page_alloc.c revision d23ad42324cc4378132e51f2fc5c9ba6cbe75182
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 *	1G machine -> (16M dma, 784M normal, 224M high)
68 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76	 256,
77#ifdef CONFIG_ZONE_DMA32
78	 256,
79#endif
80#ifdef CONFIG_HIGHMEM
81	 32
82#endif
83};
84
85EXPORT_SYMBOL(totalram_pages);
86
87static char * const zone_names[MAX_NR_ZONES] = {
88	 "DMA",
89#ifdef CONFIG_ZONE_DMA32
90	 "DMA32",
91#endif
92	 "Normal",
93#ifdef CONFIG_HIGHMEM
94	 "HighMem"
95#endif
96};
97
98int min_free_kbytes = 1024;
99
100unsigned long __meminitdata nr_kernel_pages;
101unsigned long __meminitdata nr_all_pages;
102static unsigned long __initdata dma_reserve;
103
104#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105  /*
106   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107   * ranges of memory (RAM) that may be registered with add_active_range().
108   * Ranges passed to add_active_range() will be merged if possible
109   * so the number of times add_active_range() can be called is
110   * related to the number of nodes and the number of holes
111   */
112  #ifdef CONFIG_MAX_ACTIVE_REGIONS
113    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115  #else
116    #if MAX_NUMNODES >= 32
117      /* If there can be many nodes, allow up to 50 holes per node */
118      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119    #else
120      /* By default, allow up to 256 distinct regions */
121      #define MAX_ACTIVE_REGIONS 256
122    #endif
123  #endif
124
125  struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126  int __initdata nr_nodemap_entries;
127  unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128  unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
129#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
135#ifdef CONFIG_DEBUG_VM
136static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
137{
138	int ret = 0;
139	unsigned seq;
140	unsigned long pfn = page_to_pfn(page);
141
142	do {
143		seq = zone_span_seqbegin(zone);
144		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145			ret = 1;
146		else if (pfn < zone->zone_start_pfn)
147			ret = 1;
148	} while (zone_span_seqretry(zone, seq));
149
150	return ret;
151}
152
153static int page_is_consistent(struct zone *zone, struct page *page)
154{
155#ifdef CONFIG_HOLES_IN_ZONE
156	if (!pfn_valid(page_to_pfn(page)))
157		return 0;
158#endif
159	if (zone != page_zone(page))
160		return 0;
161
162	return 1;
163}
164/*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167static int bad_range(struct zone *zone, struct page *page)
168{
169	if (page_outside_zone_boundaries(zone, page))
170		return 1;
171	if (!page_is_consistent(zone, page))
172		return 1;
173
174	return 0;
175}
176#else
177static inline int bad_range(struct zone *zone, struct page *page)
178{
179	return 0;
180}
181#endif
182
183static void bad_page(struct page *page)
184{
185	printk(KERN_EMERG "Bad page state in process '%s'\n"
186		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188		KERN_EMERG "Backtrace:\n",
189		current->comm, page, (int)(2*sizeof(unsigned long)),
190		(unsigned long)page->flags, page->mapping,
191		page_mapcount(page), page_count(page));
192	dump_stack();
193	page->flags &= ~(1 << PG_lru	|
194			1 << PG_private |
195			1 << PG_locked	|
196			1 << PG_active	|
197			1 << PG_dirty	|
198			1 << PG_reclaim |
199			1 << PG_slab    |
200			1 << PG_swapcache |
201			1 << PG_writeback |
202			1 << PG_buddy );
203	set_page_count(page, 0);
204	reset_page_mapcount(page);
205	page->mapping = NULL;
206	add_taint(TAINT_BAD_PAGE);
207}
208
209/*
210 * Higher-order pages are called "compound pages".  They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set.  All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function.  Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
222 */
223
224static void free_compound_page(struct page *page)
225{
226	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
227}
228
229static void prep_compound_page(struct page *page, unsigned long order)
230{
231	int i;
232	int nr_pages = 1 << order;
233
234	set_compound_page_dtor(page, free_compound_page);
235	page[1].lru.prev = (void *)order;
236	for (i = 0; i < nr_pages; i++) {
237		struct page *p = page + i;
238
239		__SetPageCompound(p);
240		set_page_private(p, (unsigned long)page);
241	}
242}
243
244static void destroy_compound_page(struct page *page, unsigned long order)
245{
246	int i;
247	int nr_pages = 1 << order;
248
249	if (unlikely((unsigned long)page[1].lru.prev != order))
250		bad_page(page);
251
252	for (i = 0; i < nr_pages; i++) {
253		struct page *p = page + i;
254
255		if (unlikely(!PageCompound(p) |
256				(page_private(p) != (unsigned long)page)))
257			bad_page(page);
258		__ClearPageCompound(p);
259	}
260}
261
262static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263{
264	int i;
265
266	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
267	/*
268	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269	 * and __GFP_HIGHMEM from hard or soft interrupt context.
270	 */
271	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
272	for (i = 0; i < (1 << order); i++)
273		clear_highpage(page + i);
274}
275
276/*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
281static inline unsigned long page_order(struct page *page)
282{
283	return page_private(page);
284}
285
286static inline void set_page_order(struct page *page, int order)
287{
288	set_page_private(page, order);
289	__SetPageBuddy(page);
290}
291
292static inline void rmv_page_order(struct page *page)
293{
294	__ClearPageBuddy(page);
295	set_page_private(page, 0);
296}
297
298/*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 *     B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 *     P = B & ~(1 << O)
312 *
313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
314 */
315static inline struct page *
316__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317{
318	unsigned long buddy_idx = page_idx ^ (1 << order);
319
320	return page + (buddy_idx - page_idx);
321}
322
323static inline unsigned long
324__find_combined_index(unsigned long page_idx, unsigned int order)
325{
326	return (page_idx & ~(1 << order));
327}
328
329/*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
332 * (a) the buddy is not in a hole &&
333 * (b) the buddy is in the buddy system &&
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
339 *
340 * For recording page's order, we use page_private(page).
341 */
342static inline int page_is_buddy(struct page *page, struct page *buddy,
343								int order)
344{
345#ifdef CONFIG_HOLES_IN_ZONE
346	if (!pfn_valid(page_to_pfn(buddy)))
347		return 0;
348#endif
349
350	if (page_zone_id(page) != page_zone_id(buddy))
351		return 0;
352
353	if (PageBuddy(buddy) && page_order(buddy) == order) {
354		BUG_ON(page_count(buddy) != 0);
355		return 1;
356	}
357	return 0;
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other.  That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
384static inline void __free_one_page(struct page *page,
385		struct zone *zone, unsigned int order)
386{
387	unsigned long page_idx;
388	int order_size = 1 << order;
389
390	if (unlikely(PageCompound(page)))
391		destroy_compound_page(page, order);
392
393	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
395	VM_BUG_ON(page_idx & (order_size - 1));
396	VM_BUG_ON(bad_range(zone, page));
397
398	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
399	while (order < MAX_ORDER-1) {
400		unsigned long combined_idx;
401		struct free_area *area;
402		struct page *buddy;
403
404		buddy = __page_find_buddy(page, page_idx, order);
405		if (!page_is_buddy(page, buddy, order))
406			break;		/* Move the buddy up one level. */
407
408		list_del(&buddy->lru);
409		area = zone->free_area + order;
410		area->nr_free--;
411		rmv_page_order(buddy);
412		combined_idx = __find_combined_index(page_idx, order);
413		page = page + (combined_idx - page_idx);
414		page_idx = combined_idx;
415		order++;
416	}
417	set_page_order(page, order);
418	list_add(&page->lru, &zone->free_area[order].free_list);
419	zone->free_area[order].nr_free++;
420}
421
422static inline int free_pages_check(struct page *page)
423{
424	if (unlikely(page_mapcount(page) |
425		(page->mapping != NULL)  |
426		(page_count(page) != 0)  |
427		(page->flags & (
428			1 << PG_lru	|
429			1 << PG_private |
430			1 << PG_locked	|
431			1 << PG_active	|
432			1 << PG_reclaim	|
433			1 << PG_slab	|
434			1 << PG_swapcache |
435			1 << PG_writeback |
436			1 << PG_reserved |
437			1 << PG_buddy ))))
438		bad_page(page);
439	if (PageDirty(page))
440		__ClearPageDirty(page);
441	/*
442	 * For now, we report if PG_reserved was found set, but do not
443	 * clear it, and do not free the page.  But we shall soon need
444	 * to do more, for when the ZERO_PAGE count wraps negative.
445	 */
446	return PageReserved(page);
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
460static void free_pages_bulk(struct zone *zone, int count,
461					struct list_head *list, int order)
462{
463	spin_lock(&zone->lock);
464	zone->all_unreclaimable = 0;
465	zone->pages_scanned = 0;
466	while (count--) {
467		struct page *page;
468
469		VM_BUG_ON(list_empty(list));
470		page = list_entry(list->prev, struct page, lru);
471		/* have to delete it as __free_one_page list manipulates */
472		list_del(&page->lru);
473		__free_one_page(page, zone, order);
474	}
475	spin_unlock(&zone->lock);
476}
477
478static void free_one_page(struct zone *zone, struct page *page, int order)
479{
480	spin_lock(&zone->lock);
481	zone->all_unreclaimable = 0;
482	zone->pages_scanned = 0;
483	__free_one_page(page, zone, order);
484	spin_unlock(&zone->lock);
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489	unsigned long flags;
490	int i;
491	int reserved = 0;
492
493	for (i = 0 ; i < (1 << order) ; ++i)
494		reserved += free_pages_check(page + i);
495	if (reserved)
496		return;
497
498	if (!PageHighMem(page))
499		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500	arch_free_page(page, order);
501	kernel_map_pages(page, 1 << order, 0);
502
503	local_irq_save(flags);
504	__count_vm_events(PGFREE, 1 << order);
505	free_one_page(page_zone(page), page, order);
506	local_irq_restore(flags);
507}
508
509/*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513{
514	if (order == 0) {
515		__ClearPageReserved(page);
516		set_page_count(page, 0);
517		set_page_refcounted(page);
518		__free_page(page);
519	} else {
520		int loop;
521
522		prefetchw(page);
523		for (loop = 0; loop < BITS_PER_LONG; loop++) {
524			struct page *p = &page[loop];
525
526			if (loop + 1 < BITS_PER_LONG)
527				prefetchw(p + 1);
528			__ClearPageReserved(p);
529			set_page_count(p, 0);
530		}
531
532		set_page_refcounted(page);
533		__free_pages(page, order);
534	}
535}
536
537
538/*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
552static inline void expand(struct zone *zone, struct page *page,
553 	int low, int high, struct free_area *area)
554{
555	unsigned long size = 1 << high;
556
557	while (high > low) {
558		area--;
559		high--;
560		size >>= 1;
561		VM_BUG_ON(bad_range(zone, &page[size]));
562		list_add(&page[size].lru, &area->free_list);
563		area->nr_free++;
564		set_page_order(&page[size], high);
565	}
566}
567
568/*
569 * This page is about to be returned from the page allocator
570 */
571static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572{
573	if (unlikely(page_mapcount(page) |
574		(page->mapping != NULL)  |
575		(page_count(page) != 0)  |
576		(page->flags & (
577			1 << PG_lru	|
578			1 << PG_private	|
579			1 << PG_locked	|
580			1 << PG_active	|
581			1 << PG_dirty	|
582			1 << PG_reclaim	|
583			1 << PG_slab    |
584			1 << PG_swapcache |
585			1 << PG_writeback |
586			1 << PG_reserved |
587			1 << PG_buddy ))))
588		bad_page(page);
589
590	/*
591	 * For now, we report if PG_reserved was found set, but do not
592	 * clear it, and do not allocate the page: as a safety net.
593	 */
594	if (PageReserved(page))
595		return 1;
596
597	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598			1 << PG_referenced | 1 << PG_arch_1 |
599			1 << PG_checked | 1 << PG_mappedtodisk);
600	set_page_private(page, 0);
601	set_page_refcounted(page);
602
603	arch_alloc_page(page, order);
604	kernel_map_pages(page, 1 << order, 1);
605
606	if (gfp_flags & __GFP_ZERO)
607		prep_zero_page(page, order, gfp_flags);
608
609	if (order && (gfp_flags & __GFP_COMP))
610		prep_compound_page(page, order);
611
612	return 0;
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621	struct free_area * area;
622	unsigned int current_order;
623	struct page *page;
624
625	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626		area = zone->free_area + current_order;
627		if (list_empty(&area->free_list))
628			continue;
629
630		page = list_entry(area->free_list.next, struct page, lru);
631		list_del(&page->lru);
632		rmv_page_order(page);
633		area->nr_free--;
634		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
635		expand(zone, page, order, current_order, area);
636		return page;
637	}
638
639	return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency.  Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648			unsigned long count, struct list_head *list)
649{
650	int i;
651
652	spin_lock(&zone->lock);
653	for (i = 0; i < count; ++i) {
654		struct page *page = __rmqueue(zone, order);
655		if (unlikely(page == NULL))
656			break;
657		list_add_tail(&page->lru, list);
658	}
659	spin_unlock(&zone->lock);
660	return i;
661}
662
663#ifdef CONFIG_NUMA
664/*
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
669 */
670void drain_node_pages(int nodeid)
671{
672	int i;
673	enum zone_type z;
674	unsigned long flags;
675
676	for (z = 0; z < MAX_NR_ZONES; z++) {
677		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678		struct per_cpu_pageset *pset;
679
680		if (!populated_zone(zone))
681			continue;
682
683		pset = zone_pcp(zone, smp_processor_id());
684		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685			struct per_cpu_pages *pcp;
686
687			pcp = &pset->pcp[i];
688			if (pcp->count) {
689				int to_drain;
690
691				local_irq_save(flags);
692				if (pcp->count >= pcp->batch)
693					to_drain = pcp->batch;
694				else
695					to_drain = pcp->count;
696				free_pages_bulk(zone, to_drain, &pcp->list, 0);
697				pcp->count -= to_drain;
698				local_irq_restore(flags);
699			}
700		}
701	}
702}
703#endif
704
705static void __drain_pages(unsigned int cpu)
706{
707	unsigned long flags;
708	struct zone *zone;
709	int i;
710
711	for_each_zone(zone) {
712		struct per_cpu_pageset *pset;
713
714		if (!populated_zone(zone))
715			continue;
716
717		pset = zone_pcp(zone, cpu);
718		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
719			struct per_cpu_pages *pcp;
720
721			pcp = &pset->pcp[i];
722			local_irq_save(flags);
723			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
724			pcp->count = 0;
725			local_irq_restore(flags);
726		}
727	}
728}
729
730#ifdef CONFIG_PM
731
732void mark_free_pages(struct zone *zone)
733{
734	unsigned long pfn, max_zone_pfn;
735	unsigned long flags;
736	int order;
737	struct list_head *curr;
738
739	if (!zone->spanned_pages)
740		return;
741
742	spin_lock_irqsave(&zone->lock, flags);
743
744	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
745	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
746		if (pfn_valid(pfn)) {
747			struct page *page = pfn_to_page(pfn);
748
749			if (!PageNosave(page))
750				ClearPageNosaveFree(page);
751		}
752
753	for (order = MAX_ORDER - 1; order >= 0; --order)
754		list_for_each(curr, &zone->free_area[order].free_list) {
755			unsigned long i;
756
757			pfn = page_to_pfn(list_entry(curr, struct page, lru));
758			for (i = 0; i < (1UL << order); i++)
759				SetPageNosaveFree(pfn_to_page(pfn + i));
760		}
761
762	spin_unlock_irqrestore(&zone->lock, flags);
763}
764
765/*
766 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767 */
768void drain_local_pages(void)
769{
770	unsigned long flags;
771
772	local_irq_save(flags);
773	__drain_pages(smp_processor_id());
774	local_irq_restore(flags);
775}
776#endif /* CONFIG_PM */
777
778/*
779 * Free a 0-order page
780 */
781static void fastcall free_hot_cold_page(struct page *page, int cold)
782{
783	struct zone *zone = page_zone(page);
784	struct per_cpu_pages *pcp;
785	unsigned long flags;
786
787	if (PageAnon(page))
788		page->mapping = NULL;
789	if (free_pages_check(page))
790		return;
791
792	if (!PageHighMem(page))
793		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
794	arch_free_page(page, 0);
795	kernel_map_pages(page, 1, 0);
796
797	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
798	local_irq_save(flags);
799	__count_vm_event(PGFREE);
800	list_add(&page->lru, &pcp->list);
801	pcp->count++;
802	if (pcp->count >= pcp->high) {
803		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
804		pcp->count -= pcp->batch;
805	}
806	local_irq_restore(flags);
807	put_cpu();
808}
809
810void fastcall free_hot_page(struct page *page)
811{
812	free_hot_cold_page(page, 0);
813}
814
815void fastcall free_cold_page(struct page *page)
816{
817	free_hot_cold_page(page, 1);
818}
819
820/*
821 * split_page takes a non-compound higher-order page, and splits it into
822 * n (1<<order) sub-pages: page[0..n]
823 * Each sub-page must be freed individually.
824 *
825 * Note: this is probably too low level an operation for use in drivers.
826 * Please consult with lkml before using this in your driver.
827 */
828void split_page(struct page *page, unsigned int order)
829{
830	int i;
831
832	VM_BUG_ON(PageCompound(page));
833	VM_BUG_ON(!page_count(page));
834	for (i = 1; i < (1 << order); i++)
835		set_page_refcounted(page + i);
836}
837
838/*
839 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
840 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
841 * or two.
842 */
843static struct page *buffered_rmqueue(struct zonelist *zonelist,
844			struct zone *zone, int order, gfp_t gfp_flags)
845{
846	unsigned long flags;
847	struct page *page;
848	int cold = !!(gfp_flags & __GFP_COLD);
849	int cpu;
850
851again:
852	cpu  = get_cpu();
853	if (likely(order == 0)) {
854		struct per_cpu_pages *pcp;
855
856		pcp = &zone_pcp(zone, cpu)->pcp[cold];
857		local_irq_save(flags);
858		if (!pcp->count) {
859			pcp->count = rmqueue_bulk(zone, 0,
860						pcp->batch, &pcp->list);
861			if (unlikely(!pcp->count))
862				goto failed;
863		}
864		page = list_entry(pcp->list.next, struct page, lru);
865		list_del(&page->lru);
866		pcp->count--;
867	} else {
868		spin_lock_irqsave(&zone->lock, flags);
869		page = __rmqueue(zone, order);
870		spin_unlock(&zone->lock);
871		if (!page)
872			goto failed;
873	}
874
875	__count_zone_vm_events(PGALLOC, zone, 1 << order);
876	zone_statistics(zonelist, zone);
877	local_irq_restore(flags);
878	put_cpu();
879
880	VM_BUG_ON(bad_range(zone, page));
881	if (prep_new_page(page, order, gfp_flags))
882		goto again;
883	return page;
884
885failed:
886	local_irq_restore(flags);
887	put_cpu();
888	return NULL;
889}
890
891#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
892#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
893#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
894#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
895#define ALLOC_HARDER		0x10 /* try to alloc harder */
896#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
897#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
898
899#ifdef CONFIG_FAIL_PAGE_ALLOC
900
901static struct fail_page_alloc_attr {
902	struct fault_attr attr;
903
904	u32 ignore_gfp_highmem;
905	u32 ignore_gfp_wait;
906
907#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909	struct dentry *ignore_gfp_highmem_file;
910	struct dentry *ignore_gfp_wait_file;
911
912#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913
914} fail_page_alloc = {
915	.attr = FAULT_ATTR_INITIALIZER,
916	.ignore_gfp_wait = 1,
917	.ignore_gfp_highmem = 1,
918};
919
920static int __init setup_fail_page_alloc(char *str)
921{
922	return setup_fault_attr(&fail_page_alloc.attr, str);
923}
924__setup("fail_page_alloc=", setup_fail_page_alloc);
925
926static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927{
928	if (gfp_mask & __GFP_NOFAIL)
929		return 0;
930	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
931		return 0;
932	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
933		return 0;
934
935	return should_fail(&fail_page_alloc.attr, 1 << order);
936}
937
938#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939
940static int __init fail_page_alloc_debugfs(void)
941{
942	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
943	struct dentry *dir;
944	int err;
945
946	err = init_fault_attr_dentries(&fail_page_alloc.attr,
947				       "fail_page_alloc");
948	if (err)
949		return err;
950	dir = fail_page_alloc.attr.dentries.dir;
951
952	fail_page_alloc.ignore_gfp_wait_file =
953		debugfs_create_bool("ignore-gfp-wait", mode, dir,
954				      &fail_page_alloc.ignore_gfp_wait);
955
956	fail_page_alloc.ignore_gfp_highmem_file =
957		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
958				      &fail_page_alloc.ignore_gfp_highmem);
959
960	if (!fail_page_alloc.ignore_gfp_wait_file ||
961			!fail_page_alloc.ignore_gfp_highmem_file) {
962		err = -ENOMEM;
963		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
964		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
965		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
966	}
967
968	return err;
969}
970
971late_initcall(fail_page_alloc_debugfs);
972
973#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
974
975#else /* CONFIG_FAIL_PAGE_ALLOC */
976
977static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
978{
979	return 0;
980}
981
982#endif /* CONFIG_FAIL_PAGE_ALLOC */
983
984/*
985 * Return 1 if free pages are above 'mark'. This takes into account the order
986 * of the allocation.
987 */
988int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
989		      int classzone_idx, int alloc_flags)
990{
991	/* free_pages my go negative - that's OK */
992	long min = mark;
993	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
994	int o;
995
996	if (alloc_flags & ALLOC_HIGH)
997		min -= min / 2;
998	if (alloc_flags & ALLOC_HARDER)
999		min -= min / 4;
1000
1001	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1002		return 0;
1003	for (o = 0; o < order; o++) {
1004		/* At the next order, this order's pages become unavailable */
1005		free_pages -= z->free_area[o].nr_free << o;
1006
1007		/* Require fewer higher order pages to be free */
1008		min >>= 1;
1009
1010		if (free_pages <= min)
1011			return 0;
1012	}
1013	return 1;
1014}
1015
1016#ifdef CONFIG_NUMA
1017/*
1018 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1019 * skip over zones that are not allowed by the cpuset, or that have
1020 * been recently (in last second) found to be nearly full.  See further
1021 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1022 * that have to skip over alot of full or unallowed zones.
1023 *
1024 * If the zonelist cache is present in the passed in zonelist, then
1025 * returns a pointer to the allowed node mask (either the current
1026 * tasks mems_allowed, or node_online_map.)
1027 *
1028 * If the zonelist cache is not available for this zonelist, does
1029 * nothing and returns NULL.
1030 *
1031 * If the fullzones BITMAP in the zonelist cache is stale (more than
1032 * a second since last zap'd) then we zap it out (clear its bits.)
1033 *
1034 * We hold off even calling zlc_setup, until after we've checked the
1035 * first zone in the zonelist, on the theory that most allocations will
1036 * be satisfied from that first zone, so best to examine that zone as
1037 * quickly as we can.
1038 */
1039static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1040{
1041	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1042	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1043
1044	zlc = zonelist->zlcache_ptr;
1045	if (!zlc)
1046		return NULL;
1047
1048	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1049		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1050		zlc->last_full_zap = jiffies;
1051	}
1052
1053	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1054					&cpuset_current_mems_allowed :
1055					&node_online_map;
1056	return allowednodes;
1057}
1058
1059/*
1060 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1061 * if it is worth looking at further for free memory:
1062 *  1) Check that the zone isn't thought to be full (doesn't have its
1063 *     bit set in the zonelist_cache fullzones BITMAP).
1064 *  2) Check that the zones node (obtained from the zonelist_cache
1065 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1066 * Return true (non-zero) if zone is worth looking at further, or
1067 * else return false (zero) if it is not.
1068 *
1069 * This check -ignores- the distinction between various watermarks,
1070 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1071 * found to be full for any variation of these watermarks, it will
1072 * be considered full for up to one second by all requests, unless
1073 * we are so low on memory on all allowed nodes that we are forced
1074 * into the second scan of the zonelist.
1075 *
1076 * In the second scan we ignore this zonelist cache and exactly
1077 * apply the watermarks to all zones, even it is slower to do so.
1078 * We are low on memory in the second scan, and should leave no stone
1079 * unturned looking for a free page.
1080 */
1081static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1082						nodemask_t *allowednodes)
1083{
1084	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1085	int i;				/* index of *z in zonelist zones */
1086	int n;				/* node that zone *z is on */
1087
1088	zlc = zonelist->zlcache_ptr;
1089	if (!zlc)
1090		return 1;
1091
1092	i = z - zonelist->zones;
1093	n = zlc->z_to_n[i];
1094
1095	/* This zone is worth trying if it is allowed but not full */
1096	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1097}
1098
1099/*
1100 * Given 'z' scanning a zonelist, set the corresponding bit in
1101 * zlc->fullzones, so that subsequent attempts to allocate a page
1102 * from that zone don't waste time re-examining it.
1103 */
1104static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1105{
1106	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1107	int i;				/* index of *z in zonelist zones */
1108
1109	zlc = zonelist->zlcache_ptr;
1110	if (!zlc)
1111		return;
1112
1113	i = z - zonelist->zones;
1114
1115	set_bit(i, zlc->fullzones);
1116}
1117
1118#else	/* CONFIG_NUMA */
1119
1120static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1121{
1122	return NULL;
1123}
1124
1125static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1126				nodemask_t *allowednodes)
1127{
1128	return 1;
1129}
1130
1131static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1132{
1133}
1134#endif	/* CONFIG_NUMA */
1135
1136/*
1137 * get_page_from_freelist goes through the zonelist trying to allocate
1138 * a page.
1139 */
1140static struct page *
1141get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1142		struct zonelist *zonelist, int alloc_flags)
1143{
1144	struct zone **z;
1145	struct page *page = NULL;
1146	int classzone_idx = zone_idx(zonelist->zones[0]);
1147	struct zone *zone;
1148	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1149	int zlc_active = 0;		/* set if using zonelist_cache */
1150	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1151
1152zonelist_scan:
1153	/*
1154	 * Scan zonelist, looking for a zone with enough free.
1155	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1156	 */
1157	z = zonelist->zones;
1158
1159	do {
1160		if (NUMA_BUILD && zlc_active &&
1161			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1162				continue;
1163		zone = *z;
1164		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1165			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1166				break;
1167		if ((alloc_flags & ALLOC_CPUSET) &&
1168			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1169				goto try_next_zone;
1170
1171		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1172			unsigned long mark;
1173			if (alloc_flags & ALLOC_WMARK_MIN)
1174				mark = zone->pages_min;
1175			else if (alloc_flags & ALLOC_WMARK_LOW)
1176				mark = zone->pages_low;
1177			else
1178				mark = zone->pages_high;
1179			if (!zone_watermark_ok(zone, order, mark,
1180				    classzone_idx, alloc_flags)) {
1181				if (!zone_reclaim_mode ||
1182				    !zone_reclaim(zone, gfp_mask, order))
1183					goto this_zone_full;
1184			}
1185		}
1186
1187		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1188		if (page)
1189			break;
1190this_zone_full:
1191		if (NUMA_BUILD)
1192			zlc_mark_zone_full(zonelist, z);
1193try_next_zone:
1194		if (NUMA_BUILD && !did_zlc_setup) {
1195			/* we do zlc_setup after the first zone is tried */
1196			allowednodes = zlc_setup(zonelist, alloc_flags);
1197			zlc_active = 1;
1198			did_zlc_setup = 1;
1199		}
1200	} while (*(++z) != NULL);
1201
1202	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1203		/* Disable zlc cache for second zonelist scan */
1204		zlc_active = 0;
1205		goto zonelist_scan;
1206	}
1207	return page;
1208}
1209
1210/*
1211 * This is the 'heart' of the zoned buddy allocator.
1212 */
1213struct page * fastcall
1214__alloc_pages(gfp_t gfp_mask, unsigned int order,
1215		struct zonelist *zonelist)
1216{
1217	const gfp_t wait = gfp_mask & __GFP_WAIT;
1218	struct zone **z;
1219	struct page *page;
1220	struct reclaim_state reclaim_state;
1221	struct task_struct *p = current;
1222	int do_retry;
1223	int alloc_flags;
1224	int did_some_progress;
1225
1226	might_sleep_if(wait);
1227
1228	if (should_fail_alloc_page(gfp_mask, order))
1229		return NULL;
1230
1231restart:
1232	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1233
1234	if (unlikely(*z == NULL)) {
1235		/* Should this ever happen?? */
1236		return NULL;
1237	}
1238
1239	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1240				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1241	if (page)
1242		goto got_pg;
1243
1244	/*
1245	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1246	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1247	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1248	 * using a larger set of nodes after it has established that the
1249	 * allowed per node queues are empty and that nodes are
1250	 * over allocated.
1251	 */
1252	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1253		goto nopage;
1254
1255	for (z = zonelist->zones; *z; z++)
1256		wakeup_kswapd(*z, order);
1257
1258	/*
1259	 * OK, we're below the kswapd watermark and have kicked background
1260	 * reclaim. Now things get more complex, so set up alloc_flags according
1261	 * to how we want to proceed.
1262	 *
1263	 * The caller may dip into page reserves a bit more if the caller
1264	 * cannot run direct reclaim, or if the caller has realtime scheduling
1265	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1266	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1267	 */
1268	alloc_flags = ALLOC_WMARK_MIN;
1269	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1270		alloc_flags |= ALLOC_HARDER;
1271	if (gfp_mask & __GFP_HIGH)
1272		alloc_flags |= ALLOC_HIGH;
1273	if (wait)
1274		alloc_flags |= ALLOC_CPUSET;
1275
1276	/*
1277	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1278	 * coming from realtime tasks go deeper into reserves.
1279	 *
1280	 * This is the last chance, in general, before the goto nopage.
1281	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1282	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1283	 */
1284	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1285	if (page)
1286		goto got_pg;
1287
1288	/* This allocation should allow future memory freeing. */
1289
1290rebalance:
1291	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1292			&& !in_interrupt()) {
1293		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1294nofail_alloc:
1295			/* go through the zonelist yet again, ignoring mins */
1296			page = get_page_from_freelist(gfp_mask, order,
1297				zonelist, ALLOC_NO_WATERMARKS);
1298			if (page)
1299				goto got_pg;
1300			if (gfp_mask & __GFP_NOFAIL) {
1301				congestion_wait(WRITE, HZ/50);
1302				goto nofail_alloc;
1303			}
1304		}
1305		goto nopage;
1306	}
1307
1308	/* Atomic allocations - we can't balance anything */
1309	if (!wait)
1310		goto nopage;
1311
1312	cond_resched();
1313
1314	/* We now go into synchronous reclaim */
1315	cpuset_memory_pressure_bump();
1316	p->flags |= PF_MEMALLOC;
1317	reclaim_state.reclaimed_slab = 0;
1318	p->reclaim_state = &reclaim_state;
1319
1320	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1321
1322	p->reclaim_state = NULL;
1323	p->flags &= ~PF_MEMALLOC;
1324
1325	cond_resched();
1326
1327	if (likely(did_some_progress)) {
1328		page = get_page_from_freelist(gfp_mask, order,
1329						zonelist, alloc_flags);
1330		if (page)
1331			goto got_pg;
1332	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1333		/*
1334		 * Go through the zonelist yet one more time, keep
1335		 * very high watermark here, this is only to catch
1336		 * a parallel oom killing, we must fail if we're still
1337		 * under heavy pressure.
1338		 */
1339		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1340				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1341		if (page)
1342			goto got_pg;
1343
1344		out_of_memory(zonelist, gfp_mask, order);
1345		goto restart;
1346	}
1347
1348	/*
1349	 * Don't let big-order allocations loop unless the caller explicitly
1350	 * requests that.  Wait for some write requests to complete then retry.
1351	 *
1352	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1353	 * <= 3, but that may not be true in other implementations.
1354	 */
1355	do_retry = 0;
1356	if (!(gfp_mask & __GFP_NORETRY)) {
1357		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1358			do_retry = 1;
1359		if (gfp_mask & __GFP_NOFAIL)
1360			do_retry = 1;
1361	}
1362	if (do_retry) {
1363		congestion_wait(WRITE, HZ/50);
1364		goto rebalance;
1365	}
1366
1367nopage:
1368	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1369		printk(KERN_WARNING "%s: page allocation failure."
1370			" order:%d, mode:0x%x\n",
1371			p->comm, order, gfp_mask);
1372		dump_stack();
1373		show_mem();
1374	}
1375got_pg:
1376	return page;
1377}
1378
1379EXPORT_SYMBOL(__alloc_pages);
1380
1381/*
1382 * Common helper functions.
1383 */
1384fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1385{
1386	struct page * page;
1387	page = alloc_pages(gfp_mask, order);
1388	if (!page)
1389		return 0;
1390	return (unsigned long) page_address(page);
1391}
1392
1393EXPORT_SYMBOL(__get_free_pages);
1394
1395fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1396{
1397	struct page * page;
1398
1399	/*
1400	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1401	 * a highmem page
1402	 */
1403	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1404
1405	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1406	if (page)
1407		return (unsigned long) page_address(page);
1408	return 0;
1409}
1410
1411EXPORT_SYMBOL(get_zeroed_page);
1412
1413void __pagevec_free(struct pagevec *pvec)
1414{
1415	int i = pagevec_count(pvec);
1416
1417	while (--i >= 0)
1418		free_hot_cold_page(pvec->pages[i], pvec->cold);
1419}
1420
1421fastcall void __free_pages(struct page *page, unsigned int order)
1422{
1423	if (put_page_testzero(page)) {
1424		if (order == 0)
1425			free_hot_page(page);
1426		else
1427			__free_pages_ok(page, order);
1428	}
1429}
1430
1431EXPORT_SYMBOL(__free_pages);
1432
1433fastcall void free_pages(unsigned long addr, unsigned int order)
1434{
1435	if (addr != 0) {
1436		VM_BUG_ON(!virt_addr_valid((void *)addr));
1437		__free_pages(virt_to_page((void *)addr), order);
1438	}
1439}
1440
1441EXPORT_SYMBOL(free_pages);
1442
1443/*
1444 * Total amount of free (allocatable) RAM:
1445 */
1446unsigned int nr_free_pages(void)
1447{
1448	return global_page_state(NR_FREE_PAGES);
1449}
1450
1451EXPORT_SYMBOL(nr_free_pages);
1452
1453#ifdef CONFIG_NUMA
1454unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1455{
1456	return node_page_state(pgdat->node_id, NR_FREE_PAGES);
1457}
1458#endif
1459
1460static unsigned int nr_free_zone_pages(int offset)
1461{
1462	/* Just pick one node, since fallback list is circular */
1463	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1464	unsigned int sum = 0;
1465
1466	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1467	struct zone **zonep = zonelist->zones;
1468	struct zone *zone;
1469
1470	for (zone = *zonep++; zone; zone = *zonep++) {
1471		unsigned long size = zone->present_pages;
1472		unsigned long high = zone->pages_high;
1473		if (size > high)
1474			sum += size - high;
1475	}
1476
1477	return sum;
1478}
1479
1480/*
1481 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1482 */
1483unsigned int nr_free_buffer_pages(void)
1484{
1485	return nr_free_zone_pages(gfp_zone(GFP_USER));
1486}
1487
1488/*
1489 * Amount of free RAM allocatable within all zones
1490 */
1491unsigned int nr_free_pagecache_pages(void)
1492{
1493	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1494}
1495
1496static inline void show_node(struct zone *zone)
1497{
1498	if (NUMA_BUILD)
1499		printk("Node %d ", zone_to_nid(zone));
1500}
1501
1502void si_meminfo(struct sysinfo *val)
1503{
1504	val->totalram = totalram_pages;
1505	val->sharedram = 0;
1506	val->freeram = global_page_state(NR_FREE_PAGES);
1507	val->bufferram = nr_blockdev_pages();
1508	val->totalhigh = totalhigh_pages;
1509	val->freehigh = nr_free_highpages();
1510	val->mem_unit = PAGE_SIZE;
1511}
1512
1513EXPORT_SYMBOL(si_meminfo);
1514
1515#ifdef CONFIG_NUMA
1516void si_meminfo_node(struct sysinfo *val, int nid)
1517{
1518	pg_data_t *pgdat = NODE_DATA(nid);
1519
1520	val->totalram = pgdat->node_present_pages;
1521	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1522#ifdef CONFIG_HIGHMEM
1523	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1524	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1525			NR_FREE_PAGES);
1526#else
1527	val->totalhigh = 0;
1528	val->freehigh = 0;
1529#endif
1530	val->mem_unit = PAGE_SIZE;
1531}
1532#endif
1533
1534#define K(x) ((x) << (PAGE_SHIFT-10))
1535
1536/*
1537 * Show free area list (used inside shift_scroll-lock stuff)
1538 * We also calculate the percentage fragmentation. We do this by counting the
1539 * memory on each free list with the exception of the first item on the list.
1540 */
1541void show_free_areas(void)
1542{
1543	int cpu;
1544	unsigned long active;
1545	unsigned long inactive;
1546	unsigned long free;
1547	struct zone *zone;
1548
1549	for_each_zone(zone) {
1550		if (!populated_zone(zone))
1551			continue;
1552
1553		show_node(zone);
1554		printk("%s per-cpu:\n", zone->name);
1555
1556		for_each_online_cpu(cpu) {
1557			struct per_cpu_pageset *pageset;
1558
1559			pageset = zone_pcp(zone, cpu);
1560
1561			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1562			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1563			       cpu, pageset->pcp[0].high,
1564			       pageset->pcp[0].batch, pageset->pcp[0].count,
1565			       pageset->pcp[1].high, pageset->pcp[1].batch,
1566			       pageset->pcp[1].count);
1567		}
1568	}
1569
1570	get_zone_counts(&active, &inactive, &free);
1571
1572	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1573		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1574		active,
1575		inactive,
1576		global_page_state(NR_FILE_DIRTY),
1577		global_page_state(NR_WRITEBACK),
1578		global_page_state(NR_UNSTABLE_NFS),
1579		global_page_state(NR_FREE_PAGES),
1580		global_page_state(NR_SLAB_RECLAIMABLE) +
1581			global_page_state(NR_SLAB_UNRECLAIMABLE),
1582		global_page_state(NR_FILE_MAPPED),
1583		global_page_state(NR_PAGETABLE),
1584		global_page_state(NR_BOUNCE));
1585
1586	for_each_zone(zone) {
1587		int i;
1588
1589		if (!populated_zone(zone))
1590			continue;
1591
1592		show_node(zone);
1593		printk("%s"
1594			" free:%lukB"
1595			" min:%lukB"
1596			" low:%lukB"
1597			" high:%lukB"
1598			" active:%lukB"
1599			" inactive:%lukB"
1600			" present:%lukB"
1601			" pages_scanned:%lu"
1602			" all_unreclaimable? %s"
1603			"\n",
1604			zone->name,
1605			K(zone_page_state(zone, NR_FREE_PAGES)),
1606			K(zone->pages_min),
1607			K(zone->pages_low),
1608			K(zone->pages_high),
1609			K(zone_page_state(zone, NR_ACTIVE)),
1610			K(zone_page_state(zone, NR_INACTIVE)),
1611			K(zone->present_pages),
1612			zone->pages_scanned,
1613			(zone->all_unreclaimable ? "yes" : "no")
1614			);
1615		printk("lowmem_reserve[]:");
1616		for (i = 0; i < MAX_NR_ZONES; i++)
1617			printk(" %lu", zone->lowmem_reserve[i]);
1618		printk("\n");
1619	}
1620
1621	for_each_zone(zone) {
1622 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1623
1624		if (!populated_zone(zone))
1625			continue;
1626
1627		show_node(zone);
1628		printk("%s: ", zone->name);
1629
1630		spin_lock_irqsave(&zone->lock, flags);
1631		for (order = 0; order < MAX_ORDER; order++) {
1632			nr[order] = zone->free_area[order].nr_free;
1633			total += nr[order] << order;
1634		}
1635		spin_unlock_irqrestore(&zone->lock, flags);
1636		for (order = 0; order < MAX_ORDER; order++)
1637			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1638		printk("= %lukB\n", K(total));
1639	}
1640
1641	show_swap_cache_info();
1642}
1643
1644/*
1645 * Builds allocation fallback zone lists.
1646 *
1647 * Add all populated zones of a node to the zonelist.
1648 */
1649static int __meminit build_zonelists_node(pg_data_t *pgdat,
1650			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1651{
1652	struct zone *zone;
1653
1654	BUG_ON(zone_type >= MAX_NR_ZONES);
1655	zone_type++;
1656
1657	do {
1658		zone_type--;
1659		zone = pgdat->node_zones + zone_type;
1660		if (populated_zone(zone)) {
1661			zonelist->zones[nr_zones++] = zone;
1662			check_highest_zone(zone_type);
1663		}
1664
1665	} while (zone_type);
1666	return nr_zones;
1667}
1668
1669#ifdef CONFIG_NUMA
1670#define MAX_NODE_LOAD (num_online_nodes())
1671static int __meminitdata node_load[MAX_NUMNODES];
1672/**
1673 * find_next_best_node - find the next node that should appear in a given node's fallback list
1674 * @node: node whose fallback list we're appending
1675 * @used_node_mask: nodemask_t of already used nodes
1676 *
1677 * We use a number of factors to determine which is the next node that should
1678 * appear on a given node's fallback list.  The node should not have appeared
1679 * already in @node's fallback list, and it should be the next closest node
1680 * according to the distance array (which contains arbitrary distance values
1681 * from each node to each node in the system), and should also prefer nodes
1682 * with no CPUs, since presumably they'll have very little allocation pressure
1683 * on them otherwise.
1684 * It returns -1 if no node is found.
1685 */
1686static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1687{
1688	int n, val;
1689	int min_val = INT_MAX;
1690	int best_node = -1;
1691
1692	/* Use the local node if we haven't already */
1693	if (!node_isset(node, *used_node_mask)) {
1694		node_set(node, *used_node_mask);
1695		return node;
1696	}
1697
1698	for_each_online_node(n) {
1699		cpumask_t tmp;
1700
1701		/* Don't want a node to appear more than once */
1702		if (node_isset(n, *used_node_mask))
1703			continue;
1704
1705		/* Use the distance array to find the distance */
1706		val = node_distance(node, n);
1707
1708		/* Penalize nodes under us ("prefer the next node") */
1709		val += (n < node);
1710
1711		/* Give preference to headless and unused nodes */
1712		tmp = node_to_cpumask(n);
1713		if (!cpus_empty(tmp))
1714			val += PENALTY_FOR_NODE_WITH_CPUS;
1715
1716		/* Slight preference for less loaded node */
1717		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1718		val += node_load[n];
1719
1720		if (val < min_val) {
1721			min_val = val;
1722			best_node = n;
1723		}
1724	}
1725
1726	if (best_node >= 0)
1727		node_set(best_node, *used_node_mask);
1728
1729	return best_node;
1730}
1731
1732static void __meminit build_zonelists(pg_data_t *pgdat)
1733{
1734	int j, node, local_node;
1735	enum zone_type i;
1736	int prev_node, load;
1737	struct zonelist *zonelist;
1738	nodemask_t used_mask;
1739
1740	/* initialize zonelists */
1741	for (i = 0; i < MAX_NR_ZONES; i++) {
1742		zonelist = pgdat->node_zonelists + i;
1743		zonelist->zones[0] = NULL;
1744	}
1745
1746	/* NUMA-aware ordering of nodes */
1747	local_node = pgdat->node_id;
1748	load = num_online_nodes();
1749	prev_node = local_node;
1750	nodes_clear(used_mask);
1751	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1752		int distance = node_distance(local_node, node);
1753
1754		/*
1755		 * If another node is sufficiently far away then it is better
1756		 * to reclaim pages in a zone before going off node.
1757		 */
1758		if (distance > RECLAIM_DISTANCE)
1759			zone_reclaim_mode = 1;
1760
1761		/*
1762		 * We don't want to pressure a particular node.
1763		 * So adding penalty to the first node in same
1764		 * distance group to make it round-robin.
1765		 */
1766
1767		if (distance != node_distance(local_node, prev_node))
1768			node_load[node] += load;
1769		prev_node = node;
1770		load--;
1771		for (i = 0; i < MAX_NR_ZONES; i++) {
1772			zonelist = pgdat->node_zonelists + i;
1773			for (j = 0; zonelist->zones[j] != NULL; j++);
1774
1775	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1776			zonelist->zones[j] = NULL;
1777		}
1778	}
1779}
1780
1781/* Construct the zonelist performance cache - see further mmzone.h */
1782static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1783{
1784	int i;
1785
1786	for (i = 0; i < MAX_NR_ZONES; i++) {
1787		struct zonelist *zonelist;
1788		struct zonelist_cache *zlc;
1789		struct zone **z;
1790
1791		zonelist = pgdat->node_zonelists + i;
1792		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1793		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1794		for (z = zonelist->zones; *z; z++)
1795			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1796	}
1797}
1798
1799#else	/* CONFIG_NUMA */
1800
1801static void __meminit build_zonelists(pg_data_t *pgdat)
1802{
1803	int node, local_node;
1804	enum zone_type i,j;
1805
1806	local_node = pgdat->node_id;
1807	for (i = 0; i < MAX_NR_ZONES; i++) {
1808		struct zonelist *zonelist;
1809
1810		zonelist = pgdat->node_zonelists + i;
1811
1812 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1813 		/*
1814 		 * Now we build the zonelist so that it contains the zones
1815 		 * of all the other nodes.
1816 		 * We don't want to pressure a particular node, so when
1817 		 * building the zones for node N, we make sure that the
1818 		 * zones coming right after the local ones are those from
1819 		 * node N+1 (modulo N)
1820 		 */
1821		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1822			if (!node_online(node))
1823				continue;
1824			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1825		}
1826		for (node = 0; node < local_node; node++) {
1827			if (!node_online(node))
1828				continue;
1829			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1830		}
1831
1832		zonelist->zones[j] = NULL;
1833	}
1834}
1835
1836/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1837static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1838{
1839	int i;
1840
1841	for (i = 0; i < MAX_NR_ZONES; i++)
1842		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1843}
1844
1845#endif	/* CONFIG_NUMA */
1846
1847/* return values int ....just for stop_machine_run() */
1848static int __meminit __build_all_zonelists(void *dummy)
1849{
1850	int nid;
1851
1852	for_each_online_node(nid) {
1853		build_zonelists(NODE_DATA(nid));
1854		build_zonelist_cache(NODE_DATA(nid));
1855	}
1856	return 0;
1857}
1858
1859void __meminit build_all_zonelists(void)
1860{
1861	if (system_state == SYSTEM_BOOTING) {
1862		__build_all_zonelists(NULL);
1863		cpuset_init_current_mems_allowed();
1864	} else {
1865		/* we have to stop all cpus to guaranntee there is no user
1866		   of zonelist */
1867		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1868		/* cpuset refresh routine should be here */
1869	}
1870	vm_total_pages = nr_free_pagecache_pages();
1871	printk("Built %i zonelists.  Total pages: %ld\n",
1872			num_online_nodes(), vm_total_pages);
1873}
1874
1875/*
1876 * Helper functions to size the waitqueue hash table.
1877 * Essentially these want to choose hash table sizes sufficiently
1878 * large so that collisions trying to wait on pages are rare.
1879 * But in fact, the number of active page waitqueues on typical
1880 * systems is ridiculously low, less than 200. So this is even
1881 * conservative, even though it seems large.
1882 *
1883 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1884 * waitqueues, i.e. the size of the waitq table given the number of pages.
1885 */
1886#define PAGES_PER_WAITQUEUE	256
1887
1888#ifndef CONFIG_MEMORY_HOTPLUG
1889static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1890{
1891	unsigned long size = 1;
1892
1893	pages /= PAGES_PER_WAITQUEUE;
1894
1895	while (size < pages)
1896		size <<= 1;
1897
1898	/*
1899	 * Once we have dozens or even hundreds of threads sleeping
1900	 * on IO we've got bigger problems than wait queue collision.
1901	 * Limit the size of the wait table to a reasonable size.
1902	 */
1903	size = min(size, 4096UL);
1904
1905	return max(size, 4UL);
1906}
1907#else
1908/*
1909 * A zone's size might be changed by hot-add, so it is not possible to determine
1910 * a suitable size for its wait_table.  So we use the maximum size now.
1911 *
1912 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1913 *
1914 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1915 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1916 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1917 *
1918 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1919 * or more by the traditional way. (See above).  It equals:
1920 *
1921 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1922 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1923 *    powerpc (64K page size)             : =  (32G +16M)byte.
1924 */
1925static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1926{
1927	return 4096UL;
1928}
1929#endif
1930
1931/*
1932 * This is an integer logarithm so that shifts can be used later
1933 * to extract the more random high bits from the multiplicative
1934 * hash function before the remainder is taken.
1935 */
1936static inline unsigned long wait_table_bits(unsigned long size)
1937{
1938	return ffz(~size);
1939}
1940
1941#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1942
1943/*
1944 * Initially all pages are reserved - free ones are freed
1945 * up by free_all_bootmem() once the early boot process is
1946 * done. Non-atomic initialization, single-pass.
1947 */
1948void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1949		unsigned long start_pfn, enum memmap_context context)
1950{
1951	struct page *page;
1952	unsigned long end_pfn = start_pfn + size;
1953	unsigned long pfn;
1954
1955	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1956		/*
1957		 * There can be holes in boot-time mem_map[]s
1958		 * handed to this function.  They do not
1959		 * exist on hotplugged memory.
1960		 */
1961		if (context == MEMMAP_EARLY) {
1962			if (!early_pfn_valid(pfn))
1963				continue;
1964			if (!early_pfn_in_nid(pfn, nid))
1965				continue;
1966		}
1967		page = pfn_to_page(pfn);
1968		set_page_links(page, zone, nid, pfn);
1969		init_page_count(page);
1970		reset_page_mapcount(page);
1971		SetPageReserved(page);
1972		INIT_LIST_HEAD(&page->lru);
1973#ifdef WANT_PAGE_VIRTUAL
1974		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1975		if (!is_highmem_idx(zone))
1976			set_page_address(page, __va(pfn << PAGE_SHIFT));
1977#endif
1978	}
1979}
1980
1981void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1982				unsigned long size)
1983{
1984	int order;
1985	for (order = 0; order < MAX_ORDER ; order++) {
1986		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1987		zone->free_area[order].nr_free = 0;
1988	}
1989}
1990
1991#ifndef __HAVE_ARCH_MEMMAP_INIT
1992#define memmap_init(size, nid, zone, start_pfn) \
1993	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1994#endif
1995
1996static int __cpuinit zone_batchsize(struct zone *zone)
1997{
1998	int batch;
1999
2000	/*
2001	 * The per-cpu-pages pools are set to around 1000th of the
2002	 * size of the zone.  But no more than 1/2 of a meg.
2003	 *
2004	 * OK, so we don't know how big the cache is.  So guess.
2005	 */
2006	batch = zone->present_pages / 1024;
2007	if (batch * PAGE_SIZE > 512 * 1024)
2008		batch = (512 * 1024) / PAGE_SIZE;
2009	batch /= 4;		/* We effectively *= 4 below */
2010	if (batch < 1)
2011		batch = 1;
2012
2013	/*
2014	 * Clamp the batch to a 2^n - 1 value. Having a power
2015	 * of 2 value was found to be more likely to have
2016	 * suboptimal cache aliasing properties in some cases.
2017	 *
2018	 * For example if 2 tasks are alternately allocating
2019	 * batches of pages, one task can end up with a lot
2020	 * of pages of one half of the possible page colors
2021	 * and the other with pages of the other colors.
2022	 */
2023	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2024
2025	return batch;
2026}
2027
2028inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2029{
2030	struct per_cpu_pages *pcp;
2031
2032	memset(p, 0, sizeof(*p));
2033
2034	pcp = &p->pcp[0];		/* hot */
2035	pcp->count = 0;
2036	pcp->high = 6 * batch;
2037	pcp->batch = max(1UL, 1 * batch);
2038	INIT_LIST_HEAD(&pcp->list);
2039
2040	pcp = &p->pcp[1];		/* cold*/
2041	pcp->count = 0;
2042	pcp->high = 2 * batch;
2043	pcp->batch = max(1UL, batch/2);
2044	INIT_LIST_HEAD(&pcp->list);
2045}
2046
2047/*
2048 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2049 * to the value high for the pageset p.
2050 */
2051
2052static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2053				unsigned long high)
2054{
2055	struct per_cpu_pages *pcp;
2056
2057	pcp = &p->pcp[0]; /* hot list */
2058	pcp->high = high;
2059	pcp->batch = max(1UL, high/4);
2060	if ((high/4) > (PAGE_SHIFT * 8))
2061		pcp->batch = PAGE_SHIFT * 8;
2062}
2063
2064
2065#ifdef CONFIG_NUMA
2066/*
2067 * Boot pageset table. One per cpu which is going to be used for all
2068 * zones and all nodes. The parameters will be set in such a way
2069 * that an item put on a list will immediately be handed over to
2070 * the buddy list. This is safe since pageset manipulation is done
2071 * with interrupts disabled.
2072 *
2073 * Some NUMA counter updates may also be caught by the boot pagesets.
2074 *
2075 * The boot_pagesets must be kept even after bootup is complete for
2076 * unused processors and/or zones. They do play a role for bootstrapping
2077 * hotplugged processors.
2078 *
2079 * zoneinfo_show() and maybe other functions do
2080 * not check if the processor is online before following the pageset pointer.
2081 * Other parts of the kernel may not check if the zone is available.
2082 */
2083static struct per_cpu_pageset boot_pageset[NR_CPUS];
2084
2085/*
2086 * Dynamically allocate memory for the
2087 * per cpu pageset array in struct zone.
2088 */
2089static int __cpuinit process_zones(int cpu)
2090{
2091	struct zone *zone, *dzone;
2092
2093	for_each_zone(zone) {
2094
2095		if (!populated_zone(zone))
2096			continue;
2097
2098		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2099					 GFP_KERNEL, cpu_to_node(cpu));
2100		if (!zone_pcp(zone, cpu))
2101			goto bad;
2102
2103		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2104
2105		if (percpu_pagelist_fraction)
2106			setup_pagelist_highmark(zone_pcp(zone, cpu),
2107			 	(zone->present_pages / percpu_pagelist_fraction));
2108	}
2109
2110	return 0;
2111bad:
2112	for_each_zone(dzone) {
2113		if (dzone == zone)
2114			break;
2115		kfree(zone_pcp(dzone, cpu));
2116		zone_pcp(dzone, cpu) = NULL;
2117	}
2118	return -ENOMEM;
2119}
2120
2121static inline void free_zone_pagesets(int cpu)
2122{
2123	struct zone *zone;
2124
2125	for_each_zone(zone) {
2126		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2127
2128		/* Free per_cpu_pageset if it is slab allocated */
2129		if (pset != &boot_pageset[cpu])
2130			kfree(pset);
2131		zone_pcp(zone, cpu) = NULL;
2132	}
2133}
2134
2135static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2136		unsigned long action,
2137		void *hcpu)
2138{
2139	int cpu = (long)hcpu;
2140	int ret = NOTIFY_OK;
2141
2142	switch (action) {
2143	case CPU_UP_PREPARE:
2144		if (process_zones(cpu))
2145			ret = NOTIFY_BAD;
2146		break;
2147	case CPU_UP_CANCELED:
2148	case CPU_DEAD:
2149		free_zone_pagesets(cpu);
2150		break;
2151	default:
2152		break;
2153	}
2154	return ret;
2155}
2156
2157static struct notifier_block __cpuinitdata pageset_notifier =
2158	{ &pageset_cpuup_callback, NULL, 0 };
2159
2160void __init setup_per_cpu_pageset(void)
2161{
2162	int err;
2163
2164	/* Initialize per_cpu_pageset for cpu 0.
2165	 * A cpuup callback will do this for every cpu
2166	 * as it comes online
2167	 */
2168	err = process_zones(smp_processor_id());
2169	BUG_ON(err);
2170	register_cpu_notifier(&pageset_notifier);
2171}
2172
2173#endif
2174
2175static __meminit
2176int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2177{
2178	int i;
2179	struct pglist_data *pgdat = zone->zone_pgdat;
2180	size_t alloc_size;
2181
2182	/*
2183	 * The per-page waitqueue mechanism uses hashed waitqueues
2184	 * per zone.
2185	 */
2186	zone->wait_table_hash_nr_entries =
2187		 wait_table_hash_nr_entries(zone_size_pages);
2188	zone->wait_table_bits =
2189		wait_table_bits(zone->wait_table_hash_nr_entries);
2190	alloc_size = zone->wait_table_hash_nr_entries
2191					* sizeof(wait_queue_head_t);
2192
2193 	if (system_state == SYSTEM_BOOTING) {
2194		zone->wait_table = (wait_queue_head_t *)
2195			alloc_bootmem_node(pgdat, alloc_size);
2196	} else {
2197		/*
2198		 * This case means that a zone whose size was 0 gets new memory
2199		 * via memory hot-add.
2200		 * But it may be the case that a new node was hot-added.  In
2201		 * this case vmalloc() will not be able to use this new node's
2202		 * memory - this wait_table must be initialized to use this new
2203		 * node itself as well.
2204		 * To use this new node's memory, further consideration will be
2205		 * necessary.
2206		 */
2207		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2208	}
2209	if (!zone->wait_table)
2210		return -ENOMEM;
2211
2212	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2213		init_waitqueue_head(zone->wait_table + i);
2214
2215	return 0;
2216}
2217
2218static __meminit void zone_pcp_init(struct zone *zone)
2219{
2220	int cpu;
2221	unsigned long batch = zone_batchsize(zone);
2222
2223	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2224#ifdef CONFIG_NUMA
2225		/* Early boot. Slab allocator not functional yet */
2226		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2227		setup_pageset(&boot_pageset[cpu],0);
2228#else
2229		setup_pageset(zone_pcp(zone,cpu), batch);
2230#endif
2231	}
2232	if (zone->present_pages)
2233		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2234			zone->name, zone->present_pages, batch);
2235}
2236
2237__meminit int init_currently_empty_zone(struct zone *zone,
2238					unsigned long zone_start_pfn,
2239					unsigned long size,
2240					enum memmap_context context)
2241{
2242	struct pglist_data *pgdat = zone->zone_pgdat;
2243	int ret;
2244	ret = zone_wait_table_init(zone, size);
2245	if (ret)
2246		return ret;
2247	pgdat->nr_zones = zone_idx(zone) + 1;
2248
2249	zone->zone_start_pfn = zone_start_pfn;
2250
2251	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2252
2253	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2254
2255	return 0;
2256}
2257
2258#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2259/*
2260 * Basic iterator support. Return the first range of PFNs for a node
2261 * Note: nid == MAX_NUMNODES returns first region regardless of node
2262 */
2263static int __init first_active_region_index_in_nid(int nid)
2264{
2265	int i;
2266
2267	for (i = 0; i < nr_nodemap_entries; i++)
2268		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2269			return i;
2270
2271	return -1;
2272}
2273
2274/*
2275 * Basic iterator support. Return the next active range of PFNs for a node
2276 * Note: nid == MAX_NUMNODES returns next region regardles of node
2277 */
2278static int __init next_active_region_index_in_nid(int index, int nid)
2279{
2280	for (index = index + 1; index < nr_nodemap_entries; index++)
2281		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2282			return index;
2283
2284	return -1;
2285}
2286
2287#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2288/*
2289 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2290 * Architectures may implement their own version but if add_active_range()
2291 * was used and there are no special requirements, this is a convenient
2292 * alternative
2293 */
2294int __init early_pfn_to_nid(unsigned long pfn)
2295{
2296	int i;
2297
2298	for (i = 0; i < nr_nodemap_entries; i++) {
2299		unsigned long start_pfn = early_node_map[i].start_pfn;
2300		unsigned long end_pfn = early_node_map[i].end_pfn;
2301
2302		if (start_pfn <= pfn && pfn < end_pfn)
2303			return early_node_map[i].nid;
2304	}
2305
2306	return 0;
2307}
2308#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2309
2310/* Basic iterator support to walk early_node_map[] */
2311#define for_each_active_range_index_in_nid(i, nid) \
2312	for (i = first_active_region_index_in_nid(nid); i != -1; \
2313				i = next_active_region_index_in_nid(i, nid))
2314
2315/**
2316 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2317 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2318 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2319 *
2320 * If an architecture guarantees that all ranges registered with
2321 * add_active_ranges() contain no holes and may be freed, this
2322 * this function may be used instead of calling free_bootmem() manually.
2323 */
2324void __init free_bootmem_with_active_regions(int nid,
2325						unsigned long max_low_pfn)
2326{
2327	int i;
2328
2329	for_each_active_range_index_in_nid(i, nid) {
2330		unsigned long size_pages = 0;
2331		unsigned long end_pfn = early_node_map[i].end_pfn;
2332
2333		if (early_node_map[i].start_pfn >= max_low_pfn)
2334			continue;
2335
2336		if (end_pfn > max_low_pfn)
2337			end_pfn = max_low_pfn;
2338
2339		size_pages = end_pfn - early_node_map[i].start_pfn;
2340		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2341				PFN_PHYS(early_node_map[i].start_pfn),
2342				size_pages << PAGE_SHIFT);
2343	}
2344}
2345
2346/**
2347 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2348 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2349 *
2350 * If an architecture guarantees that all ranges registered with
2351 * add_active_ranges() contain no holes and may be freed, this
2352 * function may be used instead of calling memory_present() manually.
2353 */
2354void __init sparse_memory_present_with_active_regions(int nid)
2355{
2356	int i;
2357
2358	for_each_active_range_index_in_nid(i, nid)
2359		memory_present(early_node_map[i].nid,
2360				early_node_map[i].start_pfn,
2361				early_node_map[i].end_pfn);
2362}
2363
2364/**
2365 * push_node_boundaries - Push node boundaries to at least the requested boundary
2366 * @nid: The nid of the node to push the boundary for
2367 * @start_pfn: The start pfn of the node
2368 * @end_pfn: The end pfn of the node
2369 *
2370 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2371 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2372 * be hotplugged even though no physical memory exists. This function allows
2373 * an arch to push out the node boundaries so mem_map is allocated that can
2374 * be used later.
2375 */
2376#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2377void __init push_node_boundaries(unsigned int nid,
2378		unsigned long start_pfn, unsigned long end_pfn)
2379{
2380	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2381			nid, start_pfn, end_pfn);
2382
2383	/* Initialise the boundary for this node if necessary */
2384	if (node_boundary_end_pfn[nid] == 0)
2385		node_boundary_start_pfn[nid] = -1UL;
2386
2387	/* Update the boundaries */
2388	if (node_boundary_start_pfn[nid] > start_pfn)
2389		node_boundary_start_pfn[nid] = start_pfn;
2390	if (node_boundary_end_pfn[nid] < end_pfn)
2391		node_boundary_end_pfn[nid] = end_pfn;
2392}
2393
2394/* If necessary, push the node boundary out for reserve hotadd */
2395static void __init account_node_boundary(unsigned int nid,
2396		unsigned long *start_pfn, unsigned long *end_pfn)
2397{
2398	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2399			nid, *start_pfn, *end_pfn);
2400
2401	/* Return if boundary information has not been provided */
2402	if (node_boundary_end_pfn[nid] == 0)
2403		return;
2404
2405	/* Check the boundaries and update if necessary */
2406	if (node_boundary_start_pfn[nid] < *start_pfn)
2407		*start_pfn = node_boundary_start_pfn[nid];
2408	if (node_boundary_end_pfn[nid] > *end_pfn)
2409		*end_pfn = node_boundary_end_pfn[nid];
2410}
2411#else
2412void __init push_node_boundaries(unsigned int nid,
2413		unsigned long start_pfn, unsigned long end_pfn) {}
2414
2415static void __init account_node_boundary(unsigned int nid,
2416		unsigned long *start_pfn, unsigned long *end_pfn) {}
2417#endif
2418
2419
2420/**
2421 * get_pfn_range_for_nid - Return the start and end page frames for a node
2422 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2423 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2424 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2425 *
2426 * It returns the start and end page frame of a node based on information
2427 * provided by an arch calling add_active_range(). If called for a node
2428 * with no available memory, a warning is printed and the start and end
2429 * PFNs will be 0.
2430 */
2431void __init get_pfn_range_for_nid(unsigned int nid,
2432			unsigned long *start_pfn, unsigned long *end_pfn)
2433{
2434	int i;
2435	*start_pfn = -1UL;
2436	*end_pfn = 0;
2437
2438	for_each_active_range_index_in_nid(i, nid) {
2439		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2440		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2441	}
2442
2443	if (*start_pfn == -1UL) {
2444		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2445		*start_pfn = 0;
2446	}
2447
2448	/* Push the node boundaries out if requested */
2449	account_node_boundary(nid, start_pfn, end_pfn);
2450}
2451
2452/*
2453 * Return the number of pages a zone spans in a node, including holes
2454 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2455 */
2456unsigned long __init zone_spanned_pages_in_node(int nid,
2457					unsigned long zone_type,
2458					unsigned long *ignored)
2459{
2460	unsigned long node_start_pfn, node_end_pfn;
2461	unsigned long zone_start_pfn, zone_end_pfn;
2462
2463	/* Get the start and end of the node and zone */
2464	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2465	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2466	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2467
2468	/* Check that this node has pages within the zone's required range */
2469	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2470		return 0;
2471
2472	/* Move the zone boundaries inside the node if necessary */
2473	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2474	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2475
2476	/* Return the spanned pages */
2477	return zone_end_pfn - zone_start_pfn;
2478}
2479
2480/*
2481 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2482 * then all holes in the requested range will be accounted for.
2483 */
2484unsigned long __init __absent_pages_in_range(int nid,
2485				unsigned long range_start_pfn,
2486				unsigned long range_end_pfn)
2487{
2488	int i = 0;
2489	unsigned long prev_end_pfn = 0, hole_pages = 0;
2490	unsigned long start_pfn;
2491
2492	/* Find the end_pfn of the first active range of pfns in the node */
2493	i = first_active_region_index_in_nid(nid);
2494	if (i == -1)
2495		return 0;
2496
2497	/* Account for ranges before physical memory on this node */
2498	if (early_node_map[i].start_pfn > range_start_pfn)
2499		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2500
2501	prev_end_pfn = early_node_map[i].start_pfn;
2502
2503	/* Find all holes for the zone within the node */
2504	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2505
2506		/* No need to continue if prev_end_pfn is outside the zone */
2507		if (prev_end_pfn >= range_end_pfn)
2508			break;
2509
2510		/* Make sure the end of the zone is not within the hole */
2511		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2512		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2513
2514		/* Update the hole size cound and move on */
2515		if (start_pfn > range_start_pfn) {
2516			BUG_ON(prev_end_pfn > start_pfn);
2517			hole_pages += start_pfn - prev_end_pfn;
2518		}
2519		prev_end_pfn = early_node_map[i].end_pfn;
2520	}
2521
2522	/* Account for ranges past physical memory on this node */
2523	if (range_end_pfn > prev_end_pfn)
2524		hole_pages += range_end_pfn -
2525				max(range_start_pfn, prev_end_pfn);
2526
2527	return hole_pages;
2528}
2529
2530/**
2531 * absent_pages_in_range - Return number of page frames in holes within a range
2532 * @start_pfn: The start PFN to start searching for holes
2533 * @end_pfn: The end PFN to stop searching for holes
2534 *
2535 * It returns the number of pages frames in memory holes within a range.
2536 */
2537unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2538							unsigned long end_pfn)
2539{
2540	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2541}
2542
2543/* Return the number of page frames in holes in a zone on a node */
2544unsigned long __init zone_absent_pages_in_node(int nid,
2545					unsigned long zone_type,
2546					unsigned long *ignored)
2547{
2548	unsigned long node_start_pfn, node_end_pfn;
2549	unsigned long zone_start_pfn, zone_end_pfn;
2550
2551	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2552	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2553							node_start_pfn);
2554	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2555							node_end_pfn);
2556
2557	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2558}
2559
2560#else
2561static inline unsigned long zone_spanned_pages_in_node(int nid,
2562					unsigned long zone_type,
2563					unsigned long *zones_size)
2564{
2565	return zones_size[zone_type];
2566}
2567
2568static inline unsigned long zone_absent_pages_in_node(int nid,
2569						unsigned long zone_type,
2570						unsigned long *zholes_size)
2571{
2572	if (!zholes_size)
2573		return 0;
2574
2575	return zholes_size[zone_type];
2576}
2577
2578#endif
2579
2580static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2581		unsigned long *zones_size, unsigned long *zholes_size)
2582{
2583	unsigned long realtotalpages, totalpages = 0;
2584	enum zone_type i;
2585
2586	for (i = 0; i < MAX_NR_ZONES; i++)
2587		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2588								zones_size);
2589	pgdat->node_spanned_pages = totalpages;
2590
2591	realtotalpages = totalpages;
2592	for (i = 0; i < MAX_NR_ZONES; i++)
2593		realtotalpages -=
2594			zone_absent_pages_in_node(pgdat->node_id, i,
2595								zholes_size);
2596	pgdat->node_present_pages = realtotalpages;
2597	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2598							realtotalpages);
2599}
2600
2601/*
2602 * Set up the zone data structures:
2603 *   - mark all pages reserved
2604 *   - mark all memory queues empty
2605 *   - clear the memory bitmaps
2606 */
2607static void __meminit free_area_init_core(struct pglist_data *pgdat,
2608		unsigned long *zones_size, unsigned long *zholes_size)
2609{
2610	enum zone_type j;
2611	int nid = pgdat->node_id;
2612	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2613	int ret;
2614
2615	pgdat_resize_init(pgdat);
2616	pgdat->nr_zones = 0;
2617	init_waitqueue_head(&pgdat->kswapd_wait);
2618	pgdat->kswapd_max_order = 0;
2619
2620	for (j = 0; j < MAX_NR_ZONES; j++) {
2621		struct zone *zone = pgdat->node_zones + j;
2622		unsigned long size, realsize, memmap_pages;
2623
2624		size = zone_spanned_pages_in_node(nid, j, zones_size);
2625		realsize = size - zone_absent_pages_in_node(nid, j,
2626								zholes_size);
2627
2628		/*
2629		 * Adjust realsize so that it accounts for how much memory
2630		 * is used by this zone for memmap. This affects the watermark
2631		 * and per-cpu initialisations
2632		 */
2633		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2634		if (realsize >= memmap_pages) {
2635			realsize -= memmap_pages;
2636			printk(KERN_DEBUG
2637				"  %s zone: %lu pages used for memmap\n",
2638				zone_names[j], memmap_pages);
2639		} else
2640			printk(KERN_WARNING
2641				"  %s zone: %lu pages exceeds realsize %lu\n",
2642				zone_names[j], memmap_pages, realsize);
2643
2644		/* Account for reserved DMA pages */
2645		if (j == ZONE_DMA && realsize > dma_reserve) {
2646			realsize -= dma_reserve;
2647			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2648								dma_reserve);
2649		}
2650
2651		if (!is_highmem_idx(j))
2652			nr_kernel_pages += realsize;
2653		nr_all_pages += realsize;
2654
2655		zone->spanned_pages = size;
2656		zone->present_pages = realsize;
2657#ifdef CONFIG_NUMA
2658		zone->node = nid;
2659		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2660						/ 100;
2661		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2662#endif
2663		zone->name = zone_names[j];
2664		spin_lock_init(&zone->lock);
2665		spin_lock_init(&zone->lru_lock);
2666		zone_seqlock_init(zone);
2667		zone->zone_pgdat = pgdat;
2668
2669		zone->prev_priority = DEF_PRIORITY;
2670
2671		zone_pcp_init(zone);
2672		INIT_LIST_HEAD(&zone->active_list);
2673		INIT_LIST_HEAD(&zone->inactive_list);
2674		zone->nr_scan_active = 0;
2675		zone->nr_scan_inactive = 0;
2676		zap_zone_vm_stats(zone);
2677		atomic_set(&zone->reclaim_in_progress, 0);
2678		if (!size)
2679			continue;
2680
2681		ret = init_currently_empty_zone(zone, zone_start_pfn,
2682						size, MEMMAP_EARLY);
2683		BUG_ON(ret);
2684		zone_start_pfn += size;
2685	}
2686}
2687
2688static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2689{
2690	/* Skip empty nodes */
2691	if (!pgdat->node_spanned_pages)
2692		return;
2693
2694#ifdef CONFIG_FLAT_NODE_MEM_MAP
2695	/* ia64 gets its own node_mem_map, before this, without bootmem */
2696	if (!pgdat->node_mem_map) {
2697		unsigned long size, start, end;
2698		struct page *map;
2699
2700		/*
2701		 * The zone's endpoints aren't required to be MAX_ORDER
2702		 * aligned but the node_mem_map endpoints must be in order
2703		 * for the buddy allocator to function correctly.
2704		 */
2705		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2706		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2707		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2708		size =  (end - start) * sizeof(struct page);
2709		map = alloc_remap(pgdat->node_id, size);
2710		if (!map)
2711			map = alloc_bootmem_node(pgdat, size);
2712		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2713	}
2714#ifdef CONFIG_FLATMEM
2715	/*
2716	 * With no DISCONTIG, the global mem_map is just set as node 0's
2717	 */
2718	if (pgdat == NODE_DATA(0)) {
2719		mem_map = NODE_DATA(0)->node_mem_map;
2720#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2721		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2722			mem_map -= pgdat->node_start_pfn;
2723#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2724	}
2725#endif
2726#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2727}
2728
2729void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2730		unsigned long *zones_size, unsigned long node_start_pfn,
2731		unsigned long *zholes_size)
2732{
2733	pgdat->node_id = nid;
2734	pgdat->node_start_pfn = node_start_pfn;
2735	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2736
2737	alloc_node_mem_map(pgdat);
2738
2739	free_area_init_core(pgdat, zones_size, zholes_size);
2740}
2741
2742#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2743/**
2744 * add_active_range - Register a range of PFNs backed by physical memory
2745 * @nid: The node ID the range resides on
2746 * @start_pfn: The start PFN of the available physical memory
2747 * @end_pfn: The end PFN of the available physical memory
2748 *
2749 * These ranges are stored in an early_node_map[] and later used by
2750 * free_area_init_nodes() to calculate zone sizes and holes. If the
2751 * range spans a memory hole, it is up to the architecture to ensure
2752 * the memory is not freed by the bootmem allocator. If possible
2753 * the range being registered will be merged with existing ranges.
2754 */
2755void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2756						unsigned long end_pfn)
2757{
2758	int i;
2759
2760	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2761			  "%d entries of %d used\n",
2762			  nid, start_pfn, end_pfn,
2763			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2764
2765	/* Merge with existing active regions if possible */
2766	for (i = 0; i < nr_nodemap_entries; i++) {
2767		if (early_node_map[i].nid != nid)
2768			continue;
2769
2770		/* Skip if an existing region covers this new one */
2771		if (start_pfn >= early_node_map[i].start_pfn &&
2772				end_pfn <= early_node_map[i].end_pfn)
2773			return;
2774
2775		/* Merge forward if suitable */
2776		if (start_pfn <= early_node_map[i].end_pfn &&
2777				end_pfn > early_node_map[i].end_pfn) {
2778			early_node_map[i].end_pfn = end_pfn;
2779			return;
2780		}
2781
2782		/* Merge backward if suitable */
2783		if (start_pfn < early_node_map[i].end_pfn &&
2784				end_pfn >= early_node_map[i].start_pfn) {
2785			early_node_map[i].start_pfn = start_pfn;
2786			return;
2787		}
2788	}
2789
2790	/* Check that early_node_map is large enough */
2791	if (i >= MAX_ACTIVE_REGIONS) {
2792		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2793							MAX_ACTIVE_REGIONS);
2794		return;
2795	}
2796
2797	early_node_map[i].nid = nid;
2798	early_node_map[i].start_pfn = start_pfn;
2799	early_node_map[i].end_pfn = end_pfn;
2800	nr_nodemap_entries = i + 1;
2801}
2802
2803/**
2804 * shrink_active_range - Shrink an existing registered range of PFNs
2805 * @nid: The node id the range is on that should be shrunk
2806 * @old_end_pfn: The old end PFN of the range
2807 * @new_end_pfn: The new PFN of the range
2808 *
2809 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2810 * The map is kept at the end physical page range that has already been
2811 * registered with add_active_range(). This function allows an arch to shrink
2812 * an existing registered range.
2813 */
2814void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2815						unsigned long new_end_pfn)
2816{
2817	int i;
2818
2819	/* Find the old active region end and shrink */
2820	for_each_active_range_index_in_nid(i, nid)
2821		if (early_node_map[i].end_pfn == old_end_pfn) {
2822			early_node_map[i].end_pfn = new_end_pfn;
2823			break;
2824		}
2825}
2826
2827/**
2828 * remove_all_active_ranges - Remove all currently registered regions
2829 *
2830 * During discovery, it may be found that a table like SRAT is invalid
2831 * and an alternative discovery method must be used. This function removes
2832 * all currently registered regions.
2833 */
2834void __init remove_all_active_ranges(void)
2835{
2836	memset(early_node_map, 0, sizeof(early_node_map));
2837	nr_nodemap_entries = 0;
2838#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2839	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2840	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2841#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2842}
2843
2844/* Compare two active node_active_regions */
2845static int __init cmp_node_active_region(const void *a, const void *b)
2846{
2847	struct node_active_region *arange = (struct node_active_region *)a;
2848	struct node_active_region *brange = (struct node_active_region *)b;
2849
2850	/* Done this way to avoid overflows */
2851	if (arange->start_pfn > brange->start_pfn)
2852		return 1;
2853	if (arange->start_pfn < brange->start_pfn)
2854		return -1;
2855
2856	return 0;
2857}
2858
2859/* sort the node_map by start_pfn */
2860static void __init sort_node_map(void)
2861{
2862	sort(early_node_map, (size_t)nr_nodemap_entries,
2863			sizeof(struct node_active_region),
2864			cmp_node_active_region, NULL);
2865}
2866
2867/* Find the lowest pfn for a node */
2868unsigned long __init find_min_pfn_for_node(unsigned long nid)
2869{
2870	int i;
2871	unsigned long min_pfn = ULONG_MAX;
2872
2873	/* Assuming a sorted map, the first range found has the starting pfn */
2874	for_each_active_range_index_in_nid(i, nid)
2875		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2876
2877	if (min_pfn == ULONG_MAX) {
2878		printk(KERN_WARNING
2879			"Could not find start_pfn for node %lu\n", nid);
2880		return 0;
2881	}
2882
2883	return min_pfn;
2884}
2885
2886/**
2887 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2888 *
2889 * It returns the minimum PFN based on information provided via
2890 * add_active_range().
2891 */
2892unsigned long __init find_min_pfn_with_active_regions(void)
2893{
2894	return find_min_pfn_for_node(MAX_NUMNODES);
2895}
2896
2897/**
2898 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2899 *
2900 * It returns the maximum PFN based on information provided via
2901 * add_active_range().
2902 */
2903unsigned long __init find_max_pfn_with_active_regions(void)
2904{
2905	int i;
2906	unsigned long max_pfn = 0;
2907
2908	for (i = 0; i < nr_nodemap_entries; i++)
2909		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2910
2911	return max_pfn;
2912}
2913
2914/**
2915 * free_area_init_nodes - Initialise all pg_data_t and zone data
2916 * @max_zone_pfn: an array of max PFNs for each zone
2917 *
2918 * This will call free_area_init_node() for each active node in the system.
2919 * Using the page ranges provided by add_active_range(), the size of each
2920 * zone in each node and their holes is calculated. If the maximum PFN
2921 * between two adjacent zones match, it is assumed that the zone is empty.
2922 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2923 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2924 * starts where the previous one ended. For example, ZONE_DMA32 starts
2925 * at arch_max_dma_pfn.
2926 */
2927void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2928{
2929	unsigned long nid;
2930	enum zone_type i;
2931
2932	/* Sort early_node_map as initialisation assumes it is sorted */
2933	sort_node_map();
2934
2935	/* Record where the zone boundaries are */
2936	memset(arch_zone_lowest_possible_pfn, 0,
2937				sizeof(arch_zone_lowest_possible_pfn));
2938	memset(arch_zone_highest_possible_pfn, 0,
2939				sizeof(arch_zone_highest_possible_pfn));
2940	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2941	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2942	for (i = 1; i < MAX_NR_ZONES; i++) {
2943		arch_zone_lowest_possible_pfn[i] =
2944			arch_zone_highest_possible_pfn[i-1];
2945		arch_zone_highest_possible_pfn[i] =
2946			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2947	}
2948
2949	/* Print out the zone ranges */
2950	printk("Zone PFN ranges:\n");
2951	for (i = 0; i < MAX_NR_ZONES; i++)
2952		printk("  %-8s %8lu -> %8lu\n",
2953				zone_names[i],
2954				arch_zone_lowest_possible_pfn[i],
2955				arch_zone_highest_possible_pfn[i]);
2956
2957	/* Print out the early_node_map[] */
2958	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2959	for (i = 0; i < nr_nodemap_entries; i++)
2960		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2961						early_node_map[i].start_pfn,
2962						early_node_map[i].end_pfn);
2963
2964	/* Initialise every node */
2965	for_each_online_node(nid) {
2966		pg_data_t *pgdat = NODE_DATA(nid);
2967		free_area_init_node(nid, pgdat, NULL,
2968				find_min_pfn_for_node(nid), NULL);
2969	}
2970}
2971#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2972
2973/**
2974 * set_dma_reserve - set the specified number of pages reserved in the first zone
2975 * @new_dma_reserve: The number of pages to mark reserved
2976 *
2977 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2978 * In the DMA zone, a significant percentage may be consumed by kernel image
2979 * and other unfreeable allocations which can skew the watermarks badly. This
2980 * function may optionally be used to account for unfreeable pages in the
2981 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2982 * smaller per-cpu batchsize.
2983 */
2984void __init set_dma_reserve(unsigned long new_dma_reserve)
2985{
2986	dma_reserve = new_dma_reserve;
2987}
2988
2989#ifndef CONFIG_NEED_MULTIPLE_NODES
2990static bootmem_data_t contig_bootmem_data;
2991struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2992
2993EXPORT_SYMBOL(contig_page_data);
2994#endif
2995
2996void __init free_area_init(unsigned long *zones_size)
2997{
2998	free_area_init_node(0, NODE_DATA(0), zones_size,
2999			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3000}
3001
3002static int page_alloc_cpu_notify(struct notifier_block *self,
3003				 unsigned long action, void *hcpu)
3004{
3005	int cpu = (unsigned long)hcpu;
3006
3007	if (action == CPU_DEAD) {
3008		local_irq_disable();
3009		__drain_pages(cpu);
3010		vm_events_fold_cpu(cpu);
3011		local_irq_enable();
3012		refresh_cpu_vm_stats(cpu);
3013	}
3014	return NOTIFY_OK;
3015}
3016
3017void __init page_alloc_init(void)
3018{
3019	hotcpu_notifier(page_alloc_cpu_notify, 0);
3020}
3021
3022/*
3023 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3024 *	or min_free_kbytes changes.
3025 */
3026static void calculate_totalreserve_pages(void)
3027{
3028	struct pglist_data *pgdat;
3029	unsigned long reserve_pages = 0;
3030	enum zone_type i, j;
3031
3032	for_each_online_pgdat(pgdat) {
3033		for (i = 0; i < MAX_NR_ZONES; i++) {
3034			struct zone *zone = pgdat->node_zones + i;
3035			unsigned long max = 0;
3036
3037			/* Find valid and maximum lowmem_reserve in the zone */
3038			for (j = i; j < MAX_NR_ZONES; j++) {
3039				if (zone->lowmem_reserve[j] > max)
3040					max = zone->lowmem_reserve[j];
3041			}
3042
3043			/* we treat pages_high as reserved pages. */
3044			max += zone->pages_high;
3045
3046			if (max > zone->present_pages)
3047				max = zone->present_pages;
3048			reserve_pages += max;
3049		}
3050	}
3051	totalreserve_pages = reserve_pages;
3052}
3053
3054/*
3055 * setup_per_zone_lowmem_reserve - called whenever
3056 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3057 *	has a correct pages reserved value, so an adequate number of
3058 *	pages are left in the zone after a successful __alloc_pages().
3059 */
3060static void setup_per_zone_lowmem_reserve(void)
3061{
3062	struct pglist_data *pgdat;
3063	enum zone_type j, idx;
3064
3065	for_each_online_pgdat(pgdat) {
3066		for (j = 0; j < MAX_NR_ZONES; j++) {
3067			struct zone *zone = pgdat->node_zones + j;
3068			unsigned long present_pages = zone->present_pages;
3069
3070			zone->lowmem_reserve[j] = 0;
3071
3072			idx = j;
3073			while (idx) {
3074				struct zone *lower_zone;
3075
3076				idx--;
3077
3078				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3079					sysctl_lowmem_reserve_ratio[idx] = 1;
3080
3081				lower_zone = pgdat->node_zones + idx;
3082				lower_zone->lowmem_reserve[j] = present_pages /
3083					sysctl_lowmem_reserve_ratio[idx];
3084				present_pages += lower_zone->present_pages;
3085			}
3086		}
3087	}
3088
3089	/* update totalreserve_pages */
3090	calculate_totalreserve_pages();
3091}
3092
3093/**
3094 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3095 *
3096 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3097 * with respect to min_free_kbytes.
3098 */
3099void setup_per_zone_pages_min(void)
3100{
3101	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3102	unsigned long lowmem_pages = 0;
3103	struct zone *zone;
3104	unsigned long flags;
3105
3106	/* Calculate total number of !ZONE_HIGHMEM pages */
3107	for_each_zone(zone) {
3108		if (!is_highmem(zone))
3109			lowmem_pages += zone->present_pages;
3110	}
3111
3112	for_each_zone(zone) {
3113		u64 tmp;
3114
3115		spin_lock_irqsave(&zone->lru_lock, flags);
3116		tmp = (u64)pages_min * zone->present_pages;
3117		do_div(tmp, lowmem_pages);
3118		if (is_highmem(zone)) {
3119			/*
3120			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3121			 * need highmem pages, so cap pages_min to a small
3122			 * value here.
3123			 *
3124			 * The (pages_high-pages_low) and (pages_low-pages_min)
3125			 * deltas controls asynch page reclaim, and so should
3126			 * not be capped for highmem.
3127			 */
3128			int min_pages;
3129
3130			min_pages = zone->present_pages / 1024;
3131			if (min_pages < SWAP_CLUSTER_MAX)
3132				min_pages = SWAP_CLUSTER_MAX;
3133			if (min_pages > 128)
3134				min_pages = 128;
3135			zone->pages_min = min_pages;
3136		} else {
3137			/*
3138			 * If it's a lowmem zone, reserve a number of pages
3139			 * proportionate to the zone's size.
3140			 */
3141			zone->pages_min = tmp;
3142		}
3143
3144		zone->pages_low   = zone->pages_min + (tmp >> 2);
3145		zone->pages_high  = zone->pages_min + (tmp >> 1);
3146		spin_unlock_irqrestore(&zone->lru_lock, flags);
3147	}
3148
3149	/* update totalreserve_pages */
3150	calculate_totalreserve_pages();
3151}
3152
3153/*
3154 * Initialise min_free_kbytes.
3155 *
3156 * For small machines we want it small (128k min).  For large machines
3157 * we want it large (64MB max).  But it is not linear, because network
3158 * bandwidth does not increase linearly with machine size.  We use
3159 *
3160 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3161 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3162 *
3163 * which yields
3164 *
3165 * 16MB:	512k
3166 * 32MB:	724k
3167 * 64MB:	1024k
3168 * 128MB:	1448k
3169 * 256MB:	2048k
3170 * 512MB:	2896k
3171 * 1024MB:	4096k
3172 * 2048MB:	5792k
3173 * 4096MB:	8192k
3174 * 8192MB:	11584k
3175 * 16384MB:	16384k
3176 */
3177static int __init init_per_zone_pages_min(void)
3178{
3179	unsigned long lowmem_kbytes;
3180
3181	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3182
3183	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3184	if (min_free_kbytes < 128)
3185		min_free_kbytes = 128;
3186	if (min_free_kbytes > 65536)
3187		min_free_kbytes = 65536;
3188	setup_per_zone_pages_min();
3189	setup_per_zone_lowmem_reserve();
3190	return 0;
3191}
3192module_init(init_per_zone_pages_min)
3193
3194/*
3195 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3196 *	that we can call two helper functions whenever min_free_kbytes
3197 *	changes.
3198 */
3199int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3200	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3201{
3202	proc_dointvec(table, write, file, buffer, length, ppos);
3203	setup_per_zone_pages_min();
3204	return 0;
3205}
3206
3207#ifdef CONFIG_NUMA
3208int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3209	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3210{
3211	struct zone *zone;
3212	int rc;
3213
3214	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3215	if (rc)
3216		return rc;
3217
3218	for_each_zone(zone)
3219		zone->min_unmapped_pages = (zone->present_pages *
3220				sysctl_min_unmapped_ratio) / 100;
3221	return 0;
3222}
3223
3224int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3225	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3226{
3227	struct zone *zone;
3228	int rc;
3229
3230	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3231	if (rc)
3232		return rc;
3233
3234	for_each_zone(zone)
3235		zone->min_slab_pages = (zone->present_pages *
3236				sysctl_min_slab_ratio) / 100;
3237	return 0;
3238}
3239#endif
3240
3241/*
3242 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3243 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3244 *	whenever sysctl_lowmem_reserve_ratio changes.
3245 *
3246 * The reserve ratio obviously has absolutely no relation with the
3247 * pages_min watermarks. The lowmem reserve ratio can only make sense
3248 * if in function of the boot time zone sizes.
3249 */
3250int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3251	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3252{
3253	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3254	setup_per_zone_lowmem_reserve();
3255	return 0;
3256}
3257
3258/*
3259 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3260 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3261 * can have before it gets flushed back to buddy allocator.
3262 */
3263
3264int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3265	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3266{
3267	struct zone *zone;
3268	unsigned int cpu;
3269	int ret;
3270
3271	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3272	if (!write || (ret == -EINVAL))
3273		return ret;
3274	for_each_zone(zone) {
3275		for_each_online_cpu(cpu) {
3276			unsigned long  high;
3277			high = zone->present_pages / percpu_pagelist_fraction;
3278			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3279		}
3280	}
3281	return 0;
3282}
3283
3284int hashdist = HASHDIST_DEFAULT;
3285
3286#ifdef CONFIG_NUMA
3287static int __init set_hashdist(char *str)
3288{
3289	if (!str)
3290		return 0;
3291	hashdist = simple_strtoul(str, &str, 0);
3292	return 1;
3293}
3294__setup("hashdist=", set_hashdist);
3295#endif
3296
3297/*
3298 * allocate a large system hash table from bootmem
3299 * - it is assumed that the hash table must contain an exact power-of-2
3300 *   quantity of entries
3301 * - limit is the number of hash buckets, not the total allocation size
3302 */
3303void *__init alloc_large_system_hash(const char *tablename,
3304				     unsigned long bucketsize,
3305				     unsigned long numentries,
3306				     int scale,
3307				     int flags,
3308				     unsigned int *_hash_shift,
3309				     unsigned int *_hash_mask,
3310				     unsigned long limit)
3311{
3312	unsigned long long max = limit;
3313	unsigned long log2qty, size;
3314	void *table = NULL;
3315
3316	/* allow the kernel cmdline to have a say */
3317	if (!numentries) {
3318		/* round applicable memory size up to nearest megabyte */
3319		numentries = nr_kernel_pages;
3320		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3321		numentries >>= 20 - PAGE_SHIFT;
3322		numentries <<= 20 - PAGE_SHIFT;
3323
3324		/* limit to 1 bucket per 2^scale bytes of low memory */
3325		if (scale > PAGE_SHIFT)
3326			numentries >>= (scale - PAGE_SHIFT);
3327		else
3328			numentries <<= (PAGE_SHIFT - scale);
3329
3330		/* Make sure we've got at least a 0-order allocation.. */
3331		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3332			numentries = PAGE_SIZE / bucketsize;
3333	}
3334	numentries = roundup_pow_of_two(numentries);
3335
3336	/* limit allocation size to 1/16 total memory by default */
3337	if (max == 0) {
3338		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3339		do_div(max, bucketsize);
3340	}
3341
3342	if (numentries > max)
3343		numentries = max;
3344
3345	log2qty = ilog2(numentries);
3346
3347	do {
3348		size = bucketsize << log2qty;
3349		if (flags & HASH_EARLY)
3350			table = alloc_bootmem(size);
3351		else if (hashdist)
3352			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3353		else {
3354			unsigned long order;
3355			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3356				;
3357			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3358		}
3359	} while (!table && size > PAGE_SIZE && --log2qty);
3360
3361	if (!table)
3362		panic("Failed to allocate %s hash table\n", tablename);
3363
3364	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3365	       tablename,
3366	       (1U << log2qty),
3367	       ilog2(size) - PAGE_SHIFT,
3368	       size);
3369
3370	if (_hash_shift)
3371		*_hash_shift = log2qty;
3372	if (_hash_mask)
3373		*_hash_mask = (1 << log2qty) - 1;
3374
3375	return table;
3376}
3377
3378#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3379struct page *pfn_to_page(unsigned long pfn)
3380{
3381	return __pfn_to_page(pfn);
3382}
3383unsigned long page_to_pfn(struct page *page)
3384{
3385	return __page_to_pfn(page);
3386}
3387EXPORT_SYMBOL(pfn_to_page);
3388EXPORT_SYMBOL(page_to_pfn);
3389#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3390
3391#if MAX_NUMNODES > 1
3392/*
3393 * Find the highest possible node id.
3394 */
3395int highest_possible_node_id(void)
3396{
3397	unsigned int node;
3398	unsigned int highest = 0;
3399
3400	for_each_node_mask(node, node_possible_map)
3401		highest = node;
3402	return highest;
3403}
3404EXPORT_SYMBOL(highest_possible_node_id);
3405#endif
3406