_each_possible_cpu(cpu) {
3597		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3598
3599		setup_pageset(pcp, zone_batchsize(zone));
3600
3601		if (percpu_pagelist_fraction)
3602			setup_pagelist_highmark(pcp,
3603				(zone->present_pages /
3604					percpu_pagelist_fraction));
3605	}
3606}
3607
3608/*
3609 * Allocate per cpu pagesets and initialize them.
3610 * Before this call only boot pagesets were available.
3611 */
3612void __init setup_per_cpu_pageset(void)
3613{
3614	struct zone *zone;
3615
3616	for_each_populated_zone(zone)
3617		setup_zone_pageset(zone);
3618}
3619
3620static noinline __init_refok
3621int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3622{
3623	int i;
3624	struct pglist_data *pgdat = zone->zone_pgdat;
3625	size_t alloc_size;
3626
3627	/*
3628	 * The per-page waitqueue mechanism uses hashed waitqueues
3629	 * per zone.
3630	 */
3631	zone->wait_table_hash_nr_entries =
3632		 wait_table_hash_nr_entries(zone_size_pages);
3633	zone->wait_table_bits =
3634		wait_table_bits(zone->wait_table_hash_nr_entries);
3635	alloc_size = zone->wait_table_hash_nr_entries
3636					* sizeof(wait_queue_head_t);
3637
3638	if (!slab_is_available()) {
3639		zone->wait_table = (wait_queue_head_t *)
3640			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3641	} else {
3642		/*
3643		 * This case means that a zone whose size was 0 gets new memory
3644		 * via memory hot-add.
3645		 * But it may be the case that a new node was hot-added.  In
3646		 * this case vmalloc() will not be able to use this new node's
3647		 * memory - this wait_table must be initialized to use this new
3648		 * node itself as well.
3649		 * To use this new node's memory, further consideration will be
3650		 * necessary.
3651		 */
3652		zone->wait_table = vmalloc(alloc_size);
3653	}
3654	if (!zone->wait_table)
3655		return -ENOMEM;
3656
3657	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3658		init_waitqueue_head(zone->wait_table + i);
3659
3660	return 0;
3661}
3662
3663static int __zone_pcp_update(void *data)
3664{
3665	struct zone *zone = data;
3666	int cpu;
3667	unsigned long batch = zone_batchsize(zone), flags;
3668
3669	for_each_possible_cpu(cpu) {
3670		struct per_cpu_pageset *pset;
3671		struct per_cpu_pages *pcp;
3672
3673		pset = per_cpu_ptr(zone->pageset, cpu);
3674		pcp = &pset->pcp;
3675
3676		local_irq_save(flags);
3677		free_pcppages_bulk(zone, pcp->count, pcp);
3678		setup_pageset(pset, batch);
3679		local_irq_restore(flags);
3680	}
3681	return 0;
3682}
3683
3684void zone_pcp_update(struct zone *zone)
3685{
3686	stop_machine(__zone_pcp_update, zone, NULL);
3687}
3688
3689static __meminit void zone_pcp_init(struct zone *zone)
3690{
3691	/*
3692	 * per cpu subsystem is not up at this point. The following code
3693	 * relies on the ability of the linker to provide the
3694	 * offset of a (static) per cpu variable into the per cpu area.
3695	 */
3696	zone->pageset = &boot_pageset;
3697
3698	if (zone->present_pages)
3699		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3700			zone->name, zone->present_pages,
3701					 zone_batchsize(zone));
3702}
3703
3704__meminit int init_currently_empty_zone(struct zone *zone,
3705					unsigned long zone_start_pfn,
3706					unsigned long size,
3707					enum memmap_context context)
3708{
3709	struct pglist_data *pgdat = zone->zone_pgdat;
3710	int ret;
3711	ret = zone_wait_table_init(zone, size);
3712	if (ret)
3713		return ret;
3714	pgdat->nr_zones = zone_idx(zone) + 1;
3715
3716	zone->zone_start_pfn = zone_start_pfn;
3717
3718	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3719			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3720			pgdat->node_id,
3721			(unsigned long)zone_idx(zone),
3722			zone_start_pfn, (zone_start_pfn + size));
3723
3724	zone_init_free_lists(zone);
3725
3726	return 0;
3727}
3728
3729#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3730#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3731/*
3732 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3733 * Architectures may implement their own version but if add_active_range()
3734 * was used and there are no special requirements, this is a convenient
3735 * alternative
3736 */
3737int __meminit __early_pfn_to_nid(unsigned long pfn)
3738{
3739	unsigned long start_pfn, end_pfn;
3740	int i, nid;
3741
3742	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3743		if (start_pfn <= pfn && pfn < end_pfn)
3744			return nid;
3745	/* This is a memory hole */
3746	return -1;
3747}
3748#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3749
3750int __meminit early_pfn_to_nid(unsigned long pfn)
3751{
3752	int nid;
3753
3754	nid = __early_pfn_to_nid(pfn);
3755	if (nid >= 0)
3756		return nid;
3757	/* just returns 0 */
3758	return 0;
3759}
3760
3761#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3762bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3763{
3764	int nid;
3765
3766	nid = __early_pfn_to_nid(pfn);
3767	if (nid >= 0 && nid != node)
3768		return false;
3769	return true;
3770}
3771#endif
3772
3773/**
3774 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3775 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3776 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3777 *
3778 * If an architecture guarantees that all ranges registered with
3779 * add_active_ranges() contain no holes and may be freed, this
3780 * this function may be used instead of calling free_bootmem() manually.
3781 */
3782void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3783{
3784	unsigned long start_pfn, end_pfn;
3785	int i, this_nid;
3786
3787	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3788		start_pfn = min(start_pfn, max_low_pfn);
3789		end_pfn = min(end_pfn, max_low_pfn);
3790
3791		if (start_pfn < end_pfn)
3792			free_bootmem_node(NODE_DATA(this_nid),
3793					  PFN_PHYS(start_pfn),
3794					  (end_pfn - start_pfn) << PAGE_SHIFT);
3795	}
3796}
3797
3798int __init add_from_early_node_map(struct range *range, int az,
3799				   int nr_range, int nid)
3800{
3801	unsigned long start_pfn, end_pfn;
3802	int i;
3803
3804	/* need to go over early_node_map to find out good range for node */
3805	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3806		nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
3807	return nr_range;
3808}
3809
3810/**
3811 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3812 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3813 *
3814 * If an architecture guarantees that all ranges registered with
3815 * add_active_ranges() contain no holes and may be freed, this
3816 * function may be used instead of calling memory_present() manually.
3817 */
3818void __init sparse_memory_present_with_active_regions(int nid)
3819{
3820	unsigned long start_pfn, end_pfn;
3821	int i, this_nid;
3822
3823	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3824		memory_present(this_nid, start_pfn, end_pfn);
3825}
3826
3827/**
3828 * get_pfn_range_for_nid - Return the start and end page frames for a node
3829 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3830 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3831 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3832 *
3833 * It returns the start and end page frame of a node based on information
3834 * provided by an arch calling add_active_range(). If called for a node
3835 * with no available memory, a warning is printed and the start and end
3836 * PFNs will be 0.
3837 */
3838void __meminit get_pfn_range_for_nid(unsigned int nid,
3839			unsigned long *start_pfn, unsigned long *end_pfn)
3840{
3841	unsigned long this_start_pfn, this_end_pfn;
3842	int i;
3843
3844	*start_pfn = -1UL;
3845	*end_pfn = 0;
3846
3847	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3848		*start_pfn = min(*start_pfn, this_start_pfn);
3849		*end_pfn = max(*end_pfn, this_end_pfn);
3850	}
3851
3852	if (*start_pfn == -1UL)
3853		*start_pfn = 0;
3854}
3855
3856/*
3857 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3858 * assumption is made that zones within a node are ordered in monotonic
3859 * increasing memory addresses so that the "highest" populated zone is used
3860 */
3861static void __init find_usable_zone_for_movable(void)
3862{
3863	int zone_index;
3864	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3865		if (zone_index == ZONE_MOVABLE)
3866			continue;
3867
3868		if (arch_zone_highest_possible_pfn[zone_index] >
3869				arch_zone_lowest_possible_pfn[zone_index])
3870			break;
3871	}
3872
3873	VM_BUG_ON(zone_index == -1);
3874	movable_zone = zone_index;
3875}
3876
3877/*
3878 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3879 * because it is sized independent of architecture. Unlike the other zones,
3880 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3881 * in each node depending on the size of each node and how evenly kernelcore
3882 * is distributed. This helper function adjusts the zone ranges
3883 * provided by the architecture for a given node by using the end of the
3884 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3885 * zones within a node are in order of monotonic increases memory addresses
3886 */
3887static void __meminit adjust_zone_range_for_zone_movable(int nid,
3888					unsigned long zone_type,
3889					unsigned long node_start_pfn,
3890					unsigned long node_end_pfn,
3891					unsigned long *zone_start_pfn,
3892					unsigned long *zone_end_pfn)
3893{
3894	/* Only adjust if ZONE_MOVABLE is on this node */
3895	if (zone_movable_pfn[nid]) {
3896		/* Size ZONE_MOVABLE */
3897		if (zone_type == ZONE_MOVABLE) {
3898			*zone_start_pfn = zone_movable_pfn[nid];
3899			*zone_end_pfn = min(node_end_pfn,
3900				arch_zone_highest_possible_pfn[movable_zone]);
3901
3902		/* Adjust for ZONE_MOVABLE starting within this range */
3903		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3904				*zone_end_pfn > zone_movable_pfn[nid]) {
3905			*zone_end_pfn = zone_movable_pfn[nid];
3906
3907		/* Check if this whole range is within ZONE_MOVABLE */
3908		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3909			*zone_start_pfn = *zone_end_pfn;
3910	}
3911}
3912
3913/*
3914 * Return the number of pages a zone spans in a node, including holes
3915 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3916 */
3917static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3918					unsigned long zone_type,
3919					unsigned long *ignored)
3920{
3921	unsigned long node_start_pfn, node_end_pfn;
3922	unsigned long zone_start_pfn, zone_end_pfn;
3923
3924	/* Get the start and end of the node and zone */
3925	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3926	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3927	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3928	adjust_zone_range_for_zone_movable(nid, zone_type,
3929				node_start_pfn, node_end_pfn,
3930				&zone_start_pfn, &zone_end_pfn);
3931
3932	/* Check that this node has pages within the zone's required range */
3933	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3934		return 0;
3935
3936	/* Move the zone boundaries inside the node if necessary */
3937	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3938	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3939
3940	/* Return the spanned pages */
3941	return zone_end_pfn - zone_start_pfn;
3942}
3943
3944/*
3945 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3946 * then all holes in the requested range will be accounted for.
3947 */
3948unsigned long __meminit __absent_pages_in_range(int nid,
3949				unsigned long range_start_pfn,
3950				unsigned long range_end_pfn)
3951{
3952	unsigned long nr_absent = range_end_pfn - range_start_pfn;
3953	unsigned long start_pfn, end_pfn;
3954	int i;
3955
3956	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3957		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
3958		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
3959		nr_absent -= end_pfn - start_pfn;
3960	}
3961	return nr_absent;
3962}
3963
3964/**
3965 * absent_pages_in_range - Return number of page frames in holes within a range
3966 * @start_pfn: The start PFN to start searching for holes
3967 * @end_pfn: The end PFN to stop searching for holes
3968 *
3969 * It returns the number of pages frames in memory holes within a range.
3970 */
3971unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3972							unsigned long end_pfn)
3973{
3974	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3975}
3976
3977/* Return the number of page frames in holes in a zone on a node */
3978static unsigned long __meminit zone_absent_pages_in_node(int nid,
3979					unsigned long zone_type,
3980					unsigned long *ignored)
3981{
3982	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
3983	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
3984	unsigned long node_start_pfn, node_end_pfn;
3985	unsigned long zone_start_pfn, zone_end_pfn;
3986
3987	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3988	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
3989	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
3990
3991	adjust_zone_range_for_zone_movable(nid, zone_type,
3992			node_start_pfn, node_end_pfn,
3993			&zone_start_pfn, &zone_end_pfn);
3994	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3995}
3996
3997#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
3998static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3999					unsigned long zone_type,
4000					unsigned long *zones_size)
4001{
4002	return zones_size[zone_type];
4003}
4004
4005static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4006						unsigned long zone_type,
4007						unsigned long *zholes_size)
4008{
4009	if (!zholes_size)
4010		return 0;
4011
4012	return zholes_size[zone_type];
4013}
4014
4015#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4016
4017static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4018		unsigned long *zones_size, unsigned long *zholes_size)
4019{
4020	unsigned long realtotalpages, totalpages = 0;
4021	enum zone_type i;
4022
4023	for (i = 0; i < MAX_NR_ZONES; i++)
4024		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4025								zones_size);
4026	pgdat->node_spanned_pages = totalpages;
4027
4028	realtotalpages = totalpages;
4029	for (i = 0; i < MAX_NR_ZONES; i++)
4030		realtotalpages -=
4031			zone_absent_pages_in_node(pgdat->node_id, i,
4032								zholes_size);
4033	pgdat->node_present_pages = realtotalpages;
4034	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4035							realtotalpages);
4036}
4037
4038#ifndef CONFIG_SPARSEMEM
4039/*
4040 * Calculate the size of the zone->blockflags rounded to an unsigned long
4041 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4042 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4043 * round what is now in bits to nearest long in bits, then return it in
4044 * bytes.
4045 */
4046static unsigned long __init usemap_size(unsigned long zonesize)
4047{
4048	unsigned long usemapsize;
4049
4050	usemapsize = roundup(zonesize, pageblock_nr_pages);
4051	usemapsize = usemapsize >> pageblock_order;
4052	usemapsize *= NR_PAGEBLOCK_BITS;
4053	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4054
4055	return usemapsize / 8;
4056}
4057
4058static void __init setup_usemap(struct pglist_data *pgdat,
4059				struct zone *zone, unsigned long zonesize)
4060{
4061	unsigned long usemapsize = usemap_size(zonesize);
4062	zone->pageblock_flags = NULL;
4063	if (usemapsize)
4064		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4065								   usemapsize);
4066}
4067#else
4068static inline void setup_usemap(struct pglist_data *pgdat,
4069				struct zone *zone, unsigned long zonesize) {}
4070#endif /* CONFIG_SPARSEMEM */
4071
4072#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4073
4074/* Return a sensible default order for the pageblock size. */
4075static inline int pageblock_default_order(void)
4076{
4077	if (HPAGE_SHIFT > PAGE_SHIFT)
4078		return HUGETLB_PAGE_ORDER;
4079
4080	return MAX_ORDER-1;
4081}
4082
4083/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4084static inline void __init set_pageblock_order(unsigned int order)
4085{
4086	/* Check that pageblock_nr_pages has not already been setup */
4087	if (pageblock_order)
4088		return;
4089
4090	/*
4091	 * Assume the largest contiguous order of interest is a huge page.
4092	 * This value may be variable depending on boot parameters on IA64
4093	 */
4094	pageblock_order = order;
4095}
4096#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4097
4098/*
4099 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4100 * and pageblock_default_order() are unused as pageblock_order is set
4101 * at compile-time. See include/linux/pageblock-flags.h for the values of
4102 * pageblock_order based on the kernel config
4103 */
4104static inline int pageblock_default_order(unsigned int order)
4105{
4106	return MAX_ORDER-1;
4107}
4108#define set_pageblock_order(x)	do {} while (0)
4109
4110#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4111
4112/*
4113 * Set up the zone data structures:
4114 *   - mark all pages reserved
4115 *   - mark all memory queues empty
4116 *   - clear the memory bitmaps
4117 */
4118static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4119		unsigned long *zones_size, unsigned long *zholes_size)
4120{
4121	enum zone_type j;
4122	int nid = pgdat->node_id;
4123	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4124	int ret;
4125
4126	pgdat_resize_init(pgdat);
4127	pgdat->nr_zones = 0;
4128	init_waitqueue_head(&pgdat->kswapd_wait);
4129	pgdat->kswapd_max_order = 0;
4130	pgdat_page_cgroup_init(pgdat);
4131
4132	for (j = 0; j < MAX_NR_ZONES; j++) {
4133		struct zone *zone = pgdat->node_zones + j;
4134		unsigned long size, realsize, memmap_pages;
4135		enum lru_list l;
4136
4137		size = zone_spanned_pages_in_node(nid, j, zones_size);
4138		realsize = size - zone_absent_pages_in_node(nid, j,
4139								zholes_size);
4140
4141		/*
4142		 * Adjust realsize so that it accounts for how much memory
4143		 * is used by this zone for memmap. This affects the watermark
4144		 * and per-cpu initialisations
4145		 */
4146		memmap_pages =
4147			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4148		if (realsize >= memmap_pages) {
4149			realsize -= memmap_pages;
4150			if (memmap_pages)
4151				printk(KERN_DEBUG
4152				       "  %s zone: %lu pages used for memmap\n",
4153				       zone_names[j], memmap_pages);
4154		} else
4155			printk(KERN_WARNING
4156				"  %s zone: %lu pages exceeds realsize %lu\n",
4157				zone_names[j], memmap_pages, realsize);
4158
4159		/* Account for reserved pages */
4160		if (j == 0 && realsize > dma_reserve) {
4161			realsize -= dma_reserve;
4162			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4163					zone_names[0], dma_reserve);
4164		}
4165
4166		if (!is_highmem_idx(j))
4167			nr_kernel_pages += realsize;
4168		nr_all_pages += realsize;
4169
4170		zone->spanned_pages = size;
4171		zone->present_pages = realsize;
4172#ifdef CONFIG_NUMA
4173		zone->node = nid;
4174		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4175						/ 100;
4176		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4177#endif
4178		zone->name = zone_names[j];
4179		spin_lock_init(&zone->lock);
4180		spin_lock_init(&zone->lru_lock);
4181		zone_seqlock_init(zone);
4182		zone->zone_pgdat = pgdat;
4183
4184		zone_pcp_init(zone);
4185		for_each_lru(l)
4186			INIT_LIST_HEAD(&zone->lru[l].list);
4187		zone->reclaim_stat.recent_rotated[0] = 0;
4188		zone->reclaim_stat.recent_rotated[1] = 0;
4189		zone->reclaim_stat.recent_scanned[0] = 0;
4190		zone->reclaim_stat.recent_scanned[1] = 0;
4191		zap_zone_vm_stats(zone);
4192		zone->flags = 0;
4193		if (!size)
4194			continue;
4195
4196		set_pageblock_order(pageblock_default_order());
4197		setup_usemap(pgdat, zone, size);
4198		ret = init_currently_empty_zone(zone, zone_start_pfn,
4199						size, MEMMAP_EARLY);
4200		BUG_ON(ret);
4201		memmap_init(size, nid, j, zone_start_pfn);
4202		zone_start_pfn += size;
4203	}
4204}
4205
4206static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4207{
4208	/* Skip empty nodes */
4209	if (!pgdat->node_spanned_pages)
4210		return;
4211
4212#ifdef CONFIG_FLAT_NODE_MEM_MAP
4213	/* ia64 gets its own node_mem_map, before this, without bootmem */
4214	if (!pgdat->node_mem_map) {
4215		unsigned long size, start, end;
4216		struct page *map;
4217
4218		/*
4219		 * The zone's endpoints aren't required to be MAX_ORDER
4220		 * aligned but the node_mem_map endpoints must be in order
4221		 * for the buddy allocator to function correctly.
4222		 */
4223		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4224		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4225		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4226		size =  (end - start) * sizeof(struct page);
4227		map = alloc_remap(pgdat->node_id, size);
4228		if (!map)
4229			map = alloc_bootmem_node_nopanic(pgdat, size);
4230		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4231	}
4232#ifndef CONFIG_NEED_MULTIPLE_NODES
4233	/*
4234	 * With no DISCONTIG, the global mem_map is just set as node 0's
4235	 */
4236	if (pgdat == NODE_DATA(0)) {
4237		mem_map = NODE_DATA(0)->node_mem_map;
4238#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4239		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4240			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4241#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4242	}
4243#endif
4244#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4245}
4246
4247void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4248		unsigned long node_start_pfn, unsigned long *zholes_size)
4249{
4250	pg_data_t *pgdat = NODE_DATA(nid);
4251
4252	pgdat->node_id = nid;
4253	pgdat->node_start_pfn = node_start_pfn;
4254	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4255
4256	alloc_node_mem_map(pgdat);
4257#ifdef CONFIG_FLAT_NODE_MEM_MAP
4258	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4259		nid, (unsigned long)pgdat,
4260		(unsigned long)pgdat->node_mem_map);
4261#endif
4262
4263	free_area_init_core(pgdat, zones_size, zholes_size);
4264}
4265
4266#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4267
4268#if MAX_NUMNODES > 1
4269/*
4270 * Figure out the number of possible node ids.
4271 */
4272static void __init setup_nr_node_ids(void)
4273{
4274	unsigned int node;
4275	unsigned int highest = 0;
4276
4277	for_each_node_mask(node, node_possible_map)
4278		highest = node;
4279	nr_node_ids = highest + 1;
4280}
4281#else
4282static inline void setup_nr_node_ids(void)
4283{
4284}
4285#endif
4286
4287/**
4288 * node_map_pfn_alignment - determine the maximum internode alignment
4289 *
4290 * This function should be called after node map is populated and sorted.
4291 * It calculates the maximum power of two alignment which can distinguish
4292 * all the nodes.
4293 *
4294 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4295 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4296 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4297 * shifted, 1GiB is enough and this function will indicate so.
4298 *
4299 * This is used to test whether pfn -> nid mapping of the chosen memory
4300 * model has fine enough granularity to avoid incorrect mapping for the
4301 * populated node map.
4302 *
4303 * Returns the determined alignment in pfn's.  0 if there is no alignment
4304 * requirement (single node).
4305 */
4306unsigned long __init node_map_pfn_alignment(void)
4307{
4308	unsigned long accl_mask = 0, last_end = 0;
4309	unsigned long start, end, mask;
4310	int last_nid = -1;
4311	int i, nid;
4312
4313	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4314		if (!start || last_nid < 0 || last_nid == nid) {
4315			last_nid = nid;
4316			last_end = end;
4317			continue;
4318		}
4319
4320		/*
4321		 * Start with a mask granular enough to pin-point to the
4322		 * start pfn and tick off bits one-by-one until it becomes
4323		 * too coarse to separate the current node from the last.
4324		 */
4325		mask = ~((1 << __ffs(start)) - 1);
4326		while (mask && last_end <= (start & (mask << 1)))
4327			mask <<= 1;
4328
4329		/* accumulate all internode masks */
4330		accl_mask |= mask;
4331	}
4332
4333	/* convert mask to number of pages */
4334	return ~accl_mask + 1;
4335}
4336
4337/* Find the lowest pfn for a node */
4338static unsigned long __init find_min_pfn_for_node(int nid)
4339{
4340	unsigned long min_pfn = ULONG_MAX;
4341	unsigned long start_pfn;
4342	int i;
4343
4344	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4345		min_pfn = min(min_pfn, start_pfn);
4346
4347	if (min_pfn == ULONG_MAX) {
4348		printk(KERN_WARNING
4349			"Could not find start_pfn for node %d\n", nid);
4350		return 0;
4351	}
4352
4353	return min_pfn;
4354}
4355
4356/**
4357 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4358 *
4359 * It returns the minimum PFN based on information provided via
4360 * add_active_range().
4361 */
4362unsigned long __init find_min_pfn_with_active_regions(void)
4363{
4364	return find_min_pfn_for_node(MAX_NUMNODES);
4365}
4366
4367/*
4368 * early_calculate_totalpages()
4369 * Sum pages in active regions for movable zone.
4370 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4371 */
4372static unsigned long __init early_calculate_totalpages(void)
4373{
4374	unsigned long totalpages = 0;
4375	unsigned long start_pfn, end_pfn;
4376	int i, nid;
4377
4378	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4379		unsigned long pages = end_pfn - start_pfn;
4380
4381		totalpages += pages;
4382		if (pages)
4383			node_set_state(nid, N_HIGH_MEMORY);
4384	}
4385  	return totalpages;
4386}
4387
4388/*
4389 * Find the PFN the Movable zone begins in each node. Kernel memory
4390 * is spread evenly between nodes as long as the nodes have enough
4391 * memory. When they don't, some nodes will have more kernelcore than
4392 * others
4393 */
4394static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4395{
4396	int i, nid;
4397	unsigned long usable_startpfn;
4398	unsigned long kernelcore_node, kernelcore_remaining;
4399	/* save the state before borrow the nodemask */
4400	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4401	unsigned long totalpages = early_calculate_totalpages();
4402	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4403
4404	/*
4405	 * If movablecore was specified, calculate what size of
4406	 * kernelcore that corresponds so that memory usable for
4407	 * any allocation type is evenly spread. If both kernelcore
4408	 * and movablecore are specified, then the value of kernelcore
4409	 * will be used for required_kernelcore if it's greater than
4410	 * what movablecore would have allowed.
4411	 */
4412	if (required_movablecore) {
4413		unsigned long corepages;
4414
4415		/*
4416		 * Round-up so that ZONE_MOVABLE is at least as large as what
4417		 * was requested by the user
4418		 */
4419		required_movablecore =
4420			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4421		corepages = totalpages - required_movablecore;
4422
4423		required_kernelcore = max(required_kernelcore, corepages);
4424	}
4425
4426	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4427	if (!required_kernelcore)
4428		goto out;
4429
4430	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4431	find_usable_zone_for_movable();
4432	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4433
4434restart:
4435	/* Spread kernelcore memory as evenly as possible throughout nodes */
4436	kernelcore_node = required_kernelcore / usable_nodes;
4437	for_each_node_state(nid, N_HIGH_MEMORY) {
4438		unsigned long start_pfn, end_pfn;
4439
4440		/*
4441		 * Recalculate kernelcore_node if the division per node
4442		 * now exceeds what is necessary to satisfy the requested
4443		 * amount of memory for the kernel
4444		 */
4445		if (required_kernelcore < kernelcore_node)
4446			kernelcore_node = required_kernelcore / usable_nodes;
4447
4448		/*
4449		 * As the map is walked, we track how much memory is usable
4450		 * by the kernel using kernelcore_remaining. When it is
4451		 * 0, the rest of the node is usable by ZONE_MOVABLE
4452		 */
4453		kernelcore_remaining = kernelcore_node;
4454
4455		/* Go through each range of PFNs within this node */
4456		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4457			unsigned long size_pages;
4458
4459			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4460			if (start_pfn >= end_pfn)
4461				continue;
4462
4463			/* Account for what is only usable for kernelcore */
4464			if (start_pfn < usable_startpfn) {
4465				unsigned long kernel_pages;
4466				kernel_pages = min(end_pfn, usable_startpfn)
4467								- start_pfn;
4468
4469				kernelcore_remaining -= min(kernel_pages,
4470							kernelcore_remaining);
4471				required_kernelcore -= min(kernel_pages,
4472							required_kernelcore);
4473
4474				/* Continue if range is now fully accounted */
4475				if (end_pfn <= usable_startpfn) {
4476
4477					/*
4478					 * Push zone_movable_pfn to the end so
4479					 * that if we have to rebalance
4480					 * kernelcore across nodes, we will
4481					 * not double account here
4482					 */
4483					zone_movable_pfn[nid] = end_pfn;
4484					continue;
4485				}
4486				start_pfn = usable_startpfn;
4487			}
4488
4489			/*
4490			 * The usable PFN range for ZONE_MOVABLE is from
4491			 * start_pfn->end_pfn. Calculate size_pages as the
4492			 * number of pages used as kernelcore
4493			 */
4494			size_pages = end_pfn - start_pfn;
4495			if (size_pages > kernelcore_remaining)
4496				size_pages = kernelcore_remaining;
4497			zone_movable_pfn[nid] = start_pfn + size_pages;
4498
4499			/*
4500			 * Some kernelcore has been met, update counts and
4501			 * break if the kernelcore for this node has been
4502			 * satisified
4503			 */
4504			required_kernelcore -= min(required_kernelcore,
4505								size_pages);
4506			kernelcore_remaining -= size_pages;
4507			if (!kernelcore_remaining)
4508				break;
4509		}
4510	}
4511
4512	/*
4513	 * If there is still required_kernelcore, we do another pass with one
4514	 * less node in the count. This will push zone_movable_pfn[nid] further
4515	 * along on the nodes that still have memory until kernelcore is
4516	 * satisified
4517	 */
4518	usable_nodes--;
4519	if (usable_nodes && required_kernelcore > usable_nodes)
4520		goto restart;
4521
4522	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4523	for (nid = 0; nid < MAX_NUMNODES; nid++)
4524		zone_movable_pfn[nid] =
4525			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4526
4527out:
4528	/* restore the node_state */
4529	node_states[N_HIGH_MEMORY] = saved_node_state;
4530}
4531
4532/* Any regular memory on that node ? */
4533static void check_for_regular_memory(pg_data_t *pgdat)
4534{
4535#ifdef CONFIG_HIGHMEM
4536	enum zone_type zone_type;
4537
4538	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4539		struct zone *zone = &pgdat->node_zones[zone_type];
4540		if (zone->present_pages)
4541			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4542	}
4543#endif
4544}
4545
4546/**
4547 * free_area_init_nodes - Initialise all pg_data_t and zone data
4548 * @max_zone_pfn: an array of max PFNs for each zone
4549 *
4550 * This will call free_area_init_node() for each active node in the system.
4551 * Using the page ranges provided by add_active_range(), the size of each
4552 * zone in each node and their holes is calculated. If the maximum PFN
4553 * between two adjacent zones match, it is assumed that the zone is empty.
4554 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4555 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4556 * starts where the previous one ended. For example, ZONE_DMA32 starts
4557 * at arch_max_dma_pfn.
4558 */
4559void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4560{
4561	unsigned long start_pfn, end_pfn;
4562	int i, nid;
4563
4564	/* Record where the zone boundaries are */
4565	memset(arch_zone_lowest_possible_pfn, 0,
4566				sizeof(arch_zone_lowest_possible_pfn));
4567	memset(arch_zone_highest_possible_pfn, 0,
4568				sizeof(arch_zone_highest_possible_pfn));
4569	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4570	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4571	for (i = 1; i < MAX_NR_ZONES; i++) {
4572		if (i == ZONE_MOVABLE)
4573			continue;
4574		arch_zone_lowest_possible_pfn[i] =
4575			arch_zone_highest_possible_pfn[i-1];
4576		arch_zone_highest_possible_pfn[i] =
4577			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4578	}
4579	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4580	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4581
4582	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4583	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4584	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4585
4586	/* Print out the zone ranges */
4587	printk("Zone PFN ranges:\n");
4588	for (i = 0; i < MAX_NR_ZONES; i++) {
4589		if (i == ZONE_MOVABLE)
4590			continue;
4591		printk("  %-8s ", zone_names[i]);
4592		if (arch_zone_lowest_possible_pfn[i] ==
4593				arch_zone_highest_possible_pfn[i])
4594			printk("empty\n");
4595		else
4596			printk("%0#10lx -> %0#10lx\n",
4597				arch_zone_lowest_possible_pfn[i],
4598				arch_zone_highest_possible_pfn[i]);
4599	}
4600
4601	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4602	printk("Movable zone start PFN for each node\n");
4603	for (i = 0; i < MAX_NUMNODES; i++) {
4604		if (zone_movable_pfn[i])
4605			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4606	}
4607
4608	/* Print out the early_node_map[] */
4609	printk("Early memory PFN ranges\n");
4610	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4611		printk("  %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4612
4613	/* Initialise every node */
4614	mminit_verify_pageflags_layout();
4615	setup_nr_node_ids();
4616	for_each_online_node(nid) {
4617		pg_data_t *pgdat = NODE_DATA(nid);
4618		free_area_init_node(nid, NULL,
4619				find_min_pfn_for_node(nid), NULL);
4620
4621		/* Any memory on that node */
4622		if (pgdat->node_present_pages)
4623			node_set_state(nid, N_HIGH_MEMORY);
4624		check_for_regular_memory(pgdat);
4625	}
4626}
4627
4628static int __init cmdline_parse_core(char *p, unsigned long *core)
4629{
4630	unsigned long long coremem;
4631	if (!p)
4632		return -EINVAL;
4633
4634	coremem = memparse(p, &p);
4635	*core = coremem >> PAGE_SHIFT;
4636
4637	/* Paranoid check that UL is enough for the coremem value */
4638	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4639
4640	return 0;
4641}
4642
4643/*
4644 * kernelcore=size sets the amount of memory for use for allocations that
4645 * cannot be reclaimed or migrated.
4646 */
4647static int __init cmdline_parse_kernelcore(char *p)
4648{
4649	return cmdline_parse_core(p, &required_kernelcore);
4650}
4651
4652/*
4653 * movablecore=size sets the amount of memory for use for allocations that
4654 * can be reclaimed or migrated.
4655 */
4656static int __init cmdline_parse_movablecore(char *p)
4657{
4658	return cmdline_parse_core(p, &required_movablecore);
4659}
4660
4661early_param("kernelcore", cmdline_parse_kernelcore);
4662early_param("movablecore", cmdline_parse_movablecore);
4663
4664#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4665
4666/**
4667 * set_dma_reserve - set the specified number of pages reserved in the first zone
4668 * @new_dma_reserve: The number of pages to mark reserved
4669 *
4670 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4671 * In the DMA zone, a significant percentage may be consumed by kernel image
4672 * and other unfreeable allocations which can skew the watermarks badly. This
4673 * function may optionally be used to account for unfreeable pages in the
4674 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4675 * smaller per-cpu batchsize.
4676 */
4677void __init set_dma_reserve(unsigned long new_dma_reserve)
4678{
4679	dma_reserve = new_dma_reserve;
4680}
4681
4682void __init free_area_init(unsigned long *zones_size)
4683{
4684	free_area_init_node(0, zones_size,
4685			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4686}
4687
4688static int page_alloc_cpu_notify(struct notifier_block *self,
4689				 unsigned long action, void *hcpu)
4690{
4691	int cpu = (unsigned long)hcpu;
4692
4693	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4694		drain_pages(cpu);
4695
4696		/*
4697		 * Spill the event counters of the dead processor
4698		 * into the current processors event counters.
4699		 * This artificially elevates the count of the current
4700		 * processor.
4701		 */
4702		vm_events_fold_cpu(cpu);
4703
4704		/*
4705		 * Zero the differential counters of the dead processor
4706		 * so that the vm statistics are consistent.
4707		 *
4708		 * This is only okay since the processor is dead and cannot
4709		 * race with what we are doing.
4710		 */
4711		refresh_cpu_vm_stats(cpu);
4712	}
4713	return NOTIFY_OK;
4714}
4715
4716void __init page_alloc_init(void)
4717{
4718	hotcpu_notifier(page_alloc_cpu_notify, 0);
4719}
4720
4721/*
4722 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4723 *	or min_free_kbytes changes.
4724 */
4725static void calculate_totalreserve_pages(void)
4726{
4727	struct pglist_data *pgdat;
4728	unsigned long reserve_pages = 0;
4729	enum zone_type i, j;
4730
4731	for_each_online_pgdat(pgdat) {
4732		for (i = 0; i < MAX_NR_ZONES; i++) {
4733			struct zone *zone = pgdat->node_zones + i;
4734			unsigned long max = 0;
4735
4736			/* Find valid and maximum lowmem_reserve in the zone */
4737			for (j = i; j < MAX_NR_ZONES; j++) {
4738				if (zone->lowmem_reserve[j] > max)
4739					max = zone->lowmem_reserve[j];
4740			}
4741
4742			/* we treat the high watermark as reserved pages. */
4743			max += high_wmark_pages(zone);
4744
4745			if (max > zone->present_pages)
4746				max = zone->present_pages;
4747			reserve_pages += max;
4748		}
4749	}
4750	totalreserve_pages = reserve_pages;
4751}
4752
4753/*
4754 * setup_per_zone_lowmem_reserve - called whenever
4755 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4756 *	has a correct pages reserved value, so an adequate number of
4757 *	pages are left in the zone after a successful __alloc_pages().
4758 */
4759static void setup_per_zone_lowmem_reserve(void)
4760{
4761	struct pglist_data *pgdat;
4762	enum zone_type j, idx;
4763
4764	for_each_online_pgdat(pgdat) {
4765		for (j = 0; j < MAX_NR_ZONES; j++) {
4766			struct zone *zone = pgdat->node_zones + j;
4767			unsigned long present_pages = zone->present_pages;
4768
4769			zone->lowmem_reserve[j] = 0;
4770
4771			idx = j;
4772			while (idx) {
4773				struct zone *lower_zone;
4774
4775				idx--;
4776
4777				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4778					sysctl_lowmem_reserve_ratio[idx] = 1;
4779
4780				lower_zone = pgdat->node_zones + idx;
4781				lower_zone->lowmem_reserve[j] = present_pages /
4782					sysctl_lowmem_reserve_ratio[idx];
4783				present_pages += lower_zone->present_pages;
4784			}
4785		}
4786	}
4787
4788	/* update totalreserve_pages */
4789	calculate_totalreserve_pages();
4790}
4791
4792/**
4793 * setup_per_zone_wmarks - called when min_free_kbytes changes
4794 * or when memory is hot-{added|removed}
4795 *
4796 * Ensures that the watermark[min,low,high] values for each zone are set
4797 * correctly with respect to min_free_kbytes.
4798 */
4799void setup_per_zone_wmarks(void)
4800{
4801	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4802	unsigned long lowmem_pages = 0;
4803	struct zone *zone;
4804	unsigned long flags;
4805
4806	/* Calculate total number of !ZONE_HIGHMEM pages */
4807	for_each_zone(zone) {
4808		if (!is_highmem(zone))
4809			lowmem_pages += zone->present_pages;
4810	}
4811
4812	for_each_zone(zone) {
4813		u64 tmp;
4814
4815		spin_lock_irqsave(&zone->lock, flags);
4816		tmp = (u64)pages_min * zone->present_pages;
4817		do_div(tmp, lowmem_pages);
4818		if (is_highmem(zone)) {
4819			/*
4820			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4821			 * need highmem pages, so cap pages_min to a small
4822			 * value here.
4823			 *
4824			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4825			 * deltas controls asynch page reclaim, and so should
4826			 * not be capped for highmem.
4827			 */
4828			int min_pages;
4829
4830			min_pages = zone->present_pages / 1024;
4831			if (min_pages < SWAP_CLUSTER_MAX)
4832				min_pages = SWAP_CLUSTER_MAX;
4833			if (min_pages > 128)
4834				min_pages = 128;
4835			zone->watermark[WMARK_MIN] = min_pages;
4836		} else {
4837			/*
4838			 * If it's a lowmem zone, reserve a number of pages
4839			 * proportionate to the zone's size.
4840			 */
4841			zone->watermark[WMARK_MIN] = tmp;
4842		}
4843
4844		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4845		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4846		setup_zone_migrate_reserve(zone);
4847		spin_unlock_irqrestore(&zone->lock, flags);
4848	}
4849
4850	/* update totalreserve_pages */
4851	calculate_totalreserve_pages();
4852}
4853
4854/*
4855 * The inactive anon list should be small enough that the VM never has to
4856 * do too much work, but large enough that each inactive page has a chance
4857 * to be referenced again before it is swapped out.
4858 *
4859 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4860 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4861 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4862 * the anonymous pages are kept on the inactive list.
4863 *
4864 * total     target    max
4865 * memory    ratio     inactive anon
4866 * -------------------------------------
4867 *   10MB       1         5MB
4868 *  100MB       1        50MB
4869 *    1GB       3       250MB
4870 *   10GB      10       0.9GB
4871 *  100GB      31         3GB
4872 *    1TB     101        10GB
4873 *   10TB     320        32GB
4874 */
4875static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
4876{
4877	unsigned int gb, ratio;
4878
4879	/* Zone size in gigabytes */
4880	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4881	if (gb)
4882		ratio = int_sqrt(10 * gb);
4883	else
4884		ratio = 1;
4885
4886	zone->inactive_ratio = ratio;
4887}
4888
4889static void __meminit setup_per_zone_inactive_ratio(void)
4890{
4891	struct zone *zone;
4892
4893	for_each_zone(zone)
4894		calculate_zone_inactive_ratio(zone);
4895}
4896
4897/*
4898 * Initialise min_free_kbytes.
4899 *
4900 * For small machines we want it small (128k min).  For large machines
4901 * we want it large (64MB max).  But it is not linear, because network
4902 * bandwidth does not increase linearly with machine size.  We use
4903 *
4904 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4905 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4906 *
4907 * which yields
4908 *
4909 * 16MB:	512k
4910 * 32MB:	724k
4911 * 64MB:	1024k
4912 * 128MB:	1448k
4913 * 256MB:	2048k
4914 * 512MB:	2896k
4915 * 1024MB:	4096k
4916 * 2048MB:	5792k
4917 * 4096MB:	8192k
4918 * 8192MB:	11584k
4919 * 16384MB:	16384k
4920 */
4921int __meminit init_per_zone_wmark_min(void)
4922{
4923	unsigned long lowmem_kbytes;
4924
4925	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4926
4927	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4928	if (min_free_kbytes < 128)
4929		min_free_kbytes = 128;
4930	if (min_free_kbytes > 65536)
4931		min_free_kbytes = 65536;
4932	setup_per_zone_wmarks();
4933	refresh_zone_stat_thresholds();
4934	setup_per_zone_lowmem_reserve();
4935	setup_per_zone_inactive_ratio();
4936	return 0;
4937}
4938module_init(init_per_zone_wmark_min)
4939
4940/*
4941 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4942 *	that we can call two helper functions whenever min_free_kbytes
4943 *	changes.
4944 */
4945int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4946	void __user *buffer, size_t *length, loff_t *ppos)
4947{
4948	proc_dointvec(table, write, buffer, length, ppos);
4949	if (write)
4950		setup_per_zone_wmarks();
4951	return 0;
4952}
4953
4954#ifdef CONFIG_NUMA
4955int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4956	void __user *buffer, size_t *length, loff_t *ppos)
4957{
4958	struct zone *zone;
4959	int rc;
4960
4961	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4962	if (rc)
4963		return rc;
4964
4965	for_each_zone(zone)
4966		zone->min_unmapped_pages = (zone->present_pages *
4967				sysctl_min_unmapped_ratio) / 100;
4968	return 0;
4969}
4970
4971int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4972	void __user *buffer, size_t *length, loff_t *ppos)
4973{
4974	struct zone *zone;
4975	int rc;
4976
4977	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4978	if (rc)
4979		return rc;
4980
4981	for_each_zone(zone)
4982		zone->min_slab_pages = (zone->present_pages *
4983				sysctl_min_slab_ratio) / 100;
4984	return 0;
4985}
4986#endif
4987
4988/*
4989 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4990 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4991 *	whenever sysctl_lowmem_reserve_ratio changes.
4992 *
4993 * The reserve ratio obviously has absolutely no relation with the
4994 * minimum watermarks. The lowmem reserve ratio can only make sense
4995 * if in function of the boot time zone sizes.
4996 */
4997int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4998	void __user *buffer, size_t *length, loff_t *ppos)
4999{
5000	proc_dointvec_minmax(table, write, buffer, length, ppos);
5001	setup_per_zone_lowmem_reserve();
5002	return 0;
5003}
5004
5005/*
5006 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5007 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5008 * can have before it gets flushed back to buddy allocator.
5009 */
5010
5011int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5012	void __user *buffer, size_t *length, loff_t *ppos)
5013{
5014	struct zone *zone;
5015	unsigned int cpu;
5016	int ret;
5017
5018	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5019	if (!write || (ret == -EINVAL))
5020		return ret;
5021	for_each_populated_zone(zone) {
5022		for_each_possible_cpu(cpu) {
5023			unsigned long  high;
5024			high = zone->present_pages / percpu_pagelist_fraction;
5025			setup_pagelist_highmark(
5026				per_cpu_ptr(zone->pageset, cpu), high);
5027		}
5028	}
5029	return 0;
5030}
5031
5032int hashdist = HASHDIST_DEFAULT;
5033
5034#ifdef CONFIG_NUMA
5035static int __init set_hashdist(char *str)
5036{
5037	if (!str)
5038		return 0;
5039	hashdist = simple_strtoul(str, &str, 0);
5040	return 1;
5041}
5042__setup("hashdist=", set_hashdist);
5043#endif
5044
5045/*
5046 * allocate a large system hash table from bootmem
5047 * - it is assumed that the hash table must contain an exact power-of-2
5048 *   quantity of entries
5049 * - limit is the number of hash buckets, not the total allocation size
5050 */
5051void *__init alloc_large_system_hash(const char *tablename,
5052				     unsigned long bucketsize,
5053				     unsigned long numentries,
5054				     int scale,
5055				     int flags,
5056				     unsigned int *_hash_shift,
5057				     unsigned int *_hash_mask,
5058				     unsigned long limit)
5059{
5060	unsigned long long max = limit;
5061	unsigned long log2qty, size;
5062	void *table = NULL;
5063
5064	/* allow the kernel cmdline to have a say */
5065	if (!numentries) {
5066		/* round applicable memory size up to nearest megabyte */
5067		numentries = nr_kernel_pages;
5068		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5069		numentries >>= 20 - PAGE_SHIFT;
5070		numentries <<= 20 - PAGE_SHIFT;
5071
5072		/* limit to 1 bucket per 2^scale bytes of low memory */
5073		if (scale > PAGE_SHIFT)
5074			numentries >>= (scale - PAGE_SHIFT);
5075		else
5076			numentries <<= (PAGE_SHIFT - scale);
5077
5078		/* Make sure we've got at least a 0-order allocation.. */
5079		if (unlikely(flags & HASH_SMALL)) {
5080			/* Makes no sense without HASH_EARLY */
5081			WARN_ON(!(flags & HASH_EARLY));
5082			if (!(numentries >> *_hash_shift)) {
5083				numentries = 1UL << *_hash_shift;
5084				BUG_ON(!numentries);
5085			}
5086		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5087			numentries = PAGE_SIZE / bucketsize;
5088	}
5089	numentries = roundup_pow_of_two(numentries);
5090
5091	/* limit allocation size to 1/16 total memory by default */
5092	if (max == 0) {
5093		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5094		do_div(max, bucketsize);
5095	}
5096
5097	if (numentries > max)
5098		numentries = max;
5099
5100	log2qty = ilog2(numentries);
5101
5102	do {
5103		size = bucketsize << log2qty;
5104		if (flags & HASH_EARLY)
5105			table = alloc_bootmem_nopanic(size);
5106		else if (hashdist)
5107			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5108		else {
5109			/*
5110			 * If bucketsize is not a power-of-two, we may free
5111			 * some pages at the end of hash table which
5112			 * alloc_pages_exact() automatically does
5113			 */
5114			if (get_order(size) < MAX_ORDER) {
5115				table = alloc_pages_exact(size, GFP_ATOMIC);
5116				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5117			}
5118		}
5119	} while (!table && size > PAGE_SIZE && --log2qty);
5120
5121	if (!table)
5122		panic("Failed to allocate %s hash table\n", tablename);
5123
5124	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5125	       tablename,
5126	       (1UL << log2qty),
5127	       ilog2(size) - PAGE_SHIFT,
5128	       size);
5129
5130	if (_hash_shift)
5131		*_hash_shift = log2qty;
5132	if (_hash_mask)
5133		*_hash_mask = (1 << log2qty) - 1;
5134
5135	return table;
5136}
5137
5138/* Return a pointer to the bitmap storing bits affecting a block of pages */
5139static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5140							unsigned long pfn)
5141{
5142#ifdef CONFIG_SPARSEMEM
5143	return __pfn_to_section(pfn)->pageblock_flags;
5144#else
5145	return zone->pageblock_flags;
5146#endif /* CONFIG_SPARSEMEM */
5147}
5148
5149static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5150{
5151#ifdef CONFIG_SPARSEMEM
5152	pfn &= (PAGES_PER_SECTION-1);
5153	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5154#else
5155	pfn = pfn - zone->zone_start_pfn;
5156	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5157#endif /* CONFIG_SPARSEMEM */
5158}
5159
5160/**
5161 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5162 * @page: The page within the block of interest
5163 * @start_bitidx: The first bit of interest to retrieve
5164 * @end_bitidx: The last bit of interest
5165 * returns pageblock_bits flags
5166 */
5167unsigned long get_pageblock_flags_group(struct page *page,
5168					int start_bitidx, int end_bitidx)
5169{
5170	struct zone *zone;
5171	unsigned long *bitmap;
5172	unsigned long pfn, bitidx;
5173	unsigned long flags = 0;
5174	unsigned long value = 1;
5175
5176	zone = page_zone(page);
5177	pfn = page_to_pfn(page);
5178	bitmap = get_pageblock_bitmap(zone, pfn);
5179	bitidx = pfn_to_bitidx(zone, pfn);
5180
5181	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5182		if (test_bit(bitidx + start_bitidx, bitmap))
5183			flags |= value;
5184
5185	return flags;
5186}
5187
5188/**
5189 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5190 * @page: The page within the block of interest
5191 * @start_bitidx: The first bit of interest
5192 * @end_bitidx: The last bit of interest
5193 * @flags: The flags to set
5194 */
5195void set_pageblock_flags_group(struct page *page, unsigned long flags,
5196					int start_bitidx, int end_bitidx)
5197{
5198	struct zone *zone;
5199	unsigned long *bitmap;
5200	unsigned long pfn, bitidx;
5201	unsigned long value = 1;
5202
5203	zone = page_zone(page);
5204	pfn = page_to_pfn(page);
5205	bitmap = get_pageblock_bitmap(zone, pfn);
5206	bitidx = pfn_to_bitidx(zone, pfn);
5207	VM_BUG_ON(pfn < zone->zone_start_pfn);
5208	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5209
5210	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5211		if (flags & value)
5212			__set_bit(bitidx + start_bitidx, bitmap);
5213		else
5214			__clear_bit(bitidx + start_bitidx, bitmap);
5215}
5216
5217/*
5218 * This is designed as sub function...plz see page_isolation.c also.
5219 * set/clear page block's type to be ISOLATE.
5220 * page allocater never alloc memory from ISOLATE block.
5221 */
5222
5223static int
5224__count_immobile_pages(struct zone *zone, struct page *page, int count)
5225{
5226	unsigned long pfn, iter, found;
5227	/*
5228	 * For avoiding noise data, lru_add_drain_all() should be called
5229	 * If ZONE_MOVABLE, the zone never contains immobile pages
5230	 */
5231	if (zone_idx(zone) == ZONE_MOVABLE)
5232		return true;
5233
5234	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5235		return true;
5236
5237	pfn = page_to_pfn(page);
5238	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5239		unsigned long check = pfn + iter;
5240
5241		if (!pfn_valid_within(check))
5242			continue;
5243
5244		page = pfn_to_page(check);
5245		if (!page_count(page)) {
5246			if (PageBuddy(page))
5247				iter += (1 << page_order(page)) - 1;
5248			continue;
5249		}
5250		if (!PageLRU(page))
5251			found++;
5252		/*
5253		 * If there are RECLAIMABLE pages, we need to check it.
5254		 * But now, memory offline itself doesn't call shrink_slab()
5255		 * and it still to be fixed.
5256		 */
5257		/*
5258		 * If the page is not RAM, page_count()should be 0.
5259		 * we don't need more check. This is an _used_ not-movable page.
5260		 *
5261		 * The problematic thing here is PG_reserved pages. PG_reserved
5262		 * is set to both of a memory hole page and a _used_ kernel
5263		 * page at boot.
5264		 */
5265		if (found > count)
5266			return false;
5267	}
5268	return true;
5269}
5270
5271bool is_pageblock_removable_nolock(struct page *page)
5272{
5273	struct zone *zone = page_zone(page);
5274	return __count_immobile_pages(zone, page, 0);
5275}
5276
5277int set_migratetype_isolate(struct page *page)
5278{
5279	struct zone *zone;
5280	unsigned long flags, pfn;
5281	struct memory_isolate_notify arg;
5282	int notifier_ret;
5283	int ret = -EBUSY;
5284
5285	zone = page_zone(page);
5286
5287	spin_lock_irqsave(&zone->lock, flags);
5288
5289	pfn = page_to_pfn(page);
5290	arg.start_pfn = pfn;
5291	arg.nr_pages = pageblock_nr_pages;
5292	arg.pages_found = 0;
5293
5294	/*
5295	 * It may be possible to isolate a pageblock even if the
5296	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5297	 * notifier chain is used by balloon drivers to return the
5298	 * number of pages in a range that are held by the balloon
5299	 * driver to shrink memory. If all the pages are accounted for
5300	 * by balloons, are free, or on the LRU, isolation can continue.
5301	 * Later, for example, when memory hotplug notifier runs, these
5302	 * pages reported as "can be isolated" should be isolated(freed)
5303	 * by the balloon driver through the memory notifier chain.
5304	 */
5305	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5306	notifier_ret = notifier_to_errno(notifier_ret);
5307	if (notifier_ret)
5308		goto out;
5309	/*
5310	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5311	 * We just check MOVABLE pages.
5312	 */
5313	if (__count_immobile_pages(zone, page, arg.pages_found))
5314		ret = 0;
5315
5316	/*
5317	 * immobile means "not-on-lru" paes. If immobile is larger than
5318	 * removable-by-driver pages reported by notifier, we'll fail.
5319	 */
5320
5321out:
5322	if (!ret) {
5323		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5324		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5325	}
5326
5327	spin_unlock_irqrestore(&zone->lock, flags);
5328	if (!ret)
5329		drain_all_pages();
5330	return ret;
5331}
5332
5333void unset_migratetype_isolate(struct page *page)
5334{
5335	struct zone *zone;
5336	unsigned long flags;
5337	zone = page_zone(page);
5338	spin_lock_irqsave(&zone->lock, flags);
5339	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5340		goto out;
5341	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5342	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5343out:
5344	spin_unlock_irqrestore(&zone->lock, flags);
5345}
5346
5347#ifdef CONFIG_MEMORY_HOTREMOVE
5348/*
5349 * All pages in the range must be isolated before calling this.
5350 */
5351void
5352__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5353{
5354	struct page *page;
5355	struct zone *zone;
5356	int order, i;
5357	unsigned long pfn;
5358	unsigned long flags;
5359	/* find the first valid pfn */
5360	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5361		if (pfn_valid(pfn))
5362			break;
5363	if (pfn == end_pfn)
5364		return;
5365	zone = page_zone(pfn_to_page(pfn));
5366	spin_lock_irqsave(&zone->lock, flags);
5367	pfn = start_pfn;
5368	while (pfn < end_pfn) {
5369		if (!pfn_valid(pfn)) {
5370			pfn++;
5371			continue;
5372		}
5373		page = pfn_to_page(pfn);
5374		BUG_ON(page_count(page));
5375		BUG_ON(!PageBuddy(page));
5376		order = page_order(page);
5377#ifdef CONFIG_DEBUG_VM
5378		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5379		       pfn, 1 << order, end_pfn);
5380#endif
5381		list_del(&page->lru);
5382		rmv_page_order(page);
5383		zone->free_area[order].nr_free--;
5384		__mod_zone_page_state(zone, NR_FREE_PAGES,
5385				      - (1UL << order));
5386		for (i = 0; i < (1 << order); i++)
5387			SetPageReserved((page+i));
5388		pfn += (1 << order);
5389	}
5390	spin_unlock_irqrestore(&zone->lock, flags);
5391}
5392#endif
5393
5394#ifdef CONFIG_MEMORY_FAILURE
5395bool is_free_buddy_page(struct page *page)
5396{
5397	struct zone *zone = page_zone(page);
5398	unsigned long pfn = page_to_pfn(page);
5399	unsigned long flags;
5400	int order;
5401
5402	spin_lock_irqsave(&zone->lock, flags);
5403	for (order = 0; order < MAX_ORDER; order++) {
5404		struct page *page_head = page - (pfn & ((1 << order) - 1));
5405
5406		if (PageBuddy(page_head) && page_order(page_head) >= order)
5407			break;
5408	}
5409	spin_unlock_irqrestore(&zone->lock, flags);
5410
5411	return order < MAX_ORDER;
5412}
5413#endif
5414
5415static struct trace_print_flags pageflag_names[] = {
5416	{1UL << PG_locked,		"locked"	},
5417	{1UL << PG_error,		"error"		},
5418	{1UL << PG_referenced,		"referenced"	},
5419	{1UL << PG_uptodate,		"uptodate"	},
5420	{1UL << PG_dirty,		"dirty"		},
5421	{1UL << PG_lru,			"lru"		},
5422	{1UL << PG_active,		"active"	},
5423	{1UL << PG_slab,		"slab"		},
5424	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5425	{1UL << PG_arch_1,		"arch_1"	},
5426	{1UL << PG_reserved,		"reserved"	},
5427	{1UL << PG_private,		"private"	},
5428	{1UL << PG_private_2,		"private_2"	},
5429	{1UL << PG_writeback,		"writeback"	},
5430#ifdef CONFIG_PAGEFLAGS_EXTENDED
5431	{1UL << PG_head,		"head"		},
5432	{1UL << PG_tail,		"tail"		},
5433#else
5434	{1UL << PG_compound,		"compound"	},
5435#endif
5436	{1UL << PG_swapcache,		"swapcache"	},
5437	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5438	{1UL << PG_reclaim,		"reclaim"	},
5439	{1UL << PG_swapbacked,		"swapbacked"	},
5440	{1UL << PG_unevictable,		"unevictable"	},
5441#ifdef CONFIG_MMU
5442	{1UL << PG_mlocked,		"mlocked"	},
5443#endif
5444#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5445	{1UL << PG_uncached,		"uncached"	},
5446#endif
5447#ifdef CONFIG_MEMORY_FAILURE
5448	{1UL << PG_hwpoison,		"hwpoison"	},
5449#endif
5450	{-1UL,				NULL		},
5451};
5452
5453static void dump_page_flags(unsigned long flags)
5454{
5455	const char *delim = "";
5456	unsigned long mask;
5457	int i;
5458
5459	printk(KERN_ALERT "page flags: %#lx(", flags);
5460
5461	/* remove zone id */
5462	flags &= (1UL << NR_PAGEFLAGS) - 1;
5463
5464	for (i = 0; pageflag_names[i].name && flags; i++) {
5465
5466		mask = pageflag_names[i].mask;
5467		if ((flags & mask) != mask)
5468			continue;
5469
5470		flags &= ~mask;
5471		printk("%s%s", delim, pageflag_names[i].name);
5472		delim = "|";
5473	}
5474
5475	/* check for left over flags */
5476	if (flags)
5477		printk("%s%#lx", delim, flags);
5478
5479	printk(")\n");
5480}
5481
5482void dump_page(struct page *page)
5483{
5484	printk(KERN_ALERT
5485	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5486		page, atomic_read(&page->_count), page_mapcount(page),
5487		page->mapping, page->index);
5488	dump_page_flags(page->flags);
5489	mem_cgroup_print_bad_page(page);
5490}
5491