page_alloc.c revision 96177299416dbccb73b54e6b344260154a445375
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76	 256,
77#ifdef CONFIG_ZONE_DMA32
78	 256,
79#endif
80#ifdef CONFIG_HIGHMEM
81	 32
82#endif
83};
84
85EXPORT_SYMBOL(totalram_pages);
86
87static char * const zone_names[MAX_NR_ZONES] = {
88	 "DMA",
89#ifdef CONFIG_ZONE_DMA32
90	 "DMA32",
91#endif
92	 "Normal",
93#ifdef CONFIG_HIGHMEM
94	 "HighMem"
95#endif
96};
97
98int min_free_kbytes = 1024;
99
100unsigned long __meminitdata nr_kernel_pages;
101unsigned long __meminitdata nr_all_pages;
102static unsigned long __initdata dma_reserve;
103
104#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105  /*
106   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107   * ranges of memory (RAM) that may be registered with add_active_range().
108   * Ranges passed to add_active_range() will be merged if possible
109   * so the number of times add_active_range() can be called is
110   * related to the number of nodes and the number of holes
111   */
112  #ifdef CONFIG_MAX_ACTIVE_REGIONS
113    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115  #else
116    #if MAX_NUMNODES >= 32
117      /* If there can be many nodes, allow up to 50 holes per node */
118      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119    #else
120      /* By default, allow up to 256 distinct regions */
121      #define MAX_ACTIVE_REGIONS 256
122    #endif
123  #endif
124
125  struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126  int __initdata nr_nodemap_entries;
127  unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128  unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
129#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
135#ifdef CONFIG_DEBUG_VM
136static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
137{
138	int ret = 0;
139	unsigned seq;
140	unsigned long pfn = page_to_pfn(page);
141
142	do {
143		seq = zone_span_seqbegin(zone);
144		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145			ret = 1;
146		else if (pfn < zone->zone_start_pfn)
147			ret = 1;
148	} while (zone_span_seqretry(zone, seq));
149
150	return ret;
151}
152
153static int page_is_consistent(struct zone *zone, struct page *page)
154{
155#ifdef CONFIG_HOLES_IN_ZONE
156	if (!pfn_valid(page_to_pfn(page)))
157		return 0;
158#endif
159	if (zone != page_zone(page))
160		return 0;
161
162	return 1;
163}
164/*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167static int bad_range(struct zone *zone, struct page *page)
168{
169	if (page_outside_zone_boundaries(zone, page))
170		return 1;
171	if (!page_is_consistent(zone, page))
172		return 1;
173
174	return 0;
175}
176#else
177static inline int bad_range(struct zone *zone, struct page *page)
178{
179	return 0;
180}
181#endif
182
183static void bad_page(struct page *page)
184{
185	printk(KERN_EMERG "Bad page state in process '%s'\n"
186		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188		KERN_EMERG "Backtrace:\n",
189		current->comm, page, (int)(2*sizeof(unsigned long)),
190		(unsigned long)page->flags, page->mapping,
191		page_mapcount(page), page_count(page));
192	dump_stack();
193	page->flags &= ~(1 << PG_lru	|
194			1 << PG_private |
195			1 << PG_locked	|
196			1 << PG_active	|
197			1 << PG_dirty	|
198			1 << PG_reclaim |
199			1 << PG_slab    |
200			1 << PG_swapcache |
201			1 << PG_writeback |
202			1 << PG_buddy );
203	set_page_count(page, 0);
204	reset_page_mapcount(page);
205	page->mapping = NULL;
206	add_taint(TAINT_BAD_PAGE);
207}
208
209/*
210 * Higher-order pages are called "compound pages".  They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set.  All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function.  Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
222 */
223
224static void free_compound_page(struct page *page)
225{
226	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
227}
228
229static void prep_compound_page(struct page *page, unsigned long order)
230{
231	int i;
232	int nr_pages = 1 << order;
233
234	set_compound_page_dtor(page, free_compound_page);
235	page[1].lru.prev = (void *)order;
236	for (i = 0; i < nr_pages; i++) {
237		struct page *p = page + i;
238
239		__SetPageCompound(p);
240		set_page_private(p, (unsigned long)page);
241	}
242}
243
244static void destroy_compound_page(struct page *page, unsigned long order)
245{
246	int i;
247	int nr_pages = 1 << order;
248
249	if (unlikely((unsigned long)page[1].lru.prev != order))
250		bad_page(page);
251
252	for (i = 0; i < nr_pages; i++) {
253		struct page *p = page + i;
254
255		if (unlikely(!PageCompound(p) |
256				(page_private(p) != (unsigned long)page)))
257			bad_page(page);
258		__ClearPageCompound(p);
259	}
260}
261
262static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263{
264	int i;
265
266	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
267	/*
268	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269	 * and __GFP_HIGHMEM from hard or soft interrupt context.
270	 */
271	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
272	for (i = 0; i < (1 << order); i++)
273		clear_highpage(page + i);
274}
275
276/*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
281static inline unsigned long page_order(struct page *page)
282{
283	return page_private(page);
284}
285
286static inline void set_page_order(struct page *page, int order)
287{
288	set_page_private(page, order);
289	__SetPageBuddy(page);
290}
291
292static inline void rmv_page_order(struct page *page)
293{
294	__ClearPageBuddy(page);
295	set_page_private(page, 0);
296}
297
298/*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 *     B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 *     P = B & ~(1 << O)
312 *
313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
314 */
315static inline struct page *
316__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317{
318	unsigned long buddy_idx = page_idx ^ (1 << order);
319
320	return page + (buddy_idx - page_idx);
321}
322
323static inline unsigned long
324__find_combined_index(unsigned long page_idx, unsigned int order)
325{
326	return (page_idx & ~(1 << order));
327}
328
329/*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
332 * (a) the buddy is not in a hole &&
333 * (b) the buddy is in the buddy system &&
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
339 *
340 * For recording page's order, we use page_private(page).
341 */
342static inline int page_is_buddy(struct page *page, struct page *buddy,
343								int order)
344{
345#ifdef CONFIG_HOLES_IN_ZONE
346	if (!pfn_valid(page_to_pfn(buddy)))
347		return 0;
348#endif
349
350	if (page_zone_id(page) != page_zone_id(buddy))
351		return 0;
352
353	if (PageBuddy(buddy) && page_order(buddy) == order) {
354		BUG_ON(page_count(buddy) != 0);
355		return 1;
356	}
357	return 0;
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other.  That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
384static inline void __free_one_page(struct page *page,
385		struct zone *zone, unsigned int order)
386{
387	unsigned long page_idx;
388	int order_size = 1 << order;
389
390	if (unlikely(PageCompound(page)))
391		destroy_compound_page(page, order);
392
393	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
395	VM_BUG_ON(page_idx & (order_size - 1));
396	VM_BUG_ON(bad_range(zone, page));
397
398	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
399	while (order < MAX_ORDER-1) {
400		unsigned long combined_idx;
401		struct free_area *area;
402		struct page *buddy;
403
404		buddy = __page_find_buddy(page, page_idx, order);
405		if (!page_is_buddy(page, buddy, order))
406			break;		/* Move the buddy up one level. */
407
408		list_del(&buddy->lru);
409		area = zone->free_area + order;
410		area->nr_free--;
411		rmv_page_order(buddy);
412		combined_idx = __find_combined_index(page_idx, order);
413		page = page + (combined_idx - page_idx);
414		page_idx = combined_idx;
415		order++;
416	}
417	set_page_order(page, order);
418	list_add(&page->lru, &zone->free_area[order].free_list);
419	zone->free_area[order].nr_free++;
420}
421
422static inline int free_pages_check(struct page *page)
423{
424	if (unlikely(page_mapcount(page) |
425		(page->mapping != NULL)  |
426		(page_count(page) != 0)  |
427		(page->flags & (
428			1 << PG_lru	|
429			1 << PG_private |
430			1 << PG_locked	|
431			1 << PG_active	|
432			1 << PG_reclaim	|
433			1 << PG_slab	|
434			1 << PG_swapcache |
435			1 << PG_writeback |
436			1 << PG_reserved |
437			1 << PG_buddy ))))
438		bad_page(page);
439	if (PageDirty(page))
440		__ClearPageDirty(page);
441	/*
442	 * For now, we report if PG_reserved was found set, but do not
443	 * clear it, and do not free the page.  But we shall soon need
444	 * to do more, for when the ZERO_PAGE count wraps negative.
445	 */
446	return PageReserved(page);
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
460static void free_pages_bulk(struct zone *zone, int count,
461					struct list_head *list, int order)
462{
463	spin_lock(&zone->lock);
464	zone->all_unreclaimable = 0;
465	zone->pages_scanned = 0;
466	while (count--) {
467		struct page *page;
468
469		VM_BUG_ON(list_empty(list));
470		page = list_entry(list->prev, struct page, lru);
471		/* have to delete it as __free_one_page list manipulates */
472		list_del(&page->lru);
473		__free_one_page(page, zone, order);
474	}
475	spin_unlock(&zone->lock);
476}
477
478static void free_one_page(struct zone *zone, struct page *page, int order)
479{
480	spin_lock(&zone->lock);
481	zone->all_unreclaimable = 0;
482	zone->pages_scanned = 0;
483	__free_one_page(page, zone, order);
484	spin_unlock(&zone->lock);
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489	unsigned long flags;
490	int i;
491	int reserved = 0;
492
493	for (i = 0 ; i < (1 << order) ; ++i)
494		reserved += free_pages_check(page + i);
495	if (reserved)
496		return;
497
498	if (!PageHighMem(page))
499		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500	arch_free_page(page, order);
501	kernel_map_pages(page, 1 << order, 0);
502
503	local_irq_save(flags);
504	__count_vm_events(PGFREE, 1 << order);
505	free_one_page(page_zone(page), page, order);
506	local_irq_restore(flags);
507}
508
509/*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513{
514	if (order == 0) {
515		__ClearPageReserved(page);
516		set_page_count(page, 0);
517		set_page_refcounted(page);
518		__free_page(page);
519	} else {
520		int loop;
521
522		prefetchw(page);
523		for (loop = 0; loop < BITS_PER_LONG; loop++) {
524			struct page *p = &page[loop];
525
526			if (loop + 1 < BITS_PER_LONG)
527				prefetchw(p + 1);
528			__ClearPageReserved(p);
529			set_page_count(p, 0);
530		}
531
532		set_page_refcounted(page);
533		__free_pages(page, order);
534	}
535}
536
537
538/*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
552static inline void expand(struct zone *zone, struct page *page,
553 	int low, int high, struct free_area *area)
554{
555	unsigned long size = 1 << high;
556
557	while (high > low) {
558		area--;
559		high--;
560		size >>= 1;
561		VM_BUG_ON(bad_range(zone, &page[size]));
562		list_add(&page[size].lru, &area->free_list);
563		area->nr_free++;
564		set_page_order(&page[size], high);
565	}
566}
567
568/*
569 * This page is about to be returned from the page allocator
570 */
571static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572{
573	if (unlikely(page_mapcount(page) |
574		(page->mapping != NULL)  |
575		(page_count(page) != 0)  |
576		(page->flags & (
577			1 << PG_lru	|
578			1 << PG_private	|
579			1 << PG_locked	|
580			1 << PG_active	|
581			1 << PG_dirty	|
582			1 << PG_reclaim	|
583			1 << PG_slab    |
584			1 << PG_swapcache |
585			1 << PG_writeback |
586			1 << PG_reserved |
587			1 << PG_buddy ))))
588		bad_page(page);
589
590	/*
591	 * For now, we report if PG_reserved was found set, but do not
592	 * clear it, and do not allocate the page: as a safety net.
593	 */
594	if (PageReserved(page))
595		return 1;
596
597	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598			1 << PG_referenced | 1 << PG_arch_1 |
599			1 << PG_checked | 1 << PG_mappedtodisk);
600	set_page_private(page, 0);
601	set_page_refcounted(page);
602
603	arch_alloc_page(page, order);
604	kernel_map_pages(page, 1 << order, 1);
605
606	if (gfp_flags & __GFP_ZERO)
607		prep_zero_page(page, order, gfp_flags);
608
609	if (order && (gfp_flags & __GFP_COMP))
610		prep_compound_page(page, order);
611
612	return 0;
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621	struct free_area * area;
622	unsigned int current_order;
623	struct page *page;
624
625	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626		area = zone->free_area + current_order;
627		if (list_empty(&area->free_list))
628			continue;
629
630		page = list_entry(area->free_list.next, struct page, lru);
631		list_del(&page->lru);
632		rmv_page_order(page);
633		area->nr_free--;
634		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
635		expand(zone, page, order, current_order, area);
636		return page;
637	}
638
639	return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency.  Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648			unsigned long count, struct list_head *list)
649{
650	int i;
651
652	spin_lock(&zone->lock);
653	for (i = 0; i < count; ++i) {
654		struct page *page = __rmqueue(zone, order);
655		if (unlikely(page == NULL))
656			break;
657		list_add_tail(&page->lru, list);
658	}
659	spin_unlock(&zone->lock);
660	return i;
661}
662
663#ifdef CONFIG_NUMA
664/*
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
669 */
670void drain_node_pages(int nodeid)
671{
672	int i;
673	enum zone_type z;
674	unsigned long flags;
675
676	for (z = 0; z < MAX_NR_ZONES; z++) {
677		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678		struct per_cpu_pageset *pset;
679
680		if (!populated_zone(zone))
681			continue;
682
683		pset = zone_pcp(zone, smp_processor_id());
684		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685			struct per_cpu_pages *pcp;
686
687			pcp = &pset->pcp[i];
688			if (pcp->count) {
689				int to_drain;
690
691				local_irq_save(flags);
692				if (pcp->count >= pcp->batch)
693					to_drain = pcp->batch;
694				else
695					to_drain = pcp->count;
696				free_pages_bulk(zone, to_drain, &pcp->list, 0);
697				pcp->count -= to_drain;
698				local_irq_restore(flags);
699			}
700		}
701	}
702}
703#endif
704
705static void __drain_pages(unsigned int cpu)
706{
707	unsigned long flags;
708	struct zone *zone;
709	int i;
710
711	for_each_zone(zone) {
712		struct per_cpu_pageset *pset;
713
714		if (!populated_zone(zone))
715			continue;
716
717		pset = zone_pcp(zone, cpu);
718		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
719			struct per_cpu_pages *pcp;
720
721			pcp = &pset->pcp[i];
722			local_irq_save(flags);
723			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
724			pcp->count = 0;
725			local_irq_restore(flags);
726		}
727	}
728}
729
730#ifdef CONFIG_PM
731
732void mark_free_pages(struct zone *zone)
733{
734	unsigned long pfn, max_zone_pfn;
735	unsigned long flags;
736	int order;
737	struct list_head *curr;
738
739	if (!zone->spanned_pages)
740		return;
741
742	spin_lock_irqsave(&zone->lock, flags);
743
744	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
745	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
746		if (pfn_valid(pfn)) {
747			struct page *page = pfn_to_page(pfn);
748
749			if (!PageNosave(page))
750				ClearPageNosaveFree(page);
751		}
752
753	for (order = MAX_ORDER - 1; order >= 0; --order)
754		list_for_each(curr, &zone->free_area[order].free_list) {
755			unsigned long i;
756
757			pfn = page_to_pfn(list_entry(curr, struct page, lru));
758			for (i = 0; i < (1UL << order); i++)
759				SetPageNosaveFree(pfn_to_page(pfn + i));
760		}
761
762	spin_unlock_irqrestore(&zone->lock, flags);
763}
764
765/*
766 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767 */
768void drain_local_pages(void)
769{
770	unsigned long flags;
771
772	local_irq_save(flags);
773	__drain_pages(smp_processor_id());
774	local_irq_restore(flags);
775}
776#endif /* CONFIG_PM */
777
778/*
779 * Free a 0-order page
780 */
781static void fastcall free_hot_cold_page(struct page *page, int cold)
782{
783	struct zone *zone = page_zone(page);
784	struct per_cpu_pages *pcp;
785	unsigned long flags;
786
787	if (PageAnon(page))
788		page->mapping = NULL;
789	if (free_pages_check(page))
790		return;
791
792	if (!PageHighMem(page))
793		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
794	arch_free_page(page, 0);
795	kernel_map_pages(page, 1, 0);
796
797	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
798	local_irq_save(flags);
799	__count_vm_event(PGFREE);
800	list_add(&page->lru, &pcp->list);
801	pcp->count++;
802	if (pcp->count >= pcp->high) {
803		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
804		pcp->count -= pcp->batch;
805	}
806	local_irq_restore(flags);
807	put_cpu();
808}
809
810void fastcall free_hot_page(struct page *page)
811{
812	free_hot_cold_page(page, 0);
813}
814
815void fastcall free_cold_page(struct page *page)
816{
817	free_hot_cold_page(page, 1);
818}
819
820/*
821 * split_page takes a non-compound higher-order page, and splits it into
822 * n (1<<order) sub-pages: page[0..n]
823 * Each sub-page must be freed individually.
824 *
825 * Note: this is probably too low level an operation for use in drivers.
826 * Please consult with lkml before using this in your driver.
827 */
828void split_page(struct page *page, unsigned int order)
829{
830	int i;
831
832	VM_BUG_ON(PageCompound(page));
833	VM_BUG_ON(!page_count(page));
834	for (i = 1; i < (1 << order); i++)
835		set_page_refcounted(page + i);
836}
837
838/*
839 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
840 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
841 * or two.
842 */
843static struct page *buffered_rmqueue(struct zonelist *zonelist,
844			struct zone *zone, int order, gfp_t gfp_flags)
845{
846	unsigned long flags;
847	struct page *page;
848	int cold = !!(gfp_flags & __GFP_COLD);
849	int cpu;
850
851again:
852	cpu  = get_cpu();
853	if (likely(order == 0)) {
854		struct per_cpu_pages *pcp;
855
856		pcp = &zone_pcp(zone, cpu)->pcp[cold];
857		local_irq_save(flags);
858		if (!pcp->count) {
859			pcp->count = rmqueue_bulk(zone, 0,
860						pcp->batch, &pcp->list);
861			if (unlikely(!pcp->count))
862				goto failed;
863		}
864		page = list_entry(pcp->list.next, struct page, lru);
865		list_del(&page->lru);
866		pcp->count--;
867	} else {
868		spin_lock_irqsave(&zone->lock, flags);
869		page = __rmqueue(zone, order);
870		spin_unlock(&zone->lock);
871		if (!page)
872			goto failed;
873	}
874
875	__count_zone_vm_events(PGALLOC, zone, 1 << order);
876	zone_statistics(zonelist, zone);
877	local_irq_restore(flags);
878	put_cpu();
879
880	VM_BUG_ON(bad_range(zone, page));
881	if (prep_new_page(page, order, gfp_flags))
882		goto again;
883	return page;
884
885failed:
886	local_irq_restore(flags);
887	put_cpu();
888	return NULL;
889}
890
891#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
892#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
893#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
894#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
895#define ALLOC_HARDER		0x10 /* try to alloc harder */
896#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
897#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
898
899#ifdef CONFIG_FAIL_PAGE_ALLOC
900
901static struct fail_page_alloc_attr {
902	struct fault_attr attr;
903
904	u32 ignore_gfp_highmem;
905	u32 ignore_gfp_wait;
906
907#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909	struct dentry *ignore_gfp_highmem_file;
910	struct dentry *ignore_gfp_wait_file;
911
912#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913
914} fail_page_alloc = {
915	.attr = FAULT_ATTR_INITIALIZER,
916	.ignore_gfp_wait = 1,
917	.ignore_gfp_highmem = 1,
918};
919
920static int __init setup_fail_page_alloc(char *str)
921{
922	return setup_fault_attr(&fail_page_alloc.attr, str);
923}
924__setup("fail_page_alloc=", setup_fail_page_alloc);
925
926static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927{
928	if (gfp_mask & __GFP_NOFAIL)
929		return 0;
930	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
931		return 0;
932	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
933		return 0;
934
935	return should_fail(&fail_page_alloc.attr, 1 << order);
936}
937
938#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939
940static int __init fail_page_alloc_debugfs(void)
941{
942	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
943	struct dentry *dir;
944	int err;
945
946	err = init_fault_attr_dentries(&fail_page_alloc.attr,
947				       "fail_page_alloc");
948	if (err)
949		return err;
950	dir = fail_page_alloc.attr.dentries.dir;
951
952	fail_page_alloc.ignore_gfp_wait_file =
953		debugfs_create_bool("ignore-gfp-wait", mode, dir,
954				      &fail_page_alloc.ignore_gfp_wait);
955
956	fail_page_alloc.ignore_gfp_highmem_file =
957		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
958				      &fail_page_alloc.ignore_gfp_highmem);
959
960	if (!fail_page_alloc.ignore_gfp_wait_file ||
961			!fail_page_alloc.ignore_gfp_highmem_file) {
962		err = -ENOMEM;
963		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
964		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
965		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
966	}
967
968	return err;
969}
970
971late_initcall(fail_page_alloc_debugfs);
972
973#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
974
975#else /* CONFIG_FAIL_PAGE_ALLOC */
976
977static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
978{
979	return 0;
980}
981
982#endif /* CONFIG_FAIL_PAGE_ALLOC */
983
984/*
985 * Return 1 if free pages are above 'mark'. This takes into account the order
986 * of the allocation.
987 */
988int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
989		      int classzone_idx, int alloc_flags)
990{
991	/* free_pages my go negative - that's OK */
992	long min = mark;
993	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
994	int o;
995
996	if (alloc_flags & ALLOC_HIGH)
997		min -= min / 2;
998	if (alloc_flags & ALLOC_HARDER)
999		min -= min / 4;
1000
1001	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1002		return 0;
1003	for (o = 0; o < order; o++) {
1004		/* At the next order, this order's pages become unavailable */
1005		free_pages -= z->free_area[o].nr_free << o;
1006
1007		/* Require fewer higher order pages to be free */
1008		min >>= 1;
1009
1010		if (free_pages <= min)
1011			return 0;
1012	}
1013	return 1;
1014}
1015
1016#ifdef CONFIG_NUMA
1017/*
1018 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1019 * skip over zones that are not allowed by the cpuset, or that have
1020 * been recently (in last second) found to be nearly full.  See further
1021 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1022 * that have to skip over alot of full or unallowed zones.
1023 *
1024 * If the zonelist cache is present in the passed in zonelist, then
1025 * returns a pointer to the allowed node mask (either the current
1026 * tasks mems_allowed, or node_online_map.)
1027 *
1028 * If the zonelist cache is not available for this zonelist, does
1029 * nothing and returns NULL.
1030 *
1031 * If the fullzones BITMAP in the zonelist cache is stale (more than
1032 * a second since last zap'd) then we zap it out (clear its bits.)
1033 *
1034 * We hold off even calling zlc_setup, until after we've checked the
1035 * first zone in the zonelist, on the theory that most allocations will
1036 * be satisfied from that first zone, so best to examine that zone as
1037 * quickly as we can.
1038 */
1039static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1040{
1041	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1042	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1043
1044	zlc = zonelist->zlcache_ptr;
1045	if (!zlc)
1046		return NULL;
1047
1048	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1049		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1050		zlc->last_full_zap = jiffies;
1051	}
1052
1053	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1054					&cpuset_current_mems_allowed :
1055					&node_online_map;
1056	return allowednodes;
1057}
1058
1059/*
1060 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1061 * if it is worth looking at further for free memory:
1062 *  1) Check that the zone isn't thought to be full (doesn't have its
1063 *     bit set in the zonelist_cache fullzones BITMAP).
1064 *  2) Check that the zones node (obtained from the zonelist_cache
1065 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1066 * Return true (non-zero) if zone is worth looking at further, or
1067 * else return false (zero) if it is not.
1068 *
1069 * This check -ignores- the distinction between various watermarks,
1070 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1071 * found to be full for any variation of these watermarks, it will
1072 * be considered full for up to one second by all requests, unless
1073 * we are so low on memory on all allowed nodes that we are forced
1074 * into the second scan of the zonelist.
1075 *
1076 * In the second scan we ignore this zonelist cache and exactly
1077 * apply the watermarks to all zones, even it is slower to do so.
1078 * We are low on memory in the second scan, and should leave no stone
1079 * unturned looking for a free page.
1080 */
1081static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1082						nodemask_t *allowednodes)
1083{
1084	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1085	int i;				/* index of *z in zonelist zones */
1086	int n;				/* node that zone *z is on */
1087
1088	zlc = zonelist->zlcache_ptr;
1089	if (!zlc)
1090		return 1;
1091
1092	i = z - zonelist->zones;
1093	n = zlc->z_to_n[i];
1094
1095	/* This zone is worth trying if it is allowed but not full */
1096	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1097}
1098
1099/*
1100 * Given 'z' scanning a zonelist, set the corresponding bit in
1101 * zlc->fullzones, so that subsequent attempts to allocate a page
1102 * from that zone don't waste time re-examining it.
1103 */
1104static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1105{
1106	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1107	int i;				/* index of *z in zonelist zones */
1108
1109	zlc = zonelist->zlcache_ptr;
1110	if (!zlc)
1111		return;
1112
1113	i = z - zonelist->zones;
1114
1115	set_bit(i, zlc->fullzones);
1116}
1117
1118#else	/* CONFIG_NUMA */
1119
1120static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1121{
1122	return NULL;
1123}
1124
1125static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1126				nodemask_t *allowednodes)
1127{
1128	return 1;
1129}
1130
1131static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1132{
1133}
1134#endif	/* CONFIG_NUMA */
1135
1136/*
1137 * get_page_from_freelist goes through the zonelist trying to allocate
1138 * a page.
1139 */
1140static struct page *
1141get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1142		struct zonelist *zonelist, int alloc_flags)
1143{
1144	struct zone **z;
1145	struct page *page = NULL;
1146	int classzone_idx = zone_idx(zonelist->zones[0]);
1147	struct zone *zone;
1148	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1149	int zlc_active = 0;		/* set if using zonelist_cache */
1150	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1151
1152zonelist_scan:
1153	/*
1154	 * Scan zonelist, looking for a zone with enough free.
1155	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1156	 */
1157	z = zonelist->zones;
1158
1159	do {
1160		if (NUMA_BUILD && zlc_active &&
1161			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1162				continue;
1163		zone = *z;
1164		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1165			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1166				break;
1167		if ((alloc_flags & ALLOC_CPUSET) &&
1168			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1169				goto try_next_zone;
1170
1171		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1172			unsigned long mark;
1173			if (alloc_flags & ALLOC_WMARK_MIN)
1174				mark = zone->pages_min;
1175			else if (alloc_flags & ALLOC_WMARK_LOW)
1176				mark = zone->pages_low;
1177			else
1178				mark = zone->pages_high;
1179			if (!zone_watermark_ok(zone, order, mark,
1180				    classzone_idx, alloc_flags)) {
1181				if (!zone_reclaim_mode ||
1182				    !zone_reclaim(zone, gfp_mask, order))
1183					goto this_zone_full;
1184			}
1185		}
1186
1187		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1188		if (page)
1189			break;
1190this_zone_full:
1191		if (NUMA_BUILD)
1192			zlc_mark_zone_full(zonelist, z);
1193try_next_zone:
1194		if (NUMA_BUILD && !did_zlc_setup) {
1195			/* we do zlc_setup after the first zone is tried */
1196			allowednodes = zlc_setup(zonelist, alloc_flags);
1197			zlc_active = 1;
1198			did_zlc_setup = 1;
1199		}
1200	} while (*(++z) != NULL);
1201
1202	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1203		/* Disable zlc cache for second zonelist scan */
1204		zlc_active = 0;
1205		goto zonelist_scan;
1206	}
1207	return page;
1208}
1209
1210/*
1211 * This is the 'heart' of the zoned buddy allocator.
1212 */
1213struct page * fastcall
1214__alloc_pages(gfp_t gfp_mask, unsigned int order,
1215		struct zonelist *zonelist)
1216{
1217	const gfp_t wait = gfp_mask & __GFP_WAIT;
1218	struct zone **z;
1219	struct page *page;
1220	struct reclaim_state reclaim_state;
1221	struct task_struct *p = current;
1222	int do_retry;
1223	int alloc_flags;
1224	int did_some_progress;
1225
1226	might_sleep_if(wait);
1227
1228	if (should_fail_alloc_page(gfp_mask, order))
1229		return NULL;
1230
1231restart:
1232	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1233
1234	if (unlikely(*z == NULL)) {
1235		/* Should this ever happen?? */
1236		return NULL;
1237	}
1238
1239	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1240				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1241	if (page)
1242		goto got_pg;
1243
1244	/*
1245	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1246	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1247	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1248	 * using a larger set of nodes after it has established that the
1249	 * allowed per node queues are empty and that nodes are
1250	 * over allocated.
1251	 */
1252	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1253		goto nopage;
1254
1255	for (z = zonelist->zones; *z; z++)
1256		wakeup_kswapd(*z, order);
1257
1258	/*
1259	 * OK, we're below the kswapd watermark and have kicked background
1260	 * reclaim. Now things get more complex, so set up alloc_flags according
1261	 * to how we want to proceed.
1262	 *
1263	 * The caller may dip into page reserves a bit more if the caller
1264	 * cannot run direct reclaim, or if the caller has realtime scheduling
1265	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1266	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1267	 */
1268	alloc_flags = ALLOC_WMARK_MIN;
1269	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1270		alloc_flags |= ALLOC_HARDER;
1271	if (gfp_mask & __GFP_HIGH)
1272		alloc_flags |= ALLOC_HIGH;
1273	if (wait)
1274		alloc_flags |= ALLOC_CPUSET;
1275
1276	/*
1277	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1278	 * coming from realtime tasks go deeper into reserves.
1279	 *
1280	 * This is the last chance, in general, before the goto nopage.
1281	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1282	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1283	 */
1284	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1285	if (page)
1286		goto got_pg;
1287
1288	/* This allocation should allow future memory freeing. */
1289
1290rebalance:
1291	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1292			&& !in_interrupt()) {
1293		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1294nofail_alloc:
1295			/* go through the zonelist yet again, ignoring mins */
1296			page = get_page_from_freelist(gfp_mask, order,
1297				zonelist, ALLOC_NO_WATERMARKS);
1298			if (page)
1299				goto got_pg;
1300			if (gfp_mask & __GFP_NOFAIL) {
1301				congestion_wait(WRITE, HZ/50);
1302				goto nofail_alloc;
1303			}
1304		}
1305		goto nopage;
1306	}
1307
1308	/* Atomic allocations - we can't balance anything */
1309	if (!wait)
1310		goto nopage;
1311
1312	cond_resched();
1313
1314	/* We now go into synchronous reclaim */
1315	cpuset_memory_pressure_bump();
1316	p->flags |= PF_MEMALLOC;
1317	reclaim_state.reclaimed_slab = 0;
1318	p->reclaim_state = &reclaim_state;
1319
1320	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1321
1322	p->reclaim_state = NULL;
1323	p->flags &= ~PF_MEMALLOC;
1324
1325	cond_resched();
1326
1327	if (likely(did_some_progress)) {
1328		page = get_page_from_freelist(gfp_mask, order,
1329						zonelist, alloc_flags);
1330		if (page)
1331			goto got_pg;
1332	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1333		/*
1334		 * Go through the zonelist yet one more time, keep
1335		 * very high watermark here, this is only to catch
1336		 * a parallel oom killing, we must fail if we're still
1337		 * under heavy pressure.
1338		 */
1339		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1340				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1341		if (page)
1342			goto got_pg;
1343
1344		out_of_memory(zonelist, gfp_mask, order);
1345		goto restart;
1346	}
1347
1348	/*
1349	 * Don't let big-order allocations loop unless the caller explicitly
1350	 * requests that.  Wait for some write requests to complete then retry.
1351	 *
1352	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1353	 * <= 3, but that may not be true in other implementations.
1354	 */
1355	do_retry = 0;
1356	if (!(gfp_mask & __GFP_NORETRY)) {
1357		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1358			do_retry = 1;
1359		if (gfp_mask & __GFP_NOFAIL)
1360			do_retry = 1;
1361	}
1362	if (do_retry) {
1363		congestion_wait(WRITE, HZ/50);
1364		goto rebalance;
1365	}
1366
1367nopage:
1368	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1369		printk(KERN_WARNING "%s: page allocation failure."
1370			" order:%d, mode:0x%x\n",
1371			p->comm, order, gfp_mask);
1372		dump_stack();
1373		show_mem();
1374	}
1375got_pg:
1376	return page;
1377}
1378
1379EXPORT_SYMBOL(__alloc_pages);
1380
1381/*
1382 * Common helper functions.
1383 */
1384fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1385{
1386	struct page * page;
1387	page = alloc_pages(gfp_mask, order);
1388	if (!page)
1389		return 0;
1390	return (unsigned long) page_address(page);
1391}
1392
1393EXPORT_SYMBOL(__get_free_pages);
1394
1395fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1396{
1397	struct page * page;
1398
1399	/*
1400	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1401	 * a highmem page
1402	 */
1403	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1404
1405	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1406	if (page)
1407		return (unsigned long) page_address(page);
1408	return 0;
1409}
1410
1411EXPORT_SYMBOL(get_zeroed_page);
1412
1413void __pagevec_free(struct pagevec *pvec)
1414{
1415	int i = pagevec_count(pvec);
1416
1417	while (--i >= 0)
1418		free_hot_cold_page(pvec->pages[i], pvec->cold);
1419}
1420
1421fastcall void __free_pages(struct page *page, unsigned int order)
1422{
1423	if (put_page_testzero(page)) {
1424		if (order == 0)
1425			free_hot_page(page);
1426		else
1427			__free_pages_ok(page, order);
1428	}
1429}
1430
1431EXPORT_SYMBOL(__free_pages);
1432
1433fastcall void free_pages(unsigned long addr, unsigned int order)
1434{
1435	if (addr != 0) {
1436		VM_BUG_ON(!virt_addr_valid((void *)addr));
1437		__free_pages(virt_to_page((void *)addr), order);
1438	}
1439}
1440
1441EXPORT_SYMBOL(free_pages);
1442
1443#ifdef CONFIG_NUMA
1444unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1445{
1446	return node_page_state(pgdat->node_id, NR_FREE_PAGES);
1447}
1448#endif
1449
1450static unsigned int nr_free_zone_pages(int offset)
1451{
1452	/* Just pick one node, since fallback list is circular */
1453	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1454	unsigned int sum = 0;
1455
1456	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1457	struct zone **zonep = zonelist->zones;
1458	struct zone *zone;
1459
1460	for (zone = *zonep++; zone; zone = *zonep++) {
1461		unsigned long size = zone->present_pages;
1462		unsigned long high = zone->pages_high;
1463		if (size > high)
1464			sum += size - high;
1465	}
1466
1467	return sum;
1468}
1469
1470/*
1471 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1472 */
1473unsigned int nr_free_buffer_pages(void)
1474{
1475	return nr_free_zone_pages(gfp_zone(GFP_USER));
1476}
1477
1478/*
1479 * Amount of free RAM allocatable within all zones
1480 */
1481unsigned int nr_free_pagecache_pages(void)
1482{
1483	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1484}
1485
1486static inline void show_node(struct zone *zone)
1487{
1488	if (NUMA_BUILD)
1489		printk("Node %d ", zone_to_nid(zone));
1490}
1491
1492void si_meminfo(struct sysinfo *val)
1493{
1494	val->totalram = totalram_pages;
1495	val->sharedram = 0;
1496	val->freeram = global_page_state(NR_FREE_PAGES);
1497	val->bufferram = nr_blockdev_pages();
1498	val->totalhigh = totalhigh_pages;
1499	val->freehigh = nr_free_highpages();
1500	val->mem_unit = PAGE_SIZE;
1501}
1502
1503EXPORT_SYMBOL(si_meminfo);
1504
1505#ifdef CONFIG_NUMA
1506void si_meminfo_node(struct sysinfo *val, int nid)
1507{
1508	pg_data_t *pgdat = NODE_DATA(nid);
1509
1510	val->totalram = pgdat->node_present_pages;
1511	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1512#ifdef CONFIG_HIGHMEM
1513	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1514	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1515			NR_FREE_PAGES);
1516#else
1517	val->totalhigh = 0;
1518	val->freehigh = 0;
1519#endif
1520	val->mem_unit = PAGE_SIZE;
1521}
1522#endif
1523
1524#define K(x) ((x) << (PAGE_SHIFT-10))
1525
1526/*
1527 * Show free area list (used inside shift_scroll-lock stuff)
1528 * We also calculate the percentage fragmentation. We do this by counting the
1529 * memory on each free list with the exception of the first item on the list.
1530 */
1531void show_free_areas(void)
1532{
1533	int cpu;
1534	unsigned long active;
1535	unsigned long inactive;
1536	unsigned long free;
1537	struct zone *zone;
1538
1539	for_each_zone(zone) {
1540		if (!populated_zone(zone))
1541			continue;
1542
1543		show_node(zone);
1544		printk("%s per-cpu:\n", zone->name);
1545
1546		for_each_online_cpu(cpu) {
1547			struct per_cpu_pageset *pageset;
1548
1549			pageset = zone_pcp(zone, cpu);
1550
1551			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1552			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1553			       cpu, pageset->pcp[0].high,
1554			       pageset->pcp[0].batch, pageset->pcp[0].count,
1555			       pageset->pcp[1].high, pageset->pcp[1].batch,
1556			       pageset->pcp[1].count);
1557		}
1558	}
1559
1560	get_zone_counts(&active, &inactive, &free);
1561
1562	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1563		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1564		active,
1565		inactive,
1566		global_page_state(NR_FILE_DIRTY),
1567		global_page_state(NR_WRITEBACK),
1568		global_page_state(NR_UNSTABLE_NFS),
1569		global_page_state(NR_FREE_PAGES),
1570		global_page_state(NR_SLAB_RECLAIMABLE) +
1571			global_page_state(NR_SLAB_UNRECLAIMABLE),
1572		global_page_state(NR_FILE_MAPPED),
1573		global_page_state(NR_PAGETABLE),
1574		global_page_state(NR_BOUNCE));
1575
1576	for_each_zone(zone) {
1577		int i;
1578
1579		if (!populated_zone(zone))
1580			continue;
1581
1582		show_node(zone);
1583		printk("%s"
1584			" free:%lukB"
1585			" min:%lukB"
1586			" low:%lukB"
1587			" high:%lukB"
1588			" active:%lukB"
1589			" inactive:%lukB"
1590			" present:%lukB"
1591			" pages_scanned:%lu"
1592			" all_unreclaimable? %s"
1593			"\n",
1594			zone->name,
1595			K(zone_page_state(zone, NR_FREE_PAGES)),
1596			K(zone->pages_min),
1597			K(zone->pages_low),
1598			K(zone->pages_high),
1599			K(zone_page_state(zone, NR_ACTIVE)),
1600			K(zone_page_state(zone, NR_INACTIVE)),
1601			K(zone->present_pages),
1602			zone->pages_scanned,
1603			(zone->all_unreclaimable ? "yes" : "no")
1604			);
1605		printk("lowmem_reserve[]:");
1606		for (i = 0; i < MAX_NR_ZONES; i++)
1607			printk(" %lu", zone->lowmem_reserve[i]);
1608		printk("\n");
1609	}
1610
1611	for_each_zone(zone) {
1612 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1613
1614		if (!populated_zone(zone))
1615			continue;
1616
1617		show_node(zone);
1618		printk("%s: ", zone->name);
1619
1620		spin_lock_irqsave(&zone->lock, flags);
1621		for (order = 0; order < MAX_ORDER; order++) {
1622			nr[order] = zone->free_area[order].nr_free;
1623			total += nr[order] << order;
1624		}
1625		spin_unlock_irqrestore(&zone->lock, flags);
1626		for (order = 0; order < MAX_ORDER; order++)
1627			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1628		printk("= %lukB\n", K(total));
1629	}
1630
1631	show_swap_cache_info();
1632}
1633
1634/*
1635 * Builds allocation fallback zone lists.
1636 *
1637 * Add all populated zones of a node to the zonelist.
1638 */
1639static int __meminit build_zonelists_node(pg_data_t *pgdat,
1640			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1641{
1642	struct zone *zone;
1643
1644	BUG_ON(zone_type >= MAX_NR_ZONES);
1645	zone_type++;
1646
1647	do {
1648		zone_type--;
1649		zone = pgdat->node_zones + zone_type;
1650		if (populated_zone(zone)) {
1651			zonelist->zones[nr_zones++] = zone;
1652			check_highest_zone(zone_type);
1653		}
1654
1655	} while (zone_type);
1656	return nr_zones;
1657}
1658
1659#ifdef CONFIG_NUMA
1660#define MAX_NODE_LOAD (num_online_nodes())
1661static int __meminitdata node_load[MAX_NUMNODES];
1662/**
1663 * find_next_best_node - find the next node that should appear in a given node's fallback list
1664 * @node: node whose fallback list we're appending
1665 * @used_node_mask: nodemask_t of already used nodes
1666 *
1667 * We use a number of factors to determine which is the next node that should
1668 * appear on a given node's fallback list.  The node should not have appeared
1669 * already in @node's fallback list, and it should be the next closest node
1670 * according to the distance array (which contains arbitrary distance values
1671 * from each node to each node in the system), and should also prefer nodes
1672 * with no CPUs, since presumably they'll have very little allocation pressure
1673 * on them otherwise.
1674 * It returns -1 if no node is found.
1675 */
1676static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1677{
1678	int n, val;
1679	int min_val = INT_MAX;
1680	int best_node = -1;
1681
1682	/* Use the local node if we haven't already */
1683	if (!node_isset(node, *used_node_mask)) {
1684		node_set(node, *used_node_mask);
1685		return node;
1686	}
1687
1688	for_each_online_node(n) {
1689		cpumask_t tmp;
1690
1691		/* Don't want a node to appear more than once */
1692		if (node_isset(n, *used_node_mask))
1693			continue;
1694
1695		/* Use the distance array to find the distance */
1696		val = node_distance(node, n);
1697
1698		/* Penalize nodes under us ("prefer the next node") */
1699		val += (n < node);
1700
1701		/* Give preference to headless and unused nodes */
1702		tmp = node_to_cpumask(n);
1703		if (!cpus_empty(tmp))
1704			val += PENALTY_FOR_NODE_WITH_CPUS;
1705
1706		/* Slight preference for less loaded node */
1707		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1708		val += node_load[n];
1709
1710		if (val < min_val) {
1711			min_val = val;
1712			best_node = n;
1713		}
1714	}
1715
1716	if (best_node >= 0)
1717		node_set(best_node, *used_node_mask);
1718
1719	return best_node;
1720}
1721
1722static void __meminit build_zonelists(pg_data_t *pgdat)
1723{
1724	int j, node, local_node;
1725	enum zone_type i;
1726	int prev_node, load;
1727	struct zonelist *zonelist;
1728	nodemask_t used_mask;
1729
1730	/* initialize zonelists */
1731	for (i = 0; i < MAX_NR_ZONES; i++) {
1732		zonelist = pgdat->node_zonelists + i;
1733		zonelist->zones[0] = NULL;
1734	}
1735
1736	/* NUMA-aware ordering of nodes */
1737	local_node = pgdat->node_id;
1738	load = num_online_nodes();
1739	prev_node = local_node;
1740	nodes_clear(used_mask);
1741	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1742		int distance = node_distance(local_node, node);
1743
1744		/*
1745		 * If another node is sufficiently far away then it is better
1746		 * to reclaim pages in a zone before going off node.
1747		 */
1748		if (distance > RECLAIM_DISTANCE)
1749			zone_reclaim_mode = 1;
1750
1751		/*
1752		 * We don't want to pressure a particular node.
1753		 * So adding penalty to the first node in same
1754		 * distance group to make it round-robin.
1755		 */
1756
1757		if (distance != node_distance(local_node, prev_node))
1758			node_load[node] += load;
1759		prev_node = node;
1760		load--;
1761		for (i = 0; i < MAX_NR_ZONES; i++) {
1762			zonelist = pgdat->node_zonelists + i;
1763			for (j = 0; zonelist->zones[j] != NULL; j++);
1764
1765	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1766			zonelist->zones[j] = NULL;
1767		}
1768	}
1769}
1770
1771/* Construct the zonelist performance cache - see further mmzone.h */
1772static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1773{
1774	int i;
1775
1776	for (i = 0; i < MAX_NR_ZONES; i++) {
1777		struct zonelist *zonelist;
1778		struct zonelist_cache *zlc;
1779		struct zone **z;
1780
1781		zonelist = pgdat->node_zonelists + i;
1782		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1783		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1784		for (z = zonelist->zones; *z; z++)
1785			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1786	}
1787}
1788
1789#else	/* CONFIG_NUMA */
1790
1791static void __meminit build_zonelists(pg_data_t *pgdat)
1792{
1793	int node, local_node;
1794	enum zone_type i,j;
1795
1796	local_node = pgdat->node_id;
1797	for (i = 0; i < MAX_NR_ZONES; i++) {
1798		struct zonelist *zonelist;
1799
1800		zonelist = pgdat->node_zonelists + i;
1801
1802 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1803 		/*
1804 		 * Now we build the zonelist so that it contains the zones
1805 		 * of all the other nodes.
1806 		 * We don't want to pressure a particular node, so when
1807 		 * building the zones for node N, we make sure that the
1808 		 * zones coming right after the local ones are those from
1809 		 * node N+1 (modulo N)
1810 		 */
1811		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1812			if (!node_online(node))
1813				continue;
1814			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1815		}
1816		for (node = 0; node < local_node; node++) {
1817			if (!node_online(node))
1818				continue;
1819			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1820		}
1821
1822		zonelist->zones[j] = NULL;
1823	}
1824}
1825
1826/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1827static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1828{
1829	int i;
1830
1831	for (i = 0; i < MAX_NR_ZONES; i++)
1832		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1833}
1834
1835#endif	/* CONFIG_NUMA */
1836
1837/* return values int ....just for stop_machine_run() */
1838static int __meminit __build_all_zonelists(void *dummy)
1839{
1840	int nid;
1841
1842	for_each_online_node(nid) {
1843		build_zonelists(NODE_DATA(nid));
1844		build_zonelist_cache(NODE_DATA(nid));
1845	}
1846	return 0;
1847}
1848
1849void __meminit build_all_zonelists(void)
1850{
1851	if (system_state == SYSTEM_BOOTING) {
1852		__build_all_zonelists(NULL);
1853		cpuset_init_current_mems_allowed();
1854	} else {
1855		/* we have to stop all cpus to guaranntee there is no user
1856		   of zonelist */
1857		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1858		/* cpuset refresh routine should be here */
1859	}
1860	vm_total_pages = nr_free_pagecache_pages();
1861	printk("Built %i zonelists.  Total pages: %ld\n",
1862			num_online_nodes(), vm_total_pages);
1863}
1864
1865/*
1866 * Helper functions to size the waitqueue hash table.
1867 * Essentially these want to choose hash table sizes sufficiently
1868 * large so that collisions trying to wait on pages are rare.
1869 * But in fact, the number of active page waitqueues on typical
1870 * systems is ridiculously low, less than 200. So this is even
1871 * conservative, even though it seems large.
1872 *
1873 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1874 * waitqueues, i.e. the size of the waitq table given the number of pages.
1875 */
1876#define PAGES_PER_WAITQUEUE	256
1877
1878#ifndef CONFIG_MEMORY_HOTPLUG
1879static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1880{
1881	unsigned long size = 1;
1882
1883	pages /= PAGES_PER_WAITQUEUE;
1884
1885	while (size < pages)
1886		size <<= 1;
1887
1888	/*
1889	 * Once we have dozens or even hundreds of threads sleeping
1890	 * on IO we've got bigger problems than wait queue collision.
1891	 * Limit the size of the wait table to a reasonable size.
1892	 */
1893	size = min(size, 4096UL);
1894
1895	return max(size, 4UL);
1896}
1897#else
1898/*
1899 * A zone's size might be changed by hot-add, so it is not possible to determine
1900 * a suitable size for its wait_table.  So we use the maximum size now.
1901 *
1902 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1903 *
1904 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1905 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1906 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1907 *
1908 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1909 * or more by the traditional way. (See above).  It equals:
1910 *
1911 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1912 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1913 *    powerpc (64K page size)             : =  (32G +16M)byte.
1914 */
1915static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1916{
1917	return 4096UL;
1918}
1919#endif
1920
1921/*
1922 * This is an integer logarithm so that shifts can be used later
1923 * to extract the more random high bits from the multiplicative
1924 * hash function before the remainder is taken.
1925 */
1926static inline unsigned long wait_table_bits(unsigned long size)
1927{
1928	return ffz(~size);
1929}
1930
1931#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1932
1933/*
1934 * Initially all pages are reserved - free ones are freed
1935 * up by free_all_bootmem() once the early boot process is
1936 * done. Non-atomic initialization, single-pass.
1937 */
1938void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1939		unsigned long start_pfn, enum memmap_context context)
1940{
1941	struct page *page;
1942	unsigned long end_pfn = start_pfn + size;
1943	unsigned long pfn;
1944
1945	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1946		/*
1947		 * There can be holes in boot-time mem_map[]s
1948		 * handed to this function.  They do not
1949		 * exist on hotplugged memory.
1950		 */
1951		if (context == MEMMAP_EARLY) {
1952			if (!early_pfn_valid(pfn))
1953				continue;
1954			if (!early_pfn_in_nid(pfn, nid))
1955				continue;
1956		}
1957		page = pfn_to_page(pfn);
1958		set_page_links(page, zone, nid, pfn);
1959		init_page_count(page);
1960		reset_page_mapcount(page);
1961		SetPageReserved(page);
1962		INIT_LIST_HEAD(&page->lru);
1963#ifdef WANT_PAGE_VIRTUAL
1964		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1965		if (!is_highmem_idx(zone))
1966			set_page_address(page, __va(pfn << PAGE_SHIFT));
1967#endif
1968	}
1969}
1970
1971void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1972				unsigned long size)
1973{
1974	int order;
1975	for (order = 0; order < MAX_ORDER ; order++) {
1976		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1977		zone->free_area[order].nr_free = 0;
1978	}
1979}
1980
1981#ifndef __HAVE_ARCH_MEMMAP_INIT
1982#define memmap_init(size, nid, zone, start_pfn) \
1983	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1984#endif
1985
1986static int __cpuinit zone_batchsize(struct zone *zone)
1987{
1988	int batch;
1989
1990	/*
1991	 * The per-cpu-pages pools are set to around 1000th of the
1992	 * size of the zone.  But no more than 1/2 of a meg.
1993	 *
1994	 * OK, so we don't know how big the cache is.  So guess.
1995	 */
1996	batch = zone->present_pages / 1024;
1997	if (batch * PAGE_SIZE > 512 * 1024)
1998		batch = (512 * 1024) / PAGE_SIZE;
1999	batch /= 4;		/* We effectively *= 4 below */
2000	if (batch < 1)
2001		batch = 1;
2002
2003	/*
2004	 * Clamp the batch to a 2^n - 1 value. Having a power
2005	 * of 2 value was found to be more likely to have
2006	 * suboptimal cache aliasing properties in some cases.
2007	 *
2008	 * For example if 2 tasks are alternately allocating
2009	 * batches of pages, one task can end up with a lot
2010	 * of pages of one half of the possible page colors
2011	 * and the other with pages of the other colors.
2012	 */
2013	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2014
2015	return batch;
2016}
2017
2018inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2019{
2020	struct per_cpu_pages *pcp;
2021
2022	memset(p, 0, sizeof(*p));
2023
2024	pcp = &p->pcp[0];		/* hot */
2025	pcp->count = 0;
2026	pcp->high = 6 * batch;
2027	pcp->batch = max(1UL, 1 * batch);
2028	INIT_LIST_HEAD(&pcp->list);
2029
2030	pcp = &p->pcp[1];		/* cold*/
2031	pcp->count = 0;
2032	pcp->high = 2 * batch;
2033	pcp->batch = max(1UL, batch/2);
2034	INIT_LIST_HEAD(&pcp->list);
2035}
2036
2037/*
2038 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2039 * to the value high for the pageset p.
2040 */
2041
2042static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2043				unsigned long high)
2044{
2045	struct per_cpu_pages *pcp;
2046
2047	pcp = &p->pcp[0]; /* hot list */
2048	pcp->high = high;
2049	pcp->batch = max(1UL, high/4);
2050	if ((high/4) > (PAGE_SHIFT * 8))
2051		pcp->batch = PAGE_SHIFT * 8;
2052}
2053
2054
2055#ifdef CONFIG_NUMA
2056/*
2057 * Boot pageset table. One per cpu which is going to be used for all
2058 * zones and all nodes. The parameters will be set in such a way
2059 * that an item put on a list will immediately be handed over to
2060 * the buddy list. This is safe since pageset manipulation is done
2061 * with interrupts disabled.
2062 *
2063 * Some NUMA counter updates may also be caught by the boot pagesets.
2064 *
2065 * The boot_pagesets must be kept even after bootup is complete for
2066 * unused processors and/or zones. They do play a role for bootstrapping
2067 * hotplugged processors.
2068 *
2069 * zoneinfo_show() and maybe other functions do
2070 * not check if the processor is online before following the pageset pointer.
2071 * Other parts of the kernel may not check if the zone is available.
2072 */
2073static struct per_cpu_pageset boot_pageset[NR_CPUS];
2074
2075/*
2076 * Dynamically allocate memory for the
2077 * per cpu pageset array in struct zone.
2078 */
2079static int __cpuinit process_zones(int cpu)
2080{
2081	struct zone *zone, *dzone;
2082
2083	for_each_zone(zone) {
2084
2085		if (!populated_zone(zone))
2086			continue;
2087
2088		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2089					 GFP_KERNEL, cpu_to_node(cpu));
2090		if (!zone_pcp(zone, cpu))
2091			goto bad;
2092
2093		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2094
2095		if (percpu_pagelist_fraction)
2096			setup_pagelist_highmark(zone_pcp(zone, cpu),
2097			 	(zone->present_pages / percpu_pagelist_fraction));
2098	}
2099
2100	return 0;
2101bad:
2102	for_each_zone(dzone) {
2103		if (dzone == zone)
2104			break;
2105		kfree(zone_pcp(dzone, cpu));
2106		zone_pcp(dzone, cpu) = NULL;
2107	}
2108	return -ENOMEM;
2109}
2110
2111static inline void free_zone_pagesets(int cpu)
2112{
2113	struct zone *zone;
2114
2115	for_each_zone(zone) {
2116		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2117
2118		/* Free per_cpu_pageset if it is slab allocated */
2119		if (pset != &boot_pageset[cpu])
2120			kfree(pset);
2121		zone_pcp(zone, cpu) = NULL;
2122	}
2123}
2124
2125static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2126		unsigned long action,
2127		void *hcpu)
2128{
2129	int cpu = (long)hcpu;
2130	int ret = NOTIFY_OK;
2131
2132	switch (action) {
2133	case CPU_UP_PREPARE:
2134		if (process_zones(cpu))
2135			ret = NOTIFY_BAD;
2136		break;
2137	case CPU_UP_CANCELED:
2138	case CPU_DEAD:
2139		free_zone_pagesets(cpu);
2140		break;
2141	default:
2142		break;
2143	}
2144	return ret;
2145}
2146
2147static struct notifier_block __cpuinitdata pageset_notifier =
2148	{ &pageset_cpuup_callback, NULL, 0 };
2149
2150void __init setup_per_cpu_pageset(void)
2151{
2152	int err;
2153
2154	/* Initialize per_cpu_pageset for cpu 0.
2155	 * A cpuup callback will do this for every cpu
2156	 * as it comes online
2157	 */
2158	err = process_zones(smp_processor_id());
2159	BUG_ON(err);
2160	register_cpu_notifier(&pageset_notifier);
2161}
2162
2163#endif
2164
2165static __meminit
2166int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2167{
2168	int i;
2169	struct pglist_data *pgdat = zone->zone_pgdat;
2170	size_t alloc_size;
2171
2172	/*
2173	 * The per-page waitqueue mechanism uses hashed waitqueues
2174	 * per zone.
2175	 */
2176	zone->wait_table_hash_nr_entries =
2177		 wait_table_hash_nr_entries(zone_size_pages);
2178	zone->wait_table_bits =
2179		wait_table_bits(zone->wait_table_hash_nr_entries);
2180	alloc_size = zone->wait_table_hash_nr_entries
2181					* sizeof(wait_queue_head_t);
2182
2183 	if (system_state == SYSTEM_BOOTING) {
2184		zone->wait_table = (wait_queue_head_t *)
2185			alloc_bootmem_node(pgdat, alloc_size);
2186	} else {
2187		/*
2188		 * This case means that a zone whose size was 0 gets new memory
2189		 * via memory hot-add.
2190		 * But it may be the case that a new node was hot-added.  In
2191		 * this case vmalloc() will not be able to use this new node's
2192		 * memory - this wait_table must be initialized to use this new
2193		 * node itself as well.
2194		 * To use this new node's memory, further consideration will be
2195		 * necessary.
2196		 */
2197		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2198	}
2199	if (!zone->wait_table)
2200		return -ENOMEM;
2201
2202	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2203		init_waitqueue_head(zone->wait_table + i);
2204
2205	return 0;
2206}
2207
2208static __meminit void zone_pcp_init(struct zone *zone)
2209{
2210	int cpu;
2211	unsigned long batch = zone_batchsize(zone);
2212
2213	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2214#ifdef CONFIG_NUMA
2215		/* Early boot. Slab allocator not functional yet */
2216		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2217		setup_pageset(&boot_pageset[cpu],0);
2218#else
2219		setup_pageset(zone_pcp(zone,cpu), batch);
2220#endif
2221	}
2222	if (zone->present_pages)
2223		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2224			zone->name, zone->present_pages, batch);
2225}
2226
2227__meminit int init_currently_empty_zone(struct zone *zone,
2228					unsigned long zone_start_pfn,
2229					unsigned long size,
2230					enum memmap_context context)
2231{
2232	struct pglist_data *pgdat = zone->zone_pgdat;
2233	int ret;
2234	ret = zone_wait_table_init(zone, size);
2235	if (ret)
2236		return ret;
2237	pgdat->nr_zones = zone_idx(zone) + 1;
2238
2239	zone->zone_start_pfn = zone_start_pfn;
2240
2241	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2242
2243	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2244
2245	return 0;
2246}
2247
2248#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2249/*
2250 * Basic iterator support. Return the first range of PFNs for a node
2251 * Note: nid == MAX_NUMNODES returns first region regardless of node
2252 */
2253static int __init first_active_region_index_in_nid(int nid)
2254{
2255	int i;
2256
2257	for (i = 0; i < nr_nodemap_entries; i++)
2258		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2259			return i;
2260
2261	return -1;
2262}
2263
2264/*
2265 * Basic iterator support. Return the next active range of PFNs for a node
2266 * Note: nid == MAX_NUMNODES returns next region regardles of node
2267 */
2268static int __init next_active_region_index_in_nid(int index, int nid)
2269{
2270	for (index = index + 1; index < nr_nodemap_entries; index++)
2271		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2272			return index;
2273
2274	return -1;
2275}
2276
2277#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2278/*
2279 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2280 * Architectures may implement their own version but if add_active_range()
2281 * was used and there are no special requirements, this is a convenient
2282 * alternative
2283 */
2284int __init early_pfn_to_nid(unsigned long pfn)
2285{
2286	int i;
2287
2288	for (i = 0; i < nr_nodemap_entries; i++) {
2289		unsigned long start_pfn = early_node_map[i].start_pfn;
2290		unsigned long end_pfn = early_node_map[i].end_pfn;
2291
2292		if (start_pfn <= pfn && pfn < end_pfn)
2293			return early_node_map[i].nid;
2294	}
2295
2296	return 0;
2297}
2298#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2299
2300/* Basic iterator support to walk early_node_map[] */
2301#define for_each_active_range_index_in_nid(i, nid) \
2302	for (i = first_active_region_index_in_nid(nid); i != -1; \
2303				i = next_active_region_index_in_nid(i, nid))
2304
2305/**
2306 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2307 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2308 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2309 *
2310 * If an architecture guarantees that all ranges registered with
2311 * add_active_ranges() contain no holes and may be freed, this
2312 * this function may be used instead of calling free_bootmem() manually.
2313 */
2314void __init free_bootmem_with_active_regions(int nid,
2315						unsigned long max_low_pfn)
2316{
2317	int i;
2318
2319	for_each_active_range_index_in_nid(i, nid) {
2320		unsigned long size_pages = 0;
2321		unsigned long end_pfn = early_node_map[i].end_pfn;
2322
2323		if (early_node_map[i].start_pfn >= max_low_pfn)
2324			continue;
2325
2326		if (end_pfn > max_low_pfn)
2327			end_pfn = max_low_pfn;
2328
2329		size_pages = end_pfn - early_node_map[i].start_pfn;
2330		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2331				PFN_PHYS(early_node_map[i].start_pfn),
2332				size_pages << PAGE_SHIFT);
2333	}
2334}
2335
2336/**
2337 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2338 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2339 *
2340 * If an architecture guarantees that all ranges registered with
2341 * add_active_ranges() contain no holes and may be freed, this
2342 * function may be used instead of calling memory_present() manually.
2343 */
2344void __init sparse_memory_present_with_active_regions(int nid)
2345{
2346	int i;
2347
2348	for_each_active_range_index_in_nid(i, nid)
2349		memory_present(early_node_map[i].nid,
2350				early_node_map[i].start_pfn,
2351				early_node_map[i].end_pfn);
2352}
2353
2354/**
2355 * push_node_boundaries - Push node boundaries to at least the requested boundary
2356 * @nid: The nid of the node to push the boundary for
2357 * @start_pfn: The start pfn of the node
2358 * @end_pfn: The end pfn of the node
2359 *
2360 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2361 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2362 * be hotplugged even though no physical memory exists. This function allows
2363 * an arch to push out the node boundaries so mem_map is allocated that can
2364 * be used later.
2365 */
2366#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2367void __init push_node_boundaries(unsigned int nid,
2368		unsigned long start_pfn, unsigned long end_pfn)
2369{
2370	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2371			nid, start_pfn, end_pfn);
2372
2373	/* Initialise the boundary for this node if necessary */
2374	if (node_boundary_end_pfn[nid] == 0)
2375		node_boundary_start_pfn[nid] = -1UL;
2376
2377	/* Update the boundaries */
2378	if (node_boundary_start_pfn[nid] > start_pfn)
2379		node_boundary_start_pfn[nid] = start_pfn;
2380	if (node_boundary_end_pfn[nid] < end_pfn)
2381		node_boundary_end_pfn[nid] = end_pfn;
2382}
2383
2384/* If necessary, push the node boundary out for reserve hotadd */
2385static void __init account_node_boundary(unsigned int nid,
2386		unsigned long *start_pfn, unsigned long *end_pfn)
2387{
2388	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2389			nid, *start_pfn, *end_pfn);
2390
2391	/* Return if boundary information has not been provided */
2392	if (node_boundary_end_pfn[nid] == 0)
2393		return;
2394
2395	/* Check the boundaries and update if necessary */
2396	if (node_boundary_start_pfn[nid] < *start_pfn)
2397		*start_pfn = node_boundary_start_pfn[nid];
2398	if (node_boundary_end_pfn[nid] > *end_pfn)
2399		*end_pfn = node_boundary_end_pfn[nid];
2400}
2401#else
2402void __init push_node_boundaries(unsigned int nid,
2403		unsigned long start_pfn, unsigned long end_pfn) {}
2404
2405static void __init account_node_boundary(unsigned int nid,
2406		unsigned long *start_pfn, unsigned long *end_pfn) {}
2407#endif
2408
2409
2410/**
2411 * get_pfn_range_for_nid - Return the start and end page frames for a node
2412 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2413 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2414 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2415 *
2416 * It returns the start and end page frame of a node based on information
2417 * provided by an arch calling add_active_range(). If called for a node
2418 * with no available memory, a warning is printed and the start and end
2419 * PFNs will be 0.
2420 */
2421void __init get_pfn_range_for_nid(unsigned int nid,
2422			unsigned long *start_pfn, unsigned long *end_pfn)
2423{
2424	int i;
2425	*start_pfn = -1UL;
2426	*end_pfn = 0;
2427
2428	for_each_active_range_index_in_nid(i, nid) {
2429		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2430		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2431	}
2432
2433	if (*start_pfn == -1UL) {
2434		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2435		*start_pfn = 0;
2436	}
2437
2438	/* Push the node boundaries out if requested */
2439	account_node_boundary(nid, start_pfn, end_pfn);
2440}
2441
2442/*
2443 * Return the number of pages a zone spans in a node, including holes
2444 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2445 */
2446unsigned long __init zone_spanned_pages_in_node(int nid,
2447					unsigned long zone_type,
2448					unsigned long *ignored)
2449{
2450	unsigned long node_start_pfn, node_end_pfn;
2451	unsigned long zone_start_pfn, zone_end_pfn;
2452
2453	/* Get the start and end of the node and zone */
2454	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2455	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2456	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2457
2458	/* Check that this node has pages within the zone's required range */
2459	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2460		return 0;
2461
2462	/* Move the zone boundaries inside the node if necessary */
2463	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2464	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2465
2466	/* Return the spanned pages */
2467	return zone_end_pfn - zone_start_pfn;
2468}
2469
2470/*
2471 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2472 * then all holes in the requested range will be accounted for.
2473 */
2474unsigned long __init __absent_pages_in_range(int nid,
2475				unsigned long range_start_pfn,
2476				unsigned long range_end_pfn)
2477{
2478	int i = 0;
2479	unsigned long prev_end_pfn = 0, hole_pages = 0;
2480	unsigned long start_pfn;
2481
2482	/* Find the end_pfn of the first active range of pfns in the node */
2483	i = first_active_region_index_in_nid(nid);
2484	if (i == -1)
2485		return 0;
2486
2487	/* Account for ranges before physical memory on this node */
2488	if (early_node_map[i].start_pfn > range_start_pfn)
2489		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2490
2491	prev_end_pfn = early_node_map[i].start_pfn;
2492
2493	/* Find all holes for the zone within the node */
2494	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2495
2496		/* No need to continue if prev_end_pfn is outside the zone */
2497		if (prev_end_pfn >= range_end_pfn)
2498			break;
2499
2500		/* Make sure the end of the zone is not within the hole */
2501		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2502		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2503
2504		/* Update the hole size cound and move on */
2505		if (start_pfn > range_start_pfn) {
2506			BUG_ON(prev_end_pfn > start_pfn);
2507			hole_pages += start_pfn - prev_end_pfn;
2508		}
2509		prev_end_pfn = early_node_map[i].end_pfn;
2510	}
2511
2512	/* Account for ranges past physical memory on this node */
2513	if (range_end_pfn > prev_end_pfn)
2514		hole_pages += range_end_pfn -
2515				max(range_start_pfn, prev_end_pfn);
2516
2517	return hole_pages;
2518}
2519
2520/**
2521 * absent_pages_in_range - Return number of page frames in holes within a range
2522 * @start_pfn: The start PFN to start searching for holes
2523 * @end_pfn: The end PFN to stop searching for holes
2524 *
2525 * It returns the number of pages frames in memory holes within a range.
2526 */
2527unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2528							unsigned long end_pfn)
2529{
2530	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2531}
2532
2533/* Return the number of page frames in holes in a zone on a node */
2534unsigned long __init zone_absent_pages_in_node(int nid,
2535					unsigned long zone_type,
2536					unsigned long *ignored)
2537{
2538	unsigned long node_start_pfn, node_end_pfn;
2539	unsigned long zone_start_pfn, zone_end_pfn;
2540
2541	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2542	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2543							node_start_pfn);
2544	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2545							node_end_pfn);
2546
2547	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2548}
2549
2550#else
2551static inline unsigned long zone_spanned_pages_in_node(int nid,
2552					unsigned long zone_type,
2553					unsigned long *zones_size)
2554{
2555	return zones_size[zone_type];
2556}
2557
2558static inline unsigned long zone_absent_pages_in_node(int nid,
2559						unsigned long zone_type,
2560						unsigned long *zholes_size)
2561{
2562	if (!zholes_size)
2563		return 0;
2564
2565	return zholes_size[zone_type];
2566}
2567
2568#endif
2569
2570static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2571		unsigned long *zones_size, unsigned long *zholes_size)
2572{
2573	unsigned long realtotalpages, totalpages = 0;
2574	enum zone_type i;
2575
2576	for (i = 0; i < MAX_NR_ZONES; i++)
2577		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2578								zones_size);
2579	pgdat->node_spanned_pages = totalpages;
2580
2581	realtotalpages = totalpages;
2582	for (i = 0; i < MAX_NR_ZONES; i++)
2583		realtotalpages -=
2584			zone_absent_pages_in_node(pgdat->node_id, i,
2585								zholes_size);
2586	pgdat->node_present_pages = realtotalpages;
2587	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2588							realtotalpages);
2589}
2590
2591/*
2592 * Set up the zone data structures:
2593 *   - mark all pages reserved
2594 *   - mark all memory queues empty
2595 *   - clear the memory bitmaps
2596 */
2597static void __meminit free_area_init_core(struct pglist_data *pgdat,
2598		unsigned long *zones_size, unsigned long *zholes_size)
2599{
2600	enum zone_type j;
2601	int nid = pgdat->node_id;
2602	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2603	int ret;
2604
2605	pgdat_resize_init(pgdat);
2606	pgdat->nr_zones = 0;
2607	init_waitqueue_head(&pgdat->kswapd_wait);
2608	pgdat->kswapd_max_order = 0;
2609
2610	for (j = 0; j < MAX_NR_ZONES; j++) {
2611		struct zone *zone = pgdat->node_zones + j;
2612		unsigned long size, realsize, memmap_pages;
2613
2614		size = zone_spanned_pages_in_node(nid, j, zones_size);
2615		realsize = size - zone_absent_pages_in_node(nid, j,
2616								zholes_size);
2617
2618		/*
2619		 * Adjust realsize so that it accounts for how much memory
2620		 * is used by this zone for memmap. This affects the watermark
2621		 * and per-cpu initialisations
2622		 */
2623		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2624		if (realsize >= memmap_pages) {
2625			realsize -= memmap_pages;
2626			printk(KERN_DEBUG
2627				"  %s zone: %lu pages used for memmap\n",
2628				zone_names[j], memmap_pages);
2629		} else
2630			printk(KERN_WARNING
2631				"  %s zone: %lu pages exceeds realsize %lu\n",
2632				zone_names[j], memmap_pages, realsize);
2633
2634		/* Account for reserved DMA pages */
2635		if (j == ZONE_DMA && realsize > dma_reserve) {
2636			realsize -= dma_reserve;
2637			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2638								dma_reserve);
2639		}
2640
2641		if (!is_highmem_idx(j))
2642			nr_kernel_pages += realsize;
2643		nr_all_pages += realsize;
2644
2645		zone->spanned_pages = size;
2646		zone->present_pages = realsize;
2647#ifdef CONFIG_NUMA
2648		zone->node = nid;
2649		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2650						/ 100;
2651		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2652#endif
2653		zone->name = zone_names[j];
2654		spin_lock_init(&zone->lock);
2655		spin_lock_init(&zone->lru_lock);
2656		zone_seqlock_init(zone);
2657		zone->zone_pgdat = pgdat;
2658
2659		zone->prev_priority = DEF_PRIORITY;
2660
2661		zone_pcp_init(zone);
2662		INIT_LIST_HEAD(&zone->active_list);
2663		INIT_LIST_HEAD(&zone->inactive_list);
2664		zone->nr_scan_active = 0;
2665		zone->nr_scan_inactive = 0;
2666		zap_zone_vm_stats(zone);
2667		atomic_set(&zone->reclaim_in_progress, 0);
2668		if (!size)
2669			continue;
2670
2671		ret = init_currently_empty_zone(zone, zone_start_pfn,
2672						size, MEMMAP_EARLY);
2673		BUG_ON(ret);
2674		zone_start_pfn += size;
2675	}
2676}
2677
2678static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2679{
2680	/* Skip empty nodes */
2681	if (!pgdat->node_spanned_pages)
2682		return;
2683
2684#ifdef CONFIG_FLAT_NODE_MEM_MAP
2685	/* ia64 gets its own node_mem_map, before this, without bootmem */
2686	if (!pgdat->node_mem_map) {
2687		unsigned long size, start, end;
2688		struct page *map;
2689
2690		/*
2691		 * The zone's endpoints aren't required to be MAX_ORDER
2692		 * aligned but the node_mem_map endpoints must be in order
2693		 * for the buddy allocator to function correctly.
2694		 */
2695		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2696		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2697		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2698		size =  (end - start) * sizeof(struct page);
2699		map = alloc_remap(pgdat->node_id, size);
2700		if (!map)
2701			map = alloc_bootmem_node(pgdat, size);
2702		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2703	}
2704#ifdef CONFIG_FLATMEM
2705	/*
2706	 * With no DISCONTIG, the global mem_map is just set as node 0's
2707	 */
2708	if (pgdat == NODE_DATA(0)) {
2709		mem_map = NODE_DATA(0)->node_mem_map;
2710#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2711		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2712			mem_map -= pgdat->node_start_pfn;
2713#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2714	}
2715#endif
2716#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2717}
2718
2719void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2720		unsigned long *zones_size, unsigned long node_start_pfn,
2721		unsigned long *zholes_size)
2722{
2723	pgdat->node_id = nid;
2724	pgdat->node_start_pfn = node_start_pfn;
2725	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2726
2727	alloc_node_mem_map(pgdat);
2728
2729	free_area_init_core(pgdat, zones_size, zholes_size);
2730}
2731
2732#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2733/**
2734 * add_active_range - Register a range of PFNs backed by physical memory
2735 * @nid: The node ID the range resides on
2736 * @start_pfn: The start PFN of the available physical memory
2737 * @end_pfn: The end PFN of the available physical memory
2738 *
2739 * These ranges are stored in an early_node_map[] and later used by
2740 * free_area_init_nodes() to calculate zone sizes and holes. If the
2741 * range spans a memory hole, it is up to the architecture to ensure
2742 * the memory is not freed by the bootmem allocator. If possible
2743 * the range being registered will be merged with existing ranges.
2744 */
2745void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2746						unsigned long end_pfn)
2747{
2748	int i;
2749
2750	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2751			  "%d entries of %d used\n",
2752			  nid, start_pfn, end_pfn,
2753			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2754
2755	/* Merge with existing active regions if possible */
2756	for (i = 0; i < nr_nodemap_entries; i++) {
2757		if (early_node_map[i].nid != nid)
2758			continue;
2759
2760		/* Skip if an existing region covers this new one */
2761		if (start_pfn >= early_node_map[i].start_pfn &&
2762				end_pfn <= early_node_map[i].end_pfn)
2763			return;
2764
2765		/* Merge forward if suitable */
2766		if (start_pfn <= early_node_map[i].end_pfn &&
2767				end_pfn > early_node_map[i].end_pfn) {
2768			early_node_map[i].end_pfn = end_pfn;
2769			return;
2770		}
2771
2772		/* Merge backward if suitable */
2773		if (start_pfn < early_node_map[i].end_pfn &&
2774				end_pfn >= early_node_map[i].start_pfn) {
2775			early_node_map[i].start_pfn = start_pfn;
2776			return;
2777		}
2778	}
2779
2780	/* Check that early_node_map is large enough */
2781	if (i >= MAX_ACTIVE_REGIONS) {
2782		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2783							MAX_ACTIVE_REGIONS);
2784		return;
2785	}
2786
2787	early_node_map[i].nid = nid;
2788	early_node_map[i].start_pfn = start_pfn;
2789	early_node_map[i].end_pfn = end_pfn;
2790	nr_nodemap_entries = i + 1;
2791}
2792
2793/**
2794 * shrink_active_range - Shrink an existing registered range of PFNs
2795 * @nid: The node id the range is on that should be shrunk
2796 * @old_end_pfn: The old end PFN of the range
2797 * @new_end_pfn: The new PFN of the range
2798 *
2799 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2800 * The map is kept at the end physical page range that has already been
2801 * registered with add_active_range(). This function allows an arch to shrink
2802 * an existing registered range.
2803 */
2804void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2805						unsigned long new_end_pfn)
2806{
2807	int i;
2808
2809	/* Find the old active region end and shrink */
2810	for_each_active_range_index_in_nid(i, nid)
2811		if (early_node_map[i].end_pfn == old_end_pfn) {
2812			early_node_map[i].end_pfn = new_end_pfn;
2813			break;
2814		}
2815}
2816
2817/**
2818 * remove_all_active_ranges - Remove all currently registered regions
2819 *
2820 * During discovery, it may be found that a table like SRAT is invalid
2821 * and an alternative discovery method must be used. This function removes
2822 * all currently registered regions.
2823 */
2824void __init remove_all_active_ranges(void)
2825{
2826	memset(early_node_map, 0, sizeof(early_node_map));
2827	nr_nodemap_entries = 0;
2828#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2829	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2830	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2831#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2832}
2833
2834/* Compare two active node_active_regions */
2835static int __init cmp_node_active_region(const void *a, const void *b)
2836{
2837	struct node_active_region *arange = (struct node_active_region *)a;
2838	struct node_active_region *brange = (struct node_active_region *)b;
2839
2840	/* Done this way to avoid overflows */
2841	if (arange->start_pfn > brange->start_pfn)
2842		return 1;
2843	if (arange->start_pfn < brange->start_pfn)
2844		return -1;
2845
2846	return 0;
2847}
2848
2849/* sort the node_map by start_pfn */
2850static void __init sort_node_map(void)
2851{
2852	sort(early_node_map, (size_t)nr_nodemap_entries,
2853			sizeof(struct node_active_region),
2854			cmp_node_active_region, NULL);
2855}
2856
2857/* Find the lowest pfn for a node */
2858unsigned long __init find_min_pfn_for_node(unsigned long nid)
2859{
2860	int i;
2861	unsigned long min_pfn = ULONG_MAX;
2862
2863	/* Assuming a sorted map, the first range found has the starting pfn */
2864	for_each_active_range_index_in_nid(i, nid)
2865		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2866
2867	if (min_pfn == ULONG_MAX) {
2868		printk(KERN_WARNING
2869			"Could not find start_pfn for node %lu\n", nid);
2870		return 0;
2871	}
2872
2873	return min_pfn;
2874}
2875
2876/**
2877 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2878 *
2879 * It returns the minimum PFN based on information provided via
2880 * add_active_range().
2881 */
2882unsigned long __init find_min_pfn_with_active_regions(void)
2883{
2884	return find_min_pfn_for_node(MAX_NUMNODES);
2885}
2886
2887/**
2888 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2889 *
2890 * It returns the maximum PFN based on information provided via
2891 * add_active_range().
2892 */
2893unsigned long __init find_max_pfn_with_active_regions(void)
2894{
2895	int i;
2896	unsigned long max_pfn = 0;
2897
2898	for (i = 0; i < nr_nodemap_entries; i++)
2899		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2900
2901	return max_pfn;
2902}
2903
2904/**
2905 * free_area_init_nodes - Initialise all pg_data_t and zone data
2906 * @max_zone_pfn: an array of max PFNs for each zone
2907 *
2908 * This will call free_area_init_node() for each active node in the system.
2909 * Using the page ranges provided by add_active_range(), the size of each
2910 * zone in each node and their holes is calculated. If the maximum PFN
2911 * between two adjacent zones match, it is assumed that the zone is empty.
2912 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2913 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2914 * starts where the previous one ended. For example, ZONE_DMA32 starts
2915 * at arch_max_dma_pfn.
2916 */
2917void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2918{
2919	unsigned long nid;
2920	enum zone_type i;
2921
2922	/* Sort early_node_map as initialisation assumes it is sorted */
2923	sort_node_map();
2924
2925	/* Record where the zone boundaries are */
2926	memset(arch_zone_lowest_possible_pfn, 0,
2927				sizeof(arch_zone_lowest_possible_pfn));
2928	memset(arch_zone_highest_possible_pfn, 0,
2929				sizeof(arch_zone_highest_possible_pfn));
2930	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2931	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2932	for (i = 1; i < MAX_NR_ZONES; i++) {
2933		arch_zone_lowest_possible_pfn[i] =
2934			arch_zone_highest_possible_pfn[i-1];
2935		arch_zone_highest_possible_pfn[i] =
2936			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2937	}
2938
2939	/* Print out the zone ranges */
2940	printk("Zone PFN ranges:\n");
2941	for (i = 0; i < MAX_NR_ZONES; i++)
2942		printk("  %-8s %8lu -> %8lu\n",
2943				zone_names[i],
2944				arch_zone_lowest_possible_pfn[i],
2945				arch_zone_highest_possible_pfn[i]);
2946
2947	/* Print out the early_node_map[] */
2948	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2949	for (i = 0; i < nr_nodemap_entries; i++)
2950		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2951						early_node_map[i].start_pfn,
2952						early_node_map[i].end_pfn);
2953
2954	/* Initialise every node */
2955	for_each_online_node(nid) {
2956		pg_data_t *pgdat = NODE_DATA(nid);
2957		free_area_init_node(nid, pgdat, NULL,
2958				find_min_pfn_for_node(nid), NULL);
2959	}
2960}
2961#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2962
2963/**
2964 * set_dma_reserve - set the specified number of pages reserved in the first zone
2965 * @new_dma_reserve: The number of pages to mark reserved
2966 *
2967 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2968 * In the DMA zone, a significant percentage may be consumed by kernel image
2969 * and other unfreeable allocations which can skew the watermarks badly. This
2970 * function may optionally be used to account for unfreeable pages in the
2971 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2972 * smaller per-cpu batchsize.
2973 */
2974void __init set_dma_reserve(unsigned long new_dma_reserve)
2975{
2976	dma_reserve = new_dma_reserve;
2977}
2978
2979#ifndef CONFIG_NEED_MULTIPLE_NODES
2980static bootmem_data_t contig_bootmem_data;
2981struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2982
2983EXPORT_SYMBOL(contig_page_data);
2984#endif
2985
2986void __init free_area_init(unsigned long *zones_size)
2987{
2988	free_area_init_node(0, NODE_DATA(0), zones_size,
2989			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2990}
2991
2992static int page_alloc_cpu_notify(struct notifier_block *self,
2993				 unsigned long action, void *hcpu)
2994{
2995	int cpu = (unsigned long)hcpu;
2996
2997	if (action == CPU_DEAD) {
2998		local_irq_disable();
2999		__drain_pages(cpu);
3000		vm_events_fold_cpu(cpu);
3001		local_irq_enable();
3002		refresh_cpu_vm_stats(cpu);
3003	}
3004	return NOTIFY_OK;
3005}
3006
3007void __init page_alloc_init(void)
3008{
3009	hotcpu_notifier(page_alloc_cpu_notify, 0);
3010}
3011
3012/*
3013 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3014 *	or min_free_kbytes changes.
3015 */
3016static void calculate_totalreserve_pages(void)
3017{
3018	struct pglist_data *pgdat;
3019	unsigned long reserve_pages = 0;
3020	enum zone_type i, j;
3021
3022	for_each_online_pgdat(pgdat) {
3023		for (i = 0; i < MAX_NR_ZONES; i++) {
3024			struct zone *zone = pgdat->node_zones + i;
3025			unsigned long max = 0;
3026
3027			/* Find valid and maximum lowmem_reserve in the zone */
3028			for (j = i; j < MAX_NR_ZONES; j++) {
3029				if (zone->lowmem_reserve[j] > max)
3030					max = zone->lowmem_reserve[j];
3031			}
3032
3033			/* we treat pages_high as reserved pages. */
3034			max += zone->pages_high;
3035
3036			if (max > zone->present_pages)
3037				max = zone->present_pages;
3038			reserve_pages += max;
3039		}
3040	}
3041	totalreserve_pages = reserve_pages;
3042}
3043
3044/*
3045 * setup_per_zone_lowmem_reserve - called whenever
3046 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3047 *	has a correct pages reserved value, so an adequate number of
3048 *	pages are left in the zone after a successful __alloc_pages().
3049 */
3050static void setup_per_zone_lowmem_reserve(void)
3051{
3052	struct pglist_data *pgdat;
3053	enum zone_type j, idx;
3054
3055	for_each_online_pgdat(pgdat) {
3056		for (j = 0; j < MAX_NR_ZONES; j++) {
3057			struct zone *zone = pgdat->node_zones + j;
3058			unsigned long present_pages = zone->present_pages;
3059
3060			zone->lowmem_reserve[j] = 0;
3061
3062			idx = j;
3063			while (idx) {
3064				struct zone *lower_zone;
3065
3066				idx--;
3067
3068				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3069					sysctl_lowmem_reserve_ratio[idx] = 1;
3070
3071				lower_zone = pgdat->node_zones + idx;
3072				lower_zone->lowmem_reserve[j] = present_pages /
3073					sysctl_lowmem_reserve_ratio[idx];
3074				present_pages += lower_zone->present_pages;
3075			}
3076		}
3077	}
3078
3079	/* update totalreserve_pages */
3080	calculate_totalreserve_pages();
3081}
3082
3083/**
3084 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3085 *
3086 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3087 * with respect to min_free_kbytes.
3088 */
3089void setup_per_zone_pages_min(void)
3090{
3091	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3092	unsigned long lowmem_pages = 0;
3093	struct zone *zone;
3094	unsigned long flags;
3095
3096	/* Calculate total number of !ZONE_HIGHMEM pages */
3097	for_each_zone(zone) {
3098		if (!is_highmem(zone))
3099			lowmem_pages += zone->present_pages;
3100	}
3101
3102	for_each_zone(zone) {
3103		u64 tmp;
3104
3105		spin_lock_irqsave(&zone->lru_lock, flags);
3106		tmp = (u64)pages_min * zone->present_pages;
3107		do_div(tmp, lowmem_pages);
3108		if (is_highmem(zone)) {
3109			/*
3110			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3111			 * need highmem pages, so cap pages_min to a small
3112			 * value here.
3113			 *
3114			 * The (pages_high-pages_low) and (pages_low-pages_min)
3115			 * deltas controls asynch page reclaim, and so should
3116			 * not be capped for highmem.
3117			 */
3118			int min_pages;
3119
3120			min_pages = zone->present_pages / 1024;
3121			if (min_pages < SWAP_CLUSTER_MAX)
3122				min_pages = SWAP_CLUSTER_MAX;
3123			if (min_pages > 128)
3124				min_pages = 128;
3125			zone->pages_min = min_pages;
3126		} else {
3127			/*
3128			 * If it's a lowmem zone, reserve a number of pages
3129			 * proportionate to the zone's size.
3130			 */
3131			zone->pages_min = tmp;
3132		}
3133
3134		zone->pages_low   = zone->pages_min + (tmp >> 2);
3135		zone->pages_high  = zone->pages_min + (tmp >> 1);
3136		spin_unlock_irqrestore(&zone->lru_lock, flags);
3137	}
3138
3139	/* update totalreserve_pages */
3140	calculate_totalreserve_pages();
3141}
3142
3143/*
3144 * Initialise min_free_kbytes.
3145 *
3146 * For small machines we want it small (128k min).  For large machines
3147 * we want it large (64MB max).  But it is not linear, because network
3148 * bandwidth does not increase linearly with machine size.  We use
3149 *
3150 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3151 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3152 *
3153 * which yields
3154 *
3155 * 16MB:	512k
3156 * 32MB:	724k
3157 * 64MB:	1024k
3158 * 128MB:	1448k
3159 * 256MB:	2048k
3160 * 512MB:	2896k
3161 * 1024MB:	4096k
3162 * 2048MB:	5792k
3163 * 4096MB:	8192k
3164 * 8192MB:	11584k
3165 * 16384MB:	16384k
3166 */
3167static int __init init_per_zone_pages_min(void)
3168{
3169	unsigned long lowmem_kbytes;
3170
3171	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3172
3173	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3174	if (min_free_kbytes < 128)
3175		min_free_kbytes = 128;
3176	if (min_free_kbytes > 65536)
3177		min_free_kbytes = 65536;
3178	setup_per_zone_pages_min();
3179	setup_per_zone_lowmem_reserve();
3180	return 0;
3181}
3182module_init(init_per_zone_pages_min)
3183
3184/*
3185 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3186 *	that we can call two helper functions whenever min_free_kbytes
3187 *	changes.
3188 */
3189int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3190	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3191{
3192	proc_dointvec(table, write, file, buffer, length, ppos);
3193	setup_per_zone_pages_min();
3194	return 0;
3195}
3196
3197#ifdef CONFIG_NUMA
3198int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3199	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3200{
3201	struct zone *zone;
3202	int rc;
3203
3204	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3205	if (rc)
3206		return rc;
3207
3208	for_each_zone(zone)
3209		zone->min_unmapped_pages = (zone->present_pages *
3210				sysctl_min_unmapped_ratio) / 100;
3211	return 0;
3212}
3213
3214int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3215	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3216{
3217	struct zone *zone;
3218	int rc;
3219
3220	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3221	if (rc)
3222		return rc;
3223
3224	for_each_zone(zone)
3225		zone->min_slab_pages = (zone->present_pages *
3226				sysctl_min_slab_ratio) / 100;
3227	return 0;
3228}
3229#endif
3230
3231/*
3232 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3233 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3234 *	whenever sysctl_lowmem_reserve_ratio changes.
3235 *
3236 * The reserve ratio obviously has absolutely no relation with the
3237 * pages_min watermarks. The lowmem reserve ratio can only make sense
3238 * if in function of the boot time zone sizes.
3239 */
3240int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3241	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3242{
3243	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3244	setup_per_zone_lowmem_reserve();
3245	return 0;
3246}
3247
3248/*
3249 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3250 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3251 * can have before it gets flushed back to buddy allocator.
3252 */
3253
3254int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3255	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3256{
3257	struct zone *zone;
3258	unsigned int cpu;
3259	int ret;
3260
3261	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3262	if (!write || (ret == -EINVAL))
3263		return ret;
3264	for_each_zone(zone) {
3265		for_each_online_cpu(cpu) {
3266			unsigned long  high;
3267			high = zone->present_pages / percpu_pagelist_fraction;
3268			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3269		}
3270	}
3271	return 0;
3272}
3273
3274int hashdist = HASHDIST_DEFAULT;
3275
3276#ifdef CONFIG_NUMA
3277static int __init set_hashdist(char *str)
3278{
3279	if (!str)
3280		return 0;
3281	hashdist = simple_strtoul(str, &str, 0);
3282	return 1;
3283}
3284__setup("hashdist=", set_hashdist);
3285#endif
3286
3287/*
3288 * allocate a large system hash table from bootmem
3289 * - it is assumed that the hash table must contain an exact power-of-2
3290 *   quantity of entries
3291 * - limit is the number of hash buckets, not the total allocation size
3292 */
3293void *__init alloc_large_system_hash(const char *tablename,
3294				     unsigned long bucketsize,
3295				     unsigned long numentries,
3296				     int scale,
3297				     int flags,
3298				     unsigned int *_hash_shift,
3299				     unsigned int *_hash_mask,
3300				     unsigned long limit)
3301{
3302	unsigned long long max = limit;
3303	unsigned long log2qty, size;
3304	void *table = NULL;
3305
3306	/* allow the kernel cmdline to have a say */
3307	if (!numentries) {
3308		/* round applicable memory size up to nearest megabyte */
3309		numentries = nr_kernel_pages;
3310		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3311		numentries >>= 20 - PAGE_SHIFT;
3312		numentries <<= 20 - PAGE_SHIFT;
3313
3314		/* limit to 1 bucket per 2^scale bytes of low memory */
3315		if (scale > PAGE_SHIFT)
3316			numentries >>= (scale - PAGE_SHIFT);
3317		else
3318			numentries <<= (PAGE_SHIFT - scale);
3319
3320		/* Make sure we've got at least a 0-order allocation.. */
3321		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3322			numentries = PAGE_SIZE / bucketsize;
3323	}
3324	numentries = roundup_pow_of_two(numentries);
3325
3326	/* limit allocation size to 1/16 total memory by default */
3327	if (max == 0) {
3328		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3329		do_div(max, bucketsize);
3330	}
3331
3332	if (numentries > max)
3333		numentries = max;
3334
3335	log2qty = ilog2(numentries);
3336
3337	do {
3338		size = bucketsize << log2qty;
3339		if (flags & HASH_EARLY)
3340			table = alloc_bootmem(size);
3341		else if (hashdist)
3342			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3343		else {
3344			unsigned long order;
3345			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3346				;
3347			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3348		}
3349	} while (!table && size > PAGE_SIZE && --log2qty);
3350
3351	if (!table)
3352		panic("Failed to allocate %s hash table\n", tablename);
3353
3354	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3355	       tablename,
3356	       (1U << log2qty),
3357	       ilog2(size) - PAGE_SHIFT,
3358	       size);
3359
3360	if (_hash_shift)
3361		*_hash_shift = log2qty;
3362	if (_hash_mask)
3363		*_hash_mask = (1 << log2qty) - 1;
3364
3365	return table;
3366}
3367
3368#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3369struct page *pfn_to_page(unsigned long pfn)
3370{
3371	return __pfn_to_page(pfn);
3372}
3373unsigned long page_to_pfn(struct page *page)
3374{
3375	return __page_to_pfn(page);
3376}
3377EXPORT_SYMBOL(pfn_to_page);
3378EXPORT_SYMBOL(page_to_pfn);
3379#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3380
3381#if MAX_NUMNODES > 1
3382/*
3383 * Find the highest possible node id.
3384 */
3385int highest_possible_node_id(void)
3386{
3387	unsigned int node;
3388	unsigned int highest = 0;
3389
3390	for_each_node_mask(node, node_possible_map)
3391		highest = node;
3392	return highest;
3393}
3394EXPORT_SYMBOL(highest_possible_node_id);
3395#endif
3396