page_alloc.c revision c6a57e19e464db118dc4ab9cfe9e9748c6d630a0
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38
39#include <asm/tlbflush.h>
40#include "internal.h"
41
42/*
43 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
44 * initializer cleaner
45 */
46nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
47EXPORT_SYMBOL(node_online_map);
48nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
49EXPORT_SYMBOL(node_possible_map);
50struct pglist_data *pgdat_list __read_mostly;
51unsigned long totalram_pages __read_mostly;
52unsigned long totalhigh_pages __read_mostly;
53long nr_swap_pages;
54
55/*
56 * results with 256, 32 in the lowmem_reserve sysctl:
57 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
58 *	1G machine -> (16M dma, 784M normal, 224M high)
59 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
60 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
61 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
62 */
63int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
64
65EXPORT_SYMBOL(totalram_pages);
66EXPORT_SYMBOL(nr_swap_pages);
67
68/*
69 * Used by page_zone() to look up the address of the struct zone whose
70 * id is encoded in the upper bits of page->flags
71 */
72struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
73EXPORT_SYMBOL(zone_table);
74
75static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
76int min_free_kbytes = 1024;
77
78unsigned long __initdata nr_kernel_pages;
79unsigned long __initdata nr_all_pages;
80
81static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
82{
83	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
84		return 1;
85	if (page_to_pfn(page) < zone->zone_start_pfn)
86		return 1;
87
88	return 0;
89}
90
91static int page_is_consistent(struct zone *zone, struct page *page)
92{
93#ifdef CONFIG_HOLES_IN_ZONE
94	if (!pfn_valid(page_to_pfn(page)))
95		return 0;
96#endif
97	if (zone != page_zone(page))
98		return 0;
99
100	return 1;
101}
102/*
103 * Temporary debugging check for pages not lying within a given zone.
104 */
105static int bad_range(struct zone *zone, struct page *page)
106{
107	if (page_outside_zone_boundaries(zone, page))
108		return 1;
109	if (!page_is_consistent(zone, page))
110		return 1;
111
112	return 0;
113}
114
115static void bad_page(const char *function, struct page *page)
116{
117	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
118		function, current->comm, page);
119	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
120		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
121		page->mapping, page_mapcount(page), page_count(page));
122	printk(KERN_EMERG "Backtrace:\n");
123	dump_stack();
124	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
125	page->flags &= ~(1 << PG_lru	|
126			1 << PG_private |
127			1 << PG_locked	|
128			1 << PG_active	|
129			1 << PG_dirty	|
130			1 << PG_reclaim |
131			1 << PG_slab    |
132			1 << PG_swapcache |
133			1 << PG_writeback |
134			1 << PG_reserved );
135	set_page_count(page, 0);
136	reset_page_mapcount(page);
137	page->mapping = NULL;
138	add_taint(TAINT_BAD_PAGE);
139}
140
141#ifndef CONFIG_HUGETLB_PAGE
142#define prep_compound_page(page, order) do { } while (0)
143#define destroy_compound_page(page, order) do { } while (0)
144#else
145/*
146 * Higher-order pages are called "compound pages".  They are structured thusly:
147 *
148 * The first PAGE_SIZE page is called the "head page".
149 *
150 * The remaining PAGE_SIZE pages are called "tail pages".
151 *
152 * All pages have PG_compound set.  All pages have their ->private pointing at
153 * the head page (even the head page has this).
154 *
155 * The first tail page's ->mapping, if non-zero, holds the address of the
156 * compound page's put_page() function.
157 *
158 * The order of the allocation is stored in the first tail page's ->index
159 * This is only for debug at present.  This usage means that zero-order pages
160 * may not be compound.
161 */
162static void prep_compound_page(struct page *page, unsigned long order)
163{
164	int i;
165	int nr_pages = 1 << order;
166
167	page[1].mapping = NULL;
168	page[1].index = order;
169	for (i = 0; i < nr_pages; i++) {
170		struct page *p = page + i;
171
172		SetPageCompound(p);
173		set_page_private(p, (unsigned long)page);
174	}
175}
176
177static void destroy_compound_page(struct page *page, unsigned long order)
178{
179	int i;
180	int nr_pages = 1 << order;
181
182	if (!PageCompound(page))
183		return;
184
185	if (page[1].index != order)
186		bad_page(__FUNCTION__, page);
187
188	for (i = 0; i < nr_pages; i++) {
189		struct page *p = page + i;
190
191		if (!PageCompound(p))
192			bad_page(__FUNCTION__, page);
193		if (page_private(p) != (unsigned long)page)
194			bad_page(__FUNCTION__, page);
195		ClearPageCompound(p);
196	}
197}
198#endif		/* CONFIG_HUGETLB_PAGE */
199
200/*
201 * function for dealing with page's order in buddy system.
202 * zone->lock is already acquired when we use these.
203 * So, we don't need atomic page->flags operations here.
204 */
205static inline unsigned long page_order(struct page *page) {
206	return page_private(page);
207}
208
209static inline void set_page_order(struct page *page, int order) {
210	set_page_private(page, order);
211	__SetPagePrivate(page);
212}
213
214static inline void rmv_page_order(struct page *page)
215{
216	__ClearPagePrivate(page);
217	set_page_private(page, 0);
218}
219
220/*
221 * Locate the struct page for both the matching buddy in our
222 * pair (buddy1) and the combined O(n+1) page they form (page).
223 *
224 * 1) Any buddy B1 will have an order O twin B2 which satisfies
225 * the following equation:
226 *     B2 = B1 ^ (1 << O)
227 * For example, if the starting buddy (buddy2) is #8 its order
228 * 1 buddy is #10:
229 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
230 *
231 * 2) Any buddy B will have an order O+1 parent P which
232 * satisfies the following equation:
233 *     P = B & ~(1 << O)
234 *
235 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
236 */
237static inline struct page *
238__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
239{
240	unsigned long buddy_idx = page_idx ^ (1 << order);
241
242	return page + (buddy_idx - page_idx);
243}
244
245static inline unsigned long
246__find_combined_index(unsigned long page_idx, unsigned int order)
247{
248	return (page_idx & ~(1 << order));
249}
250
251/*
252 * This function checks whether a page is free && is the buddy
253 * we can do coalesce a page and its buddy if
254 * (a) the buddy is free &&
255 * (b) the buddy is on the buddy system &&
256 * (c) a page and its buddy have the same order.
257 * for recording page's order, we use page_private(page) and PG_private.
258 *
259 */
260static inline int page_is_buddy(struct page *page, int order)
261{
262       if (PagePrivate(page)           &&
263           (page_order(page) == order) &&
264            page_count(page) == 0)
265               return 1;
266       return 0;
267}
268
269/*
270 * Freeing function for a buddy system allocator.
271 *
272 * The concept of a buddy system is to maintain direct-mapped table
273 * (containing bit values) for memory blocks of various "orders".
274 * The bottom level table contains the map for the smallest allocatable
275 * units of memory (here, pages), and each level above it describes
276 * pairs of units from the levels below, hence, "buddies".
277 * At a high level, all that happens here is marking the table entry
278 * at the bottom level available, and propagating the changes upward
279 * as necessary, plus some accounting needed to play nicely with other
280 * parts of the VM system.
281 * At each level, we keep a list of pages, which are heads of continuous
282 * free pages of length of (1 << order) and marked with PG_Private.Page's
283 * order is recorded in page_private(page) field.
284 * So when we are allocating or freeing one, we can derive the state of the
285 * other.  That is, if we allocate a small block, and both were
286 * free, the remainder of the region must be split into blocks.
287 * If a block is freed, and its buddy is also free, then this
288 * triggers coalescing into a block of larger size.
289 *
290 * -- wli
291 */
292
293static inline void __free_pages_bulk (struct page *page,
294		struct zone *zone, unsigned int order)
295{
296	unsigned long page_idx;
297	int order_size = 1 << order;
298
299	if (unlikely(order))
300		destroy_compound_page(page, order);
301
302	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
303
304	BUG_ON(page_idx & (order_size - 1));
305	BUG_ON(bad_range(zone, page));
306
307	zone->free_pages += order_size;
308	while (order < MAX_ORDER-1) {
309		unsigned long combined_idx;
310		struct free_area *area;
311		struct page *buddy;
312
313		combined_idx = __find_combined_index(page_idx, order);
314		buddy = __page_find_buddy(page, page_idx, order);
315
316		if (bad_range(zone, buddy))
317			break;
318		if (!page_is_buddy(buddy, order))
319			break;		/* Move the buddy up one level. */
320		list_del(&buddy->lru);
321		area = zone->free_area + order;
322		area->nr_free--;
323		rmv_page_order(buddy);
324		page = page + (combined_idx - page_idx);
325		page_idx = combined_idx;
326		order++;
327	}
328	set_page_order(page, order);
329	list_add(&page->lru, &zone->free_area[order].free_list);
330	zone->free_area[order].nr_free++;
331}
332
333static inline void free_pages_check(const char *function, struct page *page)
334{
335	if (	page_mapcount(page) ||
336		page->mapping != NULL ||
337		page_count(page) != 0 ||
338		(page->flags & (
339			1 << PG_lru	|
340			1 << PG_private |
341			1 << PG_locked	|
342			1 << PG_active	|
343			1 << PG_reclaim	|
344			1 << PG_slab	|
345			1 << PG_swapcache |
346			1 << PG_writeback |
347			1 << PG_reserved )))
348		bad_page(function, page);
349	if (PageDirty(page))
350		__ClearPageDirty(page);
351}
352
353/*
354 * Frees a list of pages.
355 * Assumes all pages on list are in same zone, and of same order.
356 * count is the number of pages to free.
357 *
358 * If the zone was previously in an "all pages pinned" state then look to
359 * see if this freeing clears that state.
360 *
361 * And clear the zone's pages_scanned counter, to hold off the "all pages are
362 * pinned" detection logic.
363 */
364static int
365free_pages_bulk(struct zone *zone, int count,
366		struct list_head *list, unsigned int order)
367{
368	unsigned long flags;
369	struct page *page = NULL;
370	int ret = 0;
371
372	spin_lock_irqsave(&zone->lock, flags);
373	zone->all_unreclaimable = 0;
374	zone->pages_scanned = 0;
375	while (!list_empty(list) && count--) {
376		page = list_entry(list->prev, struct page, lru);
377		/* have to delete it as __free_pages_bulk list manipulates */
378		list_del(&page->lru);
379		__free_pages_bulk(page, zone, order);
380		ret++;
381	}
382	spin_unlock_irqrestore(&zone->lock, flags);
383	return ret;
384}
385
386void __free_pages_ok(struct page *page, unsigned int order)
387{
388	LIST_HEAD(list);
389	int i;
390
391	arch_free_page(page, order);
392
393	mod_page_state(pgfree, 1 << order);
394
395#ifndef CONFIG_MMU
396	if (order > 0)
397		for (i = 1 ; i < (1 << order) ; ++i)
398			__put_page(page + i);
399#endif
400
401	for (i = 0 ; i < (1 << order) ; ++i)
402		free_pages_check(__FUNCTION__, page + i);
403	list_add(&page->lru, &list);
404	kernel_map_pages(page, 1<<order, 0);
405	free_pages_bulk(page_zone(page), 1, &list, order);
406}
407
408
409/*
410 * The order of subdivision here is critical for the IO subsystem.
411 * Please do not alter this order without good reasons and regression
412 * testing. Specifically, as large blocks of memory are subdivided,
413 * the order in which smaller blocks are delivered depends on the order
414 * they're subdivided in this function. This is the primary factor
415 * influencing the order in which pages are delivered to the IO
416 * subsystem according to empirical testing, and this is also justified
417 * by considering the behavior of a buddy system containing a single
418 * large block of memory acted on by a series of small allocations.
419 * This behavior is a critical factor in sglist merging's success.
420 *
421 * -- wli
422 */
423static inline struct page *
424expand(struct zone *zone, struct page *page,
425 	int low, int high, struct free_area *area)
426{
427	unsigned long size = 1 << high;
428
429	while (high > low) {
430		area--;
431		high--;
432		size >>= 1;
433		BUG_ON(bad_range(zone, &page[size]));
434		list_add(&page[size].lru, &area->free_list);
435		area->nr_free++;
436		set_page_order(&page[size], high);
437	}
438	return page;
439}
440
441void set_page_refs(struct page *page, int order)
442{
443#ifdef CONFIG_MMU
444	set_page_count(page, 1);
445#else
446	int i;
447
448	/*
449	 * We need to reference all the pages for this order, otherwise if
450	 * anyone accesses one of the pages with (get/put) it will be freed.
451	 * - eg: access_process_vm()
452	 */
453	for (i = 0; i < (1 << order); i++)
454		set_page_count(page + i, 1);
455#endif /* CONFIG_MMU */
456}
457
458/*
459 * This page is about to be returned from the page allocator
460 */
461static void prep_new_page(struct page *page, int order)
462{
463	if (	page_mapcount(page) ||
464		page->mapping != NULL ||
465		page_count(page) != 0 ||
466		(page->flags & (
467			1 << PG_lru	|
468			1 << PG_private	|
469			1 << PG_locked	|
470			1 << PG_active	|
471			1 << PG_dirty	|
472			1 << PG_reclaim	|
473			1 << PG_slab    |
474			1 << PG_swapcache |
475			1 << PG_writeback |
476			1 << PG_reserved )))
477		bad_page(__FUNCTION__, page);
478
479	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
480			1 << PG_referenced | 1 << PG_arch_1 |
481			1 << PG_checked | 1 << PG_mappedtodisk);
482	set_page_private(page, 0);
483	set_page_refs(page, order);
484	kernel_map_pages(page, 1 << order, 1);
485}
486
487/*
488 * Do the hard work of removing an element from the buddy allocator.
489 * Call me with the zone->lock already held.
490 */
491static struct page *__rmqueue(struct zone *zone, unsigned int order)
492{
493	struct free_area * area;
494	unsigned int current_order;
495	struct page *page;
496
497	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
498		area = zone->free_area + current_order;
499		if (list_empty(&area->free_list))
500			continue;
501
502		page = list_entry(area->free_list.next, struct page, lru);
503		list_del(&page->lru);
504		rmv_page_order(page);
505		area->nr_free--;
506		zone->free_pages -= 1UL << order;
507		return expand(zone, page, order, current_order, area);
508	}
509
510	return NULL;
511}
512
513/*
514 * Obtain a specified number of elements from the buddy allocator, all under
515 * a single hold of the lock, for efficiency.  Add them to the supplied list.
516 * Returns the number of new pages which were placed at *list.
517 */
518static int rmqueue_bulk(struct zone *zone, unsigned int order,
519			unsigned long count, struct list_head *list)
520{
521	unsigned long flags;
522	int i;
523	int allocated = 0;
524	struct page *page;
525
526	spin_lock_irqsave(&zone->lock, flags);
527	for (i = 0; i < count; ++i) {
528		page = __rmqueue(zone, order);
529		if (page == NULL)
530			break;
531		allocated++;
532		list_add_tail(&page->lru, list);
533	}
534	spin_unlock_irqrestore(&zone->lock, flags);
535	return allocated;
536}
537
538#ifdef CONFIG_NUMA
539/* Called from the slab reaper to drain remote pagesets */
540void drain_remote_pages(void)
541{
542	struct zone *zone;
543	int i;
544	unsigned long flags;
545
546	local_irq_save(flags);
547	for_each_zone(zone) {
548		struct per_cpu_pageset *pset;
549
550		/* Do not drain local pagesets */
551		if (zone->zone_pgdat->node_id == numa_node_id())
552			continue;
553
554		pset = zone->pageset[smp_processor_id()];
555		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
556			struct per_cpu_pages *pcp;
557
558			pcp = &pset->pcp[i];
559			if (pcp->count)
560				pcp->count -= free_pages_bulk(zone, pcp->count,
561						&pcp->list, 0);
562		}
563	}
564	local_irq_restore(flags);
565}
566#endif
567
568#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
569static void __drain_pages(unsigned int cpu)
570{
571	struct zone *zone;
572	int i;
573
574	for_each_zone(zone) {
575		struct per_cpu_pageset *pset;
576
577		pset = zone_pcp(zone, cpu);
578		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
579			struct per_cpu_pages *pcp;
580
581			pcp = &pset->pcp[i];
582			pcp->count -= free_pages_bulk(zone, pcp->count,
583						&pcp->list, 0);
584		}
585	}
586}
587#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
588
589#ifdef CONFIG_PM
590
591void mark_free_pages(struct zone *zone)
592{
593	unsigned long zone_pfn, flags;
594	int order;
595	struct list_head *curr;
596
597	if (!zone->spanned_pages)
598		return;
599
600	spin_lock_irqsave(&zone->lock, flags);
601	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
602		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
603
604	for (order = MAX_ORDER - 1; order >= 0; --order)
605		list_for_each(curr, &zone->free_area[order].free_list) {
606			unsigned long start_pfn, i;
607
608			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
609
610			for (i=0; i < (1<<order); i++)
611				SetPageNosaveFree(pfn_to_page(start_pfn+i));
612	}
613	spin_unlock_irqrestore(&zone->lock, flags);
614}
615
616/*
617 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
618 */
619void drain_local_pages(void)
620{
621	unsigned long flags;
622
623	local_irq_save(flags);
624	__drain_pages(smp_processor_id());
625	local_irq_restore(flags);
626}
627#endif /* CONFIG_PM */
628
629static void zone_statistics(struct zonelist *zonelist, struct zone *z)
630{
631#ifdef CONFIG_NUMA
632	unsigned long flags;
633	int cpu;
634	pg_data_t *pg = z->zone_pgdat;
635	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
636	struct per_cpu_pageset *p;
637
638	local_irq_save(flags);
639	cpu = smp_processor_id();
640	p = zone_pcp(z,cpu);
641	if (pg == orig) {
642		p->numa_hit++;
643	} else {
644		p->numa_miss++;
645		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
646	}
647	if (pg == NODE_DATA(numa_node_id()))
648		p->local_node++;
649	else
650		p->other_node++;
651	local_irq_restore(flags);
652#endif
653}
654
655/*
656 * Free a 0-order page
657 */
658static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
659static void fastcall free_hot_cold_page(struct page *page, int cold)
660{
661	struct zone *zone = page_zone(page);
662	struct per_cpu_pages *pcp;
663	unsigned long flags;
664
665	arch_free_page(page, 0);
666
667	kernel_map_pages(page, 1, 0);
668	inc_page_state(pgfree);
669	if (PageAnon(page))
670		page->mapping = NULL;
671	free_pages_check(__FUNCTION__, page);
672	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
673	local_irq_save(flags);
674	list_add(&page->lru, &pcp->list);
675	pcp->count++;
676	if (pcp->count >= pcp->high)
677		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
678	local_irq_restore(flags);
679	put_cpu();
680}
681
682void fastcall free_hot_page(struct page *page)
683{
684	free_hot_cold_page(page, 0);
685}
686
687void fastcall free_cold_page(struct page *page)
688{
689	free_hot_cold_page(page, 1);
690}
691
692static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
693{
694	int i;
695
696	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
697	for(i = 0; i < (1 << order); i++)
698		clear_highpage(page + i);
699}
700
701/*
702 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
703 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
704 * or two.
705 */
706static struct page *
707buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
708{
709	unsigned long flags;
710	struct page *page = NULL;
711	int cold = !!(gfp_flags & __GFP_COLD);
712
713	if (order == 0) {
714		struct per_cpu_pages *pcp;
715
716		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
717		local_irq_save(flags);
718		if (pcp->count <= pcp->low)
719			pcp->count += rmqueue_bulk(zone, 0,
720						pcp->batch, &pcp->list);
721		if (pcp->count) {
722			page = list_entry(pcp->list.next, struct page, lru);
723			list_del(&page->lru);
724			pcp->count--;
725		}
726		local_irq_restore(flags);
727		put_cpu();
728	}
729
730	if (page == NULL) {
731		spin_lock_irqsave(&zone->lock, flags);
732		page = __rmqueue(zone, order);
733		spin_unlock_irqrestore(&zone->lock, flags);
734	}
735
736	if (page != NULL) {
737		BUG_ON(bad_range(zone, page));
738		mod_page_state_zone(zone, pgalloc, 1 << order);
739		prep_new_page(page, order);
740
741		if (gfp_flags & __GFP_ZERO)
742			prep_zero_page(page, order, gfp_flags);
743
744		if (order && (gfp_flags & __GFP_COMP))
745			prep_compound_page(page, order);
746	}
747	return page;
748}
749
750/*
751 * Return 1 if free pages are above 'mark'. This takes into account the order
752 * of the allocation.
753 */
754int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
755		      int classzone_idx, int can_try_harder, gfp_t gfp_high)
756{
757	/* free_pages my go negative - that's OK */
758	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
759	int o;
760
761	if (gfp_high)
762		min -= min / 2;
763	if (can_try_harder)
764		min -= min / 4;
765
766	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
767		return 0;
768	for (o = 0; o < order; o++) {
769		/* At the next order, this order's pages become unavailable */
770		free_pages -= z->free_area[o].nr_free << o;
771
772		/* Require fewer higher order pages to be free */
773		min >>= 1;
774
775		if (free_pages <= min)
776			return 0;
777	}
778	return 1;
779}
780
781static inline int
782should_reclaim_zone(struct zone *z, gfp_t gfp_mask)
783{
784	if (!z->reclaim_pages)
785		return 0;
786	if (gfp_mask & __GFP_NORECLAIM)
787		return 0;
788	return 1;
789}
790
791/*
792 * This is the 'heart' of the zoned buddy allocator.
793 */
794struct page * fastcall
795__alloc_pages(gfp_t gfp_mask, unsigned int order,
796		struct zonelist *zonelist)
797{
798	const gfp_t wait = gfp_mask & __GFP_WAIT;
799	struct zone **zones, *z;
800	struct page *page;
801	struct reclaim_state reclaim_state;
802	struct task_struct *p = current;
803	int i;
804	int classzone_idx;
805	int do_retry;
806	int can_try_harder;
807	int did_some_progress;
808
809	might_sleep_if(wait);
810
811	/*
812	 * The caller may dip into page reserves a bit more if the caller
813	 * cannot run direct reclaim, or is the caller has realtime scheduling
814	 * policy
815	 */
816	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
817
818	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
819
820	if (unlikely(zones[0] == NULL)) {
821		/* Should this ever happen?? */
822		return NULL;
823	}
824
825	classzone_idx = zone_idx(zones[0]);
826
827restart:
828	/*
829	 * Go through the zonelist once, looking for a zone with enough free.
830	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
831	 */
832	for (i = 0; (z = zones[i]) != NULL; i++) {
833		int do_reclaim = should_reclaim_zone(z, gfp_mask);
834
835		if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
836			continue;
837
838		/*
839		 * If the zone is to attempt early page reclaim then this loop
840		 * will try to reclaim pages and check the watermark a second
841		 * time before giving up and falling back to the next zone.
842		 */
843zone_reclaim_retry:
844		if (!zone_watermark_ok(z, order, z->pages_low,
845				       classzone_idx, 0, 0)) {
846			if (!do_reclaim)
847				continue;
848			else {
849				zone_reclaim(z, gfp_mask, order);
850				/* Only try reclaim once */
851				do_reclaim = 0;
852				goto zone_reclaim_retry;
853			}
854		}
855
856		page = buffered_rmqueue(z, order, gfp_mask);
857		if (page)
858			goto got_pg;
859	}
860
861	for (i = 0; (z = zones[i]) != NULL; i++)
862		wakeup_kswapd(z, order);
863
864	/*
865	 * Go through the zonelist again. Let __GFP_HIGH and allocations
866	 * coming from realtime tasks to go deeper into reserves
867	 *
868	 * This is the last chance, in general, before the goto nopage.
869	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
870	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
871	 */
872	for (i = 0; (z = zones[i]) != NULL; i++) {
873		if (!zone_watermark_ok(z, order, z->pages_min,
874				       classzone_idx, can_try_harder,
875				       gfp_mask & __GFP_HIGH))
876			continue;
877
878		if (wait && !cpuset_zone_allowed(z, gfp_mask))
879			continue;
880
881		page = buffered_rmqueue(z, order, gfp_mask);
882		if (page)
883			goto got_pg;
884	}
885
886	/* This allocation should allow future memory freeing. */
887
888	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
889			&& !in_interrupt()) {
890		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
891			/* go through the zonelist yet again, ignoring mins */
892			for (i = 0; (z = zones[i]) != NULL; i++) {
893				if (!cpuset_zone_allowed(z, gfp_mask))
894					continue;
895				page = buffered_rmqueue(z, order, gfp_mask);
896				if (page)
897					goto got_pg;
898			}
899		}
900		goto nopage;
901	}
902
903	/* Atomic allocations - we can't balance anything */
904	if (!wait)
905		goto nopage;
906
907rebalance:
908	cond_resched();
909
910	/* We now go into synchronous reclaim */
911	p->flags |= PF_MEMALLOC;
912	reclaim_state.reclaimed_slab = 0;
913	p->reclaim_state = &reclaim_state;
914
915	did_some_progress = try_to_free_pages(zones, gfp_mask);
916
917	p->reclaim_state = NULL;
918	p->flags &= ~PF_MEMALLOC;
919
920	cond_resched();
921
922	if (likely(did_some_progress)) {
923		for (i = 0; (z = zones[i]) != NULL; i++) {
924			if (!zone_watermark_ok(z, order, z->pages_min,
925					       classzone_idx, can_try_harder,
926					       gfp_mask & __GFP_HIGH))
927				continue;
928
929			if (!cpuset_zone_allowed(z, gfp_mask))
930				continue;
931
932			page = buffered_rmqueue(z, order, gfp_mask);
933			if (page)
934				goto got_pg;
935		}
936	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
937		/*
938		 * Go through the zonelist yet one more time, keep
939		 * very high watermark here, this is only to catch
940		 * a parallel oom killing, we must fail if we're still
941		 * under heavy pressure.
942		 */
943		for (i = 0; (z = zones[i]) != NULL; i++) {
944			if (!zone_watermark_ok(z, order, z->pages_high,
945					       classzone_idx, 0, 0))
946				continue;
947
948			if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
949				continue;
950
951			page = buffered_rmqueue(z, order, gfp_mask);
952			if (page)
953				goto got_pg;
954		}
955
956		out_of_memory(gfp_mask, order);
957		goto restart;
958	}
959
960	/*
961	 * Don't let big-order allocations loop unless the caller explicitly
962	 * requests that.  Wait for some write requests to complete then retry.
963	 *
964	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
965	 * <= 3, but that may not be true in other implementations.
966	 */
967	do_retry = 0;
968	if (!(gfp_mask & __GFP_NORETRY)) {
969		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
970			do_retry = 1;
971		if (gfp_mask & __GFP_NOFAIL)
972			do_retry = 1;
973	}
974	if (do_retry) {
975		blk_congestion_wait(WRITE, HZ/50);
976		goto rebalance;
977	}
978
979nopage:
980	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
981		printk(KERN_WARNING "%s: page allocation failure."
982			" order:%d, mode:0x%x\n",
983			p->comm, order, gfp_mask);
984		dump_stack();
985		show_mem();
986	}
987	return NULL;
988got_pg:
989	zone_statistics(zonelist, z);
990	return page;
991}
992
993EXPORT_SYMBOL(__alloc_pages);
994
995/*
996 * Common helper functions.
997 */
998fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
999{
1000	struct page * page;
1001	page = alloc_pages(gfp_mask, order);
1002	if (!page)
1003		return 0;
1004	return (unsigned long) page_address(page);
1005}
1006
1007EXPORT_SYMBOL(__get_free_pages);
1008
1009fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1010{
1011	struct page * page;
1012
1013	/*
1014	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1015	 * a highmem page
1016	 */
1017	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1018
1019	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1020	if (page)
1021		return (unsigned long) page_address(page);
1022	return 0;
1023}
1024
1025EXPORT_SYMBOL(get_zeroed_page);
1026
1027void __pagevec_free(struct pagevec *pvec)
1028{
1029	int i = pagevec_count(pvec);
1030
1031	while (--i >= 0)
1032		free_hot_cold_page(pvec->pages[i], pvec->cold);
1033}
1034
1035fastcall void __free_pages(struct page *page, unsigned int order)
1036{
1037	if (put_page_testzero(page)) {
1038		if (order == 0)
1039			free_hot_page(page);
1040		else
1041			__free_pages_ok(page, order);
1042	}
1043}
1044
1045EXPORT_SYMBOL(__free_pages);
1046
1047fastcall void free_pages(unsigned long addr, unsigned int order)
1048{
1049	if (addr != 0) {
1050		BUG_ON(!virt_addr_valid((void *)addr));
1051		__free_pages(virt_to_page((void *)addr), order);
1052	}
1053}
1054
1055EXPORT_SYMBOL(free_pages);
1056
1057/*
1058 * Total amount of free (allocatable) RAM:
1059 */
1060unsigned int nr_free_pages(void)
1061{
1062	unsigned int sum = 0;
1063	struct zone *zone;
1064
1065	for_each_zone(zone)
1066		sum += zone->free_pages;
1067
1068	return sum;
1069}
1070
1071EXPORT_SYMBOL(nr_free_pages);
1072
1073#ifdef CONFIG_NUMA
1074unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1075{
1076	unsigned int i, sum = 0;
1077
1078	for (i = 0; i < MAX_NR_ZONES; i++)
1079		sum += pgdat->node_zones[i].free_pages;
1080
1081	return sum;
1082}
1083#endif
1084
1085static unsigned int nr_free_zone_pages(int offset)
1086{
1087	/* Just pick one node, since fallback list is circular */
1088	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1089	unsigned int sum = 0;
1090
1091	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1092	struct zone **zonep = zonelist->zones;
1093	struct zone *zone;
1094
1095	for (zone = *zonep++; zone; zone = *zonep++) {
1096		unsigned long size = zone->present_pages;
1097		unsigned long high = zone->pages_high;
1098		if (size > high)
1099			sum += size - high;
1100	}
1101
1102	return sum;
1103}
1104
1105/*
1106 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1107 */
1108unsigned int nr_free_buffer_pages(void)
1109{
1110	return nr_free_zone_pages(gfp_zone(GFP_USER));
1111}
1112
1113/*
1114 * Amount of free RAM allocatable within all zones
1115 */
1116unsigned int nr_free_pagecache_pages(void)
1117{
1118	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1119}
1120
1121#ifdef CONFIG_HIGHMEM
1122unsigned int nr_free_highpages (void)
1123{
1124	pg_data_t *pgdat;
1125	unsigned int pages = 0;
1126
1127	for_each_pgdat(pgdat)
1128		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1129
1130	return pages;
1131}
1132#endif
1133
1134#ifdef CONFIG_NUMA
1135static void show_node(struct zone *zone)
1136{
1137	printk("Node %d ", zone->zone_pgdat->node_id);
1138}
1139#else
1140#define show_node(zone)	do { } while (0)
1141#endif
1142
1143/*
1144 * Accumulate the page_state information across all CPUs.
1145 * The result is unavoidably approximate - it can change
1146 * during and after execution of this function.
1147 */
1148static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1149
1150atomic_t nr_pagecache = ATOMIC_INIT(0);
1151EXPORT_SYMBOL(nr_pagecache);
1152#ifdef CONFIG_SMP
1153DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1154#endif
1155
1156void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1157{
1158	int cpu = 0;
1159
1160	memset(ret, 0, sizeof(*ret));
1161	cpus_and(*cpumask, *cpumask, cpu_online_map);
1162
1163	cpu = first_cpu(*cpumask);
1164	while (cpu < NR_CPUS) {
1165		unsigned long *in, *out, off;
1166
1167		in = (unsigned long *)&per_cpu(page_states, cpu);
1168
1169		cpu = next_cpu(cpu, *cpumask);
1170
1171		if (cpu < NR_CPUS)
1172			prefetch(&per_cpu(page_states, cpu));
1173
1174		out = (unsigned long *)ret;
1175		for (off = 0; off < nr; off++)
1176			*out++ += *in++;
1177	}
1178}
1179
1180void get_page_state_node(struct page_state *ret, int node)
1181{
1182	int nr;
1183	cpumask_t mask = node_to_cpumask(node);
1184
1185	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1186	nr /= sizeof(unsigned long);
1187
1188	__get_page_state(ret, nr+1, &mask);
1189}
1190
1191void get_page_state(struct page_state *ret)
1192{
1193	int nr;
1194	cpumask_t mask = CPU_MASK_ALL;
1195
1196	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1197	nr /= sizeof(unsigned long);
1198
1199	__get_page_state(ret, nr + 1, &mask);
1200}
1201
1202void get_full_page_state(struct page_state *ret)
1203{
1204	cpumask_t mask = CPU_MASK_ALL;
1205
1206	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1207}
1208
1209unsigned long __read_page_state(unsigned long offset)
1210{
1211	unsigned long ret = 0;
1212	int cpu;
1213
1214	for_each_online_cpu(cpu) {
1215		unsigned long in;
1216
1217		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1218		ret += *((unsigned long *)in);
1219	}
1220	return ret;
1221}
1222
1223void __mod_page_state(unsigned long offset, unsigned long delta)
1224{
1225	unsigned long flags;
1226	void* ptr;
1227
1228	local_irq_save(flags);
1229	ptr = &__get_cpu_var(page_states);
1230	*(unsigned long*)(ptr + offset) += delta;
1231	local_irq_restore(flags);
1232}
1233
1234EXPORT_SYMBOL(__mod_page_state);
1235
1236void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1237			unsigned long *free, struct pglist_data *pgdat)
1238{
1239	struct zone *zones = pgdat->node_zones;
1240	int i;
1241
1242	*active = 0;
1243	*inactive = 0;
1244	*free = 0;
1245	for (i = 0; i < MAX_NR_ZONES; i++) {
1246		*active += zones[i].nr_active;
1247		*inactive += zones[i].nr_inactive;
1248		*free += zones[i].free_pages;
1249	}
1250}
1251
1252void get_zone_counts(unsigned long *active,
1253		unsigned long *inactive, unsigned long *free)
1254{
1255	struct pglist_data *pgdat;
1256
1257	*active = 0;
1258	*inactive = 0;
1259	*free = 0;
1260	for_each_pgdat(pgdat) {
1261		unsigned long l, m, n;
1262		__get_zone_counts(&l, &m, &n, pgdat);
1263		*active += l;
1264		*inactive += m;
1265		*free += n;
1266	}
1267}
1268
1269void si_meminfo(struct sysinfo *val)
1270{
1271	val->totalram = totalram_pages;
1272	val->sharedram = 0;
1273	val->freeram = nr_free_pages();
1274	val->bufferram = nr_blockdev_pages();
1275#ifdef CONFIG_HIGHMEM
1276	val->totalhigh = totalhigh_pages;
1277	val->freehigh = nr_free_highpages();
1278#else
1279	val->totalhigh = 0;
1280	val->freehigh = 0;
1281#endif
1282	val->mem_unit = PAGE_SIZE;
1283}
1284
1285EXPORT_SYMBOL(si_meminfo);
1286
1287#ifdef CONFIG_NUMA
1288void si_meminfo_node(struct sysinfo *val, int nid)
1289{
1290	pg_data_t *pgdat = NODE_DATA(nid);
1291
1292	val->totalram = pgdat->node_present_pages;
1293	val->freeram = nr_free_pages_pgdat(pgdat);
1294	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1295	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1296	val->mem_unit = PAGE_SIZE;
1297}
1298#endif
1299
1300#define K(x) ((x) << (PAGE_SHIFT-10))
1301
1302/*
1303 * Show free area list (used inside shift_scroll-lock stuff)
1304 * We also calculate the percentage fragmentation. We do this by counting the
1305 * memory on each free list with the exception of the first item on the list.
1306 */
1307void show_free_areas(void)
1308{
1309	struct page_state ps;
1310	int cpu, temperature;
1311	unsigned long active;
1312	unsigned long inactive;
1313	unsigned long free;
1314	struct zone *zone;
1315
1316	for_each_zone(zone) {
1317		show_node(zone);
1318		printk("%s per-cpu:", zone->name);
1319
1320		if (!zone->present_pages) {
1321			printk(" empty\n");
1322			continue;
1323		} else
1324			printk("\n");
1325
1326		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1327			struct per_cpu_pageset *pageset;
1328
1329			if (!cpu_possible(cpu))
1330				continue;
1331
1332			pageset = zone_pcp(zone, cpu);
1333
1334			for (temperature = 0; temperature < 2; temperature++)
1335				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1336					cpu,
1337					temperature ? "cold" : "hot",
1338					pageset->pcp[temperature].low,
1339					pageset->pcp[temperature].high,
1340					pageset->pcp[temperature].batch,
1341					pageset->pcp[temperature].count);
1342		}
1343	}
1344
1345	get_page_state(&ps);
1346	get_zone_counts(&active, &inactive, &free);
1347
1348	printk("Free pages: %11ukB (%ukB HighMem)\n",
1349		K(nr_free_pages()),
1350		K(nr_free_highpages()));
1351
1352	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1353		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1354		active,
1355		inactive,
1356		ps.nr_dirty,
1357		ps.nr_writeback,
1358		ps.nr_unstable,
1359		nr_free_pages(),
1360		ps.nr_slab,
1361		ps.nr_mapped,
1362		ps.nr_page_table_pages);
1363
1364	for_each_zone(zone) {
1365		int i;
1366
1367		show_node(zone);
1368		printk("%s"
1369			" free:%lukB"
1370			" min:%lukB"
1371			" low:%lukB"
1372			" high:%lukB"
1373			" active:%lukB"
1374			" inactive:%lukB"
1375			" present:%lukB"
1376			" pages_scanned:%lu"
1377			" all_unreclaimable? %s"
1378			"\n",
1379			zone->name,
1380			K(zone->free_pages),
1381			K(zone->pages_min),
1382			K(zone->pages_low),
1383			K(zone->pages_high),
1384			K(zone->nr_active),
1385			K(zone->nr_inactive),
1386			K(zone->present_pages),
1387			zone->pages_scanned,
1388			(zone->all_unreclaimable ? "yes" : "no")
1389			);
1390		printk("lowmem_reserve[]:");
1391		for (i = 0; i < MAX_NR_ZONES; i++)
1392			printk(" %lu", zone->lowmem_reserve[i]);
1393		printk("\n");
1394	}
1395
1396	for_each_zone(zone) {
1397 		unsigned long nr, flags, order, total = 0;
1398
1399		show_node(zone);
1400		printk("%s: ", zone->name);
1401		if (!zone->present_pages) {
1402			printk("empty\n");
1403			continue;
1404		}
1405
1406		spin_lock_irqsave(&zone->lock, flags);
1407		for (order = 0; order < MAX_ORDER; order++) {
1408			nr = zone->free_area[order].nr_free;
1409			total += nr << order;
1410			printk("%lu*%lukB ", nr, K(1UL) << order);
1411		}
1412		spin_unlock_irqrestore(&zone->lock, flags);
1413		printk("= %lukB\n", K(total));
1414	}
1415
1416	show_swap_cache_info();
1417}
1418
1419/*
1420 * Builds allocation fallback zone lists.
1421 */
1422static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1423{
1424	switch (k) {
1425		struct zone *zone;
1426	default:
1427		BUG();
1428	case ZONE_HIGHMEM:
1429		zone = pgdat->node_zones + ZONE_HIGHMEM;
1430		if (zone->present_pages) {
1431#ifndef CONFIG_HIGHMEM
1432			BUG();
1433#endif
1434			zonelist->zones[j++] = zone;
1435		}
1436	case ZONE_NORMAL:
1437		zone = pgdat->node_zones + ZONE_NORMAL;
1438		if (zone->present_pages)
1439			zonelist->zones[j++] = zone;
1440	case ZONE_DMA:
1441		zone = pgdat->node_zones + ZONE_DMA;
1442		if (zone->present_pages)
1443			zonelist->zones[j++] = zone;
1444	}
1445
1446	return j;
1447}
1448
1449static inline int highest_zone(int zone_bits)
1450{
1451	int res = ZONE_NORMAL;
1452	if (zone_bits & (__force int)__GFP_HIGHMEM)
1453		res = ZONE_HIGHMEM;
1454	if (zone_bits & (__force int)__GFP_DMA)
1455		res = ZONE_DMA;
1456	return res;
1457}
1458
1459#ifdef CONFIG_NUMA
1460#define MAX_NODE_LOAD (num_online_nodes())
1461static int __initdata node_load[MAX_NUMNODES];
1462/**
1463 * find_next_best_node - find the next node that should appear in a given node's fallback list
1464 * @node: node whose fallback list we're appending
1465 * @used_node_mask: nodemask_t of already used nodes
1466 *
1467 * We use a number of factors to determine which is the next node that should
1468 * appear on a given node's fallback list.  The node should not have appeared
1469 * already in @node's fallback list, and it should be the next closest node
1470 * according to the distance array (which contains arbitrary distance values
1471 * from each node to each node in the system), and should also prefer nodes
1472 * with no CPUs, since presumably they'll have very little allocation pressure
1473 * on them otherwise.
1474 * It returns -1 if no node is found.
1475 */
1476static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1477{
1478	int i, n, val;
1479	int min_val = INT_MAX;
1480	int best_node = -1;
1481
1482	for_each_online_node(i) {
1483		cpumask_t tmp;
1484
1485		/* Start from local node */
1486		n = (node+i) % num_online_nodes();
1487
1488		/* Don't want a node to appear more than once */
1489		if (node_isset(n, *used_node_mask))
1490			continue;
1491
1492		/* Use the local node if we haven't already */
1493		if (!node_isset(node, *used_node_mask)) {
1494			best_node = node;
1495			break;
1496		}
1497
1498		/* Use the distance array to find the distance */
1499		val = node_distance(node, n);
1500
1501		/* Give preference to headless and unused nodes */
1502		tmp = node_to_cpumask(n);
1503		if (!cpus_empty(tmp))
1504			val += PENALTY_FOR_NODE_WITH_CPUS;
1505
1506		/* Slight preference for less loaded node */
1507		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1508		val += node_load[n];
1509
1510		if (val < min_val) {
1511			min_val = val;
1512			best_node = n;
1513		}
1514	}
1515
1516	if (best_node >= 0)
1517		node_set(best_node, *used_node_mask);
1518
1519	return best_node;
1520}
1521
1522static void __init build_zonelists(pg_data_t *pgdat)
1523{
1524	int i, j, k, node, local_node;
1525	int prev_node, load;
1526	struct zonelist *zonelist;
1527	nodemask_t used_mask;
1528
1529	/* initialize zonelists */
1530	for (i = 0; i < GFP_ZONETYPES; i++) {
1531		zonelist = pgdat->node_zonelists + i;
1532		zonelist->zones[0] = NULL;
1533	}
1534
1535	/* NUMA-aware ordering of nodes */
1536	local_node = pgdat->node_id;
1537	load = num_online_nodes();
1538	prev_node = local_node;
1539	nodes_clear(used_mask);
1540	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1541		/*
1542		 * We don't want to pressure a particular node.
1543		 * So adding penalty to the first node in same
1544		 * distance group to make it round-robin.
1545		 */
1546		if (node_distance(local_node, node) !=
1547				node_distance(local_node, prev_node))
1548			node_load[node] += load;
1549		prev_node = node;
1550		load--;
1551		for (i = 0; i < GFP_ZONETYPES; i++) {
1552			zonelist = pgdat->node_zonelists + i;
1553			for (j = 0; zonelist->zones[j] != NULL; j++);
1554
1555			k = highest_zone(i);
1556
1557	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1558			zonelist->zones[j] = NULL;
1559		}
1560	}
1561}
1562
1563#else	/* CONFIG_NUMA */
1564
1565static void __init build_zonelists(pg_data_t *pgdat)
1566{
1567	int i, j, k, node, local_node;
1568
1569	local_node = pgdat->node_id;
1570	for (i = 0; i < GFP_ZONETYPES; i++) {
1571		struct zonelist *zonelist;
1572
1573		zonelist = pgdat->node_zonelists + i;
1574
1575		j = 0;
1576		k = highest_zone(i);
1577 		j = build_zonelists_node(pgdat, zonelist, j, k);
1578 		/*
1579 		 * Now we build the zonelist so that it contains the zones
1580 		 * of all the other nodes.
1581 		 * We don't want to pressure a particular node, so when
1582 		 * building the zones for node N, we make sure that the
1583 		 * zones coming right after the local ones are those from
1584 		 * node N+1 (modulo N)
1585 		 */
1586		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1587			if (!node_online(node))
1588				continue;
1589			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1590		}
1591		for (node = 0; node < local_node; node++) {
1592			if (!node_online(node))
1593				continue;
1594			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1595		}
1596
1597		zonelist->zones[j] = NULL;
1598	}
1599}
1600
1601#endif	/* CONFIG_NUMA */
1602
1603void __init build_all_zonelists(void)
1604{
1605	int i;
1606
1607	for_each_online_node(i)
1608		build_zonelists(NODE_DATA(i));
1609	printk("Built %i zonelists\n", num_online_nodes());
1610	cpuset_init_current_mems_allowed();
1611}
1612
1613/*
1614 * Helper functions to size the waitqueue hash table.
1615 * Essentially these want to choose hash table sizes sufficiently
1616 * large so that collisions trying to wait on pages are rare.
1617 * But in fact, the number of active page waitqueues on typical
1618 * systems is ridiculously low, less than 200. So this is even
1619 * conservative, even though it seems large.
1620 *
1621 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1622 * waitqueues, i.e. the size of the waitq table given the number of pages.
1623 */
1624#define PAGES_PER_WAITQUEUE	256
1625
1626static inline unsigned long wait_table_size(unsigned long pages)
1627{
1628	unsigned long size = 1;
1629
1630	pages /= PAGES_PER_WAITQUEUE;
1631
1632	while (size < pages)
1633		size <<= 1;
1634
1635	/*
1636	 * Once we have dozens or even hundreds of threads sleeping
1637	 * on IO we've got bigger problems than wait queue collision.
1638	 * Limit the size of the wait table to a reasonable size.
1639	 */
1640	size = min(size, 4096UL);
1641
1642	return max(size, 4UL);
1643}
1644
1645/*
1646 * This is an integer logarithm so that shifts can be used later
1647 * to extract the more random high bits from the multiplicative
1648 * hash function before the remainder is taken.
1649 */
1650static inline unsigned long wait_table_bits(unsigned long size)
1651{
1652	return ffz(~size);
1653}
1654
1655#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1656
1657static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1658		unsigned long *zones_size, unsigned long *zholes_size)
1659{
1660	unsigned long realtotalpages, totalpages = 0;
1661	int i;
1662
1663	for (i = 0; i < MAX_NR_ZONES; i++)
1664		totalpages += zones_size[i];
1665	pgdat->node_spanned_pages = totalpages;
1666
1667	realtotalpages = totalpages;
1668	if (zholes_size)
1669		for (i = 0; i < MAX_NR_ZONES; i++)
1670			realtotalpages -= zholes_size[i];
1671	pgdat->node_present_pages = realtotalpages;
1672	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1673}
1674
1675
1676/*
1677 * Initially all pages are reserved - free ones are freed
1678 * up by free_all_bootmem() once the early boot process is
1679 * done. Non-atomic initialization, single-pass.
1680 */
1681void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1682		unsigned long start_pfn)
1683{
1684	struct page *page;
1685	unsigned long end_pfn = start_pfn + size;
1686	unsigned long pfn;
1687
1688	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1689		if (!early_pfn_valid(pfn))
1690			continue;
1691		if (!early_pfn_in_nid(pfn, nid))
1692			continue;
1693		page = pfn_to_page(pfn);
1694		set_page_links(page, zone, nid, pfn);
1695		set_page_count(page, 1);
1696		reset_page_mapcount(page);
1697		SetPageReserved(page);
1698		INIT_LIST_HEAD(&page->lru);
1699#ifdef WANT_PAGE_VIRTUAL
1700		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1701		if (!is_highmem_idx(zone))
1702			set_page_address(page, __va(pfn << PAGE_SHIFT));
1703#endif
1704	}
1705}
1706
1707void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1708				unsigned long size)
1709{
1710	int order;
1711	for (order = 0; order < MAX_ORDER ; order++) {
1712		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1713		zone->free_area[order].nr_free = 0;
1714	}
1715}
1716
1717#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1718void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1719		unsigned long size)
1720{
1721	unsigned long snum = pfn_to_section_nr(pfn);
1722	unsigned long end = pfn_to_section_nr(pfn + size);
1723
1724	if (FLAGS_HAS_NODE)
1725		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1726	else
1727		for (; snum <= end; snum++)
1728			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1729}
1730
1731#ifndef __HAVE_ARCH_MEMMAP_INIT
1732#define memmap_init(size, nid, zone, start_pfn) \
1733	memmap_init_zone((size), (nid), (zone), (start_pfn))
1734#endif
1735
1736static int __devinit zone_batchsize(struct zone *zone)
1737{
1738	int batch;
1739
1740	/*
1741	 * The per-cpu-pages pools are set to around 1000th of the
1742	 * size of the zone.  But no more than 1/2 of a meg.
1743	 *
1744	 * OK, so we don't know how big the cache is.  So guess.
1745	 */
1746	batch = zone->present_pages / 1024;
1747	if (batch * PAGE_SIZE > 512 * 1024)
1748		batch = (512 * 1024) / PAGE_SIZE;
1749	batch /= 4;		/* We effectively *= 4 below */
1750	if (batch < 1)
1751		batch = 1;
1752
1753	/*
1754	 * We will be trying to allcoate bigger chunks of contiguous
1755	 * memory of the order of fls(batch).  This should result in
1756	 * better cache coloring.
1757	 *
1758	 * A sanity check also to ensure that batch is still in limits.
1759	 */
1760	batch = (1 << fls(batch + batch/2));
1761
1762	if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1763		batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1764
1765	return batch;
1766}
1767
1768inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1769{
1770	struct per_cpu_pages *pcp;
1771
1772	memset(p, 0, sizeof(*p));
1773
1774	pcp = &p->pcp[0];		/* hot */
1775	pcp->count = 0;
1776	pcp->low = 0;
1777	pcp->high = 6 * batch;
1778	pcp->batch = max(1UL, 1 * batch);
1779	INIT_LIST_HEAD(&pcp->list);
1780
1781	pcp = &p->pcp[1];		/* cold*/
1782	pcp->count = 0;
1783	pcp->low = 0;
1784	pcp->high = 2 * batch;
1785	pcp->batch = max(1UL, batch/2);
1786	INIT_LIST_HEAD(&pcp->list);
1787}
1788
1789#ifdef CONFIG_NUMA
1790/*
1791 * Boot pageset table. One per cpu which is going to be used for all
1792 * zones and all nodes. The parameters will be set in such a way
1793 * that an item put on a list will immediately be handed over to
1794 * the buddy list. This is safe since pageset manipulation is done
1795 * with interrupts disabled.
1796 *
1797 * Some NUMA counter updates may also be caught by the boot pagesets.
1798 *
1799 * The boot_pagesets must be kept even after bootup is complete for
1800 * unused processors and/or zones. They do play a role for bootstrapping
1801 * hotplugged processors.
1802 *
1803 * zoneinfo_show() and maybe other functions do
1804 * not check if the processor is online before following the pageset pointer.
1805 * Other parts of the kernel may not check if the zone is available.
1806 */
1807static struct per_cpu_pageset
1808	boot_pageset[NR_CPUS];
1809
1810/*
1811 * Dynamically allocate memory for the
1812 * per cpu pageset array in struct zone.
1813 */
1814static int __devinit process_zones(int cpu)
1815{
1816	struct zone *zone, *dzone;
1817
1818	for_each_zone(zone) {
1819
1820		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1821					 GFP_KERNEL, cpu_to_node(cpu));
1822		if (!zone->pageset[cpu])
1823			goto bad;
1824
1825		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1826	}
1827
1828	return 0;
1829bad:
1830	for_each_zone(dzone) {
1831		if (dzone == zone)
1832			break;
1833		kfree(dzone->pageset[cpu]);
1834		dzone->pageset[cpu] = NULL;
1835	}
1836	return -ENOMEM;
1837}
1838
1839static inline void free_zone_pagesets(int cpu)
1840{
1841#ifdef CONFIG_NUMA
1842	struct zone *zone;
1843
1844	for_each_zone(zone) {
1845		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1846
1847		zone_pcp(zone, cpu) = NULL;
1848		kfree(pset);
1849	}
1850#endif
1851}
1852
1853static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1854		unsigned long action,
1855		void *hcpu)
1856{
1857	int cpu = (long)hcpu;
1858	int ret = NOTIFY_OK;
1859
1860	switch (action) {
1861		case CPU_UP_PREPARE:
1862			if (process_zones(cpu))
1863				ret = NOTIFY_BAD;
1864			break;
1865#ifdef CONFIG_HOTPLUG_CPU
1866		case CPU_DEAD:
1867			free_zone_pagesets(cpu);
1868			break;
1869#endif
1870		default:
1871			break;
1872	}
1873	return ret;
1874}
1875
1876static struct notifier_block pageset_notifier =
1877	{ &pageset_cpuup_callback, NULL, 0 };
1878
1879void __init setup_per_cpu_pageset()
1880{
1881	int err;
1882
1883	/* Initialize per_cpu_pageset for cpu 0.
1884	 * A cpuup callback will do this for every cpu
1885	 * as it comes online
1886	 */
1887	err = process_zones(smp_processor_id());
1888	BUG_ON(err);
1889	register_cpu_notifier(&pageset_notifier);
1890}
1891
1892#endif
1893
1894static __devinit
1895void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1896{
1897	int i;
1898	struct pglist_data *pgdat = zone->zone_pgdat;
1899
1900	/*
1901	 * The per-page waitqueue mechanism uses hashed waitqueues
1902	 * per zone.
1903	 */
1904	zone->wait_table_size = wait_table_size(zone_size_pages);
1905	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1906	zone->wait_table = (wait_queue_head_t *)
1907		alloc_bootmem_node(pgdat, zone->wait_table_size
1908					* sizeof(wait_queue_head_t));
1909
1910	for(i = 0; i < zone->wait_table_size; ++i)
1911		init_waitqueue_head(zone->wait_table + i);
1912}
1913
1914static __devinit void zone_pcp_init(struct zone *zone)
1915{
1916	int cpu;
1917	unsigned long batch = zone_batchsize(zone);
1918
1919	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1920#ifdef CONFIG_NUMA
1921		/* Early boot. Slab allocator not functional yet */
1922		zone->pageset[cpu] = &boot_pageset[cpu];
1923		setup_pageset(&boot_pageset[cpu],0);
1924#else
1925		setup_pageset(zone_pcp(zone,cpu), batch);
1926#endif
1927	}
1928	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1929		zone->name, zone->present_pages, batch);
1930}
1931
1932static __devinit void init_currently_empty_zone(struct zone *zone,
1933		unsigned long zone_start_pfn, unsigned long size)
1934{
1935	struct pglist_data *pgdat = zone->zone_pgdat;
1936
1937	zone_wait_table_init(zone, size);
1938	pgdat->nr_zones = zone_idx(zone) + 1;
1939
1940	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1941	zone->zone_start_pfn = zone_start_pfn;
1942
1943	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1944
1945	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1946}
1947
1948/*
1949 * Set up the zone data structures:
1950 *   - mark all pages reserved
1951 *   - mark all memory queues empty
1952 *   - clear the memory bitmaps
1953 */
1954static void __init free_area_init_core(struct pglist_data *pgdat,
1955		unsigned long *zones_size, unsigned long *zholes_size)
1956{
1957	unsigned long j;
1958	int nid = pgdat->node_id;
1959	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1960
1961	pgdat->nr_zones = 0;
1962	init_waitqueue_head(&pgdat->kswapd_wait);
1963	pgdat->kswapd_max_order = 0;
1964
1965	for (j = 0; j < MAX_NR_ZONES; j++) {
1966		struct zone *zone = pgdat->node_zones + j;
1967		unsigned long size, realsize;
1968
1969		realsize = size = zones_size[j];
1970		if (zholes_size)
1971			realsize -= zholes_size[j];
1972
1973		if (j == ZONE_DMA || j == ZONE_NORMAL)
1974			nr_kernel_pages += realsize;
1975		nr_all_pages += realsize;
1976
1977		zone->spanned_pages = size;
1978		zone->present_pages = realsize;
1979		zone->name = zone_names[j];
1980		spin_lock_init(&zone->lock);
1981		spin_lock_init(&zone->lru_lock);
1982		zone->zone_pgdat = pgdat;
1983		zone->free_pages = 0;
1984
1985		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1986
1987		zone_pcp_init(zone);
1988		INIT_LIST_HEAD(&zone->active_list);
1989		INIT_LIST_HEAD(&zone->inactive_list);
1990		zone->nr_scan_active = 0;
1991		zone->nr_scan_inactive = 0;
1992		zone->nr_active = 0;
1993		zone->nr_inactive = 0;
1994		atomic_set(&zone->reclaim_in_progress, 0);
1995		if (!size)
1996			continue;
1997
1998		zonetable_add(zone, nid, j, zone_start_pfn, size);
1999		init_currently_empty_zone(zone, zone_start_pfn, size);
2000		zone_start_pfn += size;
2001	}
2002}
2003
2004static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2005{
2006	/* Skip empty nodes */
2007	if (!pgdat->node_spanned_pages)
2008		return;
2009
2010#ifdef CONFIG_FLAT_NODE_MEM_MAP
2011	/* ia64 gets its own node_mem_map, before this, without bootmem */
2012	if (!pgdat->node_mem_map) {
2013		unsigned long size;
2014		struct page *map;
2015
2016		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2017		map = alloc_remap(pgdat->node_id, size);
2018		if (!map)
2019			map = alloc_bootmem_node(pgdat, size);
2020		pgdat->node_mem_map = map;
2021	}
2022#ifdef CONFIG_FLATMEM
2023	/*
2024	 * With no DISCONTIG, the global mem_map is just set as node 0's
2025	 */
2026	if (pgdat == NODE_DATA(0))
2027		mem_map = NODE_DATA(0)->node_mem_map;
2028#endif
2029#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2030}
2031
2032void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2033		unsigned long *zones_size, unsigned long node_start_pfn,
2034		unsigned long *zholes_size)
2035{
2036	pgdat->node_id = nid;
2037	pgdat->node_start_pfn = node_start_pfn;
2038	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2039
2040	alloc_node_mem_map(pgdat);
2041
2042	free_area_init_core(pgdat, zones_size, zholes_size);
2043}
2044
2045#ifndef CONFIG_NEED_MULTIPLE_NODES
2046static bootmem_data_t contig_bootmem_data;
2047struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2048
2049EXPORT_SYMBOL(contig_page_data);
2050#endif
2051
2052void __init free_area_init(unsigned long *zones_size)
2053{
2054	free_area_init_node(0, NODE_DATA(0), zones_size,
2055			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2056}
2057
2058#ifdef CONFIG_PROC_FS
2059
2060#include <linux/seq_file.h>
2061
2062static void *frag_start(struct seq_file *m, loff_t *pos)
2063{
2064	pg_data_t *pgdat;
2065	loff_t node = *pos;
2066
2067	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2068		--node;
2069
2070	return pgdat;
2071}
2072
2073static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2074{
2075	pg_data_t *pgdat = (pg_data_t *)arg;
2076
2077	(*pos)++;
2078	return pgdat->pgdat_next;
2079}
2080
2081static void frag_stop(struct seq_file *m, void *arg)
2082{
2083}
2084
2085/*
2086 * This walks the free areas for each zone.
2087 */
2088static int frag_show(struct seq_file *m, void *arg)
2089{
2090	pg_data_t *pgdat = (pg_data_t *)arg;
2091	struct zone *zone;
2092	struct zone *node_zones = pgdat->node_zones;
2093	unsigned long flags;
2094	int order;
2095
2096	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2097		if (!zone->present_pages)
2098			continue;
2099
2100		spin_lock_irqsave(&zone->lock, flags);
2101		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2102		for (order = 0; order < MAX_ORDER; ++order)
2103			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2104		spin_unlock_irqrestore(&zone->lock, flags);
2105		seq_putc(m, '\n');
2106	}
2107	return 0;
2108}
2109
2110struct seq_operations fragmentation_op = {
2111	.start	= frag_start,
2112	.next	= frag_next,
2113	.stop	= frag_stop,
2114	.show	= frag_show,
2115};
2116
2117/*
2118 * Output information about zones in @pgdat.
2119 */
2120static int zoneinfo_show(struct seq_file *m, void *arg)
2121{
2122	pg_data_t *pgdat = arg;
2123	struct zone *zone;
2124	struct zone *node_zones = pgdat->node_zones;
2125	unsigned long flags;
2126
2127	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2128		int i;
2129
2130		if (!zone->present_pages)
2131			continue;
2132
2133		spin_lock_irqsave(&zone->lock, flags);
2134		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2135		seq_printf(m,
2136			   "\n  pages free     %lu"
2137			   "\n        min      %lu"
2138			   "\n        low      %lu"
2139			   "\n        high     %lu"
2140			   "\n        active   %lu"
2141			   "\n        inactive %lu"
2142			   "\n        scanned  %lu (a: %lu i: %lu)"
2143			   "\n        spanned  %lu"
2144			   "\n        present  %lu",
2145			   zone->free_pages,
2146			   zone->pages_min,
2147			   zone->pages_low,
2148			   zone->pages_high,
2149			   zone->nr_active,
2150			   zone->nr_inactive,
2151			   zone->pages_scanned,
2152			   zone->nr_scan_active, zone->nr_scan_inactive,
2153			   zone->spanned_pages,
2154			   zone->present_pages);
2155		seq_printf(m,
2156			   "\n        protection: (%lu",
2157			   zone->lowmem_reserve[0]);
2158		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2159			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2160		seq_printf(m,
2161			   ")"
2162			   "\n  pagesets");
2163		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2164			struct per_cpu_pageset *pageset;
2165			int j;
2166
2167			pageset = zone_pcp(zone, i);
2168			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2169				if (pageset->pcp[j].count)
2170					break;
2171			}
2172			if (j == ARRAY_SIZE(pageset->pcp))
2173				continue;
2174			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2175				seq_printf(m,
2176					   "\n    cpu: %i pcp: %i"
2177					   "\n              count: %i"
2178					   "\n              low:   %i"
2179					   "\n              high:  %i"
2180					   "\n              batch: %i",
2181					   i, j,
2182					   pageset->pcp[j].count,
2183					   pageset->pcp[j].low,
2184					   pageset->pcp[j].high,
2185					   pageset->pcp[j].batch);
2186			}
2187#ifdef CONFIG_NUMA
2188			seq_printf(m,
2189				   "\n            numa_hit:       %lu"
2190				   "\n            numa_miss:      %lu"
2191				   "\n            numa_foreign:   %lu"
2192				   "\n            interleave_hit: %lu"
2193				   "\n            local_node:     %lu"
2194				   "\n            other_node:     %lu",
2195				   pageset->numa_hit,
2196				   pageset->numa_miss,
2197				   pageset->numa_foreign,
2198				   pageset->interleave_hit,
2199				   pageset->local_node,
2200				   pageset->other_node);
2201#endif
2202		}
2203		seq_printf(m,
2204			   "\n  all_unreclaimable: %u"
2205			   "\n  prev_priority:     %i"
2206			   "\n  temp_priority:     %i"
2207			   "\n  start_pfn:         %lu",
2208			   zone->all_unreclaimable,
2209			   zone->prev_priority,
2210			   zone->temp_priority,
2211			   zone->zone_start_pfn);
2212		spin_unlock_irqrestore(&zone->lock, flags);
2213		seq_putc(m, '\n');
2214	}
2215	return 0;
2216}
2217
2218struct seq_operations zoneinfo_op = {
2219	.start	= frag_start, /* iterate over all zones. The same as in
2220			       * fragmentation. */
2221	.next	= frag_next,
2222	.stop	= frag_stop,
2223	.show	= zoneinfo_show,
2224};
2225
2226static char *vmstat_text[] = {
2227	"nr_dirty",
2228	"nr_writeback",
2229	"nr_unstable",
2230	"nr_page_table_pages",
2231	"nr_mapped",
2232	"nr_slab",
2233
2234	"pgpgin",
2235	"pgpgout",
2236	"pswpin",
2237	"pswpout",
2238	"pgalloc_high",
2239
2240	"pgalloc_normal",
2241	"pgalloc_dma",
2242	"pgfree",
2243	"pgactivate",
2244	"pgdeactivate",
2245
2246	"pgfault",
2247	"pgmajfault",
2248	"pgrefill_high",
2249	"pgrefill_normal",
2250	"pgrefill_dma",
2251
2252	"pgsteal_high",
2253	"pgsteal_normal",
2254	"pgsteal_dma",
2255	"pgscan_kswapd_high",
2256	"pgscan_kswapd_normal",
2257
2258	"pgscan_kswapd_dma",
2259	"pgscan_direct_high",
2260	"pgscan_direct_normal",
2261	"pgscan_direct_dma",
2262	"pginodesteal",
2263
2264	"slabs_scanned",
2265	"kswapd_steal",
2266	"kswapd_inodesteal",
2267	"pageoutrun",
2268	"allocstall",
2269
2270	"pgrotated",
2271	"nr_bounce",
2272};
2273
2274static void *vmstat_start(struct seq_file *m, loff_t *pos)
2275{
2276	struct page_state *ps;
2277
2278	if (*pos >= ARRAY_SIZE(vmstat_text))
2279		return NULL;
2280
2281	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2282	m->private = ps;
2283	if (!ps)
2284		return ERR_PTR(-ENOMEM);
2285	get_full_page_state(ps);
2286	ps->pgpgin /= 2;		/* sectors -> kbytes */
2287	ps->pgpgout /= 2;
2288	return (unsigned long *)ps + *pos;
2289}
2290
2291static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2292{
2293	(*pos)++;
2294	if (*pos >= ARRAY_SIZE(vmstat_text))
2295		return NULL;
2296	return (unsigned long *)m->private + *pos;
2297}
2298
2299static int vmstat_show(struct seq_file *m, void *arg)
2300{
2301	unsigned long *l = arg;
2302	unsigned long off = l - (unsigned long *)m->private;
2303
2304	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2305	return 0;
2306}
2307
2308static void vmstat_stop(struct seq_file *m, void *arg)
2309{
2310	kfree(m->private);
2311	m->private = NULL;
2312}
2313
2314struct seq_operations vmstat_op = {
2315	.start	= vmstat_start,
2316	.next	= vmstat_next,
2317	.stop	= vmstat_stop,
2318	.show	= vmstat_show,
2319};
2320
2321#endif /* CONFIG_PROC_FS */
2322
2323#ifdef CONFIG_HOTPLUG_CPU
2324static int page_alloc_cpu_notify(struct notifier_block *self,
2325				 unsigned long action, void *hcpu)
2326{
2327	int cpu = (unsigned long)hcpu;
2328	long *count;
2329	unsigned long *src, *dest;
2330
2331	if (action == CPU_DEAD) {
2332		int i;
2333
2334		/* Drain local pagecache count. */
2335		count = &per_cpu(nr_pagecache_local, cpu);
2336		atomic_add(*count, &nr_pagecache);
2337		*count = 0;
2338		local_irq_disable();
2339		__drain_pages(cpu);
2340
2341		/* Add dead cpu's page_states to our own. */
2342		dest = (unsigned long *)&__get_cpu_var(page_states);
2343		src = (unsigned long *)&per_cpu(page_states, cpu);
2344
2345		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2346				i++) {
2347			dest[i] += src[i];
2348			src[i] = 0;
2349		}
2350
2351		local_irq_enable();
2352	}
2353	return NOTIFY_OK;
2354}
2355#endif /* CONFIG_HOTPLUG_CPU */
2356
2357void __init page_alloc_init(void)
2358{
2359	hotcpu_notifier(page_alloc_cpu_notify, 0);
2360}
2361
2362/*
2363 * setup_per_zone_lowmem_reserve - called whenever
2364 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2365 *	has a correct pages reserved value, so an adequate number of
2366 *	pages are left in the zone after a successful __alloc_pages().
2367 */
2368static void setup_per_zone_lowmem_reserve(void)
2369{
2370	struct pglist_data *pgdat;
2371	int j, idx;
2372
2373	for_each_pgdat(pgdat) {
2374		for (j = 0; j < MAX_NR_ZONES; j++) {
2375			struct zone *zone = pgdat->node_zones + j;
2376			unsigned long present_pages = zone->present_pages;
2377
2378			zone->lowmem_reserve[j] = 0;
2379
2380			for (idx = j-1; idx >= 0; idx--) {
2381				struct zone *lower_zone;
2382
2383				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2384					sysctl_lowmem_reserve_ratio[idx] = 1;
2385
2386				lower_zone = pgdat->node_zones + idx;
2387				lower_zone->lowmem_reserve[j] = present_pages /
2388					sysctl_lowmem_reserve_ratio[idx];
2389				present_pages += lower_zone->present_pages;
2390			}
2391		}
2392	}
2393}
2394
2395/*
2396 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2397 *	that the pages_{min,low,high} values for each zone are set correctly
2398 *	with respect to min_free_kbytes.
2399 */
2400static void setup_per_zone_pages_min(void)
2401{
2402	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2403	unsigned long lowmem_pages = 0;
2404	struct zone *zone;
2405	unsigned long flags;
2406
2407	/* Calculate total number of !ZONE_HIGHMEM pages */
2408	for_each_zone(zone) {
2409		if (!is_highmem(zone))
2410			lowmem_pages += zone->present_pages;
2411	}
2412
2413	for_each_zone(zone) {
2414		spin_lock_irqsave(&zone->lru_lock, flags);
2415		if (is_highmem(zone)) {
2416			/*
2417			 * Often, highmem doesn't need to reserve any pages.
2418			 * But the pages_min/low/high values are also used for
2419			 * batching up page reclaim activity so we need a
2420			 * decent value here.
2421			 */
2422			int min_pages;
2423
2424			min_pages = zone->present_pages / 1024;
2425			if (min_pages < SWAP_CLUSTER_MAX)
2426				min_pages = SWAP_CLUSTER_MAX;
2427			if (min_pages > 128)
2428				min_pages = 128;
2429			zone->pages_min = min_pages;
2430		} else {
2431			/* if it's a lowmem zone, reserve a number of pages
2432			 * proportionate to the zone's size.
2433			 */
2434			zone->pages_min = (pages_min * zone->present_pages) /
2435			                   lowmem_pages;
2436		}
2437
2438		/*
2439		 * When interpreting these watermarks, just keep in mind that:
2440		 * zone->pages_min == (zone->pages_min * 4) / 4;
2441		 */
2442		zone->pages_low   = (zone->pages_min * 5) / 4;
2443		zone->pages_high  = (zone->pages_min * 6) / 4;
2444		spin_unlock_irqrestore(&zone->lru_lock, flags);
2445	}
2446}
2447
2448/*
2449 * Initialise min_free_kbytes.
2450 *
2451 * For small machines we want it small (128k min).  For large machines
2452 * we want it large (64MB max).  But it is not linear, because network
2453 * bandwidth does not increase linearly with machine size.  We use
2454 *
2455 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2456 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2457 *
2458 * which yields
2459 *
2460 * 16MB:	512k
2461 * 32MB:	724k
2462 * 64MB:	1024k
2463 * 128MB:	1448k
2464 * 256MB:	2048k
2465 * 512MB:	2896k
2466 * 1024MB:	4096k
2467 * 2048MB:	5792k
2468 * 4096MB:	8192k
2469 * 8192MB:	11584k
2470 * 16384MB:	16384k
2471 */
2472static int __init init_per_zone_pages_min(void)
2473{
2474	unsigned long lowmem_kbytes;
2475
2476	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2477
2478	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2479	if (min_free_kbytes < 128)
2480		min_free_kbytes = 128;
2481	if (min_free_kbytes > 65536)
2482		min_free_kbytes = 65536;
2483	setup_per_zone_pages_min();
2484	setup_per_zone_lowmem_reserve();
2485	return 0;
2486}
2487module_init(init_per_zone_pages_min)
2488
2489/*
2490 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2491 *	that we can call two helper functions whenever min_free_kbytes
2492 *	changes.
2493 */
2494int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2495	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2496{
2497	proc_dointvec(table, write, file, buffer, length, ppos);
2498	setup_per_zone_pages_min();
2499	return 0;
2500}
2501
2502/*
2503 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2504 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2505 *	whenever sysctl_lowmem_reserve_ratio changes.
2506 *
2507 * The reserve ratio obviously has absolutely no relation with the
2508 * pages_min watermarks. The lowmem reserve ratio can only make sense
2509 * if in function of the boot time zone sizes.
2510 */
2511int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2512	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2513{
2514	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2515	setup_per_zone_lowmem_reserve();
2516	return 0;
2517}
2518
2519__initdata int hashdist = HASHDIST_DEFAULT;
2520
2521#ifdef CONFIG_NUMA
2522static int __init set_hashdist(char *str)
2523{
2524	if (!str)
2525		return 0;
2526	hashdist = simple_strtoul(str, &str, 0);
2527	return 1;
2528}
2529__setup("hashdist=", set_hashdist);
2530#endif
2531
2532/*
2533 * allocate a large system hash table from bootmem
2534 * - it is assumed that the hash table must contain an exact power-of-2
2535 *   quantity of entries
2536 * - limit is the number of hash buckets, not the total allocation size
2537 */
2538void *__init alloc_large_system_hash(const char *tablename,
2539				     unsigned long bucketsize,
2540				     unsigned long numentries,
2541				     int scale,
2542				     int flags,
2543				     unsigned int *_hash_shift,
2544				     unsigned int *_hash_mask,
2545				     unsigned long limit)
2546{
2547	unsigned long long max = limit;
2548	unsigned long log2qty, size;
2549	void *table = NULL;
2550
2551	/* allow the kernel cmdline to have a say */
2552	if (!numentries) {
2553		/* round applicable memory size up to nearest megabyte */
2554		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2555		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2556		numentries >>= 20 - PAGE_SHIFT;
2557		numentries <<= 20 - PAGE_SHIFT;
2558
2559		/* limit to 1 bucket per 2^scale bytes of low memory */
2560		if (scale > PAGE_SHIFT)
2561			numentries >>= (scale - PAGE_SHIFT);
2562		else
2563			numentries <<= (PAGE_SHIFT - scale);
2564	}
2565	/* rounded up to nearest power of 2 in size */
2566	numentries = 1UL << (long_log2(numentries) + 1);
2567
2568	/* limit allocation size to 1/16 total memory by default */
2569	if (max == 0) {
2570		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2571		do_div(max, bucketsize);
2572	}
2573
2574	if (numentries > max)
2575		numentries = max;
2576
2577	log2qty = long_log2(numentries);
2578
2579	do {
2580		size = bucketsize << log2qty;
2581		if (flags & HASH_EARLY)
2582			table = alloc_bootmem(size);
2583		else if (hashdist)
2584			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2585		else {
2586			unsigned long order;
2587			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2588				;
2589			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2590		}
2591	} while (!table && size > PAGE_SIZE && --log2qty);
2592
2593	if (!table)
2594		panic("Failed to allocate %s hash table\n", tablename);
2595
2596	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2597	       tablename,
2598	       (1U << log2qty),
2599	       long_log2(size) - PAGE_SHIFT,
2600	       size);
2601
2602	if (_hash_shift)
2603		*_hash_shift = log2qty;
2604	if (_hash_mask)
2605		*_hash_mask = (1 << log2qty) - 1;
2606
2607	return table;
2608}
2609