page_alloc.c revision d936cf9b39b06c8d2e0d7fb5e7b4f176e18dec69
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52#include "internal.h"
53
54/*
55 * Array of node states.
56 */
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58	[N_POSSIBLE] = NODE_MASK_ALL,
59	[N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65	[N_CPU] = { { [0] = 1UL } },
66#endif	/* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
70unsigned long totalram_pages __read_mostly;
71unsigned long totalreserve_pages __read_mostly;
72unsigned long highest_memmap_pfn __read_mostly;
73int percpu_pagelist_fraction;
74
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
79static void __free_pages_ok(struct page *page, unsigned int order);
80
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 *	1G machine -> (16M dma, 784M normal, 224M high)
85 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93#ifdef CONFIG_ZONE_DMA
94	 256,
95#endif
96#ifdef CONFIG_ZONE_DMA32
97	 256,
98#endif
99#ifdef CONFIG_HIGHMEM
100	 32,
101#endif
102	 32,
103};
104
105EXPORT_SYMBOL(totalram_pages);
106
107static char * const zone_names[MAX_NR_ZONES] = {
108#ifdef CONFIG_ZONE_DMA
109	 "DMA",
110#endif
111#ifdef CONFIG_ZONE_DMA32
112	 "DMA32",
113#endif
114	 "Normal",
115#ifdef CONFIG_HIGHMEM
116	 "HighMem",
117#endif
118	 "Movable",
119};
120
121int min_free_kbytes = 1024;
122
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
125static unsigned long __meminitdata dma_reserve;
126
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128  /*
129   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130   * ranges of memory (RAM) that may be registered with add_active_range().
131   * Ranges passed to add_active_range() will be merged if possible
132   * so the number of times add_active_range() can be called is
133   * related to the number of nodes and the number of holes
134   */
135  #ifdef CONFIG_MAX_ACTIVE_REGIONS
136    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138  #else
139    #if MAX_NUMNODES >= 32
140      /* If there can be many nodes, allow up to 50 holes per node */
141      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142    #else
143      /* By default, allow up to 256 distinct regions */
144      #define MAX_ACTIVE_REGIONS 256
145    #endif
146  #endif
147
148  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149  static int __meminitdata nr_nodemap_entries;
150  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156  static unsigned long __initdata required_kernelcore;
157  static unsigned long __initdata required_movablecore;
158  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161  int movable_zone;
162  EXPORT_SYMBOL(movable_zone);
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
170int page_group_by_mobility_disabled __read_mostly;
171
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174	set_pageblock_flags_group(page, (unsigned long)migratetype,
175					PB_migrate, PB_migrate_end);
176}
177
178#ifdef CONFIG_DEBUG_VM
179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180{
181	int ret = 0;
182	unsigned seq;
183	unsigned long pfn = page_to_pfn(page);
184
185	do {
186		seq = zone_span_seqbegin(zone);
187		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188			ret = 1;
189		else if (pfn < zone->zone_start_pfn)
190			ret = 1;
191	} while (zone_span_seqretry(zone, seq));
192
193	return ret;
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
198	if (!pfn_valid_within(page_to_pfn(page)))
199		return 0;
200	if (zone != page_zone(page))
201		return 0;
202
203	return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210	if (page_outside_zone_boundaries(zone, page))
211		return 1;
212	if (!page_is_consistent(zone, page))
213		return 1;
214
215	return 0;
216}
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220	return 0;
221}
222#endif
223
224static void bad_page(struct page *page)
225{
226	static unsigned long resume;
227	static unsigned long nr_shown;
228	static unsigned long nr_unshown;
229
230	/*
231	 * Allow a burst of 60 reports, then keep quiet for that minute;
232	 * or allow a steady drip of one report per second.
233	 */
234	if (nr_shown == 60) {
235		if (time_before(jiffies, resume)) {
236			nr_unshown++;
237			goto out;
238		}
239		if (nr_unshown) {
240			printk(KERN_EMERG
241				"Bad page state: %lu messages suppressed\n",
242				nr_unshown);
243			nr_unshown = 0;
244		}
245		nr_shown = 0;
246	}
247	if (nr_shown++ == 0)
248		resume = jiffies + 60 * HZ;
249
250	printk(KERN_EMERG "Bad page state in process %s  pfn:%05lx\n",
251		current->comm, page_to_pfn(page));
252	printk(KERN_EMERG
253		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254		page, (void *)page->flags, page_count(page),
255		page_mapcount(page), page->mapping, page->index);
256	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
257
258	dump_stack();
259out:
260	/* Leave bad fields for debug, except PageBuddy could make trouble */
261	__ClearPageBuddy(page);
262	add_taint(TAINT_BAD_PAGE);
263}
264
265/*
266 * Higher-order pages are called "compound pages".  They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set.  All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function.  Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
278 */
279
280static void free_compound_page(struct page *page)
281{
282	__free_pages_ok(page, compound_order(page));
283}
284
285void prep_compound_page(struct page *page, unsigned long order)
286{
287	int i;
288	int nr_pages = 1 << order;
289
290	set_compound_page_dtor(page, free_compound_page);
291	set_compound_order(page, order);
292	__SetPageHead(page);
293	for (i = 1; i < nr_pages; i++) {
294		struct page *p = page + i;
295
296		__SetPageTail(p);
297		p->first_page = page;
298	}
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
303{
304	int i;
305	int nr_pages = 1 << order;
306	struct page *p = page + 1;
307
308	set_compound_page_dtor(page, free_compound_page);
309	set_compound_order(page, order);
310	__SetPageHead(page);
311	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312		__SetPageTail(p);
313		p->first_page = page;
314	}
315}
316#endif
317
318static int destroy_compound_page(struct page *page, unsigned long order)
319{
320	int i;
321	int nr_pages = 1 << order;
322	int bad = 0;
323
324	if (unlikely(compound_order(page) != order) ||
325	    unlikely(!PageHead(page))) {
326		bad_page(page);
327		bad++;
328	}
329
330	__ClearPageHead(page);
331
332	for (i = 1; i < nr_pages; i++) {
333		struct page *p = page + i;
334
335		if (unlikely(!PageTail(p) | (p->first_page != page))) {
336			bad_page(page);
337			bad++;
338		}
339		__ClearPageTail(p);
340	}
341
342	return bad;
343}
344
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347	int i;
348
349	/*
350	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351	 * and __GFP_HIGHMEM from hard or soft interrupt context.
352	 */
353	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354	for (i = 0; i < (1 << order); i++)
355		clear_highpage(page + i);
356}
357
358static inline void set_page_order(struct page *page, int order)
359{
360	set_page_private(page, order);
361	__SetPageBuddy(page);
362}
363
364static inline void rmv_page_order(struct page *page)
365{
366	__ClearPageBuddy(page);
367	set_page_private(page, 0);
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 *     B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 *     P = B & ~(1 << O)
384 *
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390	unsigned long buddy_idx = page_idx ^ (1 << order);
391
392	return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398	return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
411 *
412 * For recording page's order, we use page_private(page).
413 */
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415								int order)
416{
417	if (!pfn_valid_within(page_to_pfn(buddy)))
418		return 0;
419
420	if (page_zone_id(page) != page_zone_id(buddy))
421		return 0;
422
423	if (PageBuddy(buddy) && page_order(buddy) == order) {
424		BUG_ON(page_count(buddy) != 0);
425		return 1;
426	}
427	return 0;
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other.  That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
454static inline void __free_one_page(struct page *page,
455		struct zone *zone, unsigned int order)
456{
457	unsigned long page_idx;
458	int order_size = 1 << order;
459	int migratetype = get_pageblock_migratetype(page);
460
461	if (unlikely(PageCompound(page)))
462		if (unlikely(destroy_compound_page(page, order)))
463			return;
464
465	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
467	VM_BUG_ON(page_idx & (order_size - 1));
468	VM_BUG_ON(bad_range(zone, page));
469
470	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
471	while (order < MAX_ORDER-1) {
472		unsigned long combined_idx;
473		struct page *buddy;
474
475		buddy = __page_find_buddy(page, page_idx, order);
476		if (!page_is_buddy(page, buddy, order))
477			break;
478
479		/* Our buddy is free, merge with it and move up one order. */
480		list_del(&buddy->lru);
481		zone->free_area[order].nr_free--;
482		rmv_page_order(buddy);
483		combined_idx = __find_combined_index(page_idx, order);
484		page = page + (combined_idx - page_idx);
485		page_idx = combined_idx;
486		order++;
487	}
488	set_page_order(page, order);
489	list_add(&page->lru,
490		&zone->free_area[order].free_list[migratetype]);
491	zone->free_area[order].nr_free++;
492}
493
494static inline int free_pages_check(struct page *page)
495{
496	free_page_mlock(page);
497	if (unlikely(page_mapcount(page) |
498		(page->mapping != NULL)  |
499		(page_count(page) != 0)  |
500		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501		bad_page(page);
502		return 1;
503	}
504	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506	return 0;
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
520static void free_pages_bulk(struct zone *zone, int count,
521					struct list_head *list, int order)
522{
523	spin_lock(&zone->lock);
524	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525	zone->pages_scanned = 0;
526	while (count--) {
527		struct page *page;
528
529		VM_BUG_ON(list_empty(list));
530		page = list_entry(list->prev, struct page, lru);
531		/* have to delete it as __free_one_page list manipulates */
532		list_del(&page->lru);
533		__free_one_page(page, zone, order);
534	}
535	spin_unlock(&zone->lock);
536}
537
538static void free_one_page(struct zone *zone, struct page *page, int order)
539{
540	spin_lock(&zone->lock);
541	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542	zone->pages_scanned = 0;
543	__free_one_page(page, zone, order);
544	spin_unlock(&zone->lock);
545}
546
547static void __free_pages_ok(struct page *page, unsigned int order)
548{
549	unsigned long flags;
550	int i;
551	int bad = 0;
552
553	for (i = 0 ; i < (1 << order) ; ++i)
554		bad += free_pages_check(page + i);
555	if (bad)
556		return;
557
558	if (!PageHighMem(page)) {
559		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
560		debug_check_no_obj_freed(page_address(page),
561					   PAGE_SIZE << order);
562	}
563	arch_free_page(page, order);
564	kernel_map_pages(page, 1 << order, 0);
565
566	local_irq_save(flags);
567	__count_vm_events(PGFREE, 1 << order);
568	free_one_page(page_zone(page), page, order);
569	local_irq_restore(flags);
570}
571
572/*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
575void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
576{
577	if (order == 0) {
578		__ClearPageReserved(page);
579		set_page_count(page, 0);
580		set_page_refcounted(page);
581		__free_page(page);
582	} else {
583		int loop;
584
585		prefetchw(page);
586		for (loop = 0; loop < BITS_PER_LONG; loop++) {
587			struct page *p = &page[loop];
588
589			if (loop + 1 < BITS_PER_LONG)
590				prefetchw(p + 1);
591			__ClearPageReserved(p);
592			set_page_count(p, 0);
593		}
594
595		set_page_refcounted(page);
596		__free_pages(page, order);
597	}
598}
599
600
601/*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
615static inline void expand(struct zone *zone, struct page *page,
616	int low, int high, struct free_area *area,
617	int migratetype)
618{
619	unsigned long size = 1 << high;
620
621	while (high > low) {
622		area--;
623		high--;
624		size >>= 1;
625		VM_BUG_ON(bad_range(zone, &page[size]));
626		list_add(&page[size].lru, &area->free_list[migratetype]);
627		area->nr_free++;
628		set_page_order(&page[size], high);
629	}
630}
631
632/*
633 * This page is about to be returned from the page allocator
634 */
635static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
636{
637	if (unlikely(page_mapcount(page) |
638		(page->mapping != NULL)  |
639		(page_count(page) != 0)  |
640		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
641		bad_page(page);
642		return 1;
643	}
644
645	set_page_private(page, 0);
646	set_page_refcounted(page);
647
648	arch_alloc_page(page, order);
649	kernel_map_pages(page, 1 << order, 1);
650
651	if (gfp_flags & __GFP_ZERO)
652		prep_zero_page(page, order, gfp_flags);
653
654	if (order && (gfp_flags & __GFP_COMP))
655		prep_compound_page(page, order);
656
657	return 0;
658}
659
660/*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
664static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665						int migratetype)
666{
667	unsigned int current_order;
668	struct free_area * area;
669	struct page *page;
670
671	/* Find a page of the appropriate size in the preferred list */
672	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673		area = &(zone->free_area[current_order]);
674		if (list_empty(&area->free_list[migratetype]))
675			continue;
676
677		page = list_entry(area->free_list[migratetype].next,
678							struct page, lru);
679		list_del(&page->lru);
680		rmv_page_order(page);
681		area->nr_free--;
682		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683		expand(zone, page, order, current_order, area, migratetype);
684		return page;
685	}
686
687	return NULL;
688}
689
690
691/*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
696	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
697	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
698	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
700};
701
702/*
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned on a pageblock
705 * boundary. If alignment is required, use move_freepages_block()
706 */
707static int move_freepages(struct zone *zone,
708			  struct page *start_page, struct page *end_page,
709			  int migratetype)
710{
711	struct page *page;
712	unsigned long order;
713	int pages_moved = 0;
714
715#ifndef CONFIG_HOLES_IN_ZONE
716	/*
717	 * page_zone is not safe to call in this context when
718	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719	 * anyway as we check zone boundaries in move_freepages_block().
720	 * Remove at a later date when no bug reports exist related to
721	 * grouping pages by mobility
722	 */
723	BUG_ON(page_zone(start_page) != page_zone(end_page));
724#endif
725
726	for (page = start_page; page <= end_page;) {
727		/* Make sure we are not inadvertently changing nodes */
728		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729
730		if (!pfn_valid_within(page_to_pfn(page))) {
731			page++;
732			continue;
733		}
734
735		if (!PageBuddy(page)) {
736			page++;
737			continue;
738		}
739
740		order = page_order(page);
741		list_del(&page->lru);
742		list_add(&page->lru,
743			&zone->free_area[order].free_list[migratetype]);
744		page += 1 << order;
745		pages_moved += 1 << order;
746	}
747
748	return pages_moved;
749}
750
751static int move_freepages_block(struct zone *zone, struct page *page,
752				int migratetype)
753{
754	unsigned long start_pfn, end_pfn;
755	struct page *start_page, *end_page;
756
757	start_pfn = page_to_pfn(page);
758	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
759	start_page = pfn_to_page(start_pfn);
760	end_page = start_page + pageblock_nr_pages - 1;
761	end_pfn = start_pfn + pageblock_nr_pages - 1;
762
763	/* Do not cross zone boundaries */
764	if (start_pfn < zone->zone_start_pfn)
765		start_page = page;
766	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767		return 0;
768
769	return move_freepages(zone, start_page, end_page, migratetype);
770}
771
772/* Remove an element from the buddy allocator from the fallback list */
773static struct page *__rmqueue_fallback(struct zone *zone, int order,
774						int start_migratetype)
775{
776	struct free_area * area;
777	int current_order;
778	struct page *page;
779	int migratetype, i;
780
781	/* Find the largest possible block of pages in the other list */
782	for (current_order = MAX_ORDER-1; current_order >= order;
783						--current_order) {
784		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785			migratetype = fallbacks[start_migratetype][i];
786
787			/* MIGRATE_RESERVE handled later if necessary */
788			if (migratetype == MIGRATE_RESERVE)
789				continue;
790
791			area = &(zone->free_area[current_order]);
792			if (list_empty(&area->free_list[migratetype]))
793				continue;
794
795			page = list_entry(area->free_list[migratetype].next,
796					struct page, lru);
797			area->nr_free--;
798
799			/*
800			 * If breaking a large block of pages, move all free
801			 * pages to the preferred allocation list. If falling
802			 * back for a reclaimable kernel allocation, be more
803			 * agressive about taking ownership of free pages
804			 */
805			if (unlikely(current_order >= (pageblock_order >> 1)) ||
806					start_migratetype == MIGRATE_RECLAIMABLE) {
807				unsigned long pages;
808				pages = move_freepages_block(zone, page,
809								start_migratetype);
810
811				/* Claim the whole block if over half of it is free */
812				if (pages >= (1 << (pageblock_order-1)))
813					set_pageblock_migratetype(page,
814								start_migratetype);
815
816				migratetype = start_migratetype;
817			}
818
819			/* Remove the page from the freelists */
820			list_del(&page->lru);
821			rmv_page_order(page);
822			__mod_zone_page_state(zone, NR_FREE_PAGES,
823							-(1UL << order));
824
825			if (current_order == pageblock_order)
826				set_pageblock_migratetype(page,
827							start_migratetype);
828
829			expand(zone, page, order, current_order, area, migratetype);
830			return page;
831		}
832	}
833
834	/* Use MIGRATE_RESERVE rather than fail an allocation */
835	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
836}
837
838/*
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
842static struct page *__rmqueue(struct zone *zone, unsigned int order,
843						int migratetype)
844{
845	struct page *page;
846
847	page = __rmqueue_smallest(zone, order, migratetype);
848
849	if (unlikely(!page))
850		page = __rmqueue_fallback(zone, order, migratetype);
851
852	return page;
853}
854
855/*
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency.  Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
859 */
860static int rmqueue_bulk(struct zone *zone, unsigned int order,
861			unsigned long count, struct list_head *list,
862			int migratetype)
863{
864	int i;
865
866	spin_lock(&zone->lock);
867	for (i = 0; i < count; ++i) {
868		struct page *page = __rmqueue(zone, order, migratetype);
869		if (unlikely(page == NULL))
870			break;
871
872		/*
873		 * Split buddy pages returned by expand() are received here
874		 * in physical page order. The page is added to the callers and
875		 * list and the list head then moves forward. From the callers
876		 * perspective, the linked list is ordered by page number in
877		 * some conditions. This is useful for IO devices that can
878		 * merge IO requests if the physical pages are ordered
879		 * properly.
880		 */
881		list_add(&page->lru, list);
882		set_page_private(page, migratetype);
883		list = &page->lru;
884	}
885	spin_unlock(&zone->lock);
886	return i;
887}
888
889#ifdef CONFIG_NUMA
890/*
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
894 *
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
897 */
898void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
899{
900	unsigned long flags;
901	int to_drain;
902
903	local_irq_save(flags);
904	if (pcp->count >= pcp->batch)
905		to_drain = pcp->batch;
906	else
907		to_drain = pcp->count;
908	free_pages_bulk(zone, to_drain, &pcp->list, 0);
909	pcp->count -= to_drain;
910	local_irq_restore(flags);
911}
912#endif
913
914/*
915 * Drain pages of the indicated processor.
916 *
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
920 */
921static void drain_pages(unsigned int cpu)
922{
923	unsigned long flags;
924	struct zone *zone;
925
926	for_each_zone(zone) {
927		struct per_cpu_pageset *pset;
928		struct per_cpu_pages *pcp;
929
930		if (!populated_zone(zone))
931			continue;
932
933		pset = zone_pcp(zone, cpu);
934
935		pcp = &pset->pcp;
936		local_irq_save(flags);
937		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
938		pcp->count = 0;
939		local_irq_restore(flags);
940	}
941}
942
943/*
944 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
945 */
946void drain_local_pages(void *arg)
947{
948	drain_pages(smp_processor_id());
949}
950
951/*
952 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
953 */
954void drain_all_pages(void)
955{
956	on_each_cpu(drain_local_pages, NULL, 1);
957}
958
959#ifdef CONFIG_HIBERNATION
960
961void mark_free_pages(struct zone *zone)
962{
963	unsigned long pfn, max_zone_pfn;
964	unsigned long flags;
965	int order, t;
966	struct list_head *curr;
967
968	if (!zone->spanned_pages)
969		return;
970
971	spin_lock_irqsave(&zone->lock, flags);
972
973	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
974	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
975		if (pfn_valid(pfn)) {
976			struct page *page = pfn_to_page(pfn);
977
978			if (!swsusp_page_is_forbidden(page))
979				swsusp_unset_page_free(page);
980		}
981
982	for_each_migratetype_order(order, t) {
983		list_for_each(curr, &zone->free_area[order].free_list[t]) {
984			unsigned long i;
985
986			pfn = page_to_pfn(list_entry(curr, struct page, lru));
987			for (i = 0; i < (1UL << order); i++)
988				swsusp_set_page_free(pfn_to_page(pfn + i));
989		}
990	}
991	spin_unlock_irqrestore(&zone->lock, flags);
992}
993#endif /* CONFIG_PM */
994
995/*
996 * Free a 0-order page
997 */
998static void free_hot_cold_page(struct page *page, int cold)
999{
1000	struct zone *zone = page_zone(page);
1001	struct per_cpu_pages *pcp;
1002	unsigned long flags;
1003
1004	if (PageAnon(page))
1005		page->mapping = NULL;
1006	if (free_pages_check(page))
1007		return;
1008
1009	if (!PageHighMem(page)) {
1010		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1011		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1012	}
1013	arch_free_page(page, 0);
1014	kernel_map_pages(page, 1, 0);
1015
1016	pcp = &zone_pcp(zone, get_cpu())->pcp;
1017	local_irq_save(flags);
1018	__count_vm_event(PGFREE);
1019	if (cold)
1020		list_add_tail(&page->lru, &pcp->list);
1021	else
1022		list_add(&page->lru, &pcp->list);
1023	set_page_private(page, get_pageblock_migratetype(page));
1024	pcp->count++;
1025	if (pcp->count >= pcp->high) {
1026		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1027		pcp->count -= pcp->batch;
1028	}
1029	local_irq_restore(flags);
1030	put_cpu();
1031}
1032
1033void free_hot_page(struct page *page)
1034{
1035	free_hot_cold_page(page, 0);
1036}
1037
1038void free_cold_page(struct page *page)
1039{
1040	free_hot_cold_page(page, 1);
1041}
1042
1043/*
1044 * split_page takes a non-compound higher-order page, and splits it into
1045 * n (1<<order) sub-pages: page[0..n]
1046 * Each sub-page must be freed individually.
1047 *
1048 * Note: this is probably too low level an operation for use in drivers.
1049 * Please consult with lkml before using this in your driver.
1050 */
1051void split_page(struct page *page, unsigned int order)
1052{
1053	int i;
1054
1055	VM_BUG_ON(PageCompound(page));
1056	VM_BUG_ON(!page_count(page));
1057	for (i = 1; i < (1 << order); i++)
1058		set_page_refcounted(page + i);
1059}
1060
1061/*
1062 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1063 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1064 * or two.
1065 */
1066static struct page *buffered_rmqueue(struct zone *preferred_zone,
1067			struct zone *zone, int order, gfp_t gfp_flags)
1068{
1069	unsigned long flags;
1070	struct page *page;
1071	int cold = !!(gfp_flags & __GFP_COLD);
1072	int cpu;
1073	int migratetype = allocflags_to_migratetype(gfp_flags);
1074
1075again:
1076	cpu  = get_cpu();
1077	if (likely(order == 0)) {
1078		struct per_cpu_pages *pcp;
1079
1080		pcp = &zone_pcp(zone, cpu)->pcp;
1081		local_irq_save(flags);
1082		if (!pcp->count) {
1083			pcp->count = rmqueue_bulk(zone, 0,
1084					pcp->batch, &pcp->list, migratetype);
1085			if (unlikely(!pcp->count))
1086				goto failed;
1087		}
1088
1089		/* Find a page of the appropriate migrate type */
1090		if (cold) {
1091			list_for_each_entry_reverse(page, &pcp->list, lru)
1092				if (page_private(page) == migratetype)
1093					break;
1094		} else {
1095			list_for_each_entry(page, &pcp->list, lru)
1096				if (page_private(page) == migratetype)
1097					break;
1098		}
1099
1100		/* Allocate more to the pcp list if necessary */
1101		if (unlikely(&page->lru == &pcp->list)) {
1102			pcp->count += rmqueue_bulk(zone, 0,
1103					pcp->batch, &pcp->list, migratetype);
1104			page = list_entry(pcp->list.next, struct page, lru);
1105		}
1106
1107		list_del(&page->lru);
1108		pcp->count--;
1109	} else {
1110		spin_lock_irqsave(&zone->lock, flags);
1111		page = __rmqueue(zone, order, migratetype);
1112		spin_unlock(&zone->lock);
1113		if (!page)
1114			goto failed;
1115	}
1116
1117	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1118	zone_statistics(preferred_zone, zone);
1119	local_irq_restore(flags);
1120	put_cpu();
1121
1122	VM_BUG_ON(bad_range(zone, page));
1123	if (prep_new_page(page, order, gfp_flags))
1124		goto again;
1125	return page;
1126
1127failed:
1128	local_irq_restore(flags);
1129	put_cpu();
1130	return NULL;
1131}
1132
1133#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1134#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1135#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1136#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1137#define ALLOC_HARDER		0x10 /* try to alloc harder */
1138#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1139#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1140
1141#ifdef CONFIG_FAIL_PAGE_ALLOC
1142
1143static struct fail_page_alloc_attr {
1144	struct fault_attr attr;
1145
1146	u32 ignore_gfp_highmem;
1147	u32 ignore_gfp_wait;
1148	u32 min_order;
1149
1150#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1151
1152	struct dentry *ignore_gfp_highmem_file;
1153	struct dentry *ignore_gfp_wait_file;
1154	struct dentry *min_order_file;
1155
1156#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1157
1158} fail_page_alloc = {
1159	.attr = FAULT_ATTR_INITIALIZER,
1160	.ignore_gfp_wait = 1,
1161	.ignore_gfp_highmem = 1,
1162	.min_order = 1,
1163};
1164
1165static int __init setup_fail_page_alloc(char *str)
1166{
1167	return setup_fault_attr(&fail_page_alloc.attr, str);
1168}
1169__setup("fail_page_alloc=", setup_fail_page_alloc);
1170
1171static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1172{
1173	if (order < fail_page_alloc.min_order)
1174		return 0;
1175	if (gfp_mask & __GFP_NOFAIL)
1176		return 0;
1177	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1178		return 0;
1179	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1180		return 0;
1181
1182	return should_fail(&fail_page_alloc.attr, 1 << order);
1183}
1184
1185#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1186
1187static int __init fail_page_alloc_debugfs(void)
1188{
1189	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1190	struct dentry *dir;
1191	int err;
1192
1193	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1194				       "fail_page_alloc");
1195	if (err)
1196		return err;
1197	dir = fail_page_alloc.attr.dentries.dir;
1198
1199	fail_page_alloc.ignore_gfp_wait_file =
1200		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1201				      &fail_page_alloc.ignore_gfp_wait);
1202
1203	fail_page_alloc.ignore_gfp_highmem_file =
1204		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1205				      &fail_page_alloc.ignore_gfp_highmem);
1206	fail_page_alloc.min_order_file =
1207		debugfs_create_u32("min-order", mode, dir,
1208				   &fail_page_alloc.min_order);
1209
1210	if (!fail_page_alloc.ignore_gfp_wait_file ||
1211            !fail_page_alloc.ignore_gfp_highmem_file ||
1212            !fail_page_alloc.min_order_file) {
1213		err = -ENOMEM;
1214		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1215		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1216		debugfs_remove(fail_page_alloc.min_order_file);
1217		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1218	}
1219
1220	return err;
1221}
1222
1223late_initcall(fail_page_alloc_debugfs);
1224
1225#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1226
1227#else /* CONFIG_FAIL_PAGE_ALLOC */
1228
1229static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1230{
1231	return 0;
1232}
1233
1234#endif /* CONFIG_FAIL_PAGE_ALLOC */
1235
1236/*
1237 * Return 1 if free pages are above 'mark'. This takes into account the order
1238 * of the allocation.
1239 */
1240int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1241		      int classzone_idx, int alloc_flags)
1242{
1243	/* free_pages my go negative - that's OK */
1244	long min = mark;
1245	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1246	int o;
1247
1248	if (alloc_flags & ALLOC_HIGH)
1249		min -= min / 2;
1250	if (alloc_flags & ALLOC_HARDER)
1251		min -= min / 4;
1252
1253	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1254		return 0;
1255	for (o = 0; o < order; o++) {
1256		/* At the next order, this order's pages become unavailable */
1257		free_pages -= z->free_area[o].nr_free << o;
1258
1259		/* Require fewer higher order pages to be free */
1260		min >>= 1;
1261
1262		if (free_pages <= min)
1263			return 0;
1264	}
1265	return 1;
1266}
1267
1268#ifdef CONFIG_NUMA
1269/*
1270 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1271 * skip over zones that are not allowed by the cpuset, or that have
1272 * been recently (in last second) found to be nearly full.  See further
1273 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1274 * that have to skip over a lot of full or unallowed zones.
1275 *
1276 * If the zonelist cache is present in the passed in zonelist, then
1277 * returns a pointer to the allowed node mask (either the current
1278 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1279 *
1280 * If the zonelist cache is not available for this zonelist, does
1281 * nothing and returns NULL.
1282 *
1283 * If the fullzones BITMAP in the zonelist cache is stale (more than
1284 * a second since last zap'd) then we zap it out (clear its bits.)
1285 *
1286 * We hold off even calling zlc_setup, until after we've checked the
1287 * first zone in the zonelist, on the theory that most allocations will
1288 * be satisfied from that first zone, so best to examine that zone as
1289 * quickly as we can.
1290 */
1291static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1292{
1293	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1294	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1295
1296	zlc = zonelist->zlcache_ptr;
1297	if (!zlc)
1298		return NULL;
1299
1300	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1301		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1302		zlc->last_full_zap = jiffies;
1303	}
1304
1305	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1306					&cpuset_current_mems_allowed :
1307					&node_states[N_HIGH_MEMORY];
1308	return allowednodes;
1309}
1310
1311/*
1312 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1313 * if it is worth looking at further for free memory:
1314 *  1) Check that the zone isn't thought to be full (doesn't have its
1315 *     bit set in the zonelist_cache fullzones BITMAP).
1316 *  2) Check that the zones node (obtained from the zonelist_cache
1317 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1318 * Return true (non-zero) if zone is worth looking at further, or
1319 * else return false (zero) if it is not.
1320 *
1321 * This check -ignores- the distinction between various watermarks,
1322 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1323 * found to be full for any variation of these watermarks, it will
1324 * be considered full for up to one second by all requests, unless
1325 * we are so low on memory on all allowed nodes that we are forced
1326 * into the second scan of the zonelist.
1327 *
1328 * In the second scan we ignore this zonelist cache and exactly
1329 * apply the watermarks to all zones, even it is slower to do so.
1330 * We are low on memory in the second scan, and should leave no stone
1331 * unturned looking for a free page.
1332 */
1333static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1334						nodemask_t *allowednodes)
1335{
1336	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1337	int i;				/* index of *z in zonelist zones */
1338	int n;				/* node that zone *z is on */
1339
1340	zlc = zonelist->zlcache_ptr;
1341	if (!zlc)
1342		return 1;
1343
1344	i = z - zonelist->_zonerefs;
1345	n = zlc->z_to_n[i];
1346
1347	/* This zone is worth trying if it is allowed but not full */
1348	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1349}
1350
1351/*
1352 * Given 'z' scanning a zonelist, set the corresponding bit in
1353 * zlc->fullzones, so that subsequent attempts to allocate a page
1354 * from that zone don't waste time re-examining it.
1355 */
1356static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1357{
1358	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1359	int i;				/* index of *z in zonelist zones */
1360
1361	zlc = zonelist->zlcache_ptr;
1362	if (!zlc)
1363		return;
1364
1365	i = z - zonelist->_zonerefs;
1366
1367	set_bit(i, zlc->fullzones);
1368}
1369
1370#else	/* CONFIG_NUMA */
1371
1372static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1373{
1374	return NULL;
1375}
1376
1377static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1378				nodemask_t *allowednodes)
1379{
1380	return 1;
1381}
1382
1383static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1384{
1385}
1386#endif	/* CONFIG_NUMA */
1387
1388/*
1389 * get_page_from_freelist goes through the zonelist trying to allocate
1390 * a page.
1391 */
1392static struct page *
1393get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1394		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1395{
1396	struct zoneref *z;
1397	struct page *page = NULL;
1398	int classzone_idx;
1399	struct zone *zone, *preferred_zone;
1400	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1401	int zlc_active = 0;		/* set if using zonelist_cache */
1402	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1403
1404	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1405							&preferred_zone);
1406	if (!preferred_zone)
1407		return NULL;
1408
1409	classzone_idx = zone_idx(preferred_zone);
1410
1411zonelist_scan:
1412	/*
1413	 * Scan zonelist, looking for a zone with enough free.
1414	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1415	 */
1416	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1417						high_zoneidx, nodemask) {
1418		if (NUMA_BUILD && zlc_active &&
1419			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1420				continue;
1421		if ((alloc_flags & ALLOC_CPUSET) &&
1422			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1423				goto try_next_zone;
1424
1425		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1426			unsigned long mark;
1427			if (alloc_flags & ALLOC_WMARK_MIN)
1428				mark = zone->pages_min;
1429			else if (alloc_flags & ALLOC_WMARK_LOW)
1430				mark = zone->pages_low;
1431			else
1432				mark = zone->pages_high;
1433			if (!zone_watermark_ok(zone, order, mark,
1434				    classzone_idx, alloc_flags)) {
1435				if (!zone_reclaim_mode ||
1436				    !zone_reclaim(zone, gfp_mask, order))
1437					goto this_zone_full;
1438			}
1439		}
1440
1441		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1442		if (page)
1443			break;
1444this_zone_full:
1445		if (NUMA_BUILD)
1446			zlc_mark_zone_full(zonelist, z);
1447try_next_zone:
1448		if (NUMA_BUILD && !did_zlc_setup) {
1449			/* we do zlc_setup after the first zone is tried */
1450			allowednodes = zlc_setup(zonelist, alloc_flags);
1451			zlc_active = 1;
1452			did_zlc_setup = 1;
1453		}
1454	}
1455
1456	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1457		/* Disable zlc cache for second zonelist scan */
1458		zlc_active = 0;
1459		goto zonelist_scan;
1460	}
1461	return page;
1462}
1463
1464/*
1465 * This is the 'heart' of the zoned buddy allocator.
1466 */
1467struct page *
1468__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1469			struct zonelist *zonelist, nodemask_t *nodemask)
1470{
1471	const gfp_t wait = gfp_mask & __GFP_WAIT;
1472	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1473	struct zoneref *z;
1474	struct zone *zone;
1475	struct page *page;
1476	struct reclaim_state reclaim_state;
1477	struct task_struct *p = current;
1478	int do_retry;
1479	int alloc_flags;
1480	unsigned long did_some_progress;
1481	unsigned long pages_reclaimed = 0;
1482
1483	might_sleep_if(wait);
1484
1485	if (should_fail_alloc_page(gfp_mask, order))
1486		return NULL;
1487
1488restart:
1489	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1490
1491	if (unlikely(!z->zone)) {
1492		/*
1493		 * Happens if we have an empty zonelist as a result of
1494		 * GFP_THISNODE being used on a memoryless node
1495		 */
1496		return NULL;
1497	}
1498
1499	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1500			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1501	if (page)
1502		goto got_pg;
1503
1504	/*
1505	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1506	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1507	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1508	 * using a larger set of nodes after it has established that the
1509	 * allowed per node queues are empty and that nodes are
1510	 * over allocated.
1511	 */
1512	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1513		goto nopage;
1514
1515	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1516		wakeup_kswapd(zone, order);
1517
1518	/*
1519	 * OK, we're below the kswapd watermark and have kicked background
1520	 * reclaim. Now things get more complex, so set up alloc_flags according
1521	 * to how we want to proceed.
1522	 *
1523	 * The caller may dip into page reserves a bit more if the caller
1524	 * cannot run direct reclaim, or if the caller has realtime scheduling
1525	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1526	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1527	 */
1528	alloc_flags = ALLOC_WMARK_MIN;
1529	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1530		alloc_flags |= ALLOC_HARDER;
1531	if (gfp_mask & __GFP_HIGH)
1532		alloc_flags |= ALLOC_HIGH;
1533	if (wait)
1534		alloc_flags |= ALLOC_CPUSET;
1535
1536	/*
1537	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1538	 * coming from realtime tasks go deeper into reserves.
1539	 *
1540	 * This is the last chance, in general, before the goto nopage.
1541	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1542	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1543	 */
1544	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1545						high_zoneidx, alloc_flags);
1546	if (page)
1547		goto got_pg;
1548
1549	/* This allocation should allow future memory freeing. */
1550
1551rebalance:
1552	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1553			&& !in_interrupt()) {
1554		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1555nofail_alloc:
1556			/* go through the zonelist yet again, ignoring mins */
1557			page = get_page_from_freelist(gfp_mask, nodemask, order,
1558				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1559			if (page)
1560				goto got_pg;
1561			if (gfp_mask & __GFP_NOFAIL) {
1562				congestion_wait(WRITE, HZ/50);
1563				goto nofail_alloc;
1564			}
1565		}
1566		goto nopage;
1567	}
1568
1569	/* Atomic allocations - we can't balance anything */
1570	if (!wait)
1571		goto nopage;
1572
1573	cond_resched();
1574
1575	/* We now go into synchronous reclaim */
1576	cpuset_memory_pressure_bump();
1577	/*
1578	 * The task's cpuset might have expanded its set of allowable nodes
1579	 */
1580	cpuset_update_task_memory_state();
1581	p->flags |= PF_MEMALLOC;
1582	reclaim_state.reclaimed_slab = 0;
1583	p->reclaim_state = &reclaim_state;
1584
1585	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1586
1587	p->reclaim_state = NULL;
1588	p->flags &= ~PF_MEMALLOC;
1589
1590	cond_resched();
1591
1592	if (order != 0)
1593		drain_all_pages();
1594
1595	if (likely(did_some_progress)) {
1596		page = get_page_from_freelist(gfp_mask, nodemask, order,
1597					zonelist, high_zoneidx, alloc_flags);
1598		if (page)
1599			goto got_pg;
1600	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1601		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1602			schedule_timeout_uninterruptible(1);
1603			goto restart;
1604		}
1605
1606		/*
1607		 * Go through the zonelist yet one more time, keep
1608		 * very high watermark here, this is only to catch
1609		 * a parallel oom killing, we must fail if we're still
1610		 * under heavy pressure.
1611		 */
1612		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1613			order, zonelist, high_zoneidx,
1614			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1615		if (page) {
1616			clear_zonelist_oom(zonelist, gfp_mask);
1617			goto got_pg;
1618		}
1619
1620		/* The OOM killer will not help higher order allocs so fail */
1621		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1622			clear_zonelist_oom(zonelist, gfp_mask);
1623			goto nopage;
1624		}
1625
1626		out_of_memory(zonelist, gfp_mask, order);
1627		clear_zonelist_oom(zonelist, gfp_mask);
1628		goto restart;
1629	}
1630
1631	/*
1632	 * Don't let big-order allocations loop unless the caller explicitly
1633	 * requests that.  Wait for some write requests to complete then retry.
1634	 *
1635	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1636	 * means __GFP_NOFAIL, but that may not be true in other
1637	 * implementations.
1638	 *
1639	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1640	 * specified, then we retry until we no longer reclaim any pages
1641	 * (above), or we've reclaimed an order of pages at least as
1642	 * large as the allocation's order. In both cases, if the
1643	 * allocation still fails, we stop retrying.
1644	 */
1645	pages_reclaimed += did_some_progress;
1646	do_retry = 0;
1647	if (!(gfp_mask & __GFP_NORETRY)) {
1648		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1649			do_retry = 1;
1650		} else {
1651			if (gfp_mask & __GFP_REPEAT &&
1652				pages_reclaimed < (1 << order))
1653					do_retry = 1;
1654		}
1655		if (gfp_mask & __GFP_NOFAIL)
1656			do_retry = 1;
1657	}
1658	if (do_retry) {
1659		congestion_wait(WRITE, HZ/50);
1660		goto rebalance;
1661	}
1662
1663nopage:
1664	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1665		printk(KERN_WARNING "%s: page allocation failure."
1666			" order:%d, mode:0x%x\n",
1667			p->comm, order, gfp_mask);
1668		dump_stack();
1669		show_mem();
1670	}
1671got_pg:
1672	return page;
1673}
1674EXPORT_SYMBOL(__alloc_pages_internal);
1675
1676/*
1677 * Common helper functions.
1678 */
1679unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1680{
1681	struct page * page;
1682	page = alloc_pages(gfp_mask, order);
1683	if (!page)
1684		return 0;
1685	return (unsigned long) page_address(page);
1686}
1687
1688EXPORT_SYMBOL(__get_free_pages);
1689
1690unsigned long get_zeroed_page(gfp_t gfp_mask)
1691{
1692	struct page * page;
1693
1694	/*
1695	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1696	 * a highmem page
1697	 */
1698	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1699
1700	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1701	if (page)
1702		return (unsigned long) page_address(page);
1703	return 0;
1704}
1705
1706EXPORT_SYMBOL(get_zeroed_page);
1707
1708void __pagevec_free(struct pagevec *pvec)
1709{
1710	int i = pagevec_count(pvec);
1711
1712	while (--i >= 0)
1713		free_hot_cold_page(pvec->pages[i], pvec->cold);
1714}
1715
1716void __free_pages(struct page *page, unsigned int order)
1717{
1718	if (put_page_testzero(page)) {
1719		if (order == 0)
1720			free_hot_page(page);
1721		else
1722			__free_pages_ok(page, order);
1723	}
1724}
1725
1726EXPORT_SYMBOL(__free_pages);
1727
1728void free_pages(unsigned long addr, unsigned int order)
1729{
1730	if (addr != 0) {
1731		VM_BUG_ON(!virt_addr_valid((void *)addr));
1732		__free_pages(virt_to_page((void *)addr), order);
1733	}
1734}
1735
1736EXPORT_SYMBOL(free_pages);
1737
1738/**
1739 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1740 * @size: the number of bytes to allocate
1741 * @gfp_mask: GFP flags for the allocation
1742 *
1743 * This function is similar to alloc_pages(), except that it allocates the
1744 * minimum number of pages to satisfy the request.  alloc_pages() can only
1745 * allocate memory in power-of-two pages.
1746 *
1747 * This function is also limited by MAX_ORDER.
1748 *
1749 * Memory allocated by this function must be released by free_pages_exact().
1750 */
1751void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1752{
1753	unsigned int order = get_order(size);
1754	unsigned long addr;
1755
1756	addr = __get_free_pages(gfp_mask, order);
1757	if (addr) {
1758		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1759		unsigned long used = addr + PAGE_ALIGN(size);
1760
1761		split_page(virt_to_page(addr), order);
1762		while (used < alloc_end) {
1763			free_page(used);
1764			used += PAGE_SIZE;
1765		}
1766	}
1767
1768	return (void *)addr;
1769}
1770EXPORT_SYMBOL(alloc_pages_exact);
1771
1772/**
1773 * free_pages_exact - release memory allocated via alloc_pages_exact()
1774 * @virt: the value returned by alloc_pages_exact.
1775 * @size: size of allocation, same value as passed to alloc_pages_exact().
1776 *
1777 * Release the memory allocated by a previous call to alloc_pages_exact.
1778 */
1779void free_pages_exact(void *virt, size_t size)
1780{
1781	unsigned long addr = (unsigned long)virt;
1782	unsigned long end = addr + PAGE_ALIGN(size);
1783
1784	while (addr < end) {
1785		free_page(addr);
1786		addr += PAGE_SIZE;
1787	}
1788}
1789EXPORT_SYMBOL(free_pages_exact);
1790
1791static unsigned int nr_free_zone_pages(int offset)
1792{
1793	struct zoneref *z;
1794	struct zone *zone;
1795
1796	/* Just pick one node, since fallback list is circular */
1797	unsigned int sum = 0;
1798
1799	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1800
1801	for_each_zone_zonelist(zone, z, zonelist, offset) {
1802		unsigned long size = zone->present_pages;
1803		unsigned long high = zone->pages_high;
1804		if (size > high)
1805			sum += size - high;
1806	}
1807
1808	return sum;
1809}
1810
1811/*
1812 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1813 */
1814unsigned int nr_free_buffer_pages(void)
1815{
1816	return nr_free_zone_pages(gfp_zone(GFP_USER));
1817}
1818EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1819
1820/*
1821 * Amount of free RAM allocatable within all zones
1822 */
1823unsigned int nr_free_pagecache_pages(void)
1824{
1825	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1826}
1827
1828static inline void show_node(struct zone *zone)
1829{
1830	if (NUMA_BUILD)
1831		printk("Node %d ", zone_to_nid(zone));
1832}
1833
1834void si_meminfo(struct sysinfo *val)
1835{
1836	val->totalram = totalram_pages;
1837	val->sharedram = 0;
1838	val->freeram = global_page_state(NR_FREE_PAGES);
1839	val->bufferram = nr_blockdev_pages();
1840	val->totalhigh = totalhigh_pages;
1841	val->freehigh = nr_free_highpages();
1842	val->mem_unit = PAGE_SIZE;
1843}
1844
1845EXPORT_SYMBOL(si_meminfo);
1846
1847#ifdef CONFIG_NUMA
1848void si_meminfo_node(struct sysinfo *val, int nid)
1849{
1850	pg_data_t *pgdat = NODE_DATA(nid);
1851
1852	val->totalram = pgdat->node_present_pages;
1853	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1854#ifdef CONFIG_HIGHMEM
1855	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1856	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1857			NR_FREE_PAGES);
1858#else
1859	val->totalhigh = 0;
1860	val->freehigh = 0;
1861#endif
1862	val->mem_unit = PAGE_SIZE;
1863}
1864#endif
1865
1866#define K(x) ((x) << (PAGE_SHIFT-10))
1867
1868/*
1869 * Show free area list (used inside shift_scroll-lock stuff)
1870 * We also calculate the percentage fragmentation. We do this by counting the
1871 * memory on each free list with the exception of the first item on the list.
1872 */
1873void show_free_areas(void)
1874{
1875	int cpu;
1876	struct zone *zone;
1877
1878	for_each_zone(zone) {
1879		if (!populated_zone(zone))
1880			continue;
1881
1882		show_node(zone);
1883		printk("%s per-cpu:\n", zone->name);
1884
1885		for_each_online_cpu(cpu) {
1886			struct per_cpu_pageset *pageset;
1887
1888			pageset = zone_pcp(zone, cpu);
1889
1890			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1891			       cpu, pageset->pcp.high,
1892			       pageset->pcp.batch, pageset->pcp.count);
1893		}
1894	}
1895
1896	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1897		" inactive_file:%lu"
1898//TODO:  check/adjust line lengths
1899#ifdef CONFIG_UNEVICTABLE_LRU
1900		" unevictable:%lu"
1901#endif
1902		" dirty:%lu writeback:%lu unstable:%lu\n"
1903		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1904		global_page_state(NR_ACTIVE_ANON),
1905		global_page_state(NR_ACTIVE_FILE),
1906		global_page_state(NR_INACTIVE_ANON),
1907		global_page_state(NR_INACTIVE_FILE),
1908#ifdef CONFIG_UNEVICTABLE_LRU
1909		global_page_state(NR_UNEVICTABLE),
1910#endif
1911		global_page_state(NR_FILE_DIRTY),
1912		global_page_state(NR_WRITEBACK),
1913		global_page_state(NR_UNSTABLE_NFS),
1914		global_page_state(NR_FREE_PAGES),
1915		global_page_state(NR_SLAB_RECLAIMABLE) +
1916			global_page_state(NR_SLAB_UNRECLAIMABLE),
1917		global_page_state(NR_FILE_MAPPED),
1918		global_page_state(NR_PAGETABLE),
1919		global_page_state(NR_BOUNCE));
1920
1921	for_each_zone(zone) {
1922		int i;
1923
1924		if (!populated_zone(zone))
1925			continue;
1926
1927		show_node(zone);
1928		printk("%s"
1929			" free:%lukB"
1930			" min:%lukB"
1931			" low:%lukB"
1932			" high:%lukB"
1933			" active_anon:%lukB"
1934			" inactive_anon:%lukB"
1935			" active_file:%lukB"
1936			" inactive_file:%lukB"
1937#ifdef CONFIG_UNEVICTABLE_LRU
1938			" unevictable:%lukB"
1939#endif
1940			" present:%lukB"
1941			" pages_scanned:%lu"
1942			" all_unreclaimable? %s"
1943			"\n",
1944			zone->name,
1945			K(zone_page_state(zone, NR_FREE_PAGES)),
1946			K(zone->pages_min),
1947			K(zone->pages_low),
1948			K(zone->pages_high),
1949			K(zone_page_state(zone, NR_ACTIVE_ANON)),
1950			K(zone_page_state(zone, NR_INACTIVE_ANON)),
1951			K(zone_page_state(zone, NR_ACTIVE_FILE)),
1952			K(zone_page_state(zone, NR_INACTIVE_FILE)),
1953#ifdef CONFIG_UNEVICTABLE_LRU
1954			K(zone_page_state(zone, NR_UNEVICTABLE)),
1955#endif
1956			K(zone->present_pages),
1957			zone->pages_scanned,
1958			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1959			);
1960		printk("lowmem_reserve[]:");
1961		for (i = 0; i < MAX_NR_ZONES; i++)
1962			printk(" %lu", zone->lowmem_reserve[i]);
1963		printk("\n");
1964	}
1965
1966	for_each_zone(zone) {
1967 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1968
1969		if (!populated_zone(zone))
1970			continue;
1971
1972		show_node(zone);
1973		printk("%s: ", zone->name);
1974
1975		spin_lock_irqsave(&zone->lock, flags);
1976		for (order = 0; order < MAX_ORDER; order++) {
1977			nr[order] = zone->free_area[order].nr_free;
1978			total += nr[order] << order;
1979		}
1980		spin_unlock_irqrestore(&zone->lock, flags);
1981		for (order = 0; order < MAX_ORDER; order++)
1982			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1983		printk("= %lukB\n", K(total));
1984	}
1985
1986	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1987
1988	show_swap_cache_info();
1989}
1990
1991static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1992{
1993	zoneref->zone = zone;
1994	zoneref->zone_idx = zone_idx(zone);
1995}
1996
1997/*
1998 * Builds allocation fallback zone lists.
1999 *
2000 * Add all populated zones of a node to the zonelist.
2001 */
2002static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2003				int nr_zones, enum zone_type zone_type)
2004{
2005	struct zone *zone;
2006
2007	BUG_ON(zone_type >= MAX_NR_ZONES);
2008	zone_type++;
2009
2010	do {
2011		zone_type--;
2012		zone = pgdat->node_zones + zone_type;
2013		if (populated_zone(zone)) {
2014			zoneref_set_zone(zone,
2015				&zonelist->_zonerefs[nr_zones++]);
2016			check_highest_zone(zone_type);
2017		}
2018
2019	} while (zone_type);
2020	return nr_zones;
2021}
2022
2023
2024/*
2025 *  zonelist_order:
2026 *  0 = automatic detection of better ordering.
2027 *  1 = order by ([node] distance, -zonetype)
2028 *  2 = order by (-zonetype, [node] distance)
2029 *
2030 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2031 *  the same zonelist. So only NUMA can configure this param.
2032 */
2033#define ZONELIST_ORDER_DEFAULT  0
2034#define ZONELIST_ORDER_NODE     1
2035#define ZONELIST_ORDER_ZONE     2
2036
2037/* zonelist order in the kernel.
2038 * set_zonelist_order() will set this to NODE or ZONE.
2039 */
2040static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2041static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2042
2043
2044#ifdef CONFIG_NUMA
2045/* The value user specified ....changed by config */
2046static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2047/* string for sysctl */
2048#define NUMA_ZONELIST_ORDER_LEN	16
2049char numa_zonelist_order[16] = "default";
2050
2051/*
2052 * interface for configure zonelist ordering.
2053 * command line option "numa_zonelist_order"
2054 *	= "[dD]efault	- default, automatic configuration.
2055 *	= "[nN]ode 	- order by node locality, then by zone within node
2056 *	= "[zZ]one      - order by zone, then by locality within zone
2057 */
2058
2059static int __parse_numa_zonelist_order(char *s)
2060{
2061	if (*s == 'd' || *s == 'D') {
2062		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2063	} else if (*s == 'n' || *s == 'N') {
2064		user_zonelist_order = ZONELIST_ORDER_NODE;
2065	} else if (*s == 'z' || *s == 'Z') {
2066		user_zonelist_order = ZONELIST_ORDER_ZONE;
2067	} else {
2068		printk(KERN_WARNING
2069			"Ignoring invalid numa_zonelist_order value:  "
2070			"%s\n", s);
2071		return -EINVAL;
2072	}
2073	return 0;
2074}
2075
2076static __init int setup_numa_zonelist_order(char *s)
2077{
2078	if (s)
2079		return __parse_numa_zonelist_order(s);
2080	return 0;
2081}
2082early_param("numa_zonelist_order", setup_numa_zonelist_order);
2083
2084/*
2085 * sysctl handler for numa_zonelist_order
2086 */
2087int numa_zonelist_order_handler(ctl_table *table, int write,
2088		struct file *file, void __user *buffer, size_t *length,
2089		loff_t *ppos)
2090{
2091	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2092	int ret;
2093
2094	if (write)
2095		strncpy(saved_string, (char*)table->data,
2096			NUMA_ZONELIST_ORDER_LEN);
2097	ret = proc_dostring(table, write, file, buffer, length, ppos);
2098	if (ret)
2099		return ret;
2100	if (write) {
2101		int oldval = user_zonelist_order;
2102		if (__parse_numa_zonelist_order((char*)table->data)) {
2103			/*
2104			 * bogus value.  restore saved string
2105			 */
2106			strncpy((char*)table->data, saved_string,
2107				NUMA_ZONELIST_ORDER_LEN);
2108			user_zonelist_order = oldval;
2109		} else if (oldval != user_zonelist_order)
2110			build_all_zonelists();
2111	}
2112	return 0;
2113}
2114
2115
2116#define MAX_NODE_LOAD (num_online_nodes())
2117static int node_load[MAX_NUMNODES];
2118
2119/**
2120 * find_next_best_node - find the next node that should appear in a given node's fallback list
2121 * @node: node whose fallback list we're appending
2122 * @used_node_mask: nodemask_t of already used nodes
2123 *
2124 * We use a number of factors to determine which is the next node that should
2125 * appear on a given node's fallback list.  The node should not have appeared
2126 * already in @node's fallback list, and it should be the next closest node
2127 * according to the distance array (which contains arbitrary distance values
2128 * from each node to each node in the system), and should also prefer nodes
2129 * with no CPUs, since presumably they'll have very little allocation pressure
2130 * on them otherwise.
2131 * It returns -1 if no node is found.
2132 */
2133static int find_next_best_node(int node, nodemask_t *used_node_mask)
2134{
2135	int n, val;
2136	int min_val = INT_MAX;
2137	int best_node = -1;
2138	node_to_cpumask_ptr(tmp, 0);
2139
2140	/* Use the local node if we haven't already */
2141	if (!node_isset(node, *used_node_mask)) {
2142		node_set(node, *used_node_mask);
2143		return node;
2144	}
2145
2146	for_each_node_state(n, N_HIGH_MEMORY) {
2147
2148		/* Don't want a node to appear more than once */
2149		if (node_isset(n, *used_node_mask))
2150			continue;
2151
2152		/* Use the distance array to find the distance */
2153		val = node_distance(node, n);
2154
2155		/* Penalize nodes under us ("prefer the next node") */
2156		val += (n < node);
2157
2158		/* Give preference to headless and unused nodes */
2159		node_to_cpumask_ptr_next(tmp, n);
2160		if (!cpus_empty(*tmp))
2161			val += PENALTY_FOR_NODE_WITH_CPUS;
2162
2163		/* Slight preference for less loaded node */
2164		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2165		val += node_load[n];
2166
2167		if (val < min_val) {
2168			min_val = val;
2169			best_node = n;
2170		}
2171	}
2172
2173	if (best_node >= 0)
2174		node_set(best_node, *used_node_mask);
2175
2176	return best_node;
2177}
2178
2179
2180/*
2181 * Build zonelists ordered by node and zones within node.
2182 * This results in maximum locality--normal zone overflows into local
2183 * DMA zone, if any--but risks exhausting DMA zone.
2184 */
2185static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2186{
2187	int j;
2188	struct zonelist *zonelist;
2189
2190	zonelist = &pgdat->node_zonelists[0];
2191	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2192		;
2193	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2194							MAX_NR_ZONES - 1);
2195	zonelist->_zonerefs[j].zone = NULL;
2196	zonelist->_zonerefs[j].zone_idx = 0;
2197}
2198
2199/*
2200 * Build gfp_thisnode zonelists
2201 */
2202static void build_thisnode_zonelists(pg_data_t *pgdat)
2203{
2204	int j;
2205	struct zonelist *zonelist;
2206
2207	zonelist = &pgdat->node_zonelists[1];
2208	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2209	zonelist->_zonerefs[j].zone = NULL;
2210	zonelist->_zonerefs[j].zone_idx = 0;
2211}
2212
2213/*
2214 * Build zonelists ordered by zone and nodes within zones.
2215 * This results in conserving DMA zone[s] until all Normal memory is
2216 * exhausted, but results in overflowing to remote node while memory
2217 * may still exist in local DMA zone.
2218 */
2219static int node_order[MAX_NUMNODES];
2220
2221static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2222{
2223	int pos, j, node;
2224	int zone_type;		/* needs to be signed */
2225	struct zone *z;
2226	struct zonelist *zonelist;
2227
2228	zonelist = &pgdat->node_zonelists[0];
2229	pos = 0;
2230	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2231		for (j = 0; j < nr_nodes; j++) {
2232			node = node_order[j];
2233			z = &NODE_DATA(node)->node_zones[zone_type];
2234			if (populated_zone(z)) {
2235				zoneref_set_zone(z,
2236					&zonelist->_zonerefs[pos++]);
2237				check_highest_zone(zone_type);
2238			}
2239		}
2240	}
2241	zonelist->_zonerefs[pos].zone = NULL;
2242	zonelist->_zonerefs[pos].zone_idx = 0;
2243}
2244
2245static int default_zonelist_order(void)
2246{
2247	int nid, zone_type;
2248	unsigned long low_kmem_size,total_size;
2249	struct zone *z;
2250	int average_size;
2251	/*
2252         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2253	 * If they are really small and used heavily, the system can fall
2254	 * into OOM very easily.
2255	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2256	 */
2257	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2258	low_kmem_size = 0;
2259	total_size = 0;
2260	for_each_online_node(nid) {
2261		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2262			z = &NODE_DATA(nid)->node_zones[zone_type];
2263			if (populated_zone(z)) {
2264				if (zone_type < ZONE_NORMAL)
2265					low_kmem_size += z->present_pages;
2266				total_size += z->present_pages;
2267			}
2268		}
2269	}
2270	if (!low_kmem_size ||  /* there are no DMA area. */
2271	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2272		return ZONELIST_ORDER_NODE;
2273	/*
2274	 * look into each node's config.
2275  	 * If there is a node whose DMA/DMA32 memory is very big area on
2276 	 * local memory, NODE_ORDER may be suitable.
2277         */
2278	average_size = total_size /
2279				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2280	for_each_online_node(nid) {
2281		low_kmem_size = 0;
2282		total_size = 0;
2283		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2284			z = &NODE_DATA(nid)->node_zones[zone_type];
2285			if (populated_zone(z)) {
2286				if (zone_type < ZONE_NORMAL)
2287					low_kmem_size += z->present_pages;
2288				total_size += z->present_pages;
2289			}
2290		}
2291		if (low_kmem_size &&
2292		    total_size > average_size && /* ignore small node */
2293		    low_kmem_size > total_size * 70/100)
2294			return ZONELIST_ORDER_NODE;
2295	}
2296	return ZONELIST_ORDER_ZONE;
2297}
2298
2299static void set_zonelist_order(void)
2300{
2301	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2302		current_zonelist_order = default_zonelist_order();
2303	else
2304		current_zonelist_order = user_zonelist_order;
2305}
2306
2307static void build_zonelists(pg_data_t *pgdat)
2308{
2309	int j, node, load;
2310	enum zone_type i;
2311	nodemask_t used_mask;
2312	int local_node, prev_node;
2313	struct zonelist *zonelist;
2314	int order = current_zonelist_order;
2315
2316	/* initialize zonelists */
2317	for (i = 0; i < MAX_ZONELISTS; i++) {
2318		zonelist = pgdat->node_zonelists + i;
2319		zonelist->_zonerefs[0].zone = NULL;
2320		zonelist->_zonerefs[0].zone_idx = 0;
2321	}
2322
2323	/* NUMA-aware ordering of nodes */
2324	local_node = pgdat->node_id;
2325	load = num_online_nodes();
2326	prev_node = local_node;
2327	nodes_clear(used_mask);
2328
2329	memset(node_load, 0, sizeof(node_load));
2330	memset(node_order, 0, sizeof(node_order));
2331	j = 0;
2332
2333	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2334		int distance = node_distance(local_node, node);
2335
2336		/*
2337		 * If another node is sufficiently far away then it is better
2338		 * to reclaim pages in a zone before going off node.
2339		 */
2340		if (distance > RECLAIM_DISTANCE)
2341			zone_reclaim_mode = 1;
2342
2343		/*
2344		 * We don't want to pressure a particular node.
2345		 * So adding penalty to the first node in same
2346		 * distance group to make it round-robin.
2347		 */
2348		if (distance != node_distance(local_node, prev_node))
2349			node_load[node] = load;
2350
2351		prev_node = node;
2352		load--;
2353		if (order == ZONELIST_ORDER_NODE)
2354			build_zonelists_in_node_order(pgdat, node);
2355		else
2356			node_order[j++] = node;	/* remember order */
2357	}
2358
2359	if (order == ZONELIST_ORDER_ZONE) {
2360		/* calculate node order -- i.e., DMA last! */
2361		build_zonelists_in_zone_order(pgdat, j);
2362	}
2363
2364	build_thisnode_zonelists(pgdat);
2365}
2366
2367/* Construct the zonelist performance cache - see further mmzone.h */
2368static void build_zonelist_cache(pg_data_t *pgdat)
2369{
2370	struct zonelist *zonelist;
2371	struct zonelist_cache *zlc;
2372	struct zoneref *z;
2373
2374	zonelist = &pgdat->node_zonelists[0];
2375	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2376	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2377	for (z = zonelist->_zonerefs; z->zone; z++)
2378		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2379}
2380
2381
2382#else	/* CONFIG_NUMA */
2383
2384static void set_zonelist_order(void)
2385{
2386	current_zonelist_order = ZONELIST_ORDER_ZONE;
2387}
2388
2389static void build_zonelists(pg_data_t *pgdat)
2390{
2391	int node, local_node;
2392	enum zone_type j;
2393	struct zonelist *zonelist;
2394
2395	local_node = pgdat->node_id;
2396
2397	zonelist = &pgdat->node_zonelists[0];
2398	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2399
2400	/*
2401	 * Now we build the zonelist so that it contains the zones
2402	 * of all the other nodes.
2403	 * We don't want to pressure a particular node, so when
2404	 * building the zones for node N, we make sure that the
2405	 * zones coming right after the local ones are those from
2406	 * node N+1 (modulo N)
2407	 */
2408	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2409		if (!node_online(node))
2410			continue;
2411		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2412							MAX_NR_ZONES - 1);
2413	}
2414	for (node = 0; node < local_node; node++) {
2415		if (!node_online(node))
2416			continue;
2417		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2418							MAX_NR_ZONES - 1);
2419	}
2420
2421	zonelist->_zonerefs[j].zone = NULL;
2422	zonelist->_zonerefs[j].zone_idx = 0;
2423}
2424
2425/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2426static void build_zonelist_cache(pg_data_t *pgdat)
2427{
2428	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2429}
2430
2431#endif	/* CONFIG_NUMA */
2432
2433/* return values int ....just for stop_machine() */
2434static int __build_all_zonelists(void *dummy)
2435{
2436	int nid;
2437
2438	for_each_online_node(nid) {
2439		pg_data_t *pgdat = NODE_DATA(nid);
2440
2441		build_zonelists(pgdat);
2442		build_zonelist_cache(pgdat);
2443	}
2444	return 0;
2445}
2446
2447void build_all_zonelists(void)
2448{
2449	set_zonelist_order();
2450
2451	if (system_state == SYSTEM_BOOTING) {
2452		__build_all_zonelists(NULL);
2453		mminit_verify_zonelist();
2454		cpuset_init_current_mems_allowed();
2455	} else {
2456		/* we have to stop all cpus to guarantee there is no user
2457		   of zonelist */
2458		stop_machine(__build_all_zonelists, NULL, NULL);
2459		/* cpuset refresh routine should be here */
2460	}
2461	vm_total_pages = nr_free_pagecache_pages();
2462	/*
2463	 * Disable grouping by mobility if the number of pages in the
2464	 * system is too low to allow the mechanism to work. It would be
2465	 * more accurate, but expensive to check per-zone. This check is
2466	 * made on memory-hotadd so a system can start with mobility
2467	 * disabled and enable it later
2468	 */
2469	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2470		page_group_by_mobility_disabled = 1;
2471	else
2472		page_group_by_mobility_disabled = 0;
2473
2474	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2475		"Total pages: %ld\n",
2476			num_online_nodes(),
2477			zonelist_order_name[current_zonelist_order],
2478			page_group_by_mobility_disabled ? "off" : "on",
2479			vm_total_pages);
2480#ifdef CONFIG_NUMA
2481	printk("Policy zone: %s\n", zone_names[policy_zone]);
2482#endif
2483}
2484
2485/*
2486 * Helper functions to size the waitqueue hash table.
2487 * Essentially these want to choose hash table sizes sufficiently
2488 * large so that collisions trying to wait on pages are rare.
2489 * But in fact, the number of active page waitqueues on typical
2490 * systems is ridiculously low, less than 200. So this is even
2491 * conservative, even though it seems large.
2492 *
2493 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2494 * waitqueues, i.e. the size of the waitq table given the number of pages.
2495 */
2496#define PAGES_PER_WAITQUEUE	256
2497
2498#ifndef CONFIG_MEMORY_HOTPLUG
2499static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2500{
2501	unsigned long size = 1;
2502
2503	pages /= PAGES_PER_WAITQUEUE;
2504
2505	while (size < pages)
2506		size <<= 1;
2507
2508	/*
2509	 * Once we have dozens or even hundreds of threads sleeping
2510	 * on IO we've got bigger problems than wait queue collision.
2511	 * Limit the size of the wait table to a reasonable size.
2512	 */
2513	size = min(size, 4096UL);
2514
2515	return max(size, 4UL);
2516}
2517#else
2518/*
2519 * A zone's size might be changed by hot-add, so it is not possible to determine
2520 * a suitable size for its wait_table.  So we use the maximum size now.
2521 *
2522 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2523 *
2524 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2525 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2526 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2527 *
2528 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2529 * or more by the traditional way. (See above).  It equals:
2530 *
2531 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2532 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2533 *    powerpc (64K page size)             : =  (32G +16M)byte.
2534 */
2535static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2536{
2537	return 4096UL;
2538}
2539#endif
2540
2541/*
2542 * This is an integer logarithm so that shifts can be used later
2543 * to extract the more random high bits from the multiplicative
2544 * hash function before the remainder is taken.
2545 */
2546static inline unsigned long wait_table_bits(unsigned long size)
2547{
2548	return ffz(~size);
2549}
2550
2551#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2552
2553/*
2554 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2555 * of blocks reserved is based on zone->pages_min. The memory within the
2556 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2557 * higher will lead to a bigger reserve which will get freed as contiguous
2558 * blocks as reclaim kicks in
2559 */
2560static void setup_zone_migrate_reserve(struct zone *zone)
2561{
2562	unsigned long start_pfn, pfn, end_pfn;
2563	struct page *page;
2564	unsigned long reserve, block_migratetype;
2565
2566	/* Get the start pfn, end pfn and the number of blocks to reserve */
2567	start_pfn = zone->zone_start_pfn;
2568	end_pfn = start_pfn + zone->spanned_pages;
2569	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2570							pageblock_order;
2571
2572	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2573		if (!pfn_valid(pfn))
2574			continue;
2575		page = pfn_to_page(pfn);
2576
2577		/* Watch out for overlapping nodes */
2578		if (page_to_nid(page) != zone_to_nid(zone))
2579			continue;
2580
2581		/* Blocks with reserved pages will never free, skip them. */
2582		if (PageReserved(page))
2583			continue;
2584
2585		block_migratetype = get_pageblock_migratetype(page);
2586
2587		/* If this block is reserved, account for it */
2588		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2589			reserve--;
2590			continue;
2591		}
2592
2593		/* Suitable for reserving if this block is movable */
2594		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2595			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2596			move_freepages_block(zone, page, MIGRATE_RESERVE);
2597			reserve--;
2598			continue;
2599		}
2600
2601		/*
2602		 * If the reserve is met and this is a previous reserved block,
2603		 * take it back
2604		 */
2605		if (block_migratetype == MIGRATE_RESERVE) {
2606			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2607			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2608		}
2609	}
2610}
2611
2612/*
2613 * Initially all pages are reserved - free ones are freed
2614 * up by free_all_bootmem() once the early boot process is
2615 * done. Non-atomic initialization, single-pass.
2616 */
2617void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2618		unsigned long start_pfn, enum memmap_context context)
2619{
2620	struct page *page;
2621	unsigned long end_pfn = start_pfn + size;
2622	unsigned long pfn;
2623	struct zone *z;
2624
2625	if (highest_memmap_pfn < end_pfn - 1)
2626		highest_memmap_pfn = end_pfn - 1;
2627
2628	z = &NODE_DATA(nid)->node_zones[zone];
2629	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2630		/*
2631		 * There can be holes in boot-time mem_map[]s
2632		 * handed to this function.  They do not
2633		 * exist on hotplugged memory.
2634		 */
2635		if (context == MEMMAP_EARLY) {
2636			if (!early_pfn_valid(pfn))
2637				continue;
2638			if (!early_pfn_in_nid(pfn, nid))
2639				continue;
2640		}
2641		page = pfn_to_page(pfn);
2642		set_page_links(page, zone, nid, pfn);
2643		mminit_verify_page_links(page, zone, nid, pfn);
2644		init_page_count(page);
2645		reset_page_mapcount(page);
2646		SetPageReserved(page);
2647		/*
2648		 * Mark the block movable so that blocks are reserved for
2649		 * movable at startup. This will force kernel allocations
2650		 * to reserve their blocks rather than leaking throughout
2651		 * the address space during boot when many long-lived
2652		 * kernel allocations are made. Later some blocks near
2653		 * the start are marked MIGRATE_RESERVE by
2654		 * setup_zone_migrate_reserve()
2655		 *
2656		 * bitmap is created for zone's valid pfn range. but memmap
2657		 * can be created for invalid pages (for alignment)
2658		 * check here not to call set_pageblock_migratetype() against
2659		 * pfn out of zone.
2660		 */
2661		if ((z->zone_start_pfn <= pfn)
2662		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2663		    && !(pfn & (pageblock_nr_pages - 1)))
2664			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2665
2666		INIT_LIST_HEAD(&page->lru);
2667#ifdef WANT_PAGE_VIRTUAL
2668		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2669		if (!is_highmem_idx(zone))
2670			set_page_address(page, __va(pfn << PAGE_SHIFT));
2671#endif
2672	}
2673}
2674
2675static void __meminit zone_init_free_lists(struct zone *zone)
2676{
2677	int order, t;
2678	for_each_migratetype_order(order, t) {
2679		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2680		zone->free_area[order].nr_free = 0;
2681	}
2682}
2683
2684#ifndef __HAVE_ARCH_MEMMAP_INIT
2685#define memmap_init(size, nid, zone, start_pfn) \
2686	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2687#endif
2688
2689static int zone_batchsize(struct zone *zone)
2690{
2691	int batch;
2692
2693	/*
2694	 * The per-cpu-pages pools are set to around 1000th of the
2695	 * size of the zone.  But no more than 1/2 of a meg.
2696	 *
2697	 * OK, so we don't know how big the cache is.  So guess.
2698	 */
2699	batch = zone->present_pages / 1024;
2700	if (batch * PAGE_SIZE > 512 * 1024)
2701		batch = (512 * 1024) / PAGE_SIZE;
2702	batch /= 4;		/* We effectively *= 4 below */
2703	if (batch < 1)
2704		batch = 1;
2705
2706	/*
2707	 * Clamp the batch to a 2^n - 1 value. Having a power
2708	 * of 2 value was found to be more likely to have
2709	 * suboptimal cache aliasing properties in some cases.
2710	 *
2711	 * For example if 2 tasks are alternately allocating
2712	 * batches of pages, one task can end up with a lot
2713	 * of pages of one half of the possible page colors
2714	 * and the other with pages of the other colors.
2715	 */
2716	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2717
2718	return batch;
2719}
2720
2721static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2722{
2723	struct per_cpu_pages *pcp;
2724
2725	memset(p, 0, sizeof(*p));
2726
2727	pcp = &p->pcp;
2728	pcp->count = 0;
2729	pcp->high = 6 * batch;
2730	pcp->batch = max(1UL, 1 * batch);
2731	INIT_LIST_HEAD(&pcp->list);
2732}
2733
2734/*
2735 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2736 * to the value high for the pageset p.
2737 */
2738
2739static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2740				unsigned long high)
2741{
2742	struct per_cpu_pages *pcp;
2743
2744	pcp = &p->pcp;
2745	pcp->high = high;
2746	pcp->batch = max(1UL, high/4);
2747	if ((high/4) > (PAGE_SHIFT * 8))
2748		pcp->batch = PAGE_SHIFT * 8;
2749}
2750
2751
2752#ifdef CONFIG_NUMA
2753/*
2754 * Boot pageset table. One per cpu which is going to be used for all
2755 * zones and all nodes. The parameters will be set in such a way
2756 * that an item put on a list will immediately be handed over to
2757 * the buddy list. This is safe since pageset manipulation is done
2758 * with interrupts disabled.
2759 *
2760 * Some NUMA counter updates may also be caught by the boot pagesets.
2761 *
2762 * The boot_pagesets must be kept even after bootup is complete for
2763 * unused processors and/or zones. They do play a role for bootstrapping
2764 * hotplugged processors.
2765 *
2766 * zoneinfo_show() and maybe other functions do
2767 * not check if the processor is online before following the pageset pointer.
2768 * Other parts of the kernel may not check if the zone is available.
2769 */
2770static struct per_cpu_pageset boot_pageset[NR_CPUS];
2771
2772/*
2773 * Dynamically allocate memory for the
2774 * per cpu pageset array in struct zone.
2775 */
2776static int __cpuinit process_zones(int cpu)
2777{
2778	struct zone *zone, *dzone;
2779	int node = cpu_to_node(cpu);
2780
2781	node_set_state(node, N_CPU);	/* this node has a cpu */
2782
2783	for_each_zone(zone) {
2784
2785		if (!populated_zone(zone))
2786			continue;
2787
2788		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2789					 GFP_KERNEL, node);
2790		if (!zone_pcp(zone, cpu))
2791			goto bad;
2792
2793		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2794
2795		if (percpu_pagelist_fraction)
2796			setup_pagelist_highmark(zone_pcp(zone, cpu),
2797			 	(zone->present_pages / percpu_pagelist_fraction));
2798	}
2799
2800	return 0;
2801bad:
2802	for_each_zone(dzone) {
2803		if (!populated_zone(dzone))
2804			continue;
2805		if (dzone == zone)
2806			break;
2807		kfree(zone_pcp(dzone, cpu));
2808		zone_pcp(dzone, cpu) = NULL;
2809	}
2810	return -ENOMEM;
2811}
2812
2813static inline void free_zone_pagesets(int cpu)
2814{
2815	struct zone *zone;
2816
2817	for_each_zone(zone) {
2818		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2819
2820		/* Free per_cpu_pageset if it is slab allocated */
2821		if (pset != &boot_pageset[cpu])
2822			kfree(pset);
2823		zone_pcp(zone, cpu) = NULL;
2824	}
2825}
2826
2827static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2828		unsigned long action,
2829		void *hcpu)
2830{
2831	int cpu = (long)hcpu;
2832	int ret = NOTIFY_OK;
2833
2834	switch (action) {
2835	case CPU_UP_PREPARE:
2836	case CPU_UP_PREPARE_FROZEN:
2837		if (process_zones(cpu))
2838			ret = NOTIFY_BAD;
2839		break;
2840	case CPU_UP_CANCELED:
2841	case CPU_UP_CANCELED_FROZEN:
2842	case CPU_DEAD:
2843	case CPU_DEAD_FROZEN:
2844		free_zone_pagesets(cpu);
2845		break;
2846	default:
2847		break;
2848	}
2849	return ret;
2850}
2851
2852static struct notifier_block __cpuinitdata pageset_notifier =
2853	{ &pageset_cpuup_callback, NULL, 0 };
2854
2855void __init setup_per_cpu_pageset(void)
2856{
2857	int err;
2858
2859	/* Initialize per_cpu_pageset for cpu 0.
2860	 * A cpuup callback will do this for every cpu
2861	 * as it comes online
2862	 */
2863	err = process_zones(smp_processor_id());
2864	BUG_ON(err);
2865	register_cpu_notifier(&pageset_notifier);
2866}
2867
2868#endif
2869
2870static noinline __init_refok
2871int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2872{
2873	int i;
2874	struct pglist_data *pgdat = zone->zone_pgdat;
2875	size_t alloc_size;
2876
2877	/*
2878	 * The per-page waitqueue mechanism uses hashed waitqueues
2879	 * per zone.
2880	 */
2881	zone->wait_table_hash_nr_entries =
2882		 wait_table_hash_nr_entries(zone_size_pages);
2883	zone->wait_table_bits =
2884		wait_table_bits(zone->wait_table_hash_nr_entries);
2885	alloc_size = zone->wait_table_hash_nr_entries
2886					* sizeof(wait_queue_head_t);
2887
2888	if (!slab_is_available()) {
2889		zone->wait_table = (wait_queue_head_t *)
2890			alloc_bootmem_node(pgdat, alloc_size);
2891	} else {
2892		/*
2893		 * This case means that a zone whose size was 0 gets new memory
2894		 * via memory hot-add.
2895		 * But it may be the case that a new node was hot-added.  In
2896		 * this case vmalloc() will not be able to use this new node's
2897		 * memory - this wait_table must be initialized to use this new
2898		 * node itself as well.
2899		 * To use this new node's memory, further consideration will be
2900		 * necessary.
2901		 */
2902		zone->wait_table = vmalloc(alloc_size);
2903	}
2904	if (!zone->wait_table)
2905		return -ENOMEM;
2906
2907	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2908		init_waitqueue_head(zone->wait_table + i);
2909
2910	return 0;
2911}
2912
2913static __meminit void zone_pcp_init(struct zone *zone)
2914{
2915	int cpu;
2916	unsigned long batch = zone_batchsize(zone);
2917
2918	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2919#ifdef CONFIG_NUMA
2920		/* Early boot. Slab allocator not functional yet */
2921		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2922		setup_pageset(&boot_pageset[cpu],0);
2923#else
2924		setup_pageset(zone_pcp(zone,cpu), batch);
2925#endif
2926	}
2927	if (zone->present_pages)
2928		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2929			zone->name, zone->present_pages, batch);
2930}
2931
2932__meminit int init_currently_empty_zone(struct zone *zone,
2933					unsigned long zone_start_pfn,
2934					unsigned long size,
2935					enum memmap_context context)
2936{
2937	struct pglist_data *pgdat = zone->zone_pgdat;
2938	int ret;
2939	ret = zone_wait_table_init(zone, size);
2940	if (ret)
2941		return ret;
2942	pgdat->nr_zones = zone_idx(zone) + 1;
2943
2944	zone->zone_start_pfn = zone_start_pfn;
2945
2946	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2947			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2948			pgdat->node_id,
2949			(unsigned long)zone_idx(zone),
2950			zone_start_pfn, (zone_start_pfn + size));
2951
2952	zone_init_free_lists(zone);
2953
2954	return 0;
2955}
2956
2957#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2958/*
2959 * Basic iterator support. Return the first range of PFNs for a node
2960 * Note: nid == MAX_NUMNODES returns first region regardless of node
2961 */
2962static int __meminit first_active_region_index_in_nid(int nid)
2963{
2964	int i;
2965
2966	for (i = 0; i < nr_nodemap_entries; i++)
2967		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2968			return i;
2969
2970	return -1;
2971}
2972
2973/*
2974 * Basic iterator support. Return the next active range of PFNs for a node
2975 * Note: nid == MAX_NUMNODES returns next region regardless of node
2976 */
2977static int __meminit next_active_region_index_in_nid(int index, int nid)
2978{
2979	for (index = index + 1; index < nr_nodemap_entries; index++)
2980		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2981			return index;
2982
2983	return -1;
2984}
2985
2986#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2987/*
2988 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2989 * Architectures may implement their own version but if add_active_range()
2990 * was used and there are no special requirements, this is a convenient
2991 * alternative
2992 */
2993int __meminit early_pfn_to_nid(unsigned long pfn)
2994{
2995	int i;
2996
2997	for (i = 0; i < nr_nodemap_entries; i++) {
2998		unsigned long start_pfn = early_node_map[i].start_pfn;
2999		unsigned long end_pfn = early_node_map[i].end_pfn;
3000
3001		if (start_pfn <= pfn && pfn < end_pfn)
3002			return early_node_map[i].nid;
3003	}
3004
3005	return 0;
3006}
3007#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3008
3009/* Basic iterator support to walk early_node_map[] */
3010#define for_each_active_range_index_in_nid(i, nid) \
3011	for (i = first_active_region_index_in_nid(nid); i != -1; \
3012				i = next_active_region_index_in_nid(i, nid))
3013
3014/**
3015 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3016 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3017 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3018 *
3019 * If an architecture guarantees that all ranges registered with
3020 * add_active_ranges() contain no holes and may be freed, this
3021 * this function may be used instead of calling free_bootmem() manually.
3022 */
3023void __init free_bootmem_with_active_regions(int nid,
3024						unsigned long max_low_pfn)
3025{
3026	int i;
3027
3028	for_each_active_range_index_in_nid(i, nid) {
3029		unsigned long size_pages = 0;
3030		unsigned long end_pfn = early_node_map[i].end_pfn;
3031
3032		if (early_node_map[i].start_pfn >= max_low_pfn)
3033			continue;
3034
3035		if (end_pfn > max_low_pfn)
3036			end_pfn = max_low_pfn;
3037
3038		size_pages = end_pfn - early_node_map[i].start_pfn;
3039		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3040				PFN_PHYS(early_node_map[i].start_pfn),
3041				size_pages << PAGE_SHIFT);
3042	}
3043}
3044
3045void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3046{
3047	int i;
3048	int ret;
3049
3050	for_each_active_range_index_in_nid(i, nid) {
3051		ret = work_fn(early_node_map[i].start_pfn,
3052			      early_node_map[i].end_pfn, data);
3053		if (ret)
3054			break;
3055	}
3056}
3057/**
3058 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3059 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3060 *
3061 * If an architecture guarantees that all ranges registered with
3062 * add_active_ranges() contain no holes and may be freed, this
3063 * function may be used instead of calling memory_present() manually.
3064 */
3065void __init sparse_memory_present_with_active_regions(int nid)
3066{
3067	int i;
3068
3069	for_each_active_range_index_in_nid(i, nid)
3070		memory_present(early_node_map[i].nid,
3071				early_node_map[i].start_pfn,
3072				early_node_map[i].end_pfn);
3073}
3074
3075/**
3076 * push_node_boundaries - Push node boundaries to at least the requested boundary
3077 * @nid: The nid of the node to push the boundary for
3078 * @start_pfn: The start pfn of the node
3079 * @end_pfn: The end pfn of the node
3080 *
3081 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3082 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3083 * be hotplugged even though no physical memory exists. This function allows
3084 * an arch to push out the node boundaries so mem_map is allocated that can
3085 * be used later.
3086 */
3087#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3088void __init push_node_boundaries(unsigned int nid,
3089		unsigned long start_pfn, unsigned long end_pfn)
3090{
3091	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3092			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3093			nid, start_pfn, end_pfn);
3094
3095	/* Initialise the boundary for this node if necessary */
3096	if (node_boundary_end_pfn[nid] == 0)
3097		node_boundary_start_pfn[nid] = -1UL;
3098
3099	/* Update the boundaries */
3100	if (node_boundary_start_pfn[nid] > start_pfn)
3101		node_boundary_start_pfn[nid] = start_pfn;
3102	if (node_boundary_end_pfn[nid] < end_pfn)
3103		node_boundary_end_pfn[nid] = end_pfn;
3104}
3105
3106/* If necessary, push the node boundary out for reserve hotadd */
3107static void __meminit account_node_boundary(unsigned int nid,
3108		unsigned long *start_pfn, unsigned long *end_pfn)
3109{
3110	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3111			"Entering account_node_boundary(%u, %lu, %lu)\n",
3112			nid, *start_pfn, *end_pfn);
3113
3114	/* Return if boundary information has not been provided */
3115	if (node_boundary_end_pfn[nid] == 0)
3116		return;
3117
3118	/* Check the boundaries and update if necessary */
3119	if (node_boundary_start_pfn[nid] < *start_pfn)
3120		*start_pfn = node_boundary_start_pfn[nid];
3121	if (node_boundary_end_pfn[nid] > *end_pfn)
3122		*end_pfn = node_boundary_end_pfn[nid];
3123}
3124#else
3125void __init push_node_boundaries(unsigned int nid,
3126		unsigned long start_pfn, unsigned long end_pfn) {}
3127
3128static void __meminit account_node_boundary(unsigned int nid,
3129		unsigned long *start_pfn, unsigned long *end_pfn) {}
3130#endif
3131
3132
3133/**
3134 * get_pfn_range_for_nid - Return the start and end page frames for a node
3135 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3136 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3137 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3138 *
3139 * It returns the start and end page frame of a node based on information
3140 * provided by an arch calling add_active_range(). If called for a node
3141 * with no available memory, a warning is printed and the start and end
3142 * PFNs will be 0.
3143 */
3144void __meminit get_pfn_range_for_nid(unsigned int nid,
3145			unsigned long *start_pfn, unsigned long *end_pfn)
3146{
3147	int i;
3148	*start_pfn = -1UL;
3149	*end_pfn = 0;
3150
3151	for_each_active_range_index_in_nid(i, nid) {
3152		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3153		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3154	}
3155
3156	if (*start_pfn == -1UL)
3157		*start_pfn = 0;
3158
3159	/* Push the node boundaries out if requested */
3160	account_node_boundary(nid, start_pfn, end_pfn);
3161}
3162
3163/*
3164 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3165 * assumption is made that zones within a node are ordered in monotonic
3166 * increasing memory addresses so that the "highest" populated zone is used
3167 */
3168static void __init find_usable_zone_for_movable(void)
3169{
3170	int zone_index;
3171	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3172		if (zone_index == ZONE_MOVABLE)
3173			continue;
3174
3175		if (arch_zone_highest_possible_pfn[zone_index] >
3176				arch_zone_lowest_possible_pfn[zone_index])
3177			break;
3178	}
3179
3180	VM_BUG_ON(zone_index == -1);
3181	movable_zone = zone_index;
3182}
3183
3184/*
3185 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3186 * because it is sized independant of architecture. Unlike the other zones,
3187 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3188 * in each node depending on the size of each node and how evenly kernelcore
3189 * is distributed. This helper function adjusts the zone ranges
3190 * provided by the architecture for a given node by using the end of the
3191 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3192 * zones within a node are in order of monotonic increases memory addresses
3193 */
3194static void __meminit adjust_zone_range_for_zone_movable(int nid,
3195					unsigned long zone_type,
3196					unsigned long node_start_pfn,
3197					unsigned long node_end_pfn,
3198					unsigned long *zone_start_pfn,
3199					unsigned long *zone_end_pfn)
3200{
3201	/* Only adjust if ZONE_MOVABLE is on this node */
3202	if (zone_movable_pfn[nid]) {
3203		/* Size ZONE_MOVABLE */
3204		if (zone_type == ZONE_MOVABLE) {
3205			*zone_start_pfn = zone_movable_pfn[nid];
3206			*zone_end_pfn = min(node_end_pfn,
3207				arch_zone_highest_possible_pfn[movable_zone]);
3208
3209		/* Adjust for ZONE_MOVABLE starting within this range */
3210		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3211				*zone_end_pfn > zone_movable_pfn[nid]) {
3212			*zone_end_pfn = zone_movable_pfn[nid];
3213
3214		/* Check if this whole range is within ZONE_MOVABLE */
3215		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3216			*zone_start_pfn = *zone_end_pfn;
3217	}
3218}
3219
3220/*
3221 * Return the number of pages a zone spans in a node, including holes
3222 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3223 */
3224static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3225					unsigned long zone_type,
3226					unsigned long *ignored)
3227{
3228	unsigned long node_start_pfn, node_end_pfn;
3229	unsigned long zone_start_pfn, zone_end_pfn;
3230
3231	/* Get the start and end of the node and zone */
3232	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3233	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3234	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3235	adjust_zone_range_for_zone_movable(nid, zone_type,
3236				node_start_pfn, node_end_pfn,
3237				&zone_start_pfn, &zone_end_pfn);
3238
3239	/* Check that this node has pages within the zone's required range */
3240	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3241		return 0;
3242
3243	/* Move the zone boundaries inside the node if necessary */
3244	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3245	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3246
3247	/* Return the spanned pages */
3248	return zone_end_pfn - zone_start_pfn;
3249}
3250
3251/*
3252 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3253 * then all holes in the requested range will be accounted for.
3254 */
3255static unsigned long __meminit __absent_pages_in_range(int nid,
3256				unsigned long range_start_pfn,
3257				unsigned long range_end_pfn)
3258{
3259	int i = 0;
3260	unsigned long prev_end_pfn = 0, hole_pages = 0;
3261	unsigned long start_pfn;
3262
3263	/* Find the end_pfn of the first active range of pfns in the node */
3264	i = first_active_region_index_in_nid(nid);
3265	if (i == -1)
3266		return 0;
3267
3268	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3269
3270	/* Account for ranges before physical memory on this node */
3271	if (early_node_map[i].start_pfn > range_start_pfn)
3272		hole_pages = prev_end_pfn - range_start_pfn;
3273
3274	/* Find all holes for the zone within the node */
3275	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3276
3277		/* No need to continue if prev_end_pfn is outside the zone */
3278		if (prev_end_pfn >= range_end_pfn)
3279			break;
3280
3281		/* Make sure the end of the zone is not within the hole */
3282		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3283		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3284
3285		/* Update the hole size cound and move on */
3286		if (start_pfn > range_start_pfn) {
3287			BUG_ON(prev_end_pfn > start_pfn);
3288			hole_pages += start_pfn - prev_end_pfn;
3289		}
3290		prev_end_pfn = early_node_map[i].end_pfn;
3291	}
3292
3293	/* Account for ranges past physical memory on this node */
3294	if (range_end_pfn > prev_end_pfn)
3295		hole_pages += range_end_pfn -
3296				max(range_start_pfn, prev_end_pfn);
3297
3298	return hole_pages;
3299}
3300
3301/**
3302 * absent_pages_in_range - Return number of page frames in holes within a range
3303 * @start_pfn: The start PFN to start searching for holes
3304 * @end_pfn: The end PFN to stop searching for holes
3305 *
3306 * It returns the number of pages frames in memory holes within a range.
3307 */
3308unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3309							unsigned long end_pfn)
3310{
3311	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3312}
3313
3314/* Return the number of page frames in holes in a zone on a node */
3315static unsigned long __meminit zone_absent_pages_in_node(int nid,
3316					unsigned long zone_type,
3317					unsigned long *ignored)
3318{
3319	unsigned long node_start_pfn, node_end_pfn;
3320	unsigned long zone_start_pfn, zone_end_pfn;
3321
3322	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3323	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3324							node_start_pfn);
3325	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3326							node_end_pfn);
3327
3328	adjust_zone_range_for_zone_movable(nid, zone_type,
3329			node_start_pfn, node_end_pfn,
3330			&zone_start_pfn, &zone_end_pfn);
3331	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3332}
3333
3334#else
3335static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3336					unsigned long zone_type,
3337					unsigned long *zones_size)
3338{
3339	return zones_size[zone_type];
3340}
3341
3342static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3343						unsigned long zone_type,
3344						unsigned long *zholes_size)
3345{
3346	if (!zholes_size)
3347		return 0;
3348
3349	return zholes_size[zone_type];
3350}
3351
3352#endif
3353
3354static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3355		unsigned long *zones_size, unsigned long *zholes_size)
3356{
3357	unsigned long realtotalpages, totalpages = 0;
3358	enum zone_type i;
3359
3360	for (i = 0; i < MAX_NR_ZONES; i++)
3361		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3362								zones_size);
3363	pgdat->node_spanned_pages = totalpages;
3364
3365	realtotalpages = totalpages;
3366	for (i = 0; i < MAX_NR_ZONES; i++)
3367		realtotalpages -=
3368			zone_absent_pages_in_node(pgdat->node_id, i,
3369								zholes_size);
3370	pgdat->node_present_pages = realtotalpages;
3371	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3372							realtotalpages);
3373}
3374
3375#ifndef CONFIG_SPARSEMEM
3376/*
3377 * Calculate the size of the zone->blockflags rounded to an unsigned long
3378 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3379 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3380 * round what is now in bits to nearest long in bits, then return it in
3381 * bytes.
3382 */
3383static unsigned long __init usemap_size(unsigned long zonesize)
3384{
3385	unsigned long usemapsize;
3386
3387	usemapsize = roundup(zonesize, pageblock_nr_pages);
3388	usemapsize = usemapsize >> pageblock_order;
3389	usemapsize *= NR_PAGEBLOCK_BITS;
3390	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3391
3392	return usemapsize / 8;
3393}
3394
3395static void __init setup_usemap(struct pglist_data *pgdat,
3396				struct zone *zone, unsigned long zonesize)
3397{
3398	unsigned long usemapsize = usemap_size(zonesize);
3399	zone->pageblock_flags = NULL;
3400	if (usemapsize)
3401		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3402}
3403#else
3404static void inline setup_usemap(struct pglist_data *pgdat,
3405				struct zone *zone, unsigned long zonesize) {}
3406#endif /* CONFIG_SPARSEMEM */
3407
3408#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3409
3410/* Return a sensible default order for the pageblock size. */
3411static inline int pageblock_default_order(void)
3412{
3413	if (HPAGE_SHIFT > PAGE_SHIFT)
3414		return HUGETLB_PAGE_ORDER;
3415
3416	return MAX_ORDER-1;
3417}
3418
3419/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3420static inline void __init set_pageblock_order(unsigned int order)
3421{
3422	/* Check that pageblock_nr_pages has not already been setup */
3423	if (pageblock_order)
3424		return;
3425
3426	/*
3427	 * Assume the largest contiguous order of interest is a huge page.
3428	 * This value may be variable depending on boot parameters on IA64
3429	 */
3430	pageblock_order = order;
3431}
3432#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3433
3434/*
3435 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3436 * and pageblock_default_order() are unused as pageblock_order is set
3437 * at compile-time. See include/linux/pageblock-flags.h for the values of
3438 * pageblock_order based on the kernel config
3439 */
3440static inline int pageblock_default_order(unsigned int order)
3441{
3442	return MAX_ORDER-1;
3443}
3444#define set_pageblock_order(x)	do {} while (0)
3445
3446#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3447
3448/*
3449 * Set up the zone data structures:
3450 *   - mark all pages reserved
3451 *   - mark all memory queues empty
3452 *   - clear the memory bitmaps
3453 */
3454static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3455		unsigned long *zones_size, unsigned long *zholes_size)
3456{
3457	enum zone_type j;
3458	int nid = pgdat->node_id;
3459	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3460	int ret;
3461
3462	pgdat_resize_init(pgdat);
3463	pgdat->nr_zones = 0;
3464	init_waitqueue_head(&pgdat->kswapd_wait);
3465	pgdat->kswapd_max_order = 0;
3466	pgdat_page_cgroup_init(pgdat);
3467
3468	for (j = 0; j < MAX_NR_ZONES; j++) {
3469		struct zone *zone = pgdat->node_zones + j;
3470		unsigned long size, realsize, memmap_pages;
3471		enum lru_list l;
3472
3473		size = zone_spanned_pages_in_node(nid, j, zones_size);
3474		realsize = size - zone_absent_pages_in_node(nid, j,
3475								zholes_size);
3476
3477		/*
3478		 * Adjust realsize so that it accounts for how much memory
3479		 * is used by this zone for memmap. This affects the watermark
3480		 * and per-cpu initialisations
3481		 */
3482		memmap_pages =
3483			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3484		if (realsize >= memmap_pages) {
3485			realsize -= memmap_pages;
3486			if (memmap_pages)
3487				printk(KERN_DEBUG
3488				       "  %s zone: %lu pages used for memmap\n",
3489				       zone_names[j], memmap_pages);
3490		} else
3491			printk(KERN_WARNING
3492				"  %s zone: %lu pages exceeds realsize %lu\n",
3493				zone_names[j], memmap_pages, realsize);
3494
3495		/* Account for reserved pages */
3496		if (j == 0 && realsize > dma_reserve) {
3497			realsize -= dma_reserve;
3498			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3499					zone_names[0], dma_reserve);
3500		}
3501
3502		if (!is_highmem_idx(j))
3503			nr_kernel_pages += realsize;
3504		nr_all_pages += realsize;
3505
3506		zone->spanned_pages = size;
3507		zone->present_pages = realsize;
3508#ifdef CONFIG_NUMA
3509		zone->node = nid;
3510		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3511						/ 100;
3512		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3513#endif
3514		zone->name = zone_names[j];
3515		spin_lock_init(&zone->lock);
3516		spin_lock_init(&zone->lru_lock);
3517		zone_seqlock_init(zone);
3518		zone->zone_pgdat = pgdat;
3519
3520		zone->prev_priority = DEF_PRIORITY;
3521
3522		zone_pcp_init(zone);
3523		for_each_lru(l) {
3524			INIT_LIST_HEAD(&zone->lru[l].list);
3525			zone->lru[l].nr_scan = 0;
3526		}
3527		zone->recent_rotated[0] = 0;
3528		zone->recent_rotated[1] = 0;
3529		zone->recent_scanned[0] = 0;
3530		zone->recent_scanned[1] = 0;
3531		zap_zone_vm_stats(zone);
3532		zone->flags = 0;
3533		if (!size)
3534			continue;
3535
3536		set_pageblock_order(pageblock_default_order());
3537		setup_usemap(pgdat, zone, size);
3538		ret = init_currently_empty_zone(zone, zone_start_pfn,
3539						size, MEMMAP_EARLY);
3540		BUG_ON(ret);
3541		memmap_init(size, nid, j, zone_start_pfn);
3542		zone_start_pfn += size;
3543	}
3544}
3545
3546static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3547{
3548	/* Skip empty nodes */
3549	if (!pgdat->node_spanned_pages)
3550		return;
3551
3552#ifdef CONFIG_FLAT_NODE_MEM_MAP
3553	/* ia64 gets its own node_mem_map, before this, without bootmem */
3554	if (!pgdat->node_mem_map) {
3555		unsigned long size, start, end;
3556		struct page *map;
3557
3558		/*
3559		 * The zone's endpoints aren't required to be MAX_ORDER
3560		 * aligned but the node_mem_map endpoints must be in order
3561		 * for the buddy allocator to function correctly.
3562		 */
3563		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3564		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3565		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3566		size =  (end - start) * sizeof(struct page);
3567		map = alloc_remap(pgdat->node_id, size);
3568		if (!map)
3569			map = alloc_bootmem_node(pgdat, size);
3570		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3571	}
3572#ifndef CONFIG_NEED_MULTIPLE_NODES
3573	/*
3574	 * With no DISCONTIG, the global mem_map is just set as node 0's
3575	 */
3576	if (pgdat == NODE_DATA(0)) {
3577		mem_map = NODE_DATA(0)->node_mem_map;
3578#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3579		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3580			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3581#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3582	}
3583#endif
3584#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3585}
3586
3587void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3588		unsigned long node_start_pfn, unsigned long *zholes_size)
3589{
3590	pg_data_t *pgdat = NODE_DATA(nid);
3591
3592	pgdat->node_id = nid;
3593	pgdat->node_start_pfn = node_start_pfn;
3594	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3595
3596	alloc_node_mem_map(pgdat);
3597#ifdef CONFIG_FLAT_NODE_MEM_MAP
3598	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3599		nid, (unsigned long)pgdat,
3600		(unsigned long)pgdat->node_mem_map);
3601#endif
3602
3603	free_area_init_core(pgdat, zones_size, zholes_size);
3604}
3605
3606#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3607
3608#if MAX_NUMNODES > 1
3609/*
3610 * Figure out the number of possible node ids.
3611 */
3612static void __init setup_nr_node_ids(void)
3613{
3614	unsigned int node;
3615	unsigned int highest = 0;
3616
3617	for_each_node_mask(node, node_possible_map)
3618		highest = node;
3619	nr_node_ids = highest + 1;
3620}
3621#else
3622static inline void setup_nr_node_ids(void)
3623{
3624}
3625#endif
3626
3627/**
3628 * add_active_range - Register a range of PFNs backed by physical memory
3629 * @nid: The node ID the range resides on
3630 * @start_pfn: The start PFN of the available physical memory
3631 * @end_pfn: The end PFN of the available physical memory
3632 *
3633 * These ranges are stored in an early_node_map[] and later used by
3634 * free_area_init_nodes() to calculate zone sizes and holes. If the
3635 * range spans a memory hole, it is up to the architecture to ensure
3636 * the memory is not freed by the bootmem allocator. If possible
3637 * the range being registered will be merged with existing ranges.
3638 */
3639void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3640						unsigned long end_pfn)
3641{
3642	int i;
3643
3644	mminit_dprintk(MMINIT_TRACE, "memory_register",
3645			"Entering add_active_range(%d, %#lx, %#lx) "
3646			"%d entries of %d used\n",
3647			nid, start_pfn, end_pfn,
3648			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3649
3650	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3651
3652	/* Merge with existing active regions if possible */
3653	for (i = 0; i < nr_nodemap_entries; i++) {
3654		if (early_node_map[i].nid != nid)
3655			continue;
3656
3657		/* Skip if an existing region covers this new one */
3658		if (start_pfn >= early_node_map[i].start_pfn &&
3659				end_pfn <= early_node_map[i].end_pfn)
3660			return;
3661
3662		/* Merge forward if suitable */
3663		if (start_pfn <= early_node_map[i].end_pfn &&
3664				end_pfn > early_node_map[i].end_pfn) {
3665			early_node_map[i].end_pfn = end_pfn;
3666			return;
3667		}
3668
3669		/* Merge backward if suitable */
3670		if (start_pfn < early_node_map[i].end_pfn &&
3671				end_pfn >= early_node_map[i].start_pfn) {
3672			early_node_map[i].start_pfn = start_pfn;
3673			return;
3674		}
3675	}
3676
3677	/* Check that early_node_map is large enough */
3678	if (i >= MAX_ACTIVE_REGIONS) {
3679		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3680							MAX_ACTIVE_REGIONS);
3681		return;
3682	}
3683
3684	early_node_map[i].nid = nid;
3685	early_node_map[i].start_pfn = start_pfn;
3686	early_node_map[i].end_pfn = end_pfn;
3687	nr_nodemap_entries = i + 1;
3688}
3689
3690/**
3691 * remove_active_range - Shrink an existing registered range of PFNs
3692 * @nid: The node id the range is on that should be shrunk
3693 * @start_pfn: The new PFN of the range
3694 * @end_pfn: The new PFN of the range
3695 *
3696 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3697 * The map is kept near the end physical page range that has already been
3698 * registered. This function allows an arch to shrink an existing registered
3699 * range.
3700 */
3701void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3702				unsigned long end_pfn)
3703{
3704	int i, j;
3705	int removed = 0;
3706
3707	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3708			  nid, start_pfn, end_pfn);
3709
3710	/* Find the old active region end and shrink */
3711	for_each_active_range_index_in_nid(i, nid) {
3712		if (early_node_map[i].start_pfn >= start_pfn &&
3713		    early_node_map[i].end_pfn <= end_pfn) {
3714			/* clear it */
3715			early_node_map[i].start_pfn = 0;
3716			early_node_map[i].end_pfn = 0;
3717			removed = 1;
3718			continue;
3719		}
3720		if (early_node_map[i].start_pfn < start_pfn &&
3721		    early_node_map[i].end_pfn > start_pfn) {
3722			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3723			early_node_map[i].end_pfn = start_pfn;
3724			if (temp_end_pfn > end_pfn)
3725				add_active_range(nid, end_pfn, temp_end_pfn);
3726			continue;
3727		}
3728		if (early_node_map[i].start_pfn >= start_pfn &&
3729		    early_node_map[i].end_pfn > end_pfn &&
3730		    early_node_map[i].start_pfn < end_pfn) {
3731			early_node_map[i].start_pfn = end_pfn;
3732			continue;
3733		}
3734	}
3735
3736	if (!removed)
3737		return;
3738
3739	/* remove the blank ones */
3740	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3741		if (early_node_map[i].nid != nid)
3742			continue;
3743		if (early_node_map[i].end_pfn)
3744			continue;
3745		/* we found it, get rid of it */
3746		for (j = i; j < nr_nodemap_entries - 1; j++)
3747			memcpy(&early_node_map[j], &early_node_map[j+1],
3748				sizeof(early_node_map[j]));
3749		j = nr_nodemap_entries - 1;
3750		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3751		nr_nodemap_entries--;
3752	}
3753}
3754
3755/**
3756 * remove_all_active_ranges - Remove all currently registered regions
3757 *
3758 * During discovery, it may be found that a table like SRAT is invalid
3759 * and an alternative discovery method must be used. This function removes
3760 * all currently registered regions.
3761 */
3762void __init remove_all_active_ranges(void)
3763{
3764	memset(early_node_map, 0, sizeof(early_node_map));
3765	nr_nodemap_entries = 0;
3766#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3767	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3768	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3769#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3770}
3771
3772/* Compare two active node_active_regions */
3773static int __init cmp_node_active_region(const void *a, const void *b)
3774{
3775	struct node_active_region *arange = (struct node_active_region *)a;
3776	struct node_active_region *brange = (struct node_active_region *)b;
3777
3778	/* Done this way to avoid overflows */
3779	if (arange->start_pfn > brange->start_pfn)
3780		return 1;
3781	if (arange->start_pfn < brange->start_pfn)
3782		return -1;
3783
3784	return 0;
3785}
3786
3787/* sort the node_map by start_pfn */
3788static void __init sort_node_map(void)
3789{
3790	sort(early_node_map, (size_t)nr_nodemap_entries,
3791			sizeof(struct node_active_region),
3792			cmp_node_active_region, NULL);
3793}
3794
3795/* Find the lowest pfn for a node */
3796static unsigned long __init find_min_pfn_for_node(int nid)
3797{
3798	int i;
3799	unsigned long min_pfn = ULONG_MAX;
3800
3801	/* Assuming a sorted map, the first range found has the starting pfn */
3802	for_each_active_range_index_in_nid(i, nid)
3803		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3804
3805	if (min_pfn == ULONG_MAX) {
3806		printk(KERN_WARNING
3807			"Could not find start_pfn for node %d\n", nid);
3808		return 0;
3809	}
3810
3811	return min_pfn;
3812}
3813
3814/**
3815 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3816 *
3817 * It returns the minimum PFN based on information provided via
3818 * add_active_range().
3819 */
3820unsigned long __init find_min_pfn_with_active_regions(void)
3821{
3822	return find_min_pfn_for_node(MAX_NUMNODES);
3823}
3824
3825/*
3826 * early_calculate_totalpages()
3827 * Sum pages in active regions for movable zone.
3828 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3829 */
3830static unsigned long __init early_calculate_totalpages(void)
3831{
3832	int i;
3833	unsigned long totalpages = 0;
3834
3835	for (i = 0; i < nr_nodemap_entries; i++) {
3836		unsigned long pages = early_node_map[i].end_pfn -
3837						early_node_map[i].start_pfn;
3838		totalpages += pages;
3839		if (pages)
3840			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3841	}
3842  	return totalpages;
3843}
3844
3845/*
3846 * Find the PFN the Movable zone begins in each node. Kernel memory
3847 * is spread evenly between nodes as long as the nodes have enough
3848 * memory. When they don't, some nodes will have more kernelcore than
3849 * others
3850 */
3851static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3852{
3853	int i, nid;
3854	unsigned long usable_startpfn;
3855	unsigned long kernelcore_node, kernelcore_remaining;
3856	unsigned long totalpages = early_calculate_totalpages();
3857	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3858
3859	/*
3860	 * If movablecore was specified, calculate what size of
3861	 * kernelcore that corresponds so that memory usable for
3862	 * any allocation type is evenly spread. If both kernelcore
3863	 * and movablecore are specified, then the value of kernelcore
3864	 * will be used for required_kernelcore if it's greater than
3865	 * what movablecore would have allowed.
3866	 */
3867	if (required_movablecore) {
3868		unsigned long corepages;
3869
3870		/*
3871		 * Round-up so that ZONE_MOVABLE is at least as large as what
3872		 * was requested by the user
3873		 */
3874		required_movablecore =
3875			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3876		corepages = totalpages - required_movablecore;
3877
3878		required_kernelcore = max(required_kernelcore, corepages);
3879	}
3880
3881	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3882	if (!required_kernelcore)
3883		return;
3884
3885	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3886	find_usable_zone_for_movable();
3887	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3888
3889restart:
3890	/* Spread kernelcore memory as evenly as possible throughout nodes */
3891	kernelcore_node = required_kernelcore / usable_nodes;
3892	for_each_node_state(nid, N_HIGH_MEMORY) {
3893		/*
3894		 * Recalculate kernelcore_node if the division per node
3895		 * now exceeds what is necessary to satisfy the requested
3896		 * amount of memory for the kernel
3897		 */
3898		if (required_kernelcore < kernelcore_node)
3899			kernelcore_node = required_kernelcore / usable_nodes;
3900
3901		/*
3902		 * As the map is walked, we track how much memory is usable
3903		 * by the kernel using kernelcore_remaining. When it is
3904		 * 0, the rest of the node is usable by ZONE_MOVABLE
3905		 */
3906		kernelcore_remaining = kernelcore_node;
3907
3908		/* Go through each range of PFNs within this node */
3909		for_each_active_range_index_in_nid(i, nid) {
3910			unsigned long start_pfn, end_pfn;
3911			unsigned long size_pages;
3912
3913			start_pfn = max(early_node_map[i].start_pfn,
3914						zone_movable_pfn[nid]);
3915			end_pfn = early_node_map[i].end_pfn;
3916			if (start_pfn >= end_pfn)
3917				continue;
3918
3919			/* Account for what is only usable for kernelcore */
3920			if (start_pfn < usable_startpfn) {
3921				unsigned long kernel_pages;
3922				kernel_pages = min(end_pfn, usable_startpfn)
3923								- start_pfn;
3924
3925				kernelcore_remaining -= min(kernel_pages,
3926							kernelcore_remaining);
3927				required_kernelcore -= min(kernel_pages,
3928							required_kernelcore);
3929
3930				/* Continue if range is now fully accounted */
3931				if (end_pfn <= usable_startpfn) {
3932
3933					/*
3934					 * Push zone_movable_pfn to the end so
3935					 * that if we have to rebalance
3936					 * kernelcore across nodes, we will
3937					 * not double account here
3938					 */
3939					zone_movable_pfn[nid] = end_pfn;
3940					continue;
3941				}
3942				start_pfn = usable_startpfn;
3943			}
3944
3945			/*
3946			 * The usable PFN range for ZONE_MOVABLE is from
3947			 * start_pfn->end_pfn. Calculate size_pages as the
3948			 * number of pages used as kernelcore
3949			 */
3950			size_pages = end_pfn - start_pfn;
3951			if (size_pages > kernelcore_remaining)
3952				size_pages = kernelcore_remaining;
3953			zone_movable_pfn[nid] = start_pfn + size_pages;
3954
3955			/*
3956			 * Some kernelcore has been met, update counts and
3957			 * break if the kernelcore for this node has been
3958			 * satisified
3959			 */
3960			required_kernelcore -= min(required_kernelcore,
3961								size_pages);
3962			kernelcore_remaining -= size_pages;
3963			if (!kernelcore_remaining)
3964				break;
3965		}
3966	}
3967
3968	/*
3969	 * If there is still required_kernelcore, we do another pass with one
3970	 * less node in the count. This will push zone_movable_pfn[nid] further
3971	 * along on the nodes that still have memory until kernelcore is
3972	 * satisified
3973	 */
3974	usable_nodes--;
3975	if (usable_nodes && required_kernelcore > usable_nodes)
3976		goto restart;
3977
3978	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3979	for (nid = 0; nid < MAX_NUMNODES; nid++)
3980		zone_movable_pfn[nid] =
3981			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3982}
3983
3984/* Any regular memory on that node ? */
3985static void check_for_regular_memory(pg_data_t *pgdat)
3986{
3987#ifdef CONFIG_HIGHMEM
3988	enum zone_type zone_type;
3989
3990	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3991		struct zone *zone = &pgdat->node_zones[zone_type];
3992		if (zone->present_pages)
3993			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3994	}
3995#endif
3996}
3997
3998/**
3999 * free_area_init_nodes - Initialise all pg_data_t and zone data
4000 * @max_zone_pfn: an array of max PFNs for each zone
4001 *
4002 * This will call free_area_init_node() for each active node in the system.
4003 * Using the page ranges provided by add_active_range(), the size of each
4004 * zone in each node and their holes is calculated. If the maximum PFN
4005 * between two adjacent zones match, it is assumed that the zone is empty.
4006 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4007 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4008 * starts where the previous one ended. For example, ZONE_DMA32 starts
4009 * at arch_max_dma_pfn.
4010 */
4011void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4012{
4013	unsigned long nid;
4014	int i;
4015
4016	/* Sort early_node_map as initialisation assumes it is sorted */
4017	sort_node_map();
4018
4019	/* Record where the zone boundaries are */
4020	memset(arch_zone_lowest_possible_pfn, 0,
4021				sizeof(arch_zone_lowest_possible_pfn));
4022	memset(arch_zone_highest_possible_pfn, 0,
4023				sizeof(arch_zone_highest_possible_pfn));
4024	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4025	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4026	for (i = 1; i < MAX_NR_ZONES; i++) {
4027		if (i == ZONE_MOVABLE)
4028			continue;
4029		arch_zone_lowest_possible_pfn[i] =
4030			arch_zone_highest_possible_pfn[i-1];
4031		arch_zone_highest_possible_pfn[i] =
4032			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4033	}
4034	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4035	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4036
4037	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4038	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4039	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4040
4041	/* Print out the zone ranges */
4042	printk("Zone PFN ranges:\n");
4043	for (i = 0; i < MAX_NR_ZONES; i++) {
4044		if (i == ZONE_MOVABLE)
4045			continue;
4046		printk("  %-8s %0#10lx -> %0#10lx\n",
4047				zone_names[i],
4048				arch_zone_lowest_possible_pfn[i],
4049				arch_zone_highest_possible_pfn[i]);
4050	}
4051
4052	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4053	printk("Movable zone start PFN for each node\n");
4054	for (i = 0; i < MAX_NUMNODES; i++) {
4055		if (zone_movable_pfn[i])
4056			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4057	}
4058
4059	/* Print out the early_node_map[] */
4060	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4061	for (i = 0; i < nr_nodemap_entries; i++)
4062		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4063						early_node_map[i].start_pfn,
4064						early_node_map[i].end_pfn);
4065
4066	/* Initialise every node */
4067	mminit_verify_pageflags_layout();
4068	setup_nr_node_ids();
4069	for_each_online_node(nid) {
4070		pg_data_t *pgdat = NODE_DATA(nid);
4071		free_area_init_node(nid, NULL,
4072				find_min_pfn_for_node(nid), NULL);
4073
4074		/* Any memory on that node */
4075		if (pgdat->node_present_pages)
4076			node_set_state(nid, N_HIGH_MEMORY);
4077		check_for_regular_memory(pgdat);
4078	}
4079}
4080
4081static int __init cmdline_parse_core(char *p, unsigned long *core)
4082{
4083	unsigned long long coremem;
4084	if (!p)
4085		return -EINVAL;
4086
4087	coremem = memparse(p, &p);
4088	*core = coremem >> PAGE_SHIFT;
4089
4090	/* Paranoid check that UL is enough for the coremem value */
4091	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4092
4093	return 0;
4094}
4095
4096/*
4097 * kernelcore=size sets the amount of memory for use for allocations that
4098 * cannot be reclaimed or migrated.
4099 */
4100static int __init cmdline_parse_kernelcore(char *p)
4101{
4102	return cmdline_parse_core(p, &required_kernelcore);
4103}
4104
4105/*
4106 * movablecore=size sets the amount of memory for use for allocations that
4107 * can be reclaimed or migrated.
4108 */
4109static int __init cmdline_parse_movablecore(char *p)
4110{
4111	return cmdline_parse_core(p, &required_movablecore);
4112}
4113
4114early_param("kernelcore", cmdline_parse_kernelcore);
4115early_param("movablecore", cmdline_parse_movablecore);
4116
4117#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4118
4119/**
4120 * set_dma_reserve - set the specified number of pages reserved in the first zone
4121 * @new_dma_reserve: The number of pages to mark reserved
4122 *
4123 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4124 * In the DMA zone, a significant percentage may be consumed by kernel image
4125 * and other unfreeable allocations which can skew the watermarks badly. This
4126 * function may optionally be used to account for unfreeable pages in the
4127 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4128 * smaller per-cpu batchsize.
4129 */
4130void __init set_dma_reserve(unsigned long new_dma_reserve)
4131{
4132	dma_reserve = new_dma_reserve;
4133}
4134
4135#ifndef CONFIG_NEED_MULTIPLE_NODES
4136struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4137EXPORT_SYMBOL(contig_page_data);
4138#endif
4139
4140void __init free_area_init(unsigned long *zones_size)
4141{
4142	free_area_init_node(0, zones_size,
4143			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4144}
4145
4146static int page_alloc_cpu_notify(struct notifier_block *self,
4147				 unsigned long action, void *hcpu)
4148{
4149	int cpu = (unsigned long)hcpu;
4150
4151	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4152		drain_pages(cpu);
4153
4154		/*
4155		 * Spill the event counters of the dead processor
4156		 * into the current processors event counters.
4157		 * This artificially elevates the count of the current
4158		 * processor.
4159		 */
4160		vm_events_fold_cpu(cpu);
4161
4162		/*
4163		 * Zero the differential counters of the dead processor
4164		 * so that the vm statistics are consistent.
4165		 *
4166		 * This is only okay since the processor is dead and cannot
4167		 * race with what we are doing.
4168		 */
4169		refresh_cpu_vm_stats(cpu);
4170	}
4171	return NOTIFY_OK;
4172}
4173
4174void __init page_alloc_init(void)
4175{
4176	hotcpu_notifier(page_alloc_cpu_notify, 0);
4177}
4178
4179/*
4180 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4181 *	or min_free_kbytes changes.
4182 */
4183static void calculate_totalreserve_pages(void)
4184{
4185	struct pglist_data *pgdat;
4186	unsigned long reserve_pages = 0;
4187	enum zone_type i, j;
4188
4189	for_each_online_pgdat(pgdat) {
4190		for (i = 0; i < MAX_NR_ZONES; i++) {
4191			struct zone *zone = pgdat->node_zones + i;
4192			unsigned long max = 0;
4193
4194			/* Find valid and maximum lowmem_reserve in the zone */
4195			for (j = i; j < MAX_NR_ZONES; j++) {
4196				if (zone->lowmem_reserve[j] > max)
4197					max = zone->lowmem_reserve[j];
4198			}
4199
4200			/* we treat pages_high as reserved pages. */
4201			max += zone->pages_high;
4202
4203			if (max > zone->present_pages)
4204				max = zone->present_pages;
4205			reserve_pages += max;
4206		}
4207	}
4208	totalreserve_pages = reserve_pages;
4209}
4210
4211/*
4212 * setup_per_zone_lowmem_reserve - called whenever
4213 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4214 *	has a correct pages reserved value, so an adequate number of
4215 *	pages are left in the zone after a successful __alloc_pages().
4216 */
4217static void setup_per_zone_lowmem_reserve(void)
4218{
4219	struct pglist_data *pgdat;
4220	enum zone_type j, idx;
4221
4222	for_each_online_pgdat(pgdat) {
4223		for (j = 0; j < MAX_NR_ZONES; j++) {
4224			struct zone *zone = pgdat->node_zones + j;
4225			unsigned long present_pages = zone->present_pages;
4226
4227			zone->lowmem_reserve[j] = 0;
4228
4229			idx = j;
4230			while (idx) {
4231				struct zone *lower_zone;
4232
4233				idx--;
4234
4235				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4236					sysctl_lowmem_reserve_ratio[idx] = 1;
4237
4238				lower_zone = pgdat->node_zones + idx;
4239				lower_zone->lowmem_reserve[j] = present_pages /
4240					sysctl_lowmem_reserve_ratio[idx];
4241				present_pages += lower_zone->present_pages;
4242			}
4243		}
4244	}
4245
4246	/* update totalreserve_pages */
4247	calculate_totalreserve_pages();
4248}
4249
4250/**
4251 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4252 *
4253 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4254 * with respect to min_free_kbytes.
4255 */
4256void setup_per_zone_pages_min(void)
4257{
4258	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4259	unsigned long lowmem_pages = 0;
4260	struct zone *zone;
4261	unsigned long flags;
4262
4263	/* Calculate total number of !ZONE_HIGHMEM pages */
4264	for_each_zone(zone) {
4265		if (!is_highmem(zone))
4266			lowmem_pages += zone->present_pages;
4267	}
4268
4269	for_each_zone(zone) {
4270		u64 tmp;
4271
4272		spin_lock_irqsave(&zone->lock, flags);
4273		tmp = (u64)pages_min * zone->present_pages;
4274		do_div(tmp, lowmem_pages);
4275		if (is_highmem(zone)) {
4276			/*
4277			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4278			 * need highmem pages, so cap pages_min to a small
4279			 * value here.
4280			 *
4281			 * The (pages_high-pages_low) and (pages_low-pages_min)
4282			 * deltas controls asynch page reclaim, and so should
4283			 * not be capped for highmem.
4284			 */
4285			int min_pages;
4286
4287			min_pages = zone->present_pages / 1024;
4288			if (min_pages < SWAP_CLUSTER_MAX)
4289				min_pages = SWAP_CLUSTER_MAX;
4290			if (min_pages > 128)
4291				min_pages = 128;
4292			zone->pages_min = min_pages;
4293		} else {
4294			/*
4295			 * If it's a lowmem zone, reserve a number of pages
4296			 * proportionate to the zone's size.
4297			 */
4298			zone->pages_min = tmp;
4299		}
4300
4301		zone->pages_low   = zone->pages_min + (tmp >> 2);
4302		zone->pages_high  = zone->pages_min + (tmp >> 1);
4303		setup_zone_migrate_reserve(zone);
4304		spin_unlock_irqrestore(&zone->lock, flags);
4305	}
4306
4307	/* update totalreserve_pages */
4308	calculate_totalreserve_pages();
4309}
4310
4311/**
4312 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4313 *
4314 * The inactive anon list should be small enough that the VM never has to
4315 * do too much work, but large enough that each inactive page has a chance
4316 * to be referenced again before it is swapped out.
4317 *
4318 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4319 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4320 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4321 * the anonymous pages are kept on the inactive list.
4322 *
4323 * total     target    max
4324 * memory    ratio     inactive anon
4325 * -------------------------------------
4326 *   10MB       1         5MB
4327 *  100MB       1        50MB
4328 *    1GB       3       250MB
4329 *   10GB      10       0.9GB
4330 *  100GB      31         3GB
4331 *    1TB     101        10GB
4332 *   10TB     320        32GB
4333 */
4334static void setup_per_zone_inactive_ratio(void)
4335{
4336	struct zone *zone;
4337
4338	for_each_zone(zone) {
4339		unsigned int gb, ratio;
4340
4341		/* Zone size in gigabytes */
4342		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4343		ratio = int_sqrt(10 * gb);
4344		if (!ratio)
4345			ratio = 1;
4346
4347		zone->inactive_ratio = ratio;
4348	}
4349}
4350
4351/*
4352 * Initialise min_free_kbytes.
4353 *
4354 * For small machines we want it small (128k min).  For large machines
4355 * we want it large (64MB max).  But it is not linear, because network
4356 * bandwidth does not increase linearly with machine size.  We use
4357 *
4358 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4359 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4360 *
4361 * which yields
4362 *
4363 * 16MB:	512k
4364 * 32MB:	724k
4365 * 64MB:	1024k
4366 * 128MB:	1448k
4367 * 256MB:	2048k
4368 * 512MB:	2896k
4369 * 1024MB:	4096k
4370 * 2048MB:	5792k
4371 * 4096MB:	8192k
4372 * 8192MB:	11584k
4373 * 16384MB:	16384k
4374 */
4375static int __init init_per_zone_pages_min(void)
4376{
4377	unsigned long lowmem_kbytes;
4378
4379	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4380
4381	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4382	if (min_free_kbytes < 128)
4383		min_free_kbytes = 128;
4384	if (min_free_kbytes > 65536)
4385		min_free_kbytes = 65536;
4386	setup_per_zone_pages_min();
4387	setup_per_zone_lowmem_reserve();
4388	setup_per_zone_inactive_ratio();
4389	return 0;
4390}
4391module_init(init_per_zone_pages_min)
4392
4393/*
4394 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4395 *	that we can call two helper functions whenever min_free_kbytes
4396 *	changes.
4397 */
4398int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4399	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4400{
4401	proc_dointvec(table, write, file, buffer, length, ppos);
4402	if (write)
4403		setup_per_zone_pages_min();
4404	return 0;
4405}
4406
4407#ifdef CONFIG_NUMA
4408int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4409	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4410{
4411	struct zone *zone;
4412	int rc;
4413
4414	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4415	if (rc)
4416		return rc;
4417
4418	for_each_zone(zone)
4419		zone->min_unmapped_pages = (zone->present_pages *
4420				sysctl_min_unmapped_ratio) / 100;
4421	return 0;
4422}
4423
4424int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4425	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4426{
4427	struct zone *zone;
4428	int rc;
4429
4430	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4431	if (rc)
4432		return rc;
4433
4434	for_each_zone(zone)
4435		zone->min_slab_pages = (zone->present_pages *
4436				sysctl_min_slab_ratio) / 100;
4437	return 0;
4438}
4439#endif
4440
4441/*
4442 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4443 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4444 *	whenever sysctl_lowmem_reserve_ratio changes.
4445 *
4446 * The reserve ratio obviously has absolutely no relation with the
4447 * pages_min watermarks. The lowmem reserve ratio can only make sense
4448 * if in function of the boot time zone sizes.
4449 */
4450int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4451	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4452{
4453	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4454	setup_per_zone_lowmem_reserve();
4455	return 0;
4456}
4457
4458/*
4459 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4460 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4461 * can have before it gets flushed back to buddy allocator.
4462 */
4463
4464int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4465	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4466{
4467	struct zone *zone;
4468	unsigned int cpu;
4469	int ret;
4470
4471	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4472	if (!write || (ret == -EINVAL))
4473		return ret;
4474	for_each_zone(zone) {
4475		for_each_online_cpu(cpu) {
4476			unsigned long  high;
4477			high = zone->present_pages / percpu_pagelist_fraction;
4478			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4479		}
4480	}
4481	return 0;
4482}
4483
4484int hashdist = HASHDIST_DEFAULT;
4485
4486#ifdef CONFIG_NUMA
4487static int __init set_hashdist(char *str)
4488{
4489	if (!str)
4490		return 0;
4491	hashdist = simple_strtoul(str, &str, 0);
4492	return 1;
4493}
4494__setup("hashdist=", set_hashdist);
4495#endif
4496
4497/*
4498 * allocate a large system hash table from bootmem
4499 * - it is assumed that the hash table must contain an exact power-of-2
4500 *   quantity of entries
4501 * - limit is the number of hash buckets, not the total allocation size
4502 */
4503void *__init alloc_large_system_hash(const char *tablename,
4504				     unsigned long bucketsize,
4505				     unsigned long numentries,
4506				     int scale,
4507				     int flags,
4508				     unsigned int *_hash_shift,
4509				     unsigned int *_hash_mask,
4510				     unsigned long limit)
4511{
4512	unsigned long long max = limit;
4513	unsigned long log2qty, size;
4514	void *table = NULL;
4515
4516	/* allow the kernel cmdline to have a say */
4517	if (!numentries) {
4518		/* round applicable memory size up to nearest megabyte */
4519		numentries = nr_kernel_pages;
4520		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4521		numentries >>= 20 - PAGE_SHIFT;
4522		numentries <<= 20 - PAGE_SHIFT;
4523
4524		/* limit to 1 bucket per 2^scale bytes of low memory */
4525		if (scale > PAGE_SHIFT)
4526			numentries >>= (scale - PAGE_SHIFT);
4527		else
4528			numentries <<= (PAGE_SHIFT - scale);
4529
4530		/* Make sure we've got at least a 0-order allocation.. */
4531		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4532			numentries = PAGE_SIZE / bucketsize;
4533	}
4534	numentries = roundup_pow_of_two(numentries);
4535
4536	/* limit allocation size to 1/16 total memory by default */
4537	if (max == 0) {
4538		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4539		do_div(max, bucketsize);
4540	}
4541
4542	if (numentries > max)
4543		numentries = max;
4544
4545	log2qty = ilog2(numentries);
4546
4547	do {
4548		size = bucketsize << log2qty;
4549		if (flags & HASH_EARLY)
4550			table = alloc_bootmem_nopanic(size);
4551		else if (hashdist)
4552			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4553		else {
4554			unsigned long order = get_order(size);
4555			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4556			/*
4557			 * If bucketsize is not a power-of-two, we may free
4558			 * some pages at the end of hash table.
4559			 */
4560			if (table) {
4561				unsigned long alloc_end = (unsigned long)table +
4562						(PAGE_SIZE << order);
4563				unsigned long used = (unsigned long)table +
4564						PAGE_ALIGN(size);
4565				split_page(virt_to_page(table), order);
4566				while (used < alloc_end) {
4567					free_page(used);
4568					used += PAGE_SIZE;
4569				}
4570			}
4571		}
4572	} while (!table && size > PAGE_SIZE && --log2qty);
4573
4574	if (!table)
4575		panic("Failed to allocate %s hash table\n", tablename);
4576
4577	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4578	       tablename,
4579	       (1U << log2qty),
4580	       ilog2(size) - PAGE_SHIFT,
4581	       size);
4582
4583	if (_hash_shift)
4584		*_hash_shift = log2qty;
4585	if (_hash_mask)
4586		*_hash_mask = (1 << log2qty) - 1;
4587
4588	return table;
4589}
4590
4591#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4592struct page *pfn_to_page(unsigned long pfn)
4593{
4594	return __pfn_to_page(pfn);
4595}
4596unsigned long page_to_pfn(struct page *page)
4597{
4598	return __page_to_pfn(page);
4599}
4600EXPORT_SYMBOL(pfn_to_page);
4601EXPORT_SYMBOL(page_to_pfn);
4602#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4603
4604/* Return a pointer to the bitmap storing bits affecting a block of pages */
4605static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4606							unsigned long pfn)
4607{
4608#ifdef CONFIG_SPARSEMEM
4609	return __pfn_to_section(pfn)->pageblock_flags;
4610#else
4611	return zone->pageblock_flags;
4612#endif /* CONFIG_SPARSEMEM */
4613}
4614
4615static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4616{
4617#ifdef CONFIG_SPARSEMEM
4618	pfn &= (PAGES_PER_SECTION-1);
4619	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4620#else
4621	pfn = pfn - zone->zone_start_pfn;
4622	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4623#endif /* CONFIG_SPARSEMEM */
4624}
4625
4626/**
4627 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4628 * @page: The page within the block of interest
4629 * @start_bitidx: The first bit of interest to retrieve
4630 * @end_bitidx: The last bit of interest
4631 * returns pageblock_bits flags
4632 */
4633unsigned long get_pageblock_flags_group(struct page *page,
4634					int start_bitidx, int end_bitidx)
4635{
4636	struct zone *zone;
4637	unsigned long *bitmap;
4638	unsigned long pfn, bitidx;
4639	unsigned long flags = 0;
4640	unsigned long value = 1;
4641
4642	zone = page_zone(page);
4643	pfn = page_to_pfn(page);
4644	bitmap = get_pageblock_bitmap(zone, pfn);
4645	bitidx = pfn_to_bitidx(zone, pfn);
4646
4647	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4648		if (test_bit(bitidx + start_bitidx, bitmap))
4649			flags |= value;
4650
4651	return flags;
4652}
4653
4654/**
4655 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4656 * @page: The page within the block of interest
4657 * @start_bitidx: The first bit of interest
4658 * @end_bitidx: The last bit of interest
4659 * @flags: The flags to set
4660 */
4661void set_pageblock_flags_group(struct page *page, unsigned long flags,
4662					int start_bitidx, int end_bitidx)
4663{
4664	struct zone *zone;
4665	unsigned long *bitmap;
4666	unsigned long pfn, bitidx;
4667	unsigned long value = 1;
4668
4669	zone = page_zone(page);
4670	pfn = page_to_pfn(page);
4671	bitmap = get_pageblock_bitmap(zone, pfn);
4672	bitidx = pfn_to_bitidx(zone, pfn);
4673	VM_BUG_ON(pfn < zone->zone_start_pfn);
4674	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4675
4676	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4677		if (flags & value)
4678			__set_bit(bitidx + start_bitidx, bitmap);
4679		else
4680			__clear_bit(bitidx + start_bitidx, bitmap);
4681}
4682
4683/*
4684 * This is designed as sub function...plz see page_isolation.c also.
4685 * set/clear page block's type to be ISOLATE.
4686 * page allocater never alloc memory from ISOLATE block.
4687 */
4688
4689int set_migratetype_isolate(struct page *page)
4690{
4691	struct zone *zone;
4692	unsigned long flags;
4693	int ret = -EBUSY;
4694
4695	zone = page_zone(page);
4696	spin_lock_irqsave(&zone->lock, flags);
4697	/*
4698	 * In future, more migrate types will be able to be isolation target.
4699	 */
4700	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4701		goto out;
4702	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4703	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4704	ret = 0;
4705out:
4706	spin_unlock_irqrestore(&zone->lock, flags);
4707	if (!ret)
4708		drain_all_pages();
4709	return ret;
4710}
4711
4712void unset_migratetype_isolate(struct page *page)
4713{
4714	struct zone *zone;
4715	unsigned long flags;
4716	zone = page_zone(page);
4717	spin_lock_irqsave(&zone->lock, flags);
4718	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4719		goto out;
4720	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4721	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4722out:
4723	spin_unlock_irqrestore(&zone->lock, flags);
4724}
4725
4726#ifdef CONFIG_MEMORY_HOTREMOVE
4727/*
4728 * All pages in the range must be isolated before calling this.
4729 */
4730void
4731__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4732{
4733	struct page *page;
4734	struct zone *zone;
4735	int order, i;
4736	unsigned long pfn;
4737	unsigned long flags;
4738	/* find the first valid pfn */
4739	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4740		if (pfn_valid(pfn))
4741			break;
4742	if (pfn == end_pfn)
4743		return;
4744	zone = page_zone(pfn_to_page(pfn));
4745	spin_lock_irqsave(&zone->lock, flags);
4746	pfn = start_pfn;
4747	while (pfn < end_pfn) {
4748		if (!pfn_valid(pfn)) {
4749			pfn++;
4750			continue;
4751		}
4752		page = pfn_to_page(pfn);
4753		BUG_ON(page_count(page));
4754		BUG_ON(!PageBuddy(page));
4755		order = page_order(page);
4756#ifdef CONFIG_DEBUG_VM
4757		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4758		       pfn, 1 << order, end_pfn);
4759#endif
4760		list_del(&page->lru);
4761		rmv_page_order(page);
4762		zone->free_area[order].nr_free--;
4763		__mod_zone_page_state(zone, NR_FREE_PAGES,
4764				      - (1UL << order));
4765		for (i = 0; i < (1 << order); i++)
4766			SetPageReserved((page+i));
4767		pfn += (1 << order);
4768	}
4769	spin_unlock_irqrestore(&zone->lock, flags);
4770}
4771#endif
4772