page_alloc.c revision c2f29ea111e3344ed48257c2a142c3db514e1529
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/nodemask.h>
36#include <linux/vmalloc.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45nodemask_t node_online_map = { { [0] = 1UL } };
46EXPORT_SYMBOL(node_online_map);
47nodemask_t node_possible_map = NODE_MASK_ALL;
48EXPORT_SYMBOL(node_possible_map);
49struct pglist_data *pgdat_list;
50unsigned long totalram_pages;
51unsigned long totalhigh_pages;
52long nr_swap_pages;
53
54/*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 *	1G machine -> (16M dma, 784M normal, 224M high)
58 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64EXPORT_SYMBOL(totalram_pages);
65EXPORT_SYMBOL(nr_swap_pages);
66
67/*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72EXPORT_SYMBOL(zone_table);
73
74#ifdef CONFIG_NUMA
75static struct per_cpu_pageset
76	pageset_table[MAX_NR_ZONES*MAX_NUMNODES*NR_CPUS] __initdata;
77#endif
78
79static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
80int min_free_kbytes = 1024;
81
82unsigned long __initdata nr_kernel_pages;
83unsigned long __initdata nr_all_pages;
84
85/*
86 * Temporary debugging check for pages not lying within a given zone.
87 */
88static int bad_range(struct zone *zone, struct page *page)
89{
90	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
91		return 1;
92	if (page_to_pfn(page) < zone->zone_start_pfn)
93		return 1;
94#ifdef CONFIG_HOLES_IN_ZONE
95	if (!pfn_valid(page_to_pfn(page)))
96		return 1;
97#endif
98	if (zone != page_zone(page))
99		return 1;
100	return 0;
101}
102
103static void bad_page(const char *function, struct page *page)
104{
105	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
106		function, current->comm, page);
107	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
108		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
109		page->mapping, page_mapcount(page), page_count(page));
110	printk(KERN_EMERG "Backtrace:\n");
111	dump_stack();
112	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
113	page->flags &= ~(1 << PG_private	|
114			1 << PG_locked	|
115			1 << PG_lru	|
116			1 << PG_active	|
117			1 << PG_dirty	|
118			1 << PG_swapcache |
119			1 << PG_writeback);
120	set_page_count(page, 0);
121	reset_page_mapcount(page);
122	page->mapping = NULL;
123	tainted |= TAINT_BAD_PAGE;
124}
125
126#ifndef CONFIG_HUGETLB_PAGE
127#define prep_compound_page(page, order) do { } while (0)
128#define destroy_compound_page(page, order) do { } while (0)
129#else
130/*
131 * Higher-order pages are called "compound pages".  They are structured thusly:
132 *
133 * The first PAGE_SIZE page is called the "head page".
134 *
135 * The remaining PAGE_SIZE pages are called "tail pages".
136 *
137 * All pages have PG_compound set.  All pages have their ->private pointing at
138 * the head page (even the head page has this).
139 *
140 * The first tail page's ->mapping, if non-zero, holds the address of the
141 * compound page's put_page() function.
142 *
143 * The order of the allocation is stored in the first tail page's ->index
144 * This is only for debug at present.  This usage means that zero-order pages
145 * may not be compound.
146 */
147static void prep_compound_page(struct page *page, unsigned long order)
148{
149	int i;
150	int nr_pages = 1 << order;
151
152	page[1].mapping = NULL;
153	page[1].index = order;
154	for (i = 0; i < nr_pages; i++) {
155		struct page *p = page + i;
156
157		SetPageCompound(p);
158		p->private = (unsigned long)page;
159	}
160}
161
162static void destroy_compound_page(struct page *page, unsigned long order)
163{
164	int i;
165	int nr_pages = 1 << order;
166
167	if (!PageCompound(page))
168		return;
169
170	if (page[1].index != order)
171		bad_page(__FUNCTION__, page);
172
173	for (i = 0; i < nr_pages; i++) {
174		struct page *p = page + i;
175
176		if (!PageCompound(p))
177			bad_page(__FUNCTION__, page);
178		if (p->private != (unsigned long)page)
179			bad_page(__FUNCTION__, page);
180		ClearPageCompound(p);
181	}
182}
183#endif		/* CONFIG_HUGETLB_PAGE */
184
185/*
186 * function for dealing with page's order in buddy system.
187 * zone->lock is already acquired when we use these.
188 * So, we don't need atomic page->flags operations here.
189 */
190static inline unsigned long page_order(struct page *page) {
191	return page->private;
192}
193
194static inline void set_page_order(struct page *page, int order) {
195	page->private = order;
196	__SetPagePrivate(page);
197}
198
199static inline void rmv_page_order(struct page *page)
200{
201	__ClearPagePrivate(page);
202	page->private = 0;
203}
204
205/*
206 * Locate the struct page for both the matching buddy in our
207 * pair (buddy1) and the combined O(n+1) page they form (page).
208 *
209 * 1) Any buddy B1 will have an order O twin B2 which satisfies
210 * the following equation:
211 *     B2 = B1 ^ (1 << O)
212 * For example, if the starting buddy (buddy2) is #8 its order
213 * 1 buddy is #10:
214 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
215 *
216 * 2) Any buddy B will have an order O+1 parent P which
217 * satisfies the following equation:
218 *     P = B & ~(1 << O)
219 *
220 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
221 */
222static inline struct page *
223__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
224{
225	unsigned long buddy_idx = page_idx ^ (1 << order);
226
227	return page + (buddy_idx - page_idx);
228}
229
230static inline unsigned long
231__find_combined_index(unsigned long page_idx, unsigned int order)
232{
233	return (page_idx & ~(1 << order));
234}
235
236/*
237 * This function checks whether a page is free && is the buddy
238 * we can do coalesce a page and its buddy if
239 * (a) the buddy is free &&
240 * (b) the buddy is on the buddy system &&
241 * (c) a page and its buddy have the same order.
242 * for recording page's order, we use page->private and PG_private.
243 *
244 */
245static inline int page_is_buddy(struct page *page, int order)
246{
247       if (PagePrivate(page)           &&
248           (page_order(page) == order) &&
249           !PageReserved(page)         &&
250            page_count(page) == 0)
251               return 1;
252       return 0;
253}
254
255/*
256 * Freeing function for a buddy system allocator.
257 *
258 * The concept of a buddy system is to maintain direct-mapped table
259 * (containing bit values) for memory blocks of various "orders".
260 * The bottom level table contains the map for the smallest allocatable
261 * units of memory (here, pages), and each level above it describes
262 * pairs of units from the levels below, hence, "buddies".
263 * At a high level, all that happens here is marking the table entry
264 * at the bottom level available, and propagating the changes upward
265 * as necessary, plus some accounting needed to play nicely with other
266 * parts of the VM system.
267 * At each level, we keep a list of pages, which are heads of continuous
268 * free pages of length of (1 << order) and marked with PG_Private.Page's
269 * order is recorded in page->private field.
270 * So when we are allocating or freeing one, we can derive the state of the
271 * other.  That is, if we allocate a small block, and both were
272 * free, the remainder of the region must be split into blocks.
273 * If a block is freed, and its buddy is also free, then this
274 * triggers coalescing into a block of larger size.
275 *
276 * -- wli
277 */
278
279static inline void __free_pages_bulk (struct page *page,
280		struct zone *zone, unsigned int order)
281{
282	unsigned long page_idx;
283	int order_size = 1 << order;
284
285	if (unlikely(order))
286		destroy_compound_page(page, order);
287
288	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
289
290	BUG_ON(page_idx & (order_size - 1));
291	BUG_ON(bad_range(zone, page));
292
293	zone->free_pages += order_size;
294	while (order < MAX_ORDER-1) {
295		unsigned long combined_idx;
296		struct free_area *area;
297		struct page *buddy;
298
299		combined_idx = __find_combined_index(page_idx, order);
300		buddy = __page_find_buddy(page, page_idx, order);
301
302		if (bad_range(zone, buddy))
303			break;
304		if (!page_is_buddy(buddy, order))
305			break;		/* Move the buddy up one level. */
306		list_del(&buddy->lru);
307		area = zone->free_area + order;
308		area->nr_free--;
309		rmv_page_order(buddy);
310		page = page + (combined_idx - page_idx);
311		page_idx = combined_idx;
312		order++;
313	}
314	set_page_order(page, order);
315	list_add(&page->lru, &zone->free_area[order].free_list);
316	zone->free_area[order].nr_free++;
317}
318
319static inline void free_pages_check(const char *function, struct page *page)
320{
321	if (	page_mapcount(page) ||
322		page->mapping != NULL ||
323		page_count(page) != 0 ||
324		(page->flags & (
325			1 << PG_lru	|
326			1 << PG_private |
327			1 << PG_locked	|
328			1 << PG_active	|
329			1 << PG_reclaim	|
330			1 << PG_slab	|
331			1 << PG_swapcache |
332			1 << PG_writeback )))
333		bad_page(function, page);
334	if (PageDirty(page))
335		ClearPageDirty(page);
336}
337
338/*
339 * Frees a list of pages.
340 * Assumes all pages on list are in same zone, and of same order.
341 * count is the number of pages to free, or 0 for all on the list.
342 *
343 * If the zone was previously in an "all pages pinned" state then look to
344 * see if this freeing clears that state.
345 *
346 * And clear the zone's pages_scanned counter, to hold off the "all pages are
347 * pinned" detection logic.
348 */
349static int
350free_pages_bulk(struct zone *zone, int count,
351		struct list_head *list, unsigned int order)
352{
353	unsigned long flags;
354	struct page *page = NULL;
355	int ret = 0;
356
357	spin_lock_irqsave(&zone->lock, flags);
358	zone->all_unreclaimable = 0;
359	zone->pages_scanned = 0;
360	while (!list_empty(list) && count--) {
361		page = list_entry(list->prev, struct page, lru);
362		/* have to delete it as __free_pages_bulk list manipulates */
363		list_del(&page->lru);
364		__free_pages_bulk(page, zone, order);
365		ret++;
366	}
367	spin_unlock_irqrestore(&zone->lock, flags);
368	return ret;
369}
370
371void __free_pages_ok(struct page *page, unsigned int order)
372{
373	LIST_HEAD(list);
374	int i;
375
376	arch_free_page(page, order);
377
378	mod_page_state(pgfree, 1 << order);
379
380#ifndef CONFIG_MMU
381	if (order > 0)
382		for (i = 1 ; i < (1 << order) ; ++i)
383			__put_page(page + i);
384#endif
385
386	for (i = 0 ; i < (1 << order) ; ++i)
387		free_pages_check(__FUNCTION__, page + i);
388	list_add(&page->lru, &list);
389	kernel_map_pages(page, 1<<order, 0);
390	free_pages_bulk(page_zone(page), 1, &list, order);
391}
392
393
394/*
395 * The order of subdivision here is critical for the IO subsystem.
396 * Please do not alter this order without good reasons and regression
397 * testing. Specifically, as large blocks of memory are subdivided,
398 * the order in which smaller blocks are delivered depends on the order
399 * they're subdivided in this function. This is the primary factor
400 * influencing the order in which pages are delivered to the IO
401 * subsystem according to empirical testing, and this is also justified
402 * by considering the behavior of a buddy system containing a single
403 * large block of memory acted on by a series of small allocations.
404 * This behavior is a critical factor in sglist merging's success.
405 *
406 * -- wli
407 */
408static inline struct page *
409expand(struct zone *zone, struct page *page,
410 	int low, int high, struct free_area *area)
411{
412	unsigned long size = 1 << high;
413
414	while (high > low) {
415		area--;
416		high--;
417		size >>= 1;
418		BUG_ON(bad_range(zone, &page[size]));
419		list_add(&page[size].lru, &area->free_list);
420		area->nr_free++;
421		set_page_order(&page[size], high);
422	}
423	return page;
424}
425
426void set_page_refs(struct page *page, int order)
427{
428#ifdef CONFIG_MMU
429	set_page_count(page, 1);
430#else
431	int i;
432
433	/*
434	 * We need to reference all the pages for this order, otherwise if
435	 * anyone accesses one of the pages with (get/put) it will be freed.
436	 * - eg: access_process_vm()
437	 */
438	for (i = 0; i < (1 << order); i++)
439		set_page_count(page + i, 1);
440#endif /* CONFIG_MMU */
441}
442
443/*
444 * This page is about to be returned from the page allocator
445 */
446static void prep_new_page(struct page *page, int order)
447{
448	if (page->mapping || page_mapcount(page) ||
449	    (page->flags & (
450			1 << PG_private	|
451			1 << PG_locked	|
452			1 << PG_lru	|
453			1 << PG_active	|
454			1 << PG_dirty	|
455			1 << PG_reclaim	|
456			1 << PG_swapcache |
457			1 << PG_writeback )))
458		bad_page(__FUNCTION__, page);
459
460	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461			1 << PG_referenced | 1 << PG_arch_1 |
462			1 << PG_checked | 1 << PG_mappedtodisk);
463	page->private = 0;
464	set_page_refs(page, order);
465	kernel_map_pages(page, 1 << order, 1);
466}
467
468/*
469 * Do the hard work of removing an element from the buddy allocator.
470 * Call me with the zone->lock already held.
471 */
472static struct page *__rmqueue(struct zone *zone, unsigned int order)
473{
474	struct free_area * area;
475	unsigned int current_order;
476	struct page *page;
477
478	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479		area = zone->free_area + current_order;
480		if (list_empty(&area->free_list))
481			continue;
482
483		page = list_entry(area->free_list.next, struct page, lru);
484		list_del(&page->lru);
485		rmv_page_order(page);
486		area->nr_free--;
487		zone->free_pages -= 1UL << order;
488		return expand(zone, page, order, current_order, area);
489	}
490
491	return NULL;
492}
493
494/*
495 * Obtain a specified number of elements from the buddy allocator, all under
496 * a single hold of the lock, for efficiency.  Add them to the supplied list.
497 * Returns the number of new pages which were placed at *list.
498 */
499static int rmqueue_bulk(struct zone *zone, unsigned int order,
500			unsigned long count, struct list_head *list)
501{
502	unsigned long flags;
503	int i;
504	int allocated = 0;
505	struct page *page;
506
507	spin_lock_irqsave(&zone->lock, flags);
508	for (i = 0; i < count; ++i) {
509		page = __rmqueue(zone, order);
510		if (page == NULL)
511			break;
512		allocated++;
513		list_add_tail(&page->lru, list);
514	}
515	spin_unlock_irqrestore(&zone->lock, flags);
516	return allocated;
517}
518
519#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
520static void __drain_pages(unsigned int cpu)
521{
522	struct zone *zone;
523	int i;
524
525	for_each_zone(zone) {
526		struct per_cpu_pageset *pset;
527
528		pset = zone_pcp(zone, cpu);
529		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
530			struct per_cpu_pages *pcp;
531
532			pcp = &pset->pcp[i];
533			pcp->count -= free_pages_bulk(zone, pcp->count,
534						&pcp->list, 0);
535		}
536	}
537}
538#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
539
540#ifdef CONFIG_PM
541
542void mark_free_pages(struct zone *zone)
543{
544	unsigned long zone_pfn, flags;
545	int order;
546	struct list_head *curr;
547
548	if (!zone->spanned_pages)
549		return;
550
551	spin_lock_irqsave(&zone->lock, flags);
552	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
553		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
554
555	for (order = MAX_ORDER - 1; order >= 0; --order)
556		list_for_each(curr, &zone->free_area[order].free_list) {
557			unsigned long start_pfn, i;
558
559			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
560
561			for (i=0; i < (1<<order); i++)
562				SetPageNosaveFree(pfn_to_page(start_pfn+i));
563	}
564	spin_unlock_irqrestore(&zone->lock, flags);
565}
566
567/*
568 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
569 */
570void drain_local_pages(void)
571{
572	unsigned long flags;
573
574	local_irq_save(flags);
575	__drain_pages(smp_processor_id());
576	local_irq_restore(flags);
577}
578#endif /* CONFIG_PM */
579
580static void zone_statistics(struct zonelist *zonelist, struct zone *z)
581{
582#ifdef CONFIG_NUMA
583	unsigned long flags;
584	int cpu;
585	pg_data_t *pg = z->zone_pgdat;
586	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
587	struct per_cpu_pageset *p;
588
589	local_irq_save(flags);
590	cpu = smp_processor_id();
591	p = zone_pcp(z,cpu);
592	if (pg == orig) {
593		p->numa_hit++;
594	} else {
595		p->numa_miss++;
596		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
597	}
598	if (pg == NODE_DATA(numa_node_id()))
599		p->local_node++;
600	else
601		p->other_node++;
602	local_irq_restore(flags);
603#endif
604}
605
606/*
607 * Free a 0-order page
608 */
609static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
610static void fastcall free_hot_cold_page(struct page *page, int cold)
611{
612	struct zone *zone = page_zone(page);
613	struct per_cpu_pages *pcp;
614	unsigned long flags;
615
616	arch_free_page(page, 0);
617
618	kernel_map_pages(page, 1, 0);
619	inc_page_state(pgfree);
620	if (PageAnon(page))
621		page->mapping = NULL;
622	free_pages_check(__FUNCTION__, page);
623	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
624	local_irq_save(flags);
625	if (pcp->count >= pcp->high)
626		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
627	list_add(&page->lru, &pcp->list);
628	pcp->count++;
629	local_irq_restore(flags);
630	put_cpu();
631}
632
633void fastcall free_hot_page(struct page *page)
634{
635	free_hot_cold_page(page, 0);
636}
637
638void fastcall free_cold_page(struct page *page)
639{
640	free_hot_cold_page(page, 1);
641}
642
643static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
644{
645	int i;
646
647	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
648	for(i = 0; i < (1 << order); i++)
649		clear_highpage(page + i);
650}
651
652/*
653 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
654 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
655 * or two.
656 */
657static struct page *
658buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
659{
660	unsigned long flags;
661	struct page *page = NULL;
662	int cold = !!(gfp_flags & __GFP_COLD);
663
664	if (order == 0) {
665		struct per_cpu_pages *pcp;
666
667		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
668		local_irq_save(flags);
669		if (pcp->count <= pcp->low)
670			pcp->count += rmqueue_bulk(zone, 0,
671						pcp->batch, &pcp->list);
672		if (pcp->count) {
673			page = list_entry(pcp->list.next, struct page, lru);
674			list_del(&page->lru);
675			pcp->count--;
676		}
677		local_irq_restore(flags);
678		put_cpu();
679	}
680
681	if (page == NULL) {
682		spin_lock_irqsave(&zone->lock, flags);
683		page = __rmqueue(zone, order);
684		spin_unlock_irqrestore(&zone->lock, flags);
685	}
686
687	if (page != NULL) {
688		BUG_ON(bad_range(zone, page));
689		mod_page_state_zone(zone, pgalloc, 1 << order);
690		prep_new_page(page, order);
691
692		if (gfp_flags & __GFP_ZERO)
693			prep_zero_page(page, order, gfp_flags);
694
695		if (order && (gfp_flags & __GFP_COMP))
696			prep_compound_page(page, order);
697	}
698	return page;
699}
700
701/*
702 * Return 1 if free pages are above 'mark'. This takes into account the order
703 * of the allocation.
704 */
705int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
706		      int classzone_idx, int can_try_harder, int gfp_high)
707{
708	/* free_pages my go negative - that's OK */
709	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
710	int o;
711
712	if (gfp_high)
713		min -= min / 2;
714	if (can_try_harder)
715		min -= min / 4;
716
717	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
718		return 0;
719	for (o = 0; o < order; o++) {
720		/* At the next order, this order's pages become unavailable */
721		free_pages -= z->free_area[o].nr_free << o;
722
723		/* Require fewer higher order pages to be free */
724		min >>= 1;
725
726		if (free_pages <= min)
727			return 0;
728	}
729	return 1;
730}
731
732static inline int
733should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
734{
735	if (!z->reclaim_pages)
736		return 0;
737	if (gfp_mask & __GFP_NORECLAIM)
738		return 0;
739	return 1;
740}
741
742/*
743 * This is the 'heart' of the zoned buddy allocator.
744 */
745struct page * fastcall
746__alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
747		struct zonelist *zonelist)
748{
749	const int wait = gfp_mask & __GFP_WAIT;
750	struct zone **zones, *z;
751	struct page *page;
752	struct reclaim_state reclaim_state;
753	struct task_struct *p = current;
754	int i;
755	int classzone_idx;
756	int do_retry;
757	int can_try_harder;
758	int did_some_progress;
759
760	might_sleep_if(wait);
761
762	/*
763	 * The caller may dip into page reserves a bit more if the caller
764	 * cannot run direct reclaim, or is the caller has realtime scheduling
765	 * policy
766	 */
767	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
768
769	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
770
771	if (unlikely(zones[0] == NULL)) {
772		/* Should this ever happen?? */
773		return NULL;
774	}
775
776	classzone_idx = zone_idx(zones[0]);
777
778restart:
779	/* Go through the zonelist once, looking for a zone with enough free */
780	for (i = 0; (z = zones[i]) != NULL; i++) {
781		int do_reclaim = should_reclaim_zone(z, gfp_mask);
782
783		if (!cpuset_zone_allowed(z))
784			continue;
785
786		/*
787		 * If the zone is to attempt early page reclaim then this loop
788		 * will try to reclaim pages and check the watermark a second
789		 * time before giving up and falling back to the next zone.
790		 */
791zone_reclaim_retry:
792		if (!zone_watermark_ok(z, order, z->pages_low,
793				       classzone_idx, 0, 0)) {
794			if (!do_reclaim)
795				continue;
796			else {
797				zone_reclaim(z, gfp_mask, order);
798				/* Only try reclaim once */
799				do_reclaim = 0;
800				goto zone_reclaim_retry;
801			}
802		}
803
804		page = buffered_rmqueue(z, order, gfp_mask);
805		if (page)
806			goto got_pg;
807	}
808
809	for (i = 0; (z = zones[i]) != NULL; i++)
810		wakeup_kswapd(z, order);
811
812	/*
813	 * Go through the zonelist again. Let __GFP_HIGH and allocations
814	 * coming from realtime tasks to go deeper into reserves
815	 *
816	 * This is the last chance, in general, before the goto nopage.
817	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
818	 */
819	for (i = 0; (z = zones[i]) != NULL; i++) {
820		if (!zone_watermark_ok(z, order, z->pages_min,
821				       classzone_idx, can_try_harder,
822				       gfp_mask & __GFP_HIGH))
823			continue;
824
825		if (wait && !cpuset_zone_allowed(z))
826			continue;
827
828		page = buffered_rmqueue(z, order, gfp_mask);
829		if (page)
830			goto got_pg;
831	}
832
833	/* This allocation should allow future memory freeing. */
834
835	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
836			&& !in_interrupt()) {
837		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
838			/* go through the zonelist yet again, ignoring mins */
839			for (i = 0; (z = zones[i]) != NULL; i++) {
840				if (!cpuset_zone_allowed(z))
841					continue;
842				page = buffered_rmqueue(z, order, gfp_mask);
843				if (page)
844					goto got_pg;
845			}
846		}
847		goto nopage;
848	}
849
850	/* Atomic allocations - we can't balance anything */
851	if (!wait)
852		goto nopage;
853
854rebalance:
855	cond_resched();
856
857	/* We now go into synchronous reclaim */
858	p->flags |= PF_MEMALLOC;
859	reclaim_state.reclaimed_slab = 0;
860	p->reclaim_state = &reclaim_state;
861
862	did_some_progress = try_to_free_pages(zones, gfp_mask);
863
864	p->reclaim_state = NULL;
865	p->flags &= ~PF_MEMALLOC;
866
867	cond_resched();
868
869	if (likely(did_some_progress)) {
870		/*
871		 * Go through the zonelist yet one more time, keep
872		 * very high watermark here, this is only to catch
873		 * a parallel oom killing, we must fail if we're still
874		 * under heavy pressure.
875		 */
876		for (i = 0; (z = zones[i]) != NULL; i++) {
877			if (!zone_watermark_ok(z, order, z->pages_min,
878					       classzone_idx, can_try_harder,
879					       gfp_mask & __GFP_HIGH))
880				continue;
881
882			if (!cpuset_zone_allowed(z))
883				continue;
884
885			page = buffered_rmqueue(z, order, gfp_mask);
886			if (page)
887				goto got_pg;
888		}
889	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
890		/*
891		 * Go through the zonelist yet one more time, keep
892		 * very high watermark here, this is only to catch
893		 * a parallel oom killing, we must fail if we're still
894		 * under heavy pressure.
895		 */
896		for (i = 0; (z = zones[i]) != NULL; i++) {
897			if (!zone_watermark_ok(z, order, z->pages_high,
898					       classzone_idx, 0, 0))
899				continue;
900
901			if (!cpuset_zone_allowed(z))
902				continue;
903
904			page = buffered_rmqueue(z, order, gfp_mask);
905			if (page)
906				goto got_pg;
907		}
908
909		out_of_memory(gfp_mask);
910		goto restart;
911	}
912
913	/*
914	 * Don't let big-order allocations loop unless the caller explicitly
915	 * requests that.  Wait for some write requests to complete then retry.
916	 *
917	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
918	 * <= 3, but that may not be true in other implementations.
919	 */
920	do_retry = 0;
921	if (!(gfp_mask & __GFP_NORETRY)) {
922		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
923			do_retry = 1;
924		if (gfp_mask & __GFP_NOFAIL)
925			do_retry = 1;
926	}
927	if (do_retry) {
928		blk_congestion_wait(WRITE, HZ/50);
929		goto rebalance;
930	}
931
932nopage:
933	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
934		printk(KERN_WARNING "%s: page allocation failure."
935			" order:%d, mode:0x%x\n",
936			p->comm, order, gfp_mask);
937		dump_stack();
938	}
939	return NULL;
940got_pg:
941	zone_statistics(zonelist, z);
942	return page;
943}
944
945EXPORT_SYMBOL(__alloc_pages);
946
947/*
948 * Common helper functions.
949 */
950fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
951{
952	struct page * page;
953	page = alloc_pages(gfp_mask, order);
954	if (!page)
955		return 0;
956	return (unsigned long) page_address(page);
957}
958
959EXPORT_SYMBOL(__get_free_pages);
960
961fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
962{
963	struct page * page;
964
965	/*
966	 * get_zeroed_page() returns a 32-bit address, which cannot represent
967	 * a highmem page
968	 */
969	BUG_ON(gfp_mask & __GFP_HIGHMEM);
970
971	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
972	if (page)
973		return (unsigned long) page_address(page);
974	return 0;
975}
976
977EXPORT_SYMBOL(get_zeroed_page);
978
979void __pagevec_free(struct pagevec *pvec)
980{
981	int i = pagevec_count(pvec);
982
983	while (--i >= 0)
984		free_hot_cold_page(pvec->pages[i], pvec->cold);
985}
986
987fastcall void __free_pages(struct page *page, unsigned int order)
988{
989	if (!PageReserved(page) && put_page_testzero(page)) {
990		if (order == 0)
991			free_hot_page(page);
992		else
993			__free_pages_ok(page, order);
994	}
995}
996
997EXPORT_SYMBOL(__free_pages);
998
999fastcall void free_pages(unsigned long addr, unsigned int order)
1000{
1001	if (addr != 0) {
1002		BUG_ON(!virt_addr_valid((void *)addr));
1003		__free_pages(virt_to_page((void *)addr), order);
1004	}
1005}
1006
1007EXPORT_SYMBOL(free_pages);
1008
1009/*
1010 * Total amount of free (allocatable) RAM:
1011 */
1012unsigned int nr_free_pages(void)
1013{
1014	unsigned int sum = 0;
1015	struct zone *zone;
1016
1017	for_each_zone(zone)
1018		sum += zone->free_pages;
1019
1020	return sum;
1021}
1022
1023EXPORT_SYMBOL(nr_free_pages);
1024
1025#ifdef CONFIG_NUMA
1026unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1027{
1028	unsigned int i, sum = 0;
1029
1030	for (i = 0; i < MAX_NR_ZONES; i++)
1031		sum += pgdat->node_zones[i].free_pages;
1032
1033	return sum;
1034}
1035#endif
1036
1037static unsigned int nr_free_zone_pages(int offset)
1038{
1039	pg_data_t *pgdat;
1040	unsigned int sum = 0;
1041
1042	for_each_pgdat(pgdat) {
1043		struct zonelist *zonelist = pgdat->node_zonelists + offset;
1044		struct zone **zonep = zonelist->zones;
1045		struct zone *zone;
1046
1047		for (zone = *zonep++; zone; zone = *zonep++) {
1048			unsigned long size = zone->present_pages;
1049			unsigned long high = zone->pages_high;
1050			if (size > high)
1051				sum += size - high;
1052		}
1053	}
1054
1055	return sum;
1056}
1057
1058/*
1059 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1060 */
1061unsigned int nr_free_buffer_pages(void)
1062{
1063	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1064}
1065
1066/*
1067 * Amount of free RAM allocatable within all zones
1068 */
1069unsigned int nr_free_pagecache_pages(void)
1070{
1071	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1072}
1073
1074#ifdef CONFIG_HIGHMEM
1075unsigned int nr_free_highpages (void)
1076{
1077	pg_data_t *pgdat;
1078	unsigned int pages = 0;
1079
1080	for_each_pgdat(pgdat)
1081		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1082
1083	return pages;
1084}
1085#endif
1086
1087#ifdef CONFIG_NUMA
1088static void show_node(struct zone *zone)
1089{
1090	printk("Node %d ", zone->zone_pgdat->node_id);
1091}
1092#else
1093#define show_node(zone)	do { } while (0)
1094#endif
1095
1096/*
1097 * Accumulate the page_state information across all CPUs.
1098 * The result is unavoidably approximate - it can change
1099 * during and after execution of this function.
1100 */
1101static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1102
1103atomic_t nr_pagecache = ATOMIC_INIT(0);
1104EXPORT_SYMBOL(nr_pagecache);
1105#ifdef CONFIG_SMP
1106DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1107#endif
1108
1109void __get_page_state(struct page_state *ret, int nr)
1110{
1111	int cpu = 0;
1112
1113	memset(ret, 0, sizeof(*ret));
1114
1115	cpu = first_cpu(cpu_online_map);
1116	while (cpu < NR_CPUS) {
1117		unsigned long *in, *out, off;
1118
1119		in = (unsigned long *)&per_cpu(page_states, cpu);
1120
1121		cpu = next_cpu(cpu, cpu_online_map);
1122
1123		if (cpu < NR_CPUS)
1124			prefetch(&per_cpu(page_states, cpu));
1125
1126		out = (unsigned long *)ret;
1127		for (off = 0; off < nr; off++)
1128			*out++ += *in++;
1129	}
1130}
1131
1132void get_page_state(struct page_state *ret)
1133{
1134	int nr;
1135
1136	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1137	nr /= sizeof(unsigned long);
1138
1139	__get_page_state(ret, nr + 1);
1140}
1141
1142void get_full_page_state(struct page_state *ret)
1143{
1144	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1145}
1146
1147unsigned long __read_page_state(unsigned long offset)
1148{
1149	unsigned long ret = 0;
1150	int cpu;
1151
1152	for_each_online_cpu(cpu) {
1153		unsigned long in;
1154
1155		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1156		ret += *((unsigned long *)in);
1157	}
1158	return ret;
1159}
1160
1161void __mod_page_state(unsigned long offset, unsigned long delta)
1162{
1163	unsigned long flags;
1164	void* ptr;
1165
1166	local_irq_save(flags);
1167	ptr = &__get_cpu_var(page_states);
1168	*(unsigned long*)(ptr + offset) += delta;
1169	local_irq_restore(flags);
1170}
1171
1172EXPORT_SYMBOL(__mod_page_state);
1173
1174void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1175			unsigned long *free, struct pglist_data *pgdat)
1176{
1177	struct zone *zones = pgdat->node_zones;
1178	int i;
1179
1180	*active = 0;
1181	*inactive = 0;
1182	*free = 0;
1183	for (i = 0; i < MAX_NR_ZONES; i++) {
1184		*active += zones[i].nr_active;
1185		*inactive += zones[i].nr_inactive;
1186		*free += zones[i].free_pages;
1187	}
1188}
1189
1190void get_zone_counts(unsigned long *active,
1191		unsigned long *inactive, unsigned long *free)
1192{
1193	struct pglist_data *pgdat;
1194
1195	*active = 0;
1196	*inactive = 0;
1197	*free = 0;
1198	for_each_pgdat(pgdat) {
1199		unsigned long l, m, n;
1200		__get_zone_counts(&l, &m, &n, pgdat);
1201		*active += l;
1202		*inactive += m;
1203		*free += n;
1204	}
1205}
1206
1207void si_meminfo(struct sysinfo *val)
1208{
1209	val->totalram = totalram_pages;
1210	val->sharedram = 0;
1211	val->freeram = nr_free_pages();
1212	val->bufferram = nr_blockdev_pages();
1213#ifdef CONFIG_HIGHMEM
1214	val->totalhigh = totalhigh_pages;
1215	val->freehigh = nr_free_highpages();
1216#else
1217	val->totalhigh = 0;
1218	val->freehigh = 0;
1219#endif
1220	val->mem_unit = PAGE_SIZE;
1221}
1222
1223EXPORT_SYMBOL(si_meminfo);
1224
1225#ifdef CONFIG_NUMA
1226void si_meminfo_node(struct sysinfo *val, int nid)
1227{
1228	pg_data_t *pgdat = NODE_DATA(nid);
1229
1230	val->totalram = pgdat->node_present_pages;
1231	val->freeram = nr_free_pages_pgdat(pgdat);
1232	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1233	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1234	val->mem_unit = PAGE_SIZE;
1235}
1236#endif
1237
1238#define K(x) ((x) << (PAGE_SHIFT-10))
1239
1240/*
1241 * Show free area list (used inside shift_scroll-lock stuff)
1242 * We also calculate the percentage fragmentation. We do this by counting the
1243 * memory on each free list with the exception of the first item on the list.
1244 */
1245void show_free_areas(void)
1246{
1247	struct page_state ps;
1248	int cpu, temperature;
1249	unsigned long active;
1250	unsigned long inactive;
1251	unsigned long free;
1252	struct zone *zone;
1253
1254	for_each_zone(zone) {
1255		show_node(zone);
1256		printk("%s per-cpu:", zone->name);
1257
1258		if (!zone->present_pages) {
1259			printk(" empty\n");
1260			continue;
1261		} else
1262			printk("\n");
1263
1264		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1265			struct per_cpu_pageset *pageset;
1266
1267			if (!cpu_possible(cpu))
1268				continue;
1269
1270			pageset = zone_pcp(zone, cpu);
1271
1272			for (temperature = 0; temperature < 2; temperature++)
1273				printk("cpu %d %s: low %d, high %d, batch %d\n",
1274					cpu,
1275					temperature ? "cold" : "hot",
1276					pageset->pcp[temperature].low,
1277					pageset->pcp[temperature].high,
1278					pageset->pcp[temperature].batch);
1279		}
1280	}
1281
1282	get_page_state(&ps);
1283	get_zone_counts(&active, &inactive, &free);
1284
1285	printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1286		K(nr_free_pages()),
1287		K(nr_free_highpages()));
1288
1289	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1290		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1291		active,
1292		inactive,
1293		ps.nr_dirty,
1294		ps.nr_writeback,
1295		ps.nr_unstable,
1296		nr_free_pages(),
1297		ps.nr_slab,
1298		ps.nr_mapped,
1299		ps.nr_page_table_pages);
1300
1301	for_each_zone(zone) {
1302		int i;
1303
1304		show_node(zone);
1305		printk("%s"
1306			" free:%lukB"
1307			" min:%lukB"
1308			" low:%lukB"
1309			" high:%lukB"
1310			" active:%lukB"
1311			" inactive:%lukB"
1312			" present:%lukB"
1313			" pages_scanned:%lu"
1314			" all_unreclaimable? %s"
1315			"\n",
1316			zone->name,
1317			K(zone->free_pages),
1318			K(zone->pages_min),
1319			K(zone->pages_low),
1320			K(zone->pages_high),
1321			K(zone->nr_active),
1322			K(zone->nr_inactive),
1323			K(zone->present_pages),
1324			zone->pages_scanned,
1325			(zone->all_unreclaimable ? "yes" : "no")
1326			);
1327		printk("lowmem_reserve[]:");
1328		for (i = 0; i < MAX_NR_ZONES; i++)
1329			printk(" %lu", zone->lowmem_reserve[i]);
1330		printk("\n");
1331	}
1332
1333	for_each_zone(zone) {
1334 		unsigned long nr, flags, order, total = 0;
1335
1336		show_node(zone);
1337		printk("%s: ", zone->name);
1338		if (!zone->present_pages) {
1339			printk("empty\n");
1340			continue;
1341		}
1342
1343		spin_lock_irqsave(&zone->lock, flags);
1344		for (order = 0; order < MAX_ORDER; order++) {
1345			nr = zone->free_area[order].nr_free;
1346			total += nr << order;
1347			printk("%lu*%lukB ", nr, K(1UL) << order);
1348		}
1349		spin_unlock_irqrestore(&zone->lock, flags);
1350		printk("= %lukB\n", K(total));
1351	}
1352
1353	show_swap_cache_info();
1354}
1355
1356/*
1357 * Builds allocation fallback zone lists.
1358 */
1359static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1360{
1361	switch (k) {
1362		struct zone *zone;
1363	default:
1364		BUG();
1365	case ZONE_HIGHMEM:
1366		zone = pgdat->node_zones + ZONE_HIGHMEM;
1367		if (zone->present_pages) {
1368#ifndef CONFIG_HIGHMEM
1369			BUG();
1370#endif
1371			zonelist->zones[j++] = zone;
1372		}
1373	case ZONE_NORMAL:
1374		zone = pgdat->node_zones + ZONE_NORMAL;
1375		if (zone->present_pages)
1376			zonelist->zones[j++] = zone;
1377	case ZONE_DMA:
1378		zone = pgdat->node_zones + ZONE_DMA;
1379		if (zone->present_pages)
1380			zonelist->zones[j++] = zone;
1381	}
1382
1383	return j;
1384}
1385
1386#ifdef CONFIG_NUMA
1387#define MAX_NODE_LOAD (num_online_nodes())
1388static int __initdata node_load[MAX_NUMNODES];
1389/**
1390 * find_next_best_node - find the next node that should appear in a given node's fallback list
1391 * @node: node whose fallback list we're appending
1392 * @used_node_mask: nodemask_t of already used nodes
1393 *
1394 * We use a number of factors to determine which is the next node that should
1395 * appear on a given node's fallback list.  The node should not have appeared
1396 * already in @node's fallback list, and it should be the next closest node
1397 * according to the distance array (which contains arbitrary distance values
1398 * from each node to each node in the system), and should also prefer nodes
1399 * with no CPUs, since presumably they'll have very little allocation pressure
1400 * on them otherwise.
1401 * It returns -1 if no node is found.
1402 */
1403static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1404{
1405	int i, n, val;
1406	int min_val = INT_MAX;
1407	int best_node = -1;
1408
1409	for_each_online_node(i) {
1410		cpumask_t tmp;
1411
1412		/* Start from local node */
1413		n = (node+i) % num_online_nodes();
1414
1415		/* Don't want a node to appear more than once */
1416		if (node_isset(n, *used_node_mask))
1417			continue;
1418
1419		/* Use the local node if we haven't already */
1420		if (!node_isset(node, *used_node_mask)) {
1421			best_node = node;
1422			break;
1423		}
1424
1425		/* Use the distance array to find the distance */
1426		val = node_distance(node, n);
1427
1428		/* Give preference to headless and unused nodes */
1429		tmp = node_to_cpumask(n);
1430		if (!cpus_empty(tmp))
1431			val += PENALTY_FOR_NODE_WITH_CPUS;
1432
1433		/* Slight preference for less loaded node */
1434		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1435		val += node_load[n];
1436
1437		if (val < min_val) {
1438			min_val = val;
1439			best_node = n;
1440		}
1441	}
1442
1443	if (best_node >= 0)
1444		node_set(best_node, *used_node_mask);
1445
1446	return best_node;
1447}
1448
1449static void __init build_zonelists(pg_data_t *pgdat)
1450{
1451	int i, j, k, node, local_node;
1452	int prev_node, load;
1453	struct zonelist *zonelist;
1454	nodemask_t used_mask;
1455
1456	/* initialize zonelists */
1457	for (i = 0; i < GFP_ZONETYPES; i++) {
1458		zonelist = pgdat->node_zonelists + i;
1459		zonelist->zones[0] = NULL;
1460	}
1461
1462	/* NUMA-aware ordering of nodes */
1463	local_node = pgdat->node_id;
1464	load = num_online_nodes();
1465	prev_node = local_node;
1466	nodes_clear(used_mask);
1467	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1468		/*
1469		 * We don't want to pressure a particular node.
1470		 * So adding penalty to the first node in same
1471		 * distance group to make it round-robin.
1472		 */
1473		if (node_distance(local_node, node) !=
1474				node_distance(local_node, prev_node))
1475			node_load[node] += load;
1476		prev_node = node;
1477		load--;
1478		for (i = 0; i < GFP_ZONETYPES; i++) {
1479			zonelist = pgdat->node_zonelists + i;
1480			for (j = 0; zonelist->zones[j] != NULL; j++);
1481
1482			k = ZONE_NORMAL;
1483			if (i & __GFP_HIGHMEM)
1484				k = ZONE_HIGHMEM;
1485			if (i & __GFP_DMA)
1486				k = ZONE_DMA;
1487
1488	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1489			zonelist->zones[j] = NULL;
1490		}
1491	}
1492}
1493
1494#else	/* CONFIG_NUMA */
1495
1496static void __init build_zonelists(pg_data_t *pgdat)
1497{
1498	int i, j, k, node, local_node;
1499
1500	local_node = pgdat->node_id;
1501	for (i = 0; i < GFP_ZONETYPES; i++) {
1502		struct zonelist *zonelist;
1503
1504		zonelist = pgdat->node_zonelists + i;
1505
1506		j = 0;
1507		k = ZONE_NORMAL;
1508		if (i & __GFP_HIGHMEM)
1509			k = ZONE_HIGHMEM;
1510		if (i & __GFP_DMA)
1511			k = ZONE_DMA;
1512
1513 		j = build_zonelists_node(pgdat, zonelist, j, k);
1514 		/*
1515 		 * Now we build the zonelist so that it contains the zones
1516 		 * of all the other nodes.
1517 		 * We don't want to pressure a particular node, so when
1518 		 * building the zones for node N, we make sure that the
1519 		 * zones coming right after the local ones are those from
1520 		 * node N+1 (modulo N)
1521 		 */
1522		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1523			if (!node_online(node))
1524				continue;
1525			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1526		}
1527		for (node = 0; node < local_node; node++) {
1528			if (!node_online(node))
1529				continue;
1530			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1531		}
1532
1533		zonelist->zones[j] = NULL;
1534	}
1535}
1536
1537#endif	/* CONFIG_NUMA */
1538
1539void __init build_all_zonelists(void)
1540{
1541	int i;
1542
1543	for_each_online_node(i)
1544		build_zonelists(NODE_DATA(i));
1545	printk("Built %i zonelists\n", num_online_nodes());
1546	cpuset_init_current_mems_allowed();
1547}
1548
1549/*
1550 * Helper functions to size the waitqueue hash table.
1551 * Essentially these want to choose hash table sizes sufficiently
1552 * large so that collisions trying to wait on pages are rare.
1553 * But in fact, the number of active page waitqueues on typical
1554 * systems is ridiculously low, less than 200. So this is even
1555 * conservative, even though it seems large.
1556 *
1557 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1558 * waitqueues, i.e. the size of the waitq table given the number of pages.
1559 */
1560#define PAGES_PER_WAITQUEUE	256
1561
1562static inline unsigned long wait_table_size(unsigned long pages)
1563{
1564	unsigned long size = 1;
1565
1566	pages /= PAGES_PER_WAITQUEUE;
1567
1568	while (size < pages)
1569		size <<= 1;
1570
1571	/*
1572	 * Once we have dozens or even hundreds of threads sleeping
1573	 * on IO we've got bigger problems than wait queue collision.
1574	 * Limit the size of the wait table to a reasonable size.
1575	 */
1576	size = min(size, 4096UL);
1577
1578	return max(size, 4UL);
1579}
1580
1581/*
1582 * This is an integer logarithm so that shifts can be used later
1583 * to extract the more random high bits from the multiplicative
1584 * hash function before the remainder is taken.
1585 */
1586static inline unsigned long wait_table_bits(unsigned long size)
1587{
1588	return ffz(~size);
1589}
1590
1591#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1592
1593static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1594		unsigned long *zones_size, unsigned long *zholes_size)
1595{
1596	unsigned long realtotalpages, totalpages = 0;
1597	int i;
1598
1599	for (i = 0; i < MAX_NR_ZONES; i++)
1600		totalpages += zones_size[i];
1601	pgdat->node_spanned_pages = totalpages;
1602
1603	realtotalpages = totalpages;
1604	if (zholes_size)
1605		for (i = 0; i < MAX_NR_ZONES; i++)
1606			realtotalpages -= zholes_size[i];
1607	pgdat->node_present_pages = realtotalpages;
1608	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1609}
1610
1611
1612/*
1613 * Initially all pages are reserved - free ones are freed
1614 * up by free_all_bootmem() once the early boot process is
1615 * done. Non-atomic initialization, single-pass.
1616 */
1617void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1618		unsigned long start_pfn)
1619{
1620	struct page *start = pfn_to_page(start_pfn);
1621	struct page *page;
1622
1623	for (page = start; page < (start + size); page++) {
1624		set_page_zone(page, NODEZONE(nid, zone));
1625		set_page_count(page, 0);
1626		reset_page_mapcount(page);
1627		SetPageReserved(page);
1628		INIT_LIST_HEAD(&page->lru);
1629#ifdef WANT_PAGE_VIRTUAL
1630		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1631		if (!is_highmem_idx(zone))
1632			set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1633#endif
1634		start_pfn++;
1635	}
1636}
1637
1638void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1639				unsigned long size)
1640{
1641	int order;
1642	for (order = 0; order < MAX_ORDER ; order++) {
1643		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1644		zone->free_area[order].nr_free = 0;
1645	}
1646}
1647
1648#ifndef __HAVE_ARCH_MEMMAP_INIT
1649#define memmap_init(size, nid, zone, start_pfn) \
1650	memmap_init_zone((size), (nid), (zone), (start_pfn))
1651#endif
1652
1653static int __devinit zone_batchsize(struct zone *zone)
1654{
1655	int batch;
1656
1657	/*
1658	 * The per-cpu-pages pools are set to around 1000th of the
1659	 * size of the zone.  But no more than 1/4 of a meg - there's
1660	 * no point in going beyond the size of L2 cache.
1661	 *
1662	 * OK, so we don't know how big the cache is.  So guess.
1663	 */
1664	batch = zone->present_pages / 1024;
1665	if (batch * PAGE_SIZE > 256 * 1024)
1666		batch = (256 * 1024) / PAGE_SIZE;
1667	batch /= 4;		/* We effectively *= 4 below */
1668	if (batch < 1)
1669		batch = 1;
1670
1671	/*
1672	 * Clamp the batch to a 2^n - 1 value. Having a power
1673	 * of 2 value was found to be more likely to have
1674	 * suboptimal cache aliasing properties in some cases.
1675	 *
1676	 * For example if 2 tasks are alternately allocating
1677	 * batches of pages, one task can end up with a lot
1678	 * of pages of one half of the possible page colors
1679	 * and the other with pages of the other colors.
1680	 */
1681	batch = (1 << fls(batch + batch/2)) - 1;
1682	return batch;
1683}
1684
1685#ifdef CONFIG_NUMA
1686/*
1687 * Dynamicaly allocate memory for the
1688 * per cpu pageset array in struct zone.
1689 */
1690static int __devinit process_zones(int cpu)
1691{
1692	struct zone *zone, *dzone;
1693	int i;
1694
1695	for_each_zone(zone) {
1696		struct per_cpu_pageset *npageset = NULL;
1697
1698		npageset = kmalloc_node(sizeof(struct per_cpu_pageset),
1699					 GFP_KERNEL, cpu_to_node(cpu));
1700		if (!npageset) {
1701			zone->pageset[cpu] = NULL;
1702			goto bad;
1703		}
1704
1705		if (zone->pageset[cpu]) {
1706			memcpy(npageset, zone->pageset[cpu],
1707					sizeof(struct per_cpu_pageset));
1708
1709			/* Relocate lists */
1710			for (i = 0; i < 2; i++) {
1711				INIT_LIST_HEAD(&npageset->pcp[i].list);
1712				list_splice(&zone->pageset[cpu]->pcp[i].list,
1713					&npageset->pcp[i].list);
1714			}
1715 		} else {
1716			struct per_cpu_pages *pcp;
1717			unsigned long batch;
1718
1719			batch = zone_batchsize(zone);
1720
1721			pcp = &npageset->pcp[0];		/* hot */
1722			pcp->count = 0;
1723			pcp->low = 2 * batch;
1724			pcp->high = 6 * batch;
1725			pcp->batch = 1 * batch;
1726			INIT_LIST_HEAD(&pcp->list);
1727
1728			pcp = &npageset->pcp[1];		/* cold*/
1729			pcp->count = 0;
1730			pcp->low = 0;
1731			pcp->high = 2 * batch;
1732			pcp->batch = 1 * batch;
1733			INIT_LIST_HEAD(&pcp->list);
1734		}
1735		zone->pageset[cpu] = npageset;
1736	}
1737
1738	return 0;
1739bad:
1740	for_each_zone(dzone) {
1741		if (dzone == zone)
1742			break;
1743		kfree(dzone->pageset[cpu]);
1744		dzone->pageset[cpu] = NULL;
1745	}
1746	return -ENOMEM;
1747}
1748
1749static inline void free_zone_pagesets(int cpu)
1750{
1751#ifdef CONFIG_NUMA
1752	struct zone *zone;
1753
1754	for_each_zone(zone) {
1755		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1756
1757		zone_pcp(zone, cpu) = NULL;
1758		kfree(pset);
1759	}
1760#endif
1761}
1762
1763static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1764		unsigned long action,
1765		void *hcpu)
1766{
1767	int cpu = (long)hcpu;
1768	int ret = NOTIFY_OK;
1769
1770	switch (action) {
1771		case CPU_UP_PREPARE:
1772			if (process_zones(cpu))
1773				ret = NOTIFY_BAD;
1774			break;
1775#ifdef CONFIG_HOTPLUG_CPU
1776		case CPU_DEAD:
1777			free_zone_pagesets(cpu);
1778			break;
1779#endif
1780		default:
1781			break;
1782	}
1783	return ret;
1784}
1785
1786static struct notifier_block pageset_notifier =
1787	{ &pageset_cpuup_callback, NULL, 0 };
1788
1789void __init setup_per_cpu_pageset()
1790{
1791	int err;
1792
1793	/* Initialize per_cpu_pageset for cpu 0.
1794	 * A cpuup callback will do this for every cpu
1795	 * as it comes online
1796	 */
1797	err = process_zones(smp_processor_id());
1798	BUG_ON(err);
1799	register_cpu_notifier(&pageset_notifier);
1800}
1801
1802#endif
1803
1804/*
1805 * Set up the zone data structures:
1806 *   - mark all pages reserved
1807 *   - mark all memory queues empty
1808 *   - clear the memory bitmaps
1809 */
1810static void __init free_area_init_core(struct pglist_data *pgdat,
1811		unsigned long *zones_size, unsigned long *zholes_size)
1812{
1813	unsigned long i, j;
1814	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1815	int cpu, nid = pgdat->node_id;
1816	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1817
1818	pgdat->nr_zones = 0;
1819	init_waitqueue_head(&pgdat->kswapd_wait);
1820	pgdat->kswapd_max_order = 0;
1821
1822	for (j = 0; j < MAX_NR_ZONES; j++) {
1823		struct zone *zone = pgdat->node_zones + j;
1824		unsigned long size, realsize;
1825		unsigned long batch;
1826
1827		zone_table[NODEZONE(nid, j)] = zone;
1828		realsize = size = zones_size[j];
1829		if (zholes_size)
1830			realsize -= zholes_size[j];
1831
1832		if (j == ZONE_DMA || j == ZONE_NORMAL)
1833			nr_kernel_pages += realsize;
1834		nr_all_pages += realsize;
1835
1836		zone->spanned_pages = size;
1837		zone->present_pages = realsize;
1838		zone->name = zone_names[j];
1839		spin_lock_init(&zone->lock);
1840		spin_lock_init(&zone->lru_lock);
1841		zone->zone_pgdat = pgdat;
1842		zone->free_pages = 0;
1843
1844		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1845
1846		batch = zone_batchsize(zone);
1847
1848		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1849			struct per_cpu_pages *pcp;
1850#ifdef CONFIG_NUMA
1851			struct per_cpu_pageset *pgset;
1852			pgset = &pageset_table[nid*MAX_NR_ZONES*NR_CPUS +
1853					(j * NR_CPUS) + cpu];
1854
1855			zone->pageset[cpu] = pgset;
1856#else
1857			struct per_cpu_pageset *pgset = zone_pcp(zone, cpu);
1858#endif
1859
1860			pcp = &pgset->pcp[0];			/* hot */
1861			pcp->count = 0;
1862			pcp->low = 2 * batch;
1863			pcp->high = 6 * batch;
1864			pcp->batch = 1 * batch;
1865			INIT_LIST_HEAD(&pcp->list);
1866
1867			pcp = &pgset->pcp[1];			/* cold */
1868			pcp->count = 0;
1869			pcp->low = 0;
1870			pcp->high = 2 * batch;
1871			pcp->batch = 1 * batch;
1872			INIT_LIST_HEAD(&pcp->list);
1873		}
1874		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1875				zone_names[j], realsize, batch);
1876		INIT_LIST_HEAD(&zone->active_list);
1877		INIT_LIST_HEAD(&zone->inactive_list);
1878		zone->nr_scan_active = 0;
1879		zone->nr_scan_inactive = 0;
1880		zone->nr_active = 0;
1881		zone->nr_inactive = 0;
1882		atomic_set(&zone->reclaim_in_progress, -1);
1883		if (!size)
1884			continue;
1885
1886		/*
1887		 * The per-page waitqueue mechanism uses hashed waitqueues
1888		 * per zone.
1889		 */
1890		zone->wait_table_size = wait_table_size(size);
1891		zone->wait_table_bits =
1892			wait_table_bits(zone->wait_table_size);
1893		zone->wait_table = (wait_queue_head_t *)
1894			alloc_bootmem_node(pgdat, zone->wait_table_size
1895						* sizeof(wait_queue_head_t));
1896
1897		for(i = 0; i < zone->wait_table_size; ++i)
1898			init_waitqueue_head(zone->wait_table + i);
1899
1900		pgdat->nr_zones = j+1;
1901
1902		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1903		zone->zone_start_pfn = zone_start_pfn;
1904
1905		if ((zone_start_pfn) & (zone_required_alignment-1))
1906			printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1907
1908		memmap_init(size, nid, j, zone_start_pfn);
1909
1910		zone_start_pfn += size;
1911
1912		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1913	}
1914}
1915
1916static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1917{
1918	unsigned long size;
1919
1920	/* Skip empty nodes */
1921	if (!pgdat->node_spanned_pages)
1922		return;
1923
1924	/* ia64 gets its own node_mem_map, before this, without bootmem */
1925	if (!pgdat->node_mem_map) {
1926		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1927		pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1928	}
1929#ifndef CONFIG_DISCONTIGMEM
1930	/*
1931	 * With no DISCONTIG, the global mem_map is just set as node 0's
1932	 */
1933	if (pgdat == NODE_DATA(0))
1934		mem_map = NODE_DATA(0)->node_mem_map;
1935#endif
1936}
1937
1938void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1939		unsigned long *zones_size, unsigned long node_start_pfn,
1940		unsigned long *zholes_size)
1941{
1942	pgdat->node_id = nid;
1943	pgdat->node_start_pfn = node_start_pfn;
1944	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1945
1946	alloc_node_mem_map(pgdat);
1947
1948	free_area_init_core(pgdat, zones_size, zholes_size);
1949}
1950
1951#ifndef CONFIG_DISCONTIGMEM
1952static bootmem_data_t contig_bootmem_data;
1953struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1954
1955EXPORT_SYMBOL(contig_page_data);
1956
1957void __init free_area_init(unsigned long *zones_size)
1958{
1959	free_area_init_node(0, &contig_page_data, zones_size,
1960			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1961}
1962#endif
1963
1964#ifdef CONFIG_PROC_FS
1965
1966#include <linux/seq_file.h>
1967
1968static void *frag_start(struct seq_file *m, loff_t *pos)
1969{
1970	pg_data_t *pgdat;
1971	loff_t node = *pos;
1972
1973	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1974		--node;
1975
1976	return pgdat;
1977}
1978
1979static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1980{
1981	pg_data_t *pgdat = (pg_data_t *)arg;
1982
1983	(*pos)++;
1984	return pgdat->pgdat_next;
1985}
1986
1987static void frag_stop(struct seq_file *m, void *arg)
1988{
1989}
1990
1991/*
1992 * This walks the free areas for each zone.
1993 */
1994static int frag_show(struct seq_file *m, void *arg)
1995{
1996	pg_data_t *pgdat = (pg_data_t *)arg;
1997	struct zone *zone;
1998	struct zone *node_zones = pgdat->node_zones;
1999	unsigned long flags;
2000	int order;
2001
2002	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2003		if (!zone->present_pages)
2004			continue;
2005
2006		spin_lock_irqsave(&zone->lock, flags);
2007		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2008		for (order = 0; order < MAX_ORDER; ++order)
2009			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2010		spin_unlock_irqrestore(&zone->lock, flags);
2011		seq_putc(m, '\n');
2012	}
2013	return 0;
2014}
2015
2016struct seq_operations fragmentation_op = {
2017	.start	= frag_start,
2018	.next	= frag_next,
2019	.stop	= frag_stop,
2020	.show	= frag_show,
2021};
2022
2023/*
2024 * Output information about zones in @pgdat.
2025 */
2026static int zoneinfo_show(struct seq_file *m, void *arg)
2027{
2028	pg_data_t *pgdat = arg;
2029	struct zone *zone;
2030	struct zone *node_zones = pgdat->node_zones;
2031	unsigned long flags;
2032
2033	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2034		int i;
2035
2036		if (!zone->present_pages)
2037			continue;
2038
2039		spin_lock_irqsave(&zone->lock, flags);
2040		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2041		seq_printf(m,
2042			   "\n  pages free     %lu"
2043			   "\n        min      %lu"
2044			   "\n        low      %lu"
2045			   "\n        high     %lu"
2046			   "\n        active   %lu"
2047			   "\n        inactive %lu"
2048			   "\n        scanned  %lu (a: %lu i: %lu)"
2049			   "\n        spanned  %lu"
2050			   "\n        present  %lu",
2051			   zone->free_pages,
2052			   zone->pages_min,
2053			   zone->pages_low,
2054			   zone->pages_high,
2055			   zone->nr_active,
2056			   zone->nr_inactive,
2057			   zone->pages_scanned,
2058			   zone->nr_scan_active, zone->nr_scan_inactive,
2059			   zone->spanned_pages,
2060			   zone->present_pages);
2061		seq_printf(m,
2062			   "\n        protection: (%lu",
2063			   zone->lowmem_reserve[0]);
2064		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2065			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2066		seq_printf(m,
2067			   ")"
2068			   "\n  pagesets");
2069		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2070			struct per_cpu_pageset *pageset;
2071			int j;
2072
2073			pageset = zone_pcp(zone, i);
2074			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2075				if (pageset->pcp[j].count)
2076					break;
2077			}
2078			if (j == ARRAY_SIZE(pageset->pcp))
2079				continue;
2080			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2081				seq_printf(m,
2082					   "\n    cpu: %i pcp: %i"
2083					   "\n              count: %i"
2084					   "\n              low:   %i"
2085					   "\n              high:  %i"
2086					   "\n              batch: %i",
2087					   i, j,
2088					   pageset->pcp[j].count,
2089					   pageset->pcp[j].low,
2090					   pageset->pcp[j].high,
2091					   pageset->pcp[j].batch);
2092			}
2093#ifdef CONFIG_NUMA
2094			seq_printf(m,
2095				   "\n            numa_hit:       %lu"
2096				   "\n            numa_miss:      %lu"
2097				   "\n            numa_foreign:   %lu"
2098				   "\n            interleave_hit: %lu"
2099				   "\n            local_node:     %lu"
2100				   "\n            other_node:     %lu",
2101				   pageset->numa_hit,
2102				   pageset->numa_miss,
2103				   pageset->numa_foreign,
2104				   pageset->interleave_hit,
2105				   pageset->local_node,
2106				   pageset->other_node);
2107#endif
2108		}
2109		seq_printf(m,
2110			   "\n  all_unreclaimable: %u"
2111			   "\n  prev_priority:     %i"
2112			   "\n  temp_priority:     %i"
2113			   "\n  start_pfn:         %lu",
2114			   zone->all_unreclaimable,
2115			   zone->prev_priority,
2116			   zone->temp_priority,
2117			   zone->zone_start_pfn);
2118		spin_unlock_irqrestore(&zone->lock, flags);
2119		seq_putc(m, '\n');
2120	}
2121	return 0;
2122}
2123
2124struct seq_operations zoneinfo_op = {
2125	.start	= frag_start, /* iterate over all zones. The same as in
2126			       * fragmentation. */
2127	.next	= frag_next,
2128	.stop	= frag_stop,
2129	.show	= zoneinfo_show,
2130};
2131
2132static char *vmstat_text[] = {
2133	"nr_dirty",
2134	"nr_writeback",
2135	"nr_unstable",
2136	"nr_page_table_pages",
2137	"nr_mapped",
2138	"nr_slab",
2139
2140	"pgpgin",
2141	"pgpgout",
2142	"pswpin",
2143	"pswpout",
2144	"pgalloc_high",
2145
2146	"pgalloc_normal",
2147	"pgalloc_dma",
2148	"pgfree",
2149	"pgactivate",
2150	"pgdeactivate",
2151
2152	"pgfault",
2153	"pgmajfault",
2154	"pgrefill_high",
2155	"pgrefill_normal",
2156	"pgrefill_dma",
2157
2158	"pgsteal_high",
2159	"pgsteal_normal",
2160	"pgsteal_dma",
2161	"pgscan_kswapd_high",
2162	"pgscan_kswapd_normal",
2163
2164	"pgscan_kswapd_dma",
2165	"pgscan_direct_high",
2166	"pgscan_direct_normal",
2167	"pgscan_direct_dma",
2168	"pginodesteal",
2169
2170	"slabs_scanned",
2171	"kswapd_steal",
2172	"kswapd_inodesteal",
2173	"pageoutrun",
2174	"allocstall",
2175
2176	"pgrotated",
2177	"nr_bounce",
2178};
2179
2180static void *vmstat_start(struct seq_file *m, loff_t *pos)
2181{
2182	struct page_state *ps;
2183
2184	if (*pos >= ARRAY_SIZE(vmstat_text))
2185		return NULL;
2186
2187	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2188	m->private = ps;
2189	if (!ps)
2190		return ERR_PTR(-ENOMEM);
2191	get_full_page_state(ps);
2192	ps->pgpgin /= 2;		/* sectors -> kbytes */
2193	ps->pgpgout /= 2;
2194	return (unsigned long *)ps + *pos;
2195}
2196
2197static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2198{
2199	(*pos)++;
2200	if (*pos >= ARRAY_SIZE(vmstat_text))
2201		return NULL;
2202	return (unsigned long *)m->private + *pos;
2203}
2204
2205static int vmstat_show(struct seq_file *m, void *arg)
2206{
2207	unsigned long *l = arg;
2208	unsigned long off = l - (unsigned long *)m->private;
2209
2210	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2211	return 0;
2212}
2213
2214static void vmstat_stop(struct seq_file *m, void *arg)
2215{
2216	kfree(m->private);
2217	m->private = NULL;
2218}
2219
2220struct seq_operations vmstat_op = {
2221	.start	= vmstat_start,
2222	.next	= vmstat_next,
2223	.stop	= vmstat_stop,
2224	.show	= vmstat_show,
2225};
2226
2227#endif /* CONFIG_PROC_FS */
2228
2229#ifdef CONFIG_HOTPLUG_CPU
2230static int page_alloc_cpu_notify(struct notifier_block *self,
2231				 unsigned long action, void *hcpu)
2232{
2233	int cpu = (unsigned long)hcpu;
2234	long *count;
2235	unsigned long *src, *dest;
2236
2237	if (action == CPU_DEAD) {
2238		int i;
2239
2240		/* Drain local pagecache count. */
2241		count = &per_cpu(nr_pagecache_local, cpu);
2242		atomic_add(*count, &nr_pagecache);
2243		*count = 0;
2244		local_irq_disable();
2245		__drain_pages(cpu);
2246
2247		/* Add dead cpu's page_states to our own. */
2248		dest = (unsigned long *)&__get_cpu_var(page_states);
2249		src = (unsigned long *)&per_cpu(page_states, cpu);
2250
2251		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2252				i++) {
2253			dest[i] += src[i];
2254			src[i] = 0;
2255		}
2256
2257		local_irq_enable();
2258	}
2259	return NOTIFY_OK;
2260}
2261#endif /* CONFIG_HOTPLUG_CPU */
2262
2263void __init page_alloc_init(void)
2264{
2265	hotcpu_notifier(page_alloc_cpu_notify, 0);
2266}
2267
2268/*
2269 * setup_per_zone_lowmem_reserve - called whenever
2270 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2271 *	has a correct pages reserved value, so an adequate number of
2272 *	pages are left in the zone after a successful __alloc_pages().
2273 */
2274static void setup_per_zone_lowmem_reserve(void)
2275{
2276	struct pglist_data *pgdat;
2277	int j, idx;
2278
2279	for_each_pgdat(pgdat) {
2280		for (j = 0; j < MAX_NR_ZONES; j++) {
2281			struct zone *zone = pgdat->node_zones + j;
2282			unsigned long present_pages = zone->present_pages;
2283
2284			zone->lowmem_reserve[j] = 0;
2285
2286			for (idx = j-1; idx >= 0; idx--) {
2287				struct zone *lower_zone;
2288
2289				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2290					sysctl_lowmem_reserve_ratio[idx] = 1;
2291
2292				lower_zone = pgdat->node_zones + idx;
2293				lower_zone->lowmem_reserve[j] = present_pages /
2294					sysctl_lowmem_reserve_ratio[idx];
2295				present_pages += lower_zone->present_pages;
2296			}
2297		}
2298	}
2299}
2300
2301/*
2302 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2303 *	that the pages_{min,low,high} values for each zone are set correctly
2304 *	with respect to min_free_kbytes.
2305 */
2306static void setup_per_zone_pages_min(void)
2307{
2308	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2309	unsigned long lowmem_pages = 0;
2310	struct zone *zone;
2311	unsigned long flags;
2312
2313	/* Calculate total number of !ZONE_HIGHMEM pages */
2314	for_each_zone(zone) {
2315		if (!is_highmem(zone))
2316			lowmem_pages += zone->present_pages;
2317	}
2318
2319	for_each_zone(zone) {
2320		spin_lock_irqsave(&zone->lru_lock, flags);
2321		if (is_highmem(zone)) {
2322			/*
2323			 * Often, highmem doesn't need to reserve any pages.
2324			 * But the pages_min/low/high values are also used for
2325			 * batching up page reclaim activity so we need a
2326			 * decent value here.
2327			 */
2328			int min_pages;
2329
2330			min_pages = zone->present_pages / 1024;
2331			if (min_pages < SWAP_CLUSTER_MAX)
2332				min_pages = SWAP_CLUSTER_MAX;
2333			if (min_pages > 128)
2334				min_pages = 128;
2335			zone->pages_min = min_pages;
2336		} else {
2337			/* if it's a lowmem zone, reserve a number of pages
2338			 * proportionate to the zone's size.
2339			 */
2340			zone->pages_min = (pages_min * zone->present_pages) /
2341			                   lowmem_pages;
2342		}
2343
2344		/*
2345		 * When interpreting these watermarks, just keep in mind that:
2346		 * zone->pages_min == (zone->pages_min * 4) / 4;
2347		 */
2348		zone->pages_low   = (zone->pages_min * 5) / 4;
2349		zone->pages_high  = (zone->pages_min * 6) / 4;
2350		spin_unlock_irqrestore(&zone->lru_lock, flags);
2351	}
2352}
2353
2354/*
2355 * Initialise min_free_kbytes.
2356 *
2357 * For small machines we want it small (128k min).  For large machines
2358 * we want it large (64MB max).  But it is not linear, because network
2359 * bandwidth does not increase linearly with machine size.  We use
2360 *
2361 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2362 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2363 *
2364 * which yields
2365 *
2366 * 16MB:	512k
2367 * 32MB:	724k
2368 * 64MB:	1024k
2369 * 128MB:	1448k
2370 * 256MB:	2048k
2371 * 512MB:	2896k
2372 * 1024MB:	4096k
2373 * 2048MB:	5792k
2374 * 4096MB:	8192k
2375 * 8192MB:	11584k
2376 * 16384MB:	16384k
2377 */
2378static int __init init_per_zone_pages_min(void)
2379{
2380	unsigned long lowmem_kbytes;
2381
2382	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2383
2384	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2385	if (min_free_kbytes < 128)
2386		min_free_kbytes = 128;
2387	if (min_free_kbytes > 65536)
2388		min_free_kbytes = 65536;
2389	setup_per_zone_pages_min();
2390	setup_per_zone_lowmem_reserve();
2391	return 0;
2392}
2393module_init(init_per_zone_pages_min)
2394
2395/*
2396 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2397 *	that we can call two helper functions whenever min_free_kbytes
2398 *	changes.
2399 */
2400int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2401	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2402{
2403	proc_dointvec(table, write, file, buffer, length, ppos);
2404	setup_per_zone_pages_min();
2405	return 0;
2406}
2407
2408/*
2409 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2410 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2411 *	whenever sysctl_lowmem_reserve_ratio changes.
2412 *
2413 * The reserve ratio obviously has absolutely no relation with the
2414 * pages_min watermarks. The lowmem reserve ratio can only make sense
2415 * if in function of the boot time zone sizes.
2416 */
2417int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2418	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2419{
2420	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2421	setup_per_zone_lowmem_reserve();
2422	return 0;
2423}
2424
2425__initdata int hashdist = HASHDIST_DEFAULT;
2426
2427#ifdef CONFIG_NUMA
2428static int __init set_hashdist(char *str)
2429{
2430	if (!str)
2431		return 0;
2432	hashdist = simple_strtoul(str, &str, 0);
2433	return 1;
2434}
2435__setup("hashdist=", set_hashdist);
2436#endif
2437
2438/*
2439 * allocate a large system hash table from bootmem
2440 * - it is assumed that the hash table must contain an exact power-of-2
2441 *   quantity of entries
2442 * - limit is the number of hash buckets, not the total allocation size
2443 */
2444void *__init alloc_large_system_hash(const char *tablename,
2445				     unsigned long bucketsize,
2446				     unsigned long numentries,
2447				     int scale,
2448				     int flags,
2449				     unsigned int *_hash_shift,
2450				     unsigned int *_hash_mask,
2451				     unsigned long limit)
2452{
2453	unsigned long long max = limit;
2454	unsigned long log2qty, size;
2455	void *table = NULL;
2456
2457	/* allow the kernel cmdline to have a say */
2458	if (!numentries) {
2459		/* round applicable memory size up to nearest megabyte */
2460		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2461		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2462		numentries >>= 20 - PAGE_SHIFT;
2463		numentries <<= 20 - PAGE_SHIFT;
2464
2465		/* limit to 1 bucket per 2^scale bytes of low memory */
2466		if (scale > PAGE_SHIFT)
2467			numentries >>= (scale - PAGE_SHIFT);
2468		else
2469			numentries <<= (PAGE_SHIFT - scale);
2470	}
2471	/* rounded up to nearest power of 2 in size */
2472	numentries = 1UL << (long_log2(numentries) + 1);
2473
2474	/* limit allocation size to 1/16 total memory by default */
2475	if (max == 0) {
2476		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2477		do_div(max, bucketsize);
2478	}
2479
2480	if (numentries > max)
2481		numentries = max;
2482
2483	log2qty = long_log2(numentries);
2484
2485	do {
2486		size = bucketsize << log2qty;
2487		if (flags & HASH_EARLY)
2488			table = alloc_bootmem(size);
2489		else if (hashdist)
2490			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2491		else {
2492			unsigned long order;
2493			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2494				;
2495			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2496		}
2497	} while (!table && size > PAGE_SIZE && --log2qty);
2498
2499	if (!table)
2500		panic("Failed to allocate %s hash table\n", tablename);
2501
2502	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2503	       tablename,
2504	       (1U << log2qty),
2505	       long_log2(size) - PAGE_SHIFT,
2506	       size);
2507
2508	if (_hash_shift)
2509		*_hash_shift = log2qty;
2510	if (_hash_mask)
2511		*_hash_mask = (1 << log2qty) - 1;
2512
2513	return table;
2514}
2515