page_alloc.c revision a41f24ea9fd6169b147c53c2392e2887cc1d9247
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/memcontrol.h>
48
49#include <asm/tlbflush.h>
50#include <asm/div64.h>
51#include "internal.h"
52
53/*
54 * Array of node states.
55 */
56nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
57	[N_POSSIBLE] = NODE_MASK_ALL,
58	[N_ONLINE] = { { [0] = 1UL } },
59#ifndef CONFIG_NUMA
60	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
61#ifdef CONFIG_HIGHMEM
62	[N_HIGH_MEMORY] = { { [0] = 1UL } },
63#endif
64	[N_CPU] = { { [0] = 1UL } },
65#endif	/* NUMA */
66};
67EXPORT_SYMBOL(node_states);
68
69unsigned long totalram_pages __read_mostly;
70unsigned long totalreserve_pages __read_mostly;
71long nr_swap_pages;
72int percpu_pagelist_fraction;
73
74#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75int pageblock_order __read_mostly;
76#endif
77
78static void __free_pages_ok(struct page *page, unsigned int order);
79
80/*
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 *	1G machine -> (16M dma, 784M normal, 224M high)
84 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
87 *
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
90 */
91int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
92#ifdef CONFIG_ZONE_DMA
93	 256,
94#endif
95#ifdef CONFIG_ZONE_DMA32
96	 256,
97#endif
98#ifdef CONFIG_HIGHMEM
99	 32,
100#endif
101	 32,
102};
103
104EXPORT_SYMBOL(totalram_pages);
105
106static char * const zone_names[MAX_NR_ZONES] = {
107#ifdef CONFIG_ZONE_DMA
108	 "DMA",
109#endif
110#ifdef CONFIG_ZONE_DMA32
111	 "DMA32",
112#endif
113	 "Normal",
114#ifdef CONFIG_HIGHMEM
115	 "HighMem",
116#endif
117	 "Movable",
118};
119
120int min_free_kbytes = 1024;
121
122unsigned long __meminitdata nr_kernel_pages;
123unsigned long __meminitdata nr_all_pages;
124static unsigned long __meminitdata dma_reserve;
125
126#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
127  /*
128   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129   * ranges of memory (RAM) that may be registered with add_active_range().
130   * Ranges passed to add_active_range() will be merged if possible
131   * so the number of times add_active_range() can be called is
132   * related to the number of nodes and the number of holes
133   */
134  #ifdef CONFIG_MAX_ACTIVE_REGIONS
135    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137  #else
138    #if MAX_NUMNODES >= 32
139      /* If there can be many nodes, allow up to 50 holes per node */
140      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141    #else
142      /* By default, allow up to 256 distinct regions */
143      #define MAX_ACTIVE_REGIONS 256
144    #endif
145  #endif
146
147  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148  static int __meminitdata nr_nodemap_entries;
149  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
151#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
154#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155  unsigned long __initdata required_kernelcore;
156  static unsigned long __initdata required_movablecore;
157  unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160  int movable_zone;
161  EXPORT_SYMBOL(movable_zone);
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166EXPORT_SYMBOL(nr_node_ids);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173	set_pageblock_flags_group(page, (unsigned long)migratetype,
174					PB_migrate, PB_migrate_end);
175}
176
177#ifdef CONFIG_DEBUG_VM
178static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
179{
180	int ret = 0;
181	unsigned seq;
182	unsigned long pfn = page_to_pfn(page);
183
184	do {
185		seq = zone_span_seqbegin(zone);
186		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187			ret = 1;
188		else if (pfn < zone->zone_start_pfn)
189			ret = 1;
190	} while (zone_span_seqretry(zone, seq));
191
192	return ret;
193}
194
195static int page_is_consistent(struct zone *zone, struct page *page)
196{
197	if (!pfn_valid_within(page_to_pfn(page)))
198		return 0;
199	if (zone != page_zone(page))
200		return 0;
201
202	return 1;
203}
204/*
205 * Temporary debugging check for pages not lying within a given zone.
206 */
207static int bad_range(struct zone *zone, struct page *page)
208{
209	if (page_outside_zone_boundaries(zone, page))
210		return 1;
211	if (!page_is_consistent(zone, page))
212		return 1;
213
214	return 0;
215}
216#else
217static inline int bad_range(struct zone *zone, struct page *page)
218{
219	return 0;
220}
221#endif
222
223static void bad_page(struct page *page)
224{
225	void *pc = page_get_page_cgroup(page);
226
227	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
228		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
229		current->comm, page, (int)(2*sizeof(unsigned long)),
230		(unsigned long)page->flags, page->mapping,
231		page_mapcount(page), page_count(page));
232	if (pc) {
233		printk(KERN_EMERG "cgroup:%p\n", pc);
234		page_reset_bad_cgroup(page);
235	}
236	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
237		KERN_EMERG "Backtrace:\n");
238	dump_stack();
239	page->flags &= ~(1 << PG_lru	|
240			1 << PG_private |
241			1 << PG_locked	|
242			1 << PG_active	|
243			1 << PG_dirty	|
244			1 << PG_reclaim |
245			1 << PG_slab    |
246			1 << PG_swapcache |
247			1 << PG_writeback |
248			1 << PG_buddy );
249	set_page_count(page, 0);
250	reset_page_mapcount(page);
251	page->mapping = NULL;
252	add_taint(TAINT_BAD_PAGE);
253}
254
255/*
256 * Higher-order pages are called "compound pages".  They are structured thusly:
257 *
258 * The first PAGE_SIZE page is called the "head page".
259 *
260 * The remaining PAGE_SIZE pages are called "tail pages".
261 *
262 * All pages have PG_compound set.  All pages have their ->private pointing at
263 * the head page (even the head page has this).
264 *
265 * The first tail page's ->lru.next holds the address of the compound page's
266 * put_page() function.  Its ->lru.prev holds the order of allocation.
267 * This usage means that zero-order pages may not be compound.
268 */
269
270static void free_compound_page(struct page *page)
271{
272	__free_pages_ok(page, compound_order(page));
273}
274
275static void prep_compound_page(struct page *page, unsigned long order)
276{
277	int i;
278	int nr_pages = 1 << order;
279
280	set_compound_page_dtor(page, free_compound_page);
281	set_compound_order(page, order);
282	__SetPageHead(page);
283	for (i = 1; i < nr_pages; i++) {
284		struct page *p = page + i;
285
286		__SetPageTail(p);
287		p->first_page = page;
288	}
289}
290
291static void destroy_compound_page(struct page *page, unsigned long order)
292{
293	int i;
294	int nr_pages = 1 << order;
295
296	if (unlikely(compound_order(page) != order))
297		bad_page(page);
298
299	if (unlikely(!PageHead(page)))
300			bad_page(page);
301	__ClearPageHead(page);
302	for (i = 1; i < nr_pages; i++) {
303		struct page *p = page + i;
304
305		if (unlikely(!PageTail(p) |
306				(p->first_page != page)))
307			bad_page(page);
308		__ClearPageTail(p);
309	}
310}
311
312static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
313{
314	int i;
315
316	/*
317	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318	 * and __GFP_HIGHMEM from hard or soft interrupt context.
319	 */
320	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
321	for (i = 0; i < (1 << order); i++)
322		clear_highpage(page + i);
323}
324
325static inline void set_page_order(struct page *page, int order)
326{
327	set_page_private(page, order);
328	__SetPageBuddy(page);
329}
330
331static inline void rmv_page_order(struct page *page)
332{
333	__ClearPageBuddy(page);
334	set_page_private(page, 0);
335}
336
337/*
338 * Locate the struct page for both the matching buddy in our
339 * pair (buddy1) and the combined O(n+1) page they form (page).
340 *
341 * 1) Any buddy B1 will have an order O twin B2 which satisfies
342 * the following equation:
343 *     B2 = B1 ^ (1 << O)
344 * For example, if the starting buddy (buddy2) is #8 its order
345 * 1 buddy is #10:
346 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
347 *
348 * 2) Any buddy B will have an order O+1 parent P which
349 * satisfies the following equation:
350 *     P = B & ~(1 << O)
351 *
352 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
353 */
354static inline struct page *
355__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
356{
357	unsigned long buddy_idx = page_idx ^ (1 << order);
358
359	return page + (buddy_idx - page_idx);
360}
361
362static inline unsigned long
363__find_combined_index(unsigned long page_idx, unsigned int order)
364{
365	return (page_idx & ~(1 << order));
366}
367
368/*
369 * This function checks whether a page is free && is the buddy
370 * we can do coalesce a page and its buddy if
371 * (a) the buddy is not in a hole &&
372 * (b) the buddy is in the buddy system &&
373 * (c) a page and its buddy have the same order &&
374 * (d) a page and its buddy are in the same zone.
375 *
376 * For recording whether a page is in the buddy system, we use PG_buddy.
377 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
378 *
379 * For recording page's order, we use page_private(page).
380 */
381static inline int page_is_buddy(struct page *page, struct page *buddy,
382								int order)
383{
384	if (!pfn_valid_within(page_to_pfn(buddy)))
385		return 0;
386
387	if (page_zone_id(page) != page_zone_id(buddy))
388		return 0;
389
390	if (PageBuddy(buddy) && page_order(buddy) == order) {
391		BUG_ON(page_count(buddy) != 0);
392		return 1;
393	}
394	return 0;
395}
396
397/*
398 * Freeing function for a buddy system allocator.
399 *
400 * The concept of a buddy system is to maintain direct-mapped table
401 * (containing bit values) for memory blocks of various "orders".
402 * The bottom level table contains the map for the smallest allocatable
403 * units of memory (here, pages), and each level above it describes
404 * pairs of units from the levels below, hence, "buddies".
405 * At a high level, all that happens here is marking the table entry
406 * at the bottom level available, and propagating the changes upward
407 * as necessary, plus some accounting needed to play nicely with other
408 * parts of the VM system.
409 * At each level, we keep a list of pages, which are heads of continuous
410 * free pages of length of (1 << order) and marked with PG_buddy. Page's
411 * order is recorded in page_private(page) field.
412 * So when we are allocating or freeing one, we can derive the state of the
413 * other.  That is, if we allocate a small block, and both were
414 * free, the remainder of the region must be split into blocks.
415 * If a block is freed, and its buddy is also free, then this
416 * triggers coalescing into a block of larger size.
417 *
418 * -- wli
419 */
420
421static inline void __free_one_page(struct page *page,
422		struct zone *zone, unsigned int order)
423{
424	unsigned long page_idx;
425	int order_size = 1 << order;
426	int migratetype = get_pageblock_migratetype(page);
427
428	if (unlikely(PageCompound(page)))
429		destroy_compound_page(page, order);
430
431	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
432
433	VM_BUG_ON(page_idx & (order_size - 1));
434	VM_BUG_ON(bad_range(zone, page));
435
436	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
437	while (order < MAX_ORDER-1) {
438		unsigned long combined_idx;
439		struct page *buddy;
440
441		buddy = __page_find_buddy(page, page_idx, order);
442		if (!page_is_buddy(page, buddy, order))
443			break;		/* Move the buddy up one level. */
444
445		list_del(&buddy->lru);
446		zone->free_area[order].nr_free--;
447		rmv_page_order(buddy);
448		combined_idx = __find_combined_index(page_idx, order);
449		page = page + (combined_idx - page_idx);
450		page_idx = combined_idx;
451		order++;
452	}
453	set_page_order(page, order);
454	list_add(&page->lru,
455		&zone->free_area[order].free_list[migratetype]);
456	zone->free_area[order].nr_free++;
457}
458
459static inline int free_pages_check(struct page *page)
460{
461	if (unlikely(page_mapcount(page) |
462		(page->mapping != NULL)  |
463		(page_get_page_cgroup(page) != NULL) |
464		(page_count(page) != 0)  |
465		(page->flags & (
466			1 << PG_lru	|
467			1 << PG_private |
468			1 << PG_locked	|
469			1 << PG_active	|
470			1 << PG_slab	|
471			1 << PG_swapcache |
472			1 << PG_writeback |
473			1 << PG_reserved |
474			1 << PG_buddy ))))
475		bad_page(page);
476	if (PageDirty(page))
477		__ClearPageDirty(page);
478	/*
479	 * For now, we report if PG_reserved was found set, but do not
480	 * clear it, and do not free the page.  But we shall soon need
481	 * to do more, for when the ZERO_PAGE count wraps negative.
482	 */
483	return PageReserved(page);
484}
485
486/*
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
489 * count is the number of pages to free.
490 *
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
493 *
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
496 */
497static void free_pages_bulk(struct zone *zone, int count,
498					struct list_head *list, int order)
499{
500	spin_lock(&zone->lock);
501	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502	zone->pages_scanned = 0;
503	while (count--) {
504		struct page *page;
505
506		VM_BUG_ON(list_empty(list));
507		page = list_entry(list->prev, struct page, lru);
508		/* have to delete it as __free_one_page list manipulates */
509		list_del(&page->lru);
510		__free_one_page(page, zone, order);
511	}
512	spin_unlock(&zone->lock);
513}
514
515static void free_one_page(struct zone *zone, struct page *page, int order)
516{
517	spin_lock(&zone->lock);
518	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
519	zone->pages_scanned = 0;
520	__free_one_page(page, zone, order);
521	spin_unlock(&zone->lock);
522}
523
524static void __free_pages_ok(struct page *page, unsigned int order)
525{
526	unsigned long flags;
527	int i;
528	int reserved = 0;
529
530	for (i = 0 ; i < (1 << order) ; ++i)
531		reserved += free_pages_check(page + i);
532	if (reserved)
533		return;
534
535	if (!PageHighMem(page))
536		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
537	arch_free_page(page, order);
538	kernel_map_pages(page, 1 << order, 0);
539
540	local_irq_save(flags);
541	__count_vm_events(PGFREE, 1 << order);
542	free_one_page(page_zone(page), page, order);
543	local_irq_restore(flags);
544}
545
546/*
547 * permit the bootmem allocator to evade page validation on high-order frees
548 */
549void __free_pages_bootmem(struct page *page, unsigned int order)
550{
551	if (order == 0) {
552		__ClearPageReserved(page);
553		set_page_count(page, 0);
554		set_page_refcounted(page);
555		__free_page(page);
556	} else {
557		int loop;
558
559		prefetchw(page);
560		for (loop = 0; loop < BITS_PER_LONG; loop++) {
561			struct page *p = &page[loop];
562
563			if (loop + 1 < BITS_PER_LONG)
564				prefetchw(p + 1);
565			__ClearPageReserved(p);
566			set_page_count(p, 0);
567		}
568
569		set_page_refcounted(page);
570		__free_pages(page, order);
571	}
572}
573
574
575/*
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
586 *
587 * -- wli
588 */
589static inline void expand(struct zone *zone, struct page *page,
590	int low, int high, struct free_area *area,
591	int migratetype)
592{
593	unsigned long size = 1 << high;
594
595	while (high > low) {
596		area--;
597		high--;
598		size >>= 1;
599		VM_BUG_ON(bad_range(zone, &page[size]));
600		list_add(&page[size].lru, &area->free_list[migratetype]);
601		area->nr_free++;
602		set_page_order(&page[size], high);
603	}
604}
605
606/*
607 * This page is about to be returned from the page allocator
608 */
609static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
610{
611	if (unlikely(page_mapcount(page) |
612		(page->mapping != NULL)  |
613		(page_get_page_cgroup(page) != NULL) |
614		(page_count(page) != 0)  |
615		(page->flags & (
616			1 << PG_lru	|
617			1 << PG_private	|
618			1 << PG_locked	|
619			1 << PG_active	|
620			1 << PG_dirty	|
621			1 << PG_slab    |
622			1 << PG_swapcache |
623			1 << PG_writeback |
624			1 << PG_reserved |
625			1 << PG_buddy ))))
626		bad_page(page);
627
628	/*
629	 * For now, we report if PG_reserved was found set, but do not
630	 * clear it, and do not allocate the page: as a safety net.
631	 */
632	if (PageReserved(page))
633		return 1;
634
635	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
636			1 << PG_referenced | 1 << PG_arch_1 |
637			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
638	set_page_private(page, 0);
639	set_page_refcounted(page);
640
641	arch_alloc_page(page, order);
642	kernel_map_pages(page, 1 << order, 1);
643
644	if (gfp_flags & __GFP_ZERO)
645		prep_zero_page(page, order, gfp_flags);
646
647	if (order && (gfp_flags & __GFP_COMP))
648		prep_compound_page(page, order);
649
650	return 0;
651}
652
653/*
654 * Go through the free lists for the given migratetype and remove
655 * the smallest available page from the freelists
656 */
657static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
658						int migratetype)
659{
660	unsigned int current_order;
661	struct free_area * area;
662	struct page *page;
663
664	/* Find a page of the appropriate size in the preferred list */
665	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
666		area = &(zone->free_area[current_order]);
667		if (list_empty(&area->free_list[migratetype]))
668			continue;
669
670		page = list_entry(area->free_list[migratetype].next,
671							struct page, lru);
672		list_del(&page->lru);
673		rmv_page_order(page);
674		area->nr_free--;
675		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
676		expand(zone, page, order, current_order, area, migratetype);
677		return page;
678	}
679
680	return NULL;
681}
682
683
684/*
685 * This array describes the order lists are fallen back to when
686 * the free lists for the desirable migrate type are depleted
687 */
688static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
689	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
690	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
691	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
692	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
693};
694
695/*
696 * Move the free pages in a range to the free lists of the requested type.
697 * Note that start_page and end_pages are not aligned on a pageblock
698 * boundary. If alignment is required, use move_freepages_block()
699 */
700int move_freepages(struct zone *zone,
701			struct page *start_page, struct page *end_page,
702			int migratetype)
703{
704	struct page *page;
705	unsigned long order;
706	int pages_moved = 0;
707
708#ifndef CONFIG_HOLES_IN_ZONE
709	/*
710	 * page_zone is not safe to call in this context when
711	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712	 * anyway as we check zone boundaries in move_freepages_block().
713	 * Remove at a later date when no bug reports exist related to
714	 * grouping pages by mobility
715	 */
716	BUG_ON(page_zone(start_page) != page_zone(end_page));
717#endif
718
719	for (page = start_page; page <= end_page;) {
720		if (!pfn_valid_within(page_to_pfn(page))) {
721			page++;
722			continue;
723		}
724
725		if (!PageBuddy(page)) {
726			page++;
727			continue;
728		}
729
730		order = page_order(page);
731		list_del(&page->lru);
732		list_add(&page->lru,
733			&zone->free_area[order].free_list[migratetype]);
734		page += 1 << order;
735		pages_moved += 1 << order;
736	}
737
738	return pages_moved;
739}
740
741int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
742{
743	unsigned long start_pfn, end_pfn;
744	struct page *start_page, *end_page;
745
746	start_pfn = page_to_pfn(page);
747	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
748	start_page = pfn_to_page(start_pfn);
749	end_page = start_page + pageblock_nr_pages - 1;
750	end_pfn = start_pfn + pageblock_nr_pages - 1;
751
752	/* Do not cross zone boundaries */
753	if (start_pfn < zone->zone_start_pfn)
754		start_page = page;
755	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
756		return 0;
757
758	return move_freepages(zone, start_page, end_page, migratetype);
759}
760
761/* Remove an element from the buddy allocator from the fallback list */
762static struct page *__rmqueue_fallback(struct zone *zone, int order,
763						int start_migratetype)
764{
765	struct free_area * area;
766	int current_order;
767	struct page *page;
768	int migratetype, i;
769
770	/* Find the largest possible block of pages in the other list */
771	for (current_order = MAX_ORDER-1; current_order >= order;
772						--current_order) {
773		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
774			migratetype = fallbacks[start_migratetype][i];
775
776			/* MIGRATE_RESERVE handled later if necessary */
777			if (migratetype == MIGRATE_RESERVE)
778				continue;
779
780			area = &(zone->free_area[current_order]);
781			if (list_empty(&area->free_list[migratetype]))
782				continue;
783
784			page = list_entry(area->free_list[migratetype].next,
785					struct page, lru);
786			area->nr_free--;
787
788			/*
789			 * If breaking a large block of pages, move all free
790			 * pages to the preferred allocation list. If falling
791			 * back for a reclaimable kernel allocation, be more
792			 * agressive about taking ownership of free pages
793			 */
794			if (unlikely(current_order >= (pageblock_order >> 1)) ||
795					start_migratetype == MIGRATE_RECLAIMABLE) {
796				unsigned long pages;
797				pages = move_freepages_block(zone, page,
798								start_migratetype);
799
800				/* Claim the whole block if over half of it is free */
801				if (pages >= (1 << (pageblock_order-1)))
802					set_pageblock_migratetype(page,
803								start_migratetype);
804
805				migratetype = start_migratetype;
806			}
807
808			/* Remove the page from the freelists */
809			list_del(&page->lru);
810			rmv_page_order(page);
811			__mod_zone_page_state(zone, NR_FREE_PAGES,
812							-(1UL << order));
813
814			if (current_order == pageblock_order)
815				set_pageblock_migratetype(page,
816							start_migratetype);
817
818			expand(zone, page, order, current_order, area, migratetype);
819			return page;
820		}
821	}
822
823	/* Use MIGRATE_RESERVE rather than fail an allocation */
824	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
825}
826
827/*
828 * Do the hard work of removing an element from the buddy allocator.
829 * Call me with the zone->lock already held.
830 */
831static struct page *__rmqueue(struct zone *zone, unsigned int order,
832						int migratetype)
833{
834	struct page *page;
835
836	page = __rmqueue_smallest(zone, order, migratetype);
837
838	if (unlikely(!page))
839		page = __rmqueue_fallback(zone, order, migratetype);
840
841	return page;
842}
843
844/*
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency.  Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
848 */
849static int rmqueue_bulk(struct zone *zone, unsigned int order,
850			unsigned long count, struct list_head *list,
851			int migratetype)
852{
853	int i;
854
855	spin_lock(&zone->lock);
856	for (i = 0; i < count; ++i) {
857		struct page *page = __rmqueue(zone, order, migratetype);
858		if (unlikely(page == NULL))
859			break;
860
861		/*
862		 * Split buddy pages returned by expand() are received here
863		 * in physical page order. The page is added to the callers and
864		 * list and the list head then moves forward. From the callers
865		 * perspective, the linked list is ordered by page number in
866		 * some conditions. This is useful for IO devices that can
867		 * merge IO requests if the physical pages are ordered
868		 * properly.
869		 */
870		list_add(&page->lru, list);
871		set_page_private(page, migratetype);
872		list = &page->lru;
873	}
874	spin_unlock(&zone->lock);
875	return i;
876}
877
878#ifdef CONFIG_NUMA
879/*
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
882 * expired.
883 *
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
886 */
887void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
888{
889	unsigned long flags;
890	int to_drain;
891
892	local_irq_save(flags);
893	if (pcp->count >= pcp->batch)
894		to_drain = pcp->batch;
895	else
896		to_drain = pcp->count;
897	free_pages_bulk(zone, to_drain, &pcp->list, 0);
898	pcp->count -= to_drain;
899	local_irq_restore(flags);
900}
901#endif
902
903/*
904 * Drain pages of the indicated processor.
905 *
906 * The processor must either be the current processor and the
907 * thread pinned to the current processor or a processor that
908 * is not online.
909 */
910static void drain_pages(unsigned int cpu)
911{
912	unsigned long flags;
913	struct zone *zone;
914
915	for_each_zone(zone) {
916		struct per_cpu_pageset *pset;
917		struct per_cpu_pages *pcp;
918
919		if (!populated_zone(zone))
920			continue;
921
922		pset = zone_pcp(zone, cpu);
923
924		pcp = &pset->pcp;
925		local_irq_save(flags);
926		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
927		pcp->count = 0;
928		local_irq_restore(flags);
929	}
930}
931
932/*
933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
934 */
935void drain_local_pages(void *arg)
936{
937	drain_pages(smp_processor_id());
938}
939
940/*
941 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
942 */
943void drain_all_pages(void)
944{
945	on_each_cpu(drain_local_pages, NULL, 0, 1);
946}
947
948#ifdef CONFIG_HIBERNATION
949
950void mark_free_pages(struct zone *zone)
951{
952	unsigned long pfn, max_zone_pfn;
953	unsigned long flags;
954	int order, t;
955	struct list_head *curr;
956
957	if (!zone->spanned_pages)
958		return;
959
960	spin_lock_irqsave(&zone->lock, flags);
961
962	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
963	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
964		if (pfn_valid(pfn)) {
965			struct page *page = pfn_to_page(pfn);
966
967			if (!swsusp_page_is_forbidden(page))
968				swsusp_unset_page_free(page);
969		}
970
971	for_each_migratetype_order(order, t) {
972		list_for_each(curr, &zone->free_area[order].free_list[t]) {
973			unsigned long i;
974
975			pfn = page_to_pfn(list_entry(curr, struct page, lru));
976			for (i = 0; i < (1UL << order); i++)
977				swsusp_set_page_free(pfn_to_page(pfn + i));
978		}
979	}
980	spin_unlock_irqrestore(&zone->lock, flags);
981}
982#endif /* CONFIG_PM */
983
984/*
985 * Free a 0-order page
986 */
987static void free_hot_cold_page(struct page *page, int cold)
988{
989	struct zone *zone = page_zone(page);
990	struct per_cpu_pages *pcp;
991	unsigned long flags;
992
993	if (PageAnon(page))
994		page->mapping = NULL;
995	if (free_pages_check(page))
996		return;
997
998	if (!PageHighMem(page))
999		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1000	arch_free_page(page, 0);
1001	kernel_map_pages(page, 1, 0);
1002
1003	pcp = &zone_pcp(zone, get_cpu())->pcp;
1004	local_irq_save(flags);
1005	__count_vm_event(PGFREE);
1006	if (cold)
1007		list_add_tail(&page->lru, &pcp->list);
1008	else
1009		list_add(&page->lru, &pcp->list);
1010	set_page_private(page, get_pageblock_migratetype(page));
1011	pcp->count++;
1012	if (pcp->count >= pcp->high) {
1013		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014		pcp->count -= pcp->batch;
1015	}
1016	local_irq_restore(flags);
1017	put_cpu();
1018}
1019
1020void free_hot_page(struct page *page)
1021{
1022	free_hot_cold_page(page, 0);
1023}
1024
1025void free_cold_page(struct page *page)
1026{
1027	free_hot_cold_page(page, 1);
1028}
1029
1030/*
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1034 *
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1037 */
1038void split_page(struct page *page, unsigned int order)
1039{
1040	int i;
1041
1042	VM_BUG_ON(PageCompound(page));
1043	VM_BUG_ON(!page_count(page));
1044	for (i = 1; i < (1 << order); i++)
1045		set_page_refcounted(page + i);
1046}
1047
1048/*
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1050 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1051 * or two.
1052 */
1053static struct page *buffered_rmqueue(struct zone *preferred_zone,
1054			struct zone *zone, int order, gfp_t gfp_flags)
1055{
1056	unsigned long flags;
1057	struct page *page;
1058	int cold = !!(gfp_flags & __GFP_COLD);
1059	int cpu;
1060	int migratetype = allocflags_to_migratetype(gfp_flags);
1061
1062again:
1063	cpu  = get_cpu();
1064	if (likely(order == 0)) {
1065		struct per_cpu_pages *pcp;
1066
1067		pcp = &zone_pcp(zone, cpu)->pcp;
1068		local_irq_save(flags);
1069		if (!pcp->count) {
1070			pcp->count = rmqueue_bulk(zone, 0,
1071					pcp->batch, &pcp->list, migratetype);
1072			if (unlikely(!pcp->count))
1073				goto failed;
1074		}
1075
1076		/* Find a page of the appropriate migrate type */
1077		if (cold) {
1078			list_for_each_entry_reverse(page, &pcp->list, lru)
1079				if (page_private(page) == migratetype)
1080					break;
1081		} else {
1082			list_for_each_entry(page, &pcp->list, lru)
1083				if (page_private(page) == migratetype)
1084					break;
1085		}
1086
1087		/* Allocate more to the pcp list if necessary */
1088		if (unlikely(&page->lru == &pcp->list)) {
1089			pcp->count += rmqueue_bulk(zone, 0,
1090					pcp->batch, &pcp->list, migratetype);
1091			page = list_entry(pcp->list.next, struct page, lru);
1092		}
1093
1094		list_del(&page->lru);
1095		pcp->count--;
1096	} else {
1097		spin_lock_irqsave(&zone->lock, flags);
1098		page = __rmqueue(zone, order, migratetype);
1099		spin_unlock(&zone->lock);
1100		if (!page)
1101			goto failed;
1102	}
1103
1104	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1105	zone_statistics(preferred_zone, zone);
1106	local_irq_restore(flags);
1107	put_cpu();
1108
1109	VM_BUG_ON(bad_range(zone, page));
1110	if (prep_new_page(page, order, gfp_flags))
1111		goto again;
1112	return page;
1113
1114failed:
1115	local_irq_restore(flags);
1116	put_cpu();
1117	return NULL;
1118}
1119
1120#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1121#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1122#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1123#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1124#define ALLOC_HARDER		0x10 /* try to alloc harder */
1125#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1126#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1127
1128#ifdef CONFIG_FAIL_PAGE_ALLOC
1129
1130static struct fail_page_alloc_attr {
1131	struct fault_attr attr;
1132
1133	u32 ignore_gfp_highmem;
1134	u32 ignore_gfp_wait;
1135	u32 min_order;
1136
1137#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1138
1139	struct dentry *ignore_gfp_highmem_file;
1140	struct dentry *ignore_gfp_wait_file;
1141	struct dentry *min_order_file;
1142
1143#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1144
1145} fail_page_alloc = {
1146	.attr = FAULT_ATTR_INITIALIZER,
1147	.ignore_gfp_wait = 1,
1148	.ignore_gfp_highmem = 1,
1149	.min_order = 1,
1150};
1151
1152static int __init setup_fail_page_alloc(char *str)
1153{
1154	return setup_fault_attr(&fail_page_alloc.attr, str);
1155}
1156__setup("fail_page_alloc=", setup_fail_page_alloc);
1157
1158static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1159{
1160	if (order < fail_page_alloc.min_order)
1161		return 0;
1162	if (gfp_mask & __GFP_NOFAIL)
1163		return 0;
1164	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165		return 0;
1166	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167		return 0;
1168
1169	return should_fail(&fail_page_alloc.attr, 1 << order);
1170}
1171
1172#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1173
1174static int __init fail_page_alloc_debugfs(void)
1175{
1176	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177	struct dentry *dir;
1178	int err;
1179
1180	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181				       "fail_page_alloc");
1182	if (err)
1183		return err;
1184	dir = fail_page_alloc.attr.dentries.dir;
1185
1186	fail_page_alloc.ignore_gfp_wait_file =
1187		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188				      &fail_page_alloc.ignore_gfp_wait);
1189
1190	fail_page_alloc.ignore_gfp_highmem_file =
1191		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192				      &fail_page_alloc.ignore_gfp_highmem);
1193	fail_page_alloc.min_order_file =
1194		debugfs_create_u32("min-order", mode, dir,
1195				   &fail_page_alloc.min_order);
1196
1197	if (!fail_page_alloc.ignore_gfp_wait_file ||
1198            !fail_page_alloc.ignore_gfp_highmem_file ||
1199            !fail_page_alloc.min_order_file) {
1200		err = -ENOMEM;
1201		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1203		debugfs_remove(fail_page_alloc.min_order_file);
1204		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1205	}
1206
1207	return err;
1208}
1209
1210late_initcall(fail_page_alloc_debugfs);
1211
1212#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1213
1214#else /* CONFIG_FAIL_PAGE_ALLOC */
1215
1216static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217{
1218	return 0;
1219}
1220
1221#endif /* CONFIG_FAIL_PAGE_ALLOC */
1222
1223/*
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1226 */
1227int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1228		      int classzone_idx, int alloc_flags)
1229{
1230	/* free_pages my go negative - that's OK */
1231	long min = mark;
1232	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1233	int o;
1234
1235	if (alloc_flags & ALLOC_HIGH)
1236		min -= min / 2;
1237	if (alloc_flags & ALLOC_HARDER)
1238		min -= min / 4;
1239
1240	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241		return 0;
1242	for (o = 0; o < order; o++) {
1243		/* At the next order, this order's pages become unavailable */
1244		free_pages -= z->free_area[o].nr_free << o;
1245
1246		/* Require fewer higher order pages to be free */
1247		min >>= 1;
1248
1249		if (free_pages <= min)
1250			return 0;
1251	}
1252	return 1;
1253}
1254
1255#ifdef CONFIG_NUMA
1256/*
1257 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full.  See further
1260 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1261 * that have to skip over a lot of full or unallowed zones.
1262 *
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1266 *
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1269 *
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1272 *
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1277 */
1278static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1279{
1280	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1281	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1282
1283	zlc = zonelist->zlcache_ptr;
1284	if (!zlc)
1285		return NULL;
1286
1287	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1288		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289		zlc->last_full_zap = jiffies;
1290	}
1291
1292	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293					&cpuset_current_mems_allowed :
1294					&node_states[N_HIGH_MEMORY];
1295	return allowednodes;
1296}
1297
1298/*
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 *  1) Check that the zone isn't thought to be full (doesn't have its
1302 *     bit set in the zonelist_cache fullzones BITMAP).
1303 *  2) Check that the zones node (obtained from the zonelist_cache
1304 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1307 *
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1314 *
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1319 */
1320static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1321						nodemask_t *allowednodes)
1322{
1323	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1324	int i;				/* index of *z in zonelist zones */
1325	int n;				/* node that zone *z is on */
1326
1327	zlc = zonelist->zlcache_ptr;
1328	if (!zlc)
1329		return 1;
1330
1331	i = z - zonelist->_zonerefs;
1332	n = zlc->z_to_n[i];
1333
1334	/* This zone is worth trying if it is allowed but not full */
1335	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1336}
1337
1338/*
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1342 */
1343static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1344{
1345	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1346	int i;				/* index of *z in zonelist zones */
1347
1348	zlc = zonelist->zlcache_ptr;
1349	if (!zlc)
1350		return;
1351
1352	i = z - zonelist->_zonerefs;
1353
1354	set_bit(i, zlc->fullzones);
1355}
1356
1357#else	/* CONFIG_NUMA */
1358
1359static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1360{
1361	return NULL;
1362}
1363
1364static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1365				nodemask_t *allowednodes)
1366{
1367	return 1;
1368}
1369
1370static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1371{
1372}
1373#endif	/* CONFIG_NUMA */
1374
1375/*
1376 * get_page_from_freelist goes through the zonelist trying to allocate
1377 * a page.
1378 */
1379static struct page *
1380get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1381		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1382{
1383	struct zoneref *z;
1384	struct page *page = NULL;
1385	int classzone_idx;
1386	struct zone *zone, *preferred_zone;
1387	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388	int zlc_active = 0;		/* set if using zonelist_cache */
1389	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1390
1391	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1392							&preferred_zone);
1393	classzone_idx = zone_idx(preferred_zone);
1394
1395zonelist_scan:
1396	/*
1397	 * Scan zonelist, looking for a zone with enough free.
1398	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1399	 */
1400	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1401						high_zoneidx, nodemask) {
1402		if (NUMA_BUILD && zlc_active &&
1403			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1404				continue;
1405		if ((alloc_flags & ALLOC_CPUSET) &&
1406			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1407				goto try_next_zone;
1408
1409		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1410			unsigned long mark;
1411			if (alloc_flags & ALLOC_WMARK_MIN)
1412				mark = zone->pages_min;
1413			else if (alloc_flags & ALLOC_WMARK_LOW)
1414				mark = zone->pages_low;
1415			else
1416				mark = zone->pages_high;
1417			if (!zone_watermark_ok(zone, order, mark,
1418				    classzone_idx, alloc_flags)) {
1419				if (!zone_reclaim_mode ||
1420				    !zone_reclaim(zone, gfp_mask, order))
1421					goto this_zone_full;
1422			}
1423		}
1424
1425		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1426		if (page)
1427			break;
1428this_zone_full:
1429		if (NUMA_BUILD)
1430			zlc_mark_zone_full(zonelist, z);
1431try_next_zone:
1432		if (NUMA_BUILD && !did_zlc_setup) {
1433			/* we do zlc_setup after the first zone is tried */
1434			allowednodes = zlc_setup(zonelist, alloc_flags);
1435			zlc_active = 1;
1436			did_zlc_setup = 1;
1437		}
1438	}
1439
1440	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1441		/* Disable zlc cache for second zonelist scan */
1442		zlc_active = 0;
1443		goto zonelist_scan;
1444	}
1445	return page;
1446}
1447
1448/*
1449 * This is the 'heart' of the zoned buddy allocator.
1450 */
1451static struct page *
1452__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1453			struct zonelist *zonelist, nodemask_t *nodemask)
1454{
1455	const gfp_t wait = gfp_mask & __GFP_WAIT;
1456	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1457	struct zoneref *z;
1458	struct zone *zone;
1459	struct page *page;
1460	struct reclaim_state reclaim_state;
1461	struct task_struct *p = current;
1462	int do_retry;
1463	int alloc_flags;
1464	unsigned long did_some_progress;
1465	unsigned long pages_reclaimed = 0;
1466
1467	might_sleep_if(wait);
1468
1469	if (should_fail_alloc_page(gfp_mask, order))
1470		return NULL;
1471
1472restart:
1473	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1474
1475	if (unlikely(!z->zone)) {
1476		/*
1477		 * Happens if we have an empty zonelist as a result of
1478		 * GFP_THISNODE being used on a memoryless node
1479		 */
1480		return NULL;
1481	}
1482
1483	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1484			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1485	if (page)
1486		goto got_pg;
1487
1488	/*
1489	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492	 * using a larger set of nodes after it has established that the
1493	 * allowed per node queues are empty and that nodes are
1494	 * over allocated.
1495	 */
1496	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1497		goto nopage;
1498
1499	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1500		wakeup_kswapd(zone, order);
1501
1502	/*
1503	 * OK, we're below the kswapd watermark and have kicked background
1504	 * reclaim. Now things get more complex, so set up alloc_flags according
1505	 * to how we want to proceed.
1506	 *
1507	 * The caller may dip into page reserves a bit more if the caller
1508	 * cannot run direct reclaim, or if the caller has realtime scheduling
1509	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1510	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511	 */
1512	alloc_flags = ALLOC_WMARK_MIN;
1513	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1514		alloc_flags |= ALLOC_HARDER;
1515	if (gfp_mask & __GFP_HIGH)
1516		alloc_flags |= ALLOC_HIGH;
1517	if (wait)
1518		alloc_flags |= ALLOC_CPUSET;
1519
1520	/*
1521	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1522	 * coming from realtime tasks go deeper into reserves.
1523	 *
1524	 * This is the last chance, in general, before the goto nopage.
1525	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527	 */
1528	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1529						high_zoneidx, alloc_flags);
1530	if (page)
1531		goto got_pg;
1532
1533	/* This allocation should allow future memory freeing. */
1534
1535rebalance:
1536	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1537			&& !in_interrupt()) {
1538		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1539nofail_alloc:
1540			/* go through the zonelist yet again, ignoring mins */
1541			page = get_page_from_freelist(gfp_mask, nodemask, order,
1542				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1543			if (page)
1544				goto got_pg;
1545			if (gfp_mask & __GFP_NOFAIL) {
1546				congestion_wait(WRITE, HZ/50);
1547				goto nofail_alloc;
1548			}
1549		}
1550		goto nopage;
1551	}
1552
1553	/* Atomic allocations - we can't balance anything */
1554	if (!wait)
1555		goto nopage;
1556
1557	cond_resched();
1558
1559	/* We now go into synchronous reclaim */
1560	cpuset_memory_pressure_bump();
1561	p->flags |= PF_MEMALLOC;
1562	reclaim_state.reclaimed_slab = 0;
1563	p->reclaim_state = &reclaim_state;
1564
1565	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1566
1567	p->reclaim_state = NULL;
1568	p->flags &= ~PF_MEMALLOC;
1569
1570	cond_resched();
1571
1572	if (order != 0)
1573		drain_all_pages();
1574
1575	if (likely(did_some_progress)) {
1576		page = get_page_from_freelist(gfp_mask, nodemask, order,
1577					zonelist, high_zoneidx, alloc_flags);
1578		if (page)
1579			goto got_pg;
1580	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1581		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1582			schedule_timeout_uninterruptible(1);
1583			goto restart;
1584		}
1585
1586		/*
1587		 * Go through the zonelist yet one more time, keep
1588		 * very high watermark here, this is only to catch
1589		 * a parallel oom killing, we must fail if we're still
1590		 * under heavy pressure.
1591		 */
1592		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1593			order, zonelist, high_zoneidx,
1594			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1595		if (page) {
1596			clear_zonelist_oom(zonelist, gfp_mask);
1597			goto got_pg;
1598		}
1599
1600		/* The OOM killer will not help higher order allocs so fail */
1601		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1602			clear_zonelist_oom(zonelist, gfp_mask);
1603			goto nopage;
1604		}
1605
1606		out_of_memory(zonelist, gfp_mask, order);
1607		clear_zonelist_oom(zonelist, gfp_mask);
1608		goto restart;
1609	}
1610
1611	/*
1612	 * Don't let big-order allocations loop unless the caller explicitly
1613	 * requests that.  Wait for some write requests to complete then retry.
1614	 *
1615	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1616	 * means __GFP_NOFAIL, but that may not be true in other
1617	 * implementations.
1618	 *
1619	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1620	 * specified, then we retry until we no longer reclaim any pages
1621	 * (above), or we've reclaimed an order of pages at least as
1622	 * large as the allocation's order. In both cases, if the
1623	 * allocation still fails, we stop retrying.
1624	 */
1625	pages_reclaimed += did_some_progress;
1626	do_retry = 0;
1627	if (!(gfp_mask & __GFP_NORETRY)) {
1628		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1629			do_retry = 1;
1630		} else {
1631			if (gfp_mask & __GFP_REPEAT &&
1632				pages_reclaimed < (1 << order))
1633					do_retry = 1;
1634		}
1635		if (gfp_mask & __GFP_NOFAIL)
1636			do_retry = 1;
1637	}
1638	if (do_retry) {
1639		congestion_wait(WRITE, HZ/50);
1640		goto rebalance;
1641	}
1642
1643nopage:
1644	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1645		printk(KERN_WARNING "%s: page allocation failure."
1646			" order:%d, mode:0x%x\n",
1647			p->comm, order, gfp_mask);
1648		dump_stack();
1649		show_mem();
1650	}
1651got_pg:
1652	return page;
1653}
1654
1655struct page *
1656__alloc_pages(gfp_t gfp_mask, unsigned int order,
1657		struct zonelist *zonelist)
1658{
1659	return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1660}
1661
1662struct page *
1663__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1664		struct zonelist *zonelist, nodemask_t *nodemask)
1665{
1666	return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1667}
1668
1669EXPORT_SYMBOL(__alloc_pages);
1670
1671/*
1672 * Common helper functions.
1673 */
1674unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1675{
1676	struct page * page;
1677	page = alloc_pages(gfp_mask, order);
1678	if (!page)
1679		return 0;
1680	return (unsigned long) page_address(page);
1681}
1682
1683EXPORT_SYMBOL(__get_free_pages);
1684
1685unsigned long get_zeroed_page(gfp_t gfp_mask)
1686{
1687	struct page * page;
1688
1689	/*
1690	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1691	 * a highmem page
1692	 */
1693	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1694
1695	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1696	if (page)
1697		return (unsigned long) page_address(page);
1698	return 0;
1699}
1700
1701EXPORT_SYMBOL(get_zeroed_page);
1702
1703void __pagevec_free(struct pagevec *pvec)
1704{
1705	int i = pagevec_count(pvec);
1706
1707	while (--i >= 0)
1708		free_hot_cold_page(pvec->pages[i], pvec->cold);
1709}
1710
1711void __free_pages(struct page *page, unsigned int order)
1712{
1713	if (put_page_testzero(page)) {
1714		if (order == 0)
1715			free_hot_page(page);
1716		else
1717			__free_pages_ok(page, order);
1718	}
1719}
1720
1721EXPORT_SYMBOL(__free_pages);
1722
1723void free_pages(unsigned long addr, unsigned int order)
1724{
1725	if (addr != 0) {
1726		VM_BUG_ON(!virt_addr_valid((void *)addr));
1727		__free_pages(virt_to_page((void *)addr), order);
1728	}
1729}
1730
1731EXPORT_SYMBOL(free_pages);
1732
1733static unsigned int nr_free_zone_pages(int offset)
1734{
1735	struct zoneref *z;
1736	struct zone *zone;
1737
1738	/* Just pick one node, since fallback list is circular */
1739	unsigned int sum = 0;
1740
1741	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1742
1743	for_each_zone_zonelist(zone, z, zonelist, offset) {
1744		unsigned long size = zone->present_pages;
1745		unsigned long high = zone->pages_high;
1746		if (size > high)
1747			sum += size - high;
1748	}
1749
1750	return sum;
1751}
1752
1753/*
1754 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1755 */
1756unsigned int nr_free_buffer_pages(void)
1757{
1758	return nr_free_zone_pages(gfp_zone(GFP_USER));
1759}
1760EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1761
1762/*
1763 * Amount of free RAM allocatable within all zones
1764 */
1765unsigned int nr_free_pagecache_pages(void)
1766{
1767	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1768}
1769
1770static inline void show_node(struct zone *zone)
1771{
1772	if (NUMA_BUILD)
1773		printk("Node %d ", zone_to_nid(zone));
1774}
1775
1776void si_meminfo(struct sysinfo *val)
1777{
1778	val->totalram = totalram_pages;
1779	val->sharedram = 0;
1780	val->freeram = global_page_state(NR_FREE_PAGES);
1781	val->bufferram = nr_blockdev_pages();
1782	val->totalhigh = totalhigh_pages;
1783	val->freehigh = nr_free_highpages();
1784	val->mem_unit = PAGE_SIZE;
1785}
1786
1787EXPORT_SYMBOL(si_meminfo);
1788
1789#ifdef CONFIG_NUMA
1790void si_meminfo_node(struct sysinfo *val, int nid)
1791{
1792	pg_data_t *pgdat = NODE_DATA(nid);
1793
1794	val->totalram = pgdat->node_present_pages;
1795	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1796#ifdef CONFIG_HIGHMEM
1797	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1798	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1799			NR_FREE_PAGES);
1800#else
1801	val->totalhigh = 0;
1802	val->freehigh = 0;
1803#endif
1804	val->mem_unit = PAGE_SIZE;
1805}
1806#endif
1807
1808#define K(x) ((x) << (PAGE_SHIFT-10))
1809
1810/*
1811 * Show free area list (used inside shift_scroll-lock stuff)
1812 * We also calculate the percentage fragmentation. We do this by counting the
1813 * memory on each free list with the exception of the first item on the list.
1814 */
1815void show_free_areas(void)
1816{
1817	int cpu;
1818	struct zone *zone;
1819
1820	for_each_zone(zone) {
1821		if (!populated_zone(zone))
1822			continue;
1823
1824		show_node(zone);
1825		printk("%s per-cpu:\n", zone->name);
1826
1827		for_each_online_cpu(cpu) {
1828			struct per_cpu_pageset *pageset;
1829
1830			pageset = zone_pcp(zone, cpu);
1831
1832			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1833			       cpu, pageset->pcp.high,
1834			       pageset->pcp.batch, pageset->pcp.count);
1835		}
1836	}
1837
1838	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1839		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1840		global_page_state(NR_ACTIVE),
1841		global_page_state(NR_INACTIVE),
1842		global_page_state(NR_FILE_DIRTY),
1843		global_page_state(NR_WRITEBACK),
1844		global_page_state(NR_UNSTABLE_NFS),
1845		global_page_state(NR_FREE_PAGES),
1846		global_page_state(NR_SLAB_RECLAIMABLE) +
1847			global_page_state(NR_SLAB_UNRECLAIMABLE),
1848		global_page_state(NR_FILE_MAPPED),
1849		global_page_state(NR_PAGETABLE),
1850		global_page_state(NR_BOUNCE));
1851
1852	for_each_zone(zone) {
1853		int i;
1854
1855		if (!populated_zone(zone))
1856			continue;
1857
1858		show_node(zone);
1859		printk("%s"
1860			" free:%lukB"
1861			" min:%lukB"
1862			" low:%lukB"
1863			" high:%lukB"
1864			" active:%lukB"
1865			" inactive:%lukB"
1866			" present:%lukB"
1867			" pages_scanned:%lu"
1868			" all_unreclaimable? %s"
1869			"\n",
1870			zone->name,
1871			K(zone_page_state(zone, NR_FREE_PAGES)),
1872			K(zone->pages_min),
1873			K(zone->pages_low),
1874			K(zone->pages_high),
1875			K(zone_page_state(zone, NR_ACTIVE)),
1876			K(zone_page_state(zone, NR_INACTIVE)),
1877			K(zone->present_pages),
1878			zone->pages_scanned,
1879			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1880			);
1881		printk("lowmem_reserve[]:");
1882		for (i = 0; i < MAX_NR_ZONES; i++)
1883			printk(" %lu", zone->lowmem_reserve[i]);
1884		printk("\n");
1885	}
1886
1887	for_each_zone(zone) {
1888 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1889
1890		if (!populated_zone(zone))
1891			continue;
1892
1893		show_node(zone);
1894		printk("%s: ", zone->name);
1895
1896		spin_lock_irqsave(&zone->lock, flags);
1897		for (order = 0; order < MAX_ORDER; order++) {
1898			nr[order] = zone->free_area[order].nr_free;
1899			total += nr[order] << order;
1900		}
1901		spin_unlock_irqrestore(&zone->lock, flags);
1902		for (order = 0; order < MAX_ORDER; order++)
1903			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1904		printk("= %lukB\n", K(total));
1905	}
1906
1907	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1908
1909	show_swap_cache_info();
1910}
1911
1912static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1913{
1914	zoneref->zone = zone;
1915	zoneref->zone_idx = zone_idx(zone);
1916}
1917
1918/*
1919 * Builds allocation fallback zone lists.
1920 *
1921 * Add all populated zones of a node to the zonelist.
1922 */
1923static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1924				int nr_zones, enum zone_type zone_type)
1925{
1926	struct zone *zone;
1927
1928	BUG_ON(zone_type >= MAX_NR_ZONES);
1929	zone_type++;
1930
1931	do {
1932		zone_type--;
1933		zone = pgdat->node_zones + zone_type;
1934		if (populated_zone(zone)) {
1935			zoneref_set_zone(zone,
1936				&zonelist->_zonerefs[nr_zones++]);
1937			check_highest_zone(zone_type);
1938		}
1939
1940	} while (zone_type);
1941	return nr_zones;
1942}
1943
1944
1945/*
1946 *  zonelist_order:
1947 *  0 = automatic detection of better ordering.
1948 *  1 = order by ([node] distance, -zonetype)
1949 *  2 = order by (-zonetype, [node] distance)
1950 *
1951 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1952 *  the same zonelist. So only NUMA can configure this param.
1953 */
1954#define ZONELIST_ORDER_DEFAULT  0
1955#define ZONELIST_ORDER_NODE     1
1956#define ZONELIST_ORDER_ZONE     2
1957
1958/* zonelist order in the kernel.
1959 * set_zonelist_order() will set this to NODE or ZONE.
1960 */
1961static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1962static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1963
1964
1965#ifdef CONFIG_NUMA
1966/* The value user specified ....changed by config */
1967static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1968/* string for sysctl */
1969#define NUMA_ZONELIST_ORDER_LEN	16
1970char numa_zonelist_order[16] = "default";
1971
1972/*
1973 * interface for configure zonelist ordering.
1974 * command line option "numa_zonelist_order"
1975 *	= "[dD]efault	- default, automatic configuration.
1976 *	= "[nN]ode 	- order by node locality, then by zone within node
1977 *	= "[zZ]one      - order by zone, then by locality within zone
1978 */
1979
1980static int __parse_numa_zonelist_order(char *s)
1981{
1982	if (*s == 'd' || *s == 'D') {
1983		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1984	} else if (*s == 'n' || *s == 'N') {
1985		user_zonelist_order = ZONELIST_ORDER_NODE;
1986	} else if (*s == 'z' || *s == 'Z') {
1987		user_zonelist_order = ZONELIST_ORDER_ZONE;
1988	} else {
1989		printk(KERN_WARNING
1990			"Ignoring invalid numa_zonelist_order value:  "
1991			"%s\n", s);
1992		return -EINVAL;
1993	}
1994	return 0;
1995}
1996
1997static __init int setup_numa_zonelist_order(char *s)
1998{
1999	if (s)
2000		return __parse_numa_zonelist_order(s);
2001	return 0;
2002}
2003early_param("numa_zonelist_order", setup_numa_zonelist_order);
2004
2005/*
2006 * sysctl handler for numa_zonelist_order
2007 */
2008int numa_zonelist_order_handler(ctl_table *table, int write,
2009		struct file *file, void __user *buffer, size_t *length,
2010		loff_t *ppos)
2011{
2012	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2013	int ret;
2014
2015	if (write)
2016		strncpy(saved_string, (char*)table->data,
2017			NUMA_ZONELIST_ORDER_LEN);
2018	ret = proc_dostring(table, write, file, buffer, length, ppos);
2019	if (ret)
2020		return ret;
2021	if (write) {
2022		int oldval = user_zonelist_order;
2023		if (__parse_numa_zonelist_order((char*)table->data)) {
2024			/*
2025			 * bogus value.  restore saved string
2026			 */
2027			strncpy((char*)table->data, saved_string,
2028				NUMA_ZONELIST_ORDER_LEN);
2029			user_zonelist_order = oldval;
2030		} else if (oldval != user_zonelist_order)
2031			build_all_zonelists();
2032	}
2033	return 0;
2034}
2035
2036
2037#define MAX_NODE_LOAD (num_online_nodes())
2038static int node_load[MAX_NUMNODES];
2039
2040/**
2041 * find_next_best_node - find the next node that should appear in a given node's fallback list
2042 * @node: node whose fallback list we're appending
2043 * @used_node_mask: nodemask_t of already used nodes
2044 *
2045 * We use a number of factors to determine which is the next node that should
2046 * appear on a given node's fallback list.  The node should not have appeared
2047 * already in @node's fallback list, and it should be the next closest node
2048 * according to the distance array (which contains arbitrary distance values
2049 * from each node to each node in the system), and should also prefer nodes
2050 * with no CPUs, since presumably they'll have very little allocation pressure
2051 * on them otherwise.
2052 * It returns -1 if no node is found.
2053 */
2054static int find_next_best_node(int node, nodemask_t *used_node_mask)
2055{
2056	int n, val;
2057	int min_val = INT_MAX;
2058	int best_node = -1;
2059	node_to_cpumask_ptr(tmp, 0);
2060
2061	/* Use the local node if we haven't already */
2062	if (!node_isset(node, *used_node_mask)) {
2063		node_set(node, *used_node_mask);
2064		return node;
2065	}
2066
2067	for_each_node_state(n, N_HIGH_MEMORY) {
2068
2069		/* Don't want a node to appear more than once */
2070		if (node_isset(n, *used_node_mask))
2071			continue;
2072
2073		/* Use the distance array to find the distance */
2074		val = node_distance(node, n);
2075
2076		/* Penalize nodes under us ("prefer the next node") */
2077		val += (n < node);
2078
2079		/* Give preference to headless and unused nodes */
2080		node_to_cpumask_ptr_next(tmp, n);
2081		if (!cpus_empty(*tmp))
2082			val += PENALTY_FOR_NODE_WITH_CPUS;
2083
2084		/* Slight preference for less loaded node */
2085		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2086		val += node_load[n];
2087
2088		if (val < min_val) {
2089			min_val = val;
2090			best_node = n;
2091		}
2092	}
2093
2094	if (best_node >= 0)
2095		node_set(best_node, *used_node_mask);
2096
2097	return best_node;
2098}
2099
2100
2101/*
2102 * Build zonelists ordered by node and zones within node.
2103 * This results in maximum locality--normal zone overflows into local
2104 * DMA zone, if any--but risks exhausting DMA zone.
2105 */
2106static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2107{
2108	int j;
2109	struct zonelist *zonelist;
2110
2111	zonelist = &pgdat->node_zonelists[0];
2112	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2113		;
2114	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2115							MAX_NR_ZONES - 1);
2116	zonelist->_zonerefs[j].zone = NULL;
2117	zonelist->_zonerefs[j].zone_idx = 0;
2118}
2119
2120/*
2121 * Build gfp_thisnode zonelists
2122 */
2123static void build_thisnode_zonelists(pg_data_t *pgdat)
2124{
2125	int j;
2126	struct zonelist *zonelist;
2127
2128	zonelist = &pgdat->node_zonelists[1];
2129	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2130	zonelist->_zonerefs[j].zone = NULL;
2131	zonelist->_zonerefs[j].zone_idx = 0;
2132}
2133
2134/*
2135 * Build zonelists ordered by zone and nodes within zones.
2136 * This results in conserving DMA zone[s] until all Normal memory is
2137 * exhausted, but results in overflowing to remote node while memory
2138 * may still exist in local DMA zone.
2139 */
2140static int node_order[MAX_NUMNODES];
2141
2142static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2143{
2144	int pos, j, node;
2145	int zone_type;		/* needs to be signed */
2146	struct zone *z;
2147	struct zonelist *zonelist;
2148
2149	zonelist = &pgdat->node_zonelists[0];
2150	pos = 0;
2151	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2152		for (j = 0; j < nr_nodes; j++) {
2153			node = node_order[j];
2154			z = &NODE_DATA(node)->node_zones[zone_type];
2155			if (populated_zone(z)) {
2156				zoneref_set_zone(z,
2157					&zonelist->_zonerefs[pos++]);
2158				check_highest_zone(zone_type);
2159			}
2160		}
2161	}
2162	zonelist->_zonerefs[pos].zone = NULL;
2163	zonelist->_zonerefs[pos].zone_idx = 0;
2164}
2165
2166static int default_zonelist_order(void)
2167{
2168	int nid, zone_type;
2169	unsigned long low_kmem_size,total_size;
2170	struct zone *z;
2171	int average_size;
2172	/*
2173         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2174	 * If they are really small and used heavily, the system can fall
2175	 * into OOM very easily.
2176	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2177	 */
2178	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2179	low_kmem_size = 0;
2180	total_size = 0;
2181	for_each_online_node(nid) {
2182		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2183			z = &NODE_DATA(nid)->node_zones[zone_type];
2184			if (populated_zone(z)) {
2185				if (zone_type < ZONE_NORMAL)
2186					low_kmem_size += z->present_pages;
2187				total_size += z->present_pages;
2188			}
2189		}
2190	}
2191	if (!low_kmem_size ||  /* there are no DMA area. */
2192	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2193		return ZONELIST_ORDER_NODE;
2194	/*
2195	 * look into each node's config.
2196  	 * If there is a node whose DMA/DMA32 memory is very big area on
2197 	 * local memory, NODE_ORDER may be suitable.
2198         */
2199	average_size = total_size /
2200				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2201	for_each_online_node(nid) {
2202		low_kmem_size = 0;
2203		total_size = 0;
2204		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2205			z = &NODE_DATA(nid)->node_zones[zone_type];
2206			if (populated_zone(z)) {
2207				if (zone_type < ZONE_NORMAL)
2208					low_kmem_size += z->present_pages;
2209				total_size += z->present_pages;
2210			}
2211		}
2212		if (low_kmem_size &&
2213		    total_size > average_size && /* ignore small node */
2214		    low_kmem_size > total_size * 70/100)
2215			return ZONELIST_ORDER_NODE;
2216	}
2217	return ZONELIST_ORDER_ZONE;
2218}
2219
2220static void set_zonelist_order(void)
2221{
2222	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2223		current_zonelist_order = default_zonelist_order();
2224	else
2225		current_zonelist_order = user_zonelist_order;
2226}
2227
2228static void build_zonelists(pg_data_t *pgdat)
2229{
2230	int j, node, load;
2231	enum zone_type i;
2232	nodemask_t used_mask;
2233	int local_node, prev_node;
2234	struct zonelist *zonelist;
2235	int order = current_zonelist_order;
2236
2237	/* initialize zonelists */
2238	for (i = 0; i < MAX_ZONELISTS; i++) {
2239		zonelist = pgdat->node_zonelists + i;
2240		zonelist->_zonerefs[0].zone = NULL;
2241		zonelist->_zonerefs[0].zone_idx = 0;
2242	}
2243
2244	/* NUMA-aware ordering of nodes */
2245	local_node = pgdat->node_id;
2246	load = num_online_nodes();
2247	prev_node = local_node;
2248	nodes_clear(used_mask);
2249
2250	memset(node_load, 0, sizeof(node_load));
2251	memset(node_order, 0, sizeof(node_order));
2252	j = 0;
2253
2254	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2255		int distance = node_distance(local_node, node);
2256
2257		/*
2258		 * If another node is sufficiently far away then it is better
2259		 * to reclaim pages in a zone before going off node.
2260		 */
2261		if (distance > RECLAIM_DISTANCE)
2262			zone_reclaim_mode = 1;
2263
2264		/*
2265		 * We don't want to pressure a particular node.
2266		 * So adding penalty to the first node in same
2267		 * distance group to make it round-robin.
2268		 */
2269		if (distance != node_distance(local_node, prev_node))
2270			node_load[node] = load;
2271
2272		prev_node = node;
2273		load--;
2274		if (order == ZONELIST_ORDER_NODE)
2275			build_zonelists_in_node_order(pgdat, node);
2276		else
2277			node_order[j++] = node;	/* remember order */
2278	}
2279
2280	if (order == ZONELIST_ORDER_ZONE) {
2281		/* calculate node order -- i.e., DMA last! */
2282		build_zonelists_in_zone_order(pgdat, j);
2283	}
2284
2285	build_thisnode_zonelists(pgdat);
2286}
2287
2288/* Construct the zonelist performance cache - see further mmzone.h */
2289static void build_zonelist_cache(pg_data_t *pgdat)
2290{
2291	struct zonelist *zonelist;
2292	struct zonelist_cache *zlc;
2293	struct zoneref *z;
2294
2295	zonelist = &pgdat->node_zonelists[0];
2296	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2297	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2298	for (z = zonelist->_zonerefs; z->zone; z++)
2299		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2300}
2301
2302
2303#else	/* CONFIG_NUMA */
2304
2305static void set_zonelist_order(void)
2306{
2307	current_zonelist_order = ZONELIST_ORDER_ZONE;
2308}
2309
2310static void build_zonelists(pg_data_t *pgdat)
2311{
2312	int node, local_node;
2313	enum zone_type j;
2314	struct zonelist *zonelist;
2315
2316	local_node = pgdat->node_id;
2317
2318	zonelist = &pgdat->node_zonelists[0];
2319	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2320
2321	/*
2322	 * Now we build the zonelist so that it contains the zones
2323	 * of all the other nodes.
2324	 * We don't want to pressure a particular node, so when
2325	 * building the zones for node N, we make sure that the
2326	 * zones coming right after the local ones are those from
2327	 * node N+1 (modulo N)
2328	 */
2329	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2330		if (!node_online(node))
2331			continue;
2332		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2333							MAX_NR_ZONES - 1);
2334	}
2335	for (node = 0; node < local_node; node++) {
2336		if (!node_online(node))
2337			continue;
2338		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2339							MAX_NR_ZONES - 1);
2340	}
2341
2342	zonelist->_zonerefs[j].zone = NULL;
2343	zonelist->_zonerefs[j].zone_idx = 0;
2344}
2345
2346/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2347static void build_zonelist_cache(pg_data_t *pgdat)
2348{
2349	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2350	pgdat->node_zonelists[1].zlcache_ptr = NULL;
2351}
2352
2353#endif	/* CONFIG_NUMA */
2354
2355/* return values int ....just for stop_machine_run() */
2356static int __build_all_zonelists(void *dummy)
2357{
2358	int nid;
2359
2360	for_each_online_node(nid) {
2361		pg_data_t *pgdat = NODE_DATA(nid);
2362
2363		build_zonelists(pgdat);
2364		build_zonelist_cache(pgdat);
2365	}
2366	return 0;
2367}
2368
2369void build_all_zonelists(void)
2370{
2371	set_zonelist_order();
2372
2373	if (system_state == SYSTEM_BOOTING) {
2374		__build_all_zonelists(NULL);
2375		cpuset_init_current_mems_allowed();
2376	} else {
2377		/* we have to stop all cpus to guarantee there is no user
2378		   of zonelist */
2379		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2380		/* cpuset refresh routine should be here */
2381	}
2382	vm_total_pages = nr_free_pagecache_pages();
2383	/*
2384	 * Disable grouping by mobility if the number of pages in the
2385	 * system is too low to allow the mechanism to work. It would be
2386	 * more accurate, but expensive to check per-zone. This check is
2387	 * made on memory-hotadd so a system can start with mobility
2388	 * disabled and enable it later
2389	 */
2390	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2391		page_group_by_mobility_disabled = 1;
2392	else
2393		page_group_by_mobility_disabled = 0;
2394
2395	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2396		"Total pages: %ld\n",
2397			num_online_nodes(),
2398			zonelist_order_name[current_zonelist_order],
2399			page_group_by_mobility_disabled ? "off" : "on",
2400			vm_total_pages);
2401#ifdef CONFIG_NUMA
2402	printk("Policy zone: %s\n", zone_names[policy_zone]);
2403#endif
2404}
2405
2406/*
2407 * Helper functions to size the waitqueue hash table.
2408 * Essentially these want to choose hash table sizes sufficiently
2409 * large so that collisions trying to wait on pages are rare.
2410 * But in fact, the number of active page waitqueues on typical
2411 * systems is ridiculously low, less than 200. So this is even
2412 * conservative, even though it seems large.
2413 *
2414 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2415 * waitqueues, i.e. the size of the waitq table given the number of pages.
2416 */
2417#define PAGES_PER_WAITQUEUE	256
2418
2419#ifndef CONFIG_MEMORY_HOTPLUG
2420static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2421{
2422	unsigned long size = 1;
2423
2424	pages /= PAGES_PER_WAITQUEUE;
2425
2426	while (size < pages)
2427		size <<= 1;
2428
2429	/*
2430	 * Once we have dozens or even hundreds of threads sleeping
2431	 * on IO we've got bigger problems than wait queue collision.
2432	 * Limit the size of the wait table to a reasonable size.
2433	 */
2434	size = min(size, 4096UL);
2435
2436	return max(size, 4UL);
2437}
2438#else
2439/*
2440 * A zone's size might be changed by hot-add, so it is not possible to determine
2441 * a suitable size for its wait_table.  So we use the maximum size now.
2442 *
2443 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2444 *
2445 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2446 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2447 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2448 *
2449 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2450 * or more by the traditional way. (See above).  It equals:
2451 *
2452 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2453 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2454 *    powerpc (64K page size)             : =  (32G +16M)byte.
2455 */
2456static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2457{
2458	return 4096UL;
2459}
2460#endif
2461
2462/*
2463 * This is an integer logarithm so that shifts can be used later
2464 * to extract the more random high bits from the multiplicative
2465 * hash function before the remainder is taken.
2466 */
2467static inline unsigned long wait_table_bits(unsigned long size)
2468{
2469	return ffz(~size);
2470}
2471
2472#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2473
2474/*
2475 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2476 * of blocks reserved is based on zone->pages_min. The memory within the
2477 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2478 * higher will lead to a bigger reserve which will get freed as contiguous
2479 * blocks as reclaim kicks in
2480 */
2481static void setup_zone_migrate_reserve(struct zone *zone)
2482{
2483	unsigned long start_pfn, pfn, end_pfn;
2484	struct page *page;
2485	unsigned long reserve, block_migratetype;
2486
2487	/* Get the start pfn, end pfn and the number of blocks to reserve */
2488	start_pfn = zone->zone_start_pfn;
2489	end_pfn = start_pfn + zone->spanned_pages;
2490	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2491							pageblock_order;
2492
2493	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2494		if (!pfn_valid(pfn))
2495			continue;
2496		page = pfn_to_page(pfn);
2497
2498		/* Blocks with reserved pages will never free, skip them. */
2499		if (PageReserved(page))
2500			continue;
2501
2502		block_migratetype = get_pageblock_migratetype(page);
2503
2504		/* If this block is reserved, account for it */
2505		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2506			reserve--;
2507			continue;
2508		}
2509
2510		/* Suitable for reserving if this block is movable */
2511		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2512			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2513			move_freepages_block(zone, page, MIGRATE_RESERVE);
2514			reserve--;
2515			continue;
2516		}
2517
2518		/*
2519		 * If the reserve is met and this is a previous reserved block,
2520		 * take it back
2521		 */
2522		if (block_migratetype == MIGRATE_RESERVE) {
2523			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2524			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2525		}
2526	}
2527}
2528
2529/*
2530 * Initially all pages are reserved - free ones are freed
2531 * up by free_all_bootmem() once the early boot process is
2532 * done. Non-atomic initialization, single-pass.
2533 */
2534void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2535		unsigned long start_pfn, enum memmap_context context)
2536{
2537	struct page *page;
2538	unsigned long end_pfn = start_pfn + size;
2539	unsigned long pfn;
2540	struct zone *z;
2541
2542	z = &NODE_DATA(nid)->node_zones[zone];
2543	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2544		/*
2545		 * There can be holes in boot-time mem_map[]s
2546		 * handed to this function.  They do not
2547		 * exist on hotplugged memory.
2548		 */
2549		if (context == MEMMAP_EARLY) {
2550			if (!early_pfn_valid(pfn))
2551				continue;
2552			if (!early_pfn_in_nid(pfn, nid))
2553				continue;
2554		}
2555		page = pfn_to_page(pfn);
2556		set_page_links(page, zone, nid, pfn);
2557		init_page_count(page);
2558		reset_page_mapcount(page);
2559		SetPageReserved(page);
2560		/*
2561		 * Mark the block movable so that blocks are reserved for
2562		 * movable at startup. This will force kernel allocations
2563		 * to reserve their blocks rather than leaking throughout
2564		 * the address space during boot when many long-lived
2565		 * kernel allocations are made. Later some blocks near
2566		 * the start are marked MIGRATE_RESERVE by
2567		 * setup_zone_migrate_reserve()
2568		 *
2569		 * bitmap is created for zone's valid pfn range. but memmap
2570		 * can be created for invalid pages (for alignment)
2571		 * check here not to call set_pageblock_migratetype() against
2572		 * pfn out of zone.
2573		 */
2574		if ((z->zone_start_pfn <= pfn)
2575		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2576		    && !(pfn & (pageblock_nr_pages - 1)))
2577			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2578
2579		INIT_LIST_HEAD(&page->lru);
2580#ifdef WANT_PAGE_VIRTUAL
2581		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2582		if (!is_highmem_idx(zone))
2583			set_page_address(page, __va(pfn << PAGE_SHIFT));
2584#endif
2585	}
2586}
2587
2588static void __meminit zone_init_free_lists(struct zone *zone)
2589{
2590	int order, t;
2591	for_each_migratetype_order(order, t) {
2592		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2593		zone->free_area[order].nr_free = 0;
2594	}
2595}
2596
2597#ifndef __HAVE_ARCH_MEMMAP_INIT
2598#define memmap_init(size, nid, zone, start_pfn) \
2599	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2600#endif
2601
2602static int zone_batchsize(struct zone *zone)
2603{
2604	int batch;
2605
2606	/*
2607	 * The per-cpu-pages pools are set to around 1000th of the
2608	 * size of the zone.  But no more than 1/2 of a meg.
2609	 *
2610	 * OK, so we don't know how big the cache is.  So guess.
2611	 */
2612	batch = zone->present_pages / 1024;
2613	if (batch * PAGE_SIZE > 512 * 1024)
2614		batch = (512 * 1024) / PAGE_SIZE;
2615	batch /= 4;		/* We effectively *= 4 below */
2616	if (batch < 1)
2617		batch = 1;
2618
2619	/*
2620	 * Clamp the batch to a 2^n - 1 value. Having a power
2621	 * of 2 value was found to be more likely to have
2622	 * suboptimal cache aliasing properties in some cases.
2623	 *
2624	 * For example if 2 tasks are alternately allocating
2625	 * batches of pages, one task can end up with a lot
2626	 * of pages of one half of the possible page colors
2627	 * and the other with pages of the other colors.
2628	 */
2629	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2630
2631	return batch;
2632}
2633
2634inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2635{
2636	struct per_cpu_pages *pcp;
2637
2638	memset(p, 0, sizeof(*p));
2639
2640	pcp = &p->pcp;
2641	pcp->count = 0;
2642	pcp->high = 6 * batch;
2643	pcp->batch = max(1UL, 1 * batch);
2644	INIT_LIST_HEAD(&pcp->list);
2645}
2646
2647/*
2648 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2649 * to the value high for the pageset p.
2650 */
2651
2652static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2653				unsigned long high)
2654{
2655	struct per_cpu_pages *pcp;
2656
2657	pcp = &p->pcp;
2658	pcp->high = high;
2659	pcp->batch = max(1UL, high/4);
2660	if ((high/4) > (PAGE_SHIFT * 8))
2661		pcp->batch = PAGE_SHIFT * 8;
2662}
2663
2664
2665#ifdef CONFIG_NUMA
2666/*
2667 * Boot pageset table. One per cpu which is going to be used for all
2668 * zones and all nodes. The parameters will be set in such a way
2669 * that an item put on a list will immediately be handed over to
2670 * the buddy list. This is safe since pageset manipulation is done
2671 * with interrupts disabled.
2672 *
2673 * Some NUMA counter updates may also be caught by the boot pagesets.
2674 *
2675 * The boot_pagesets must be kept even after bootup is complete for
2676 * unused processors and/or zones. They do play a role for bootstrapping
2677 * hotplugged processors.
2678 *
2679 * zoneinfo_show() and maybe other functions do
2680 * not check if the processor is online before following the pageset pointer.
2681 * Other parts of the kernel may not check if the zone is available.
2682 */
2683static struct per_cpu_pageset boot_pageset[NR_CPUS];
2684
2685/*
2686 * Dynamically allocate memory for the
2687 * per cpu pageset array in struct zone.
2688 */
2689static int __cpuinit process_zones(int cpu)
2690{
2691	struct zone *zone, *dzone;
2692	int node = cpu_to_node(cpu);
2693
2694	node_set_state(node, N_CPU);	/* this node has a cpu */
2695
2696	for_each_zone(zone) {
2697
2698		if (!populated_zone(zone))
2699			continue;
2700
2701		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2702					 GFP_KERNEL, node);
2703		if (!zone_pcp(zone, cpu))
2704			goto bad;
2705
2706		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2707
2708		if (percpu_pagelist_fraction)
2709			setup_pagelist_highmark(zone_pcp(zone, cpu),
2710			 	(zone->present_pages / percpu_pagelist_fraction));
2711	}
2712
2713	return 0;
2714bad:
2715	for_each_zone(dzone) {
2716		if (!populated_zone(dzone))
2717			continue;
2718		if (dzone == zone)
2719			break;
2720		kfree(zone_pcp(dzone, cpu));
2721		zone_pcp(dzone, cpu) = NULL;
2722	}
2723	return -ENOMEM;
2724}
2725
2726static inline void free_zone_pagesets(int cpu)
2727{
2728	struct zone *zone;
2729
2730	for_each_zone(zone) {
2731		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2732
2733		/* Free per_cpu_pageset if it is slab allocated */
2734		if (pset != &boot_pageset[cpu])
2735			kfree(pset);
2736		zone_pcp(zone, cpu) = NULL;
2737	}
2738}
2739
2740static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2741		unsigned long action,
2742		void *hcpu)
2743{
2744	int cpu = (long)hcpu;
2745	int ret = NOTIFY_OK;
2746
2747	switch (action) {
2748	case CPU_UP_PREPARE:
2749	case CPU_UP_PREPARE_FROZEN:
2750		if (process_zones(cpu))
2751			ret = NOTIFY_BAD;
2752		break;
2753	case CPU_UP_CANCELED:
2754	case CPU_UP_CANCELED_FROZEN:
2755	case CPU_DEAD:
2756	case CPU_DEAD_FROZEN:
2757		free_zone_pagesets(cpu);
2758		break;
2759	default:
2760		break;
2761	}
2762	return ret;
2763}
2764
2765static struct notifier_block __cpuinitdata pageset_notifier =
2766	{ &pageset_cpuup_callback, NULL, 0 };
2767
2768void __init setup_per_cpu_pageset(void)
2769{
2770	int err;
2771
2772	/* Initialize per_cpu_pageset for cpu 0.
2773	 * A cpuup callback will do this for every cpu
2774	 * as it comes online
2775	 */
2776	err = process_zones(smp_processor_id());
2777	BUG_ON(err);
2778	register_cpu_notifier(&pageset_notifier);
2779}
2780
2781#endif
2782
2783static noinline __init_refok
2784int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2785{
2786	int i;
2787	struct pglist_data *pgdat = zone->zone_pgdat;
2788	size_t alloc_size;
2789
2790	/*
2791	 * The per-page waitqueue mechanism uses hashed waitqueues
2792	 * per zone.
2793	 */
2794	zone->wait_table_hash_nr_entries =
2795		 wait_table_hash_nr_entries(zone_size_pages);
2796	zone->wait_table_bits =
2797		wait_table_bits(zone->wait_table_hash_nr_entries);
2798	alloc_size = zone->wait_table_hash_nr_entries
2799					* sizeof(wait_queue_head_t);
2800
2801 	if (system_state == SYSTEM_BOOTING) {
2802		zone->wait_table = (wait_queue_head_t *)
2803			alloc_bootmem_node(pgdat, alloc_size);
2804	} else {
2805		/*
2806		 * This case means that a zone whose size was 0 gets new memory
2807		 * via memory hot-add.
2808		 * But it may be the case that a new node was hot-added.  In
2809		 * this case vmalloc() will not be able to use this new node's
2810		 * memory - this wait_table must be initialized to use this new
2811		 * node itself as well.
2812		 * To use this new node's memory, further consideration will be
2813		 * necessary.
2814		 */
2815		zone->wait_table = vmalloc(alloc_size);
2816	}
2817	if (!zone->wait_table)
2818		return -ENOMEM;
2819
2820	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2821		init_waitqueue_head(zone->wait_table + i);
2822
2823	return 0;
2824}
2825
2826static __meminit void zone_pcp_init(struct zone *zone)
2827{
2828	int cpu;
2829	unsigned long batch = zone_batchsize(zone);
2830
2831	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2832#ifdef CONFIG_NUMA
2833		/* Early boot. Slab allocator not functional yet */
2834		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2835		setup_pageset(&boot_pageset[cpu],0);
2836#else
2837		setup_pageset(zone_pcp(zone,cpu), batch);
2838#endif
2839	}
2840	if (zone->present_pages)
2841		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2842			zone->name, zone->present_pages, batch);
2843}
2844
2845__meminit int init_currently_empty_zone(struct zone *zone,
2846					unsigned long zone_start_pfn,
2847					unsigned long size,
2848					enum memmap_context context)
2849{
2850	struct pglist_data *pgdat = zone->zone_pgdat;
2851	int ret;
2852	ret = zone_wait_table_init(zone, size);
2853	if (ret)
2854		return ret;
2855	pgdat->nr_zones = zone_idx(zone) + 1;
2856
2857	zone->zone_start_pfn = zone_start_pfn;
2858
2859	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2860
2861	zone_init_free_lists(zone);
2862
2863	return 0;
2864}
2865
2866#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2867/*
2868 * Basic iterator support. Return the first range of PFNs for a node
2869 * Note: nid == MAX_NUMNODES returns first region regardless of node
2870 */
2871static int __meminit first_active_region_index_in_nid(int nid)
2872{
2873	int i;
2874
2875	for (i = 0; i < nr_nodemap_entries; i++)
2876		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2877			return i;
2878
2879	return -1;
2880}
2881
2882/*
2883 * Basic iterator support. Return the next active range of PFNs for a node
2884 * Note: nid == MAX_NUMNODES returns next region regardless of node
2885 */
2886static int __meminit next_active_region_index_in_nid(int index, int nid)
2887{
2888	for (index = index + 1; index < nr_nodemap_entries; index++)
2889		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2890			return index;
2891
2892	return -1;
2893}
2894
2895#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2896/*
2897 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2898 * Architectures may implement their own version but if add_active_range()
2899 * was used and there are no special requirements, this is a convenient
2900 * alternative
2901 */
2902int __meminit early_pfn_to_nid(unsigned long pfn)
2903{
2904	int i;
2905
2906	for (i = 0; i < nr_nodemap_entries; i++) {
2907		unsigned long start_pfn = early_node_map[i].start_pfn;
2908		unsigned long end_pfn = early_node_map[i].end_pfn;
2909
2910		if (start_pfn <= pfn && pfn < end_pfn)
2911			return early_node_map[i].nid;
2912	}
2913
2914	return 0;
2915}
2916#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2917
2918/* Basic iterator support to walk early_node_map[] */
2919#define for_each_active_range_index_in_nid(i, nid) \
2920	for (i = first_active_region_index_in_nid(nid); i != -1; \
2921				i = next_active_region_index_in_nid(i, nid))
2922
2923/**
2924 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2925 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2926 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2927 *
2928 * If an architecture guarantees that all ranges registered with
2929 * add_active_ranges() contain no holes and may be freed, this
2930 * this function may be used instead of calling free_bootmem() manually.
2931 */
2932void __init free_bootmem_with_active_regions(int nid,
2933						unsigned long max_low_pfn)
2934{
2935	int i;
2936
2937	for_each_active_range_index_in_nid(i, nid) {
2938		unsigned long size_pages = 0;
2939		unsigned long end_pfn = early_node_map[i].end_pfn;
2940
2941		if (early_node_map[i].start_pfn >= max_low_pfn)
2942			continue;
2943
2944		if (end_pfn > max_low_pfn)
2945			end_pfn = max_low_pfn;
2946
2947		size_pages = end_pfn - early_node_map[i].start_pfn;
2948		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2949				PFN_PHYS(early_node_map[i].start_pfn),
2950				size_pages << PAGE_SHIFT);
2951	}
2952}
2953
2954/**
2955 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2956 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2957 *
2958 * If an architecture guarantees that all ranges registered with
2959 * add_active_ranges() contain no holes and may be freed, this
2960 * function may be used instead of calling memory_present() manually.
2961 */
2962void __init sparse_memory_present_with_active_regions(int nid)
2963{
2964	int i;
2965
2966	for_each_active_range_index_in_nid(i, nid)
2967		memory_present(early_node_map[i].nid,
2968				early_node_map[i].start_pfn,
2969				early_node_map[i].end_pfn);
2970}
2971
2972/**
2973 * push_node_boundaries - Push node boundaries to at least the requested boundary
2974 * @nid: The nid of the node to push the boundary for
2975 * @start_pfn: The start pfn of the node
2976 * @end_pfn: The end pfn of the node
2977 *
2978 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2979 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2980 * be hotplugged even though no physical memory exists. This function allows
2981 * an arch to push out the node boundaries so mem_map is allocated that can
2982 * be used later.
2983 */
2984#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2985void __init push_node_boundaries(unsigned int nid,
2986		unsigned long start_pfn, unsigned long end_pfn)
2987{
2988	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2989			nid, start_pfn, end_pfn);
2990
2991	/* Initialise the boundary for this node if necessary */
2992	if (node_boundary_end_pfn[nid] == 0)
2993		node_boundary_start_pfn[nid] = -1UL;
2994
2995	/* Update the boundaries */
2996	if (node_boundary_start_pfn[nid] > start_pfn)
2997		node_boundary_start_pfn[nid] = start_pfn;
2998	if (node_boundary_end_pfn[nid] < end_pfn)
2999		node_boundary_end_pfn[nid] = end_pfn;
3000}
3001
3002/* If necessary, push the node boundary out for reserve hotadd */
3003static void __meminit account_node_boundary(unsigned int nid,
3004		unsigned long *start_pfn, unsigned long *end_pfn)
3005{
3006	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3007			nid, *start_pfn, *end_pfn);
3008
3009	/* Return if boundary information has not been provided */
3010	if (node_boundary_end_pfn[nid] == 0)
3011		return;
3012
3013	/* Check the boundaries and update if necessary */
3014	if (node_boundary_start_pfn[nid] < *start_pfn)
3015		*start_pfn = node_boundary_start_pfn[nid];
3016	if (node_boundary_end_pfn[nid] > *end_pfn)
3017		*end_pfn = node_boundary_end_pfn[nid];
3018}
3019#else
3020void __init push_node_boundaries(unsigned int nid,
3021		unsigned long start_pfn, unsigned long end_pfn) {}
3022
3023static void __meminit account_node_boundary(unsigned int nid,
3024		unsigned long *start_pfn, unsigned long *end_pfn) {}
3025#endif
3026
3027
3028/**
3029 * get_pfn_range_for_nid - Return the start and end page frames for a node
3030 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3031 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3032 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3033 *
3034 * It returns the start and end page frame of a node based on information
3035 * provided by an arch calling add_active_range(). If called for a node
3036 * with no available memory, a warning is printed and the start and end
3037 * PFNs will be 0.
3038 */
3039void __meminit get_pfn_range_for_nid(unsigned int nid,
3040			unsigned long *start_pfn, unsigned long *end_pfn)
3041{
3042	int i;
3043	*start_pfn = -1UL;
3044	*end_pfn = 0;
3045
3046	for_each_active_range_index_in_nid(i, nid) {
3047		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3048		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3049	}
3050
3051	if (*start_pfn == -1UL)
3052		*start_pfn = 0;
3053
3054	/* Push the node boundaries out if requested */
3055	account_node_boundary(nid, start_pfn, end_pfn);
3056}
3057
3058/*
3059 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3060 * assumption is made that zones within a node are ordered in monotonic
3061 * increasing memory addresses so that the "highest" populated zone is used
3062 */
3063void __init find_usable_zone_for_movable(void)
3064{
3065	int zone_index;
3066	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3067		if (zone_index == ZONE_MOVABLE)
3068			continue;
3069
3070		if (arch_zone_highest_possible_pfn[zone_index] >
3071				arch_zone_lowest_possible_pfn[zone_index])
3072			break;
3073	}
3074
3075	VM_BUG_ON(zone_index == -1);
3076	movable_zone = zone_index;
3077}
3078
3079/*
3080 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3081 * because it is sized independant of architecture. Unlike the other zones,
3082 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3083 * in each node depending on the size of each node and how evenly kernelcore
3084 * is distributed. This helper function adjusts the zone ranges
3085 * provided by the architecture for a given node by using the end of the
3086 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3087 * zones within a node are in order of monotonic increases memory addresses
3088 */
3089void __meminit adjust_zone_range_for_zone_movable(int nid,
3090					unsigned long zone_type,
3091					unsigned long node_start_pfn,
3092					unsigned long node_end_pfn,
3093					unsigned long *zone_start_pfn,
3094					unsigned long *zone_end_pfn)
3095{
3096	/* Only adjust if ZONE_MOVABLE is on this node */
3097	if (zone_movable_pfn[nid]) {
3098		/* Size ZONE_MOVABLE */
3099		if (zone_type == ZONE_MOVABLE) {
3100			*zone_start_pfn = zone_movable_pfn[nid];
3101			*zone_end_pfn = min(node_end_pfn,
3102				arch_zone_highest_possible_pfn[movable_zone]);
3103
3104		/* Adjust for ZONE_MOVABLE starting within this range */
3105		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3106				*zone_end_pfn > zone_movable_pfn[nid]) {
3107			*zone_end_pfn = zone_movable_pfn[nid];
3108
3109		/* Check if this whole range is within ZONE_MOVABLE */
3110		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3111			*zone_start_pfn = *zone_end_pfn;
3112	}
3113}
3114
3115/*
3116 * Return the number of pages a zone spans in a node, including holes
3117 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3118 */
3119static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3120					unsigned long zone_type,
3121					unsigned long *ignored)
3122{
3123	unsigned long node_start_pfn, node_end_pfn;
3124	unsigned long zone_start_pfn, zone_end_pfn;
3125
3126	/* Get the start and end of the node and zone */
3127	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3128	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3129	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3130	adjust_zone_range_for_zone_movable(nid, zone_type,
3131				node_start_pfn, node_end_pfn,
3132				&zone_start_pfn, &zone_end_pfn);
3133
3134	/* Check that this node has pages within the zone's required range */
3135	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3136		return 0;
3137
3138	/* Move the zone boundaries inside the node if necessary */
3139	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3140	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3141
3142	/* Return the spanned pages */
3143	return zone_end_pfn - zone_start_pfn;
3144}
3145
3146/*
3147 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3148 * then all holes in the requested range will be accounted for.
3149 */
3150unsigned long __meminit __absent_pages_in_range(int nid,
3151				unsigned long range_start_pfn,
3152				unsigned long range_end_pfn)
3153{
3154	int i = 0;
3155	unsigned long prev_end_pfn = 0, hole_pages = 0;
3156	unsigned long start_pfn;
3157
3158	/* Find the end_pfn of the first active range of pfns in the node */
3159	i = first_active_region_index_in_nid(nid);
3160	if (i == -1)
3161		return 0;
3162
3163	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3164
3165	/* Account for ranges before physical memory on this node */
3166	if (early_node_map[i].start_pfn > range_start_pfn)
3167		hole_pages = prev_end_pfn - range_start_pfn;
3168
3169	/* Find all holes for the zone within the node */
3170	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3171
3172		/* No need to continue if prev_end_pfn is outside the zone */
3173		if (prev_end_pfn >= range_end_pfn)
3174			break;
3175
3176		/* Make sure the end of the zone is not within the hole */
3177		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3178		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3179
3180		/* Update the hole size cound and move on */
3181		if (start_pfn > range_start_pfn) {
3182			BUG_ON(prev_end_pfn > start_pfn);
3183			hole_pages += start_pfn - prev_end_pfn;
3184		}
3185		prev_end_pfn = early_node_map[i].end_pfn;
3186	}
3187
3188	/* Account for ranges past physical memory on this node */
3189	if (range_end_pfn > prev_end_pfn)
3190		hole_pages += range_end_pfn -
3191				max(range_start_pfn, prev_end_pfn);
3192
3193	return hole_pages;
3194}
3195
3196/**
3197 * absent_pages_in_range - Return number of page frames in holes within a range
3198 * @start_pfn: The start PFN to start searching for holes
3199 * @end_pfn: The end PFN to stop searching for holes
3200 *
3201 * It returns the number of pages frames in memory holes within a range.
3202 */
3203unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3204							unsigned long end_pfn)
3205{
3206	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3207}
3208
3209/* Return the number of page frames in holes in a zone on a node */
3210static unsigned long __meminit zone_absent_pages_in_node(int nid,
3211					unsigned long zone_type,
3212					unsigned long *ignored)
3213{
3214	unsigned long node_start_pfn, node_end_pfn;
3215	unsigned long zone_start_pfn, zone_end_pfn;
3216
3217	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3218	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3219							node_start_pfn);
3220	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3221							node_end_pfn);
3222
3223	adjust_zone_range_for_zone_movable(nid, zone_type,
3224			node_start_pfn, node_end_pfn,
3225			&zone_start_pfn, &zone_end_pfn);
3226	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3227}
3228
3229#else
3230static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3231					unsigned long zone_type,
3232					unsigned long *zones_size)
3233{
3234	return zones_size[zone_type];
3235}
3236
3237static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3238						unsigned long zone_type,
3239						unsigned long *zholes_size)
3240{
3241	if (!zholes_size)
3242		return 0;
3243
3244	return zholes_size[zone_type];
3245}
3246
3247#endif
3248
3249static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3250		unsigned long *zones_size, unsigned long *zholes_size)
3251{
3252	unsigned long realtotalpages, totalpages = 0;
3253	enum zone_type i;
3254
3255	for (i = 0; i < MAX_NR_ZONES; i++)
3256		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3257								zones_size);
3258	pgdat->node_spanned_pages = totalpages;
3259
3260	realtotalpages = totalpages;
3261	for (i = 0; i < MAX_NR_ZONES; i++)
3262		realtotalpages -=
3263			zone_absent_pages_in_node(pgdat->node_id, i,
3264								zholes_size);
3265	pgdat->node_present_pages = realtotalpages;
3266	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3267							realtotalpages);
3268}
3269
3270#ifndef CONFIG_SPARSEMEM
3271/*
3272 * Calculate the size of the zone->blockflags rounded to an unsigned long
3273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3275 * round what is now in bits to nearest long in bits, then return it in
3276 * bytes.
3277 */
3278static unsigned long __init usemap_size(unsigned long zonesize)
3279{
3280	unsigned long usemapsize;
3281
3282	usemapsize = roundup(zonesize, pageblock_nr_pages);
3283	usemapsize = usemapsize >> pageblock_order;
3284	usemapsize *= NR_PAGEBLOCK_BITS;
3285	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3286
3287	return usemapsize / 8;
3288}
3289
3290static void __init setup_usemap(struct pglist_data *pgdat,
3291				struct zone *zone, unsigned long zonesize)
3292{
3293	unsigned long usemapsize = usemap_size(zonesize);
3294	zone->pageblock_flags = NULL;
3295	if (usemapsize) {
3296		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3297		memset(zone->pageblock_flags, 0, usemapsize);
3298	}
3299}
3300#else
3301static void inline setup_usemap(struct pglist_data *pgdat,
3302				struct zone *zone, unsigned long zonesize) {}
3303#endif /* CONFIG_SPARSEMEM */
3304
3305#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3306
3307/* Return a sensible default order for the pageblock size. */
3308static inline int pageblock_default_order(void)
3309{
3310	if (HPAGE_SHIFT > PAGE_SHIFT)
3311		return HUGETLB_PAGE_ORDER;
3312
3313	return MAX_ORDER-1;
3314}
3315
3316/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3317static inline void __init set_pageblock_order(unsigned int order)
3318{
3319	/* Check that pageblock_nr_pages has not already been setup */
3320	if (pageblock_order)
3321		return;
3322
3323	/*
3324	 * Assume the largest contiguous order of interest is a huge page.
3325	 * This value may be variable depending on boot parameters on IA64
3326	 */
3327	pageblock_order = order;
3328}
3329#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3330
3331/*
3332 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3333 * and pageblock_default_order() are unused as pageblock_order is set
3334 * at compile-time. See include/linux/pageblock-flags.h for the values of
3335 * pageblock_order based on the kernel config
3336 */
3337static inline int pageblock_default_order(unsigned int order)
3338{
3339	return MAX_ORDER-1;
3340}
3341#define set_pageblock_order(x)	do {} while (0)
3342
3343#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3344
3345/*
3346 * Set up the zone data structures:
3347 *   - mark all pages reserved
3348 *   - mark all memory queues empty
3349 *   - clear the memory bitmaps
3350 */
3351static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3352		unsigned long *zones_size, unsigned long *zholes_size)
3353{
3354	enum zone_type j;
3355	int nid = pgdat->node_id;
3356	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3357	int ret;
3358
3359	pgdat_resize_init(pgdat);
3360	pgdat->nr_zones = 0;
3361	init_waitqueue_head(&pgdat->kswapd_wait);
3362	pgdat->kswapd_max_order = 0;
3363
3364	for (j = 0; j < MAX_NR_ZONES; j++) {
3365		struct zone *zone = pgdat->node_zones + j;
3366		unsigned long size, realsize, memmap_pages;
3367
3368		size = zone_spanned_pages_in_node(nid, j, zones_size);
3369		realsize = size - zone_absent_pages_in_node(nid, j,
3370								zholes_size);
3371
3372		/*
3373		 * Adjust realsize so that it accounts for how much memory
3374		 * is used by this zone for memmap. This affects the watermark
3375		 * and per-cpu initialisations
3376		 */
3377		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3378		if (realsize >= memmap_pages) {
3379			realsize -= memmap_pages;
3380			printk(KERN_DEBUG
3381				"  %s zone: %lu pages used for memmap\n",
3382				zone_names[j], memmap_pages);
3383		} else
3384			printk(KERN_WARNING
3385				"  %s zone: %lu pages exceeds realsize %lu\n",
3386				zone_names[j], memmap_pages, realsize);
3387
3388		/* Account for reserved pages */
3389		if (j == 0 && realsize > dma_reserve) {
3390			realsize -= dma_reserve;
3391			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3392					zone_names[0], dma_reserve);
3393		}
3394
3395		if (!is_highmem_idx(j))
3396			nr_kernel_pages += realsize;
3397		nr_all_pages += realsize;
3398
3399		zone->spanned_pages = size;
3400		zone->present_pages = realsize;
3401#ifdef CONFIG_NUMA
3402		zone->node = nid;
3403		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3404						/ 100;
3405		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3406#endif
3407		zone->name = zone_names[j];
3408		spin_lock_init(&zone->lock);
3409		spin_lock_init(&zone->lru_lock);
3410		zone_seqlock_init(zone);
3411		zone->zone_pgdat = pgdat;
3412
3413		zone->prev_priority = DEF_PRIORITY;
3414
3415		zone_pcp_init(zone);
3416		INIT_LIST_HEAD(&zone->active_list);
3417		INIT_LIST_HEAD(&zone->inactive_list);
3418		zone->nr_scan_active = 0;
3419		zone->nr_scan_inactive = 0;
3420		zap_zone_vm_stats(zone);
3421		zone->flags = 0;
3422		if (!size)
3423			continue;
3424
3425		set_pageblock_order(pageblock_default_order());
3426		setup_usemap(pgdat, zone, size);
3427		ret = init_currently_empty_zone(zone, zone_start_pfn,
3428						size, MEMMAP_EARLY);
3429		BUG_ON(ret);
3430		zone_start_pfn += size;
3431	}
3432}
3433
3434static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3435{
3436	/* Skip empty nodes */
3437	if (!pgdat->node_spanned_pages)
3438		return;
3439
3440#ifdef CONFIG_FLAT_NODE_MEM_MAP
3441	/* ia64 gets its own node_mem_map, before this, without bootmem */
3442	if (!pgdat->node_mem_map) {
3443		unsigned long size, start, end;
3444		struct page *map;
3445
3446		/*
3447		 * The zone's endpoints aren't required to be MAX_ORDER
3448		 * aligned but the node_mem_map endpoints must be in order
3449		 * for the buddy allocator to function correctly.
3450		 */
3451		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3452		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3453		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3454		size =  (end - start) * sizeof(struct page);
3455		map = alloc_remap(pgdat->node_id, size);
3456		if (!map)
3457			map = alloc_bootmem_node(pgdat, size);
3458		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3459	}
3460#ifndef CONFIG_NEED_MULTIPLE_NODES
3461	/*
3462	 * With no DISCONTIG, the global mem_map is just set as node 0's
3463	 */
3464	if (pgdat == NODE_DATA(0)) {
3465		mem_map = NODE_DATA(0)->node_mem_map;
3466#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3467		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3468			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3469#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3470	}
3471#endif
3472#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3473}
3474
3475void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3476		unsigned long *zones_size, unsigned long node_start_pfn,
3477		unsigned long *zholes_size)
3478{
3479	pgdat->node_id = nid;
3480	pgdat->node_start_pfn = node_start_pfn;
3481	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3482
3483	alloc_node_mem_map(pgdat);
3484
3485	free_area_init_core(pgdat, zones_size, zholes_size);
3486}
3487
3488#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3489
3490#if MAX_NUMNODES > 1
3491/*
3492 * Figure out the number of possible node ids.
3493 */
3494static void __init setup_nr_node_ids(void)
3495{
3496	unsigned int node;
3497	unsigned int highest = 0;
3498
3499	for_each_node_mask(node, node_possible_map)
3500		highest = node;
3501	nr_node_ids = highest + 1;
3502}
3503#else
3504static inline void setup_nr_node_ids(void)
3505{
3506}
3507#endif
3508
3509/**
3510 * add_active_range - Register a range of PFNs backed by physical memory
3511 * @nid: The node ID the range resides on
3512 * @start_pfn: The start PFN of the available physical memory
3513 * @end_pfn: The end PFN of the available physical memory
3514 *
3515 * These ranges are stored in an early_node_map[] and later used by
3516 * free_area_init_nodes() to calculate zone sizes and holes. If the
3517 * range spans a memory hole, it is up to the architecture to ensure
3518 * the memory is not freed by the bootmem allocator. If possible
3519 * the range being registered will be merged with existing ranges.
3520 */
3521void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3522						unsigned long end_pfn)
3523{
3524	int i;
3525
3526	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3527			  "%d entries of %d used\n",
3528			  nid, start_pfn, end_pfn,
3529			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3530
3531	/* Merge with existing active regions if possible */
3532	for (i = 0; i < nr_nodemap_entries; i++) {
3533		if (early_node_map[i].nid != nid)
3534			continue;
3535
3536		/* Skip if an existing region covers this new one */
3537		if (start_pfn >= early_node_map[i].start_pfn &&
3538				end_pfn <= early_node_map[i].end_pfn)
3539			return;
3540
3541		/* Merge forward if suitable */
3542		if (start_pfn <= early_node_map[i].end_pfn &&
3543				end_pfn > early_node_map[i].end_pfn) {
3544			early_node_map[i].end_pfn = end_pfn;
3545			return;
3546		}
3547
3548		/* Merge backward if suitable */
3549		if (start_pfn < early_node_map[i].end_pfn &&
3550				end_pfn >= early_node_map[i].start_pfn) {
3551			early_node_map[i].start_pfn = start_pfn;
3552			return;
3553		}
3554	}
3555
3556	/* Check that early_node_map is large enough */
3557	if (i >= MAX_ACTIVE_REGIONS) {
3558		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3559							MAX_ACTIVE_REGIONS);
3560		return;
3561	}
3562
3563	early_node_map[i].nid = nid;
3564	early_node_map[i].start_pfn = start_pfn;
3565	early_node_map[i].end_pfn = end_pfn;
3566	nr_nodemap_entries = i + 1;
3567}
3568
3569/**
3570 * shrink_active_range - Shrink an existing registered range of PFNs
3571 * @nid: The node id the range is on that should be shrunk
3572 * @old_end_pfn: The old end PFN of the range
3573 * @new_end_pfn: The new PFN of the range
3574 *
3575 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3576 * The map is kept at the end physical page range that has already been
3577 * registered with add_active_range(). This function allows an arch to shrink
3578 * an existing registered range.
3579 */
3580void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3581						unsigned long new_end_pfn)
3582{
3583	int i;
3584
3585	/* Find the old active region end and shrink */
3586	for_each_active_range_index_in_nid(i, nid)
3587		if (early_node_map[i].end_pfn == old_end_pfn) {
3588			early_node_map[i].end_pfn = new_end_pfn;
3589			break;
3590		}
3591}
3592
3593/**
3594 * remove_all_active_ranges - Remove all currently registered regions
3595 *
3596 * During discovery, it may be found that a table like SRAT is invalid
3597 * and an alternative discovery method must be used. This function removes
3598 * all currently registered regions.
3599 */
3600void __init remove_all_active_ranges(void)
3601{
3602	memset(early_node_map, 0, sizeof(early_node_map));
3603	nr_nodemap_entries = 0;
3604#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3605	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3606	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3607#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3608}
3609
3610/* Compare two active node_active_regions */
3611static int __init cmp_node_active_region(const void *a, const void *b)
3612{
3613	struct node_active_region *arange = (struct node_active_region *)a;
3614	struct node_active_region *brange = (struct node_active_region *)b;
3615
3616	/* Done this way to avoid overflows */
3617	if (arange->start_pfn > brange->start_pfn)
3618		return 1;
3619	if (arange->start_pfn < brange->start_pfn)
3620		return -1;
3621
3622	return 0;
3623}
3624
3625/* sort the node_map by start_pfn */
3626static void __init sort_node_map(void)
3627{
3628	sort(early_node_map, (size_t)nr_nodemap_entries,
3629			sizeof(struct node_active_region),
3630			cmp_node_active_region, NULL);
3631}
3632
3633/* Find the lowest pfn for a node */
3634unsigned long __init find_min_pfn_for_node(unsigned long nid)
3635{
3636	int i;
3637	unsigned long min_pfn = ULONG_MAX;
3638
3639	/* Assuming a sorted map, the first range found has the starting pfn */
3640	for_each_active_range_index_in_nid(i, nid)
3641		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3642
3643	if (min_pfn == ULONG_MAX) {
3644		printk(KERN_WARNING
3645			"Could not find start_pfn for node %lu\n", nid);
3646		return 0;
3647	}
3648
3649	return min_pfn;
3650}
3651
3652/**
3653 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3654 *
3655 * It returns the minimum PFN based on information provided via
3656 * add_active_range().
3657 */
3658unsigned long __init find_min_pfn_with_active_regions(void)
3659{
3660	return find_min_pfn_for_node(MAX_NUMNODES);
3661}
3662
3663/**
3664 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3665 *
3666 * It returns the maximum PFN based on information provided via
3667 * add_active_range().
3668 */
3669unsigned long __init find_max_pfn_with_active_regions(void)
3670{
3671	int i;
3672	unsigned long max_pfn = 0;
3673
3674	for (i = 0; i < nr_nodemap_entries; i++)
3675		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3676
3677	return max_pfn;
3678}
3679
3680/*
3681 * early_calculate_totalpages()
3682 * Sum pages in active regions for movable zone.
3683 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3684 */
3685static unsigned long __init early_calculate_totalpages(void)
3686{
3687	int i;
3688	unsigned long totalpages = 0;
3689
3690	for (i = 0; i < nr_nodemap_entries; i++) {
3691		unsigned long pages = early_node_map[i].end_pfn -
3692						early_node_map[i].start_pfn;
3693		totalpages += pages;
3694		if (pages)
3695			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3696	}
3697  	return totalpages;
3698}
3699
3700/*
3701 * Find the PFN the Movable zone begins in each node. Kernel memory
3702 * is spread evenly between nodes as long as the nodes have enough
3703 * memory. When they don't, some nodes will have more kernelcore than
3704 * others
3705 */
3706void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3707{
3708	int i, nid;
3709	unsigned long usable_startpfn;
3710	unsigned long kernelcore_node, kernelcore_remaining;
3711	unsigned long totalpages = early_calculate_totalpages();
3712	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3713
3714	/*
3715	 * If movablecore was specified, calculate what size of
3716	 * kernelcore that corresponds so that memory usable for
3717	 * any allocation type is evenly spread. If both kernelcore
3718	 * and movablecore are specified, then the value of kernelcore
3719	 * will be used for required_kernelcore if it's greater than
3720	 * what movablecore would have allowed.
3721	 */
3722	if (required_movablecore) {
3723		unsigned long corepages;
3724
3725		/*
3726		 * Round-up so that ZONE_MOVABLE is at least as large as what
3727		 * was requested by the user
3728		 */
3729		required_movablecore =
3730			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3731		corepages = totalpages - required_movablecore;
3732
3733		required_kernelcore = max(required_kernelcore, corepages);
3734	}
3735
3736	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3737	if (!required_kernelcore)
3738		return;
3739
3740	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3741	find_usable_zone_for_movable();
3742	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3743
3744restart:
3745	/* Spread kernelcore memory as evenly as possible throughout nodes */
3746	kernelcore_node = required_kernelcore / usable_nodes;
3747	for_each_node_state(nid, N_HIGH_MEMORY) {
3748		/*
3749		 * Recalculate kernelcore_node if the division per node
3750		 * now exceeds what is necessary to satisfy the requested
3751		 * amount of memory for the kernel
3752		 */
3753		if (required_kernelcore < kernelcore_node)
3754			kernelcore_node = required_kernelcore / usable_nodes;
3755
3756		/*
3757		 * As the map is walked, we track how much memory is usable
3758		 * by the kernel using kernelcore_remaining. When it is
3759		 * 0, the rest of the node is usable by ZONE_MOVABLE
3760		 */
3761		kernelcore_remaining = kernelcore_node;
3762
3763		/* Go through each range of PFNs within this node */
3764		for_each_active_range_index_in_nid(i, nid) {
3765			unsigned long start_pfn, end_pfn;
3766			unsigned long size_pages;
3767
3768			start_pfn = max(early_node_map[i].start_pfn,
3769						zone_movable_pfn[nid]);
3770			end_pfn = early_node_map[i].end_pfn;
3771			if (start_pfn >= end_pfn)
3772				continue;
3773
3774			/* Account for what is only usable for kernelcore */
3775			if (start_pfn < usable_startpfn) {
3776				unsigned long kernel_pages;
3777				kernel_pages = min(end_pfn, usable_startpfn)
3778								- start_pfn;
3779
3780				kernelcore_remaining -= min(kernel_pages,
3781							kernelcore_remaining);
3782				required_kernelcore -= min(kernel_pages,
3783							required_kernelcore);
3784
3785				/* Continue if range is now fully accounted */
3786				if (end_pfn <= usable_startpfn) {
3787
3788					/*
3789					 * Push zone_movable_pfn to the end so
3790					 * that if we have to rebalance
3791					 * kernelcore across nodes, we will
3792					 * not double account here
3793					 */
3794					zone_movable_pfn[nid] = end_pfn;
3795					continue;
3796				}
3797				start_pfn = usable_startpfn;
3798			}
3799
3800			/*
3801			 * The usable PFN range for ZONE_MOVABLE is from
3802			 * start_pfn->end_pfn. Calculate size_pages as the
3803			 * number of pages used as kernelcore
3804			 */
3805			size_pages = end_pfn - start_pfn;
3806			if (size_pages > kernelcore_remaining)
3807				size_pages = kernelcore_remaining;
3808			zone_movable_pfn[nid] = start_pfn + size_pages;
3809
3810			/*
3811			 * Some kernelcore has been met, update counts and
3812			 * break if the kernelcore for this node has been
3813			 * satisified
3814			 */
3815			required_kernelcore -= min(required_kernelcore,
3816								size_pages);
3817			kernelcore_remaining -= size_pages;
3818			if (!kernelcore_remaining)
3819				break;
3820		}
3821	}
3822
3823	/*
3824	 * If there is still required_kernelcore, we do another pass with one
3825	 * less node in the count. This will push zone_movable_pfn[nid] further
3826	 * along on the nodes that still have memory until kernelcore is
3827	 * satisified
3828	 */
3829	usable_nodes--;
3830	if (usable_nodes && required_kernelcore > usable_nodes)
3831		goto restart;
3832
3833	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3834	for (nid = 0; nid < MAX_NUMNODES; nid++)
3835		zone_movable_pfn[nid] =
3836			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3837}
3838
3839/* Any regular memory on that node ? */
3840static void check_for_regular_memory(pg_data_t *pgdat)
3841{
3842#ifdef CONFIG_HIGHMEM
3843	enum zone_type zone_type;
3844
3845	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3846		struct zone *zone = &pgdat->node_zones[zone_type];
3847		if (zone->present_pages)
3848			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3849	}
3850#endif
3851}
3852
3853/**
3854 * free_area_init_nodes - Initialise all pg_data_t and zone data
3855 * @max_zone_pfn: an array of max PFNs for each zone
3856 *
3857 * This will call free_area_init_node() for each active node in the system.
3858 * Using the page ranges provided by add_active_range(), the size of each
3859 * zone in each node and their holes is calculated. If the maximum PFN
3860 * between two adjacent zones match, it is assumed that the zone is empty.
3861 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3862 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3863 * starts where the previous one ended. For example, ZONE_DMA32 starts
3864 * at arch_max_dma_pfn.
3865 */
3866void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3867{
3868	unsigned long nid;
3869	enum zone_type i;
3870
3871	/* Sort early_node_map as initialisation assumes it is sorted */
3872	sort_node_map();
3873
3874	/* Record where the zone boundaries are */
3875	memset(arch_zone_lowest_possible_pfn, 0,
3876				sizeof(arch_zone_lowest_possible_pfn));
3877	memset(arch_zone_highest_possible_pfn, 0,
3878				sizeof(arch_zone_highest_possible_pfn));
3879	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3880	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3881	for (i = 1; i < MAX_NR_ZONES; i++) {
3882		if (i == ZONE_MOVABLE)
3883			continue;
3884		arch_zone_lowest_possible_pfn[i] =
3885			arch_zone_highest_possible_pfn[i-1];
3886		arch_zone_highest_possible_pfn[i] =
3887			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3888	}
3889	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3890	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3891
3892	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3893	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3894	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3895
3896	/* Print out the zone ranges */
3897	printk("Zone PFN ranges:\n");
3898	for (i = 0; i < MAX_NR_ZONES; i++) {
3899		if (i == ZONE_MOVABLE)
3900			continue;
3901		printk("  %-8s %8lu -> %8lu\n",
3902				zone_names[i],
3903				arch_zone_lowest_possible_pfn[i],
3904				arch_zone_highest_possible_pfn[i]);
3905	}
3906
3907	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3908	printk("Movable zone start PFN for each node\n");
3909	for (i = 0; i < MAX_NUMNODES; i++) {
3910		if (zone_movable_pfn[i])
3911			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3912	}
3913
3914	/* Print out the early_node_map[] */
3915	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3916	for (i = 0; i < nr_nodemap_entries; i++)
3917		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3918						early_node_map[i].start_pfn,
3919						early_node_map[i].end_pfn);
3920
3921	/* Initialise every node */
3922	setup_nr_node_ids();
3923	for_each_online_node(nid) {
3924		pg_data_t *pgdat = NODE_DATA(nid);
3925		free_area_init_node(nid, pgdat, NULL,
3926				find_min_pfn_for_node(nid), NULL);
3927
3928		/* Any memory on that node */
3929		if (pgdat->node_present_pages)
3930			node_set_state(nid, N_HIGH_MEMORY);
3931		check_for_regular_memory(pgdat);
3932	}
3933}
3934
3935static int __init cmdline_parse_core(char *p, unsigned long *core)
3936{
3937	unsigned long long coremem;
3938	if (!p)
3939		return -EINVAL;
3940
3941	coremem = memparse(p, &p);
3942	*core = coremem >> PAGE_SHIFT;
3943
3944	/* Paranoid check that UL is enough for the coremem value */
3945	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3946
3947	return 0;
3948}
3949
3950/*
3951 * kernelcore=size sets the amount of memory for use for allocations that
3952 * cannot be reclaimed or migrated.
3953 */
3954static int __init cmdline_parse_kernelcore(char *p)
3955{
3956	return cmdline_parse_core(p, &required_kernelcore);
3957}
3958
3959/*
3960 * movablecore=size sets the amount of memory for use for allocations that
3961 * can be reclaimed or migrated.
3962 */
3963static int __init cmdline_parse_movablecore(char *p)
3964{
3965	return cmdline_parse_core(p, &required_movablecore);
3966}
3967
3968early_param("kernelcore", cmdline_parse_kernelcore);
3969early_param("movablecore", cmdline_parse_movablecore);
3970
3971#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3972
3973/**
3974 * set_dma_reserve - set the specified number of pages reserved in the first zone
3975 * @new_dma_reserve: The number of pages to mark reserved
3976 *
3977 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3978 * In the DMA zone, a significant percentage may be consumed by kernel image
3979 * and other unfreeable allocations which can skew the watermarks badly. This
3980 * function may optionally be used to account for unfreeable pages in the
3981 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3982 * smaller per-cpu batchsize.
3983 */
3984void __init set_dma_reserve(unsigned long new_dma_reserve)
3985{
3986	dma_reserve = new_dma_reserve;
3987}
3988
3989#ifndef CONFIG_NEED_MULTIPLE_NODES
3990static bootmem_data_t contig_bootmem_data;
3991struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3992
3993EXPORT_SYMBOL(contig_page_data);
3994#endif
3995
3996void __init free_area_init(unsigned long *zones_size)
3997{
3998	free_area_init_node(0, NODE_DATA(0), zones_size,
3999			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4000}
4001
4002static int page_alloc_cpu_notify(struct notifier_block *self,
4003				 unsigned long action, void *hcpu)
4004{
4005	int cpu = (unsigned long)hcpu;
4006
4007	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4008		drain_pages(cpu);
4009
4010		/*
4011		 * Spill the event counters of the dead processor
4012		 * into the current processors event counters.
4013		 * This artificially elevates the count of the current
4014		 * processor.
4015		 */
4016		vm_events_fold_cpu(cpu);
4017
4018		/*
4019		 * Zero the differential counters of the dead processor
4020		 * so that the vm statistics are consistent.
4021		 *
4022		 * This is only okay since the processor is dead and cannot
4023		 * race with what we are doing.
4024		 */
4025		refresh_cpu_vm_stats(cpu);
4026	}
4027	return NOTIFY_OK;
4028}
4029
4030void __init page_alloc_init(void)
4031{
4032	hotcpu_notifier(page_alloc_cpu_notify, 0);
4033}
4034
4035/*
4036 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4037 *	or min_free_kbytes changes.
4038 */
4039static void calculate_totalreserve_pages(void)
4040{
4041	struct pglist_data *pgdat;
4042	unsigned long reserve_pages = 0;
4043	enum zone_type i, j;
4044
4045	for_each_online_pgdat(pgdat) {
4046		for (i = 0; i < MAX_NR_ZONES; i++) {
4047			struct zone *zone = pgdat->node_zones + i;
4048			unsigned long max = 0;
4049
4050			/* Find valid and maximum lowmem_reserve in the zone */
4051			for (j = i; j < MAX_NR_ZONES; j++) {
4052				if (zone->lowmem_reserve[j] > max)
4053					max = zone->lowmem_reserve[j];
4054			}
4055
4056			/* we treat pages_high as reserved pages. */
4057			max += zone->pages_high;
4058
4059			if (max > zone->present_pages)
4060				max = zone->present_pages;
4061			reserve_pages += max;
4062		}
4063	}
4064	totalreserve_pages = reserve_pages;
4065}
4066
4067/*
4068 * setup_per_zone_lowmem_reserve - called whenever
4069 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4070 *	has a correct pages reserved value, so an adequate number of
4071 *	pages are left in the zone after a successful __alloc_pages().
4072 */
4073static void setup_per_zone_lowmem_reserve(void)
4074{
4075	struct pglist_data *pgdat;
4076	enum zone_type j, idx;
4077
4078	for_each_online_pgdat(pgdat) {
4079		for (j = 0; j < MAX_NR_ZONES; j++) {
4080			struct zone *zone = pgdat->node_zones + j;
4081			unsigned long present_pages = zone->present_pages;
4082
4083			zone->lowmem_reserve[j] = 0;
4084
4085			idx = j;
4086			while (idx) {
4087				struct zone *lower_zone;
4088
4089				idx--;
4090
4091				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4092					sysctl_lowmem_reserve_ratio[idx] = 1;
4093
4094				lower_zone = pgdat->node_zones + idx;
4095				lower_zone->lowmem_reserve[j] = present_pages /
4096					sysctl_lowmem_reserve_ratio[idx];
4097				present_pages += lower_zone->present_pages;
4098			}
4099		}
4100	}
4101
4102	/* update totalreserve_pages */
4103	calculate_totalreserve_pages();
4104}
4105
4106/**
4107 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4108 *
4109 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4110 * with respect to min_free_kbytes.
4111 */
4112void setup_per_zone_pages_min(void)
4113{
4114	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4115	unsigned long lowmem_pages = 0;
4116	struct zone *zone;
4117	unsigned long flags;
4118
4119	/* Calculate total number of !ZONE_HIGHMEM pages */
4120	for_each_zone(zone) {
4121		if (!is_highmem(zone))
4122			lowmem_pages += zone->present_pages;
4123	}
4124
4125	for_each_zone(zone) {
4126		u64 tmp;
4127
4128		spin_lock_irqsave(&zone->lru_lock, flags);
4129		tmp = (u64)pages_min * zone->present_pages;
4130		do_div(tmp, lowmem_pages);
4131		if (is_highmem(zone)) {
4132			/*
4133			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4134			 * need highmem pages, so cap pages_min to a small
4135			 * value here.
4136			 *
4137			 * The (pages_high-pages_low) and (pages_low-pages_min)
4138			 * deltas controls asynch page reclaim, and so should
4139			 * not be capped for highmem.
4140			 */
4141			int min_pages;
4142
4143			min_pages = zone->present_pages / 1024;
4144			if (min_pages < SWAP_CLUSTER_MAX)
4145				min_pages = SWAP_CLUSTER_MAX;
4146			if (min_pages > 128)
4147				min_pages = 128;
4148			zone->pages_min = min_pages;
4149		} else {
4150			/*
4151			 * If it's a lowmem zone, reserve a number of pages
4152			 * proportionate to the zone's size.
4153			 */
4154			zone->pages_min = tmp;
4155		}
4156
4157		zone->pages_low   = zone->pages_min + (tmp >> 2);
4158		zone->pages_high  = zone->pages_min + (tmp >> 1);
4159		setup_zone_migrate_reserve(zone);
4160		spin_unlock_irqrestore(&zone->lru_lock, flags);
4161	}
4162
4163	/* update totalreserve_pages */
4164	calculate_totalreserve_pages();
4165}
4166
4167/*
4168 * Initialise min_free_kbytes.
4169 *
4170 * For small machines we want it small (128k min).  For large machines
4171 * we want it large (64MB max).  But it is not linear, because network
4172 * bandwidth does not increase linearly with machine size.  We use
4173 *
4174 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4175 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4176 *
4177 * which yields
4178 *
4179 * 16MB:	512k
4180 * 32MB:	724k
4181 * 64MB:	1024k
4182 * 128MB:	1448k
4183 * 256MB:	2048k
4184 * 512MB:	2896k
4185 * 1024MB:	4096k
4186 * 2048MB:	5792k
4187 * 4096MB:	8192k
4188 * 8192MB:	11584k
4189 * 16384MB:	16384k
4190 */
4191static int __init init_per_zone_pages_min(void)
4192{
4193	unsigned long lowmem_kbytes;
4194
4195	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4196
4197	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4198	if (min_free_kbytes < 128)
4199		min_free_kbytes = 128;
4200	if (min_free_kbytes > 65536)
4201		min_free_kbytes = 65536;
4202	setup_per_zone_pages_min();
4203	setup_per_zone_lowmem_reserve();
4204	return 0;
4205}
4206module_init(init_per_zone_pages_min)
4207
4208/*
4209 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4210 *	that we can call two helper functions whenever min_free_kbytes
4211 *	changes.
4212 */
4213int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4214	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4215{
4216	proc_dointvec(table, write, file, buffer, length, ppos);
4217	if (write)
4218		setup_per_zone_pages_min();
4219	return 0;
4220}
4221
4222#ifdef CONFIG_NUMA
4223int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4224	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4225{
4226	struct zone *zone;
4227	int rc;
4228
4229	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4230	if (rc)
4231		return rc;
4232
4233	for_each_zone(zone)
4234		zone->min_unmapped_pages = (zone->present_pages *
4235				sysctl_min_unmapped_ratio) / 100;
4236	return 0;
4237}
4238
4239int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4240	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4241{
4242	struct zone *zone;
4243	int rc;
4244
4245	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4246	if (rc)
4247		return rc;
4248
4249	for_each_zone(zone)
4250		zone->min_slab_pages = (zone->present_pages *
4251				sysctl_min_slab_ratio) / 100;
4252	return 0;
4253}
4254#endif
4255
4256/*
4257 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4258 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4259 *	whenever sysctl_lowmem_reserve_ratio changes.
4260 *
4261 * The reserve ratio obviously has absolutely no relation with the
4262 * pages_min watermarks. The lowmem reserve ratio can only make sense
4263 * if in function of the boot time zone sizes.
4264 */
4265int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4266	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4267{
4268	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4269	setup_per_zone_lowmem_reserve();
4270	return 0;
4271}
4272
4273/*
4274 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4275 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4276 * can have before it gets flushed back to buddy allocator.
4277 */
4278
4279int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4280	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4281{
4282	struct zone *zone;
4283	unsigned int cpu;
4284	int ret;
4285
4286	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4287	if (!write || (ret == -EINVAL))
4288		return ret;
4289	for_each_zone(zone) {
4290		for_each_online_cpu(cpu) {
4291			unsigned long  high;
4292			high = zone->present_pages / percpu_pagelist_fraction;
4293			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4294		}
4295	}
4296	return 0;
4297}
4298
4299int hashdist = HASHDIST_DEFAULT;
4300
4301#ifdef CONFIG_NUMA
4302static int __init set_hashdist(char *str)
4303{
4304	if (!str)
4305		return 0;
4306	hashdist = simple_strtoul(str, &str, 0);
4307	return 1;
4308}
4309__setup("hashdist=", set_hashdist);
4310#endif
4311
4312/*
4313 * allocate a large system hash table from bootmem
4314 * - it is assumed that the hash table must contain an exact power-of-2
4315 *   quantity of entries
4316 * - limit is the number of hash buckets, not the total allocation size
4317 */
4318void *__init alloc_large_system_hash(const char *tablename,
4319				     unsigned long bucketsize,
4320				     unsigned long numentries,
4321				     int scale,
4322				     int flags,
4323				     unsigned int *_hash_shift,
4324				     unsigned int *_hash_mask,
4325				     unsigned long limit)
4326{
4327	unsigned long long max = limit;
4328	unsigned long log2qty, size;
4329	void *table = NULL;
4330
4331	/* allow the kernel cmdline to have a say */
4332	if (!numentries) {
4333		/* round applicable memory size up to nearest megabyte */
4334		numentries = nr_kernel_pages;
4335		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4336		numentries >>= 20 - PAGE_SHIFT;
4337		numentries <<= 20 - PAGE_SHIFT;
4338
4339		/* limit to 1 bucket per 2^scale bytes of low memory */
4340		if (scale > PAGE_SHIFT)
4341			numentries >>= (scale - PAGE_SHIFT);
4342		else
4343			numentries <<= (PAGE_SHIFT - scale);
4344
4345		/* Make sure we've got at least a 0-order allocation.. */
4346		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4347			numentries = PAGE_SIZE / bucketsize;
4348	}
4349	numentries = roundup_pow_of_two(numentries);
4350
4351	/* limit allocation size to 1/16 total memory by default */
4352	if (max == 0) {
4353		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4354		do_div(max, bucketsize);
4355	}
4356
4357	if (numentries > max)
4358		numentries = max;
4359
4360	log2qty = ilog2(numentries);
4361
4362	do {
4363		size = bucketsize << log2qty;
4364		if (flags & HASH_EARLY)
4365			table = alloc_bootmem(size);
4366		else if (hashdist)
4367			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4368		else {
4369			unsigned long order = get_order(size);
4370			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4371			/*
4372			 * If bucketsize is not a power-of-two, we may free
4373			 * some pages at the end of hash table.
4374			 */
4375			if (table) {
4376				unsigned long alloc_end = (unsigned long)table +
4377						(PAGE_SIZE << order);
4378				unsigned long used = (unsigned long)table +
4379						PAGE_ALIGN(size);
4380				split_page(virt_to_page(table), order);
4381				while (used < alloc_end) {
4382					free_page(used);
4383					used += PAGE_SIZE;
4384				}
4385			}
4386		}
4387	} while (!table && size > PAGE_SIZE && --log2qty);
4388
4389	if (!table)
4390		panic("Failed to allocate %s hash table\n", tablename);
4391
4392	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4393	       tablename,
4394	       (1U << log2qty),
4395	       ilog2(size) - PAGE_SHIFT,
4396	       size);
4397
4398	if (_hash_shift)
4399		*_hash_shift = log2qty;
4400	if (_hash_mask)
4401		*_hash_mask = (1 << log2qty) - 1;
4402
4403	return table;
4404}
4405
4406#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4407struct page *pfn_to_page(unsigned long pfn)
4408{
4409	return __pfn_to_page(pfn);
4410}
4411unsigned long page_to_pfn(struct page *page)
4412{
4413	return __page_to_pfn(page);
4414}
4415EXPORT_SYMBOL(pfn_to_page);
4416EXPORT_SYMBOL(page_to_pfn);
4417#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4418
4419/* Return a pointer to the bitmap storing bits affecting a block of pages */
4420static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4421							unsigned long pfn)
4422{
4423#ifdef CONFIG_SPARSEMEM
4424	return __pfn_to_section(pfn)->pageblock_flags;
4425#else
4426	return zone->pageblock_flags;
4427#endif /* CONFIG_SPARSEMEM */
4428}
4429
4430static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4431{
4432#ifdef CONFIG_SPARSEMEM
4433	pfn &= (PAGES_PER_SECTION-1);
4434	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4435#else
4436	pfn = pfn - zone->zone_start_pfn;
4437	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4438#endif /* CONFIG_SPARSEMEM */
4439}
4440
4441/**
4442 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4443 * @page: The page within the block of interest
4444 * @start_bitidx: The first bit of interest to retrieve
4445 * @end_bitidx: The last bit of interest
4446 * returns pageblock_bits flags
4447 */
4448unsigned long get_pageblock_flags_group(struct page *page,
4449					int start_bitidx, int end_bitidx)
4450{
4451	struct zone *zone;
4452	unsigned long *bitmap;
4453	unsigned long pfn, bitidx;
4454	unsigned long flags = 0;
4455	unsigned long value = 1;
4456
4457	zone = page_zone(page);
4458	pfn = page_to_pfn(page);
4459	bitmap = get_pageblock_bitmap(zone, pfn);
4460	bitidx = pfn_to_bitidx(zone, pfn);
4461
4462	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4463		if (test_bit(bitidx + start_bitidx, bitmap))
4464			flags |= value;
4465
4466	return flags;
4467}
4468
4469/**
4470 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4471 * @page: The page within the block of interest
4472 * @start_bitidx: The first bit of interest
4473 * @end_bitidx: The last bit of interest
4474 * @flags: The flags to set
4475 */
4476void set_pageblock_flags_group(struct page *page, unsigned long flags,
4477					int start_bitidx, int end_bitidx)
4478{
4479	struct zone *zone;
4480	unsigned long *bitmap;
4481	unsigned long pfn, bitidx;
4482	unsigned long value = 1;
4483
4484	zone = page_zone(page);
4485	pfn = page_to_pfn(page);
4486	bitmap = get_pageblock_bitmap(zone, pfn);
4487	bitidx = pfn_to_bitidx(zone, pfn);
4488	VM_BUG_ON(pfn < zone->zone_start_pfn);
4489	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4490
4491	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4492		if (flags & value)
4493			__set_bit(bitidx + start_bitidx, bitmap);
4494		else
4495			__clear_bit(bitidx + start_bitidx, bitmap);
4496}
4497
4498/*
4499 * This is designed as sub function...plz see page_isolation.c also.
4500 * set/clear page block's type to be ISOLATE.
4501 * page allocater never alloc memory from ISOLATE block.
4502 */
4503
4504int set_migratetype_isolate(struct page *page)
4505{
4506	struct zone *zone;
4507	unsigned long flags;
4508	int ret = -EBUSY;
4509
4510	zone = page_zone(page);
4511	spin_lock_irqsave(&zone->lock, flags);
4512	/*
4513	 * In future, more migrate types will be able to be isolation target.
4514	 */
4515	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4516		goto out;
4517	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4518	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4519	ret = 0;
4520out:
4521	spin_unlock_irqrestore(&zone->lock, flags);
4522	if (!ret)
4523		drain_all_pages();
4524	return ret;
4525}
4526
4527void unset_migratetype_isolate(struct page *page)
4528{
4529	struct zone *zone;
4530	unsigned long flags;
4531	zone = page_zone(page);
4532	spin_lock_irqsave(&zone->lock, flags);
4533	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4534		goto out;
4535	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4536	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4537out:
4538	spin_unlock_irqrestore(&zone->lock, flags);
4539}
4540
4541#ifdef CONFIG_MEMORY_HOTREMOVE
4542/*
4543 * All pages in the range must be isolated before calling this.
4544 */
4545void
4546__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4547{
4548	struct page *page;
4549	struct zone *zone;
4550	int order, i;
4551	unsigned long pfn;
4552	unsigned long flags;
4553	/* find the first valid pfn */
4554	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4555		if (pfn_valid(pfn))
4556			break;
4557	if (pfn == end_pfn)
4558		return;
4559	zone = page_zone(pfn_to_page(pfn));
4560	spin_lock_irqsave(&zone->lock, flags);
4561	pfn = start_pfn;
4562	while (pfn < end_pfn) {
4563		if (!pfn_valid(pfn)) {
4564			pfn++;
4565			continue;
4566		}
4567		page = pfn_to_page(pfn);
4568		BUG_ON(page_count(page));
4569		BUG_ON(!PageBuddy(page));
4570		order = page_order(page);
4571#ifdef CONFIG_DEBUG_VM
4572		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4573		       pfn, 1 << order, end_pfn);
4574#endif
4575		list_del(&page->lru);
4576		rmv_page_order(page);
4577		zone->free_area[order].nr_free--;
4578		__mod_zone_page_state(zone, NR_FREE_PAGES,
4579				      - (1UL << order));
4580		for (i = 0; i < (1 << order); i++)
4581			SetPageReserved((page+i));
4582		pfn += (1 << order);
4583	}
4584	spin_unlock_irqrestore(&zone->lock, flags);
4585}
4586#endif
4587