page_alloc.c revision 945a11136ebdfa7fcce319ee6215958e84cb85f6
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54#include "internal.h"
55
56/*
57 * Array of node states.
58 */
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60	[N_POSSIBLE] = NODE_MASK_ALL,
61	[N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65	[N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67	[N_CPU] = { { [0] = 1UL } },
68#endif	/* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
72unsigned long totalram_pages __read_mostly;
73unsigned long totalreserve_pages __read_mostly;
74unsigned long highest_memmap_pfn __read_mostly;
75int percpu_pagelist_fraction;
76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
82static void __free_pages_ok(struct page *page, unsigned int order);
83
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 *	1G machine -> (16M dma, 784M normal, 224M high)
88 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96#ifdef CONFIG_ZONE_DMA
97	 256,
98#endif
99#ifdef CONFIG_ZONE_DMA32
100	 256,
101#endif
102#ifdef CONFIG_HIGHMEM
103	 32,
104#endif
105	 32,
106};
107
108EXPORT_SYMBOL(totalram_pages);
109
110static char * const zone_names[MAX_NR_ZONES] = {
111#ifdef CONFIG_ZONE_DMA
112	 "DMA",
113#endif
114#ifdef CONFIG_ZONE_DMA32
115	 "DMA32",
116#endif
117	 "Normal",
118#ifdef CONFIG_HIGHMEM
119	 "HighMem",
120#endif
121	 "Movable",
122};
123
124int min_free_kbytes = 1024;
125
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
128static unsigned long __meminitdata dma_reserve;
129
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131  /*
132   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133   * ranges of memory (RAM) that may be registered with add_active_range().
134   * Ranges passed to add_active_range() will be merged if possible
135   * so the number of times add_active_range() can be called is
136   * related to the number of nodes and the number of holes
137   */
138  #ifdef CONFIG_MAX_ACTIVE_REGIONS
139    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141  #else
142    #if MAX_NUMNODES >= 32
143      /* If there can be many nodes, allow up to 50 holes per node */
144      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145    #else
146      /* By default, allow up to 256 distinct regions */
147      #define MAX_ACTIVE_REGIONS 256
148    #endif
149  #endif
150
151  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152  static int __meminitdata nr_nodemap_entries;
153  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155  static unsigned long __initdata required_kernelcore;
156  static unsigned long __initdata required_movablecore;
157  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160  int movable_zone;
161  EXPORT_SYMBOL(movable_zone);
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166int nr_online_nodes __read_mostly = 1;
167EXPORT_SYMBOL(nr_node_ids);
168EXPORT_SYMBOL(nr_online_nodes);
169#endif
170
171int page_group_by_mobility_disabled __read_mostly;
172
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
175
176	if (unlikely(page_group_by_mobility_disabled))
177		migratetype = MIGRATE_UNMOVABLE;
178
179	set_pageblock_flags_group(page, (unsigned long)migratetype,
180					PB_migrate, PB_migrate_end);
181}
182
183bool oom_killer_disabled __read_mostly;
184
185#ifdef CONFIG_DEBUG_VM
186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187{
188	int ret = 0;
189	unsigned seq;
190	unsigned long pfn = page_to_pfn(page);
191
192	do {
193		seq = zone_span_seqbegin(zone);
194		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195			ret = 1;
196		else if (pfn < zone->zone_start_pfn)
197			ret = 1;
198	} while (zone_span_seqretry(zone, seq));
199
200	return ret;
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
205	if (!pfn_valid_within(page_to_pfn(page)))
206		return 0;
207	if (zone != page_zone(page))
208		return 0;
209
210	return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217	if (page_outside_zone_boundaries(zone, page))
218		return 1;
219	if (!page_is_consistent(zone, page))
220		return 1;
221
222	return 0;
223}
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227	return 0;
228}
229#endif
230
231static void bad_page(struct page *page)
232{
233	static unsigned long resume;
234	static unsigned long nr_shown;
235	static unsigned long nr_unshown;
236
237	/*
238	 * Allow a burst of 60 reports, then keep quiet for that minute;
239	 * or allow a steady drip of one report per second.
240	 */
241	if (nr_shown == 60) {
242		if (time_before(jiffies, resume)) {
243			nr_unshown++;
244			goto out;
245		}
246		if (nr_unshown) {
247			printk(KERN_ALERT
248			      "BUG: Bad page state: %lu messages suppressed\n",
249				nr_unshown);
250			nr_unshown = 0;
251		}
252		nr_shown = 0;
253	}
254	if (nr_shown++ == 0)
255		resume = jiffies + 60 * HZ;
256
257	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
258		current->comm, page_to_pfn(page));
259	printk(KERN_ALERT
260		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261		page, (void *)page->flags, page_count(page),
262		page_mapcount(page), page->mapping, page->index);
263
264	dump_stack();
265out:
266	/* Leave bad fields for debug, except PageBuddy could make trouble */
267	__ClearPageBuddy(page);
268	add_taint(TAINT_BAD_PAGE);
269}
270
271/*
272 * Higher-order pages are called "compound pages".  They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set.  All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function.  Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286static void free_compound_page(struct page *page)
287{
288	__free_pages_ok(page, compound_order(page));
289}
290
291void prep_compound_page(struct page *page, unsigned long order)
292{
293	int i;
294	int nr_pages = 1 << order;
295
296	set_compound_page_dtor(page, free_compound_page);
297	set_compound_order(page, order);
298	__SetPageHead(page);
299	for (i = 1; i < nr_pages; i++) {
300		struct page *p = page + i;
301
302		__SetPageTail(p);
303		p->first_page = page;
304	}
305}
306
307static int destroy_compound_page(struct page *page, unsigned long order)
308{
309	int i;
310	int nr_pages = 1 << order;
311	int bad = 0;
312
313	if (unlikely(compound_order(page) != order) ||
314	    unlikely(!PageHead(page))) {
315		bad_page(page);
316		bad++;
317	}
318
319	__ClearPageHead(page);
320
321	for (i = 1; i < nr_pages; i++) {
322		struct page *p = page + i;
323
324		if (unlikely(!PageTail(p) || (p->first_page != page))) {
325			bad_page(page);
326			bad++;
327		}
328		__ClearPageTail(p);
329	}
330
331	return bad;
332}
333
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336	int i;
337
338	/*
339	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340	 * and __GFP_HIGHMEM from hard or soft interrupt context.
341	 */
342	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343	for (i = 0; i < (1 << order); i++)
344		clear_highpage(page + i);
345}
346
347static inline void set_page_order(struct page *page, int order)
348{
349	set_page_private(page, order);
350	__SetPageBuddy(page);
351}
352
353static inline void rmv_page_order(struct page *page)
354{
355	__ClearPageBuddy(page);
356	set_page_private(page, 0);
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 *     B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 *     P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379	unsigned long buddy_idx = page_idx ^ (1 << order);
380
381	return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387	return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404								int order)
405{
406	if (!pfn_valid_within(page_to_pfn(buddy)))
407		return 0;
408
409	if (page_zone_id(page) != page_zone_id(buddy))
410		return 0;
411
412	if (PageBuddy(buddy) && page_order(buddy) == order) {
413		VM_BUG_ON(page_count(buddy) != 0);
414		return 1;
415	}
416	return 0;
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other.  That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443static inline void __free_one_page(struct page *page,
444		struct zone *zone, unsigned int order,
445		int migratetype)
446{
447	unsigned long page_idx;
448
449	if (unlikely(PageCompound(page)))
450		if (unlikely(destroy_compound_page(page, order)))
451			return;
452
453	VM_BUG_ON(migratetype == -1);
454
455	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457	VM_BUG_ON(page_idx & ((1 << order) - 1));
458	VM_BUG_ON(bad_range(zone, page));
459
460	while (order < MAX_ORDER-1) {
461		unsigned long combined_idx;
462		struct page *buddy;
463
464		buddy = __page_find_buddy(page, page_idx, order);
465		if (!page_is_buddy(page, buddy, order))
466			break;
467
468		/* Our buddy is free, merge with it and move up one order. */
469		list_del(&buddy->lru);
470		zone->free_area[order].nr_free--;
471		rmv_page_order(buddy);
472		combined_idx = __find_combined_index(page_idx, order);
473		page = page + (combined_idx - page_idx);
474		page_idx = combined_idx;
475		order++;
476	}
477	set_page_order(page, order);
478	list_add(&page->lru,
479		&zone->free_area[order].free_list[migratetype]);
480	zone->free_area[order].nr_free++;
481}
482
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
491	__dec_zone_page_state(page, NR_MLOCK);
492	__count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
498static inline int free_pages_check(struct page *page)
499{
500	if (unlikely(page_mapcount(page) |
501		(page->mapping != NULL)  |
502		(atomic_read(&page->_count) != 0) |
503		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504		bad_page(page);
505		return 1;
506	}
507	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509	return 0;
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
523static void free_pages_bulk(struct zone *zone, int count,
524					struct list_head *list, int order)
525{
526	spin_lock(&zone->lock);
527	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528	zone->pages_scanned = 0;
529
530	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531	while (count--) {
532		struct page *page;
533
534		VM_BUG_ON(list_empty(list));
535		page = list_entry(list->prev, struct page, lru);
536		/* have to delete it as __free_one_page list manipulates */
537		list_del(&page->lru);
538		__free_one_page(page, zone, order, page_private(page));
539	}
540	spin_unlock(&zone->lock);
541}
542
543static void free_one_page(struct zone *zone, struct page *page, int order,
544				int migratetype)
545{
546	spin_lock(&zone->lock);
547	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548	zone->pages_scanned = 0;
549
550	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551	__free_one_page(page, zone, order, migratetype);
552	spin_unlock(&zone->lock);
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557	unsigned long flags;
558	int i;
559	int bad = 0;
560	int wasMlocked = TestClearPageMlocked(page);
561
562	kmemcheck_free_shadow(page, order);
563
564	for (i = 0 ; i < (1 << order) ; ++i)
565		bad += free_pages_check(page + i);
566	if (bad)
567		return;
568
569	if (!PageHighMem(page)) {
570		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571		debug_check_no_obj_freed(page_address(page),
572					   PAGE_SIZE << order);
573	}
574	arch_free_page(page, order);
575	kernel_map_pages(page, 1 << order, 0);
576
577	local_irq_save(flags);
578	if (unlikely(wasMlocked))
579		free_page_mlock(page);
580	__count_vm_events(PGFREE, 1 << order);
581	free_one_page(page_zone(page), page, order,
582					get_pageblock_migratetype(page));
583	local_irq_restore(flags);
584}
585
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590{
591	if (order == 0) {
592		__ClearPageReserved(page);
593		set_page_count(page, 0);
594		set_page_refcounted(page);
595		__free_page(page);
596	} else {
597		int loop;
598
599		prefetchw(page);
600		for (loop = 0; loop < BITS_PER_LONG; loop++) {
601			struct page *p = &page[loop];
602
603			if (loop + 1 < BITS_PER_LONG)
604				prefetchw(p + 1);
605			__ClearPageReserved(p);
606			set_page_count(p, 0);
607		}
608
609		set_page_refcounted(page);
610		__free_pages(page, order);
611	}
612}
613
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
629static inline void expand(struct zone *zone, struct page *page,
630	int low, int high, struct free_area *area,
631	int migratetype)
632{
633	unsigned long size = 1 << high;
634
635	while (high > low) {
636		area--;
637		high--;
638		size >>= 1;
639		VM_BUG_ON(bad_range(zone, &page[size]));
640		list_add(&page[size].lru, &area->free_list[migratetype]);
641		area->nr_free++;
642		set_page_order(&page[size], high);
643	}
644}
645
646/*
647 * This page is about to be returned from the page allocator
648 */
649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650{
651	if (unlikely(page_mapcount(page) |
652		(page->mapping != NULL)  |
653		(atomic_read(&page->_count) != 0)  |
654		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655		bad_page(page);
656		return 1;
657	}
658
659	set_page_private(page, 0);
660	set_page_refcounted(page);
661
662	arch_alloc_page(page, order);
663	kernel_map_pages(page, 1 << order, 1);
664
665	if (gfp_flags & __GFP_ZERO)
666		prep_zero_page(page, order, gfp_flags);
667
668	if (order && (gfp_flags & __GFP_COMP))
669		prep_compound_page(page, order);
670
671	return 0;
672}
673
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680						int migratetype)
681{
682	unsigned int current_order;
683	struct free_area * area;
684	struct page *page;
685
686	/* Find a page of the appropriate size in the preferred list */
687	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688		area = &(zone->free_area[current_order]);
689		if (list_empty(&area->free_list[migratetype]))
690			continue;
691
692		page = list_entry(area->free_list[migratetype].next,
693							struct page, lru);
694		list_del(&page->lru);
695		rmv_page_order(page);
696		area->nr_free--;
697		expand(zone, page, order, current_order, area, migratetype);
698		return page;
699	}
700
701	return NULL;
702}
703
704
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
711	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
712	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
714};
715
716/*
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
720 */
721static int move_freepages(struct zone *zone,
722			  struct page *start_page, struct page *end_page,
723			  int migratetype)
724{
725	struct page *page;
726	unsigned long order;
727	int pages_moved = 0;
728
729#ifndef CONFIG_HOLES_IN_ZONE
730	/*
731	 * page_zone is not safe to call in this context when
732	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733	 * anyway as we check zone boundaries in move_freepages_block().
734	 * Remove at a later date when no bug reports exist related to
735	 * grouping pages by mobility
736	 */
737	BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740	for (page = start_page; page <= end_page;) {
741		/* Make sure we are not inadvertently changing nodes */
742		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
744		if (!pfn_valid_within(page_to_pfn(page))) {
745			page++;
746			continue;
747		}
748
749		if (!PageBuddy(page)) {
750			page++;
751			continue;
752		}
753
754		order = page_order(page);
755		list_del(&page->lru);
756		list_add(&page->lru,
757			&zone->free_area[order].free_list[migratetype]);
758		page += 1 << order;
759		pages_moved += 1 << order;
760	}
761
762	return pages_moved;
763}
764
765static int move_freepages_block(struct zone *zone, struct page *page,
766				int migratetype)
767{
768	unsigned long start_pfn, end_pfn;
769	struct page *start_page, *end_page;
770
771	start_pfn = page_to_pfn(page);
772	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773	start_page = pfn_to_page(start_pfn);
774	end_page = start_page + pageblock_nr_pages - 1;
775	end_pfn = start_pfn + pageblock_nr_pages - 1;
776
777	/* Do not cross zone boundaries */
778	if (start_pfn < zone->zone_start_pfn)
779		start_page = page;
780	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781		return 0;
782
783	return move_freepages(zone, start_page, end_page, migratetype);
784}
785
786/* Remove an element from the buddy allocator from the fallback list */
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
789{
790	struct free_area * area;
791	int current_order;
792	struct page *page;
793	int migratetype, i;
794
795	/* Find the largest possible block of pages in the other list */
796	for (current_order = MAX_ORDER-1; current_order >= order;
797						--current_order) {
798		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799			migratetype = fallbacks[start_migratetype][i];
800
801			/* MIGRATE_RESERVE handled later if necessary */
802			if (migratetype == MIGRATE_RESERVE)
803				continue;
804
805			area = &(zone->free_area[current_order]);
806			if (list_empty(&area->free_list[migratetype]))
807				continue;
808
809			page = list_entry(area->free_list[migratetype].next,
810					struct page, lru);
811			area->nr_free--;
812
813			/*
814			 * If breaking a large block of pages, move all free
815			 * pages to the preferred allocation list. If falling
816			 * back for a reclaimable kernel allocation, be more
817			 * agressive about taking ownership of free pages
818			 */
819			if (unlikely(current_order >= (pageblock_order >> 1)) ||
820					start_migratetype == MIGRATE_RECLAIMABLE ||
821					page_group_by_mobility_disabled) {
822				unsigned long pages;
823				pages = move_freepages_block(zone, page,
824								start_migratetype);
825
826				/* Claim the whole block if over half of it is free */
827				if (pages >= (1 << (pageblock_order-1)) ||
828						page_group_by_mobility_disabled)
829					set_pageblock_migratetype(page,
830								start_migratetype);
831
832				migratetype = start_migratetype;
833			}
834
835			/* Remove the page from the freelists */
836			list_del(&page->lru);
837			rmv_page_order(page);
838
839			if (current_order == pageblock_order)
840				set_pageblock_migratetype(page,
841							start_migratetype);
842
843			expand(zone, page, order, current_order, area, migratetype);
844			return page;
845		}
846	}
847
848	return NULL;
849}
850
851/*
852 * Do the hard work of removing an element from the buddy allocator.
853 * Call me with the zone->lock already held.
854 */
855static struct page *__rmqueue(struct zone *zone, unsigned int order,
856						int migratetype)
857{
858	struct page *page;
859
860retry_reserve:
861	page = __rmqueue_smallest(zone, order, migratetype);
862
863	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
864		page = __rmqueue_fallback(zone, order, migratetype);
865
866		/*
867		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
868		 * is used because __rmqueue_smallest is an inline function
869		 * and we want just one call site
870		 */
871		if (!page) {
872			migratetype = MIGRATE_RESERVE;
873			goto retry_reserve;
874		}
875	}
876
877	return page;
878}
879
880/*
881 * Obtain a specified number of elements from the buddy allocator, all under
882 * a single hold of the lock, for efficiency.  Add them to the supplied list.
883 * Returns the number of new pages which were placed at *list.
884 */
885static int rmqueue_bulk(struct zone *zone, unsigned int order,
886			unsigned long count, struct list_head *list,
887			int migratetype, int cold)
888{
889	int i;
890
891	spin_lock(&zone->lock);
892	for (i = 0; i < count; ++i) {
893		struct page *page = __rmqueue(zone, order, migratetype);
894		if (unlikely(page == NULL))
895			break;
896
897		/*
898		 * Split buddy pages returned by expand() are received here
899		 * in physical page order. The page is added to the callers and
900		 * list and the list head then moves forward. From the callers
901		 * perspective, the linked list is ordered by page number in
902		 * some conditions. This is useful for IO devices that can
903		 * merge IO requests if the physical pages are ordered
904		 * properly.
905		 */
906		if (likely(cold == 0))
907			list_add(&page->lru, list);
908		else
909			list_add_tail(&page->lru, list);
910		set_page_private(page, migratetype);
911		list = &page->lru;
912	}
913	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
914	spin_unlock(&zone->lock);
915	return i;
916}
917
918#ifdef CONFIG_NUMA
919/*
920 * Called from the vmstat counter updater to drain pagesets of this
921 * currently executing processor on remote nodes after they have
922 * expired.
923 *
924 * Note that this function must be called with the thread pinned to
925 * a single processor.
926 */
927void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
928{
929	unsigned long flags;
930	int to_drain;
931
932	local_irq_save(flags);
933	if (pcp->count >= pcp->batch)
934		to_drain = pcp->batch;
935	else
936		to_drain = pcp->count;
937	free_pages_bulk(zone, to_drain, &pcp->list, 0);
938	pcp->count -= to_drain;
939	local_irq_restore(flags);
940}
941#endif
942
943/*
944 * Drain pages of the indicated processor.
945 *
946 * The processor must either be the current processor and the
947 * thread pinned to the current processor or a processor that
948 * is not online.
949 */
950static void drain_pages(unsigned int cpu)
951{
952	unsigned long flags;
953	struct zone *zone;
954
955	for_each_populated_zone(zone) {
956		struct per_cpu_pageset *pset;
957		struct per_cpu_pages *pcp;
958
959		pset = zone_pcp(zone, cpu);
960
961		pcp = &pset->pcp;
962		local_irq_save(flags);
963		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
964		pcp->count = 0;
965		local_irq_restore(flags);
966	}
967}
968
969/*
970 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
971 */
972void drain_local_pages(void *arg)
973{
974	drain_pages(smp_processor_id());
975}
976
977/*
978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
979 */
980void drain_all_pages(void)
981{
982	on_each_cpu(drain_local_pages, NULL, 1);
983}
984
985#ifdef CONFIG_HIBERNATION
986
987void mark_free_pages(struct zone *zone)
988{
989	unsigned long pfn, max_zone_pfn;
990	unsigned long flags;
991	int order, t;
992	struct list_head *curr;
993
994	if (!zone->spanned_pages)
995		return;
996
997	spin_lock_irqsave(&zone->lock, flags);
998
999	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1000	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1001		if (pfn_valid(pfn)) {
1002			struct page *page = pfn_to_page(pfn);
1003
1004			if (!swsusp_page_is_forbidden(page))
1005				swsusp_unset_page_free(page);
1006		}
1007
1008	for_each_migratetype_order(order, t) {
1009		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1010			unsigned long i;
1011
1012			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1013			for (i = 0; i < (1UL << order); i++)
1014				swsusp_set_page_free(pfn_to_page(pfn + i));
1015		}
1016	}
1017	spin_unlock_irqrestore(&zone->lock, flags);
1018}
1019#endif /* CONFIG_PM */
1020
1021/*
1022 * Free a 0-order page
1023 */
1024static void free_hot_cold_page(struct page *page, int cold)
1025{
1026	struct zone *zone = page_zone(page);
1027	struct per_cpu_pages *pcp;
1028	unsigned long flags;
1029	int wasMlocked = TestClearPageMlocked(page);
1030
1031	kmemcheck_free_shadow(page, 0);
1032
1033	if (PageAnon(page))
1034		page->mapping = NULL;
1035	if (free_pages_check(page))
1036		return;
1037
1038	if (!PageHighMem(page)) {
1039		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1040		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1041	}
1042	arch_free_page(page, 0);
1043	kernel_map_pages(page, 1, 0);
1044
1045	pcp = &zone_pcp(zone, get_cpu())->pcp;
1046	set_page_private(page, get_pageblock_migratetype(page));
1047	local_irq_save(flags);
1048	if (unlikely(wasMlocked))
1049		free_page_mlock(page);
1050	__count_vm_event(PGFREE);
1051
1052	if (cold)
1053		list_add_tail(&page->lru, &pcp->list);
1054	else
1055		list_add(&page->lru, &pcp->list);
1056	pcp->count++;
1057	if (pcp->count >= pcp->high) {
1058		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1059		pcp->count -= pcp->batch;
1060	}
1061	local_irq_restore(flags);
1062	put_cpu();
1063}
1064
1065void free_hot_page(struct page *page)
1066{
1067	free_hot_cold_page(page, 0);
1068}
1069
1070void free_cold_page(struct page *page)
1071{
1072	free_hot_cold_page(page, 1);
1073}
1074
1075/*
1076 * split_page takes a non-compound higher-order page, and splits it into
1077 * n (1<<order) sub-pages: page[0..n]
1078 * Each sub-page must be freed individually.
1079 *
1080 * Note: this is probably too low level an operation for use in drivers.
1081 * Please consult with lkml before using this in your driver.
1082 */
1083void split_page(struct page *page, unsigned int order)
1084{
1085	int i;
1086
1087	VM_BUG_ON(PageCompound(page));
1088	VM_BUG_ON(!page_count(page));
1089
1090#ifdef CONFIG_KMEMCHECK
1091	/*
1092	 * Split shadow pages too, because free(page[0]) would
1093	 * otherwise free the whole shadow.
1094	 */
1095	if (kmemcheck_page_is_tracked(page))
1096		split_page(virt_to_page(page[0].shadow), order);
1097#endif
1098
1099	for (i = 1; i < (1 << order); i++)
1100		set_page_refcounted(page + i);
1101}
1102
1103/*
1104 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1105 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1106 * or two.
1107 */
1108static inline
1109struct page *buffered_rmqueue(struct zone *preferred_zone,
1110			struct zone *zone, int order, gfp_t gfp_flags,
1111			int migratetype)
1112{
1113	unsigned long flags;
1114	struct page *page;
1115	int cold = !!(gfp_flags & __GFP_COLD);
1116	int cpu;
1117
1118again:
1119	cpu  = get_cpu();
1120	if (likely(order == 0)) {
1121		struct per_cpu_pages *pcp;
1122
1123		pcp = &zone_pcp(zone, cpu)->pcp;
1124		local_irq_save(flags);
1125		if (!pcp->count) {
1126			pcp->count = rmqueue_bulk(zone, 0,
1127					pcp->batch, &pcp->list,
1128					migratetype, cold);
1129			if (unlikely(!pcp->count))
1130				goto failed;
1131		}
1132
1133		/* Find a page of the appropriate migrate type */
1134		if (cold) {
1135			list_for_each_entry_reverse(page, &pcp->list, lru)
1136				if (page_private(page) == migratetype)
1137					break;
1138		} else {
1139			list_for_each_entry(page, &pcp->list, lru)
1140				if (page_private(page) == migratetype)
1141					break;
1142		}
1143
1144		/* Allocate more to the pcp list if necessary */
1145		if (unlikely(&page->lru == &pcp->list)) {
1146			int get_one_page = 0;
1147
1148			pcp->count += rmqueue_bulk(zone, 0,
1149					pcp->batch, &pcp->list,
1150					migratetype, cold);
1151			list_for_each_entry(page, &pcp->list, lru) {
1152				if (get_pageblock_migratetype(page) !=
1153					    MIGRATE_ISOLATE) {
1154					get_one_page = 1;
1155					break;
1156				}
1157			}
1158			if (!get_one_page)
1159				goto failed;
1160		}
1161
1162		list_del(&page->lru);
1163		pcp->count--;
1164	} else {
1165		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1166			/*
1167			 * __GFP_NOFAIL is not to be used in new code.
1168			 *
1169			 * All __GFP_NOFAIL callers should be fixed so that they
1170			 * properly detect and handle allocation failures.
1171			 *
1172			 * We most definitely don't want callers attempting to
1173			 * allocate greater than order-1 page units with
1174			 * __GFP_NOFAIL.
1175			 */
1176			WARN_ON_ONCE(order > 1);
1177		}
1178		spin_lock_irqsave(&zone->lock, flags);
1179		page = __rmqueue(zone, order, migratetype);
1180		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1181		spin_unlock(&zone->lock);
1182		if (!page)
1183			goto failed;
1184	}
1185
1186	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1187	zone_statistics(preferred_zone, zone);
1188	local_irq_restore(flags);
1189	put_cpu();
1190
1191	VM_BUG_ON(bad_range(zone, page));
1192	if (prep_new_page(page, order, gfp_flags))
1193		goto again;
1194	return page;
1195
1196failed:
1197	local_irq_restore(flags);
1198	put_cpu();
1199	return NULL;
1200}
1201
1202/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1203#define ALLOC_WMARK_MIN		WMARK_MIN
1204#define ALLOC_WMARK_LOW		WMARK_LOW
1205#define ALLOC_WMARK_HIGH	WMARK_HIGH
1206#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1207
1208/* Mask to get the watermark bits */
1209#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1210
1211#define ALLOC_HARDER		0x10 /* try to alloc harder */
1212#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1213#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1214
1215#ifdef CONFIG_FAIL_PAGE_ALLOC
1216
1217static struct fail_page_alloc_attr {
1218	struct fault_attr attr;
1219
1220	u32 ignore_gfp_highmem;
1221	u32 ignore_gfp_wait;
1222	u32 min_order;
1223
1224#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1225
1226	struct dentry *ignore_gfp_highmem_file;
1227	struct dentry *ignore_gfp_wait_file;
1228	struct dentry *min_order_file;
1229
1230#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1231
1232} fail_page_alloc = {
1233	.attr = FAULT_ATTR_INITIALIZER,
1234	.ignore_gfp_wait = 1,
1235	.ignore_gfp_highmem = 1,
1236	.min_order = 1,
1237};
1238
1239static int __init setup_fail_page_alloc(char *str)
1240{
1241	return setup_fault_attr(&fail_page_alloc.attr, str);
1242}
1243__setup("fail_page_alloc=", setup_fail_page_alloc);
1244
1245static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1246{
1247	if (order < fail_page_alloc.min_order)
1248		return 0;
1249	if (gfp_mask & __GFP_NOFAIL)
1250		return 0;
1251	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1252		return 0;
1253	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1254		return 0;
1255
1256	return should_fail(&fail_page_alloc.attr, 1 << order);
1257}
1258
1259#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1260
1261static int __init fail_page_alloc_debugfs(void)
1262{
1263	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1264	struct dentry *dir;
1265	int err;
1266
1267	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1268				       "fail_page_alloc");
1269	if (err)
1270		return err;
1271	dir = fail_page_alloc.attr.dentries.dir;
1272
1273	fail_page_alloc.ignore_gfp_wait_file =
1274		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1275				      &fail_page_alloc.ignore_gfp_wait);
1276
1277	fail_page_alloc.ignore_gfp_highmem_file =
1278		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1279				      &fail_page_alloc.ignore_gfp_highmem);
1280	fail_page_alloc.min_order_file =
1281		debugfs_create_u32("min-order", mode, dir,
1282				   &fail_page_alloc.min_order);
1283
1284	if (!fail_page_alloc.ignore_gfp_wait_file ||
1285            !fail_page_alloc.ignore_gfp_highmem_file ||
1286            !fail_page_alloc.min_order_file) {
1287		err = -ENOMEM;
1288		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1289		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1290		debugfs_remove(fail_page_alloc.min_order_file);
1291		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1292	}
1293
1294	return err;
1295}
1296
1297late_initcall(fail_page_alloc_debugfs);
1298
1299#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1300
1301#else /* CONFIG_FAIL_PAGE_ALLOC */
1302
1303static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1304{
1305	return 0;
1306}
1307
1308#endif /* CONFIG_FAIL_PAGE_ALLOC */
1309
1310/*
1311 * Return 1 if free pages are above 'mark'. This takes into account the order
1312 * of the allocation.
1313 */
1314int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1315		      int classzone_idx, int alloc_flags)
1316{
1317	/* free_pages my go negative - that's OK */
1318	long min = mark;
1319	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1320	int o;
1321
1322	if (alloc_flags & ALLOC_HIGH)
1323		min -= min / 2;
1324	if (alloc_flags & ALLOC_HARDER)
1325		min -= min / 4;
1326
1327	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1328		return 0;
1329	for (o = 0; o < order; o++) {
1330		/* At the next order, this order's pages become unavailable */
1331		free_pages -= z->free_area[o].nr_free << o;
1332
1333		/* Require fewer higher order pages to be free */
1334		min >>= 1;
1335
1336		if (free_pages <= min)
1337			return 0;
1338	}
1339	return 1;
1340}
1341
1342#ifdef CONFIG_NUMA
1343/*
1344 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1345 * skip over zones that are not allowed by the cpuset, or that have
1346 * been recently (in last second) found to be nearly full.  See further
1347 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1348 * that have to skip over a lot of full or unallowed zones.
1349 *
1350 * If the zonelist cache is present in the passed in zonelist, then
1351 * returns a pointer to the allowed node mask (either the current
1352 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1353 *
1354 * If the zonelist cache is not available for this zonelist, does
1355 * nothing and returns NULL.
1356 *
1357 * If the fullzones BITMAP in the zonelist cache is stale (more than
1358 * a second since last zap'd) then we zap it out (clear its bits.)
1359 *
1360 * We hold off even calling zlc_setup, until after we've checked the
1361 * first zone in the zonelist, on the theory that most allocations will
1362 * be satisfied from that first zone, so best to examine that zone as
1363 * quickly as we can.
1364 */
1365static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366{
1367	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1368	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1369
1370	zlc = zonelist->zlcache_ptr;
1371	if (!zlc)
1372		return NULL;
1373
1374	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1375		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1376		zlc->last_full_zap = jiffies;
1377	}
1378
1379	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1380					&cpuset_current_mems_allowed :
1381					&node_states[N_HIGH_MEMORY];
1382	return allowednodes;
1383}
1384
1385/*
1386 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1387 * if it is worth looking at further for free memory:
1388 *  1) Check that the zone isn't thought to be full (doesn't have its
1389 *     bit set in the zonelist_cache fullzones BITMAP).
1390 *  2) Check that the zones node (obtained from the zonelist_cache
1391 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1392 * Return true (non-zero) if zone is worth looking at further, or
1393 * else return false (zero) if it is not.
1394 *
1395 * This check -ignores- the distinction between various watermarks,
1396 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1397 * found to be full for any variation of these watermarks, it will
1398 * be considered full for up to one second by all requests, unless
1399 * we are so low on memory on all allowed nodes that we are forced
1400 * into the second scan of the zonelist.
1401 *
1402 * In the second scan we ignore this zonelist cache and exactly
1403 * apply the watermarks to all zones, even it is slower to do so.
1404 * We are low on memory in the second scan, and should leave no stone
1405 * unturned looking for a free page.
1406 */
1407static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1408						nodemask_t *allowednodes)
1409{
1410	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1411	int i;				/* index of *z in zonelist zones */
1412	int n;				/* node that zone *z is on */
1413
1414	zlc = zonelist->zlcache_ptr;
1415	if (!zlc)
1416		return 1;
1417
1418	i = z - zonelist->_zonerefs;
1419	n = zlc->z_to_n[i];
1420
1421	/* This zone is worth trying if it is allowed but not full */
1422	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1423}
1424
1425/*
1426 * Given 'z' scanning a zonelist, set the corresponding bit in
1427 * zlc->fullzones, so that subsequent attempts to allocate a page
1428 * from that zone don't waste time re-examining it.
1429 */
1430static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1431{
1432	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1433	int i;				/* index of *z in zonelist zones */
1434
1435	zlc = zonelist->zlcache_ptr;
1436	if (!zlc)
1437		return;
1438
1439	i = z - zonelist->_zonerefs;
1440
1441	set_bit(i, zlc->fullzones);
1442}
1443
1444#else	/* CONFIG_NUMA */
1445
1446static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1447{
1448	return NULL;
1449}
1450
1451static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1452				nodemask_t *allowednodes)
1453{
1454	return 1;
1455}
1456
1457static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1458{
1459}
1460#endif	/* CONFIG_NUMA */
1461
1462/*
1463 * get_page_from_freelist goes through the zonelist trying to allocate
1464 * a page.
1465 */
1466static struct page *
1467get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1468		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1469		struct zone *preferred_zone, int migratetype)
1470{
1471	struct zoneref *z;
1472	struct page *page = NULL;
1473	int classzone_idx;
1474	struct zone *zone;
1475	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1476	int zlc_active = 0;		/* set if using zonelist_cache */
1477	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1478
1479	classzone_idx = zone_idx(preferred_zone);
1480zonelist_scan:
1481	/*
1482	 * Scan zonelist, looking for a zone with enough free.
1483	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1484	 */
1485	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1486						high_zoneidx, nodemask) {
1487		if (NUMA_BUILD && zlc_active &&
1488			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1489				continue;
1490		if ((alloc_flags & ALLOC_CPUSET) &&
1491			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1492				goto try_next_zone;
1493
1494		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1495		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1496			unsigned long mark;
1497			int ret;
1498
1499			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1500			if (zone_watermark_ok(zone, order, mark,
1501				    classzone_idx, alloc_flags))
1502				goto try_this_zone;
1503
1504			if (zone_reclaim_mode == 0)
1505				goto this_zone_full;
1506
1507			ret = zone_reclaim(zone, gfp_mask, order);
1508			switch (ret) {
1509			case ZONE_RECLAIM_NOSCAN:
1510				/* did not scan */
1511				goto try_next_zone;
1512			case ZONE_RECLAIM_FULL:
1513				/* scanned but unreclaimable */
1514				goto this_zone_full;
1515			default:
1516				/* did we reclaim enough */
1517				if (!zone_watermark_ok(zone, order, mark,
1518						classzone_idx, alloc_flags))
1519					goto this_zone_full;
1520			}
1521		}
1522
1523try_this_zone:
1524		page = buffered_rmqueue(preferred_zone, zone, order,
1525						gfp_mask, migratetype);
1526		if (page)
1527			break;
1528this_zone_full:
1529		if (NUMA_BUILD)
1530			zlc_mark_zone_full(zonelist, z);
1531try_next_zone:
1532		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1533			/*
1534			 * we do zlc_setup after the first zone is tried but only
1535			 * if there are multiple nodes make it worthwhile
1536			 */
1537			allowednodes = zlc_setup(zonelist, alloc_flags);
1538			zlc_active = 1;
1539			did_zlc_setup = 1;
1540		}
1541	}
1542
1543	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1544		/* Disable zlc cache for second zonelist scan */
1545		zlc_active = 0;
1546		goto zonelist_scan;
1547	}
1548	return page;
1549}
1550
1551static inline int
1552should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1553				unsigned long pages_reclaimed)
1554{
1555	/* Do not loop if specifically requested */
1556	if (gfp_mask & __GFP_NORETRY)
1557		return 0;
1558
1559	/*
1560	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1561	 * means __GFP_NOFAIL, but that may not be true in other
1562	 * implementations.
1563	 */
1564	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1565		return 1;
1566
1567	/*
1568	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1569	 * specified, then we retry until we no longer reclaim any pages
1570	 * (above), or we've reclaimed an order of pages at least as
1571	 * large as the allocation's order. In both cases, if the
1572	 * allocation still fails, we stop retrying.
1573	 */
1574	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1575		return 1;
1576
1577	/*
1578	 * Don't let big-order allocations loop unless the caller
1579	 * explicitly requests that.
1580	 */
1581	if (gfp_mask & __GFP_NOFAIL)
1582		return 1;
1583
1584	return 0;
1585}
1586
1587static inline struct page *
1588__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1589	struct zonelist *zonelist, enum zone_type high_zoneidx,
1590	nodemask_t *nodemask, struct zone *preferred_zone,
1591	int migratetype)
1592{
1593	struct page *page;
1594
1595	/* Acquire the OOM killer lock for the zones in zonelist */
1596	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1597		schedule_timeout_uninterruptible(1);
1598		return NULL;
1599	}
1600
1601	/*
1602	 * Go through the zonelist yet one more time, keep very high watermark
1603	 * here, this is only to catch a parallel oom killing, we must fail if
1604	 * we're still under heavy pressure.
1605	 */
1606	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1607		order, zonelist, high_zoneidx,
1608		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1609		preferred_zone, migratetype);
1610	if (page)
1611		goto out;
1612
1613	/* The OOM killer will not help higher order allocs */
1614	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1615		goto out;
1616
1617	/* Exhausted what can be done so it's blamo time */
1618	out_of_memory(zonelist, gfp_mask, order);
1619
1620out:
1621	clear_zonelist_oom(zonelist, gfp_mask);
1622	return page;
1623}
1624
1625/* The really slow allocator path where we enter direct reclaim */
1626static inline struct page *
1627__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1628	struct zonelist *zonelist, enum zone_type high_zoneidx,
1629	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1630	int migratetype, unsigned long *did_some_progress)
1631{
1632	struct page *page = NULL;
1633	struct reclaim_state reclaim_state;
1634	struct task_struct *p = current;
1635
1636	cond_resched();
1637
1638	/* We now go into synchronous reclaim */
1639	cpuset_memory_pressure_bump();
1640	p->flags |= PF_MEMALLOC;
1641	lockdep_set_current_reclaim_state(gfp_mask);
1642	reclaim_state.reclaimed_slab = 0;
1643	p->reclaim_state = &reclaim_state;
1644
1645	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1646
1647	p->reclaim_state = NULL;
1648	lockdep_clear_current_reclaim_state();
1649	p->flags &= ~PF_MEMALLOC;
1650
1651	cond_resched();
1652
1653	if (order != 0)
1654		drain_all_pages();
1655
1656	if (likely(*did_some_progress))
1657		page = get_page_from_freelist(gfp_mask, nodemask, order,
1658					zonelist, high_zoneidx,
1659					alloc_flags, preferred_zone,
1660					migratetype);
1661	return page;
1662}
1663
1664/*
1665 * This is called in the allocator slow-path if the allocation request is of
1666 * sufficient urgency to ignore watermarks and take other desperate measures
1667 */
1668static inline struct page *
1669__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1670	struct zonelist *zonelist, enum zone_type high_zoneidx,
1671	nodemask_t *nodemask, struct zone *preferred_zone,
1672	int migratetype)
1673{
1674	struct page *page;
1675
1676	do {
1677		page = get_page_from_freelist(gfp_mask, nodemask, order,
1678			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1679			preferred_zone, migratetype);
1680
1681		if (!page && gfp_mask & __GFP_NOFAIL)
1682			congestion_wait(BLK_RW_ASYNC, HZ/50);
1683	} while (!page && (gfp_mask & __GFP_NOFAIL));
1684
1685	return page;
1686}
1687
1688static inline
1689void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1690						enum zone_type high_zoneidx)
1691{
1692	struct zoneref *z;
1693	struct zone *zone;
1694
1695	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1696		wakeup_kswapd(zone, order);
1697}
1698
1699static inline int
1700gfp_to_alloc_flags(gfp_t gfp_mask)
1701{
1702	struct task_struct *p = current;
1703	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1704	const gfp_t wait = gfp_mask & __GFP_WAIT;
1705
1706	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1707	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1708
1709	/*
1710	 * The caller may dip into page reserves a bit more if the caller
1711	 * cannot run direct reclaim, or if the caller has realtime scheduling
1712	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1713	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1714	 */
1715	alloc_flags |= (gfp_mask & __GFP_HIGH);
1716
1717	if (!wait) {
1718		alloc_flags |= ALLOC_HARDER;
1719		/*
1720		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1721		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1722		 */
1723		alloc_flags &= ~ALLOC_CPUSET;
1724	} else if (unlikely(rt_task(p)))
1725		alloc_flags |= ALLOC_HARDER;
1726
1727	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1728		if (!in_interrupt() &&
1729		    ((p->flags & PF_MEMALLOC) ||
1730		     unlikely(test_thread_flag(TIF_MEMDIE))))
1731			alloc_flags |= ALLOC_NO_WATERMARKS;
1732	}
1733
1734	return alloc_flags;
1735}
1736
1737static inline struct page *
1738__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1739	struct zonelist *zonelist, enum zone_type high_zoneidx,
1740	nodemask_t *nodemask, struct zone *preferred_zone,
1741	int migratetype)
1742{
1743	const gfp_t wait = gfp_mask & __GFP_WAIT;
1744	struct page *page = NULL;
1745	int alloc_flags;
1746	unsigned long pages_reclaimed = 0;
1747	unsigned long did_some_progress;
1748	struct task_struct *p = current;
1749
1750	/*
1751	 * In the slowpath, we sanity check order to avoid ever trying to
1752	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1753	 * be using allocators in order of preference for an area that is
1754	 * too large.
1755	 */
1756	if (order >= MAX_ORDER) {
1757		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1758		return NULL;
1759	}
1760
1761	/*
1762	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1763	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1764	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1765	 * using a larger set of nodes after it has established that the
1766	 * allowed per node queues are empty and that nodes are
1767	 * over allocated.
1768	 */
1769	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1770		goto nopage;
1771
1772	wake_all_kswapd(order, zonelist, high_zoneidx);
1773
1774restart:
1775	/*
1776	 * OK, we're below the kswapd watermark and have kicked background
1777	 * reclaim. Now things get more complex, so set up alloc_flags according
1778	 * to how we want to proceed.
1779	 */
1780	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1781
1782	/* This is the last chance, in general, before the goto nopage. */
1783	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1784			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1785			preferred_zone, migratetype);
1786	if (page)
1787		goto got_pg;
1788
1789rebalance:
1790	/* Allocate without watermarks if the context allows */
1791	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1792		page = __alloc_pages_high_priority(gfp_mask, order,
1793				zonelist, high_zoneidx, nodemask,
1794				preferred_zone, migratetype);
1795		if (page)
1796			goto got_pg;
1797	}
1798
1799	/* Atomic allocations - we can't balance anything */
1800	if (!wait)
1801		goto nopage;
1802
1803	/* Avoid recursion of direct reclaim */
1804	if (p->flags & PF_MEMALLOC)
1805		goto nopage;
1806
1807	/* Avoid allocations with no watermarks from looping endlessly */
1808	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1809		goto nopage;
1810
1811	/* Try direct reclaim and then allocating */
1812	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1813					zonelist, high_zoneidx,
1814					nodemask,
1815					alloc_flags, preferred_zone,
1816					migratetype, &did_some_progress);
1817	if (page)
1818		goto got_pg;
1819
1820	/*
1821	 * If we failed to make any progress reclaiming, then we are
1822	 * running out of options and have to consider going OOM
1823	 */
1824	if (!did_some_progress) {
1825		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1826			if (oom_killer_disabled)
1827				goto nopage;
1828			page = __alloc_pages_may_oom(gfp_mask, order,
1829					zonelist, high_zoneidx,
1830					nodemask, preferred_zone,
1831					migratetype);
1832			if (page)
1833				goto got_pg;
1834
1835			/*
1836			 * The OOM killer does not trigger for high-order
1837			 * ~__GFP_NOFAIL allocations so if no progress is being
1838			 * made, there are no other options and retrying is
1839			 * unlikely to help.
1840			 */
1841			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1842						!(gfp_mask & __GFP_NOFAIL))
1843				goto nopage;
1844
1845			goto restart;
1846		}
1847	}
1848
1849	/* Check if we should retry the allocation */
1850	pages_reclaimed += did_some_progress;
1851	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1852		/* Wait for some write requests to complete then retry */
1853		congestion_wait(BLK_RW_ASYNC, HZ/50);
1854		goto rebalance;
1855	}
1856
1857nopage:
1858	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1859		printk(KERN_WARNING "%s: page allocation failure."
1860			" order:%d, mode:0x%x\n",
1861			p->comm, order, gfp_mask);
1862		dump_stack();
1863		show_mem();
1864	}
1865	return page;
1866got_pg:
1867	if (kmemcheck_enabled)
1868		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1869	return page;
1870
1871}
1872
1873/*
1874 * This is the 'heart' of the zoned buddy allocator.
1875 */
1876struct page *
1877__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1878			struct zonelist *zonelist, nodemask_t *nodemask)
1879{
1880	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1881	struct zone *preferred_zone;
1882	struct page *page;
1883	int migratetype = allocflags_to_migratetype(gfp_mask);
1884
1885	gfp_mask &= gfp_allowed_mask;
1886
1887	lockdep_trace_alloc(gfp_mask);
1888
1889	might_sleep_if(gfp_mask & __GFP_WAIT);
1890
1891	if (should_fail_alloc_page(gfp_mask, order))
1892		return NULL;
1893
1894	/*
1895	 * Check the zones suitable for the gfp_mask contain at least one
1896	 * valid zone. It's possible to have an empty zonelist as a result
1897	 * of GFP_THISNODE and a memoryless node
1898	 */
1899	if (unlikely(!zonelist->_zonerefs->zone))
1900		return NULL;
1901
1902	/* The preferred zone is used for statistics later */
1903	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1904	if (!preferred_zone)
1905		return NULL;
1906
1907	/* First allocation attempt */
1908	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1909			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1910			preferred_zone, migratetype);
1911	if (unlikely(!page))
1912		page = __alloc_pages_slowpath(gfp_mask, order,
1913				zonelist, high_zoneidx, nodemask,
1914				preferred_zone, migratetype);
1915
1916	return page;
1917}
1918EXPORT_SYMBOL(__alloc_pages_nodemask);
1919
1920/*
1921 * Common helper functions.
1922 */
1923unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1924{
1925	struct page *page;
1926
1927	/*
1928	 * __get_free_pages() returns a 32-bit address, which cannot represent
1929	 * a highmem page
1930	 */
1931	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1932
1933	page = alloc_pages(gfp_mask, order);
1934	if (!page)
1935		return 0;
1936	return (unsigned long) page_address(page);
1937}
1938EXPORT_SYMBOL(__get_free_pages);
1939
1940unsigned long get_zeroed_page(gfp_t gfp_mask)
1941{
1942	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1943}
1944EXPORT_SYMBOL(get_zeroed_page);
1945
1946void __pagevec_free(struct pagevec *pvec)
1947{
1948	int i = pagevec_count(pvec);
1949
1950	while (--i >= 0)
1951		free_hot_cold_page(pvec->pages[i], pvec->cold);
1952}
1953
1954void __free_pages(struct page *page, unsigned int order)
1955{
1956	if (put_page_testzero(page)) {
1957		if (order == 0)
1958			free_hot_page(page);
1959		else
1960			__free_pages_ok(page, order);
1961	}
1962}
1963
1964EXPORT_SYMBOL(__free_pages);
1965
1966void free_pages(unsigned long addr, unsigned int order)
1967{
1968	if (addr != 0) {
1969		VM_BUG_ON(!virt_addr_valid((void *)addr));
1970		__free_pages(virt_to_page((void *)addr), order);
1971	}
1972}
1973
1974EXPORT_SYMBOL(free_pages);
1975
1976/**
1977 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1978 * @size: the number of bytes to allocate
1979 * @gfp_mask: GFP flags for the allocation
1980 *
1981 * This function is similar to alloc_pages(), except that it allocates the
1982 * minimum number of pages to satisfy the request.  alloc_pages() can only
1983 * allocate memory in power-of-two pages.
1984 *
1985 * This function is also limited by MAX_ORDER.
1986 *
1987 * Memory allocated by this function must be released by free_pages_exact().
1988 */
1989void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1990{
1991	unsigned int order = get_order(size);
1992	unsigned long addr;
1993
1994	addr = __get_free_pages(gfp_mask, order);
1995	if (addr) {
1996		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1997		unsigned long used = addr + PAGE_ALIGN(size);
1998
1999		split_page(virt_to_page((void *)addr), order);
2000		while (used < alloc_end) {
2001			free_page(used);
2002			used += PAGE_SIZE;
2003		}
2004	}
2005
2006	return (void *)addr;
2007}
2008EXPORT_SYMBOL(alloc_pages_exact);
2009
2010/**
2011 * free_pages_exact - release memory allocated via alloc_pages_exact()
2012 * @virt: the value returned by alloc_pages_exact.
2013 * @size: size of allocation, same value as passed to alloc_pages_exact().
2014 *
2015 * Release the memory allocated by a previous call to alloc_pages_exact.
2016 */
2017void free_pages_exact(void *virt, size_t size)
2018{
2019	unsigned long addr = (unsigned long)virt;
2020	unsigned long end = addr + PAGE_ALIGN(size);
2021
2022	while (addr < end) {
2023		free_page(addr);
2024		addr += PAGE_SIZE;
2025	}
2026}
2027EXPORT_SYMBOL(free_pages_exact);
2028
2029static unsigned int nr_free_zone_pages(int offset)
2030{
2031	struct zoneref *z;
2032	struct zone *zone;
2033
2034	/* Just pick one node, since fallback list is circular */
2035	unsigned int sum = 0;
2036
2037	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2038
2039	for_each_zone_zonelist(zone, z, zonelist, offset) {
2040		unsigned long size = zone->present_pages;
2041		unsigned long high = high_wmark_pages(zone);
2042		if (size > high)
2043			sum += size - high;
2044	}
2045
2046	return sum;
2047}
2048
2049/*
2050 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2051 */
2052unsigned int nr_free_buffer_pages(void)
2053{
2054	return nr_free_zone_pages(gfp_zone(GFP_USER));
2055}
2056EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2057
2058/*
2059 * Amount of free RAM allocatable within all zones
2060 */
2061unsigned int nr_free_pagecache_pages(void)
2062{
2063	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2064}
2065
2066static inline void show_node(struct zone *zone)
2067{
2068	if (NUMA_BUILD)
2069		printk("Node %d ", zone_to_nid(zone));
2070}
2071
2072void si_meminfo(struct sysinfo *val)
2073{
2074	val->totalram = totalram_pages;
2075	val->sharedram = 0;
2076	val->freeram = global_page_state(NR_FREE_PAGES);
2077	val->bufferram = nr_blockdev_pages();
2078	val->totalhigh = totalhigh_pages;
2079	val->freehigh = nr_free_highpages();
2080	val->mem_unit = PAGE_SIZE;
2081}
2082
2083EXPORT_SYMBOL(si_meminfo);
2084
2085#ifdef CONFIG_NUMA
2086void si_meminfo_node(struct sysinfo *val, int nid)
2087{
2088	pg_data_t *pgdat = NODE_DATA(nid);
2089
2090	val->totalram = pgdat->node_present_pages;
2091	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2092#ifdef CONFIG_HIGHMEM
2093	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2094	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2095			NR_FREE_PAGES);
2096#else
2097	val->totalhigh = 0;
2098	val->freehigh = 0;
2099#endif
2100	val->mem_unit = PAGE_SIZE;
2101}
2102#endif
2103
2104#define K(x) ((x) << (PAGE_SHIFT-10))
2105
2106/*
2107 * Show free area list (used inside shift_scroll-lock stuff)
2108 * We also calculate the percentage fragmentation. We do this by counting the
2109 * memory on each free list with the exception of the first item on the list.
2110 */
2111void show_free_areas(void)
2112{
2113	int cpu;
2114	struct zone *zone;
2115
2116	for_each_populated_zone(zone) {
2117		show_node(zone);
2118		printk("%s per-cpu:\n", zone->name);
2119
2120		for_each_online_cpu(cpu) {
2121			struct per_cpu_pageset *pageset;
2122
2123			pageset = zone_pcp(zone, cpu);
2124
2125			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2126			       cpu, pageset->pcp.high,
2127			       pageset->pcp.batch, pageset->pcp.count);
2128		}
2129	}
2130
2131	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2132		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2133		" unevictable:%lu"
2134		" dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2135		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2136		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2137		global_page_state(NR_ACTIVE_ANON),
2138		global_page_state(NR_INACTIVE_ANON),
2139		global_page_state(NR_ISOLATED_ANON),
2140		global_page_state(NR_ACTIVE_FILE),
2141		global_page_state(NR_INACTIVE_FILE),
2142		global_page_state(NR_ISOLATED_FILE),
2143		global_page_state(NR_UNEVICTABLE),
2144		global_page_state(NR_FILE_DIRTY),
2145		global_page_state(NR_WRITEBACK),
2146		global_page_state(NR_UNSTABLE_NFS),
2147		nr_blockdev_pages(),
2148		global_page_state(NR_FREE_PAGES),
2149		global_page_state(NR_SLAB_RECLAIMABLE),
2150		global_page_state(NR_SLAB_UNRECLAIMABLE),
2151		global_page_state(NR_FILE_MAPPED),
2152		global_page_state(NR_SHMEM),
2153		global_page_state(NR_PAGETABLE),
2154		global_page_state(NR_BOUNCE));
2155
2156	for_each_populated_zone(zone) {
2157		int i;
2158
2159		show_node(zone);
2160		printk("%s"
2161			" free:%lukB"
2162			" min:%lukB"
2163			" low:%lukB"
2164			" high:%lukB"
2165			" active_anon:%lukB"
2166			" inactive_anon:%lukB"
2167			" active_file:%lukB"
2168			" inactive_file:%lukB"
2169			" unevictable:%lukB"
2170			" isolated(anon):%lukB"
2171			" isolated(file):%lukB"
2172			" present:%lukB"
2173			" mlocked:%lukB"
2174			" dirty:%lukB"
2175			" writeback:%lukB"
2176			" mapped:%lukB"
2177			" shmem:%lukB"
2178			" slab_reclaimable:%lukB"
2179			" slab_unreclaimable:%lukB"
2180			" kernel_stack:%lukB"
2181			" pagetables:%lukB"
2182			" unstable:%lukB"
2183			" bounce:%lukB"
2184			" writeback_tmp:%lukB"
2185			" pages_scanned:%lu"
2186			" all_unreclaimable? %s"
2187			"\n",
2188			zone->name,
2189			K(zone_page_state(zone, NR_FREE_PAGES)),
2190			K(min_wmark_pages(zone)),
2191			K(low_wmark_pages(zone)),
2192			K(high_wmark_pages(zone)),
2193			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2194			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2195			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2196			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2197			K(zone_page_state(zone, NR_UNEVICTABLE)),
2198			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2199			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2200			K(zone->present_pages),
2201			K(zone_page_state(zone, NR_MLOCK)),
2202			K(zone_page_state(zone, NR_FILE_DIRTY)),
2203			K(zone_page_state(zone, NR_WRITEBACK)),
2204			K(zone_page_state(zone, NR_FILE_MAPPED)),
2205			K(zone_page_state(zone, NR_SHMEM)),
2206			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2207			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2208			zone_page_state(zone, NR_KERNEL_STACK) *
2209				THREAD_SIZE / 1024,
2210			K(zone_page_state(zone, NR_PAGETABLE)),
2211			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2212			K(zone_page_state(zone, NR_BOUNCE)),
2213			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2214			zone->pages_scanned,
2215			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2216			);
2217		printk("lowmem_reserve[]:");
2218		for (i = 0; i < MAX_NR_ZONES; i++)
2219			printk(" %lu", zone->lowmem_reserve[i]);
2220		printk("\n");
2221	}
2222
2223	for_each_populated_zone(zone) {
2224 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2225
2226		show_node(zone);
2227		printk("%s: ", zone->name);
2228
2229		spin_lock_irqsave(&zone->lock, flags);
2230		for (order = 0; order < MAX_ORDER; order++) {
2231			nr[order] = zone->free_area[order].nr_free;
2232			total += nr[order] << order;
2233		}
2234		spin_unlock_irqrestore(&zone->lock, flags);
2235		for (order = 0; order < MAX_ORDER; order++)
2236			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2237		printk("= %lukB\n", K(total));
2238	}
2239
2240	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2241
2242	show_swap_cache_info();
2243}
2244
2245static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2246{
2247	zoneref->zone = zone;
2248	zoneref->zone_idx = zone_idx(zone);
2249}
2250
2251/*
2252 * Builds allocation fallback zone lists.
2253 *
2254 * Add all populated zones of a node to the zonelist.
2255 */
2256static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2257				int nr_zones, enum zone_type zone_type)
2258{
2259	struct zone *zone;
2260
2261	BUG_ON(zone_type >= MAX_NR_ZONES);
2262	zone_type++;
2263
2264	do {
2265		zone_type--;
2266		zone = pgdat->node_zones + zone_type;
2267		if (populated_zone(zone)) {
2268			zoneref_set_zone(zone,
2269				&zonelist->_zonerefs[nr_zones++]);
2270			check_highest_zone(zone_type);
2271		}
2272
2273	} while (zone_type);
2274	return nr_zones;
2275}
2276
2277
2278/*
2279 *  zonelist_order:
2280 *  0 = automatic detection of better ordering.
2281 *  1 = order by ([node] distance, -zonetype)
2282 *  2 = order by (-zonetype, [node] distance)
2283 *
2284 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2285 *  the same zonelist. So only NUMA can configure this param.
2286 */
2287#define ZONELIST_ORDER_DEFAULT  0
2288#define ZONELIST_ORDER_NODE     1
2289#define ZONELIST_ORDER_ZONE     2
2290
2291/* zonelist order in the kernel.
2292 * set_zonelist_order() will set this to NODE or ZONE.
2293 */
2294static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2295static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2296
2297
2298#ifdef CONFIG_NUMA
2299/* The value user specified ....changed by config */
2300static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2301/* string for sysctl */
2302#define NUMA_ZONELIST_ORDER_LEN	16
2303char numa_zonelist_order[16] = "default";
2304
2305/*
2306 * interface for configure zonelist ordering.
2307 * command line option "numa_zonelist_order"
2308 *	= "[dD]efault	- default, automatic configuration.
2309 *	= "[nN]ode 	- order by node locality, then by zone within node
2310 *	= "[zZ]one      - order by zone, then by locality within zone
2311 */
2312
2313static int __parse_numa_zonelist_order(char *s)
2314{
2315	if (*s == 'd' || *s == 'D') {
2316		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2317	} else if (*s == 'n' || *s == 'N') {
2318		user_zonelist_order = ZONELIST_ORDER_NODE;
2319	} else if (*s == 'z' || *s == 'Z') {
2320		user_zonelist_order = ZONELIST_ORDER_ZONE;
2321	} else {
2322		printk(KERN_WARNING
2323			"Ignoring invalid numa_zonelist_order value:  "
2324			"%s\n", s);
2325		return -EINVAL;
2326	}
2327	return 0;
2328}
2329
2330static __init int setup_numa_zonelist_order(char *s)
2331{
2332	if (s)
2333		return __parse_numa_zonelist_order(s);
2334	return 0;
2335}
2336early_param("numa_zonelist_order", setup_numa_zonelist_order);
2337
2338/*
2339 * sysctl handler for numa_zonelist_order
2340 */
2341int numa_zonelist_order_handler(ctl_table *table, int write,
2342		struct file *file, void __user *buffer, size_t *length,
2343		loff_t *ppos)
2344{
2345	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2346	int ret;
2347
2348	if (write)
2349		strncpy(saved_string, (char*)table->data,
2350			NUMA_ZONELIST_ORDER_LEN);
2351	ret = proc_dostring(table, write, file, buffer, length, ppos);
2352	if (ret)
2353		return ret;
2354	if (write) {
2355		int oldval = user_zonelist_order;
2356		if (__parse_numa_zonelist_order((char*)table->data)) {
2357			/*
2358			 * bogus value.  restore saved string
2359			 */
2360			strncpy((char*)table->data, saved_string,
2361				NUMA_ZONELIST_ORDER_LEN);
2362			user_zonelist_order = oldval;
2363		} else if (oldval != user_zonelist_order)
2364			build_all_zonelists();
2365	}
2366	return 0;
2367}
2368
2369
2370#define MAX_NODE_LOAD (nr_online_nodes)
2371static int node_load[MAX_NUMNODES];
2372
2373/**
2374 * find_next_best_node - find the next node that should appear in a given node's fallback list
2375 * @node: node whose fallback list we're appending
2376 * @used_node_mask: nodemask_t of already used nodes
2377 *
2378 * We use a number of factors to determine which is the next node that should
2379 * appear on a given node's fallback list.  The node should not have appeared
2380 * already in @node's fallback list, and it should be the next closest node
2381 * according to the distance array (which contains arbitrary distance values
2382 * from each node to each node in the system), and should also prefer nodes
2383 * with no CPUs, since presumably they'll have very little allocation pressure
2384 * on them otherwise.
2385 * It returns -1 if no node is found.
2386 */
2387static int find_next_best_node(int node, nodemask_t *used_node_mask)
2388{
2389	int n, val;
2390	int min_val = INT_MAX;
2391	int best_node = -1;
2392	const struct cpumask *tmp = cpumask_of_node(0);
2393
2394	/* Use the local node if we haven't already */
2395	if (!node_isset(node, *used_node_mask)) {
2396		node_set(node, *used_node_mask);
2397		return node;
2398	}
2399
2400	for_each_node_state(n, N_HIGH_MEMORY) {
2401
2402		/* Don't want a node to appear more than once */
2403		if (node_isset(n, *used_node_mask))
2404			continue;
2405
2406		/* Use the distance array to find the distance */
2407		val = node_distance(node, n);
2408
2409		/* Penalize nodes under us ("prefer the next node") */
2410		val += (n < node);
2411
2412		/* Give preference to headless and unused nodes */
2413		tmp = cpumask_of_node(n);
2414		if (!cpumask_empty(tmp))
2415			val += PENALTY_FOR_NODE_WITH_CPUS;
2416
2417		/* Slight preference for less loaded node */
2418		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2419		val += node_load[n];
2420
2421		if (val < min_val) {
2422			min_val = val;
2423			best_node = n;
2424		}
2425	}
2426
2427	if (best_node >= 0)
2428		node_set(best_node, *used_node_mask);
2429
2430	return best_node;
2431}
2432
2433
2434/*
2435 * Build zonelists ordered by node and zones within node.
2436 * This results in maximum locality--normal zone overflows into local
2437 * DMA zone, if any--but risks exhausting DMA zone.
2438 */
2439static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2440{
2441	int j;
2442	struct zonelist *zonelist;
2443
2444	zonelist = &pgdat->node_zonelists[0];
2445	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2446		;
2447	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2448							MAX_NR_ZONES - 1);
2449	zonelist->_zonerefs[j].zone = NULL;
2450	zonelist->_zonerefs[j].zone_idx = 0;
2451}
2452
2453/*
2454 * Build gfp_thisnode zonelists
2455 */
2456static void build_thisnode_zonelists(pg_data_t *pgdat)
2457{
2458	int j;
2459	struct zonelist *zonelist;
2460
2461	zonelist = &pgdat->node_zonelists[1];
2462	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2463	zonelist->_zonerefs[j].zone = NULL;
2464	zonelist->_zonerefs[j].zone_idx = 0;
2465}
2466
2467/*
2468 * Build zonelists ordered by zone and nodes within zones.
2469 * This results in conserving DMA zone[s] until all Normal memory is
2470 * exhausted, but results in overflowing to remote node while memory
2471 * may still exist in local DMA zone.
2472 */
2473static int node_order[MAX_NUMNODES];
2474
2475static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2476{
2477	int pos, j, node;
2478	int zone_type;		/* needs to be signed */
2479	struct zone *z;
2480	struct zonelist *zonelist;
2481
2482	zonelist = &pgdat->node_zonelists[0];
2483	pos = 0;
2484	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2485		for (j = 0; j < nr_nodes; j++) {
2486			node = node_order[j];
2487			z = &NODE_DATA(node)->node_zones[zone_type];
2488			if (populated_zone(z)) {
2489				zoneref_set_zone(z,
2490					&zonelist->_zonerefs[pos++]);
2491				check_highest_zone(zone_type);
2492			}
2493		}
2494	}
2495	zonelist->_zonerefs[pos].zone = NULL;
2496	zonelist->_zonerefs[pos].zone_idx = 0;
2497}
2498
2499static int default_zonelist_order(void)
2500{
2501	int nid, zone_type;
2502	unsigned long low_kmem_size,total_size;
2503	struct zone *z;
2504	int average_size;
2505	/*
2506         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2507	 * If they are really small and used heavily, the system can fall
2508	 * into OOM very easily.
2509	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2510	 */
2511	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2512	low_kmem_size = 0;
2513	total_size = 0;
2514	for_each_online_node(nid) {
2515		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2516			z = &NODE_DATA(nid)->node_zones[zone_type];
2517			if (populated_zone(z)) {
2518				if (zone_type < ZONE_NORMAL)
2519					low_kmem_size += z->present_pages;
2520				total_size += z->present_pages;
2521			}
2522		}
2523	}
2524	if (!low_kmem_size ||  /* there are no DMA area. */
2525	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2526		return ZONELIST_ORDER_NODE;
2527	/*
2528	 * look into each node's config.
2529  	 * If there is a node whose DMA/DMA32 memory is very big area on
2530 	 * local memory, NODE_ORDER may be suitable.
2531         */
2532	average_size = total_size /
2533				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2534	for_each_online_node(nid) {
2535		low_kmem_size = 0;
2536		total_size = 0;
2537		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2538			z = &NODE_DATA(nid)->node_zones[zone_type];
2539			if (populated_zone(z)) {
2540				if (zone_type < ZONE_NORMAL)
2541					low_kmem_size += z->present_pages;
2542				total_size += z->present_pages;
2543			}
2544		}
2545		if (low_kmem_size &&
2546		    total_size > average_size && /* ignore small node */
2547		    low_kmem_size > total_size * 70/100)
2548			return ZONELIST_ORDER_NODE;
2549	}
2550	return ZONELIST_ORDER_ZONE;
2551}
2552
2553static void set_zonelist_order(void)
2554{
2555	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2556		current_zonelist_order = default_zonelist_order();
2557	else
2558		current_zonelist_order = user_zonelist_order;
2559}
2560
2561static void build_zonelists(pg_data_t *pgdat)
2562{
2563	int j, node, load;
2564	enum zone_type i;
2565	nodemask_t used_mask;
2566	int local_node, prev_node;
2567	struct zonelist *zonelist;
2568	int order = current_zonelist_order;
2569
2570	/* initialize zonelists */
2571	for (i = 0; i < MAX_ZONELISTS; i++) {
2572		zonelist = pgdat->node_zonelists + i;
2573		zonelist->_zonerefs[0].zone = NULL;
2574		zonelist->_zonerefs[0].zone_idx = 0;
2575	}
2576
2577	/* NUMA-aware ordering of nodes */
2578	local_node = pgdat->node_id;
2579	load = nr_online_nodes;
2580	prev_node = local_node;
2581	nodes_clear(used_mask);
2582
2583	memset(node_order, 0, sizeof(node_order));
2584	j = 0;
2585
2586	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2587		int distance = node_distance(local_node, node);
2588
2589		/*
2590		 * If another node is sufficiently far away then it is better
2591		 * to reclaim pages in a zone before going off node.
2592		 */
2593		if (distance > RECLAIM_DISTANCE)
2594			zone_reclaim_mode = 1;
2595
2596		/*
2597		 * We don't want to pressure a particular node.
2598		 * So adding penalty to the first node in same
2599		 * distance group to make it round-robin.
2600		 */
2601		if (distance != node_distance(local_node, prev_node))
2602			node_load[node] = load;
2603
2604		prev_node = node;
2605		load--;
2606		if (order == ZONELIST_ORDER_NODE)
2607			build_zonelists_in_node_order(pgdat, node);
2608		else
2609			node_order[j++] = node;	/* remember order */
2610	}
2611
2612	if (order == ZONELIST_ORDER_ZONE) {
2613		/* calculate node order -- i.e., DMA last! */
2614		build_zonelists_in_zone_order(pgdat, j);
2615	}
2616
2617	build_thisnode_zonelists(pgdat);
2618}
2619
2620/* Construct the zonelist performance cache - see further mmzone.h */
2621static void build_zonelist_cache(pg_data_t *pgdat)
2622{
2623	struct zonelist *zonelist;
2624	struct zonelist_cache *zlc;
2625	struct zoneref *z;
2626
2627	zonelist = &pgdat->node_zonelists[0];
2628	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2629	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2630	for (z = zonelist->_zonerefs; z->zone; z++)
2631		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2632}
2633
2634
2635#else	/* CONFIG_NUMA */
2636
2637static void set_zonelist_order(void)
2638{
2639	current_zonelist_order = ZONELIST_ORDER_ZONE;
2640}
2641
2642static void build_zonelists(pg_data_t *pgdat)
2643{
2644	int node, local_node;
2645	enum zone_type j;
2646	struct zonelist *zonelist;
2647
2648	local_node = pgdat->node_id;
2649
2650	zonelist = &pgdat->node_zonelists[0];
2651	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2652
2653	/*
2654	 * Now we build the zonelist so that it contains the zones
2655	 * of all the other nodes.
2656	 * We don't want to pressure a particular node, so when
2657	 * building the zones for node N, we make sure that the
2658	 * zones coming right after the local ones are those from
2659	 * node N+1 (modulo N)
2660	 */
2661	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2662		if (!node_online(node))
2663			continue;
2664		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2665							MAX_NR_ZONES - 1);
2666	}
2667	for (node = 0; node < local_node; node++) {
2668		if (!node_online(node))
2669			continue;
2670		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2671							MAX_NR_ZONES - 1);
2672	}
2673
2674	zonelist->_zonerefs[j].zone = NULL;
2675	zonelist->_zonerefs[j].zone_idx = 0;
2676}
2677
2678/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2679static void build_zonelist_cache(pg_data_t *pgdat)
2680{
2681	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2682}
2683
2684#endif	/* CONFIG_NUMA */
2685
2686/* return values int ....just for stop_machine() */
2687static int __build_all_zonelists(void *dummy)
2688{
2689	int nid;
2690
2691#ifdef CONFIG_NUMA
2692	memset(node_load, 0, sizeof(node_load));
2693#endif
2694	for_each_online_node(nid) {
2695		pg_data_t *pgdat = NODE_DATA(nid);
2696
2697		build_zonelists(pgdat);
2698		build_zonelist_cache(pgdat);
2699	}
2700	return 0;
2701}
2702
2703void build_all_zonelists(void)
2704{
2705	set_zonelist_order();
2706
2707	if (system_state == SYSTEM_BOOTING) {
2708		__build_all_zonelists(NULL);
2709		mminit_verify_zonelist();
2710		cpuset_init_current_mems_allowed();
2711	} else {
2712		/* we have to stop all cpus to guarantee there is no user
2713		   of zonelist */
2714		stop_machine(__build_all_zonelists, NULL, NULL);
2715		/* cpuset refresh routine should be here */
2716	}
2717	vm_total_pages = nr_free_pagecache_pages();
2718	/*
2719	 * Disable grouping by mobility if the number of pages in the
2720	 * system is too low to allow the mechanism to work. It would be
2721	 * more accurate, but expensive to check per-zone. This check is
2722	 * made on memory-hotadd so a system can start with mobility
2723	 * disabled and enable it later
2724	 */
2725	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2726		page_group_by_mobility_disabled = 1;
2727	else
2728		page_group_by_mobility_disabled = 0;
2729
2730	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2731		"Total pages: %ld\n",
2732			nr_online_nodes,
2733			zonelist_order_name[current_zonelist_order],
2734			page_group_by_mobility_disabled ? "off" : "on",
2735			vm_total_pages);
2736#ifdef CONFIG_NUMA
2737	printk("Policy zone: %s\n", zone_names[policy_zone]);
2738#endif
2739}
2740
2741/*
2742 * Helper functions to size the waitqueue hash table.
2743 * Essentially these want to choose hash table sizes sufficiently
2744 * large so that collisions trying to wait on pages are rare.
2745 * But in fact, the number of active page waitqueues on typical
2746 * systems is ridiculously low, less than 200. So this is even
2747 * conservative, even though it seems large.
2748 *
2749 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2750 * waitqueues, i.e. the size of the waitq table given the number of pages.
2751 */
2752#define PAGES_PER_WAITQUEUE	256
2753
2754#ifndef CONFIG_MEMORY_HOTPLUG
2755static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2756{
2757	unsigned long size = 1;
2758
2759	pages /= PAGES_PER_WAITQUEUE;
2760
2761	while (size < pages)
2762		size <<= 1;
2763
2764	/*
2765	 * Once we have dozens or even hundreds of threads sleeping
2766	 * on IO we've got bigger problems than wait queue collision.
2767	 * Limit the size of the wait table to a reasonable size.
2768	 */
2769	size = min(size, 4096UL);
2770
2771	return max(size, 4UL);
2772}
2773#else
2774/*
2775 * A zone's size might be changed by hot-add, so it is not possible to determine
2776 * a suitable size for its wait_table.  So we use the maximum size now.
2777 *
2778 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2779 *
2780 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2781 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2782 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2783 *
2784 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2785 * or more by the traditional way. (See above).  It equals:
2786 *
2787 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2788 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2789 *    powerpc (64K page size)             : =  (32G +16M)byte.
2790 */
2791static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2792{
2793	return 4096UL;
2794}
2795#endif
2796
2797/*
2798 * This is an integer logarithm so that shifts can be used later
2799 * to extract the more random high bits from the multiplicative
2800 * hash function before the remainder is taken.
2801 */
2802static inline unsigned long wait_table_bits(unsigned long size)
2803{
2804	return ffz(~size);
2805}
2806
2807#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2808
2809/*
2810 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2811 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2812 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2813 * higher will lead to a bigger reserve which will get freed as contiguous
2814 * blocks as reclaim kicks in
2815 */
2816static void setup_zone_migrate_reserve(struct zone *zone)
2817{
2818	unsigned long start_pfn, pfn, end_pfn;
2819	struct page *page;
2820	unsigned long reserve, block_migratetype;
2821
2822	/* Get the start pfn, end pfn and the number of blocks to reserve */
2823	start_pfn = zone->zone_start_pfn;
2824	end_pfn = start_pfn + zone->spanned_pages;
2825	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2826							pageblock_order;
2827
2828	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2829		if (!pfn_valid(pfn))
2830			continue;
2831		page = pfn_to_page(pfn);
2832
2833		/* Watch out for overlapping nodes */
2834		if (page_to_nid(page) != zone_to_nid(zone))
2835			continue;
2836
2837		/* Blocks with reserved pages will never free, skip them. */
2838		if (PageReserved(page))
2839			continue;
2840
2841		block_migratetype = get_pageblock_migratetype(page);
2842
2843		/* If this block is reserved, account for it */
2844		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2845			reserve--;
2846			continue;
2847		}
2848
2849		/* Suitable for reserving if this block is movable */
2850		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2851			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2852			move_freepages_block(zone, page, MIGRATE_RESERVE);
2853			reserve--;
2854			continue;
2855		}
2856
2857		/*
2858		 * If the reserve is met and this is a previous reserved block,
2859		 * take it back
2860		 */
2861		if (block_migratetype == MIGRATE_RESERVE) {
2862			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2863			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2864		}
2865	}
2866}
2867
2868/*
2869 * Initially all pages are reserved - free ones are freed
2870 * up by free_all_bootmem() once the early boot process is
2871 * done. Non-atomic initialization, single-pass.
2872 */
2873void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2874		unsigned long start_pfn, enum memmap_context context)
2875{
2876	struct page *page;
2877	unsigned long end_pfn = start_pfn + size;
2878	unsigned long pfn;
2879	struct zone *z;
2880
2881	if (highest_memmap_pfn < end_pfn - 1)
2882		highest_memmap_pfn = end_pfn - 1;
2883
2884	z = &NODE_DATA(nid)->node_zones[zone];
2885	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2886		/*
2887		 * There can be holes in boot-time mem_map[]s
2888		 * handed to this function.  They do not
2889		 * exist on hotplugged memory.
2890		 */
2891		if (context == MEMMAP_EARLY) {
2892			if (!early_pfn_valid(pfn))
2893				continue;
2894			if (!early_pfn_in_nid(pfn, nid))
2895				continue;
2896		}
2897		page = pfn_to_page(pfn);
2898		set_page_links(page, zone, nid, pfn);
2899		mminit_verify_page_links(page, zone, nid, pfn);
2900		init_page_count(page);
2901		reset_page_mapcount(page);
2902		SetPageReserved(page);
2903		/*
2904		 * Mark the block movable so that blocks are reserved for
2905		 * movable at startup. This will force kernel allocations
2906		 * to reserve their blocks rather than leaking throughout
2907		 * the address space during boot when many long-lived
2908		 * kernel allocations are made. Later some blocks near
2909		 * the start are marked MIGRATE_RESERVE by
2910		 * setup_zone_migrate_reserve()
2911		 *
2912		 * bitmap is created for zone's valid pfn range. but memmap
2913		 * can be created for invalid pages (for alignment)
2914		 * check here not to call set_pageblock_migratetype() against
2915		 * pfn out of zone.
2916		 */
2917		if ((z->zone_start_pfn <= pfn)
2918		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2919		    && !(pfn & (pageblock_nr_pages - 1)))
2920			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2921
2922		INIT_LIST_HEAD(&page->lru);
2923#ifdef WANT_PAGE_VIRTUAL
2924		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2925		if (!is_highmem_idx(zone))
2926			set_page_address(page, __va(pfn << PAGE_SHIFT));
2927#endif
2928	}
2929}
2930
2931static void __meminit zone_init_free_lists(struct zone *zone)
2932{
2933	int order, t;
2934	for_each_migratetype_order(order, t) {
2935		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2936		zone->free_area[order].nr_free = 0;
2937	}
2938}
2939
2940#ifndef __HAVE_ARCH_MEMMAP_INIT
2941#define memmap_init(size, nid, zone, start_pfn) \
2942	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2943#endif
2944
2945static int zone_batchsize(struct zone *zone)
2946{
2947#ifdef CONFIG_MMU
2948	int batch;
2949
2950	/*
2951	 * The per-cpu-pages pools are set to around 1000th of the
2952	 * size of the zone.  But no more than 1/2 of a meg.
2953	 *
2954	 * OK, so we don't know how big the cache is.  So guess.
2955	 */
2956	batch = zone->present_pages / 1024;
2957	if (batch * PAGE_SIZE > 512 * 1024)
2958		batch = (512 * 1024) / PAGE_SIZE;
2959	batch /= 4;		/* We effectively *= 4 below */
2960	if (batch < 1)
2961		batch = 1;
2962
2963	/*
2964	 * Clamp the batch to a 2^n - 1 value. Having a power
2965	 * of 2 value was found to be more likely to have
2966	 * suboptimal cache aliasing properties in some cases.
2967	 *
2968	 * For example if 2 tasks are alternately allocating
2969	 * batches of pages, one task can end up with a lot
2970	 * of pages of one half of the possible page colors
2971	 * and the other with pages of the other colors.
2972	 */
2973	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2974
2975	return batch;
2976
2977#else
2978	/* The deferral and batching of frees should be suppressed under NOMMU
2979	 * conditions.
2980	 *
2981	 * The problem is that NOMMU needs to be able to allocate large chunks
2982	 * of contiguous memory as there's no hardware page translation to
2983	 * assemble apparent contiguous memory from discontiguous pages.
2984	 *
2985	 * Queueing large contiguous runs of pages for batching, however,
2986	 * causes the pages to actually be freed in smaller chunks.  As there
2987	 * can be a significant delay between the individual batches being
2988	 * recycled, this leads to the once large chunks of space being
2989	 * fragmented and becoming unavailable for high-order allocations.
2990	 */
2991	return 0;
2992#endif
2993}
2994
2995static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2996{
2997	struct per_cpu_pages *pcp;
2998
2999	memset(p, 0, sizeof(*p));
3000
3001	pcp = &p->pcp;
3002	pcp->count = 0;
3003	pcp->high = 6 * batch;
3004	pcp->batch = max(1UL, 1 * batch);
3005	INIT_LIST_HEAD(&pcp->list);
3006}
3007
3008/*
3009 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3010 * to the value high for the pageset p.
3011 */
3012
3013static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3014				unsigned long high)
3015{
3016	struct per_cpu_pages *pcp;
3017
3018	pcp = &p->pcp;
3019	pcp->high = high;
3020	pcp->batch = max(1UL, high/4);
3021	if ((high/4) > (PAGE_SHIFT * 8))
3022		pcp->batch = PAGE_SHIFT * 8;
3023}
3024
3025
3026#ifdef CONFIG_NUMA
3027/*
3028 * Boot pageset table. One per cpu which is going to be used for all
3029 * zones and all nodes. The parameters will be set in such a way
3030 * that an item put on a list will immediately be handed over to
3031 * the buddy list. This is safe since pageset manipulation is done
3032 * with interrupts disabled.
3033 *
3034 * Some NUMA counter updates may also be caught by the boot pagesets.
3035 *
3036 * The boot_pagesets must be kept even after bootup is complete for
3037 * unused processors and/or zones. They do play a role for bootstrapping
3038 * hotplugged processors.
3039 *
3040 * zoneinfo_show() and maybe other functions do
3041 * not check if the processor is online before following the pageset pointer.
3042 * Other parts of the kernel may not check if the zone is available.
3043 */
3044static struct per_cpu_pageset boot_pageset[NR_CPUS];
3045
3046/*
3047 * Dynamically allocate memory for the
3048 * per cpu pageset array in struct zone.
3049 */
3050static int __cpuinit process_zones(int cpu)
3051{
3052	struct zone *zone, *dzone;
3053	int node = cpu_to_node(cpu);
3054
3055	node_set_state(node, N_CPU);	/* this node has a cpu */
3056
3057	for_each_populated_zone(zone) {
3058		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3059					 GFP_KERNEL, node);
3060		if (!zone_pcp(zone, cpu))
3061			goto bad;
3062
3063		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3064
3065		if (percpu_pagelist_fraction)
3066			setup_pagelist_highmark(zone_pcp(zone, cpu),
3067			 	(zone->present_pages / percpu_pagelist_fraction));
3068	}
3069
3070	return 0;
3071bad:
3072	for_each_zone(dzone) {
3073		if (!populated_zone(dzone))
3074			continue;
3075		if (dzone == zone)
3076			break;
3077		kfree(zone_pcp(dzone, cpu));
3078		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3079	}
3080	return -ENOMEM;
3081}
3082
3083static inline void free_zone_pagesets(int cpu)
3084{
3085	struct zone *zone;
3086
3087	for_each_zone(zone) {
3088		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3089
3090		/* Free per_cpu_pageset if it is slab allocated */
3091		if (pset != &boot_pageset[cpu])
3092			kfree(pset);
3093		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3094	}
3095}
3096
3097static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3098		unsigned long action,
3099		void *hcpu)
3100{
3101	int cpu = (long)hcpu;
3102	int ret = NOTIFY_OK;
3103
3104	switch (action) {
3105	case CPU_UP_PREPARE:
3106	case CPU_UP_PREPARE_FROZEN:
3107		if (process_zones(cpu))
3108			ret = NOTIFY_BAD;
3109		break;
3110	case CPU_UP_CANCELED:
3111	case CPU_UP_CANCELED_FROZEN:
3112	case CPU_DEAD:
3113	case CPU_DEAD_FROZEN:
3114		free_zone_pagesets(cpu);
3115		break;
3116	default:
3117		break;
3118	}
3119	return ret;
3120}
3121
3122static struct notifier_block __cpuinitdata pageset_notifier =
3123	{ &pageset_cpuup_callback, NULL, 0 };
3124
3125void __init setup_per_cpu_pageset(void)
3126{
3127	int err;
3128
3129	/* Initialize per_cpu_pageset for cpu 0.
3130	 * A cpuup callback will do this for every cpu
3131	 * as it comes online
3132	 */
3133	err = process_zones(smp_processor_id());
3134	BUG_ON(err);
3135	register_cpu_notifier(&pageset_notifier);
3136}
3137
3138#endif
3139
3140static noinline __init_refok
3141int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3142{
3143	int i;
3144	struct pglist_data *pgdat = zone->zone_pgdat;
3145	size_t alloc_size;
3146
3147	/*
3148	 * The per-page waitqueue mechanism uses hashed waitqueues
3149	 * per zone.
3150	 */
3151	zone->wait_table_hash_nr_entries =
3152		 wait_table_hash_nr_entries(zone_size_pages);
3153	zone->wait_table_bits =
3154		wait_table_bits(zone->wait_table_hash_nr_entries);
3155	alloc_size = zone->wait_table_hash_nr_entries
3156					* sizeof(wait_queue_head_t);
3157
3158	if (!slab_is_available()) {
3159		zone->wait_table = (wait_queue_head_t *)
3160			alloc_bootmem_node(pgdat, alloc_size);
3161	} else {
3162		/*
3163		 * This case means that a zone whose size was 0 gets new memory
3164		 * via memory hot-add.
3165		 * But it may be the case that a new node was hot-added.  In
3166		 * this case vmalloc() will not be able to use this new node's
3167		 * memory - this wait_table must be initialized to use this new
3168		 * node itself as well.
3169		 * To use this new node's memory, further consideration will be
3170		 * necessary.
3171		 */
3172		zone->wait_table = vmalloc(alloc_size);
3173	}
3174	if (!zone->wait_table)
3175		return -ENOMEM;
3176
3177	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3178		init_waitqueue_head(zone->wait_table + i);
3179
3180	return 0;
3181}
3182
3183static int __zone_pcp_update(void *data)
3184{
3185	struct zone *zone = data;
3186	int cpu;
3187	unsigned long batch = zone_batchsize(zone), flags;
3188
3189	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3190		struct per_cpu_pageset *pset;
3191		struct per_cpu_pages *pcp;
3192
3193		pset = zone_pcp(zone, cpu);
3194		pcp = &pset->pcp;
3195
3196		local_irq_save(flags);
3197		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3198		setup_pageset(pset, batch);
3199		local_irq_restore(flags);
3200	}
3201	return 0;
3202}
3203
3204void zone_pcp_update(struct zone *zone)
3205{
3206	stop_machine(__zone_pcp_update, zone, NULL);
3207}
3208
3209static __meminit void zone_pcp_init(struct zone *zone)
3210{
3211	int cpu;
3212	unsigned long batch = zone_batchsize(zone);
3213
3214	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3215#ifdef CONFIG_NUMA
3216		/* Early boot. Slab allocator not functional yet */
3217		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3218		setup_pageset(&boot_pageset[cpu],0);
3219#else
3220		setup_pageset(zone_pcp(zone,cpu), batch);
3221#endif
3222	}
3223	if (zone->present_pages)
3224		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3225			zone->name, zone->present_pages, batch);
3226}
3227
3228__meminit int init_currently_empty_zone(struct zone *zone,
3229					unsigned long zone_start_pfn,
3230					unsigned long size,
3231					enum memmap_context context)
3232{
3233	struct pglist_data *pgdat = zone->zone_pgdat;
3234	int ret;
3235	ret = zone_wait_table_init(zone, size);
3236	if (ret)
3237		return ret;
3238	pgdat->nr_zones = zone_idx(zone) + 1;
3239
3240	zone->zone_start_pfn = zone_start_pfn;
3241
3242	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3243			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3244			pgdat->node_id,
3245			(unsigned long)zone_idx(zone),
3246			zone_start_pfn, (zone_start_pfn + size));
3247
3248	zone_init_free_lists(zone);
3249
3250	return 0;
3251}
3252
3253#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3254/*
3255 * Basic iterator support. Return the first range of PFNs for a node
3256 * Note: nid == MAX_NUMNODES returns first region regardless of node
3257 */
3258static int __meminit first_active_region_index_in_nid(int nid)
3259{
3260	int i;
3261
3262	for (i = 0; i < nr_nodemap_entries; i++)
3263		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3264			return i;
3265
3266	return -1;
3267}
3268
3269/*
3270 * Basic iterator support. Return the next active range of PFNs for a node
3271 * Note: nid == MAX_NUMNODES returns next region regardless of node
3272 */
3273static int __meminit next_active_region_index_in_nid(int index, int nid)
3274{
3275	for (index = index + 1; index < nr_nodemap_entries; index++)
3276		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3277			return index;
3278
3279	return -1;
3280}
3281
3282#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3283/*
3284 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3285 * Architectures may implement their own version but if add_active_range()
3286 * was used and there are no special requirements, this is a convenient
3287 * alternative
3288 */
3289int __meminit __early_pfn_to_nid(unsigned long pfn)
3290{
3291	int i;
3292
3293	for (i = 0; i < nr_nodemap_entries; i++) {
3294		unsigned long start_pfn = early_node_map[i].start_pfn;
3295		unsigned long end_pfn = early_node_map[i].end_pfn;
3296
3297		if (start_pfn <= pfn && pfn < end_pfn)
3298			return early_node_map[i].nid;
3299	}
3300	/* This is a memory hole */
3301	return -1;
3302}
3303#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3304
3305int __meminit early_pfn_to_nid(unsigned long pfn)
3306{
3307	int nid;
3308
3309	nid = __early_pfn_to_nid(pfn);
3310	if (nid >= 0)
3311		return nid;
3312	/* just returns 0 */
3313	return 0;
3314}
3315
3316#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3317bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3318{
3319	int nid;
3320
3321	nid = __early_pfn_to_nid(pfn);
3322	if (nid >= 0 && nid != node)
3323		return false;
3324	return true;
3325}
3326#endif
3327
3328/* Basic iterator support to walk early_node_map[] */
3329#define for_each_active_range_index_in_nid(i, nid) \
3330	for (i = first_active_region_index_in_nid(nid); i != -1; \
3331				i = next_active_region_index_in_nid(i, nid))
3332
3333/**
3334 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3335 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3336 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3337 *
3338 * If an architecture guarantees that all ranges registered with
3339 * add_active_ranges() contain no holes and may be freed, this
3340 * this function may be used instead of calling free_bootmem() manually.
3341 */
3342void __init free_bootmem_with_active_regions(int nid,
3343						unsigned long max_low_pfn)
3344{
3345	int i;
3346
3347	for_each_active_range_index_in_nid(i, nid) {
3348		unsigned long size_pages = 0;
3349		unsigned long end_pfn = early_node_map[i].end_pfn;
3350
3351		if (early_node_map[i].start_pfn >= max_low_pfn)
3352			continue;
3353
3354		if (end_pfn > max_low_pfn)
3355			end_pfn = max_low_pfn;
3356
3357		size_pages = end_pfn - early_node_map[i].start_pfn;
3358		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3359				PFN_PHYS(early_node_map[i].start_pfn),
3360				size_pages << PAGE_SHIFT);
3361	}
3362}
3363
3364void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3365{
3366	int i;
3367	int ret;
3368
3369	for_each_active_range_index_in_nid(i, nid) {
3370		ret = work_fn(early_node_map[i].start_pfn,
3371			      early_node_map[i].end_pfn, data);
3372		if (ret)
3373			break;
3374	}
3375}
3376/**
3377 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3378 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3379 *
3380 * If an architecture guarantees that all ranges registered with
3381 * add_active_ranges() contain no holes and may be freed, this
3382 * function may be used instead of calling memory_present() manually.
3383 */
3384void __init sparse_memory_present_with_active_regions(int nid)
3385{
3386	int i;
3387
3388	for_each_active_range_index_in_nid(i, nid)
3389		memory_present(early_node_map[i].nid,
3390				early_node_map[i].start_pfn,
3391				early_node_map[i].end_pfn);
3392}
3393
3394/**
3395 * get_pfn_range_for_nid - Return the start and end page frames for a node
3396 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3397 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3398 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3399 *
3400 * It returns the start and end page frame of a node based on information
3401 * provided by an arch calling add_active_range(). If called for a node
3402 * with no available memory, a warning is printed and the start and end
3403 * PFNs will be 0.
3404 */
3405void __meminit get_pfn_range_for_nid(unsigned int nid,
3406			unsigned long *start_pfn, unsigned long *end_pfn)
3407{
3408	int i;
3409	*start_pfn = -1UL;
3410	*end_pfn = 0;
3411
3412	for_each_active_range_index_in_nid(i, nid) {
3413		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3414		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3415	}
3416
3417	if (*start_pfn == -1UL)
3418		*start_pfn = 0;
3419}
3420
3421/*
3422 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3423 * assumption is made that zones within a node are ordered in monotonic
3424 * increasing memory addresses so that the "highest" populated zone is used
3425 */
3426static void __init find_usable_zone_for_movable(void)
3427{
3428	int zone_index;
3429	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3430		if (zone_index == ZONE_MOVABLE)
3431			continue;
3432
3433		if (arch_zone_highest_possible_pfn[zone_index] >
3434				arch_zone_lowest_possible_pfn[zone_index])
3435			break;
3436	}
3437
3438	VM_BUG_ON(zone_index == -1);
3439	movable_zone = zone_index;
3440}
3441
3442/*
3443 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3444 * because it is sized independant of architecture. Unlike the other zones,
3445 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3446 * in each node depending on the size of each node and how evenly kernelcore
3447 * is distributed. This helper function adjusts the zone ranges
3448 * provided by the architecture for a given node by using the end of the
3449 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3450 * zones within a node are in order of monotonic increases memory addresses
3451 */
3452static void __meminit adjust_zone_range_for_zone_movable(int nid,
3453					unsigned long zone_type,
3454					unsigned long node_start_pfn,
3455					unsigned long node_end_pfn,
3456					unsigned long *zone_start_pfn,
3457					unsigned long *zone_end_pfn)
3458{
3459	/* Only adjust if ZONE_MOVABLE is on this node */
3460	if (zone_movable_pfn[nid]) {
3461		/* Size ZONE_MOVABLE */
3462		if (zone_type == ZONE_MOVABLE) {
3463			*zone_start_pfn = zone_movable_pfn[nid];
3464			*zone_end_pfn = min(node_end_pfn,
3465				arch_zone_highest_possible_pfn[movable_zone]);
3466
3467		/* Adjust for ZONE_MOVABLE starting within this range */
3468		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3469				*zone_end_pfn > zone_movable_pfn[nid]) {
3470			*zone_end_pfn = zone_movable_pfn[nid];
3471
3472		/* Check if this whole range is within ZONE_MOVABLE */
3473		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3474			*zone_start_pfn = *zone_end_pfn;
3475	}
3476}
3477
3478/*
3479 * Return the number of pages a zone spans in a node, including holes
3480 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3481 */
3482static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3483					unsigned long zone_type,
3484					unsigned long *ignored)
3485{
3486	unsigned long node_start_pfn, node_end_pfn;
3487	unsigned long zone_start_pfn, zone_end_pfn;
3488
3489	/* Get the start and end of the node and zone */
3490	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3491	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3492	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3493	adjust_zone_range_for_zone_movable(nid, zone_type,
3494				node_start_pfn, node_end_pfn,
3495				&zone_start_pfn, &zone_end_pfn);
3496
3497	/* Check that this node has pages within the zone's required range */
3498	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3499		return 0;
3500
3501	/* Move the zone boundaries inside the node if necessary */
3502	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3503	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3504
3505	/* Return the spanned pages */
3506	return zone_end_pfn - zone_start_pfn;
3507}
3508
3509/*
3510 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3511 * then all holes in the requested range will be accounted for.
3512 */
3513static unsigned long __meminit __absent_pages_in_range(int nid,
3514				unsigned long range_start_pfn,
3515				unsigned long range_end_pfn)
3516{
3517	int i = 0;
3518	unsigned long prev_end_pfn = 0, hole_pages = 0;
3519	unsigned long start_pfn;
3520
3521	/* Find the end_pfn of the first active range of pfns in the node */
3522	i = first_active_region_index_in_nid(nid);
3523	if (i == -1)
3524		return 0;
3525
3526	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3527
3528	/* Account for ranges before physical memory on this node */
3529	if (early_node_map[i].start_pfn > range_start_pfn)
3530		hole_pages = prev_end_pfn - range_start_pfn;
3531
3532	/* Find all holes for the zone within the node */
3533	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3534
3535		/* No need to continue if prev_end_pfn is outside the zone */
3536		if (prev_end_pfn >= range_end_pfn)
3537			break;
3538
3539		/* Make sure the end of the zone is not within the hole */
3540		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3541		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3542
3543		/* Update the hole size cound and move on */
3544		if (start_pfn > range_start_pfn) {
3545			BUG_ON(prev_end_pfn > start_pfn);
3546			hole_pages += start_pfn - prev_end_pfn;
3547		}
3548		prev_end_pfn = early_node_map[i].end_pfn;
3549	}
3550
3551	/* Account for ranges past physical memory on this node */
3552	if (range_end_pfn > prev_end_pfn)
3553		hole_pages += range_end_pfn -
3554				max(range_start_pfn, prev_end_pfn);
3555
3556	return hole_pages;
3557}
3558
3559/**
3560 * absent_pages_in_range - Return number of page frames in holes within a range
3561 * @start_pfn: The start PFN to start searching for holes
3562 * @end_pfn: The end PFN to stop searching for holes
3563 *
3564 * It returns the number of pages frames in memory holes within a range.
3565 */
3566unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3567							unsigned long end_pfn)
3568{
3569	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3570}
3571
3572/* Return the number of page frames in holes in a zone on a node */
3573static unsigned long __meminit zone_absent_pages_in_node(int nid,
3574					unsigned long zone_type,
3575					unsigned long *ignored)
3576{
3577	unsigned long node_start_pfn, node_end_pfn;
3578	unsigned long zone_start_pfn, zone_end_pfn;
3579
3580	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3581	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3582							node_start_pfn);
3583	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3584							node_end_pfn);
3585
3586	adjust_zone_range_for_zone_movable(nid, zone_type,
3587			node_start_pfn, node_end_pfn,
3588			&zone_start_pfn, &zone_end_pfn);
3589	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3590}
3591
3592#else
3593static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3594					unsigned long zone_type,
3595					unsigned long *zones_size)
3596{
3597	return zones_size[zone_type];
3598}
3599
3600static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3601						unsigned long zone_type,
3602						unsigned long *zholes_size)
3603{
3604	if (!zholes_size)
3605		return 0;
3606
3607	return zholes_size[zone_type];
3608}
3609
3610#endif
3611
3612static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3613		unsigned long *zones_size, unsigned long *zholes_size)
3614{
3615	unsigned long realtotalpages, totalpages = 0;
3616	enum zone_type i;
3617
3618	for (i = 0; i < MAX_NR_ZONES; i++)
3619		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3620								zones_size);
3621	pgdat->node_spanned_pages = totalpages;
3622
3623	realtotalpages = totalpages;
3624	for (i = 0; i < MAX_NR_ZONES; i++)
3625		realtotalpages -=
3626			zone_absent_pages_in_node(pgdat->node_id, i,
3627								zholes_size);
3628	pgdat->node_present_pages = realtotalpages;
3629	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3630							realtotalpages);
3631}
3632
3633#ifndef CONFIG_SPARSEMEM
3634/*
3635 * Calculate the size of the zone->blockflags rounded to an unsigned long
3636 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3637 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3638 * round what is now in bits to nearest long in bits, then return it in
3639 * bytes.
3640 */
3641static unsigned long __init usemap_size(unsigned long zonesize)
3642{
3643	unsigned long usemapsize;
3644
3645	usemapsize = roundup(zonesize, pageblock_nr_pages);
3646	usemapsize = usemapsize >> pageblock_order;
3647	usemapsize *= NR_PAGEBLOCK_BITS;
3648	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3649
3650	return usemapsize / 8;
3651}
3652
3653static void __init setup_usemap(struct pglist_data *pgdat,
3654				struct zone *zone, unsigned long zonesize)
3655{
3656	unsigned long usemapsize = usemap_size(zonesize);
3657	zone->pageblock_flags = NULL;
3658	if (usemapsize)
3659		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3660}
3661#else
3662static void inline setup_usemap(struct pglist_data *pgdat,
3663				struct zone *zone, unsigned long zonesize) {}
3664#endif /* CONFIG_SPARSEMEM */
3665
3666#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3667
3668/* Return a sensible default order for the pageblock size. */
3669static inline int pageblock_default_order(void)
3670{
3671	if (HPAGE_SHIFT > PAGE_SHIFT)
3672		return HUGETLB_PAGE_ORDER;
3673
3674	return MAX_ORDER-1;
3675}
3676
3677/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3678static inline void __init set_pageblock_order(unsigned int order)
3679{
3680	/* Check that pageblock_nr_pages has not already been setup */
3681	if (pageblock_order)
3682		return;
3683
3684	/*
3685	 * Assume the largest contiguous order of interest is a huge page.
3686	 * This value may be variable depending on boot parameters on IA64
3687	 */
3688	pageblock_order = order;
3689}
3690#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3691
3692/*
3693 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3694 * and pageblock_default_order() are unused as pageblock_order is set
3695 * at compile-time. See include/linux/pageblock-flags.h for the values of
3696 * pageblock_order based on the kernel config
3697 */
3698static inline int pageblock_default_order(unsigned int order)
3699{
3700	return MAX_ORDER-1;
3701}
3702#define set_pageblock_order(x)	do {} while (0)
3703
3704#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3705
3706/*
3707 * Set up the zone data structures:
3708 *   - mark all pages reserved
3709 *   - mark all memory queues empty
3710 *   - clear the memory bitmaps
3711 */
3712static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3713		unsigned long *zones_size, unsigned long *zholes_size)
3714{
3715	enum zone_type j;
3716	int nid = pgdat->node_id;
3717	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3718	int ret;
3719
3720	pgdat_resize_init(pgdat);
3721	pgdat->nr_zones = 0;
3722	init_waitqueue_head(&pgdat->kswapd_wait);
3723	pgdat->kswapd_max_order = 0;
3724	pgdat_page_cgroup_init(pgdat);
3725
3726	for (j = 0; j < MAX_NR_ZONES; j++) {
3727		struct zone *zone = pgdat->node_zones + j;
3728		unsigned long size, realsize, memmap_pages;
3729		enum lru_list l;
3730
3731		size = zone_spanned_pages_in_node(nid, j, zones_size);
3732		realsize = size - zone_absent_pages_in_node(nid, j,
3733								zholes_size);
3734
3735		/*
3736		 * Adjust realsize so that it accounts for how much memory
3737		 * is used by this zone for memmap. This affects the watermark
3738		 * and per-cpu initialisations
3739		 */
3740		memmap_pages =
3741			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3742		if (realsize >= memmap_pages) {
3743			realsize -= memmap_pages;
3744			if (memmap_pages)
3745				printk(KERN_DEBUG
3746				       "  %s zone: %lu pages used for memmap\n",
3747				       zone_names[j], memmap_pages);
3748		} else
3749			printk(KERN_WARNING
3750				"  %s zone: %lu pages exceeds realsize %lu\n",
3751				zone_names[j], memmap_pages, realsize);
3752
3753		/* Account for reserved pages */
3754		if (j == 0 && realsize > dma_reserve) {
3755			realsize -= dma_reserve;
3756			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3757					zone_names[0], dma_reserve);
3758		}
3759
3760		if (!is_highmem_idx(j))
3761			nr_kernel_pages += realsize;
3762		nr_all_pages += realsize;
3763
3764		zone->spanned_pages = size;
3765		zone->present_pages = realsize;
3766#ifdef CONFIG_NUMA
3767		zone->node = nid;
3768		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3769						/ 100;
3770		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3771#endif
3772		zone->name = zone_names[j];
3773		spin_lock_init(&zone->lock);
3774		spin_lock_init(&zone->lru_lock);
3775		zone_seqlock_init(zone);
3776		zone->zone_pgdat = pgdat;
3777
3778		zone->prev_priority = DEF_PRIORITY;
3779
3780		zone_pcp_init(zone);
3781		for_each_lru(l) {
3782			INIT_LIST_HEAD(&zone->lru[l].list);
3783			zone->lru[l].nr_saved_scan = 0;
3784		}
3785		zone->reclaim_stat.recent_rotated[0] = 0;
3786		zone->reclaim_stat.recent_rotated[1] = 0;
3787		zone->reclaim_stat.recent_scanned[0] = 0;
3788		zone->reclaim_stat.recent_scanned[1] = 0;
3789		zap_zone_vm_stats(zone);
3790		zone->flags = 0;
3791		if (!size)
3792			continue;
3793
3794		set_pageblock_order(pageblock_default_order());
3795		setup_usemap(pgdat, zone, size);
3796		ret = init_currently_empty_zone(zone, zone_start_pfn,
3797						size, MEMMAP_EARLY);
3798		BUG_ON(ret);
3799		memmap_init(size, nid, j, zone_start_pfn);
3800		zone_start_pfn += size;
3801	}
3802}
3803
3804static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3805{
3806	/* Skip empty nodes */
3807	if (!pgdat->node_spanned_pages)
3808		return;
3809
3810#ifdef CONFIG_FLAT_NODE_MEM_MAP
3811	/* ia64 gets its own node_mem_map, before this, without bootmem */
3812	if (!pgdat->node_mem_map) {
3813		unsigned long size, start, end;
3814		struct page *map;
3815
3816		/*
3817		 * The zone's endpoints aren't required to be MAX_ORDER
3818		 * aligned but the node_mem_map endpoints must be in order
3819		 * for the buddy allocator to function correctly.
3820		 */
3821		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3822		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3823		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3824		size =  (end - start) * sizeof(struct page);
3825		map = alloc_remap(pgdat->node_id, size);
3826		if (!map)
3827			map = alloc_bootmem_node(pgdat, size);
3828		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3829	}
3830#ifndef CONFIG_NEED_MULTIPLE_NODES
3831	/*
3832	 * With no DISCONTIG, the global mem_map is just set as node 0's
3833	 */
3834	if (pgdat == NODE_DATA(0)) {
3835		mem_map = NODE_DATA(0)->node_mem_map;
3836#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3837		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3838			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3839#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3840	}
3841#endif
3842#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3843}
3844
3845void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3846		unsigned long node_start_pfn, unsigned long *zholes_size)
3847{
3848	pg_data_t *pgdat = NODE_DATA(nid);
3849
3850	pgdat->node_id = nid;
3851	pgdat->node_start_pfn = node_start_pfn;
3852	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3853
3854	alloc_node_mem_map(pgdat);
3855#ifdef CONFIG_FLAT_NODE_MEM_MAP
3856	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3857		nid, (unsigned long)pgdat,
3858		(unsigned long)pgdat->node_mem_map);
3859#endif
3860
3861	free_area_init_core(pgdat, zones_size, zholes_size);
3862}
3863
3864#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3865
3866#if MAX_NUMNODES > 1
3867/*
3868 * Figure out the number of possible node ids.
3869 */
3870static void __init setup_nr_node_ids(void)
3871{
3872	unsigned int node;
3873	unsigned int highest = 0;
3874
3875	for_each_node_mask(node, node_possible_map)
3876		highest = node;
3877	nr_node_ids = highest + 1;
3878}
3879#else
3880static inline void setup_nr_node_ids(void)
3881{
3882}
3883#endif
3884
3885/**
3886 * add_active_range - Register a range of PFNs backed by physical memory
3887 * @nid: The node ID the range resides on
3888 * @start_pfn: The start PFN of the available physical memory
3889 * @end_pfn: The end PFN of the available physical memory
3890 *
3891 * These ranges are stored in an early_node_map[] and later used by
3892 * free_area_init_nodes() to calculate zone sizes and holes. If the
3893 * range spans a memory hole, it is up to the architecture to ensure
3894 * the memory is not freed by the bootmem allocator. If possible
3895 * the range being registered will be merged with existing ranges.
3896 */
3897void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3898						unsigned long end_pfn)
3899{
3900	int i;
3901
3902	mminit_dprintk(MMINIT_TRACE, "memory_register",
3903			"Entering add_active_range(%d, %#lx, %#lx) "
3904			"%d entries of %d used\n",
3905			nid, start_pfn, end_pfn,
3906			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3907
3908	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3909
3910	/* Merge with existing active regions if possible */
3911	for (i = 0; i < nr_nodemap_entries; i++) {
3912		if (early_node_map[i].nid != nid)
3913			continue;
3914
3915		/* Skip if an existing region covers this new one */
3916		if (start_pfn >= early_node_map[i].start_pfn &&
3917				end_pfn <= early_node_map[i].end_pfn)
3918			return;
3919
3920		/* Merge forward if suitable */
3921		if (start_pfn <= early_node_map[i].end_pfn &&
3922				end_pfn > early_node_map[i].end_pfn) {
3923			early_node_map[i].end_pfn = end_pfn;
3924			return;
3925		}
3926
3927		/* Merge backward if suitable */
3928		if (start_pfn < early_node_map[i].end_pfn &&
3929				end_pfn >= early_node_map[i].start_pfn) {
3930			early_node_map[i].start_pfn = start_pfn;
3931			return;
3932		}
3933	}
3934
3935	/* Check that early_node_map is large enough */
3936	if (i >= MAX_ACTIVE_REGIONS) {
3937		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3938							MAX_ACTIVE_REGIONS);
3939		return;
3940	}
3941
3942	early_node_map[i].nid = nid;
3943	early_node_map[i].start_pfn = start_pfn;
3944	early_node_map[i].end_pfn = end_pfn;
3945	nr_nodemap_entries = i + 1;
3946}
3947
3948/**
3949 * remove_active_range - Shrink an existing registered range of PFNs
3950 * @nid: The node id the range is on that should be shrunk
3951 * @start_pfn: The new PFN of the range
3952 * @end_pfn: The new PFN of the range
3953 *
3954 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3955 * The map is kept near the end physical page range that has already been
3956 * registered. This function allows an arch to shrink an existing registered
3957 * range.
3958 */
3959void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3960				unsigned long end_pfn)
3961{
3962	int i, j;
3963	int removed = 0;
3964
3965	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3966			  nid, start_pfn, end_pfn);
3967
3968	/* Find the old active region end and shrink */
3969	for_each_active_range_index_in_nid(i, nid) {
3970		if (early_node_map[i].start_pfn >= start_pfn &&
3971		    early_node_map[i].end_pfn <= end_pfn) {
3972			/* clear it */
3973			early_node_map[i].start_pfn = 0;
3974			early_node_map[i].end_pfn = 0;
3975			removed = 1;
3976			continue;
3977		}
3978		if (early_node_map[i].start_pfn < start_pfn &&
3979		    early_node_map[i].end_pfn > start_pfn) {
3980			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3981			early_node_map[i].end_pfn = start_pfn;
3982			if (temp_end_pfn > end_pfn)
3983				add_active_range(nid, end_pfn, temp_end_pfn);
3984			continue;
3985		}
3986		if (early_node_map[i].start_pfn >= start_pfn &&
3987		    early_node_map[i].end_pfn > end_pfn &&
3988		    early_node_map[i].start_pfn < end_pfn) {
3989			early_node_map[i].start_pfn = end_pfn;
3990			continue;
3991		}
3992	}
3993
3994	if (!removed)
3995		return;
3996
3997	/* remove the blank ones */
3998	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3999		if (early_node_map[i].nid != nid)
4000			continue;
4001		if (early_node_map[i].end_pfn)
4002			continue;
4003		/* we found it, get rid of it */
4004		for (j = i; j < nr_nodemap_entries - 1; j++)
4005			memcpy(&early_node_map[j], &early_node_map[j+1],
4006				sizeof(early_node_map[j]));
4007		j = nr_nodemap_entries - 1;
4008		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4009		nr_nodemap_entries--;
4010	}
4011}
4012
4013/**
4014 * remove_all_active_ranges - Remove all currently registered regions
4015 *
4016 * During discovery, it may be found that a table like SRAT is invalid
4017 * and an alternative discovery method must be used. This function removes
4018 * all currently registered regions.
4019 */
4020void __init remove_all_active_ranges(void)
4021{
4022	memset(early_node_map, 0, sizeof(early_node_map));
4023	nr_nodemap_entries = 0;
4024}
4025
4026/* Compare two active node_active_regions */
4027static int __init cmp_node_active_region(const void *a, const void *b)
4028{
4029	struct node_active_region *arange = (struct node_active_region *)a;
4030	struct node_active_region *brange = (struct node_active_region *)b;
4031
4032	/* Done this way to avoid overflows */
4033	if (arange->start_pfn > brange->start_pfn)
4034		return 1;
4035	if (arange->start_pfn < brange->start_pfn)
4036		return -1;
4037
4038	return 0;
4039}
4040
4041/* sort the node_map by start_pfn */
4042static void __init sort_node_map(void)
4043{
4044	sort(early_node_map, (size_t)nr_nodemap_entries,
4045			sizeof(struct node_active_region),
4046			cmp_node_active_region, NULL);
4047}
4048
4049/* Find the lowest pfn for a node */
4050static unsigned long __init find_min_pfn_for_node(int nid)
4051{
4052	int i;
4053	unsigned long min_pfn = ULONG_MAX;
4054
4055	/* Assuming a sorted map, the first range found has the starting pfn */
4056	for_each_active_range_index_in_nid(i, nid)
4057		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4058
4059	if (min_pfn == ULONG_MAX) {
4060		printk(KERN_WARNING
4061			"Could not find start_pfn for node %d\n", nid);
4062		return 0;
4063	}
4064
4065	return min_pfn;
4066}
4067
4068/**
4069 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4070 *
4071 * It returns the minimum PFN based on information provided via
4072 * add_active_range().
4073 */
4074unsigned long __init find_min_pfn_with_active_regions(void)
4075{
4076	return find_min_pfn_for_node(MAX_NUMNODES);
4077}
4078
4079/*
4080 * early_calculate_totalpages()
4081 * Sum pages in active regions for movable zone.
4082 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4083 */
4084static unsigned long __init early_calculate_totalpages(void)
4085{
4086	int i;
4087	unsigned long totalpages = 0;
4088
4089	for (i = 0; i < nr_nodemap_entries; i++) {
4090		unsigned long pages = early_node_map[i].end_pfn -
4091						early_node_map[i].start_pfn;
4092		totalpages += pages;
4093		if (pages)
4094			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4095	}
4096  	return totalpages;
4097}
4098
4099/*
4100 * Find the PFN the Movable zone begins in each node. Kernel memory
4101 * is spread evenly between nodes as long as the nodes have enough
4102 * memory. When they don't, some nodes will have more kernelcore than
4103 * others
4104 */
4105static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4106{
4107	int i, nid;
4108	unsigned long usable_startpfn;
4109	unsigned long kernelcore_node, kernelcore_remaining;
4110	/* save the state before borrow the nodemask */
4111	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4112	unsigned long totalpages = early_calculate_totalpages();
4113	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4114
4115	/*
4116	 * If movablecore was specified, calculate what size of
4117	 * kernelcore that corresponds so that memory usable for
4118	 * any allocation type is evenly spread. If both kernelcore
4119	 * and movablecore are specified, then the value of kernelcore
4120	 * will be used for required_kernelcore if it's greater than
4121	 * what movablecore would have allowed.
4122	 */
4123	if (required_movablecore) {
4124		unsigned long corepages;
4125
4126		/*
4127		 * Round-up so that ZONE_MOVABLE is at least as large as what
4128		 * was requested by the user
4129		 */
4130		required_movablecore =
4131			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4132		corepages = totalpages - required_movablecore;
4133
4134		required_kernelcore = max(required_kernelcore, corepages);
4135	}
4136
4137	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4138	if (!required_kernelcore)
4139		goto out;
4140
4141	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4142	find_usable_zone_for_movable();
4143	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4144
4145restart:
4146	/* Spread kernelcore memory as evenly as possible throughout nodes */
4147	kernelcore_node = required_kernelcore / usable_nodes;
4148	for_each_node_state(nid, N_HIGH_MEMORY) {
4149		/*
4150		 * Recalculate kernelcore_node if the division per node
4151		 * now exceeds what is necessary to satisfy the requested
4152		 * amount of memory for the kernel
4153		 */
4154		if (required_kernelcore < kernelcore_node)
4155			kernelcore_node = required_kernelcore / usable_nodes;
4156
4157		/*
4158		 * As the map is walked, we track how much memory is usable
4159		 * by the kernel using kernelcore_remaining. When it is
4160		 * 0, the rest of the node is usable by ZONE_MOVABLE
4161		 */
4162		kernelcore_remaining = kernelcore_node;
4163
4164		/* Go through each range of PFNs within this node */
4165		for_each_active_range_index_in_nid(i, nid) {
4166			unsigned long start_pfn, end_pfn;
4167			unsigned long size_pages;
4168
4169			start_pfn = max(early_node_map[i].start_pfn,
4170						zone_movable_pfn[nid]);
4171			end_pfn = early_node_map[i].end_pfn;
4172			if (start_pfn >= end_pfn)
4173				continue;
4174
4175			/* Account for what is only usable for kernelcore */
4176			if (start_pfn < usable_startpfn) {
4177				unsigned long kernel_pages;
4178				kernel_pages = min(end_pfn, usable_startpfn)
4179								- start_pfn;
4180
4181				kernelcore_remaining -= min(kernel_pages,
4182							kernelcore_remaining);
4183				required_kernelcore -= min(kernel_pages,
4184							required_kernelcore);
4185
4186				/* Continue if range is now fully accounted */
4187				if (end_pfn <= usable_startpfn) {
4188
4189					/*
4190					 * Push zone_movable_pfn to the end so
4191					 * that if we have to rebalance
4192					 * kernelcore across nodes, we will
4193					 * not double account here
4194					 */
4195					zone_movable_pfn[nid] = end_pfn;
4196					continue;
4197				}
4198				start_pfn = usable_startpfn;
4199			}
4200
4201			/*
4202			 * The usable PFN range for ZONE_MOVABLE is from
4203			 * start_pfn->end_pfn. Calculate size_pages as the
4204			 * number of pages used as kernelcore
4205			 */
4206			size_pages = end_pfn - start_pfn;
4207			if (size_pages > kernelcore_remaining)
4208				size_pages = kernelcore_remaining;
4209			zone_movable_pfn[nid] = start_pfn + size_pages;
4210
4211			/*
4212			 * Some kernelcore has been met, update counts and
4213			 * break if the kernelcore for this node has been
4214			 * satisified
4215			 */
4216			required_kernelcore -= min(required_kernelcore,
4217								size_pages);
4218			kernelcore_remaining -= size_pages;
4219			if (!kernelcore_remaining)
4220				break;
4221		}
4222	}
4223
4224	/*
4225	 * If there is still required_kernelcore, we do another pass with one
4226	 * less node in the count. This will push zone_movable_pfn[nid] further
4227	 * along on the nodes that still have memory until kernelcore is
4228	 * satisified
4229	 */
4230	usable_nodes--;
4231	if (usable_nodes && required_kernelcore > usable_nodes)
4232		goto restart;
4233
4234	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4235	for (nid = 0; nid < MAX_NUMNODES; nid++)
4236		zone_movable_pfn[nid] =
4237			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4238
4239out:
4240	/* restore the node_state */
4241	node_states[N_HIGH_MEMORY] = saved_node_state;
4242}
4243
4244/* Any regular memory on that node ? */
4245static void check_for_regular_memory(pg_data_t *pgdat)
4246{
4247#ifdef CONFIG_HIGHMEM
4248	enum zone_type zone_type;
4249
4250	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4251		struct zone *zone = &pgdat->node_zones[zone_type];
4252		if (zone->present_pages)
4253			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4254	}
4255#endif
4256}
4257
4258/**
4259 * free_area_init_nodes - Initialise all pg_data_t and zone data
4260 * @max_zone_pfn: an array of max PFNs for each zone
4261 *
4262 * This will call free_area_init_node() for each active node in the system.
4263 * Using the page ranges provided by add_active_range(), the size of each
4264 * zone in each node and their holes is calculated. If the maximum PFN
4265 * between two adjacent zones match, it is assumed that the zone is empty.
4266 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4267 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4268 * starts where the previous one ended. For example, ZONE_DMA32 starts
4269 * at arch_max_dma_pfn.
4270 */
4271void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4272{
4273	unsigned long nid;
4274	int i;
4275
4276	/* Sort early_node_map as initialisation assumes it is sorted */
4277	sort_node_map();
4278
4279	/* Record where the zone boundaries are */
4280	memset(arch_zone_lowest_possible_pfn, 0,
4281				sizeof(arch_zone_lowest_possible_pfn));
4282	memset(arch_zone_highest_possible_pfn, 0,
4283				sizeof(arch_zone_highest_possible_pfn));
4284	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4285	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4286	for (i = 1; i < MAX_NR_ZONES; i++) {
4287		if (i == ZONE_MOVABLE)
4288			continue;
4289		arch_zone_lowest_possible_pfn[i] =
4290			arch_zone_highest_possible_pfn[i-1];
4291		arch_zone_highest_possible_pfn[i] =
4292			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4293	}
4294	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4295	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4296
4297	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4298	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4299	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4300
4301	/* Print out the zone ranges */
4302	printk("Zone PFN ranges:\n");
4303	for (i = 0; i < MAX_NR_ZONES; i++) {
4304		if (i == ZONE_MOVABLE)
4305			continue;
4306		printk("  %-8s %0#10lx -> %0#10lx\n",
4307				zone_names[i],
4308				arch_zone_lowest_possible_pfn[i],
4309				arch_zone_highest_possible_pfn[i]);
4310	}
4311
4312	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4313	printk("Movable zone start PFN for each node\n");
4314	for (i = 0; i < MAX_NUMNODES; i++) {
4315		if (zone_movable_pfn[i])
4316			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4317	}
4318
4319	/* Print out the early_node_map[] */
4320	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4321	for (i = 0; i < nr_nodemap_entries; i++)
4322		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4323						early_node_map[i].start_pfn,
4324						early_node_map[i].end_pfn);
4325
4326	/* Initialise every node */
4327	mminit_verify_pageflags_layout();
4328	setup_nr_node_ids();
4329	for_each_online_node(nid) {
4330		pg_data_t *pgdat = NODE_DATA(nid);
4331		free_area_init_node(nid, NULL,
4332				find_min_pfn_for_node(nid), NULL);
4333
4334		/* Any memory on that node */
4335		if (pgdat->node_present_pages)
4336			node_set_state(nid, N_HIGH_MEMORY);
4337		check_for_regular_memory(pgdat);
4338	}
4339}
4340
4341static int __init cmdline_parse_core(char *p, unsigned long *core)
4342{
4343	unsigned long long coremem;
4344	if (!p)
4345		return -EINVAL;
4346
4347	coremem = memparse(p, &p);
4348	*core = coremem >> PAGE_SHIFT;
4349
4350	/* Paranoid check that UL is enough for the coremem value */
4351	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4352
4353	return 0;
4354}
4355
4356/*
4357 * kernelcore=size sets the amount of memory for use for allocations that
4358 * cannot be reclaimed or migrated.
4359 */
4360static int __init cmdline_parse_kernelcore(char *p)
4361{
4362	return cmdline_parse_core(p, &required_kernelcore);
4363}
4364
4365/*
4366 * movablecore=size sets the amount of memory for use for allocations that
4367 * can be reclaimed or migrated.
4368 */
4369static int __init cmdline_parse_movablecore(char *p)
4370{
4371	return cmdline_parse_core(p, &required_movablecore);
4372}
4373
4374early_param("kernelcore", cmdline_parse_kernelcore);
4375early_param("movablecore", cmdline_parse_movablecore);
4376
4377#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4378
4379/**
4380 * set_dma_reserve - set the specified number of pages reserved in the first zone
4381 * @new_dma_reserve: The number of pages to mark reserved
4382 *
4383 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4384 * In the DMA zone, a significant percentage may be consumed by kernel image
4385 * and other unfreeable allocations which can skew the watermarks badly. This
4386 * function may optionally be used to account for unfreeable pages in the
4387 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4388 * smaller per-cpu batchsize.
4389 */
4390void __init set_dma_reserve(unsigned long new_dma_reserve)
4391{
4392	dma_reserve = new_dma_reserve;
4393}
4394
4395#ifndef CONFIG_NEED_MULTIPLE_NODES
4396struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4397EXPORT_SYMBOL(contig_page_data);
4398#endif
4399
4400void __init free_area_init(unsigned long *zones_size)
4401{
4402	free_area_init_node(0, zones_size,
4403			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4404}
4405
4406static int page_alloc_cpu_notify(struct notifier_block *self,
4407				 unsigned long action, void *hcpu)
4408{
4409	int cpu = (unsigned long)hcpu;
4410
4411	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4412		drain_pages(cpu);
4413
4414		/*
4415		 * Spill the event counters of the dead processor
4416		 * into the current processors event counters.
4417		 * This artificially elevates the count of the current
4418		 * processor.
4419		 */
4420		vm_events_fold_cpu(cpu);
4421
4422		/*
4423		 * Zero the differential counters of the dead processor
4424		 * so that the vm statistics are consistent.
4425		 *
4426		 * This is only okay since the processor is dead and cannot
4427		 * race with what we are doing.
4428		 */
4429		refresh_cpu_vm_stats(cpu);
4430	}
4431	return NOTIFY_OK;
4432}
4433
4434void __init page_alloc_init(void)
4435{
4436	hotcpu_notifier(page_alloc_cpu_notify, 0);
4437}
4438
4439/*
4440 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4441 *	or min_free_kbytes changes.
4442 */
4443static void calculate_totalreserve_pages(void)
4444{
4445	struct pglist_data *pgdat;
4446	unsigned long reserve_pages = 0;
4447	enum zone_type i, j;
4448
4449	for_each_online_pgdat(pgdat) {
4450		for (i = 0; i < MAX_NR_ZONES; i++) {
4451			struct zone *zone = pgdat->node_zones + i;
4452			unsigned long max = 0;
4453
4454			/* Find valid and maximum lowmem_reserve in the zone */
4455			for (j = i; j < MAX_NR_ZONES; j++) {
4456				if (zone->lowmem_reserve[j] > max)
4457					max = zone->lowmem_reserve[j];
4458			}
4459
4460			/* we treat the high watermark as reserved pages. */
4461			max += high_wmark_pages(zone);
4462
4463			if (max > zone->present_pages)
4464				max = zone->present_pages;
4465			reserve_pages += max;
4466		}
4467	}
4468	totalreserve_pages = reserve_pages;
4469}
4470
4471/*
4472 * setup_per_zone_lowmem_reserve - called whenever
4473 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4474 *	has a correct pages reserved value, so an adequate number of
4475 *	pages are left in the zone after a successful __alloc_pages().
4476 */
4477static void setup_per_zone_lowmem_reserve(void)
4478{
4479	struct pglist_data *pgdat;
4480	enum zone_type j, idx;
4481
4482	for_each_online_pgdat(pgdat) {
4483		for (j = 0; j < MAX_NR_ZONES; j++) {
4484			struct zone *zone = pgdat->node_zones + j;
4485			unsigned long present_pages = zone->present_pages;
4486
4487			zone->lowmem_reserve[j] = 0;
4488
4489			idx = j;
4490			while (idx) {
4491				struct zone *lower_zone;
4492
4493				idx--;
4494
4495				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4496					sysctl_lowmem_reserve_ratio[idx] = 1;
4497
4498				lower_zone = pgdat->node_zones + idx;
4499				lower_zone->lowmem_reserve[j] = present_pages /
4500					sysctl_lowmem_reserve_ratio[idx];
4501				present_pages += lower_zone->present_pages;
4502			}
4503		}
4504	}
4505
4506	/* update totalreserve_pages */
4507	calculate_totalreserve_pages();
4508}
4509
4510/**
4511 * setup_per_zone_wmarks - called when min_free_kbytes changes
4512 * or when memory is hot-{added|removed}
4513 *
4514 * Ensures that the watermark[min,low,high] values for each zone are set
4515 * correctly with respect to min_free_kbytes.
4516 */
4517void setup_per_zone_wmarks(void)
4518{
4519	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4520	unsigned long lowmem_pages = 0;
4521	struct zone *zone;
4522	unsigned long flags;
4523
4524	/* Calculate total number of !ZONE_HIGHMEM pages */
4525	for_each_zone(zone) {
4526		if (!is_highmem(zone))
4527			lowmem_pages += zone->present_pages;
4528	}
4529
4530	for_each_zone(zone) {
4531		u64 tmp;
4532
4533		spin_lock_irqsave(&zone->lock, flags);
4534		tmp = (u64)pages_min * zone->present_pages;
4535		do_div(tmp, lowmem_pages);
4536		if (is_highmem(zone)) {
4537			/*
4538			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4539			 * need highmem pages, so cap pages_min to a small
4540			 * value here.
4541			 *
4542			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4543			 * deltas controls asynch page reclaim, and so should
4544			 * not be capped for highmem.
4545			 */
4546			int min_pages;
4547
4548			min_pages = zone->present_pages / 1024;
4549			if (min_pages < SWAP_CLUSTER_MAX)
4550				min_pages = SWAP_CLUSTER_MAX;
4551			if (min_pages > 128)
4552				min_pages = 128;
4553			zone->watermark[WMARK_MIN] = min_pages;
4554		} else {
4555			/*
4556			 * If it's a lowmem zone, reserve a number of pages
4557			 * proportionate to the zone's size.
4558			 */
4559			zone->watermark[WMARK_MIN] = tmp;
4560		}
4561
4562		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4563		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4564		setup_zone_migrate_reserve(zone);
4565		spin_unlock_irqrestore(&zone->lock, flags);
4566	}
4567
4568	/* update totalreserve_pages */
4569	calculate_totalreserve_pages();
4570}
4571
4572/*
4573 * The inactive anon list should be small enough that the VM never has to
4574 * do too much work, but large enough that each inactive page has a chance
4575 * to be referenced again before it is swapped out.
4576 *
4577 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4578 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4579 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4580 * the anonymous pages are kept on the inactive list.
4581 *
4582 * total     target    max
4583 * memory    ratio     inactive anon
4584 * -------------------------------------
4585 *   10MB       1         5MB
4586 *  100MB       1        50MB
4587 *    1GB       3       250MB
4588 *   10GB      10       0.9GB
4589 *  100GB      31         3GB
4590 *    1TB     101        10GB
4591 *   10TB     320        32GB
4592 */
4593void calculate_zone_inactive_ratio(struct zone *zone)
4594{
4595	unsigned int gb, ratio;
4596
4597	/* Zone size in gigabytes */
4598	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4599	if (gb)
4600		ratio = int_sqrt(10 * gb);
4601	else
4602		ratio = 1;
4603
4604	zone->inactive_ratio = ratio;
4605}
4606
4607static void __init setup_per_zone_inactive_ratio(void)
4608{
4609	struct zone *zone;
4610
4611	for_each_zone(zone)
4612		calculate_zone_inactive_ratio(zone);
4613}
4614
4615/*
4616 * Initialise min_free_kbytes.
4617 *
4618 * For small machines we want it small (128k min).  For large machines
4619 * we want it large (64MB max).  But it is not linear, because network
4620 * bandwidth does not increase linearly with machine size.  We use
4621 *
4622 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4623 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4624 *
4625 * which yields
4626 *
4627 * 16MB:	512k
4628 * 32MB:	724k
4629 * 64MB:	1024k
4630 * 128MB:	1448k
4631 * 256MB:	2048k
4632 * 512MB:	2896k
4633 * 1024MB:	4096k
4634 * 2048MB:	5792k
4635 * 4096MB:	8192k
4636 * 8192MB:	11584k
4637 * 16384MB:	16384k
4638 */
4639static int __init init_per_zone_wmark_min(void)
4640{
4641	unsigned long lowmem_kbytes;
4642
4643	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4644
4645	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4646	if (min_free_kbytes < 128)
4647		min_free_kbytes = 128;
4648	if (min_free_kbytes > 65536)
4649		min_free_kbytes = 65536;
4650	setup_per_zone_wmarks();
4651	setup_per_zone_lowmem_reserve();
4652	setup_per_zone_inactive_ratio();
4653	return 0;
4654}
4655module_init(init_per_zone_wmark_min)
4656
4657/*
4658 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4659 *	that we can call two helper functions whenever min_free_kbytes
4660 *	changes.
4661 */
4662int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4663	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4664{
4665	proc_dointvec(table, write, file, buffer, length, ppos);
4666	if (write)
4667		setup_per_zone_wmarks();
4668	return 0;
4669}
4670
4671#ifdef CONFIG_NUMA
4672int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4673	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4674{
4675	struct zone *zone;
4676	int rc;
4677
4678	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4679	if (rc)
4680		return rc;
4681
4682	for_each_zone(zone)
4683		zone->min_unmapped_pages = (zone->present_pages *
4684				sysctl_min_unmapped_ratio) / 100;
4685	return 0;
4686}
4687
4688int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4689	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4690{
4691	struct zone *zone;
4692	int rc;
4693
4694	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4695	if (rc)
4696		return rc;
4697
4698	for_each_zone(zone)
4699		zone->min_slab_pages = (zone->present_pages *
4700				sysctl_min_slab_ratio) / 100;
4701	return 0;
4702}
4703#endif
4704
4705/*
4706 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4707 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4708 *	whenever sysctl_lowmem_reserve_ratio changes.
4709 *
4710 * The reserve ratio obviously has absolutely no relation with the
4711 * minimum watermarks. The lowmem reserve ratio can only make sense
4712 * if in function of the boot time zone sizes.
4713 */
4714int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4715	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4716{
4717	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4718	setup_per_zone_lowmem_reserve();
4719	return 0;
4720}
4721
4722/*
4723 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4724 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4725 * can have before it gets flushed back to buddy allocator.
4726 */
4727
4728int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4729	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4730{
4731	struct zone *zone;
4732	unsigned int cpu;
4733	int ret;
4734
4735	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4736	if (!write || (ret == -EINVAL))
4737		return ret;
4738	for_each_populated_zone(zone) {
4739		for_each_online_cpu(cpu) {
4740			unsigned long  high;
4741			high = zone->present_pages / percpu_pagelist_fraction;
4742			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4743		}
4744	}
4745	return 0;
4746}
4747
4748int hashdist = HASHDIST_DEFAULT;
4749
4750#ifdef CONFIG_NUMA
4751static int __init set_hashdist(char *str)
4752{
4753	if (!str)
4754		return 0;
4755	hashdist = simple_strtoul(str, &str, 0);
4756	return 1;
4757}
4758__setup("hashdist=", set_hashdist);
4759#endif
4760
4761/*
4762 * allocate a large system hash table from bootmem
4763 * - it is assumed that the hash table must contain an exact power-of-2
4764 *   quantity of entries
4765 * - limit is the number of hash buckets, not the total allocation size
4766 */
4767void *__init alloc_large_system_hash(const char *tablename,
4768				     unsigned long bucketsize,
4769				     unsigned long numentries,
4770				     int scale,
4771				     int flags,
4772				     unsigned int *_hash_shift,
4773				     unsigned int *_hash_mask,
4774				     unsigned long limit)
4775{
4776	unsigned long long max = limit;
4777	unsigned long log2qty, size;
4778	void *table = NULL;
4779
4780	/* allow the kernel cmdline to have a say */
4781	if (!numentries) {
4782		/* round applicable memory size up to nearest megabyte */
4783		numentries = nr_kernel_pages;
4784		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4785		numentries >>= 20 - PAGE_SHIFT;
4786		numentries <<= 20 - PAGE_SHIFT;
4787
4788		/* limit to 1 bucket per 2^scale bytes of low memory */
4789		if (scale > PAGE_SHIFT)
4790			numentries >>= (scale - PAGE_SHIFT);
4791		else
4792			numentries <<= (PAGE_SHIFT - scale);
4793
4794		/* Make sure we've got at least a 0-order allocation.. */
4795		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4796			numentries = PAGE_SIZE / bucketsize;
4797	}
4798	numentries = roundup_pow_of_two(numentries);
4799
4800	/* limit allocation size to 1/16 total memory by default */
4801	if (max == 0) {
4802		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4803		do_div(max, bucketsize);
4804	}
4805
4806	if (numentries > max)
4807		numentries = max;
4808
4809	log2qty = ilog2(numentries);
4810
4811	do {
4812		size = bucketsize << log2qty;
4813		if (flags & HASH_EARLY)
4814			table = alloc_bootmem_nopanic(size);
4815		else if (hashdist)
4816			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4817		else {
4818			/*
4819			 * If bucketsize is not a power-of-two, we may free
4820			 * some pages at the end of hash table which
4821			 * alloc_pages_exact() automatically does
4822			 */
4823			if (get_order(size) < MAX_ORDER) {
4824				table = alloc_pages_exact(size, GFP_ATOMIC);
4825				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4826			}
4827		}
4828	} while (!table && size > PAGE_SIZE && --log2qty);
4829
4830	if (!table)
4831		panic("Failed to allocate %s hash table\n", tablename);
4832
4833	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4834	       tablename,
4835	       (1U << log2qty),
4836	       ilog2(size) - PAGE_SHIFT,
4837	       size);
4838
4839	if (_hash_shift)
4840		*_hash_shift = log2qty;
4841	if (_hash_mask)
4842		*_hash_mask = (1 << log2qty) - 1;
4843
4844	return table;
4845}
4846
4847/* Return a pointer to the bitmap storing bits affecting a block of pages */
4848static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4849							unsigned long pfn)
4850{
4851#ifdef CONFIG_SPARSEMEM
4852	return __pfn_to_section(pfn)->pageblock_flags;
4853#else
4854	return zone->pageblock_flags;
4855#endif /* CONFIG_SPARSEMEM */
4856}
4857
4858static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4859{
4860#ifdef CONFIG_SPARSEMEM
4861	pfn &= (PAGES_PER_SECTION-1);
4862	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4863#else
4864	pfn = pfn - zone->zone_start_pfn;
4865	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4866#endif /* CONFIG_SPARSEMEM */
4867}
4868
4869/**
4870 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4871 * @page: The page within the block of interest
4872 * @start_bitidx: The first bit of interest to retrieve
4873 * @end_bitidx: The last bit of interest
4874 * returns pageblock_bits flags
4875 */
4876unsigned long get_pageblock_flags_group(struct page *page,
4877					int start_bitidx, int end_bitidx)
4878{
4879	struct zone *zone;
4880	unsigned long *bitmap;
4881	unsigned long pfn, bitidx;
4882	unsigned long flags = 0;
4883	unsigned long value = 1;
4884
4885	zone = page_zone(page);
4886	pfn = page_to_pfn(page);
4887	bitmap = get_pageblock_bitmap(zone, pfn);
4888	bitidx = pfn_to_bitidx(zone, pfn);
4889
4890	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4891		if (test_bit(bitidx + start_bitidx, bitmap))
4892			flags |= value;
4893
4894	return flags;
4895}
4896
4897/**
4898 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4899 * @page: The page within the block of interest
4900 * @start_bitidx: The first bit of interest
4901 * @end_bitidx: The last bit of interest
4902 * @flags: The flags to set
4903 */
4904void set_pageblock_flags_group(struct page *page, unsigned long flags,
4905					int start_bitidx, int end_bitidx)
4906{
4907	struct zone *zone;
4908	unsigned long *bitmap;
4909	unsigned long pfn, bitidx;
4910	unsigned long value = 1;
4911
4912	zone = page_zone(page);
4913	pfn = page_to_pfn(page);
4914	bitmap = get_pageblock_bitmap(zone, pfn);
4915	bitidx = pfn_to_bitidx(zone, pfn);
4916	VM_BUG_ON(pfn < zone->zone_start_pfn);
4917	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4918
4919	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4920		if (flags & value)
4921			__set_bit(bitidx + start_bitidx, bitmap);
4922		else
4923			__clear_bit(bitidx + start_bitidx, bitmap);
4924}
4925
4926/*
4927 * This is designed as sub function...plz see page_isolation.c also.
4928 * set/clear page block's type to be ISOLATE.
4929 * page allocater never alloc memory from ISOLATE block.
4930 */
4931
4932int set_migratetype_isolate(struct page *page)
4933{
4934	struct zone *zone;
4935	unsigned long flags;
4936	int ret = -EBUSY;
4937	int zone_idx;
4938
4939	zone = page_zone(page);
4940	zone_idx = zone_idx(zone);
4941	spin_lock_irqsave(&zone->lock, flags);
4942	/*
4943	 * In future, more migrate types will be able to be isolation target.
4944	 */
4945	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4946	    zone_idx != ZONE_MOVABLE)
4947		goto out;
4948	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4949	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4950	ret = 0;
4951out:
4952	spin_unlock_irqrestore(&zone->lock, flags);
4953	if (!ret)
4954		drain_all_pages();
4955	return ret;
4956}
4957
4958void unset_migratetype_isolate(struct page *page)
4959{
4960	struct zone *zone;
4961	unsigned long flags;
4962	zone = page_zone(page);
4963	spin_lock_irqsave(&zone->lock, flags);
4964	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4965		goto out;
4966	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4967	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4968out:
4969	spin_unlock_irqrestore(&zone->lock, flags);
4970}
4971
4972#ifdef CONFIG_MEMORY_HOTREMOVE
4973/*
4974 * All pages in the range must be isolated before calling this.
4975 */
4976void
4977__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4978{
4979	struct page *page;
4980	struct zone *zone;
4981	int order, i;
4982	unsigned long pfn;
4983	unsigned long flags;
4984	/* find the first valid pfn */
4985	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4986		if (pfn_valid(pfn))
4987			break;
4988	if (pfn == end_pfn)
4989		return;
4990	zone = page_zone(pfn_to_page(pfn));
4991	spin_lock_irqsave(&zone->lock, flags);
4992	pfn = start_pfn;
4993	while (pfn < end_pfn) {
4994		if (!pfn_valid(pfn)) {
4995			pfn++;
4996			continue;
4997		}
4998		page = pfn_to_page(pfn);
4999		BUG_ON(page_count(page));
5000		BUG_ON(!PageBuddy(page));
5001		order = page_order(page);
5002#ifdef CONFIG_DEBUG_VM
5003		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5004		       pfn, 1 << order, end_pfn);
5005#endif
5006		list_del(&page->lru);
5007		rmv_page_order(page);
5008		zone->free_area[order].nr_free--;
5009		__mod_zone_page_state(zone, NR_FREE_PAGES,
5010				      - (1UL << order));
5011		for (i = 0; i < (1 << order); i++)
5012			SetPageReserved((page+i));
5013		pfn += (1 << order);
5014	}
5015	spin_unlock_irqrestore(&zone->lock, flags);
5016}
5017#endif
5018