page_alloc.c revision a94b3ab7eab4edcc9b2cb474b188f774c331adf7
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48EXPORT_SYMBOL(node_online_map);
49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50EXPORT_SYMBOL(node_possible_map);
51struct pglist_data *pgdat_list __read_mostly;
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 *	1G machine -> (16M dma, 784M normal, 224M high)
60 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
63 *
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
66 */
67int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
68
69EXPORT_SYMBOL(totalram_pages);
70
71/*
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
74 */
75struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76EXPORT_SYMBOL(zone_table);
77
78static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79int min_free_kbytes = 1024;
80
81unsigned long __initdata nr_kernel_pages;
82unsigned long __initdata nr_all_pages;
83
84static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
85{
86	int ret = 0;
87	unsigned seq;
88	unsigned long pfn = page_to_pfn(page);
89
90	do {
91		seq = zone_span_seqbegin(zone);
92		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93			ret = 1;
94		else if (pfn < zone->zone_start_pfn)
95			ret = 1;
96	} while (zone_span_seqretry(zone, seq));
97
98	return ret;
99}
100
101static int page_is_consistent(struct zone *zone, struct page *page)
102{
103#ifdef CONFIG_HOLES_IN_ZONE
104	if (!pfn_valid(page_to_pfn(page)))
105		return 0;
106#endif
107	if (zone != page_zone(page))
108		return 0;
109
110	return 1;
111}
112/*
113 * Temporary debugging check for pages not lying within a given zone.
114 */
115static int bad_range(struct zone *zone, struct page *page)
116{
117	if (page_outside_zone_boundaries(zone, page))
118		return 1;
119	if (!page_is_consistent(zone, page))
120		return 1;
121
122	return 0;
123}
124
125static void bad_page(const char *function, struct page *page)
126{
127	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128		function, current->comm, page);
129	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
130		(int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
131		page->mapping, page_mapcount(page), page_count(page));
132	printk(KERN_EMERG "Backtrace:\n");
133	dump_stack();
134	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
135	page->flags &= ~(1 << PG_lru	|
136			1 << PG_private |
137			1 << PG_locked	|
138			1 << PG_active	|
139			1 << PG_dirty	|
140			1 << PG_reclaim |
141			1 << PG_slab    |
142			1 << PG_swapcache |
143			1 << PG_writeback );
144	set_page_count(page, 0);
145	reset_page_mapcount(page);
146	page->mapping = NULL;
147	add_taint(TAINT_BAD_PAGE);
148}
149
150/*
151 * Higher-order pages are called "compound pages".  They are structured thusly:
152 *
153 * The first PAGE_SIZE page is called the "head page".
154 *
155 * The remaining PAGE_SIZE pages are called "tail pages".
156 *
157 * All pages have PG_compound set.  All pages have their ->private pointing at
158 * the head page (even the head page has this).
159 *
160 * The first tail page's ->mapping, if non-zero, holds the address of the
161 * compound page's put_page() function.
162 *
163 * The order of the allocation is stored in the first tail page's ->index
164 * This is only for debug at present.  This usage means that zero-order pages
165 * may not be compound.
166 */
167static void prep_compound_page(struct page *page, unsigned long order)
168{
169	int i;
170	int nr_pages = 1 << order;
171
172	page[1].mapping = NULL;
173	page[1].index = order;
174	for (i = 0; i < nr_pages; i++) {
175		struct page *p = page + i;
176
177		SetPageCompound(p);
178		set_page_private(p, (unsigned long)page);
179	}
180}
181
182static void destroy_compound_page(struct page *page, unsigned long order)
183{
184	int i;
185	int nr_pages = 1 << order;
186
187	if (!PageCompound(page))
188		return;
189
190	if (page[1].index != order)
191		bad_page(__FUNCTION__, page);
192
193	for (i = 0; i < nr_pages; i++) {
194		struct page *p = page + i;
195
196		if (!PageCompound(p))
197			bad_page(__FUNCTION__, page);
198		if (page_private(p) != (unsigned long)page)
199			bad_page(__FUNCTION__, page);
200		ClearPageCompound(p);
201	}
202}
203
204/*
205 * function for dealing with page's order in buddy system.
206 * zone->lock is already acquired when we use these.
207 * So, we don't need atomic page->flags operations here.
208 */
209static inline unsigned long page_order(struct page *page) {
210	return page_private(page);
211}
212
213static inline void set_page_order(struct page *page, int order) {
214	set_page_private(page, order);
215	__SetPagePrivate(page);
216}
217
218static inline void rmv_page_order(struct page *page)
219{
220	__ClearPagePrivate(page);
221	set_page_private(page, 0);
222}
223
224/*
225 * Locate the struct page for both the matching buddy in our
226 * pair (buddy1) and the combined O(n+1) page they form (page).
227 *
228 * 1) Any buddy B1 will have an order O twin B2 which satisfies
229 * the following equation:
230 *     B2 = B1 ^ (1 << O)
231 * For example, if the starting buddy (buddy2) is #8 its order
232 * 1 buddy is #10:
233 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
234 *
235 * 2) Any buddy B will have an order O+1 parent P which
236 * satisfies the following equation:
237 *     P = B & ~(1 << O)
238 *
239 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
240 */
241static inline struct page *
242__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
243{
244	unsigned long buddy_idx = page_idx ^ (1 << order);
245
246	return page + (buddy_idx - page_idx);
247}
248
249static inline unsigned long
250__find_combined_index(unsigned long page_idx, unsigned int order)
251{
252	return (page_idx & ~(1 << order));
253}
254
255/*
256 * This function checks whether a page is free && is the buddy
257 * we can do coalesce a page and its buddy if
258 * (a) the buddy is free &&
259 * (b) the buddy is on the buddy system &&
260 * (c) a page and its buddy have the same order.
261 * for recording page's order, we use page_private(page) and PG_private.
262 *
263 */
264static inline int page_is_buddy(struct page *page, int order)
265{
266       if (PagePrivate(page)           &&
267           (page_order(page) == order) &&
268            page_count(page) == 0)
269               return 1;
270       return 0;
271}
272
273/*
274 * Freeing function for a buddy system allocator.
275 *
276 * The concept of a buddy system is to maintain direct-mapped table
277 * (containing bit values) for memory blocks of various "orders".
278 * The bottom level table contains the map for the smallest allocatable
279 * units of memory (here, pages), and each level above it describes
280 * pairs of units from the levels below, hence, "buddies".
281 * At a high level, all that happens here is marking the table entry
282 * at the bottom level available, and propagating the changes upward
283 * as necessary, plus some accounting needed to play nicely with other
284 * parts of the VM system.
285 * At each level, we keep a list of pages, which are heads of continuous
286 * free pages of length of (1 << order) and marked with PG_Private.Page's
287 * order is recorded in page_private(page) field.
288 * So when we are allocating or freeing one, we can derive the state of the
289 * other.  That is, if we allocate a small block, and both were
290 * free, the remainder of the region must be split into blocks.
291 * If a block is freed, and its buddy is also free, then this
292 * triggers coalescing into a block of larger size.
293 *
294 * -- wli
295 */
296
297static inline void __free_pages_bulk (struct page *page,
298		struct zone *zone, unsigned int order)
299{
300	unsigned long page_idx;
301	int order_size = 1 << order;
302
303	if (unlikely(order))
304		destroy_compound_page(page, order);
305
306	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
307
308	BUG_ON(page_idx & (order_size - 1));
309	BUG_ON(bad_range(zone, page));
310
311	zone->free_pages += order_size;
312	while (order < MAX_ORDER-1) {
313		unsigned long combined_idx;
314		struct free_area *area;
315		struct page *buddy;
316
317		combined_idx = __find_combined_index(page_idx, order);
318		buddy = __page_find_buddy(page, page_idx, order);
319
320		if (bad_range(zone, buddy))
321			break;
322		if (!page_is_buddy(buddy, order))
323			break;		/* Move the buddy up one level. */
324		list_del(&buddy->lru);
325		area = zone->free_area + order;
326		area->nr_free--;
327		rmv_page_order(buddy);
328		page = page + (combined_idx - page_idx);
329		page_idx = combined_idx;
330		order++;
331	}
332	set_page_order(page, order);
333	list_add(&page->lru, &zone->free_area[order].free_list);
334	zone->free_area[order].nr_free++;
335}
336
337static inline int free_pages_check(const char *function, struct page *page)
338{
339	if (	page_mapcount(page) ||
340		page->mapping != NULL ||
341		page_count(page) != 0 ||
342		(page->flags & (
343			1 << PG_lru	|
344			1 << PG_private |
345			1 << PG_locked	|
346			1 << PG_active	|
347			1 << PG_reclaim	|
348			1 << PG_slab	|
349			1 << PG_swapcache |
350			1 << PG_writeback |
351			1 << PG_reserved )))
352		bad_page(function, page);
353	if (PageDirty(page))
354		__ClearPageDirty(page);
355	/*
356	 * For now, we report if PG_reserved was found set, but do not
357	 * clear it, and do not free the page.  But we shall soon need
358	 * to do more, for when the ZERO_PAGE count wraps negative.
359	 */
360	return PageReserved(page);
361}
362
363/*
364 * Frees a list of pages.
365 * Assumes all pages on list are in same zone, and of same order.
366 * count is the number of pages to free.
367 *
368 * If the zone was previously in an "all pages pinned" state then look to
369 * see if this freeing clears that state.
370 *
371 * And clear the zone's pages_scanned counter, to hold off the "all pages are
372 * pinned" detection logic.
373 */
374static int
375free_pages_bulk(struct zone *zone, int count,
376		struct list_head *list, unsigned int order)
377{
378	unsigned long flags;
379	struct page *page = NULL;
380	int ret = 0;
381
382	spin_lock_irqsave(&zone->lock, flags);
383	zone->all_unreclaimable = 0;
384	zone->pages_scanned = 0;
385	while (!list_empty(list) && count--) {
386		page = list_entry(list->prev, struct page, lru);
387		/* have to delete it as __free_pages_bulk list manipulates */
388		list_del(&page->lru);
389		__free_pages_bulk(page, zone, order);
390		ret++;
391	}
392	spin_unlock_irqrestore(&zone->lock, flags);
393	return ret;
394}
395
396void __free_pages_ok(struct page *page, unsigned int order)
397{
398	LIST_HEAD(list);
399	int i;
400	int reserved = 0;
401
402	arch_free_page(page, order);
403
404#ifndef CONFIG_MMU
405	if (order > 0)
406		for (i = 1 ; i < (1 << order) ; ++i)
407			__put_page(page + i);
408#endif
409
410	for (i = 0 ; i < (1 << order) ; ++i)
411		reserved += free_pages_check(__FUNCTION__, page + i);
412	if (reserved)
413		return;
414
415	list_add(&page->lru, &list);
416	mod_page_state(pgfree, 1 << order);
417	kernel_map_pages(page, 1<<order, 0);
418	free_pages_bulk(page_zone(page), 1, &list, order);
419}
420
421
422/*
423 * The order of subdivision here is critical for the IO subsystem.
424 * Please do not alter this order without good reasons and regression
425 * testing. Specifically, as large blocks of memory are subdivided,
426 * the order in which smaller blocks are delivered depends on the order
427 * they're subdivided in this function. This is the primary factor
428 * influencing the order in which pages are delivered to the IO
429 * subsystem according to empirical testing, and this is also justified
430 * by considering the behavior of a buddy system containing a single
431 * large block of memory acted on by a series of small allocations.
432 * This behavior is a critical factor in sglist merging's success.
433 *
434 * -- wli
435 */
436static inline struct page *
437expand(struct zone *zone, struct page *page,
438 	int low, int high, struct free_area *area)
439{
440	unsigned long size = 1 << high;
441
442	while (high > low) {
443		area--;
444		high--;
445		size >>= 1;
446		BUG_ON(bad_range(zone, &page[size]));
447		list_add(&page[size].lru, &area->free_list);
448		area->nr_free++;
449		set_page_order(&page[size], high);
450	}
451	return page;
452}
453
454void set_page_refs(struct page *page, int order)
455{
456#ifdef CONFIG_MMU
457	set_page_count(page, 1);
458#else
459	int i;
460
461	/*
462	 * We need to reference all the pages for this order, otherwise if
463	 * anyone accesses one of the pages with (get/put) it will be freed.
464	 * - eg: access_process_vm()
465	 */
466	for (i = 0; i < (1 << order); i++)
467		set_page_count(page + i, 1);
468#endif /* CONFIG_MMU */
469}
470
471/*
472 * This page is about to be returned from the page allocator
473 */
474static int prep_new_page(struct page *page, int order)
475{
476	if (	page_mapcount(page) ||
477		page->mapping != NULL ||
478		page_count(page) != 0 ||
479		(page->flags & (
480			1 << PG_lru	|
481			1 << PG_private	|
482			1 << PG_locked	|
483			1 << PG_active	|
484			1 << PG_dirty	|
485			1 << PG_reclaim	|
486			1 << PG_slab    |
487			1 << PG_swapcache |
488			1 << PG_writeback |
489			1 << PG_reserved )))
490		bad_page(__FUNCTION__, page);
491
492	/*
493	 * For now, we report if PG_reserved was found set, but do not
494	 * clear it, and do not allocate the page: as a safety net.
495	 */
496	if (PageReserved(page))
497		return 1;
498
499	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
500			1 << PG_referenced | 1 << PG_arch_1 |
501			1 << PG_checked | 1 << PG_mappedtodisk);
502	set_page_private(page, 0);
503	set_page_refs(page, order);
504	kernel_map_pages(page, 1 << order, 1);
505	return 0;
506}
507
508/*
509 * Do the hard work of removing an element from the buddy allocator.
510 * Call me with the zone->lock already held.
511 */
512static struct page *__rmqueue(struct zone *zone, unsigned int order)
513{
514	struct free_area * area;
515	unsigned int current_order;
516	struct page *page;
517
518	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
519		area = zone->free_area + current_order;
520		if (list_empty(&area->free_list))
521			continue;
522
523		page = list_entry(area->free_list.next, struct page, lru);
524		list_del(&page->lru);
525		rmv_page_order(page);
526		area->nr_free--;
527		zone->free_pages -= 1UL << order;
528		return expand(zone, page, order, current_order, area);
529	}
530
531	return NULL;
532}
533
534/*
535 * Obtain a specified number of elements from the buddy allocator, all under
536 * a single hold of the lock, for efficiency.  Add them to the supplied list.
537 * Returns the number of new pages which were placed at *list.
538 */
539static int rmqueue_bulk(struct zone *zone, unsigned int order,
540			unsigned long count, struct list_head *list)
541{
542	unsigned long flags;
543	int i;
544	int allocated = 0;
545	struct page *page;
546
547	spin_lock_irqsave(&zone->lock, flags);
548	for (i = 0; i < count; ++i) {
549		page = __rmqueue(zone, order);
550		if (page == NULL)
551			break;
552		allocated++;
553		list_add_tail(&page->lru, list);
554	}
555	spin_unlock_irqrestore(&zone->lock, flags);
556	return allocated;
557}
558
559#ifdef CONFIG_NUMA
560/* Called from the slab reaper to drain remote pagesets */
561void drain_remote_pages(void)
562{
563	struct zone *zone;
564	int i;
565	unsigned long flags;
566
567	local_irq_save(flags);
568	for_each_zone(zone) {
569		struct per_cpu_pageset *pset;
570
571		/* Do not drain local pagesets */
572		if (zone->zone_pgdat->node_id == numa_node_id())
573			continue;
574
575		pset = zone->pageset[smp_processor_id()];
576		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
577			struct per_cpu_pages *pcp;
578
579			pcp = &pset->pcp[i];
580			if (pcp->count)
581				pcp->count -= free_pages_bulk(zone, pcp->count,
582						&pcp->list, 0);
583		}
584	}
585	local_irq_restore(flags);
586}
587#endif
588
589#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
590static void __drain_pages(unsigned int cpu)
591{
592	struct zone *zone;
593	int i;
594
595	for_each_zone(zone) {
596		struct per_cpu_pageset *pset;
597
598		pset = zone_pcp(zone, cpu);
599		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
600			struct per_cpu_pages *pcp;
601
602			pcp = &pset->pcp[i];
603			pcp->count -= free_pages_bulk(zone, pcp->count,
604						&pcp->list, 0);
605		}
606	}
607}
608#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
609
610#ifdef CONFIG_PM
611
612void mark_free_pages(struct zone *zone)
613{
614	unsigned long zone_pfn, flags;
615	int order;
616	struct list_head *curr;
617
618	if (!zone->spanned_pages)
619		return;
620
621	spin_lock_irqsave(&zone->lock, flags);
622	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
623		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
624
625	for (order = MAX_ORDER - 1; order >= 0; --order)
626		list_for_each(curr, &zone->free_area[order].free_list) {
627			unsigned long start_pfn, i;
628
629			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
630
631			for (i=0; i < (1<<order); i++)
632				SetPageNosaveFree(pfn_to_page(start_pfn+i));
633	}
634	spin_unlock_irqrestore(&zone->lock, flags);
635}
636
637/*
638 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
639 */
640void drain_local_pages(void)
641{
642	unsigned long flags;
643
644	local_irq_save(flags);
645	__drain_pages(smp_processor_id());
646	local_irq_restore(flags);
647}
648#endif /* CONFIG_PM */
649
650static void zone_statistics(struct zonelist *zonelist, struct zone *z)
651{
652#ifdef CONFIG_NUMA
653	unsigned long flags;
654	int cpu;
655	pg_data_t *pg = z->zone_pgdat;
656	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
657	struct per_cpu_pageset *p;
658
659	local_irq_save(flags);
660	cpu = smp_processor_id();
661	p = zone_pcp(z,cpu);
662	if (pg == orig) {
663		p->numa_hit++;
664	} else {
665		p->numa_miss++;
666		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
667	}
668	if (pg == NODE_DATA(numa_node_id()))
669		p->local_node++;
670	else
671		p->other_node++;
672	local_irq_restore(flags);
673#endif
674}
675
676/*
677 * Free a 0-order page
678 */
679static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
680static void fastcall free_hot_cold_page(struct page *page, int cold)
681{
682	struct zone *zone = page_zone(page);
683	struct per_cpu_pages *pcp;
684	unsigned long flags;
685
686	arch_free_page(page, 0);
687
688	if (PageAnon(page))
689		page->mapping = NULL;
690	if (free_pages_check(__FUNCTION__, page))
691		return;
692
693	inc_page_state(pgfree);
694	kernel_map_pages(page, 1, 0);
695
696	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
697	local_irq_save(flags);
698	list_add(&page->lru, &pcp->list);
699	pcp->count++;
700	if (pcp->count >= pcp->high)
701		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
702	local_irq_restore(flags);
703	put_cpu();
704}
705
706void fastcall free_hot_page(struct page *page)
707{
708	free_hot_cold_page(page, 0);
709}
710
711void fastcall free_cold_page(struct page *page)
712{
713	free_hot_cold_page(page, 1);
714}
715
716static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
717{
718	int i;
719
720	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
721	for(i = 0; i < (1 << order); i++)
722		clear_highpage(page + i);
723}
724
725/*
726 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
727 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
728 * or two.
729 */
730static struct page *
731buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
732{
733	unsigned long flags;
734	struct page *page;
735	int cold = !!(gfp_flags & __GFP_COLD);
736
737again:
738	if (order == 0) {
739		struct per_cpu_pages *pcp;
740
741		page = NULL;
742		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
743		local_irq_save(flags);
744		if (pcp->count <= pcp->low)
745			pcp->count += rmqueue_bulk(zone, 0,
746						pcp->batch, &pcp->list);
747		if (pcp->count) {
748			page = list_entry(pcp->list.next, struct page, lru);
749			list_del(&page->lru);
750			pcp->count--;
751		}
752		local_irq_restore(flags);
753		put_cpu();
754	} else {
755		spin_lock_irqsave(&zone->lock, flags);
756		page = __rmqueue(zone, order);
757		spin_unlock_irqrestore(&zone->lock, flags);
758	}
759
760	if (page != NULL) {
761		BUG_ON(bad_range(zone, page));
762		mod_page_state_zone(zone, pgalloc, 1 << order);
763		if (prep_new_page(page, order))
764			goto again;
765
766		if (gfp_flags & __GFP_ZERO)
767			prep_zero_page(page, order, gfp_flags);
768
769		if (order && (gfp_flags & __GFP_COMP))
770			prep_compound_page(page, order);
771	}
772	return page;
773}
774
775#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
776#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
777#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
778#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
779#define ALLOC_HARDER		0x10 /* try to alloc harder */
780#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
781#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
782
783/*
784 * Return 1 if free pages are above 'mark'. This takes into account the order
785 * of the allocation.
786 */
787int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
788		      int classzone_idx, int alloc_flags)
789{
790	/* free_pages my go negative - that's OK */
791	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
792	int o;
793
794	if (alloc_flags & ALLOC_HIGH)
795		min -= min / 2;
796	if (alloc_flags & ALLOC_HARDER)
797		min -= min / 4;
798
799	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
800		return 0;
801	for (o = 0; o < order; o++) {
802		/* At the next order, this order's pages become unavailable */
803		free_pages -= z->free_area[o].nr_free << o;
804
805		/* Require fewer higher order pages to be free */
806		min >>= 1;
807
808		if (free_pages <= min)
809			return 0;
810	}
811	return 1;
812}
813
814/*
815 * get_page_from_freeliest goes through the zonelist trying to allocate
816 * a page.
817 */
818static struct page *
819get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
820		struct zonelist *zonelist, int alloc_flags)
821{
822	struct zone **z = zonelist->zones;
823	struct page *page = NULL;
824	int classzone_idx = zone_idx(*z);
825
826	/*
827	 * Go through the zonelist once, looking for a zone with enough free.
828	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
829	 */
830	do {
831		if ((alloc_flags & ALLOC_CPUSET) &&
832				!cpuset_zone_allowed(*z, gfp_mask))
833			continue;
834
835		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
836			unsigned long mark;
837			if (alloc_flags & ALLOC_WMARK_MIN)
838				mark = (*z)->pages_min;
839			else if (alloc_flags & ALLOC_WMARK_LOW)
840				mark = (*z)->pages_low;
841			else
842				mark = (*z)->pages_high;
843			if (!zone_watermark_ok(*z, order, mark,
844				    classzone_idx, alloc_flags))
845				continue;
846		}
847
848		page = buffered_rmqueue(*z, order, gfp_mask);
849		if (page) {
850			zone_statistics(zonelist, *z);
851			break;
852		}
853	} while (*(++z) != NULL);
854	return page;
855}
856
857/*
858 * This is the 'heart' of the zoned buddy allocator.
859 */
860struct page * fastcall
861__alloc_pages(gfp_t gfp_mask, unsigned int order,
862		struct zonelist *zonelist)
863{
864	const gfp_t wait = gfp_mask & __GFP_WAIT;
865	struct zone **z;
866	struct page *page;
867	struct reclaim_state reclaim_state;
868	struct task_struct *p = current;
869	int do_retry;
870	int alloc_flags;
871	int did_some_progress;
872
873	might_sleep_if(wait);
874
875restart:
876	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
877
878	if (unlikely(*z == NULL)) {
879		/* Should this ever happen?? */
880		return NULL;
881	}
882
883	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
884				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
885	if (page)
886		goto got_pg;
887
888	do {
889		wakeup_kswapd(*z, order);
890	} while (*(++z));
891
892	/*
893	 * OK, we're below the kswapd watermark and have kicked background
894	 * reclaim. Now things get more complex, so set up alloc_flags according
895	 * to how we want to proceed.
896	 *
897	 * The caller may dip into page reserves a bit more if the caller
898	 * cannot run direct reclaim, or if the caller has realtime scheduling
899	 * policy.
900	 */
901	alloc_flags = ALLOC_WMARK_MIN;
902	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
903		alloc_flags |= ALLOC_HARDER;
904	if (gfp_mask & __GFP_HIGH)
905		alloc_flags |= ALLOC_HIGH;
906	alloc_flags |= ALLOC_CPUSET;
907
908	/*
909	 * Go through the zonelist again. Let __GFP_HIGH and allocations
910	 * coming from realtime tasks go deeper into reserves.
911	 *
912	 * This is the last chance, in general, before the goto nopage.
913	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
914	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
915	 */
916	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
917	if (page)
918		goto got_pg;
919
920	/* This allocation should allow future memory freeing. */
921
922	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
923			&& !in_interrupt()) {
924		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
925nofail_alloc:
926			/* go through the zonelist yet again, ignoring mins */
927			page = get_page_from_freelist(gfp_mask, order,
928				zonelist, ALLOC_NO_WATERMARKS);
929			if (page)
930				goto got_pg;
931			if (gfp_mask & __GFP_NOFAIL) {
932				blk_congestion_wait(WRITE, HZ/50);
933				goto nofail_alloc;
934			}
935		}
936		goto nopage;
937	}
938
939	/* Atomic allocations - we can't balance anything */
940	if (!wait)
941		goto nopage;
942
943rebalance:
944	cond_resched();
945
946	/* We now go into synchronous reclaim */
947	p->flags |= PF_MEMALLOC;
948	reclaim_state.reclaimed_slab = 0;
949	p->reclaim_state = &reclaim_state;
950
951	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
952
953	p->reclaim_state = NULL;
954	p->flags &= ~PF_MEMALLOC;
955
956	cond_resched();
957
958	if (likely(did_some_progress)) {
959		page = get_page_from_freelist(gfp_mask, order,
960						zonelist, alloc_flags);
961		if (page)
962			goto got_pg;
963	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
964		/*
965		 * Go through the zonelist yet one more time, keep
966		 * very high watermark here, this is only to catch
967		 * a parallel oom killing, we must fail if we're still
968		 * under heavy pressure.
969		 */
970		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
971				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
972		if (page)
973			goto got_pg;
974
975		out_of_memory(gfp_mask, order);
976		goto restart;
977	}
978
979	/*
980	 * Don't let big-order allocations loop unless the caller explicitly
981	 * requests that.  Wait for some write requests to complete then retry.
982	 *
983	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
984	 * <= 3, but that may not be true in other implementations.
985	 */
986	do_retry = 0;
987	if (!(gfp_mask & __GFP_NORETRY)) {
988		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
989			do_retry = 1;
990		if (gfp_mask & __GFP_NOFAIL)
991			do_retry = 1;
992	}
993	if (do_retry) {
994		blk_congestion_wait(WRITE, HZ/50);
995		goto rebalance;
996	}
997
998nopage:
999	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1000		printk(KERN_WARNING "%s: page allocation failure."
1001			" order:%d, mode:0x%x\n",
1002			p->comm, order, gfp_mask);
1003		dump_stack();
1004		show_mem();
1005	}
1006got_pg:
1007	return page;
1008}
1009
1010EXPORT_SYMBOL(__alloc_pages);
1011
1012/*
1013 * Common helper functions.
1014 */
1015fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1016{
1017	struct page * page;
1018	page = alloc_pages(gfp_mask, order);
1019	if (!page)
1020		return 0;
1021	return (unsigned long) page_address(page);
1022}
1023
1024EXPORT_SYMBOL(__get_free_pages);
1025
1026fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1027{
1028	struct page * page;
1029
1030	/*
1031	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1032	 * a highmem page
1033	 */
1034	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1035
1036	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1037	if (page)
1038		return (unsigned long) page_address(page);
1039	return 0;
1040}
1041
1042EXPORT_SYMBOL(get_zeroed_page);
1043
1044void __pagevec_free(struct pagevec *pvec)
1045{
1046	int i = pagevec_count(pvec);
1047
1048	while (--i >= 0)
1049		free_hot_cold_page(pvec->pages[i], pvec->cold);
1050}
1051
1052fastcall void __free_pages(struct page *page, unsigned int order)
1053{
1054	if (put_page_testzero(page)) {
1055		if (order == 0)
1056			free_hot_page(page);
1057		else
1058			__free_pages_ok(page, order);
1059	}
1060}
1061
1062EXPORT_SYMBOL(__free_pages);
1063
1064fastcall void free_pages(unsigned long addr, unsigned int order)
1065{
1066	if (addr != 0) {
1067		BUG_ON(!virt_addr_valid((void *)addr));
1068		__free_pages(virt_to_page((void *)addr), order);
1069	}
1070}
1071
1072EXPORT_SYMBOL(free_pages);
1073
1074/*
1075 * Total amount of free (allocatable) RAM:
1076 */
1077unsigned int nr_free_pages(void)
1078{
1079	unsigned int sum = 0;
1080	struct zone *zone;
1081
1082	for_each_zone(zone)
1083		sum += zone->free_pages;
1084
1085	return sum;
1086}
1087
1088EXPORT_SYMBOL(nr_free_pages);
1089
1090#ifdef CONFIG_NUMA
1091unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1092{
1093	unsigned int i, sum = 0;
1094
1095	for (i = 0; i < MAX_NR_ZONES; i++)
1096		sum += pgdat->node_zones[i].free_pages;
1097
1098	return sum;
1099}
1100#endif
1101
1102static unsigned int nr_free_zone_pages(int offset)
1103{
1104	/* Just pick one node, since fallback list is circular */
1105	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1106	unsigned int sum = 0;
1107
1108	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1109	struct zone **zonep = zonelist->zones;
1110	struct zone *zone;
1111
1112	for (zone = *zonep++; zone; zone = *zonep++) {
1113		unsigned long size = zone->present_pages;
1114		unsigned long high = zone->pages_high;
1115		if (size > high)
1116			sum += size - high;
1117	}
1118
1119	return sum;
1120}
1121
1122/*
1123 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1124 */
1125unsigned int nr_free_buffer_pages(void)
1126{
1127	return nr_free_zone_pages(gfp_zone(GFP_USER));
1128}
1129
1130/*
1131 * Amount of free RAM allocatable within all zones
1132 */
1133unsigned int nr_free_pagecache_pages(void)
1134{
1135	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1136}
1137
1138#ifdef CONFIG_HIGHMEM
1139unsigned int nr_free_highpages (void)
1140{
1141	pg_data_t *pgdat;
1142	unsigned int pages = 0;
1143
1144	for_each_pgdat(pgdat)
1145		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1146
1147	return pages;
1148}
1149#endif
1150
1151#ifdef CONFIG_NUMA
1152static void show_node(struct zone *zone)
1153{
1154	printk("Node %d ", zone->zone_pgdat->node_id);
1155}
1156#else
1157#define show_node(zone)	do { } while (0)
1158#endif
1159
1160/*
1161 * Accumulate the page_state information across all CPUs.
1162 * The result is unavoidably approximate - it can change
1163 * during and after execution of this function.
1164 */
1165static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1166
1167atomic_t nr_pagecache = ATOMIC_INIT(0);
1168EXPORT_SYMBOL(nr_pagecache);
1169#ifdef CONFIG_SMP
1170DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1171#endif
1172
1173void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1174{
1175	int cpu = 0;
1176
1177	memset(ret, 0, sizeof(*ret));
1178	cpus_and(*cpumask, *cpumask, cpu_online_map);
1179
1180	cpu = first_cpu(*cpumask);
1181	while (cpu < NR_CPUS) {
1182		unsigned long *in, *out, off;
1183
1184		in = (unsigned long *)&per_cpu(page_states, cpu);
1185
1186		cpu = next_cpu(cpu, *cpumask);
1187
1188		if (cpu < NR_CPUS)
1189			prefetch(&per_cpu(page_states, cpu));
1190
1191		out = (unsigned long *)ret;
1192		for (off = 0; off < nr; off++)
1193			*out++ += *in++;
1194	}
1195}
1196
1197void get_page_state_node(struct page_state *ret, int node)
1198{
1199	int nr;
1200	cpumask_t mask = node_to_cpumask(node);
1201
1202	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1203	nr /= sizeof(unsigned long);
1204
1205	__get_page_state(ret, nr+1, &mask);
1206}
1207
1208void get_page_state(struct page_state *ret)
1209{
1210	int nr;
1211	cpumask_t mask = CPU_MASK_ALL;
1212
1213	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1214	nr /= sizeof(unsigned long);
1215
1216	__get_page_state(ret, nr + 1, &mask);
1217}
1218
1219void get_full_page_state(struct page_state *ret)
1220{
1221	cpumask_t mask = CPU_MASK_ALL;
1222
1223	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1224}
1225
1226unsigned long __read_page_state(unsigned long offset)
1227{
1228	unsigned long ret = 0;
1229	int cpu;
1230
1231	for_each_online_cpu(cpu) {
1232		unsigned long in;
1233
1234		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1235		ret += *((unsigned long *)in);
1236	}
1237	return ret;
1238}
1239
1240void __mod_page_state(unsigned long offset, unsigned long delta)
1241{
1242	unsigned long flags;
1243	void* ptr;
1244
1245	local_irq_save(flags);
1246	ptr = &__get_cpu_var(page_states);
1247	*(unsigned long*)(ptr + offset) += delta;
1248	local_irq_restore(flags);
1249}
1250
1251EXPORT_SYMBOL(__mod_page_state);
1252
1253void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1254			unsigned long *free, struct pglist_data *pgdat)
1255{
1256	struct zone *zones = pgdat->node_zones;
1257	int i;
1258
1259	*active = 0;
1260	*inactive = 0;
1261	*free = 0;
1262	for (i = 0; i < MAX_NR_ZONES; i++) {
1263		*active += zones[i].nr_active;
1264		*inactive += zones[i].nr_inactive;
1265		*free += zones[i].free_pages;
1266	}
1267}
1268
1269void get_zone_counts(unsigned long *active,
1270		unsigned long *inactive, unsigned long *free)
1271{
1272	struct pglist_data *pgdat;
1273
1274	*active = 0;
1275	*inactive = 0;
1276	*free = 0;
1277	for_each_pgdat(pgdat) {
1278		unsigned long l, m, n;
1279		__get_zone_counts(&l, &m, &n, pgdat);
1280		*active += l;
1281		*inactive += m;
1282		*free += n;
1283	}
1284}
1285
1286void si_meminfo(struct sysinfo *val)
1287{
1288	val->totalram = totalram_pages;
1289	val->sharedram = 0;
1290	val->freeram = nr_free_pages();
1291	val->bufferram = nr_blockdev_pages();
1292#ifdef CONFIG_HIGHMEM
1293	val->totalhigh = totalhigh_pages;
1294	val->freehigh = nr_free_highpages();
1295#else
1296	val->totalhigh = 0;
1297	val->freehigh = 0;
1298#endif
1299	val->mem_unit = PAGE_SIZE;
1300}
1301
1302EXPORT_SYMBOL(si_meminfo);
1303
1304#ifdef CONFIG_NUMA
1305void si_meminfo_node(struct sysinfo *val, int nid)
1306{
1307	pg_data_t *pgdat = NODE_DATA(nid);
1308
1309	val->totalram = pgdat->node_present_pages;
1310	val->freeram = nr_free_pages_pgdat(pgdat);
1311	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1312	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1313	val->mem_unit = PAGE_SIZE;
1314}
1315#endif
1316
1317#define K(x) ((x) << (PAGE_SHIFT-10))
1318
1319/*
1320 * Show free area list (used inside shift_scroll-lock stuff)
1321 * We also calculate the percentage fragmentation. We do this by counting the
1322 * memory on each free list with the exception of the first item on the list.
1323 */
1324void show_free_areas(void)
1325{
1326	struct page_state ps;
1327	int cpu, temperature;
1328	unsigned long active;
1329	unsigned long inactive;
1330	unsigned long free;
1331	struct zone *zone;
1332
1333	for_each_zone(zone) {
1334		show_node(zone);
1335		printk("%s per-cpu:", zone->name);
1336
1337		if (!zone->present_pages) {
1338			printk(" empty\n");
1339			continue;
1340		} else
1341			printk("\n");
1342
1343		for_each_online_cpu(cpu) {
1344			struct per_cpu_pageset *pageset;
1345
1346			pageset = zone_pcp(zone, cpu);
1347
1348			for (temperature = 0; temperature < 2; temperature++)
1349				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1350					cpu,
1351					temperature ? "cold" : "hot",
1352					pageset->pcp[temperature].low,
1353					pageset->pcp[temperature].high,
1354					pageset->pcp[temperature].batch,
1355					pageset->pcp[temperature].count);
1356		}
1357	}
1358
1359	get_page_state(&ps);
1360	get_zone_counts(&active, &inactive, &free);
1361
1362	printk("Free pages: %11ukB (%ukB HighMem)\n",
1363		K(nr_free_pages()),
1364		K(nr_free_highpages()));
1365
1366	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1367		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1368		active,
1369		inactive,
1370		ps.nr_dirty,
1371		ps.nr_writeback,
1372		ps.nr_unstable,
1373		nr_free_pages(),
1374		ps.nr_slab,
1375		ps.nr_mapped,
1376		ps.nr_page_table_pages);
1377
1378	for_each_zone(zone) {
1379		int i;
1380
1381		show_node(zone);
1382		printk("%s"
1383			" free:%lukB"
1384			" min:%lukB"
1385			" low:%lukB"
1386			" high:%lukB"
1387			" active:%lukB"
1388			" inactive:%lukB"
1389			" present:%lukB"
1390			" pages_scanned:%lu"
1391			" all_unreclaimable? %s"
1392			"\n",
1393			zone->name,
1394			K(zone->free_pages),
1395			K(zone->pages_min),
1396			K(zone->pages_low),
1397			K(zone->pages_high),
1398			K(zone->nr_active),
1399			K(zone->nr_inactive),
1400			K(zone->present_pages),
1401			zone->pages_scanned,
1402			(zone->all_unreclaimable ? "yes" : "no")
1403			);
1404		printk("lowmem_reserve[]:");
1405		for (i = 0; i < MAX_NR_ZONES; i++)
1406			printk(" %lu", zone->lowmem_reserve[i]);
1407		printk("\n");
1408	}
1409
1410	for_each_zone(zone) {
1411 		unsigned long nr, flags, order, total = 0;
1412
1413		show_node(zone);
1414		printk("%s: ", zone->name);
1415		if (!zone->present_pages) {
1416			printk("empty\n");
1417			continue;
1418		}
1419
1420		spin_lock_irqsave(&zone->lock, flags);
1421		for (order = 0; order < MAX_ORDER; order++) {
1422			nr = zone->free_area[order].nr_free;
1423			total += nr << order;
1424			printk("%lu*%lukB ", nr, K(1UL) << order);
1425		}
1426		spin_unlock_irqrestore(&zone->lock, flags);
1427		printk("= %lukB\n", K(total));
1428	}
1429
1430	show_swap_cache_info();
1431}
1432
1433/*
1434 * Builds allocation fallback zone lists.
1435 */
1436static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1437{
1438	switch (k) {
1439		struct zone *zone;
1440	default:
1441		BUG();
1442	case ZONE_HIGHMEM:
1443		zone = pgdat->node_zones + ZONE_HIGHMEM;
1444		if (zone->present_pages) {
1445#ifndef CONFIG_HIGHMEM
1446			BUG();
1447#endif
1448			zonelist->zones[j++] = zone;
1449		}
1450	case ZONE_NORMAL:
1451		zone = pgdat->node_zones + ZONE_NORMAL;
1452		if (zone->present_pages)
1453			zonelist->zones[j++] = zone;
1454	case ZONE_DMA32:
1455		zone = pgdat->node_zones + ZONE_DMA32;
1456		if (zone->present_pages)
1457			zonelist->zones[j++] = zone;
1458	case ZONE_DMA:
1459		zone = pgdat->node_zones + ZONE_DMA;
1460		if (zone->present_pages)
1461			zonelist->zones[j++] = zone;
1462	}
1463
1464	return j;
1465}
1466
1467static inline int highest_zone(int zone_bits)
1468{
1469	int res = ZONE_NORMAL;
1470	if (zone_bits & (__force int)__GFP_HIGHMEM)
1471		res = ZONE_HIGHMEM;
1472	if (zone_bits & (__force int)__GFP_DMA32)
1473		res = ZONE_DMA32;
1474	if (zone_bits & (__force int)__GFP_DMA)
1475		res = ZONE_DMA;
1476	return res;
1477}
1478
1479#ifdef CONFIG_NUMA
1480#define MAX_NODE_LOAD (num_online_nodes())
1481static int __initdata node_load[MAX_NUMNODES];
1482/**
1483 * find_next_best_node - find the next node that should appear in a given node's fallback list
1484 * @node: node whose fallback list we're appending
1485 * @used_node_mask: nodemask_t of already used nodes
1486 *
1487 * We use a number of factors to determine which is the next node that should
1488 * appear on a given node's fallback list.  The node should not have appeared
1489 * already in @node's fallback list, and it should be the next closest node
1490 * according to the distance array (which contains arbitrary distance values
1491 * from each node to each node in the system), and should also prefer nodes
1492 * with no CPUs, since presumably they'll have very little allocation pressure
1493 * on them otherwise.
1494 * It returns -1 if no node is found.
1495 */
1496static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1497{
1498	int i, n, val;
1499	int min_val = INT_MAX;
1500	int best_node = -1;
1501
1502	for_each_online_node(i) {
1503		cpumask_t tmp;
1504
1505		/* Start from local node */
1506		n = (node+i) % num_online_nodes();
1507
1508		/* Don't want a node to appear more than once */
1509		if (node_isset(n, *used_node_mask))
1510			continue;
1511
1512		/* Use the local node if we haven't already */
1513		if (!node_isset(node, *used_node_mask)) {
1514			best_node = node;
1515			break;
1516		}
1517
1518		/* Use the distance array to find the distance */
1519		val = node_distance(node, n);
1520
1521		/* Give preference to headless and unused nodes */
1522		tmp = node_to_cpumask(n);
1523		if (!cpus_empty(tmp))
1524			val += PENALTY_FOR_NODE_WITH_CPUS;
1525
1526		/* Slight preference for less loaded node */
1527		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1528		val += node_load[n];
1529
1530		if (val < min_val) {
1531			min_val = val;
1532			best_node = n;
1533		}
1534	}
1535
1536	if (best_node >= 0)
1537		node_set(best_node, *used_node_mask);
1538
1539	return best_node;
1540}
1541
1542static void __init build_zonelists(pg_data_t *pgdat)
1543{
1544	int i, j, k, node, local_node;
1545	int prev_node, load;
1546	struct zonelist *zonelist;
1547	nodemask_t used_mask;
1548
1549	/* initialize zonelists */
1550	for (i = 0; i < GFP_ZONETYPES; i++) {
1551		zonelist = pgdat->node_zonelists + i;
1552		zonelist->zones[0] = NULL;
1553	}
1554
1555	/* NUMA-aware ordering of nodes */
1556	local_node = pgdat->node_id;
1557	load = num_online_nodes();
1558	prev_node = local_node;
1559	nodes_clear(used_mask);
1560	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1561		/*
1562		 * We don't want to pressure a particular node.
1563		 * So adding penalty to the first node in same
1564		 * distance group to make it round-robin.
1565		 */
1566		if (node_distance(local_node, node) !=
1567				node_distance(local_node, prev_node))
1568			node_load[node] += load;
1569		prev_node = node;
1570		load--;
1571		for (i = 0; i < GFP_ZONETYPES; i++) {
1572			zonelist = pgdat->node_zonelists + i;
1573			for (j = 0; zonelist->zones[j] != NULL; j++);
1574
1575			k = highest_zone(i);
1576
1577	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1578			zonelist->zones[j] = NULL;
1579		}
1580	}
1581}
1582
1583#else	/* CONFIG_NUMA */
1584
1585static void __init build_zonelists(pg_data_t *pgdat)
1586{
1587	int i, j, k, node, local_node;
1588
1589	local_node = pgdat->node_id;
1590	for (i = 0; i < GFP_ZONETYPES; i++) {
1591		struct zonelist *zonelist;
1592
1593		zonelist = pgdat->node_zonelists + i;
1594
1595		j = 0;
1596		k = highest_zone(i);
1597 		j = build_zonelists_node(pgdat, zonelist, j, k);
1598 		/*
1599 		 * Now we build the zonelist so that it contains the zones
1600 		 * of all the other nodes.
1601 		 * We don't want to pressure a particular node, so when
1602 		 * building the zones for node N, we make sure that the
1603 		 * zones coming right after the local ones are those from
1604 		 * node N+1 (modulo N)
1605 		 */
1606		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1607			if (!node_online(node))
1608				continue;
1609			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1610		}
1611		for (node = 0; node < local_node; node++) {
1612			if (!node_online(node))
1613				continue;
1614			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1615		}
1616
1617		zonelist->zones[j] = NULL;
1618	}
1619}
1620
1621#endif	/* CONFIG_NUMA */
1622
1623void __init build_all_zonelists(void)
1624{
1625	int i;
1626
1627	for_each_online_node(i)
1628		build_zonelists(NODE_DATA(i));
1629	printk("Built %i zonelists\n", num_online_nodes());
1630	cpuset_init_current_mems_allowed();
1631}
1632
1633/*
1634 * Helper functions to size the waitqueue hash table.
1635 * Essentially these want to choose hash table sizes sufficiently
1636 * large so that collisions trying to wait on pages are rare.
1637 * But in fact, the number of active page waitqueues on typical
1638 * systems is ridiculously low, less than 200. So this is even
1639 * conservative, even though it seems large.
1640 *
1641 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1642 * waitqueues, i.e. the size of the waitq table given the number of pages.
1643 */
1644#define PAGES_PER_WAITQUEUE	256
1645
1646static inline unsigned long wait_table_size(unsigned long pages)
1647{
1648	unsigned long size = 1;
1649
1650	pages /= PAGES_PER_WAITQUEUE;
1651
1652	while (size < pages)
1653		size <<= 1;
1654
1655	/*
1656	 * Once we have dozens or even hundreds of threads sleeping
1657	 * on IO we've got bigger problems than wait queue collision.
1658	 * Limit the size of the wait table to a reasonable size.
1659	 */
1660	size = min(size, 4096UL);
1661
1662	return max(size, 4UL);
1663}
1664
1665/*
1666 * This is an integer logarithm so that shifts can be used later
1667 * to extract the more random high bits from the multiplicative
1668 * hash function before the remainder is taken.
1669 */
1670static inline unsigned long wait_table_bits(unsigned long size)
1671{
1672	return ffz(~size);
1673}
1674
1675#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1676
1677static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1678		unsigned long *zones_size, unsigned long *zholes_size)
1679{
1680	unsigned long realtotalpages, totalpages = 0;
1681	int i;
1682
1683	for (i = 0; i < MAX_NR_ZONES; i++)
1684		totalpages += zones_size[i];
1685	pgdat->node_spanned_pages = totalpages;
1686
1687	realtotalpages = totalpages;
1688	if (zholes_size)
1689		for (i = 0; i < MAX_NR_ZONES; i++)
1690			realtotalpages -= zholes_size[i];
1691	pgdat->node_present_pages = realtotalpages;
1692	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1693}
1694
1695
1696/*
1697 * Initially all pages are reserved - free ones are freed
1698 * up by free_all_bootmem() once the early boot process is
1699 * done. Non-atomic initialization, single-pass.
1700 */
1701void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1702		unsigned long start_pfn)
1703{
1704	struct page *page;
1705	unsigned long end_pfn = start_pfn + size;
1706	unsigned long pfn;
1707
1708	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1709		if (!early_pfn_valid(pfn))
1710			continue;
1711		page = pfn_to_page(pfn);
1712		set_page_links(page, zone, nid, pfn);
1713		set_page_count(page, 1);
1714		reset_page_mapcount(page);
1715		SetPageReserved(page);
1716		INIT_LIST_HEAD(&page->lru);
1717#ifdef WANT_PAGE_VIRTUAL
1718		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1719		if (!is_highmem_idx(zone))
1720			set_page_address(page, __va(pfn << PAGE_SHIFT));
1721#endif
1722	}
1723}
1724
1725void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1726				unsigned long size)
1727{
1728	int order;
1729	for (order = 0; order < MAX_ORDER ; order++) {
1730		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1731		zone->free_area[order].nr_free = 0;
1732	}
1733}
1734
1735#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1736void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1737		unsigned long size)
1738{
1739	unsigned long snum = pfn_to_section_nr(pfn);
1740	unsigned long end = pfn_to_section_nr(pfn + size);
1741
1742	if (FLAGS_HAS_NODE)
1743		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1744	else
1745		for (; snum <= end; snum++)
1746			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1747}
1748
1749#ifndef __HAVE_ARCH_MEMMAP_INIT
1750#define memmap_init(size, nid, zone, start_pfn) \
1751	memmap_init_zone((size), (nid), (zone), (start_pfn))
1752#endif
1753
1754static int __devinit zone_batchsize(struct zone *zone)
1755{
1756	int batch;
1757
1758	/*
1759	 * The per-cpu-pages pools are set to around 1000th of the
1760	 * size of the zone.  But no more than 1/2 of a meg.
1761	 *
1762	 * OK, so we don't know how big the cache is.  So guess.
1763	 */
1764	batch = zone->present_pages / 1024;
1765	if (batch * PAGE_SIZE > 512 * 1024)
1766		batch = (512 * 1024) / PAGE_SIZE;
1767	batch /= 4;		/* We effectively *= 4 below */
1768	if (batch < 1)
1769		batch = 1;
1770
1771	/*
1772	 * Clamp the batch to a 2^n - 1 value. Having a power
1773	 * of 2 value was found to be more likely to have
1774	 * suboptimal cache aliasing properties in some cases.
1775	 *
1776	 * For example if 2 tasks are alternately allocating
1777	 * batches of pages, one task can end up with a lot
1778	 * of pages of one half of the possible page colors
1779	 * and the other with pages of the other colors.
1780	 */
1781	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1782
1783	return batch;
1784}
1785
1786inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1787{
1788	struct per_cpu_pages *pcp;
1789
1790	memset(p, 0, sizeof(*p));
1791
1792	pcp = &p->pcp[0];		/* hot */
1793	pcp->count = 0;
1794	pcp->low = 0;
1795	pcp->high = 6 * batch;
1796	pcp->batch = max(1UL, 1 * batch);
1797	INIT_LIST_HEAD(&pcp->list);
1798
1799	pcp = &p->pcp[1];		/* cold*/
1800	pcp->count = 0;
1801	pcp->low = 0;
1802	pcp->high = 2 * batch;
1803	pcp->batch = max(1UL, batch/2);
1804	INIT_LIST_HEAD(&pcp->list);
1805}
1806
1807#ifdef CONFIG_NUMA
1808/*
1809 * Boot pageset table. One per cpu which is going to be used for all
1810 * zones and all nodes. The parameters will be set in such a way
1811 * that an item put on a list will immediately be handed over to
1812 * the buddy list. This is safe since pageset manipulation is done
1813 * with interrupts disabled.
1814 *
1815 * Some NUMA counter updates may also be caught by the boot pagesets.
1816 *
1817 * The boot_pagesets must be kept even after bootup is complete for
1818 * unused processors and/or zones. They do play a role for bootstrapping
1819 * hotplugged processors.
1820 *
1821 * zoneinfo_show() and maybe other functions do
1822 * not check if the processor is online before following the pageset pointer.
1823 * Other parts of the kernel may not check if the zone is available.
1824 */
1825static struct per_cpu_pageset
1826	boot_pageset[NR_CPUS];
1827
1828/*
1829 * Dynamically allocate memory for the
1830 * per cpu pageset array in struct zone.
1831 */
1832static int __devinit process_zones(int cpu)
1833{
1834	struct zone *zone, *dzone;
1835
1836	for_each_zone(zone) {
1837
1838		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1839					 GFP_KERNEL, cpu_to_node(cpu));
1840		if (!zone->pageset[cpu])
1841			goto bad;
1842
1843		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1844	}
1845
1846	return 0;
1847bad:
1848	for_each_zone(dzone) {
1849		if (dzone == zone)
1850			break;
1851		kfree(dzone->pageset[cpu]);
1852		dzone->pageset[cpu] = NULL;
1853	}
1854	return -ENOMEM;
1855}
1856
1857static inline void free_zone_pagesets(int cpu)
1858{
1859#ifdef CONFIG_NUMA
1860	struct zone *zone;
1861
1862	for_each_zone(zone) {
1863		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1864
1865		zone_pcp(zone, cpu) = NULL;
1866		kfree(pset);
1867	}
1868#endif
1869}
1870
1871static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1872		unsigned long action,
1873		void *hcpu)
1874{
1875	int cpu = (long)hcpu;
1876	int ret = NOTIFY_OK;
1877
1878	switch (action) {
1879		case CPU_UP_PREPARE:
1880			if (process_zones(cpu))
1881				ret = NOTIFY_BAD;
1882			break;
1883		case CPU_UP_CANCELED:
1884		case CPU_DEAD:
1885			free_zone_pagesets(cpu);
1886			break;
1887		default:
1888			break;
1889	}
1890	return ret;
1891}
1892
1893static struct notifier_block pageset_notifier =
1894	{ &pageset_cpuup_callback, NULL, 0 };
1895
1896void __init setup_per_cpu_pageset(void)
1897{
1898	int err;
1899
1900	/* Initialize per_cpu_pageset for cpu 0.
1901	 * A cpuup callback will do this for every cpu
1902	 * as it comes online
1903	 */
1904	err = process_zones(smp_processor_id());
1905	BUG_ON(err);
1906	register_cpu_notifier(&pageset_notifier);
1907}
1908
1909#endif
1910
1911static __devinit
1912void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1913{
1914	int i;
1915	struct pglist_data *pgdat = zone->zone_pgdat;
1916
1917	/*
1918	 * The per-page waitqueue mechanism uses hashed waitqueues
1919	 * per zone.
1920	 */
1921	zone->wait_table_size = wait_table_size(zone_size_pages);
1922	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1923	zone->wait_table = (wait_queue_head_t *)
1924		alloc_bootmem_node(pgdat, zone->wait_table_size
1925					* sizeof(wait_queue_head_t));
1926
1927	for(i = 0; i < zone->wait_table_size; ++i)
1928		init_waitqueue_head(zone->wait_table + i);
1929}
1930
1931static __devinit void zone_pcp_init(struct zone *zone)
1932{
1933	int cpu;
1934	unsigned long batch = zone_batchsize(zone);
1935
1936	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1937#ifdef CONFIG_NUMA
1938		/* Early boot. Slab allocator not functional yet */
1939		zone->pageset[cpu] = &boot_pageset[cpu];
1940		setup_pageset(&boot_pageset[cpu],0);
1941#else
1942		setup_pageset(zone_pcp(zone,cpu), batch);
1943#endif
1944	}
1945	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1946		zone->name, zone->present_pages, batch);
1947}
1948
1949static __devinit void init_currently_empty_zone(struct zone *zone,
1950		unsigned long zone_start_pfn, unsigned long size)
1951{
1952	struct pglist_data *pgdat = zone->zone_pgdat;
1953
1954	zone_wait_table_init(zone, size);
1955	pgdat->nr_zones = zone_idx(zone) + 1;
1956
1957	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1958	zone->zone_start_pfn = zone_start_pfn;
1959
1960	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1961
1962	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1963}
1964
1965/*
1966 * Set up the zone data structures:
1967 *   - mark all pages reserved
1968 *   - mark all memory queues empty
1969 *   - clear the memory bitmaps
1970 */
1971static void __init free_area_init_core(struct pglist_data *pgdat,
1972		unsigned long *zones_size, unsigned long *zholes_size)
1973{
1974	unsigned long j;
1975	int nid = pgdat->node_id;
1976	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1977
1978	pgdat_resize_init(pgdat);
1979	pgdat->nr_zones = 0;
1980	init_waitqueue_head(&pgdat->kswapd_wait);
1981	pgdat->kswapd_max_order = 0;
1982
1983	for (j = 0; j < MAX_NR_ZONES; j++) {
1984		struct zone *zone = pgdat->node_zones + j;
1985		unsigned long size, realsize;
1986
1987		realsize = size = zones_size[j];
1988		if (zholes_size)
1989			realsize -= zholes_size[j];
1990
1991		if (j < ZONE_HIGHMEM)
1992			nr_kernel_pages += realsize;
1993		nr_all_pages += realsize;
1994
1995		zone->spanned_pages = size;
1996		zone->present_pages = realsize;
1997		zone->name = zone_names[j];
1998		spin_lock_init(&zone->lock);
1999		spin_lock_init(&zone->lru_lock);
2000		zone_seqlock_init(zone);
2001		zone->zone_pgdat = pgdat;
2002		zone->free_pages = 0;
2003
2004		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2005
2006		zone_pcp_init(zone);
2007		INIT_LIST_HEAD(&zone->active_list);
2008		INIT_LIST_HEAD(&zone->inactive_list);
2009		zone->nr_scan_active = 0;
2010		zone->nr_scan_inactive = 0;
2011		zone->nr_active = 0;
2012		zone->nr_inactive = 0;
2013		atomic_set(&zone->reclaim_in_progress, 0);
2014		if (!size)
2015			continue;
2016
2017		zonetable_add(zone, nid, j, zone_start_pfn, size);
2018		init_currently_empty_zone(zone, zone_start_pfn, size);
2019		zone_start_pfn += size;
2020	}
2021}
2022
2023static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2024{
2025	/* Skip empty nodes */
2026	if (!pgdat->node_spanned_pages)
2027		return;
2028
2029#ifdef CONFIG_FLAT_NODE_MEM_MAP
2030	/* ia64 gets its own node_mem_map, before this, without bootmem */
2031	if (!pgdat->node_mem_map) {
2032		unsigned long size;
2033		struct page *map;
2034
2035		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2036		map = alloc_remap(pgdat->node_id, size);
2037		if (!map)
2038			map = alloc_bootmem_node(pgdat, size);
2039		pgdat->node_mem_map = map;
2040	}
2041#ifdef CONFIG_FLATMEM
2042	/*
2043	 * With no DISCONTIG, the global mem_map is just set as node 0's
2044	 */
2045	if (pgdat == NODE_DATA(0))
2046		mem_map = NODE_DATA(0)->node_mem_map;
2047#endif
2048#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2049}
2050
2051void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2052		unsigned long *zones_size, unsigned long node_start_pfn,
2053		unsigned long *zholes_size)
2054{
2055	pgdat->node_id = nid;
2056	pgdat->node_start_pfn = node_start_pfn;
2057	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2058
2059	alloc_node_mem_map(pgdat);
2060
2061	free_area_init_core(pgdat, zones_size, zholes_size);
2062}
2063
2064#ifndef CONFIG_NEED_MULTIPLE_NODES
2065static bootmem_data_t contig_bootmem_data;
2066struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2067
2068EXPORT_SYMBOL(contig_page_data);
2069#endif
2070
2071void __init free_area_init(unsigned long *zones_size)
2072{
2073	free_area_init_node(0, NODE_DATA(0), zones_size,
2074			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2075}
2076
2077#ifdef CONFIG_PROC_FS
2078
2079#include <linux/seq_file.h>
2080
2081static void *frag_start(struct seq_file *m, loff_t *pos)
2082{
2083	pg_data_t *pgdat;
2084	loff_t node = *pos;
2085
2086	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2087		--node;
2088
2089	return pgdat;
2090}
2091
2092static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2093{
2094	pg_data_t *pgdat = (pg_data_t *)arg;
2095
2096	(*pos)++;
2097	return pgdat->pgdat_next;
2098}
2099
2100static void frag_stop(struct seq_file *m, void *arg)
2101{
2102}
2103
2104/*
2105 * This walks the free areas for each zone.
2106 */
2107static int frag_show(struct seq_file *m, void *arg)
2108{
2109	pg_data_t *pgdat = (pg_data_t *)arg;
2110	struct zone *zone;
2111	struct zone *node_zones = pgdat->node_zones;
2112	unsigned long flags;
2113	int order;
2114
2115	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2116		if (!zone->present_pages)
2117			continue;
2118
2119		spin_lock_irqsave(&zone->lock, flags);
2120		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2121		for (order = 0; order < MAX_ORDER; ++order)
2122			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2123		spin_unlock_irqrestore(&zone->lock, flags);
2124		seq_putc(m, '\n');
2125	}
2126	return 0;
2127}
2128
2129struct seq_operations fragmentation_op = {
2130	.start	= frag_start,
2131	.next	= frag_next,
2132	.stop	= frag_stop,
2133	.show	= frag_show,
2134};
2135
2136/*
2137 * Output information about zones in @pgdat.
2138 */
2139static int zoneinfo_show(struct seq_file *m, void *arg)
2140{
2141	pg_data_t *pgdat = arg;
2142	struct zone *zone;
2143	struct zone *node_zones = pgdat->node_zones;
2144	unsigned long flags;
2145
2146	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2147		int i;
2148
2149		if (!zone->present_pages)
2150			continue;
2151
2152		spin_lock_irqsave(&zone->lock, flags);
2153		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2154		seq_printf(m,
2155			   "\n  pages free     %lu"
2156			   "\n        min      %lu"
2157			   "\n        low      %lu"
2158			   "\n        high     %lu"
2159			   "\n        active   %lu"
2160			   "\n        inactive %lu"
2161			   "\n        scanned  %lu (a: %lu i: %lu)"
2162			   "\n        spanned  %lu"
2163			   "\n        present  %lu",
2164			   zone->free_pages,
2165			   zone->pages_min,
2166			   zone->pages_low,
2167			   zone->pages_high,
2168			   zone->nr_active,
2169			   zone->nr_inactive,
2170			   zone->pages_scanned,
2171			   zone->nr_scan_active, zone->nr_scan_inactive,
2172			   zone->spanned_pages,
2173			   zone->present_pages);
2174		seq_printf(m,
2175			   "\n        protection: (%lu",
2176			   zone->lowmem_reserve[0]);
2177		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2178			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2179		seq_printf(m,
2180			   ")"
2181			   "\n  pagesets");
2182		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2183			struct per_cpu_pageset *pageset;
2184			int j;
2185
2186			pageset = zone_pcp(zone, i);
2187			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2188				if (pageset->pcp[j].count)
2189					break;
2190			}
2191			if (j == ARRAY_SIZE(pageset->pcp))
2192				continue;
2193			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2194				seq_printf(m,
2195					   "\n    cpu: %i pcp: %i"
2196					   "\n              count: %i"
2197					   "\n              low:   %i"
2198					   "\n              high:  %i"
2199					   "\n              batch: %i",
2200					   i, j,
2201					   pageset->pcp[j].count,
2202					   pageset->pcp[j].low,
2203					   pageset->pcp[j].high,
2204					   pageset->pcp[j].batch);
2205			}
2206#ifdef CONFIG_NUMA
2207			seq_printf(m,
2208				   "\n            numa_hit:       %lu"
2209				   "\n            numa_miss:      %lu"
2210				   "\n            numa_foreign:   %lu"
2211				   "\n            interleave_hit: %lu"
2212				   "\n            local_node:     %lu"
2213				   "\n            other_node:     %lu",
2214				   pageset->numa_hit,
2215				   pageset->numa_miss,
2216				   pageset->numa_foreign,
2217				   pageset->interleave_hit,
2218				   pageset->local_node,
2219				   pageset->other_node);
2220#endif
2221		}
2222		seq_printf(m,
2223			   "\n  all_unreclaimable: %u"
2224			   "\n  prev_priority:     %i"
2225			   "\n  temp_priority:     %i"
2226			   "\n  start_pfn:         %lu",
2227			   zone->all_unreclaimable,
2228			   zone->prev_priority,
2229			   zone->temp_priority,
2230			   zone->zone_start_pfn);
2231		spin_unlock_irqrestore(&zone->lock, flags);
2232		seq_putc(m, '\n');
2233	}
2234	return 0;
2235}
2236
2237struct seq_operations zoneinfo_op = {
2238	.start	= frag_start, /* iterate over all zones. The same as in
2239			       * fragmentation. */
2240	.next	= frag_next,
2241	.stop	= frag_stop,
2242	.show	= zoneinfo_show,
2243};
2244
2245static char *vmstat_text[] = {
2246	"nr_dirty",
2247	"nr_writeback",
2248	"nr_unstable",
2249	"nr_page_table_pages",
2250	"nr_mapped",
2251	"nr_slab",
2252
2253	"pgpgin",
2254	"pgpgout",
2255	"pswpin",
2256	"pswpout",
2257	"pgalloc_high",
2258
2259	"pgalloc_normal",
2260	"pgalloc_dma",
2261	"pgfree",
2262	"pgactivate",
2263	"pgdeactivate",
2264
2265	"pgfault",
2266	"pgmajfault",
2267	"pgrefill_high",
2268	"pgrefill_normal",
2269	"pgrefill_dma",
2270
2271	"pgsteal_high",
2272	"pgsteal_normal",
2273	"pgsteal_dma",
2274	"pgscan_kswapd_high",
2275	"pgscan_kswapd_normal",
2276
2277	"pgscan_kswapd_dma",
2278	"pgscan_direct_high",
2279	"pgscan_direct_normal",
2280	"pgscan_direct_dma",
2281	"pginodesteal",
2282
2283	"slabs_scanned",
2284	"kswapd_steal",
2285	"kswapd_inodesteal",
2286	"pageoutrun",
2287	"allocstall",
2288
2289	"pgrotated",
2290	"nr_bounce",
2291};
2292
2293static void *vmstat_start(struct seq_file *m, loff_t *pos)
2294{
2295	struct page_state *ps;
2296
2297	if (*pos >= ARRAY_SIZE(vmstat_text))
2298		return NULL;
2299
2300	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2301	m->private = ps;
2302	if (!ps)
2303		return ERR_PTR(-ENOMEM);
2304	get_full_page_state(ps);
2305	ps->pgpgin /= 2;		/* sectors -> kbytes */
2306	ps->pgpgout /= 2;
2307	return (unsigned long *)ps + *pos;
2308}
2309
2310static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2311{
2312	(*pos)++;
2313	if (*pos >= ARRAY_SIZE(vmstat_text))
2314		return NULL;
2315	return (unsigned long *)m->private + *pos;
2316}
2317
2318static int vmstat_show(struct seq_file *m, void *arg)
2319{
2320	unsigned long *l = arg;
2321	unsigned long off = l - (unsigned long *)m->private;
2322
2323	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2324	return 0;
2325}
2326
2327static void vmstat_stop(struct seq_file *m, void *arg)
2328{
2329	kfree(m->private);
2330	m->private = NULL;
2331}
2332
2333struct seq_operations vmstat_op = {
2334	.start	= vmstat_start,
2335	.next	= vmstat_next,
2336	.stop	= vmstat_stop,
2337	.show	= vmstat_show,
2338};
2339
2340#endif /* CONFIG_PROC_FS */
2341
2342#ifdef CONFIG_HOTPLUG_CPU
2343static int page_alloc_cpu_notify(struct notifier_block *self,
2344				 unsigned long action, void *hcpu)
2345{
2346	int cpu = (unsigned long)hcpu;
2347	long *count;
2348	unsigned long *src, *dest;
2349
2350	if (action == CPU_DEAD) {
2351		int i;
2352
2353		/* Drain local pagecache count. */
2354		count = &per_cpu(nr_pagecache_local, cpu);
2355		atomic_add(*count, &nr_pagecache);
2356		*count = 0;
2357		local_irq_disable();
2358		__drain_pages(cpu);
2359
2360		/* Add dead cpu's page_states to our own. */
2361		dest = (unsigned long *)&__get_cpu_var(page_states);
2362		src = (unsigned long *)&per_cpu(page_states, cpu);
2363
2364		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2365				i++) {
2366			dest[i] += src[i];
2367			src[i] = 0;
2368		}
2369
2370		local_irq_enable();
2371	}
2372	return NOTIFY_OK;
2373}
2374#endif /* CONFIG_HOTPLUG_CPU */
2375
2376void __init page_alloc_init(void)
2377{
2378	hotcpu_notifier(page_alloc_cpu_notify, 0);
2379}
2380
2381/*
2382 * setup_per_zone_lowmem_reserve - called whenever
2383 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2384 *	has a correct pages reserved value, so an adequate number of
2385 *	pages are left in the zone after a successful __alloc_pages().
2386 */
2387static void setup_per_zone_lowmem_reserve(void)
2388{
2389	struct pglist_data *pgdat;
2390	int j, idx;
2391
2392	for_each_pgdat(pgdat) {
2393		for (j = 0; j < MAX_NR_ZONES; j++) {
2394			struct zone *zone = pgdat->node_zones + j;
2395			unsigned long present_pages = zone->present_pages;
2396
2397			zone->lowmem_reserve[j] = 0;
2398
2399			for (idx = j-1; idx >= 0; idx--) {
2400				struct zone *lower_zone;
2401
2402				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2403					sysctl_lowmem_reserve_ratio[idx] = 1;
2404
2405				lower_zone = pgdat->node_zones + idx;
2406				lower_zone->lowmem_reserve[j] = present_pages /
2407					sysctl_lowmem_reserve_ratio[idx];
2408				present_pages += lower_zone->present_pages;
2409			}
2410		}
2411	}
2412}
2413
2414/*
2415 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2416 *	that the pages_{min,low,high} values for each zone are set correctly
2417 *	with respect to min_free_kbytes.
2418 */
2419void setup_per_zone_pages_min(void)
2420{
2421	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2422	unsigned long lowmem_pages = 0;
2423	struct zone *zone;
2424	unsigned long flags;
2425
2426	/* Calculate total number of !ZONE_HIGHMEM pages */
2427	for_each_zone(zone) {
2428		if (!is_highmem(zone))
2429			lowmem_pages += zone->present_pages;
2430	}
2431
2432	for_each_zone(zone) {
2433		unsigned long tmp;
2434		spin_lock_irqsave(&zone->lru_lock, flags);
2435		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2436		if (is_highmem(zone)) {
2437			/*
2438			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2439			 * need highmem pages, so cap pages_min to a small
2440			 * value here.
2441			 *
2442			 * The (pages_high-pages_low) and (pages_low-pages_min)
2443			 * deltas controls asynch page reclaim, and so should
2444			 * not be capped for highmem.
2445			 */
2446			int min_pages;
2447
2448			min_pages = zone->present_pages / 1024;
2449			if (min_pages < SWAP_CLUSTER_MAX)
2450				min_pages = SWAP_CLUSTER_MAX;
2451			if (min_pages > 128)
2452				min_pages = 128;
2453			zone->pages_min = min_pages;
2454		} else {
2455			/*
2456			 * If it's a lowmem zone, reserve a number of pages
2457			 * proportionate to the zone's size.
2458			 */
2459			zone->pages_min = tmp;
2460		}
2461
2462		zone->pages_low   = zone->pages_min + tmp / 4;
2463		zone->pages_high  = zone->pages_min + tmp / 2;
2464		spin_unlock_irqrestore(&zone->lru_lock, flags);
2465	}
2466}
2467
2468/*
2469 * Initialise min_free_kbytes.
2470 *
2471 * For small machines we want it small (128k min).  For large machines
2472 * we want it large (64MB max).  But it is not linear, because network
2473 * bandwidth does not increase linearly with machine size.  We use
2474 *
2475 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2476 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2477 *
2478 * which yields
2479 *
2480 * 16MB:	512k
2481 * 32MB:	724k
2482 * 64MB:	1024k
2483 * 128MB:	1448k
2484 * 256MB:	2048k
2485 * 512MB:	2896k
2486 * 1024MB:	4096k
2487 * 2048MB:	5792k
2488 * 4096MB:	8192k
2489 * 8192MB:	11584k
2490 * 16384MB:	16384k
2491 */
2492static int __init init_per_zone_pages_min(void)
2493{
2494	unsigned long lowmem_kbytes;
2495
2496	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2497
2498	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2499	if (min_free_kbytes < 128)
2500		min_free_kbytes = 128;
2501	if (min_free_kbytes > 65536)
2502		min_free_kbytes = 65536;
2503	setup_per_zone_pages_min();
2504	setup_per_zone_lowmem_reserve();
2505	return 0;
2506}
2507module_init(init_per_zone_pages_min)
2508
2509/*
2510 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2511 *	that we can call two helper functions whenever min_free_kbytes
2512 *	changes.
2513 */
2514int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2515	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2516{
2517	proc_dointvec(table, write, file, buffer, length, ppos);
2518	setup_per_zone_pages_min();
2519	return 0;
2520}
2521
2522/*
2523 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2524 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2525 *	whenever sysctl_lowmem_reserve_ratio changes.
2526 *
2527 * The reserve ratio obviously has absolutely no relation with the
2528 * pages_min watermarks. The lowmem reserve ratio can only make sense
2529 * if in function of the boot time zone sizes.
2530 */
2531int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2532	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2533{
2534	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2535	setup_per_zone_lowmem_reserve();
2536	return 0;
2537}
2538
2539__initdata int hashdist = HASHDIST_DEFAULT;
2540
2541#ifdef CONFIG_NUMA
2542static int __init set_hashdist(char *str)
2543{
2544	if (!str)
2545		return 0;
2546	hashdist = simple_strtoul(str, &str, 0);
2547	return 1;
2548}
2549__setup("hashdist=", set_hashdist);
2550#endif
2551
2552/*
2553 * allocate a large system hash table from bootmem
2554 * - it is assumed that the hash table must contain an exact power-of-2
2555 *   quantity of entries
2556 * - limit is the number of hash buckets, not the total allocation size
2557 */
2558void *__init alloc_large_system_hash(const char *tablename,
2559				     unsigned long bucketsize,
2560				     unsigned long numentries,
2561				     int scale,
2562				     int flags,
2563				     unsigned int *_hash_shift,
2564				     unsigned int *_hash_mask,
2565				     unsigned long limit)
2566{
2567	unsigned long long max = limit;
2568	unsigned long log2qty, size;
2569	void *table = NULL;
2570
2571	/* allow the kernel cmdline to have a say */
2572	if (!numentries) {
2573		/* round applicable memory size up to nearest megabyte */
2574		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2575		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2576		numentries >>= 20 - PAGE_SHIFT;
2577		numentries <<= 20 - PAGE_SHIFT;
2578
2579		/* limit to 1 bucket per 2^scale bytes of low memory */
2580		if (scale > PAGE_SHIFT)
2581			numentries >>= (scale - PAGE_SHIFT);
2582		else
2583			numentries <<= (PAGE_SHIFT - scale);
2584	}
2585	/* rounded up to nearest power of 2 in size */
2586	numentries = 1UL << (long_log2(numentries) + 1);
2587
2588	/* limit allocation size to 1/16 total memory by default */
2589	if (max == 0) {
2590		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2591		do_div(max, bucketsize);
2592	}
2593
2594	if (numentries > max)
2595		numentries = max;
2596
2597	log2qty = long_log2(numentries);
2598
2599	do {
2600		size = bucketsize << log2qty;
2601		if (flags & HASH_EARLY)
2602			table = alloc_bootmem(size);
2603		else if (hashdist)
2604			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2605		else {
2606			unsigned long order;
2607			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2608				;
2609			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2610		}
2611	} while (!table && size > PAGE_SIZE && --log2qty);
2612
2613	if (!table)
2614		panic("Failed to allocate %s hash table\n", tablename);
2615
2616	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2617	       tablename,
2618	       (1U << log2qty),
2619	       long_log2(size) - PAGE_SHIFT,
2620	       size);
2621
2622	if (_hash_shift)
2623		*_hash_shift = log2qty;
2624	if (_hash_mask)
2625		*_hash_mask = (1 << log2qty) - 1;
2626
2627	return table;
2628}
2629