page_alloc.c revision b2e185384f534781fd22f5ce170b2ad26f97df70
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/memcontrol.h>
48#include <linux/debugobjects.h>
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52#include "internal.h"
53
54/*
55 * Array of node states.
56 */
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58	[N_POSSIBLE] = NODE_MASK_ALL,
59	[N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65	[N_CPU] = { { [0] = 1UL } },
66#endif	/* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
70unsigned long totalram_pages __read_mostly;
71unsigned long totalreserve_pages __read_mostly;
72long nr_swap_pages;
73int percpu_pagelist_fraction;
74
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
79static void __free_pages_ok(struct page *page, unsigned int order);
80
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 *	1G machine -> (16M dma, 784M normal, 224M high)
85 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93#ifdef CONFIG_ZONE_DMA
94	 256,
95#endif
96#ifdef CONFIG_ZONE_DMA32
97	 256,
98#endif
99#ifdef CONFIG_HIGHMEM
100	 32,
101#endif
102	 32,
103};
104
105EXPORT_SYMBOL(totalram_pages);
106
107static char * const zone_names[MAX_NR_ZONES] = {
108#ifdef CONFIG_ZONE_DMA
109	 "DMA",
110#endif
111#ifdef CONFIG_ZONE_DMA32
112	 "DMA32",
113#endif
114	 "Normal",
115#ifdef CONFIG_HIGHMEM
116	 "HighMem",
117#endif
118	 "Movable",
119};
120
121int min_free_kbytes = 1024;
122
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
125static unsigned long __meminitdata dma_reserve;
126
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128  /*
129   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130   * ranges of memory (RAM) that may be registered with add_active_range().
131   * Ranges passed to add_active_range() will be merged if possible
132   * so the number of times add_active_range() can be called is
133   * related to the number of nodes and the number of holes
134   */
135  #ifdef CONFIG_MAX_ACTIVE_REGIONS
136    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138  #else
139    #if MAX_NUMNODES >= 32
140      /* If there can be many nodes, allow up to 50 holes per node */
141      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142    #else
143      /* By default, allow up to 256 distinct regions */
144      #define MAX_ACTIVE_REGIONS 256
145    #endif
146  #endif
147
148  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149  static int __meminitdata nr_nodemap_entries;
150  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156  static unsigned long __initdata required_kernelcore;
157  static unsigned long __initdata required_movablecore;
158  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161  int movable_zone;
162  EXPORT_SYMBOL(movable_zone);
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
170int page_group_by_mobility_disabled __read_mostly;
171
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174	set_pageblock_flags_group(page, (unsigned long)migratetype,
175					PB_migrate, PB_migrate_end);
176}
177
178#ifdef CONFIG_DEBUG_VM
179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180{
181	int ret = 0;
182	unsigned seq;
183	unsigned long pfn = page_to_pfn(page);
184
185	do {
186		seq = zone_span_seqbegin(zone);
187		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188			ret = 1;
189		else if (pfn < zone->zone_start_pfn)
190			ret = 1;
191	} while (zone_span_seqretry(zone, seq));
192
193	return ret;
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
198	if (!pfn_valid_within(page_to_pfn(page)))
199		return 0;
200	if (zone != page_zone(page))
201		return 0;
202
203	return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210	if (page_outside_zone_boundaries(zone, page))
211		return 1;
212	if (!page_is_consistent(zone, page))
213		return 1;
214
215	return 0;
216}
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220	return 0;
221}
222#endif
223
224static void bad_page(struct page *page)
225{
226	void *pc = page_get_page_cgroup(page);
227
228	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230		current->comm, page, (int)(2*sizeof(unsigned long)),
231		(unsigned long)page->flags, page->mapping,
232		page_mapcount(page), page_count(page));
233	if (pc) {
234		printk(KERN_EMERG "cgroup:%p\n", pc);
235		page_reset_bad_cgroup(page);
236	}
237	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238		KERN_EMERG "Backtrace:\n");
239	dump_stack();
240	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241	set_page_count(page, 0);
242	reset_page_mapcount(page);
243	page->mapping = NULL;
244	add_taint(TAINT_BAD_PAGE);
245}
246
247/*
248 * Higher-order pages are called "compound pages".  They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set.  All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function.  Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262static void free_compound_page(struct page *page)
263{
264	__free_pages_ok(page, compound_order(page));
265}
266
267void prep_compound_page(struct page *page, unsigned long order)
268{
269	int i;
270	int nr_pages = 1 << order;
271	struct page *p = page + 1;
272
273	set_compound_page_dtor(page, free_compound_page);
274	set_compound_order(page, order);
275	__SetPageHead(page);
276	for (i = 1; i < nr_pages; i++, p++) {
277		if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
278			p = pfn_to_page(page_to_pfn(page) + i);
279		__SetPageTail(p);
280		p->first_page = page;
281	}
282}
283
284static void destroy_compound_page(struct page *page, unsigned long order)
285{
286	int i;
287	int nr_pages = 1 << order;
288	struct page *p = page + 1;
289
290	if (unlikely(compound_order(page) != order))
291		bad_page(page);
292
293	if (unlikely(!PageHead(page)))
294			bad_page(page);
295	__ClearPageHead(page);
296	for (i = 1; i < nr_pages; i++, p++) {
297		if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
298			p = pfn_to_page(page_to_pfn(page) + i);
299
300		if (unlikely(!PageTail(p) |
301				(p->first_page != page)))
302			bad_page(page);
303		__ClearPageTail(p);
304	}
305}
306
307static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
308{
309	int i;
310
311	/*
312	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
313	 * and __GFP_HIGHMEM from hard or soft interrupt context.
314	 */
315	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
316	for (i = 0; i < (1 << order); i++)
317		clear_highpage(page + i);
318}
319
320static inline void set_page_order(struct page *page, int order)
321{
322	set_page_private(page, order);
323	__SetPageBuddy(page);
324}
325
326static inline void rmv_page_order(struct page *page)
327{
328	__ClearPageBuddy(page);
329	set_page_private(page, 0);
330}
331
332/*
333 * Locate the struct page for both the matching buddy in our
334 * pair (buddy1) and the combined O(n+1) page they form (page).
335 *
336 * 1) Any buddy B1 will have an order O twin B2 which satisfies
337 * the following equation:
338 *     B2 = B1 ^ (1 << O)
339 * For example, if the starting buddy (buddy2) is #8 its order
340 * 1 buddy is #10:
341 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
342 *
343 * 2) Any buddy B will have an order O+1 parent P which
344 * satisfies the following equation:
345 *     P = B & ~(1 << O)
346 *
347 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
348 */
349static inline struct page *
350__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
351{
352	unsigned long buddy_idx = page_idx ^ (1 << order);
353
354	return page + (buddy_idx - page_idx);
355}
356
357static inline unsigned long
358__find_combined_index(unsigned long page_idx, unsigned int order)
359{
360	return (page_idx & ~(1 << order));
361}
362
363/*
364 * This function checks whether a page is free && is the buddy
365 * we can do coalesce a page and its buddy if
366 * (a) the buddy is not in a hole &&
367 * (b) the buddy is in the buddy system &&
368 * (c) a page and its buddy have the same order &&
369 * (d) a page and its buddy are in the same zone.
370 *
371 * For recording whether a page is in the buddy system, we use PG_buddy.
372 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
373 *
374 * For recording page's order, we use page_private(page).
375 */
376static inline int page_is_buddy(struct page *page, struct page *buddy,
377								int order)
378{
379	if (!pfn_valid_within(page_to_pfn(buddy)))
380		return 0;
381
382	if (page_zone_id(page) != page_zone_id(buddy))
383		return 0;
384
385	if (PageBuddy(buddy) && page_order(buddy) == order) {
386		BUG_ON(page_count(buddy) != 0);
387		return 1;
388	}
389	return 0;
390}
391
392/*
393 * Freeing function for a buddy system allocator.
394 *
395 * The concept of a buddy system is to maintain direct-mapped table
396 * (containing bit values) for memory blocks of various "orders".
397 * The bottom level table contains the map for the smallest allocatable
398 * units of memory (here, pages), and each level above it describes
399 * pairs of units from the levels below, hence, "buddies".
400 * At a high level, all that happens here is marking the table entry
401 * at the bottom level available, and propagating the changes upward
402 * as necessary, plus some accounting needed to play nicely with other
403 * parts of the VM system.
404 * At each level, we keep a list of pages, which are heads of continuous
405 * free pages of length of (1 << order) and marked with PG_buddy. Page's
406 * order is recorded in page_private(page) field.
407 * So when we are allocating or freeing one, we can derive the state of the
408 * other.  That is, if we allocate a small block, and both were
409 * free, the remainder of the region must be split into blocks.
410 * If a block is freed, and its buddy is also free, then this
411 * triggers coalescing into a block of larger size.
412 *
413 * -- wli
414 */
415
416static inline void __free_one_page(struct page *page,
417		struct zone *zone, unsigned int order)
418{
419	unsigned long page_idx;
420	int order_size = 1 << order;
421	int migratetype = get_pageblock_migratetype(page);
422
423	if (unlikely(PageCompound(page)))
424		destroy_compound_page(page, order);
425
426	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
427
428	VM_BUG_ON(page_idx & (order_size - 1));
429	VM_BUG_ON(bad_range(zone, page));
430
431	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
432	while (order < MAX_ORDER-1) {
433		unsigned long combined_idx;
434		struct page *buddy;
435
436		buddy = __page_find_buddy(page, page_idx, order);
437		if (!page_is_buddy(page, buddy, order))
438			break;
439
440		/* Our buddy is free, merge with it and move up one order. */
441		list_del(&buddy->lru);
442		zone->free_area[order].nr_free--;
443		rmv_page_order(buddy);
444		combined_idx = __find_combined_index(page_idx, order);
445		page = page + (combined_idx - page_idx);
446		page_idx = combined_idx;
447		order++;
448	}
449	set_page_order(page, order);
450	list_add(&page->lru,
451		&zone->free_area[order].free_list[migratetype]);
452	zone->free_area[order].nr_free++;
453}
454
455static inline int free_pages_check(struct page *page)
456{
457	if (unlikely(page_mapcount(page) |
458		(page->mapping != NULL)  |
459		(page_get_page_cgroup(page) != NULL) |
460		(page_count(page) != 0)  |
461		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
462		bad_page(page);
463	if (PageDirty(page))
464		__ClearPageDirty(page);
465	if (PageSwapBacked(page))
466		__ClearPageSwapBacked(page);
467	/*
468	 * For now, we report if PG_reserved was found set, but do not
469	 * clear it, and do not free the page.  But we shall soon need
470	 * to do more, for when the ZERO_PAGE count wraps negative.
471	 */
472	return PageReserved(page);
473}
474
475/*
476 * Frees a list of pages.
477 * Assumes all pages on list are in same zone, and of same order.
478 * count is the number of pages to free.
479 *
480 * If the zone was previously in an "all pages pinned" state then look to
481 * see if this freeing clears that state.
482 *
483 * And clear the zone's pages_scanned counter, to hold off the "all pages are
484 * pinned" detection logic.
485 */
486static void free_pages_bulk(struct zone *zone, int count,
487					struct list_head *list, int order)
488{
489	spin_lock(&zone->lock);
490	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
491	zone->pages_scanned = 0;
492	while (count--) {
493		struct page *page;
494
495		VM_BUG_ON(list_empty(list));
496		page = list_entry(list->prev, struct page, lru);
497		/* have to delete it as __free_one_page list manipulates */
498		list_del(&page->lru);
499		__free_one_page(page, zone, order);
500	}
501	spin_unlock(&zone->lock);
502}
503
504static void free_one_page(struct zone *zone, struct page *page, int order)
505{
506	spin_lock(&zone->lock);
507	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
508	zone->pages_scanned = 0;
509	__free_one_page(page, zone, order);
510	spin_unlock(&zone->lock);
511}
512
513static void __free_pages_ok(struct page *page, unsigned int order)
514{
515	unsigned long flags;
516	int i;
517	int reserved = 0;
518
519	for (i = 0 ; i < (1 << order) ; ++i)
520		reserved += free_pages_check(page + i);
521	if (reserved)
522		return;
523
524	if (!PageHighMem(page)) {
525		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
526		debug_check_no_obj_freed(page_address(page),
527					   PAGE_SIZE << order);
528	}
529	arch_free_page(page, order);
530	kernel_map_pages(page, 1 << order, 0);
531
532	local_irq_save(flags);
533	__count_vm_events(PGFREE, 1 << order);
534	free_one_page(page_zone(page), page, order);
535	local_irq_restore(flags);
536}
537
538/*
539 * permit the bootmem allocator to evade page validation on high-order frees
540 */
541void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
542{
543	if (order == 0) {
544		__ClearPageReserved(page);
545		set_page_count(page, 0);
546		set_page_refcounted(page);
547		__free_page(page);
548	} else {
549		int loop;
550
551		prefetchw(page);
552		for (loop = 0; loop < BITS_PER_LONG; loop++) {
553			struct page *p = &page[loop];
554
555			if (loop + 1 < BITS_PER_LONG)
556				prefetchw(p + 1);
557			__ClearPageReserved(p);
558			set_page_count(p, 0);
559		}
560
561		set_page_refcounted(page);
562		__free_pages(page, order);
563	}
564}
565
566
567/*
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
578 *
579 * -- wli
580 */
581static inline void expand(struct zone *zone, struct page *page,
582	int low, int high, struct free_area *area,
583	int migratetype)
584{
585	unsigned long size = 1 << high;
586
587	while (high > low) {
588		area--;
589		high--;
590		size >>= 1;
591		VM_BUG_ON(bad_range(zone, &page[size]));
592		list_add(&page[size].lru, &area->free_list[migratetype]);
593		area->nr_free++;
594		set_page_order(&page[size], high);
595	}
596}
597
598/*
599 * This page is about to be returned from the page allocator
600 */
601static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602{
603	if (unlikely(page_mapcount(page) |
604		(page->mapping != NULL)  |
605		(page_get_page_cgroup(page) != NULL) |
606		(page_count(page) != 0)  |
607		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
608		bad_page(page);
609
610	/*
611	 * For now, we report if PG_reserved was found set, but do not
612	 * clear it, and do not allocate the page: as a safety net.
613	 */
614	if (PageReserved(page))
615		return 1;
616
617	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
618			1 << PG_referenced | 1 << PG_arch_1 |
619			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
620	set_page_private(page, 0);
621	set_page_refcounted(page);
622
623	arch_alloc_page(page, order);
624	kernel_map_pages(page, 1 << order, 1);
625
626	if (gfp_flags & __GFP_ZERO)
627		prep_zero_page(page, order, gfp_flags);
628
629	if (order && (gfp_flags & __GFP_COMP))
630		prep_compound_page(page, order);
631
632	return 0;
633}
634
635/*
636 * Go through the free lists for the given migratetype and remove
637 * the smallest available page from the freelists
638 */
639static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
640						int migratetype)
641{
642	unsigned int current_order;
643	struct free_area * area;
644	struct page *page;
645
646	/* Find a page of the appropriate size in the preferred list */
647	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
648		area = &(zone->free_area[current_order]);
649		if (list_empty(&area->free_list[migratetype]))
650			continue;
651
652		page = list_entry(area->free_list[migratetype].next,
653							struct page, lru);
654		list_del(&page->lru);
655		rmv_page_order(page);
656		area->nr_free--;
657		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658		expand(zone, page, order, current_order, area, migratetype);
659		return page;
660	}
661
662	return NULL;
663}
664
665
666/*
667 * This array describes the order lists are fallen back to when
668 * the free lists for the desirable migrate type are depleted
669 */
670static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
671	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
672	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
673	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
674	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
675};
676
677/*
678 * Move the free pages in a range to the free lists of the requested type.
679 * Note that start_page and end_pages are not aligned on a pageblock
680 * boundary. If alignment is required, use move_freepages_block()
681 */
682static int move_freepages(struct zone *zone,
683			  struct page *start_page, struct page *end_page,
684			  int migratetype)
685{
686	struct page *page;
687	unsigned long order;
688	int pages_moved = 0;
689
690#ifndef CONFIG_HOLES_IN_ZONE
691	/*
692	 * page_zone is not safe to call in this context when
693	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
694	 * anyway as we check zone boundaries in move_freepages_block().
695	 * Remove at a later date when no bug reports exist related to
696	 * grouping pages by mobility
697	 */
698	BUG_ON(page_zone(start_page) != page_zone(end_page));
699#endif
700
701	for (page = start_page; page <= end_page;) {
702		/* Make sure we are not inadvertently changing nodes */
703		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
704
705		if (!pfn_valid_within(page_to_pfn(page))) {
706			page++;
707			continue;
708		}
709
710		if (!PageBuddy(page)) {
711			page++;
712			continue;
713		}
714
715		order = page_order(page);
716		list_del(&page->lru);
717		list_add(&page->lru,
718			&zone->free_area[order].free_list[migratetype]);
719		page += 1 << order;
720		pages_moved += 1 << order;
721	}
722
723	return pages_moved;
724}
725
726static int move_freepages_block(struct zone *zone, struct page *page,
727				int migratetype)
728{
729	unsigned long start_pfn, end_pfn;
730	struct page *start_page, *end_page;
731
732	start_pfn = page_to_pfn(page);
733	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
734	start_page = pfn_to_page(start_pfn);
735	end_page = start_page + pageblock_nr_pages - 1;
736	end_pfn = start_pfn + pageblock_nr_pages - 1;
737
738	/* Do not cross zone boundaries */
739	if (start_pfn < zone->zone_start_pfn)
740		start_page = page;
741	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
742		return 0;
743
744	return move_freepages(zone, start_page, end_page, migratetype);
745}
746
747/* Remove an element from the buddy allocator from the fallback list */
748static struct page *__rmqueue_fallback(struct zone *zone, int order,
749						int start_migratetype)
750{
751	struct free_area * area;
752	int current_order;
753	struct page *page;
754	int migratetype, i;
755
756	/* Find the largest possible block of pages in the other list */
757	for (current_order = MAX_ORDER-1; current_order >= order;
758						--current_order) {
759		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
760			migratetype = fallbacks[start_migratetype][i];
761
762			/* MIGRATE_RESERVE handled later if necessary */
763			if (migratetype == MIGRATE_RESERVE)
764				continue;
765
766			area = &(zone->free_area[current_order]);
767			if (list_empty(&area->free_list[migratetype]))
768				continue;
769
770			page = list_entry(area->free_list[migratetype].next,
771					struct page, lru);
772			area->nr_free--;
773
774			/*
775			 * If breaking a large block of pages, move all free
776			 * pages to the preferred allocation list. If falling
777			 * back for a reclaimable kernel allocation, be more
778			 * agressive about taking ownership of free pages
779			 */
780			if (unlikely(current_order >= (pageblock_order >> 1)) ||
781					start_migratetype == MIGRATE_RECLAIMABLE) {
782				unsigned long pages;
783				pages = move_freepages_block(zone, page,
784								start_migratetype);
785
786				/* Claim the whole block if over half of it is free */
787				if (pages >= (1 << (pageblock_order-1)))
788					set_pageblock_migratetype(page,
789								start_migratetype);
790
791				migratetype = start_migratetype;
792			}
793
794			/* Remove the page from the freelists */
795			list_del(&page->lru);
796			rmv_page_order(page);
797			__mod_zone_page_state(zone, NR_FREE_PAGES,
798							-(1UL << order));
799
800			if (current_order == pageblock_order)
801				set_pageblock_migratetype(page,
802							start_migratetype);
803
804			expand(zone, page, order, current_order, area, migratetype);
805			return page;
806		}
807	}
808
809	/* Use MIGRATE_RESERVE rather than fail an allocation */
810	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
811}
812
813/*
814 * Do the hard work of removing an element from the buddy allocator.
815 * Call me with the zone->lock already held.
816 */
817static struct page *__rmqueue(struct zone *zone, unsigned int order,
818						int migratetype)
819{
820	struct page *page;
821
822	page = __rmqueue_smallest(zone, order, migratetype);
823
824	if (unlikely(!page))
825		page = __rmqueue_fallback(zone, order, migratetype);
826
827	return page;
828}
829
830/*
831 * Obtain a specified number of elements from the buddy allocator, all under
832 * a single hold of the lock, for efficiency.  Add them to the supplied list.
833 * Returns the number of new pages which were placed at *list.
834 */
835static int rmqueue_bulk(struct zone *zone, unsigned int order,
836			unsigned long count, struct list_head *list,
837			int migratetype)
838{
839	int i;
840
841	spin_lock(&zone->lock);
842	for (i = 0; i < count; ++i) {
843		struct page *page = __rmqueue(zone, order, migratetype);
844		if (unlikely(page == NULL))
845			break;
846
847		/*
848		 * Split buddy pages returned by expand() are received here
849		 * in physical page order. The page is added to the callers and
850		 * list and the list head then moves forward. From the callers
851		 * perspective, the linked list is ordered by page number in
852		 * some conditions. This is useful for IO devices that can
853		 * merge IO requests if the physical pages are ordered
854		 * properly.
855		 */
856		list_add(&page->lru, list);
857		set_page_private(page, migratetype);
858		list = &page->lru;
859	}
860	spin_unlock(&zone->lock);
861	return i;
862}
863
864#ifdef CONFIG_NUMA
865/*
866 * Called from the vmstat counter updater to drain pagesets of this
867 * currently executing processor on remote nodes after they have
868 * expired.
869 *
870 * Note that this function must be called with the thread pinned to
871 * a single processor.
872 */
873void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
874{
875	unsigned long flags;
876	int to_drain;
877
878	local_irq_save(flags);
879	if (pcp->count >= pcp->batch)
880		to_drain = pcp->batch;
881	else
882		to_drain = pcp->count;
883	free_pages_bulk(zone, to_drain, &pcp->list, 0);
884	pcp->count -= to_drain;
885	local_irq_restore(flags);
886}
887#endif
888
889/*
890 * Drain pages of the indicated processor.
891 *
892 * The processor must either be the current processor and the
893 * thread pinned to the current processor or a processor that
894 * is not online.
895 */
896static void drain_pages(unsigned int cpu)
897{
898	unsigned long flags;
899	struct zone *zone;
900
901	for_each_zone(zone) {
902		struct per_cpu_pageset *pset;
903		struct per_cpu_pages *pcp;
904
905		if (!populated_zone(zone))
906			continue;
907
908		pset = zone_pcp(zone, cpu);
909
910		pcp = &pset->pcp;
911		local_irq_save(flags);
912		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
913		pcp->count = 0;
914		local_irq_restore(flags);
915	}
916}
917
918/*
919 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
920 */
921void drain_local_pages(void *arg)
922{
923	drain_pages(smp_processor_id());
924}
925
926/*
927 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
928 */
929void drain_all_pages(void)
930{
931	on_each_cpu(drain_local_pages, NULL, 1);
932}
933
934#ifdef CONFIG_HIBERNATION
935
936void mark_free_pages(struct zone *zone)
937{
938	unsigned long pfn, max_zone_pfn;
939	unsigned long flags;
940	int order, t;
941	struct list_head *curr;
942
943	if (!zone->spanned_pages)
944		return;
945
946	spin_lock_irqsave(&zone->lock, flags);
947
948	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
949	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
950		if (pfn_valid(pfn)) {
951			struct page *page = pfn_to_page(pfn);
952
953			if (!swsusp_page_is_forbidden(page))
954				swsusp_unset_page_free(page);
955		}
956
957	for_each_migratetype_order(order, t) {
958		list_for_each(curr, &zone->free_area[order].free_list[t]) {
959			unsigned long i;
960
961			pfn = page_to_pfn(list_entry(curr, struct page, lru));
962			for (i = 0; i < (1UL << order); i++)
963				swsusp_set_page_free(pfn_to_page(pfn + i));
964		}
965	}
966	spin_unlock_irqrestore(&zone->lock, flags);
967}
968#endif /* CONFIG_PM */
969
970/*
971 * Free a 0-order page
972 */
973static void free_hot_cold_page(struct page *page, int cold)
974{
975	struct zone *zone = page_zone(page);
976	struct per_cpu_pages *pcp;
977	unsigned long flags;
978
979	if (PageAnon(page))
980		page->mapping = NULL;
981	if (free_pages_check(page))
982		return;
983
984	if (!PageHighMem(page)) {
985		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
986		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
987	}
988	arch_free_page(page, 0);
989	kernel_map_pages(page, 1, 0);
990
991	pcp = &zone_pcp(zone, get_cpu())->pcp;
992	local_irq_save(flags);
993	__count_vm_event(PGFREE);
994	if (cold)
995		list_add_tail(&page->lru, &pcp->list);
996	else
997		list_add(&page->lru, &pcp->list);
998	set_page_private(page, get_pageblock_migratetype(page));
999	pcp->count++;
1000	if (pcp->count >= pcp->high) {
1001		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1002		pcp->count -= pcp->batch;
1003	}
1004	local_irq_restore(flags);
1005	put_cpu();
1006}
1007
1008void free_hot_page(struct page *page)
1009{
1010	free_hot_cold_page(page, 0);
1011}
1012
1013void free_cold_page(struct page *page)
1014{
1015	free_hot_cold_page(page, 1);
1016}
1017
1018/*
1019 * split_page takes a non-compound higher-order page, and splits it into
1020 * n (1<<order) sub-pages: page[0..n]
1021 * Each sub-page must be freed individually.
1022 *
1023 * Note: this is probably too low level an operation for use in drivers.
1024 * Please consult with lkml before using this in your driver.
1025 */
1026void split_page(struct page *page, unsigned int order)
1027{
1028	int i;
1029
1030	VM_BUG_ON(PageCompound(page));
1031	VM_BUG_ON(!page_count(page));
1032	for (i = 1; i < (1 << order); i++)
1033		set_page_refcounted(page + i);
1034}
1035
1036/*
1037 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1038 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1039 * or two.
1040 */
1041static struct page *buffered_rmqueue(struct zone *preferred_zone,
1042			struct zone *zone, int order, gfp_t gfp_flags)
1043{
1044	unsigned long flags;
1045	struct page *page;
1046	int cold = !!(gfp_flags & __GFP_COLD);
1047	int cpu;
1048	int migratetype = allocflags_to_migratetype(gfp_flags);
1049
1050again:
1051	cpu  = get_cpu();
1052	if (likely(order == 0)) {
1053		struct per_cpu_pages *pcp;
1054
1055		pcp = &zone_pcp(zone, cpu)->pcp;
1056		local_irq_save(flags);
1057		if (!pcp->count) {
1058			pcp->count = rmqueue_bulk(zone, 0,
1059					pcp->batch, &pcp->list, migratetype);
1060			if (unlikely(!pcp->count))
1061				goto failed;
1062		}
1063
1064		/* Find a page of the appropriate migrate type */
1065		if (cold) {
1066			list_for_each_entry_reverse(page, &pcp->list, lru)
1067				if (page_private(page) == migratetype)
1068					break;
1069		} else {
1070			list_for_each_entry(page, &pcp->list, lru)
1071				if (page_private(page) == migratetype)
1072					break;
1073		}
1074
1075		/* Allocate more to the pcp list if necessary */
1076		if (unlikely(&page->lru == &pcp->list)) {
1077			pcp->count += rmqueue_bulk(zone, 0,
1078					pcp->batch, &pcp->list, migratetype);
1079			page = list_entry(pcp->list.next, struct page, lru);
1080		}
1081
1082		list_del(&page->lru);
1083		pcp->count--;
1084	} else {
1085		spin_lock_irqsave(&zone->lock, flags);
1086		page = __rmqueue(zone, order, migratetype);
1087		spin_unlock(&zone->lock);
1088		if (!page)
1089			goto failed;
1090	}
1091
1092	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1093	zone_statistics(preferred_zone, zone);
1094	local_irq_restore(flags);
1095	put_cpu();
1096
1097	VM_BUG_ON(bad_range(zone, page));
1098	if (prep_new_page(page, order, gfp_flags))
1099		goto again;
1100	return page;
1101
1102failed:
1103	local_irq_restore(flags);
1104	put_cpu();
1105	return NULL;
1106}
1107
1108#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1109#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1110#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1111#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1112#define ALLOC_HARDER		0x10 /* try to alloc harder */
1113#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1114#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1115
1116#ifdef CONFIG_FAIL_PAGE_ALLOC
1117
1118static struct fail_page_alloc_attr {
1119	struct fault_attr attr;
1120
1121	u32 ignore_gfp_highmem;
1122	u32 ignore_gfp_wait;
1123	u32 min_order;
1124
1125#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1126
1127	struct dentry *ignore_gfp_highmem_file;
1128	struct dentry *ignore_gfp_wait_file;
1129	struct dentry *min_order_file;
1130
1131#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1132
1133} fail_page_alloc = {
1134	.attr = FAULT_ATTR_INITIALIZER,
1135	.ignore_gfp_wait = 1,
1136	.ignore_gfp_highmem = 1,
1137	.min_order = 1,
1138};
1139
1140static int __init setup_fail_page_alloc(char *str)
1141{
1142	return setup_fault_attr(&fail_page_alloc.attr, str);
1143}
1144__setup("fail_page_alloc=", setup_fail_page_alloc);
1145
1146static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1147{
1148	if (order < fail_page_alloc.min_order)
1149		return 0;
1150	if (gfp_mask & __GFP_NOFAIL)
1151		return 0;
1152	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1153		return 0;
1154	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1155		return 0;
1156
1157	return should_fail(&fail_page_alloc.attr, 1 << order);
1158}
1159
1160#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1161
1162static int __init fail_page_alloc_debugfs(void)
1163{
1164	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1165	struct dentry *dir;
1166	int err;
1167
1168	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1169				       "fail_page_alloc");
1170	if (err)
1171		return err;
1172	dir = fail_page_alloc.attr.dentries.dir;
1173
1174	fail_page_alloc.ignore_gfp_wait_file =
1175		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1176				      &fail_page_alloc.ignore_gfp_wait);
1177
1178	fail_page_alloc.ignore_gfp_highmem_file =
1179		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1180				      &fail_page_alloc.ignore_gfp_highmem);
1181	fail_page_alloc.min_order_file =
1182		debugfs_create_u32("min-order", mode, dir,
1183				   &fail_page_alloc.min_order);
1184
1185	if (!fail_page_alloc.ignore_gfp_wait_file ||
1186            !fail_page_alloc.ignore_gfp_highmem_file ||
1187            !fail_page_alloc.min_order_file) {
1188		err = -ENOMEM;
1189		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1190		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1191		debugfs_remove(fail_page_alloc.min_order_file);
1192		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1193	}
1194
1195	return err;
1196}
1197
1198late_initcall(fail_page_alloc_debugfs);
1199
1200#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1201
1202#else /* CONFIG_FAIL_PAGE_ALLOC */
1203
1204static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1205{
1206	return 0;
1207}
1208
1209#endif /* CONFIG_FAIL_PAGE_ALLOC */
1210
1211/*
1212 * Return 1 if free pages are above 'mark'. This takes into account the order
1213 * of the allocation.
1214 */
1215int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1216		      int classzone_idx, int alloc_flags)
1217{
1218	/* free_pages my go negative - that's OK */
1219	long min = mark;
1220	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1221	int o;
1222
1223	if (alloc_flags & ALLOC_HIGH)
1224		min -= min / 2;
1225	if (alloc_flags & ALLOC_HARDER)
1226		min -= min / 4;
1227
1228	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1229		return 0;
1230	for (o = 0; o < order; o++) {
1231		/* At the next order, this order's pages become unavailable */
1232		free_pages -= z->free_area[o].nr_free << o;
1233
1234		/* Require fewer higher order pages to be free */
1235		min >>= 1;
1236
1237		if (free_pages <= min)
1238			return 0;
1239	}
1240	return 1;
1241}
1242
1243#ifdef CONFIG_NUMA
1244/*
1245 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1246 * skip over zones that are not allowed by the cpuset, or that have
1247 * been recently (in last second) found to be nearly full.  See further
1248 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1249 * that have to skip over a lot of full or unallowed zones.
1250 *
1251 * If the zonelist cache is present in the passed in zonelist, then
1252 * returns a pointer to the allowed node mask (either the current
1253 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1254 *
1255 * If the zonelist cache is not available for this zonelist, does
1256 * nothing and returns NULL.
1257 *
1258 * If the fullzones BITMAP in the zonelist cache is stale (more than
1259 * a second since last zap'd) then we zap it out (clear its bits.)
1260 *
1261 * We hold off even calling zlc_setup, until after we've checked the
1262 * first zone in the zonelist, on the theory that most allocations will
1263 * be satisfied from that first zone, so best to examine that zone as
1264 * quickly as we can.
1265 */
1266static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1267{
1268	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1269	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1270
1271	zlc = zonelist->zlcache_ptr;
1272	if (!zlc)
1273		return NULL;
1274
1275	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1276		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1277		zlc->last_full_zap = jiffies;
1278	}
1279
1280	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1281					&cpuset_current_mems_allowed :
1282					&node_states[N_HIGH_MEMORY];
1283	return allowednodes;
1284}
1285
1286/*
1287 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1288 * if it is worth looking at further for free memory:
1289 *  1) Check that the zone isn't thought to be full (doesn't have its
1290 *     bit set in the zonelist_cache fullzones BITMAP).
1291 *  2) Check that the zones node (obtained from the zonelist_cache
1292 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1293 * Return true (non-zero) if zone is worth looking at further, or
1294 * else return false (zero) if it is not.
1295 *
1296 * This check -ignores- the distinction between various watermarks,
1297 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1298 * found to be full for any variation of these watermarks, it will
1299 * be considered full for up to one second by all requests, unless
1300 * we are so low on memory on all allowed nodes that we are forced
1301 * into the second scan of the zonelist.
1302 *
1303 * In the second scan we ignore this zonelist cache and exactly
1304 * apply the watermarks to all zones, even it is slower to do so.
1305 * We are low on memory in the second scan, and should leave no stone
1306 * unturned looking for a free page.
1307 */
1308static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1309						nodemask_t *allowednodes)
1310{
1311	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1312	int i;				/* index of *z in zonelist zones */
1313	int n;				/* node that zone *z is on */
1314
1315	zlc = zonelist->zlcache_ptr;
1316	if (!zlc)
1317		return 1;
1318
1319	i = z - zonelist->_zonerefs;
1320	n = zlc->z_to_n[i];
1321
1322	/* This zone is worth trying if it is allowed but not full */
1323	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1324}
1325
1326/*
1327 * Given 'z' scanning a zonelist, set the corresponding bit in
1328 * zlc->fullzones, so that subsequent attempts to allocate a page
1329 * from that zone don't waste time re-examining it.
1330 */
1331static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1332{
1333	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1334	int i;				/* index of *z in zonelist zones */
1335
1336	zlc = zonelist->zlcache_ptr;
1337	if (!zlc)
1338		return;
1339
1340	i = z - zonelist->_zonerefs;
1341
1342	set_bit(i, zlc->fullzones);
1343}
1344
1345#else	/* CONFIG_NUMA */
1346
1347static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1348{
1349	return NULL;
1350}
1351
1352static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1353				nodemask_t *allowednodes)
1354{
1355	return 1;
1356}
1357
1358static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1359{
1360}
1361#endif	/* CONFIG_NUMA */
1362
1363/*
1364 * get_page_from_freelist goes through the zonelist trying to allocate
1365 * a page.
1366 */
1367static struct page *
1368get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1369		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1370{
1371	struct zoneref *z;
1372	struct page *page = NULL;
1373	int classzone_idx;
1374	struct zone *zone, *preferred_zone;
1375	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1376	int zlc_active = 0;		/* set if using zonelist_cache */
1377	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1378
1379	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1380							&preferred_zone);
1381	if (!preferred_zone)
1382		return NULL;
1383
1384	classzone_idx = zone_idx(preferred_zone);
1385
1386zonelist_scan:
1387	/*
1388	 * Scan zonelist, looking for a zone with enough free.
1389	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1390	 */
1391	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1392						high_zoneidx, nodemask) {
1393		if (NUMA_BUILD && zlc_active &&
1394			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1395				continue;
1396		if ((alloc_flags & ALLOC_CPUSET) &&
1397			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1398				goto try_next_zone;
1399
1400		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1401			unsigned long mark;
1402			if (alloc_flags & ALLOC_WMARK_MIN)
1403				mark = zone->pages_min;
1404			else if (alloc_flags & ALLOC_WMARK_LOW)
1405				mark = zone->pages_low;
1406			else
1407				mark = zone->pages_high;
1408			if (!zone_watermark_ok(zone, order, mark,
1409				    classzone_idx, alloc_flags)) {
1410				if (!zone_reclaim_mode ||
1411				    !zone_reclaim(zone, gfp_mask, order))
1412					goto this_zone_full;
1413			}
1414		}
1415
1416		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1417		if (page)
1418			break;
1419this_zone_full:
1420		if (NUMA_BUILD)
1421			zlc_mark_zone_full(zonelist, z);
1422try_next_zone:
1423		if (NUMA_BUILD && !did_zlc_setup) {
1424			/* we do zlc_setup after the first zone is tried */
1425			allowednodes = zlc_setup(zonelist, alloc_flags);
1426			zlc_active = 1;
1427			did_zlc_setup = 1;
1428		}
1429	}
1430
1431	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1432		/* Disable zlc cache for second zonelist scan */
1433		zlc_active = 0;
1434		goto zonelist_scan;
1435	}
1436	return page;
1437}
1438
1439/*
1440 * This is the 'heart' of the zoned buddy allocator.
1441 */
1442struct page *
1443__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1444			struct zonelist *zonelist, nodemask_t *nodemask)
1445{
1446	const gfp_t wait = gfp_mask & __GFP_WAIT;
1447	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1448	struct zoneref *z;
1449	struct zone *zone;
1450	struct page *page;
1451	struct reclaim_state reclaim_state;
1452	struct task_struct *p = current;
1453	int do_retry;
1454	int alloc_flags;
1455	unsigned long did_some_progress;
1456	unsigned long pages_reclaimed = 0;
1457
1458	might_sleep_if(wait);
1459
1460	if (should_fail_alloc_page(gfp_mask, order))
1461		return NULL;
1462
1463restart:
1464	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1465
1466	if (unlikely(!z->zone)) {
1467		/*
1468		 * Happens if we have an empty zonelist as a result of
1469		 * GFP_THISNODE being used on a memoryless node
1470		 */
1471		return NULL;
1472	}
1473
1474	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1475			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1476	if (page)
1477		goto got_pg;
1478
1479	/*
1480	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1481	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1482	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1483	 * using a larger set of nodes after it has established that the
1484	 * allowed per node queues are empty and that nodes are
1485	 * over allocated.
1486	 */
1487	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1488		goto nopage;
1489
1490	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1491		wakeup_kswapd(zone, order);
1492
1493	/*
1494	 * OK, we're below the kswapd watermark and have kicked background
1495	 * reclaim. Now things get more complex, so set up alloc_flags according
1496	 * to how we want to proceed.
1497	 *
1498	 * The caller may dip into page reserves a bit more if the caller
1499	 * cannot run direct reclaim, or if the caller has realtime scheduling
1500	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1501	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1502	 */
1503	alloc_flags = ALLOC_WMARK_MIN;
1504	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1505		alloc_flags |= ALLOC_HARDER;
1506	if (gfp_mask & __GFP_HIGH)
1507		alloc_flags |= ALLOC_HIGH;
1508	if (wait)
1509		alloc_flags |= ALLOC_CPUSET;
1510
1511	/*
1512	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1513	 * coming from realtime tasks go deeper into reserves.
1514	 *
1515	 * This is the last chance, in general, before the goto nopage.
1516	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1517	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1518	 */
1519	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1520						high_zoneidx, alloc_flags);
1521	if (page)
1522		goto got_pg;
1523
1524	/* This allocation should allow future memory freeing. */
1525
1526rebalance:
1527	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1528			&& !in_interrupt()) {
1529		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1530nofail_alloc:
1531			/* go through the zonelist yet again, ignoring mins */
1532			page = get_page_from_freelist(gfp_mask, nodemask, order,
1533				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1534			if (page)
1535				goto got_pg;
1536			if (gfp_mask & __GFP_NOFAIL) {
1537				congestion_wait(WRITE, HZ/50);
1538				goto nofail_alloc;
1539			}
1540		}
1541		goto nopage;
1542	}
1543
1544	/* Atomic allocations - we can't balance anything */
1545	if (!wait)
1546		goto nopage;
1547
1548	cond_resched();
1549
1550	/* We now go into synchronous reclaim */
1551	cpuset_memory_pressure_bump();
1552	p->flags |= PF_MEMALLOC;
1553	reclaim_state.reclaimed_slab = 0;
1554	p->reclaim_state = &reclaim_state;
1555
1556	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1557
1558	p->reclaim_state = NULL;
1559	p->flags &= ~PF_MEMALLOC;
1560
1561	cond_resched();
1562
1563	if (order != 0)
1564		drain_all_pages();
1565
1566	if (likely(did_some_progress)) {
1567		page = get_page_from_freelist(gfp_mask, nodemask, order,
1568					zonelist, high_zoneidx, alloc_flags);
1569		if (page)
1570			goto got_pg;
1571	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1572		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1573			schedule_timeout_uninterruptible(1);
1574			goto restart;
1575		}
1576
1577		/*
1578		 * Go through the zonelist yet one more time, keep
1579		 * very high watermark here, this is only to catch
1580		 * a parallel oom killing, we must fail if we're still
1581		 * under heavy pressure.
1582		 */
1583		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1584			order, zonelist, high_zoneidx,
1585			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1586		if (page) {
1587			clear_zonelist_oom(zonelist, gfp_mask);
1588			goto got_pg;
1589		}
1590
1591		/* The OOM killer will not help higher order allocs so fail */
1592		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1593			clear_zonelist_oom(zonelist, gfp_mask);
1594			goto nopage;
1595		}
1596
1597		out_of_memory(zonelist, gfp_mask, order);
1598		clear_zonelist_oom(zonelist, gfp_mask);
1599		goto restart;
1600	}
1601
1602	/*
1603	 * Don't let big-order allocations loop unless the caller explicitly
1604	 * requests that.  Wait for some write requests to complete then retry.
1605	 *
1606	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1607	 * means __GFP_NOFAIL, but that may not be true in other
1608	 * implementations.
1609	 *
1610	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1611	 * specified, then we retry until we no longer reclaim any pages
1612	 * (above), or we've reclaimed an order of pages at least as
1613	 * large as the allocation's order. In both cases, if the
1614	 * allocation still fails, we stop retrying.
1615	 */
1616	pages_reclaimed += did_some_progress;
1617	do_retry = 0;
1618	if (!(gfp_mask & __GFP_NORETRY)) {
1619		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1620			do_retry = 1;
1621		} else {
1622			if (gfp_mask & __GFP_REPEAT &&
1623				pages_reclaimed < (1 << order))
1624					do_retry = 1;
1625		}
1626		if (gfp_mask & __GFP_NOFAIL)
1627			do_retry = 1;
1628	}
1629	if (do_retry) {
1630		congestion_wait(WRITE, HZ/50);
1631		goto rebalance;
1632	}
1633
1634nopage:
1635	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1636		printk(KERN_WARNING "%s: page allocation failure."
1637			" order:%d, mode:0x%x\n",
1638			p->comm, order, gfp_mask);
1639		dump_stack();
1640		show_mem();
1641	}
1642got_pg:
1643	return page;
1644}
1645EXPORT_SYMBOL(__alloc_pages_internal);
1646
1647/*
1648 * Common helper functions.
1649 */
1650unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1651{
1652	struct page * page;
1653	page = alloc_pages(gfp_mask, order);
1654	if (!page)
1655		return 0;
1656	return (unsigned long) page_address(page);
1657}
1658
1659EXPORT_SYMBOL(__get_free_pages);
1660
1661unsigned long get_zeroed_page(gfp_t gfp_mask)
1662{
1663	struct page * page;
1664
1665	/*
1666	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1667	 * a highmem page
1668	 */
1669	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1670
1671	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1672	if (page)
1673		return (unsigned long) page_address(page);
1674	return 0;
1675}
1676
1677EXPORT_SYMBOL(get_zeroed_page);
1678
1679void __pagevec_free(struct pagevec *pvec)
1680{
1681	int i = pagevec_count(pvec);
1682
1683	while (--i >= 0)
1684		free_hot_cold_page(pvec->pages[i], pvec->cold);
1685}
1686
1687void __free_pages(struct page *page, unsigned int order)
1688{
1689	if (put_page_testzero(page)) {
1690		if (order == 0)
1691			free_hot_page(page);
1692		else
1693			__free_pages_ok(page, order);
1694	}
1695}
1696
1697EXPORT_SYMBOL(__free_pages);
1698
1699void free_pages(unsigned long addr, unsigned int order)
1700{
1701	if (addr != 0) {
1702		VM_BUG_ON(!virt_addr_valid((void *)addr));
1703		__free_pages(virt_to_page((void *)addr), order);
1704	}
1705}
1706
1707EXPORT_SYMBOL(free_pages);
1708
1709/**
1710 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1711 * @size: the number of bytes to allocate
1712 * @gfp_mask: GFP flags for the allocation
1713 *
1714 * This function is similar to alloc_pages(), except that it allocates the
1715 * minimum number of pages to satisfy the request.  alloc_pages() can only
1716 * allocate memory in power-of-two pages.
1717 *
1718 * This function is also limited by MAX_ORDER.
1719 *
1720 * Memory allocated by this function must be released by free_pages_exact().
1721 */
1722void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1723{
1724	unsigned int order = get_order(size);
1725	unsigned long addr;
1726
1727	addr = __get_free_pages(gfp_mask, order);
1728	if (addr) {
1729		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1730		unsigned long used = addr + PAGE_ALIGN(size);
1731
1732		split_page(virt_to_page(addr), order);
1733		while (used < alloc_end) {
1734			free_page(used);
1735			used += PAGE_SIZE;
1736		}
1737	}
1738
1739	return (void *)addr;
1740}
1741EXPORT_SYMBOL(alloc_pages_exact);
1742
1743/**
1744 * free_pages_exact - release memory allocated via alloc_pages_exact()
1745 * @virt: the value returned by alloc_pages_exact.
1746 * @size: size of allocation, same value as passed to alloc_pages_exact().
1747 *
1748 * Release the memory allocated by a previous call to alloc_pages_exact.
1749 */
1750void free_pages_exact(void *virt, size_t size)
1751{
1752	unsigned long addr = (unsigned long)virt;
1753	unsigned long end = addr + PAGE_ALIGN(size);
1754
1755	while (addr < end) {
1756		free_page(addr);
1757		addr += PAGE_SIZE;
1758	}
1759}
1760EXPORT_SYMBOL(free_pages_exact);
1761
1762static unsigned int nr_free_zone_pages(int offset)
1763{
1764	struct zoneref *z;
1765	struct zone *zone;
1766
1767	/* Just pick one node, since fallback list is circular */
1768	unsigned int sum = 0;
1769
1770	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1771
1772	for_each_zone_zonelist(zone, z, zonelist, offset) {
1773		unsigned long size = zone->present_pages;
1774		unsigned long high = zone->pages_high;
1775		if (size > high)
1776			sum += size - high;
1777	}
1778
1779	return sum;
1780}
1781
1782/*
1783 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1784 */
1785unsigned int nr_free_buffer_pages(void)
1786{
1787	return nr_free_zone_pages(gfp_zone(GFP_USER));
1788}
1789EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1790
1791/*
1792 * Amount of free RAM allocatable within all zones
1793 */
1794unsigned int nr_free_pagecache_pages(void)
1795{
1796	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1797}
1798
1799static inline void show_node(struct zone *zone)
1800{
1801	if (NUMA_BUILD)
1802		printk("Node %d ", zone_to_nid(zone));
1803}
1804
1805void si_meminfo(struct sysinfo *val)
1806{
1807	val->totalram = totalram_pages;
1808	val->sharedram = 0;
1809	val->freeram = global_page_state(NR_FREE_PAGES);
1810	val->bufferram = nr_blockdev_pages();
1811	val->totalhigh = totalhigh_pages;
1812	val->freehigh = nr_free_highpages();
1813	val->mem_unit = PAGE_SIZE;
1814}
1815
1816EXPORT_SYMBOL(si_meminfo);
1817
1818#ifdef CONFIG_NUMA
1819void si_meminfo_node(struct sysinfo *val, int nid)
1820{
1821	pg_data_t *pgdat = NODE_DATA(nid);
1822
1823	val->totalram = pgdat->node_present_pages;
1824	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1825#ifdef CONFIG_HIGHMEM
1826	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1827	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1828			NR_FREE_PAGES);
1829#else
1830	val->totalhigh = 0;
1831	val->freehigh = 0;
1832#endif
1833	val->mem_unit = PAGE_SIZE;
1834}
1835#endif
1836
1837#define K(x) ((x) << (PAGE_SHIFT-10))
1838
1839/*
1840 * Show free area list (used inside shift_scroll-lock stuff)
1841 * We also calculate the percentage fragmentation. We do this by counting the
1842 * memory on each free list with the exception of the first item on the list.
1843 */
1844void show_free_areas(void)
1845{
1846	int cpu;
1847	struct zone *zone;
1848
1849	for_each_zone(zone) {
1850		if (!populated_zone(zone))
1851			continue;
1852
1853		show_node(zone);
1854		printk("%s per-cpu:\n", zone->name);
1855
1856		for_each_online_cpu(cpu) {
1857			struct per_cpu_pageset *pageset;
1858
1859			pageset = zone_pcp(zone, cpu);
1860
1861			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1862			       cpu, pageset->pcp.high,
1863			       pageset->pcp.batch, pageset->pcp.count);
1864		}
1865	}
1866
1867	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1868		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1869		global_page_state(NR_ACTIVE),
1870		global_page_state(NR_INACTIVE),
1871		global_page_state(NR_FILE_DIRTY),
1872		global_page_state(NR_WRITEBACK),
1873		global_page_state(NR_UNSTABLE_NFS),
1874		global_page_state(NR_FREE_PAGES),
1875		global_page_state(NR_SLAB_RECLAIMABLE) +
1876			global_page_state(NR_SLAB_UNRECLAIMABLE),
1877		global_page_state(NR_FILE_MAPPED),
1878		global_page_state(NR_PAGETABLE),
1879		global_page_state(NR_BOUNCE));
1880
1881	for_each_zone(zone) {
1882		int i;
1883
1884		if (!populated_zone(zone))
1885			continue;
1886
1887		show_node(zone);
1888		printk("%s"
1889			" free:%lukB"
1890			" min:%lukB"
1891			" low:%lukB"
1892			" high:%lukB"
1893			" active:%lukB"
1894			" inactive:%lukB"
1895			" present:%lukB"
1896			" pages_scanned:%lu"
1897			" all_unreclaimable? %s"
1898			"\n",
1899			zone->name,
1900			K(zone_page_state(zone, NR_FREE_PAGES)),
1901			K(zone->pages_min),
1902			K(zone->pages_low),
1903			K(zone->pages_high),
1904			K(zone_page_state(zone, NR_ACTIVE)),
1905			K(zone_page_state(zone, NR_INACTIVE)),
1906			K(zone->present_pages),
1907			zone->pages_scanned,
1908			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1909			);
1910		printk("lowmem_reserve[]:");
1911		for (i = 0; i < MAX_NR_ZONES; i++)
1912			printk(" %lu", zone->lowmem_reserve[i]);
1913		printk("\n");
1914	}
1915
1916	for_each_zone(zone) {
1917 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1918
1919		if (!populated_zone(zone))
1920			continue;
1921
1922		show_node(zone);
1923		printk("%s: ", zone->name);
1924
1925		spin_lock_irqsave(&zone->lock, flags);
1926		for (order = 0; order < MAX_ORDER; order++) {
1927			nr[order] = zone->free_area[order].nr_free;
1928			total += nr[order] << order;
1929		}
1930		spin_unlock_irqrestore(&zone->lock, flags);
1931		for (order = 0; order < MAX_ORDER; order++)
1932			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1933		printk("= %lukB\n", K(total));
1934	}
1935
1936	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1937
1938	show_swap_cache_info();
1939}
1940
1941static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1942{
1943	zoneref->zone = zone;
1944	zoneref->zone_idx = zone_idx(zone);
1945}
1946
1947/*
1948 * Builds allocation fallback zone lists.
1949 *
1950 * Add all populated zones of a node to the zonelist.
1951 */
1952static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1953				int nr_zones, enum zone_type zone_type)
1954{
1955	struct zone *zone;
1956
1957	BUG_ON(zone_type >= MAX_NR_ZONES);
1958	zone_type++;
1959
1960	do {
1961		zone_type--;
1962		zone = pgdat->node_zones + zone_type;
1963		if (populated_zone(zone)) {
1964			zoneref_set_zone(zone,
1965				&zonelist->_zonerefs[nr_zones++]);
1966			check_highest_zone(zone_type);
1967		}
1968
1969	} while (zone_type);
1970	return nr_zones;
1971}
1972
1973
1974/*
1975 *  zonelist_order:
1976 *  0 = automatic detection of better ordering.
1977 *  1 = order by ([node] distance, -zonetype)
1978 *  2 = order by (-zonetype, [node] distance)
1979 *
1980 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1981 *  the same zonelist. So only NUMA can configure this param.
1982 */
1983#define ZONELIST_ORDER_DEFAULT  0
1984#define ZONELIST_ORDER_NODE     1
1985#define ZONELIST_ORDER_ZONE     2
1986
1987/* zonelist order in the kernel.
1988 * set_zonelist_order() will set this to NODE or ZONE.
1989 */
1990static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1991static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1992
1993
1994#ifdef CONFIG_NUMA
1995/* The value user specified ....changed by config */
1996static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1997/* string for sysctl */
1998#define NUMA_ZONELIST_ORDER_LEN	16
1999char numa_zonelist_order[16] = "default";
2000
2001/*
2002 * interface for configure zonelist ordering.
2003 * command line option "numa_zonelist_order"
2004 *	= "[dD]efault	- default, automatic configuration.
2005 *	= "[nN]ode 	- order by node locality, then by zone within node
2006 *	= "[zZ]one      - order by zone, then by locality within zone
2007 */
2008
2009static int __parse_numa_zonelist_order(char *s)
2010{
2011	if (*s == 'd' || *s == 'D') {
2012		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2013	} else if (*s == 'n' || *s == 'N') {
2014		user_zonelist_order = ZONELIST_ORDER_NODE;
2015	} else if (*s == 'z' || *s == 'Z') {
2016		user_zonelist_order = ZONELIST_ORDER_ZONE;
2017	} else {
2018		printk(KERN_WARNING
2019			"Ignoring invalid numa_zonelist_order value:  "
2020			"%s\n", s);
2021		return -EINVAL;
2022	}
2023	return 0;
2024}
2025
2026static __init int setup_numa_zonelist_order(char *s)
2027{
2028	if (s)
2029		return __parse_numa_zonelist_order(s);
2030	return 0;
2031}
2032early_param("numa_zonelist_order", setup_numa_zonelist_order);
2033
2034/*
2035 * sysctl handler for numa_zonelist_order
2036 */
2037int numa_zonelist_order_handler(ctl_table *table, int write,
2038		struct file *file, void __user *buffer, size_t *length,
2039		loff_t *ppos)
2040{
2041	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2042	int ret;
2043
2044	if (write)
2045		strncpy(saved_string, (char*)table->data,
2046			NUMA_ZONELIST_ORDER_LEN);
2047	ret = proc_dostring(table, write, file, buffer, length, ppos);
2048	if (ret)
2049		return ret;
2050	if (write) {
2051		int oldval = user_zonelist_order;
2052		if (__parse_numa_zonelist_order((char*)table->data)) {
2053			/*
2054			 * bogus value.  restore saved string
2055			 */
2056			strncpy((char*)table->data, saved_string,
2057				NUMA_ZONELIST_ORDER_LEN);
2058			user_zonelist_order = oldval;
2059		} else if (oldval != user_zonelist_order)
2060			build_all_zonelists();
2061	}
2062	return 0;
2063}
2064
2065
2066#define MAX_NODE_LOAD (num_online_nodes())
2067static int node_load[MAX_NUMNODES];
2068
2069/**
2070 * find_next_best_node - find the next node that should appear in a given node's fallback list
2071 * @node: node whose fallback list we're appending
2072 * @used_node_mask: nodemask_t of already used nodes
2073 *
2074 * We use a number of factors to determine which is the next node that should
2075 * appear on a given node's fallback list.  The node should not have appeared
2076 * already in @node's fallback list, and it should be the next closest node
2077 * according to the distance array (which contains arbitrary distance values
2078 * from each node to each node in the system), and should also prefer nodes
2079 * with no CPUs, since presumably they'll have very little allocation pressure
2080 * on them otherwise.
2081 * It returns -1 if no node is found.
2082 */
2083static int find_next_best_node(int node, nodemask_t *used_node_mask)
2084{
2085	int n, val;
2086	int min_val = INT_MAX;
2087	int best_node = -1;
2088	node_to_cpumask_ptr(tmp, 0);
2089
2090	/* Use the local node if we haven't already */
2091	if (!node_isset(node, *used_node_mask)) {
2092		node_set(node, *used_node_mask);
2093		return node;
2094	}
2095
2096	for_each_node_state(n, N_HIGH_MEMORY) {
2097
2098		/* Don't want a node to appear more than once */
2099		if (node_isset(n, *used_node_mask))
2100			continue;
2101
2102		/* Use the distance array to find the distance */
2103		val = node_distance(node, n);
2104
2105		/* Penalize nodes under us ("prefer the next node") */
2106		val += (n < node);
2107
2108		/* Give preference to headless and unused nodes */
2109		node_to_cpumask_ptr_next(tmp, n);
2110		if (!cpus_empty(*tmp))
2111			val += PENALTY_FOR_NODE_WITH_CPUS;
2112
2113		/* Slight preference for less loaded node */
2114		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2115		val += node_load[n];
2116
2117		if (val < min_val) {
2118			min_val = val;
2119			best_node = n;
2120		}
2121	}
2122
2123	if (best_node >= 0)
2124		node_set(best_node, *used_node_mask);
2125
2126	return best_node;
2127}
2128
2129
2130/*
2131 * Build zonelists ordered by node and zones within node.
2132 * This results in maximum locality--normal zone overflows into local
2133 * DMA zone, if any--but risks exhausting DMA zone.
2134 */
2135static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2136{
2137	int j;
2138	struct zonelist *zonelist;
2139
2140	zonelist = &pgdat->node_zonelists[0];
2141	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2142		;
2143	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2144							MAX_NR_ZONES - 1);
2145	zonelist->_zonerefs[j].zone = NULL;
2146	zonelist->_zonerefs[j].zone_idx = 0;
2147}
2148
2149/*
2150 * Build gfp_thisnode zonelists
2151 */
2152static void build_thisnode_zonelists(pg_data_t *pgdat)
2153{
2154	int j;
2155	struct zonelist *zonelist;
2156
2157	zonelist = &pgdat->node_zonelists[1];
2158	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2159	zonelist->_zonerefs[j].zone = NULL;
2160	zonelist->_zonerefs[j].zone_idx = 0;
2161}
2162
2163/*
2164 * Build zonelists ordered by zone and nodes within zones.
2165 * This results in conserving DMA zone[s] until all Normal memory is
2166 * exhausted, but results in overflowing to remote node while memory
2167 * may still exist in local DMA zone.
2168 */
2169static int node_order[MAX_NUMNODES];
2170
2171static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2172{
2173	int pos, j, node;
2174	int zone_type;		/* needs to be signed */
2175	struct zone *z;
2176	struct zonelist *zonelist;
2177
2178	zonelist = &pgdat->node_zonelists[0];
2179	pos = 0;
2180	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2181		for (j = 0; j < nr_nodes; j++) {
2182			node = node_order[j];
2183			z = &NODE_DATA(node)->node_zones[zone_type];
2184			if (populated_zone(z)) {
2185				zoneref_set_zone(z,
2186					&zonelist->_zonerefs[pos++]);
2187				check_highest_zone(zone_type);
2188			}
2189		}
2190	}
2191	zonelist->_zonerefs[pos].zone = NULL;
2192	zonelist->_zonerefs[pos].zone_idx = 0;
2193}
2194
2195static int default_zonelist_order(void)
2196{
2197	int nid, zone_type;
2198	unsigned long low_kmem_size,total_size;
2199	struct zone *z;
2200	int average_size;
2201	/*
2202         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2203	 * If they are really small and used heavily, the system can fall
2204	 * into OOM very easily.
2205	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2206	 */
2207	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2208	low_kmem_size = 0;
2209	total_size = 0;
2210	for_each_online_node(nid) {
2211		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2212			z = &NODE_DATA(nid)->node_zones[zone_type];
2213			if (populated_zone(z)) {
2214				if (zone_type < ZONE_NORMAL)
2215					low_kmem_size += z->present_pages;
2216				total_size += z->present_pages;
2217			}
2218		}
2219	}
2220	if (!low_kmem_size ||  /* there are no DMA area. */
2221	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2222		return ZONELIST_ORDER_NODE;
2223	/*
2224	 * look into each node's config.
2225  	 * If there is a node whose DMA/DMA32 memory is very big area on
2226 	 * local memory, NODE_ORDER may be suitable.
2227         */
2228	average_size = total_size /
2229				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2230	for_each_online_node(nid) {
2231		low_kmem_size = 0;
2232		total_size = 0;
2233		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2234			z = &NODE_DATA(nid)->node_zones[zone_type];
2235			if (populated_zone(z)) {
2236				if (zone_type < ZONE_NORMAL)
2237					low_kmem_size += z->present_pages;
2238				total_size += z->present_pages;
2239			}
2240		}
2241		if (low_kmem_size &&
2242		    total_size > average_size && /* ignore small node */
2243		    low_kmem_size > total_size * 70/100)
2244			return ZONELIST_ORDER_NODE;
2245	}
2246	return ZONELIST_ORDER_ZONE;
2247}
2248
2249static void set_zonelist_order(void)
2250{
2251	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2252		current_zonelist_order = default_zonelist_order();
2253	else
2254		current_zonelist_order = user_zonelist_order;
2255}
2256
2257static void build_zonelists(pg_data_t *pgdat)
2258{
2259	int j, node, load;
2260	enum zone_type i;
2261	nodemask_t used_mask;
2262	int local_node, prev_node;
2263	struct zonelist *zonelist;
2264	int order = current_zonelist_order;
2265
2266	/* initialize zonelists */
2267	for (i = 0; i < MAX_ZONELISTS; i++) {
2268		zonelist = pgdat->node_zonelists + i;
2269		zonelist->_zonerefs[0].zone = NULL;
2270		zonelist->_zonerefs[0].zone_idx = 0;
2271	}
2272
2273	/* NUMA-aware ordering of nodes */
2274	local_node = pgdat->node_id;
2275	load = num_online_nodes();
2276	prev_node = local_node;
2277	nodes_clear(used_mask);
2278
2279	memset(node_load, 0, sizeof(node_load));
2280	memset(node_order, 0, sizeof(node_order));
2281	j = 0;
2282
2283	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2284		int distance = node_distance(local_node, node);
2285
2286		/*
2287		 * If another node is sufficiently far away then it is better
2288		 * to reclaim pages in a zone before going off node.
2289		 */
2290		if (distance > RECLAIM_DISTANCE)
2291			zone_reclaim_mode = 1;
2292
2293		/*
2294		 * We don't want to pressure a particular node.
2295		 * So adding penalty to the first node in same
2296		 * distance group to make it round-robin.
2297		 */
2298		if (distance != node_distance(local_node, prev_node))
2299			node_load[node] = load;
2300
2301		prev_node = node;
2302		load--;
2303		if (order == ZONELIST_ORDER_NODE)
2304			build_zonelists_in_node_order(pgdat, node);
2305		else
2306			node_order[j++] = node;	/* remember order */
2307	}
2308
2309	if (order == ZONELIST_ORDER_ZONE) {
2310		/* calculate node order -- i.e., DMA last! */
2311		build_zonelists_in_zone_order(pgdat, j);
2312	}
2313
2314	build_thisnode_zonelists(pgdat);
2315}
2316
2317/* Construct the zonelist performance cache - see further mmzone.h */
2318static void build_zonelist_cache(pg_data_t *pgdat)
2319{
2320	struct zonelist *zonelist;
2321	struct zonelist_cache *zlc;
2322	struct zoneref *z;
2323
2324	zonelist = &pgdat->node_zonelists[0];
2325	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2326	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2327	for (z = zonelist->_zonerefs; z->zone; z++)
2328		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2329}
2330
2331
2332#else	/* CONFIG_NUMA */
2333
2334static void set_zonelist_order(void)
2335{
2336	current_zonelist_order = ZONELIST_ORDER_ZONE;
2337}
2338
2339static void build_zonelists(pg_data_t *pgdat)
2340{
2341	int node, local_node;
2342	enum zone_type j;
2343	struct zonelist *zonelist;
2344
2345	local_node = pgdat->node_id;
2346
2347	zonelist = &pgdat->node_zonelists[0];
2348	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2349
2350	/*
2351	 * Now we build the zonelist so that it contains the zones
2352	 * of all the other nodes.
2353	 * We don't want to pressure a particular node, so when
2354	 * building the zones for node N, we make sure that the
2355	 * zones coming right after the local ones are those from
2356	 * node N+1 (modulo N)
2357	 */
2358	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2359		if (!node_online(node))
2360			continue;
2361		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2362							MAX_NR_ZONES - 1);
2363	}
2364	for (node = 0; node < local_node; node++) {
2365		if (!node_online(node))
2366			continue;
2367		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2368							MAX_NR_ZONES - 1);
2369	}
2370
2371	zonelist->_zonerefs[j].zone = NULL;
2372	zonelist->_zonerefs[j].zone_idx = 0;
2373}
2374
2375/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2376static void build_zonelist_cache(pg_data_t *pgdat)
2377{
2378	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2379}
2380
2381#endif	/* CONFIG_NUMA */
2382
2383/* return values int ....just for stop_machine() */
2384static int __build_all_zonelists(void *dummy)
2385{
2386	int nid;
2387
2388	for_each_online_node(nid) {
2389		pg_data_t *pgdat = NODE_DATA(nid);
2390
2391		build_zonelists(pgdat);
2392		build_zonelist_cache(pgdat);
2393	}
2394	return 0;
2395}
2396
2397void build_all_zonelists(void)
2398{
2399	set_zonelist_order();
2400
2401	if (system_state == SYSTEM_BOOTING) {
2402		__build_all_zonelists(NULL);
2403		mminit_verify_zonelist();
2404		cpuset_init_current_mems_allowed();
2405	} else {
2406		/* we have to stop all cpus to guarantee there is no user
2407		   of zonelist */
2408		stop_machine(__build_all_zonelists, NULL, NULL);
2409		/* cpuset refresh routine should be here */
2410	}
2411	vm_total_pages = nr_free_pagecache_pages();
2412	/*
2413	 * Disable grouping by mobility if the number of pages in the
2414	 * system is too low to allow the mechanism to work. It would be
2415	 * more accurate, but expensive to check per-zone. This check is
2416	 * made on memory-hotadd so a system can start with mobility
2417	 * disabled and enable it later
2418	 */
2419	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2420		page_group_by_mobility_disabled = 1;
2421	else
2422		page_group_by_mobility_disabled = 0;
2423
2424	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2425		"Total pages: %ld\n",
2426			num_online_nodes(),
2427			zonelist_order_name[current_zonelist_order],
2428			page_group_by_mobility_disabled ? "off" : "on",
2429			vm_total_pages);
2430#ifdef CONFIG_NUMA
2431	printk("Policy zone: %s\n", zone_names[policy_zone]);
2432#endif
2433}
2434
2435/*
2436 * Helper functions to size the waitqueue hash table.
2437 * Essentially these want to choose hash table sizes sufficiently
2438 * large so that collisions trying to wait on pages are rare.
2439 * But in fact, the number of active page waitqueues on typical
2440 * systems is ridiculously low, less than 200. So this is even
2441 * conservative, even though it seems large.
2442 *
2443 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2444 * waitqueues, i.e. the size of the waitq table given the number of pages.
2445 */
2446#define PAGES_PER_WAITQUEUE	256
2447
2448#ifndef CONFIG_MEMORY_HOTPLUG
2449static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2450{
2451	unsigned long size = 1;
2452
2453	pages /= PAGES_PER_WAITQUEUE;
2454
2455	while (size < pages)
2456		size <<= 1;
2457
2458	/*
2459	 * Once we have dozens or even hundreds of threads sleeping
2460	 * on IO we've got bigger problems than wait queue collision.
2461	 * Limit the size of the wait table to a reasonable size.
2462	 */
2463	size = min(size, 4096UL);
2464
2465	return max(size, 4UL);
2466}
2467#else
2468/*
2469 * A zone's size might be changed by hot-add, so it is not possible to determine
2470 * a suitable size for its wait_table.  So we use the maximum size now.
2471 *
2472 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2473 *
2474 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2475 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2476 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2477 *
2478 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2479 * or more by the traditional way. (See above).  It equals:
2480 *
2481 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2482 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2483 *    powerpc (64K page size)             : =  (32G +16M)byte.
2484 */
2485static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2486{
2487	return 4096UL;
2488}
2489#endif
2490
2491/*
2492 * This is an integer logarithm so that shifts can be used later
2493 * to extract the more random high bits from the multiplicative
2494 * hash function before the remainder is taken.
2495 */
2496static inline unsigned long wait_table_bits(unsigned long size)
2497{
2498	return ffz(~size);
2499}
2500
2501#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2502
2503/*
2504 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2505 * of blocks reserved is based on zone->pages_min. The memory within the
2506 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2507 * higher will lead to a bigger reserve which will get freed as contiguous
2508 * blocks as reclaim kicks in
2509 */
2510static void setup_zone_migrate_reserve(struct zone *zone)
2511{
2512	unsigned long start_pfn, pfn, end_pfn;
2513	struct page *page;
2514	unsigned long reserve, block_migratetype;
2515
2516	/* Get the start pfn, end pfn and the number of blocks to reserve */
2517	start_pfn = zone->zone_start_pfn;
2518	end_pfn = start_pfn + zone->spanned_pages;
2519	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2520							pageblock_order;
2521
2522	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2523		if (!pfn_valid(pfn))
2524			continue;
2525		page = pfn_to_page(pfn);
2526
2527		/* Watch out for overlapping nodes */
2528		if (page_to_nid(page) != zone_to_nid(zone))
2529			continue;
2530
2531		/* Blocks with reserved pages will never free, skip them. */
2532		if (PageReserved(page))
2533			continue;
2534
2535		block_migratetype = get_pageblock_migratetype(page);
2536
2537		/* If this block is reserved, account for it */
2538		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2539			reserve--;
2540			continue;
2541		}
2542
2543		/* Suitable for reserving if this block is movable */
2544		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2545			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2546			move_freepages_block(zone, page, MIGRATE_RESERVE);
2547			reserve--;
2548			continue;
2549		}
2550
2551		/*
2552		 * If the reserve is met and this is a previous reserved block,
2553		 * take it back
2554		 */
2555		if (block_migratetype == MIGRATE_RESERVE) {
2556			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2557			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2558		}
2559	}
2560}
2561
2562/*
2563 * Initially all pages are reserved - free ones are freed
2564 * up by free_all_bootmem() once the early boot process is
2565 * done. Non-atomic initialization, single-pass.
2566 */
2567void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2568		unsigned long start_pfn, enum memmap_context context)
2569{
2570	struct page *page;
2571	unsigned long end_pfn = start_pfn + size;
2572	unsigned long pfn;
2573	struct zone *z;
2574
2575	z = &NODE_DATA(nid)->node_zones[zone];
2576	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2577		/*
2578		 * There can be holes in boot-time mem_map[]s
2579		 * handed to this function.  They do not
2580		 * exist on hotplugged memory.
2581		 */
2582		if (context == MEMMAP_EARLY) {
2583			if (!early_pfn_valid(pfn))
2584				continue;
2585			if (!early_pfn_in_nid(pfn, nid))
2586				continue;
2587		}
2588		page = pfn_to_page(pfn);
2589		set_page_links(page, zone, nid, pfn);
2590		mminit_verify_page_links(page, zone, nid, pfn);
2591		init_page_count(page);
2592		reset_page_mapcount(page);
2593		SetPageReserved(page);
2594		/*
2595		 * Mark the block movable so that blocks are reserved for
2596		 * movable at startup. This will force kernel allocations
2597		 * to reserve their blocks rather than leaking throughout
2598		 * the address space during boot when many long-lived
2599		 * kernel allocations are made. Later some blocks near
2600		 * the start are marked MIGRATE_RESERVE by
2601		 * setup_zone_migrate_reserve()
2602		 *
2603		 * bitmap is created for zone's valid pfn range. but memmap
2604		 * can be created for invalid pages (for alignment)
2605		 * check here not to call set_pageblock_migratetype() against
2606		 * pfn out of zone.
2607		 */
2608		if ((z->zone_start_pfn <= pfn)
2609		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2610		    && !(pfn & (pageblock_nr_pages - 1)))
2611			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2612
2613		INIT_LIST_HEAD(&page->lru);
2614#ifdef WANT_PAGE_VIRTUAL
2615		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2616		if (!is_highmem_idx(zone))
2617			set_page_address(page, __va(pfn << PAGE_SHIFT));
2618#endif
2619	}
2620}
2621
2622static void __meminit zone_init_free_lists(struct zone *zone)
2623{
2624	int order, t;
2625	for_each_migratetype_order(order, t) {
2626		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2627		zone->free_area[order].nr_free = 0;
2628	}
2629}
2630
2631#ifndef __HAVE_ARCH_MEMMAP_INIT
2632#define memmap_init(size, nid, zone, start_pfn) \
2633	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2634#endif
2635
2636static int zone_batchsize(struct zone *zone)
2637{
2638	int batch;
2639
2640	/*
2641	 * The per-cpu-pages pools are set to around 1000th of the
2642	 * size of the zone.  But no more than 1/2 of a meg.
2643	 *
2644	 * OK, so we don't know how big the cache is.  So guess.
2645	 */
2646	batch = zone->present_pages / 1024;
2647	if (batch * PAGE_SIZE > 512 * 1024)
2648		batch = (512 * 1024) / PAGE_SIZE;
2649	batch /= 4;		/* We effectively *= 4 below */
2650	if (batch < 1)
2651		batch = 1;
2652
2653	/*
2654	 * Clamp the batch to a 2^n - 1 value. Having a power
2655	 * of 2 value was found to be more likely to have
2656	 * suboptimal cache aliasing properties in some cases.
2657	 *
2658	 * For example if 2 tasks are alternately allocating
2659	 * batches of pages, one task can end up with a lot
2660	 * of pages of one half of the possible page colors
2661	 * and the other with pages of the other colors.
2662	 */
2663	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2664
2665	return batch;
2666}
2667
2668static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2669{
2670	struct per_cpu_pages *pcp;
2671
2672	memset(p, 0, sizeof(*p));
2673
2674	pcp = &p->pcp;
2675	pcp->count = 0;
2676	pcp->high = 6 * batch;
2677	pcp->batch = max(1UL, 1 * batch);
2678	INIT_LIST_HEAD(&pcp->list);
2679}
2680
2681/*
2682 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2683 * to the value high for the pageset p.
2684 */
2685
2686static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2687				unsigned long high)
2688{
2689	struct per_cpu_pages *pcp;
2690
2691	pcp = &p->pcp;
2692	pcp->high = high;
2693	pcp->batch = max(1UL, high/4);
2694	if ((high/4) > (PAGE_SHIFT * 8))
2695		pcp->batch = PAGE_SHIFT * 8;
2696}
2697
2698
2699#ifdef CONFIG_NUMA
2700/*
2701 * Boot pageset table. One per cpu which is going to be used for all
2702 * zones and all nodes. The parameters will be set in such a way
2703 * that an item put on a list will immediately be handed over to
2704 * the buddy list. This is safe since pageset manipulation is done
2705 * with interrupts disabled.
2706 *
2707 * Some NUMA counter updates may also be caught by the boot pagesets.
2708 *
2709 * The boot_pagesets must be kept even after bootup is complete for
2710 * unused processors and/or zones. They do play a role for bootstrapping
2711 * hotplugged processors.
2712 *
2713 * zoneinfo_show() and maybe other functions do
2714 * not check if the processor is online before following the pageset pointer.
2715 * Other parts of the kernel may not check if the zone is available.
2716 */
2717static struct per_cpu_pageset boot_pageset[NR_CPUS];
2718
2719/*
2720 * Dynamically allocate memory for the
2721 * per cpu pageset array in struct zone.
2722 */
2723static int __cpuinit process_zones(int cpu)
2724{
2725	struct zone *zone, *dzone;
2726	int node = cpu_to_node(cpu);
2727
2728	node_set_state(node, N_CPU);	/* this node has a cpu */
2729
2730	for_each_zone(zone) {
2731
2732		if (!populated_zone(zone))
2733			continue;
2734
2735		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2736					 GFP_KERNEL, node);
2737		if (!zone_pcp(zone, cpu))
2738			goto bad;
2739
2740		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2741
2742		if (percpu_pagelist_fraction)
2743			setup_pagelist_highmark(zone_pcp(zone, cpu),
2744			 	(zone->present_pages / percpu_pagelist_fraction));
2745	}
2746
2747	return 0;
2748bad:
2749	for_each_zone(dzone) {
2750		if (!populated_zone(dzone))
2751			continue;
2752		if (dzone == zone)
2753			break;
2754		kfree(zone_pcp(dzone, cpu));
2755		zone_pcp(dzone, cpu) = NULL;
2756	}
2757	return -ENOMEM;
2758}
2759
2760static inline void free_zone_pagesets(int cpu)
2761{
2762	struct zone *zone;
2763
2764	for_each_zone(zone) {
2765		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2766
2767		/* Free per_cpu_pageset if it is slab allocated */
2768		if (pset != &boot_pageset[cpu])
2769			kfree(pset);
2770		zone_pcp(zone, cpu) = NULL;
2771	}
2772}
2773
2774static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2775		unsigned long action,
2776		void *hcpu)
2777{
2778	int cpu = (long)hcpu;
2779	int ret = NOTIFY_OK;
2780
2781	switch (action) {
2782	case CPU_UP_PREPARE:
2783	case CPU_UP_PREPARE_FROZEN:
2784		if (process_zones(cpu))
2785			ret = NOTIFY_BAD;
2786		break;
2787	case CPU_UP_CANCELED:
2788	case CPU_UP_CANCELED_FROZEN:
2789	case CPU_DEAD:
2790	case CPU_DEAD_FROZEN:
2791		free_zone_pagesets(cpu);
2792		break;
2793	default:
2794		break;
2795	}
2796	return ret;
2797}
2798
2799static struct notifier_block __cpuinitdata pageset_notifier =
2800	{ &pageset_cpuup_callback, NULL, 0 };
2801
2802void __init setup_per_cpu_pageset(void)
2803{
2804	int err;
2805
2806	/* Initialize per_cpu_pageset for cpu 0.
2807	 * A cpuup callback will do this for every cpu
2808	 * as it comes online
2809	 */
2810	err = process_zones(smp_processor_id());
2811	BUG_ON(err);
2812	register_cpu_notifier(&pageset_notifier);
2813}
2814
2815#endif
2816
2817static noinline __init_refok
2818int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2819{
2820	int i;
2821	struct pglist_data *pgdat = zone->zone_pgdat;
2822	size_t alloc_size;
2823
2824	/*
2825	 * The per-page waitqueue mechanism uses hashed waitqueues
2826	 * per zone.
2827	 */
2828	zone->wait_table_hash_nr_entries =
2829		 wait_table_hash_nr_entries(zone_size_pages);
2830	zone->wait_table_bits =
2831		wait_table_bits(zone->wait_table_hash_nr_entries);
2832	alloc_size = zone->wait_table_hash_nr_entries
2833					* sizeof(wait_queue_head_t);
2834
2835	if (!slab_is_available()) {
2836		zone->wait_table = (wait_queue_head_t *)
2837			alloc_bootmem_node(pgdat, alloc_size);
2838	} else {
2839		/*
2840		 * This case means that a zone whose size was 0 gets new memory
2841		 * via memory hot-add.
2842		 * But it may be the case that a new node was hot-added.  In
2843		 * this case vmalloc() will not be able to use this new node's
2844		 * memory - this wait_table must be initialized to use this new
2845		 * node itself as well.
2846		 * To use this new node's memory, further consideration will be
2847		 * necessary.
2848		 */
2849		zone->wait_table = vmalloc(alloc_size);
2850	}
2851	if (!zone->wait_table)
2852		return -ENOMEM;
2853
2854	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2855		init_waitqueue_head(zone->wait_table + i);
2856
2857	return 0;
2858}
2859
2860static __meminit void zone_pcp_init(struct zone *zone)
2861{
2862	int cpu;
2863	unsigned long batch = zone_batchsize(zone);
2864
2865	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2866#ifdef CONFIG_NUMA
2867		/* Early boot. Slab allocator not functional yet */
2868		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2869		setup_pageset(&boot_pageset[cpu],0);
2870#else
2871		setup_pageset(zone_pcp(zone,cpu), batch);
2872#endif
2873	}
2874	if (zone->present_pages)
2875		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2876			zone->name, zone->present_pages, batch);
2877}
2878
2879__meminit int init_currently_empty_zone(struct zone *zone,
2880					unsigned long zone_start_pfn,
2881					unsigned long size,
2882					enum memmap_context context)
2883{
2884	struct pglist_data *pgdat = zone->zone_pgdat;
2885	int ret;
2886	ret = zone_wait_table_init(zone, size);
2887	if (ret)
2888		return ret;
2889	pgdat->nr_zones = zone_idx(zone) + 1;
2890
2891	zone->zone_start_pfn = zone_start_pfn;
2892
2893	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2894			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2895			pgdat->node_id,
2896			(unsigned long)zone_idx(zone),
2897			zone_start_pfn, (zone_start_pfn + size));
2898
2899	zone_init_free_lists(zone);
2900
2901	return 0;
2902}
2903
2904#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2905/*
2906 * Basic iterator support. Return the first range of PFNs for a node
2907 * Note: nid == MAX_NUMNODES returns first region regardless of node
2908 */
2909static int __meminit first_active_region_index_in_nid(int nid)
2910{
2911	int i;
2912
2913	for (i = 0; i < nr_nodemap_entries; i++)
2914		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2915			return i;
2916
2917	return -1;
2918}
2919
2920/*
2921 * Basic iterator support. Return the next active range of PFNs for a node
2922 * Note: nid == MAX_NUMNODES returns next region regardless of node
2923 */
2924static int __meminit next_active_region_index_in_nid(int index, int nid)
2925{
2926	for (index = index + 1; index < nr_nodemap_entries; index++)
2927		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2928			return index;
2929
2930	return -1;
2931}
2932
2933#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2934/*
2935 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2936 * Architectures may implement their own version but if add_active_range()
2937 * was used and there are no special requirements, this is a convenient
2938 * alternative
2939 */
2940int __meminit early_pfn_to_nid(unsigned long pfn)
2941{
2942	int i;
2943
2944	for (i = 0; i < nr_nodemap_entries; i++) {
2945		unsigned long start_pfn = early_node_map[i].start_pfn;
2946		unsigned long end_pfn = early_node_map[i].end_pfn;
2947
2948		if (start_pfn <= pfn && pfn < end_pfn)
2949			return early_node_map[i].nid;
2950	}
2951
2952	return 0;
2953}
2954#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2955
2956/* Basic iterator support to walk early_node_map[] */
2957#define for_each_active_range_index_in_nid(i, nid) \
2958	for (i = first_active_region_index_in_nid(nid); i != -1; \
2959				i = next_active_region_index_in_nid(i, nid))
2960
2961/**
2962 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2963 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2964 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2965 *
2966 * If an architecture guarantees that all ranges registered with
2967 * add_active_ranges() contain no holes and may be freed, this
2968 * this function may be used instead of calling free_bootmem() manually.
2969 */
2970void __init free_bootmem_with_active_regions(int nid,
2971						unsigned long max_low_pfn)
2972{
2973	int i;
2974
2975	for_each_active_range_index_in_nid(i, nid) {
2976		unsigned long size_pages = 0;
2977		unsigned long end_pfn = early_node_map[i].end_pfn;
2978
2979		if (early_node_map[i].start_pfn >= max_low_pfn)
2980			continue;
2981
2982		if (end_pfn > max_low_pfn)
2983			end_pfn = max_low_pfn;
2984
2985		size_pages = end_pfn - early_node_map[i].start_pfn;
2986		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2987				PFN_PHYS(early_node_map[i].start_pfn),
2988				size_pages << PAGE_SHIFT);
2989	}
2990}
2991
2992void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2993{
2994	int i;
2995	int ret;
2996
2997	for_each_active_range_index_in_nid(i, nid) {
2998		ret = work_fn(early_node_map[i].start_pfn,
2999			      early_node_map[i].end_pfn, data);
3000		if (ret)
3001			break;
3002	}
3003}
3004/**
3005 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3006 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3007 *
3008 * If an architecture guarantees that all ranges registered with
3009 * add_active_ranges() contain no holes and may be freed, this
3010 * function may be used instead of calling memory_present() manually.
3011 */
3012void __init sparse_memory_present_with_active_regions(int nid)
3013{
3014	int i;
3015
3016	for_each_active_range_index_in_nid(i, nid)
3017		memory_present(early_node_map[i].nid,
3018				early_node_map[i].start_pfn,
3019				early_node_map[i].end_pfn);
3020}
3021
3022/**
3023 * push_node_boundaries - Push node boundaries to at least the requested boundary
3024 * @nid: The nid of the node to push the boundary for
3025 * @start_pfn: The start pfn of the node
3026 * @end_pfn: The end pfn of the node
3027 *
3028 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3029 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3030 * be hotplugged even though no physical memory exists. This function allows
3031 * an arch to push out the node boundaries so mem_map is allocated that can
3032 * be used later.
3033 */
3034#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3035void __init push_node_boundaries(unsigned int nid,
3036		unsigned long start_pfn, unsigned long end_pfn)
3037{
3038	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3039			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3040			nid, start_pfn, end_pfn);
3041
3042	/* Initialise the boundary for this node if necessary */
3043	if (node_boundary_end_pfn[nid] == 0)
3044		node_boundary_start_pfn[nid] = -1UL;
3045
3046	/* Update the boundaries */
3047	if (node_boundary_start_pfn[nid] > start_pfn)
3048		node_boundary_start_pfn[nid] = start_pfn;
3049	if (node_boundary_end_pfn[nid] < end_pfn)
3050		node_boundary_end_pfn[nid] = end_pfn;
3051}
3052
3053/* If necessary, push the node boundary out for reserve hotadd */
3054static void __meminit account_node_boundary(unsigned int nid,
3055		unsigned long *start_pfn, unsigned long *end_pfn)
3056{
3057	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3058			"Entering account_node_boundary(%u, %lu, %lu)\n",
3059			nid, *start_pfn, *end_pfn);
3060
3061	/* Return if boundary information has not been provided */
3062	if (node_boundary_end_pfn[nid] == 0)
3063		return;
3064
3065	/* Check the boundaries and update if necessary */
3066	if (node_boundary_start_pfn[nid] < *start_pfn)
3067		*start_pfn = node_boundary_start_pfn[nid];
3068	if (node_boundary_end_pfn[nid] > *end_pfn)
3069		*end_pfn = node_boundary_end_pfn[nid];
3070}
3071#else
3072void __init push_node_boundaries(unsigned int nid,
3073		unsigned long start_pfn, unsigned long end_pfn) {}
3074
3075static void __meminit account_node_boundary(unsigned int nid,
3076		unsigned long *start_pfn, unsigned long *end_pfn) {}
3077#endif
3078
3079
3080/**
3081 * get_pfn_range_for_nid - Return the start and end page frames for a node
3082 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3083 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3084 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3085 *
3086 * It returns the start and end page frame of a node based on information
3087 * provided by an arch calling add_active_range(). If called for a node
3088 * with no available memory, a warning is printed and the start and end
3089 * PFNs will be 0.
3090 */
3091void __meminit get_pfn_range_for_nid(unsigned int nid,
3092			unsigned long *start_pfn, unsigned long *end_pfn)
3093{
3094	int i;
3095	*start_pfn = -1UL;
3096	*end_pfn = 0;
3097
3098	for_each_active_range_index_in_nid(i, nid) {
3099		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3100		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3101	}
3102
3103	if (*start_pfn == -1UL)
3104		*start_pfn = 0;
3105
3106	/* Push the node boundaries out if requested */
3107	account_node_boundary(nid, start_pfn, end_pfn);
3108}
3109
3110/*
3111 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3112 * assumption is made that zones within a node are ordered in monotonic
3113 * increasing memory addresses so that the "highest" populated zone is used
3114 */
3115static void __init find_usable_zone_for_movable(void)
3116{
3117	int zone_index;
3118	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3119		if (zone_index == ZONE_MOVABLE)
3120			continue;
3121
3122		if (arch_zone_highest_possible_pfn[zone_index] >
3123				arch_zone_lowest_possible_pfn[zone_index])
3124			break;
3125	}
3126
3127	VM_BUG_ON(zone_index == -1);
3128	movable_zone = zone_index;
3129}
3130
3131/*
3132 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3133 * because it is sized independant of architecture. Unlike the other zones,
3134 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3135 * in each node depending on the size of each node and how evenly kernelcore
3136 * is distributed. This helper function adjusts the zone ranges
3137 * provided by the architecture for a given node by using the end of the
3138 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3139 * zones within a node are in order of monotonic increases memory addresses
3140 */
3141static void __meminit adjust_zone_range_for_zone_movable(int nid,
3142					unsigned long zone_type,
3143					unsigned long node_start_pfn,
3144					unsigned long node_end_pfn,
3145					unsigned long *zone_start_pfn,
3146					unsigned long *zone_end_pfn)
3147{
3148	/* Only adjust if ZONE_MOVABLE is on this node */
3149	if (zone_movable_pfn[nid]) {
3150		/* Size ZONE_MOVABLE */
3151		if (zone_type == ZONE_MOVABLE) {
3152			*zone_start_pfn = zone_movable_pfn[nid];
3153			*zone_end_pfn = min(node_end_pfn,
3154				arch_zone_highest_possible_pfn[movable_zone]);
3155
3156		/* Adjust for ZONE_MOVABLE starting within this range */
3157		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3158				*zone_end_pfn > zone_movable_pfn[nid]) {
3159			*zone_end_pfn = zone_movable_pfn[nid];
3160
3161		/* Check if this whole range is within ZONE_MOVABLE */
3162		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3163			*zone_start_pfn = *zone_end_pfn;
3164	}
3165}
3166
3167/*
3168 * Return the number of pages a zone spans in a node, including holes
3169 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3170 */
3171static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3172					unsigned long zone_type,
3173					unsigned long *ignored)
3174{
3175	unsigned long node_start_pfn, node_end_pfn;
3176	unsigned long zone_start_pfn, zone_end_pfn;
3177
3178	/* Get the start and end of the node and zone */
3179	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3180	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3181	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3182	adjust_zone_range_for_zone_movable(nid, zone_type,
3183				node_start_pfn, node_end_pfn,
3184				&zone_start_pfn, &zone_end_pfn);
3185
3186	/* Check that this node has pages within the zone's required range */
3187	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3188		return 0;
3189
3190	/* Move the zone boundaries inside the node if necessary */
3191	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3192	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3193
3194	/* Return the spanned pages */
3195	return zone_end_pfn - zone_start_pfn;
3196}
3197
3198/*
3199 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3200 * then all holes in the requested range will be accounted for.
3201 */
3202static unsigned long __meminit __absent_pages_in_range(int nid,
3203				unsigned long range_start_pfn,
3204				unsigned long range_end_pfn)
3205{
3206	int i = 0;
3207	unsigned long prev_end_pfn = 0, hole_pages = 0;
3208	unsigned long start_pfn;
3209
3210	/* Find the end_pfn of the first active range of pfns in the node */
3211	i = first_active_region_index_in_nid(nid);
3212	if (i == -1)
3213		return 0;
3214
3215	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3216
3217	/* Account for ranges before physical memory on this node */
3218	if (early_node_map[i].start_pfn > range_start_pfn)
3219		hole_pages = prev_end_pfn - range_start_pfn;
3220
3221	/* Find all holes for the zone within the node */
3222	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3223
3224		/* No need to continue if prev_end_pfn is outside the zone */
3225		if (prev_end_pfn >= range_end_pfn)
3226			break;
3227
3228		/* Make sure the end of the zone is not within the hole */
3229		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3230		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3231
3232		/* Update the hole size cound and move on */
3233		if (start_pfn > range_start_pfn) {
3234			BUG_ON(prev_end_pfn > start_pfn);
3235			hole_pages += start_pfn - prev_end_pfn;
3236		}
3237		prev_end_pfn = early_node_map[i].end_pfn;
3238	}
3239
3240	/* Account for ranges past physical memory on this node */
3241	if (range_end_pfn > prev_end_pfn)
3242		hole_pages += range_end_pfn -
3243				max(range_start_pfn, prev_end_pfn);
3244
3245	return hole_pages;
3246}
3247
3248/**
3249 * absent_pages_in_range - Return number of page frames in holes within a range
3250 * @start_pfn: The start PFN to start searching for holes
3251 * @end_pfn: The end PFN to stop searching for holes
3252 *
3253 * It returns the number of pages frames in memory holes within a range.
3254 */
3255unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3256							unsigned long end_pfn)
3257{
3258	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3259}
3260
3261/* Return the number of page frames in holes in a zone on a node */
3262static unsigned long __meminit zone_absent_pages_in_node(int nid,
3263					unsigned long zone_type,
3264					unsigned long *ignored)
3265{
3266	unsigned long node_start_pfn, node_end_pfn;
3267	unsigned long zone_start_pfn, zone_end_pfn;
3268
3269	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3270	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3271							node_start_pfn);
3272	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3273							node_end_pfn);
3274
3275	adjust_zone_range_for_zone_movable(nid, zone_type,
3276			node_start_pfn, node_end_pfn,
3277			&zone_start_pfn, &zone_end_pfn);
3278	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3279}
3280
3281#else
3282static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3283					unsigned long zone_type,
3284					unsigned long *zones_size)
3285{
3286	return zones_size[zone_type];
3287}
3288
3289static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3290						unsigned long zone_type,
3291						unsigned long *zholes_size)
3292{
3293	if (!zholes_size)
3294		return 0;
3295
3296	return zholes_size[zone_type];
3297}
3298
3299#endif
3300
3301static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3302		unsigned long *zones_size, unsigned long *zholes_size)
3303{
3304	unsigned long realtotalpages, totalpages = 0;
3305	enum zone_type i;
3306
3307	for (i = 0; i < MAX_NR_ZONES; i++)
3308		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3309								zones_size);
3310	pgdat->node_spanned_pages = totalpages;
3311
3312	realtotalpages = totalpages;
3313	for (i = 0; i < MAX_NR_ZONES; i++)
3314		realtotalpages -=
3315			zone_absent_pages_in_node(pgdat->node_id, i,
3316								zholes_size);
3317	pgdat->node_present_pages = realtotalpages;
3318	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3319							realtotalpages);
3320}
3321
3322#ifndef CONFIG_SPARSEMEM
3323/*
3324 * Calculate the size of the zone->blockflags rounded to an unsigned long
3325 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3326 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3327 * round what is now in bits to nearest long in bits, then return it in
3328 * bytes.
3329 */
3330static unsigned long __init usemap_size(unsigned long zonesize)
3331{
3332	unsigned long usemapsize;
3333
3334	usemapsize = roundup(zonesize, pageblock_nr_pages);
3335	usemapsize = usemapsize >> pageblock_order;
3336	usemapsize *= NR_PAGEBLOCK_BITS;
3337	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3338
3339	return usemapsize / 8;
3340}
3341
3342static void __init setup_usemap(struct pglist_data *pgdat,
3343				struct zone *zone, unsigned long zonesize)
3344{
3345	unsigned long usemapsize = usemap_size(zonesize);
3346	zone->pageblock_flags = NULL;
3347	if (usemapsize) {
3348		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3349		memset(zone->pageblock_flags, 0, usemapsize);
3350	}
3351}
3352#else
3353static void inline setup_usemap(struct pglist_data *pgdat,
3354				struct zone *zone, unsigned long zonesize) {}
3355#endif /* CONFIG_SPARSEMEM */
3356
3357#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3358
3359/* Return a sensible default order for the pageblock size. */
3360static inline int pageblock_default_order(void)
3361{
3362	if (HPAGE_SHIFT > PAGE_SHIFT)
3363		return HUGETLB_PAGE_ORDER;
3364
3365	return MAX_ORDER-1;
3366}
3367
3368/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3369static inline void __init set_pageblock_order(unsigned int order)
3370{
3371	/* Check that pageblock_nr_pages has not already been setup */
3372	if (pageblock_order)
3373		return;
3374
3375	/*
3376	 * Assume the largest contiguous order of interest is a huge page.
3377	 * This value may be variable depending on boot parameters on IA64
3378	 */
3379	pageblock_order = order;
3380}
3381#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3382
3383/*
3384 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3385 * and pageblock_default_order() are unused as pageblock_order is set
3386 * at compile-time. See include/linux/pageblock-flags.h for the values of
3387 * pageblock_order based on the kernel config
3388 */
3389static inline int pageblock_default_order(unsigned int order)
3390{
3391	return MAX_ORDER-1;
3392}
3393#define set_pageblock_order(x)	do {} while (0)
3394
3395#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3396
3397/*
3398 * Set up the zone data structures:
3399 *   - mark all pages reserved
3400 *   - mark all memory queues empty
3401 *   - clear the memory bitmaps
3402 */
3403static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3404		unsigned long *zones_size, unsigned long *zholes_size)
3405{
3406	enum zone_type j;
3407	int nid = pgdat->node_id;
3408	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3409	int ret;
3410
3411	pgdat_resize_init(pgdat);
3412	pgdat->nr_zones = 0;
3413	init_waitqueue_head(&pgdat->kswapd_wait);
3414	pgdat->kswapd_max_order = 0;
3415
3416	for (j = 0; j < MAX_NR_ZONES; j++) {
3417		struct zone *zone = pgdat->node_zones + j;
3418		unsigned long size, realsize, memmap_pages;
3419		enum lru_list l;
3420
3421		size = zone_spanned_pages_in_node(nid, j, zones_size);
3422		realsize = size - zone_absent_pages_in_node(nid, j,
3423								zholes_size);
3424
3425		/*
3426		 * Adjust realsize so that it accounts for how much memory
3427		 * is used by this zone for memmap. This affects the watermark
3428		 * and per-cpu initialisations
3429		 */
3430		memmap_pages =
3431			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3432		if (realsize >= memmap_pages) {
3433			realsize -= memmap_pages;
3434			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3435				"%s zone: %lu pages used for memmap\n",
3436				zone_names[j], memmap_pages);
3437		} else
3438			printk(KERN_WARNING
3439				"  %s zone: %lu pages exceeds realsize %lu\n",
3440				zone_names[j], memmap_pages, realsize);
3441
3442		/* Account for reserved pages */
3443		if (j == 0 && realsize > dma_reserve) {
3444			realsize -= dma_reserve;
3445			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3446					"%s zone: %lu pages reserved\n",
3447					zone_names[0], dma_reserve);
3448		}
3449
3450		if (!is_highmem_idx(j))
3451			nr_kernel_pages += realsize;
3452		nr_all_pages += realsize;
3453
3454		zone->spanned_pages = size;
3455		zone->present_pages = realsize;
3456#ifdef CONFIG_NUMA
3457		zone->node = nid;
3458		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3459						/ 100;
3460		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3461#endif
3462		zone->name = zone_names[j];
3463		spin_lock_init(&zone->lock);
3464		spin_lock_init(&zone->lru_lock);
3465		zone_seqlock_init(zone);
3466		zone->zone_pgdat = pgdat;
3467
3468		zone->prev_priority = DEF_PRIORITY;
3469
3470		zone_pcp_init(zone);
3471		for_each_lru(l) {
3472			INIT_LIST_HEAD(&zone->lru[l].list);
3473			zone->lru[l].nr_scan = 0;
3474		}
3475		zap_zone_vm_stats(zone);
3476		zone->flags = 0;
3477		if (!size)
3478			continue;
3479
3480		set_pageblock_order(pageblock_default_order());
3481		setup_usemap(pgdat, zone, size);
3482		ret = init_currently_empty_zone(zone, zone_start_pfn,
3483						size, MEMMAP_EARLY);
3484		BUG_ON(ret);
3485		memmap_init(size, nid, j, zone_start_pfn);
3486		zone_start_pfn += size;
3487	}
3488}
3489
3490static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3491{
3492	/* Skip empty nodes */
3493	if (!pgdat->node_spanned_pages)
3494		return;
3495
3496#ifdef CONFIG_FLAT_NODE_MEM_MAP
3497	/* ia64 gets its own node_mem_map, before this, without bootmem */
3498	if (!pgdat->node_mem_map) {
3499		unsigned long size, start, end;
3500		struct page *map;
3501
3502		/*
3503		 * The zone's endpoints aren't required to be MAX_ORDER
3504		 * aligned but the node_mem_map endpoints must be in order
3505		 * for the buddy allocator to function correctly.
3506		 */
3507		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3508		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3509		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3510		size =  (end - start) * sizeof(struct page);
3511		map = alloc_remap(pgdat->node_id, size);
3512		if (!map)
3513			map = alloc_bootmem_node(pgdat, size);
3514		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3515	}
3516#ifndef CONFIG_NEED_MULTIPLE_NODES
3517	/*
3518	 * With no DISCONTIG, the global mem_map is just set as node 0's
3519	 */
3520	if (pgdat == NODE_DATA(0)) {
3521		mem_map = NODE_DATA(0)->node_mem_map;
3522#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3523		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3524			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3525#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3526	}
3527#endif
3528#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3529}
3530
3531void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3532		unsigned long node_start_pfn, unsigned long *zholes_size)
3533{
3534	pg_data_t *pgdat = NODE_DATA(nid);
3535
3536	pgdat->node_id = nid;
3537	pgdat->node_start_pfn = node_start_pfn;
3538	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3539
3540	alloc_node_mem_map(pgdat);
3541#ifdef CONFIG_FLAT_NODE_MEM_MAP
3542	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3543		nid, (unsigned long)pgdat,
3544		(unsigned long)pgdat->node_mem_map);
3545#endif
3546
3547	free_area_init_core(pgdat, zones_size, zholes_size);
3548}
3549
3550#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3551
3552#if MAX_NUMNODES > 1
3553/*
3554 * Figure out the number of possible node ids.
3555 */
3556static void __init setup_nr_node_ids(void)
3557{
3558	unsigned int node;
3559	unsigned int highest = 0;
3560
3561	for_each_node_mask(node, node_possible_map)
3562		highest = node;
3563	nr_node_ids = highest + 1;
3564}
3565#else
3566static inline void setup_nr_node_ids(void)
3567{
3568}
3569#endif
3570
3571/**
3572 * add_active_range - Register a range of PFNs backed by physical memory
3573 * @nid: The node ID the range resides on
3574 * @start_pfn: The start PFN of the available physical memory
3575 * @end_pfn: The end PFN of the available physical memory
3576 *
3577 * These ranges are stored in an early_node_map[] and later used by
3578 * free_area_init_nodes() to calculate zone sizes and holes. If the
3579 * range spans a memory hole, it is up to the architecture to ensure
3580 * the memory is not freed by the bootmem allocator. If possible
3581 * the range being registered will be merged with existing ranges.
3582 */
3583void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3584						unsigned long end_pfn)
3585{
3586	int i;
3587
3588	mminit_dprintk(MMINIT_TRACE, "memory_register",
3589			"Entering add_active_range(%d, %#lx, %#lx) "
3590			"%d entries of %d used\n",
3591			nid, start_pfn, end_pfn,
3592			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3593
3594	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3595
3596	/* Merge with existing active regions if possible */
3597	for (i = 0; i < nr_nodemap_entries; i++) {
3598		if (early_node_map[i].nid != nid)
3599			continue;
3600
3601		/* Skip if an existing region covers this new one */
3602		if (start_pfn >= early_node_map[i].start_pfn &&
3603				end_pfn <= early_node_map[i].end_pfn)
3604			return;
3605
3606		/* Merge forward if suitable */
3607		if (start_pfn <= early_node_map[i].end_pfn &&
3608				end_pfn > early_node_map[i].end_pfn) {
3609			early_node_map[i].end_pfn = end_pfn;
3610			return;
3611		}
3612
3613		/* Merge backward if suitable */
3614		if (start_pfn < early_node_map[i].end_pfn &&
3615				end_pfn >= early_node_map[i].start_pfn) {
3616			early_node_map[i].start_pfn = start_pfn;
3617			return;
3618		}
3619	}
3620
3621	/* Check that early_node_map is large enough */
3622	if (i >= MAX_ACTIVE_REGIONS) {
3623		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3624							MAX_ACTIVE_REGIONS);
3625		return;
3626	}
3627
3628	early_node_map[i].nid = nid;
3629	early_node_map[i].start_pfn = start_pfn;
3630	early_node_map[i].end_pfn = end_pfn;
3631	nr_nodemap_entries = i + 1;
3632}
3633
3634/**
3635 * remove_active_range - Shrink an existing registered range of PFNs
3636 * @nid: The node id the range is on that should be shrunk
3637 * @start_pfn: The new PFN of the range
3638 * @end_pfn: The new PFN of the range
3639 *
3640 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3641 * The map is kept near the end physical page range that has already been
3642 * registered. This function allows an arch to shrink an existing registered
3643 * range.
3644 */
3645void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3646				unsigned long end_pfn)
3647{
3648	int i, j;
3649	int removed = 0;
3650
3651	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3652			  nid, start_pfn, end_pfn);
3653
3654	/* Find the old active region end and shrink */
3655	for_each_active_range_index_in_nid(i, nid) {
3656		if (early_node_map[i].start_pfn >= start_pfn &&
3657		    early_node_map[i].end_pfn <= end_pfn) {
3658			/* clear it */
3659			early_node_map[i].start_pfn = 0;
3660			early_node_map[i].end_pfn = 0;
3661			removed = 1;
3662			continue;
3663		}
3664		if (early_node_map[i].start_pfn < start_pfn &&
3665		    early_node_map[i].end_pfn > start_pfn) {
3666			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3667			early_node_map[i].end_pfn = start_pfn;
3668			if (temp_end_pfn > end_pfn)
3669				add_active_range(nid, end_pfn, temp_end_pfn);
3670			continue;
3671		}
3672		if (early_node_map[i].start_pfn >= start_pfn &&
3673		    early_node_map[i].end_pfn > end_pfn &&
3674		    early_node_map[i].start_pfn < end_pfn) {
3675			early_node_map[i].start_pfn = end_pfn;
3676			continue;
3677		}
3678	}
3679
3680	if (!removed)
3681		return;
3682
3683	/* remove the blank ones */
3684	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3685		if (early_node_map[i].nid != nid)
3686			continue;
3687		if (early_node_map[i].end_pfn)
3688			continue;
3689		/* we found it, get rid of it */
3690		for (j = i; j < nr_nodemap_entries - 1; j++)
3691			memcpy(&early_node_map[j], &early_node_map[j+1],
3692				sizeof(early_node_map[j]));
3693		j = nr_nodemap_entries - 1;
3694		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3695		nr_nodemap_entries--;
3696	}
3697}
3698
3699/**
3700 * remove_all_active_ranges - Remove all currently registered regions
3701 *
3702 * During discovery, it may be found that a table like SRAT is invalid
3703 * and an alternative discovery method must be used. This function removes
3704 * all currently registered regions.
3705 */
3706void __init remove_all_active_ranges(void)
3707{
3708	memset(early_node_map, 0, sizeof(early_node_map));
3709	nr_nodemap_entries = 0;
3710#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3711	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3712	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3713#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3714}
3715
3716/* Compare two active node_active_regions */
3717static int __init cmp_node_active_region(const void *a, const void *b)
3718{
3719	struct node_active_region *arange = (struct node_active_region *)a;
3720	struct node_active_region *brange = (struct node_active_region *)b;
3721
3722	/* Done this way to avoid overflows */
3723	if (arange->start_pfn > brange->start_pfn)
3724		return 1;
3725	if (arange->start_pfn < brange->start_pfn)
3726		return -1;
3727
3728	return 0;
3729}
3730
3731/* sort the node_map by start_pfn */
3732static void __init sort_node_map(void)
3733{
3734	sort(early_node_map, (size_t)nr_nodemap_entries,
3735			sizeof(struct node_active_region),
3736			cmp_node_active_region, NULL);
3737}
3738
3739/* Find the lowest pfn for a node */
3740static unsigned long __init find_min_pfn_for_node(int nid)
3741{
3742	int i;
3743	unsigned long min_pfn = ULONG_MAX;
3744
3745	/* Assuming a sorted map, the first range found has the starting pfn */
3746	for_each_active_range_index_in_nid(i, nid)
3747		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3748
3749	if (min_pfn == ULONG_MAX) {
3750		printk(KERN_WARNING
3751			"Could not find start_pfn for node %d\n", nid);
3752		return 0;
3753	}
3754
3755	return min_pfn;
3756}
3757
3758/**
3759 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3760 *
3761 * It returns the minimum PFN based on information provided via
3762 * add_active_range().
3763 */
3764unsigned long __init find_min_pfn_with_active_regions(void)
3765{
3766	return find_min_pfn_for_node(MAX_NUMNODES);
3767}
3768
3769/*
3770 * early_calculate_totalpages()
3771 * Sum pages in active regions for movable zone.
3772 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3773 */
3774static unsigned long __init early_calculate_totalpages(void)
3775{
3776	int i;
3777	unsigned long totalpages = 0;
3778
3779	for (i = 0; i < nr_nodemap_entries; i++) {
3780		unsigned long pages = early_node_map[i].end_pfn -
3781						early_node_map[i].start_pfn;
3782		totalpages += pages;
3783		if (pages)
3784			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3785	}
3786  	return totalpages;
3787}
3788
3789/*
3790 * Find the PFN the Movable zone begins in each node. Kernel memory
3791 * is spread evenly between nodes as long as the nodes have enough
3792 * memory. When they don't, some nodes will have more kernelcore than
3793 * others
3794 */
3795static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3796{
3797	int i, nid;
3798	unsigned long usable_startpfn;
3799	unsigned long kernelcore_node, kernelcore_remaining;
3800	unsigned long totalpages = early_calculate_totalpages();
3801	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3802
3803	/*
3804	 * If movablecore was specified, calculate what size of
3805	 * kernelcore that corresponds so that memory usable for
3806	 * any allocation type is evenly spread. If both kernelcore
3807	 * and movablecore are specified, then the value of kernelcore
3808	 * will be used for required_kernelcore if it's greater than
3809	 * what movablecore would have allowed.
3810	 */
3811	if (required_movablecore) {
3812		unsigned long corepages;
3813
3814		/*
3815		 * Round-up so that ZONE_MOVABLE is at least as large as what
3816		 * was requested by the user
3817		 */
3818		required_movablecore =
3819			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3820		corepages = totalpages - required_movablecore;
3821
3822		required_kernelcore = max(required_kernelcore, corepages);
3823	}
3824
3825	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3826	if (!required_kernelcore)
3827		return;
3828
3829	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3830	find_usable_zone_for_movable();
3831	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3832
3833restart:
3834	/* Spread kernelcore memory as evenly as possible throughout nodes */
3835	kernelcore_node = required_kernelcore / usable_nodes;
3836	for_each_node_state(nid, N_HIGH_MEMORY) {
3837		/*
3838		 * Recalculate kernelcore_node if the division per node
3839		 * now exceeds what is necessary to satisfy the requested
3840		 * amount of memory for the kernel
3841		 */
3842		if (required_kernelcore < kernelcore_node)
3843			kernelcore_node = required_kernelcore / usable_nodes;
3844
3845		/*
3846		 * As the map is walked, we track how much memory is usable
3847		 * by the kernel using kernelcore_remaining. When it is
3848		 * 0, the rest of the node is usable by ZONE_MOVABLE
3849		 */
3850		kernelcore_remaining = kernelcore_node;
3851
3852		/* Go through each range of PFNs within this node */
3853		for_each_active_range_index_in_nid(i, nid) {
3854			unsigned long start_pfn, end_pfn;
3855			unsigned long size_pages;
3856
3857			start_pfn = max(early_node_map[i].start_pfn,
3858						zone_movable_pfn[nid]);
3859			end_pfn = early_node_map[i].end_pfn;
3860			if (start_pfn >= end_pfn)
3861				continue;
3862
3863			/* Account for what is only usable for kernelcore */
3864			if (start_pfn < usable_startpfn) {
3865				unsigned long kernel_pages;
3866				kernel_pages = min(end_pfn, usable_startpfn)
3867								- start_pfn;
3868
3869				kernelcore_remaining -= min(kernel_pages,
3870							kernelcore_remaining);
3871				required_kernelcore -= min(kernel_pages,
3872							required_kernelcore);
3873
3874				/* Continue if range is now fully accounted */
3875				if (end_pfn <= usable_startpfn) {
3876
3877					/*
3878					 * Push zone_movable_pfn to the end so
3879					 * that if we have to rebalance
3880					 * kernelcore across nodes, we will
3881					 * not double account here
3882					 */
3883					zone_movable_pfn[nid] = end_pfn;
3884					continue;
3885				}
3886				start_pfn = usable_startpfn;
3887			}
3888
3889			/*
3890			 * The usable PFN range for ZONE_MOVABLE is from
3891			 * start_pfn->end_pfn. Calculate size_pages as the
3892			 * number of pages used as kernelcore
3893			 */
3894			size_pages = end_pfn - start_pfn;
3895			if (size_pages > kernelcore_remaining)
3896				size_pages = kernelcore_remaining;
3897			zone_movable_pfn[nid] = start_pfn + size_pages;
3898
3899			/*
3900			 * Some kernelcore has been met, update counts and
3901			 * break if the kernelcore for this node has been
3902			 * satisified
3903			 */
3904			required_kernelcore -= min(required_kernelcore,
3905								size_pages);
3906			kernelcore_remaining -= size_pages;
3907			if (!kernelcore_remaining)
3908				break;
3909		}
3910	}
3911
3912	/*
3913	 * If there is still required_kernelcore, we do another pass with one
3914	 * less node in the count. This will push zone_movable_pfn[nid] further
3915	 * along on the nodes that still have memory until kernelcore is
3916	 * satisified
3917	 */
3918	usable_nodes--;
3919	if (usable_nodes && required_kernelcore > usable_nodes)
3920		goto restart;
3921
3922	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3923	for (nid = 0; nid < MAX_NUMNODES; nid++)
3924		zone_movable_pfn[nid] =
3925			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3926}
3927
3928/* Any regular memory on that node ? */
3929static void check_for_regular_memory(pg_data_t *pgdat)
3930{
3931#ifdef CONFIG_HIGHMEM
3932	enum zone_type zone_type;
3933
3934	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3935		struct zone *zone = &pgdat->node_zones[zone_type];
3936		if (zone->present_pages)
3937			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3938	}
3939#endif
3940}
3941
3942/**
3943 * free_area_init_nodes - Initialise all pg_data_t and zone data
3944 * @max_zone_pfn: an array of max PFNs for each zone
3945 *
3946 * This will call free_area_init_node() for each active node in the system.
3947 * Using the page ranges provided by add_active_range(), the size of each
3948 * zone in each node and their holes is calculated. If the maximum PFN
3949 * between two adjacent zones match, it is assumed that the zone is empty.
3950 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3951 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3952 * starts where the previous one ended. For example, ZONE_DMA32 starts
3953 * at arch_max_dma_pfn.
3954 */
3955void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3956{
3957	unsigned long nid;
3958	int i;
3959
3960	/* Sort early_node_map as initialisation assumes it is sorted */
3961	sort_node_map();
3962
3963	/* Record where the zone boundaries are */
3964	memset(arch_zone_lowest_possible_pfn, 0,
3965				sizeof(arch_zone_lowest_possible_pfn));
3966	memset(arch_zone_highest_possible_pfn, 0,
3967				sizeof(arch_zone_highest_possible_pfn));
3968	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3969	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3970	for (i = 1; i < MAX_NR_ZONES; i++) {
3971		if (i == ZONE_MOVABLE)
3972			continue;
3973		arch_zone_lowest_possible_pfn[i] =
3974			arch_zone_highest_possible_pfn[i-1];
3975		arch_zone_highest_possible_pfn[i] =
3976			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3977	}
3978	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3979	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3980
3981	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3982	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3983	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3984
3985	/* Print out the zone ranges */
3986	printk("Zone PFN ranges:\n");
3987	for (i = 0; i < MAX_NR_ZONES; i++) {
3988		if (i == ZONE_MOVABLE)
3989			continue;
3990		printk("  %-8s %0#10lx -> %0#10lx\n",
3991				zone_names[i],
3992				arch_zone_lowest_possible_pfn[i],
3993				arch_zone_highest_possible_pfn[i]);
3994	}
3995
3996	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3997	printk("Movable zone start PFN for each node\n");
3998	for (i = 0; i < MAX_NUMNODES; i++) {
3999		if (zone_movable_pfn[i])
4000			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4001	}
4002
4003	/* Print out the early_node_map[] */
4004	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4005	for (i = 0; i < nr_nodemap_entries; i++)
4006		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4007						early_node_map[i].start_pfn,
4008						early_node_map[i].end_pfn);
4009
4010	/* Initialise every node */
4011	mminit_verify_pageflags_layout();
4012	setup_nr_node_ids();
4013	for_each_online_node(nid) {
4014		pg_data_t *pgdat = NODE_DATA(nid);
4015		free_area_init_node(nid, NULL,
4016				find_min_pfn_for_node(nid), NULL);
4017
4018		/* Any memory on that node */
4019		if (pgdat->node_present_pages)
4020			node_set_state(nid, N_HIGH_MEMORY);
4021		check_for_regular_memory(pgdat);
4022	}
4023}
4024
4025static int __init cmdline_parse_core(char *p, unsigned long *core)
4026{
4027	unsigned long long coremem;
4028	if (!p)
4029		return -EINVAL;
4030
4031	coremem = memparse(p, &p);
4032	*core = coremem >> PAGE_SHIFT;
4033
4034	/* Paranoid check that UL is enough for the coremem value */
4035	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4036
4037	return 0;
4038}
4039
4040/*
4041 * kernelcore=size sets the amount of memory for use for allocations that
4042 * cannot be reclaimed or migrated.
4043 */
4044static int __init cmdline_parse_kernelcore(char *p)
4045{
4046	return cmdline_parse_core(p, &required_kernelcore);
4047}
4048
4049/*
4050 * movablecore=size sets the amount of memory for use for allocations that
4051 * can be reclaimed or migrated.
4052 */
4053static int __init cmdline_parse_movablecore(char *p)
4054{
4055	return cmdline_parse_core(p, &required_movablecore);
4056}
4057
4058early_param("kernelcore", cmdline_parse_kernelcore);
4059early_param("movablecore", cmdline_parse_movablecore);
4060
4061#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4062
4063/**
4064 * set_dma_reserve - set the specified number of pages reserved in the first zone
4065 * @new_dma_reserve: The number of pages to mark reserved
4066 *
4067 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4068 * In the DMA zone, a significant percentage may be consumed by kernel image
4069 * and other unfreeable allocations which can skew the watermarks badly. This
4070 * function may optionally be used to account for unfreeable pages in the
4071 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4072 * smaller per-cpu batchsize.
4073 */
4074void __init set_dma_reserve(unsigned long new_dma_reserve)
4075{
4076	dma_reserve = new_dma_reserve;
4077}
4078
4079#ifndef CONFIG_NEED_MULTIPLE_NODES
4080struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4081EXPORT_SYMBOL(contig_page_data);
4082#endif
4083
4084void __init free_area_init(unsigned long *zones_size)
4085{
4086	free_area_init_node(0, zones_size,
4087			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4088}
4089
4090static int page_alloc_cpu_notify(struct notifier_block *self,
4091				 unsigned long action, void *hcpu)
4092{
4093	int cpu = (unsigned long)hcpu;
4094
4095	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4096		drain_pages(cpu);
4097
4098		/*
4099		 * Spill the event counters of the dead processor
4100		 * into the current processors event counters.
4101		 * This artificially elevates the count of the current
4102		 * processor.
4103		 */
4104		vm_events_fold_cpu(cpu);
4105
4106		/*
4107		 * Zero the differential counters of the dead processor
4108		 * so that the vm statistics are consistent.
4109		 *
4110		 * This is only okay since the processor is dead and cannot
4111		 * race with what we are doing.
4112		 */
4113		refresh_cpu_vm_stats(cpu);
4114	}
4115	return NOTIFY_OK;
4116}
4117
4118void __init page_alloc_init(void)
4119{
4120	hotcpu_notifier(page_alloc_cpu_notify, 0);
4121}
4122
4123/*
4124 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4125 *	or min_free_kbytes changes.
4126 */
4127static void calculate_totalreserve_pages(void)
4128{
4129	struct pglist_data *pgdat;
4130	unsigned long reserve_pages = 0;
4131	enum zone_type i, j;
4132
4133	for_each_online_pgdat(pgdat) {
4134		for (i = 0; i < MAX_NR_ZONES; i++) {
4135			struct zone *zone = pgdat->node_zones + i;
4136			unsigned long max = 0;
4137
4138			/* Find valid and maximum lowmem_reserve in the zone */
4139			for (j = i; j < MAX_NR_ZONES; j++) {
4140				if (zone->lowmem_reserve[j] > max)
4141					max = zone->lowmem_reserve[j];
4142			}
4143
4144			/* we treat pages_high as reserved pages. */
4145			max += zone->pages_high;
4146
4147			if (max > zone->present_pages)
4148				max = zone->present_pages;
4149			reserve_pages += max;
4150		}
4151	}
4152	totalreserve_pages = reserve_pages;
4153}
4154
4155/*
4156 * setup_per_zone_lowmem_reserve - called whenever
4157 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4158 *	has a correct pages reserved value, so an adequate number of
4159 *	pages are left in the zone after a successful __alloc_pages().
4160 */
4161static void setup_per_zone_lowmem_reserve(void)
4162{
4163	struct pglist_data *pgdat;
4164	enum zone_type j, idx;
4165
4166	for_each_online_pgdat(pgdat) {
4167		for (j = 0; j < MAX_NR_ZONES; j++) {
4168			struct zone *zone = pgdat->node_zones + j;
4169			unsigned long present_pages = zone->present_pages;
4170
4171			zone->lowmem_reserve[j] = 0;
4172
4173			idx = j;
4174			while (idx) {
4175				struct zone *lower_zone;
4176
4177				idx--;
4178
4179				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4180					sysctl_lowmem_reserve_ratio[idx] = 1;
4181
4182				lower_zone = pgdat->node_zones + idx;
4183				lower_zone->lowmem_reserve[j] = present_pages /
4184					sysctl_lowmem_reserve_ratio[idx];
4185				present_pages += lower_zone->present_pages;
4186			}
4187		}
4188	}
4189
4190	/* update totalreserve_pages */
4191	calculate_totalreserve_pages();
4192}
4193
4194/**
4195 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4196 *
4197 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4198 * with respect to min_free_kbytes.
4199 */
4200void setup_per_zone_pages_min(void)
4201{
4202	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4203	unsigned long lowmem_pages = 0;
4204	struct zone *zone;
4205	unsigned long flags;
4206
4207	/* Calculate total number of !ZONE_HIGHMEM pages */
4208	for_each_zone(zone) {
4209		if (!is_highmem(zone))
4210			lowmem_pages += zone->present_pages;
4211	}
4212
4213	for_each_zone(zone) {
4214		u64 tmp;
4215
4216		spin_lock_irqsave(&zone->lru_lock, flags);
4217		tmp = (u64)pages_min * zone->present_pages;
4218		do_div(tmp, lowmem_pages);
4219		if (is_highmem(zone)) {
4220			/*
4221			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4222			 * need highmem pages, so cap pages_min to a small
4223			 * value here.
4224			 *
4225			 * The (pages_high-pages_low) and (pages_low-pages_min)
4226			 * deltas controls asynch page reclaim, and so should
4227			 * not be capped for highmem.
4228			 */
4229			int min_pages;
4230
4231			min_pages = zone->present_pages / 1024;
4232			if (min_pages < SWAP_CLUSTER_MAX)
4233				min_pages = SWAP_CLUSTER_MAX;
4234			if (min_pages > 128)
4235				min_pages = 128;
4236			zone->pages_min = min_pages;
4237		} else {
4238			/*
4239			 * If it's a lowmem zone, reserve a number of pages
4240			 * proportionate to the zone's size.
4241			 */
4242			zone->pages_min = tmp;
4243		}
4244
4245		zone->pages_low   = zone->pages_min + (tmp >> 2);
4246		zone->pages_high  = zone->pages_min + (tmp >> 1);
4247		setup_zone_migrate_reserve(zone);
4248		spin_unlock_irqrestore(&zone->lru_lock, flags);
4249	}
4250
4251	/* update totalreserve_pages */
4252	calculate_totalreserve_pages();
4253}
4254
4255/*
4256 * Initialise min_free_kbytes.
4257 *
4258 * For small machines we want it small (128k min).  For large machines
4259 * we want it large (64MB max).  But it is not linear, because network
4260 * bandwidth does not increase linearly with machine size.  We use
4261 *
4262 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4263 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4264 *
4265 * which yields
4266 *
4267 * 16MB:	512k
4268 * 32MB:	724k
4269 * 64MB:	1024k
4270 * 128MB:	1448k
4271 * 256MB:	2048k
4272 * 512MB:	2896k
4273 * 1024MB:	4096k
4274 * 2048MB:	5792k
4275 * 4096MB:	8192k
4276 * 8192MB:	11584k
4277 * 16384MB:	16384k
4278 */
4279static int __init init_per_zone_pages_min(void)
4280{
4281	unsigned long lowmem_kbytes;
4282
4283	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4284
4285	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4286	if (min_free_kbytes < 128)
4287		min_free_kbytes = 128;
4288	if (min_free_kbytes > 65536)
4289		min_free_kbytes = 65536;
4290	setup_per_zone_pages_min();
4291	setup_per_zone_lowmem_reserve();
4292	return 0;
4293}
4294module_init(init_per_zone_pages_min)
4295
4296/*
4297 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4298 *	that we can call two helper functions whenever min_free_kbytes
4299 *	changes.
4300 */
4301int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4302	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4303{
4304	proc_dointvec(table, write, file, buffer, length, ppos);
4305	if (write)
4306		setup_per_zone_pages_min();
4307	return 0;
4308}
4309
4310#ifdef CONFIG_NUMA
4311int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4312	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4313{
4314	struct zone *zone;
4315	int rc;
4316
4317	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4318	if (rc)
4319		return rc;
4320
4321	for_each_zone(zone)
4322		zone->min_unmapped_pages = (zone->present_pages *
4323				sysctl_min_unmapped_ratio) / 100;
4324	return 0;
4325}
4326
4327int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4328	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4329{
4330	struct zone *zone;
4331	int rc;
4332
4333	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4334	if (rc)
4335		return rc;
4336
4337	for_each_zone(zone)
4338		zone->min_slab_pages = (zone->present_pages *
4339				sysctl_min_slab_ratio) / 100;
4340	return 0;
4341}
4342#endif
4343
4344/*
4345 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4346 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4347 *	whenever sysctl_lowmem_reserve_ratio changes.
4348 *
4349 * The reserve ratio obviously has absolutely no relation with the
4350 * pages_min watermarks. The lowmem reserve ratio can only make sense
4351 * if in function of the boot time zone sizes.
4352 */
4353int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4354	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4355{
4356	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4357	setup_per_zone_lowmem_reserve();
4358	return 0;
4359}
4360
4361/*
4362 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4363 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4364 * can have before it gets flushed back to buddy allocator.
4365 */
4366
4367int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4368	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4369{
4370	struct zone *zone;
4371	unsigned int cpu;
4372	int ret;
4373
4374	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4375	if (!write || (ret == -EINVAL))
4376		return ret;
4377	for_each_zone(zone) {
4378		for_each_online_cpu(cpu) {
4379			unsigned long  high;
4380			high = zone->present_pages / percpu_pagelist_fraction;
4381			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4382		}
4383	}
4384	return 0;
4385}
4386
4387int hashdist = HASHDIST_DEFAULT;
4388
4389#ifdef CONFIG_NUMA
4390static int __init set_hashdist(char *str)
4391{
4392	if (!str)
4393		return 0;
4394	hashdist = simple_strtoul(str, &str, 0);
4395	return 1;
4396}
4397__setup("hashdist=", set_hashdist);
4398#endif
4399
4400/*
4401 * allocate a large system hash table from bootmem
4402 * - it is assumed that the hash table must contain an exact power-of-2
4403 *   quantity of entries
4404 * - limit is the number of hash buckets, not the total allocation size
4405 */
4406void *__init alloc_large_system_hash(const char *tablename,
4407				     unsigned long bucketsize,
4408				     unsigned long numentries,
4409				     int scale,
4410				     int flags,
4411				     unsigned int *_hash_shift,
4412				     unsigned int *_hash_mask,
4413				     unsigned long limit)
4414{
4415	unsigned long long max = limit;
4416	unsigned long log2qty, size;
4417	void *table = NULL;
4418
4419	/* allow the kernel cmdline to have a say */
4420	if (!numentries) {
4421		/* round applicable memory size up to nearest megabyte */
4422		numentries = nr_kernel_pages;
4423		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4424		numentries >>= 20 - PAGE_SHIFT;
4425		numentries <<= 20 - PAGE_SHIFT;
4426
4427		/* limit to 1 bucket per 2^scale bytes of low memory */
4428		if (scale > PAGE_SHIFT)
4429			numentries >>= (scale - PAGE_SHIFT);
4430		else
4431			numentries <<= (PAGE_SHIFT - scale);
4432
4433		/* Make sure we've got at least a 0-order allocation.. */
4434		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4435			numentries = PAGE_SIZE / bucketsize;
4436	}
4437	numentries = roundup_pow_of_two(numentries);
4438
4439	/* limit allocation size to 1/16 total memory by default */
4440	if (max == 0) {
4441		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4442		do_div(max, bucketsize);
4443	}
4444
4445	if (numentries > max)
4446		numentries = max;
4447
4448	log2qty = ilog2(numentries);
4449
4450	do {
4451		size = bucketsize << log2qty;
4452		if (flags & HASH_EARLY)
4453			table = alloc_bootmem_nopanic(size);
4454		else if (hashdist)
4455			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4456		else {
4457			unsigned long order = get_order(size);
4458			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4459			/*
4460			 * If bucketsize is not a power-of-two, we may free
4461			 * some pages at the end of hash table.
4462			 */
4463			if (table) {
4464				unsigned long alloc_end = (unsigned long)table +
4465						(PAGE_SIZE << order);
4466				unsigned long used = (unsigned long)table +
4467						PAGE_ALIGN(size);
4468				split_page(virt_to_page(table), order);
4469				while (used < alloc_end) {
4470					free_page(used);
4471					used += PAGE_SIZE;
4472				}
4473			}
4474		}
4475	} while (!table && size > PAGE_SIZE && --log2qty);
4476
4477	if (!table)
4478		panic("Failed to allocate %s hash table\n", tablename);
4479
4480	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4481	       tablename,
4482	       (1U << log2qty),
4483	       ilog2(size) - PAGE_SHIFT,
4484	       size);
4485
4486	if (_hash_shift)
4487		*_hash_shift = log2qty;
4488	if (_hash_mask)
4489		*_hash_mask = (1 << log2qty) - 1;
4490
4491	return table;
4492}
4493
4494#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4495struct page *pfn_to_page(unsigned long pfn)
4496{
4497	return __pfn_to_page(pfn);
4498}
4499unsigned long page_to_pfn(struct page *page)
4500{
4501	return __page_to_pfn(page);
4502}
4503EXPORT_SYMBOL(pfn_to_page);
4504EXPORT_SYMBOL(page_to_pfn);
4505#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4506
4507/* Return a pointer to the bitmap storing bits affecting a block of pages */
4508static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4509							unsigned long pfn)
4510{
4511#ifdef CONFIG_SPARSEMEM
4512	return __pfn_to_section(pfn)->pageblock_flags;
4513#else
4514	return zone->pageblock_flags;
4515#endif /* CONFIG_SPARSEMEM */
4516}
4517
4518static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4519{
4520#ifdef CONFIG_SPARSEMEM
4521	pfn &= (PAGES_PER_SECTION-1);
4522	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4523#else
4524	pfn = pfn - zone->zone_start_pfn;
4525	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4526#endif /* CONFIG_SPARSEMEM */
4527}
4528
4529/**
4530 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4531 * @page: The page within the block of interest
4532 * @start_bitidx: The first bit of interest to retrieve
4533 * @end_bitidx: The last bit of interest
4534 * returns pageblock_bits flags
4535 */
4536unsigned long get_pageblock_flags_group(struct page *page,
4537					int start_bitidx, int end_bitidx)
4538{
4539	struct zone *zone;
4540	unsigned long *bitmap;
4541	unsigned long pfn, bitidx;
4542	unsigned long flags = 0;
4543	unsigned long value = 1;
4544
4545	zone = page_zone(page);
4546	pfn = page_to_pfn(page);
4547	bitmap = get_pageblock_bitmap(zone, pfn);
4548	bitidx = pfn_to_bitidx(zone, pfn);
4549
4550	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4551		if (test_bit(bitidx + start_bitidx, bitmap))
4552			flags |= value;
4553
4554	return flags;
4555}
4556
4557/**
4558 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4559 * @page: The page within the block of interest
4560 * @start_bitidx: The first bit of interest
4561 * @end_bitidx: The last bit of interest
4562 * @flags: The flags to set
4563 */
4564void set_pageblock_flags_group(struct page *page, unsigned long flags,
4565					int start_bitidx, int end_bitidx)
4566{
4567	struct zone *zone;
4568	unsigned long *bitmap;
4569	unsigned long pfn, bitidx;
4570	unsigned long value = 1;
4571
4572	zone = page_zone(page);
4573	pfn = page_to_pfn(page);
4574	bitmap = get_pageblock_bitmap(zone, pfn);
4575	bitidx = pfn_to_bitidx(zone, pfn);
4576	VM_BUG_ON(pfn < zone->zone_start_pfn);
4577	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4578
4579	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4580		if (flags & value)
4581			__set_bit(bitidx + start_bitidx, bitmap);
4582		else
4583			__clear_bit(bitidx + start_bitidx, bitmap);
4584}
4585
4586/*
4587 * This is designed as sub function...plz see page_isolation.c also.
4588 * set/clear page block's type to be ISOLATE.
4589 * page allocater never alloc memory from ISOLATE block.
4590 */
4591
4592int set_migratetype_isolate(struct page *page)
4593{
4594	struct zone *zone;
4595	unsigned long flags;
4596	int ret = -EBUSY;
4597
4598	zone = page_zone(page);
4599	spin_lock_irqsave(&zone->lock, flags);
4600	/*
4601	 * In future, more migrate types will be able to be isolation target.
4602	 */
4603	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4604		goto out;
4605	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4606	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4607	ret = 0;
4608out:
4609	spin_unlock_irqrestore(&zone->lock, flags);
4610	if (!ret)
4611		drain_all_pages();
4612	return ret;
4613}
4614
4615void unset_migratetype_isolate(struct page *page)
4616{
4617	struct zone *zone;
4618	unsigned long flags;
4619	zone = page_zone(page);
4620	spin_lock_irqsave(&zone->lock, flags);
4621	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4622		goto out;
4623	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4624	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4625out:
4626	spin_unlock_irqrestore(&zone->lock, flags);
4627}
4628
4629#ifdef CONFIG_MEMORY_HOTREMOVE
4630/*
4631 * All pages in the range must be isolated before calling this.
4632 */
4633void
4634__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4635{
4636	struct page *page;
4637	struct zone *zone;
4638	int order, i;
4639	unsigned long pfn;
4640	unsigned long flags;
4641	/* find the first valid pfn */
4642	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4643		if (pfn_valid(pfn))
4644			break;
4645	if (pfn == end_pfn)
4646		return;
4647	zone = page_zone(pfn_to_page(pfn));
4648	spin_lock_irqsave(&zone->lock, flags);
4649	pfn = start_pfn;
4650	while (pfn < end_pfn) {
4651		if (!pfn_valid(pfn)) {
4652			pfn++;
4653			continue;
4654		}
4655		page = pfn_to_page(pfn);
4656		BUG_ON(page_count(page));
4657		BUG_ON(!PageBuddy(page));
4658		order = page_order(page);
4659#ifdef CONFIG_DEBUG_VM
4660		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4661		       pfn, 1 << order, end_pfn);
4662#endif
4663		list_del(&page->lru);
4664		rmv_page_order(page);
4665		zone->free_area[order].nr_free--;
4666		__mod_zone_page_state(zone, NR_FREE_PAGES,
4667				      - (1UL << order));
4668		for (i = 0; i < (1 << order); i++)
4669			SetPageReserved((page+i));
4670		pfn += (1 << order);
4671	}
4672	spin_unlock_irqrestore(&zone->lock, flags);
4673}
4674#endif
4675