page_alloc.c revision dab48dab37d2770824420d1e01730a107fade1aa
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49#include <linux/kmemleak.h>
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53#include "internal.h"
54
55/*
56 * Array of node states.
57 */
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59	[N_POSSIBLE] = NODE_MASK_ALL,
60	[N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64	[N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66	[N_CPU] = { { [0] = 1UL } },
67#endif	/* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
71unsigned long totalram_pages __read_mostly;
72unsigned long totalreserve_pages __read_mostly;
73unsigned long highest_memmap_pfn __read_mostly;
74int percpu_pagelist_fraction;
75
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
80static void __free_pages_ok(struct page *page, unsigned int order);
81
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 *	1G machine -> (16M dma, 784M normal, 224M high)
86 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94#ifdef CONFIG_ZONE_DMA
95	 256,
96#endif
97#ifdef CONFIG_ZONE_DMA32
98	 256,
99#endif
100#ifdef CONFIG_HIGHMEM
101	 32,
102#endif
103	 32,
104};
105
106EXPORT_SYMBOL(totalram_pages);
107
108static char * const zone_names[MAX_NR_ZONES] = {
109#ifdef CONFIG_ZONE_DMA
110	 "DMA",
111#endif
112#ifdef CONFIG_ZONE_DMA32
113	 "DMA32",
114#endif
115	 "Normal",
116#ifdef CONFIG_HIGHMEM
117	 "HighMem",
118#endif
119	 "Movable",
120};
121
122int min_free_kbytes = 1024;
123
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
126static unsigned long __meminitdata dma_reserve;
127
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129  /*
130   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131   * ranges of memory (RAM) that may be registered with add_active_range().
132   * Ranges passed to add_active_range() will be merged if possible
133   * so the number of times add_active_range() can be called is
134   * related to the number of nodes and the number of holes
135   */
136  #ifdef CONFIG_MAX_ACTIVE_REGIONS
137    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139  #else
140    #if MAX_NUMNODES >= 32
141      /* If there can be many nodes, allow up to 50 holes per node */
142      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143    #else
144      /* By default, allow up to 256 distinct regions */
145      #define MAX_ACTIVE_REGIONS 256
146    #endif
147  #endif
148
149  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150  static int __meminitdata nr_nodemap_entries;
151  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153  static unsigned long __initdata required_kernelcore;
154  static unsigned long __initdata required_movablecore;
155  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158  int movable_zone;
159  EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164int nr_online_nodes __read_mostly = 1;
165EXPORT_SYMBOL(nr_node_ids);
166EXPORT_SYMBOL(nr_online_nodes);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173
174	if (unlikely(page_group_by_mobility_disabled))
175		migratetype = MIGRATE_UNMOVABLE;
176
177	set_pageblock_flags_group(page, (unsigned long)migratetype,
178					PB_migrate, PB_migrate_end);
179}
180
181#ifdef CONFIG_DEBUG_VM
182static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
183{
184	int ret = 0;
185	unsigned seq;
186	unsigned long pfn = page_to_pfn(page);
187
188	do {
189		seq = zone_span_seqbegin(zone);
190		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
191			ret = 1;
192		else if (pfn < zone->zone_start_pfn)
193			ret = 1;
194	} while (zone_span_seqretry(zone, seq));
195
196	return ret;
197}
198
199static int page_is_consistent(struct zone *zone, struct page *page)
200{
201	if (!pfn_valid_within(page_to_pfn(page)))
202		return 0;
203	if (zone != page_zone(page))
204		return 0;
205
206	return 1;
207}
208/*
209 * Temporary debugging check for pages not lying within a given zone.
210 */
211static int bad_range(struct zone *zone, struct page *page)
212{
213	if (page_outside_zone_boundaries(zone, page))
214		return 1;
215	if (!page_is_consistent(zone, page))
216		return 1;
217
218	return 0;
219}
220#else
221static inline int bad_range(struct zone *zone, struct page *page)
222{
223	return 0;
224}
225#endif
226
227static void bad_page(struct page *page)
228{
229	static unsigned long resume;
230	static unsigned long nr_shown;
231	static unsigned long nr_unshown;
232
233	/*
234	 * Allow a burst of 60 reports, then keep quiet for that minute;
235	 * or allow a steady drip of one report per second.
236	 */
237	if (nr_shown == 60) {
238		if (time_before(jiffies, resume)) {
239			nr_unshown++;
240			goto out;
241		}
242		if (nr_unshown) {
243			printk(KERN_ALERT
244			      "BUG: Bad page state: %lu messages suppressed\n",
245				nr_unshown);
246			nr_unshown = 0;
247		}
248		nr_shown = 0;
249	}
250	if (nr_shown++ == 0)
251		resume = jiffies + 60 * HZ;
252
253	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
254		current->comm, page_to_pfn(page));
255	printk(KERN_ALERT
256		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
257		page, (void *)page->flags, page_count(page),
258		page_mapcount(page), page->mapping, page->index);
259
260	dump_stack();
261out:
262	/* Leave bad fields for debug, except PageBuddy could make trouble */
263	__ClearPageBuddy(page);
264	add_taint(TAINT_BAD_PAGE);
265}
266
267/*
268 * Higher-order pages are called "compound pages".  They are structured thusly:
269 *
270 * The first PAGE_SIZE page is called the "head page".
271 *
272 * The remaining PAGE_SIZE pages are called "tail pages".
273 *
274 * All pages have PG_compound set.  All pages have their ->private pointing at
275 * the head page (even the head page has this).
276 *
277 * The first tail page's ->lru.next holds the address of the compound page's
278 * put_page() function.  Its ->lru.prev holds the order of allocation.
279 * This usage means that zero-order pages may not be compound.
280 */
281
282static void free_compound_page(struct page *page)
283{
284	__free_pages_ok(page, compound_order(page));
285}
286
287void prep_compound_page(struct page *page, unsigned long order)
288{
289	int i;
290	int nr_pages = 1 << order;
291
292	set_compound_page_dtor(page, free_compound_page);
293	set_compound_order(page, order);
294	__SetPageHead(page);
295	for (i = 1; i < nr_pages; i++) {
296		struct page *p = page + i;
297
298		__SetPageTail(p);
299		p->first_page = page;
300	}
301}
302
303static int destroy_compound_page(struct page *page, unsigned long order)
304{
305	int i;
306	int nr_pages = 1 << order;
307	int bad = 0;
308
309	if (unlikely(compound_order(page) != order) ||
310	    unlikely(!PageHead(page))) {
311		bad_page(page);
312		bad++;
313	}
314
315	__ClearPageHead(page);
316
317	for (i = 1; i < nr_pages; i++) {
318		struct page *p = page + i;
319
320		if (unlikely(!PageTail(p) || (p->first_page != page))) {
321			bad_page(page);
322			bad++;
323		}
324		__ClearPageTail(p);
325	}
326
327	return bad;
328}
329
330static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
331{
332	int i;
333
334	/*
335	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
336	 * and __GFP_HIGHMEM from hard or soft interrupt context.
337	 */
338	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
339	for (i = 0; i < (1 << order); i++)
340		clear_highpage(page + i);
341}
342
343static inline void set_page_order(struct page *page, int order)
344{
345	set_page_private(page, order);
346	__SetPageBuddy(page);
347}
348
349static inline void rmv_page_order(struct page *page)
350{
351	__ClearPageBuddy(page);
352	set_page_private(page, 0);
353}
354
355/*
356 * Locate the struct page for both the matching buddy in our
357 * pair (buddy1) and the combined O(n+1) page they form (page).
358 *
359 * 1) Any buddy B1 will have an order O twin B2 which satisfies
360 * the following equation:
361 *     B2 = B1 ^ (1 << O)
362 * For example, if the starting buddy (buddy2) is #8 its order
363 * 1 buddy is #10:
364 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
365 *
366 * 2) Any buddy B will have an order O+1 parent P which
367 * satisfies the following equation:
368 *     P = B & ~(1 << O)
369 *
370 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
371 */
372static inline struct page *
373__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
374{
375	unsigned long buddy_idx = page_idx ^ (1 << order);
376
377	return page + (buddy_idx - page_idx);
378}
379
380static inline unsigned long
381__find_combined_index(unsigned long page_idx, unsigned int order)
382{
383	return (page_idx & ~(1 << order));
384}
385
386/*
387 * This function checks whether a page is free && is the buddy
388 * we can do coalesce a page and its buddy if
389 * (a) the buddy is not in a hole &&
390 * (b) the buddy is in the buddy system &&
391 * (c) a page and its buddy have the same order &&
392 * (d) a page and its buddy are in the same zone.
393 *
394 * For recording whether a page is in the buddy system, we use PG_buddy.
395 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
396 *
397 * For recording page's order, we use page_private(page).
398 */
399static inline int page_is_buddy(struct page *page, struct page *buddy,
400								int order)
401{
402	if (!pfn_valid_within(page_to_pfn(buddy)))
403		return 0;
404
405	if (page_zone_id(page) != page_zone_id(buddy))
406		return 0;
407
408	if (PageBuddy(buddy) && page_order(buddy) == order) {
409		VM_BUG_ON(page_count(buddy) != 0);
410		return 1;
411	}
412	return 0;
413}
414
415/*
416 * Freeing function for a buddy system allocator.
417 *
418 * The concept of a buddy system is to maintain direct-mapped table
419 * (containing bit values) for memory blocks of various "orders".
420 * The bottom level table contains the map for the smallest allocatable
421 * units of memory (here, pages), and each level above it describes
422 * pairs of units from the levels below, hence, "buddies".
423 * At a high level, all that happens here is marking the table entry
424 * at the bottom level available, and propagating the changes upward
425 * as necessary, plus some accounting needed to play nicely with other
426 * parts of the VM system.
427 * At each level, we keep a list of pages, which are heads of continuous
428 * free pages of length of (1 << order) and marked with PG_buddy. Page's
429 * order is recorded in page_private(page) field.
430 * So when we are allocating or freeing one, we can derive the state of the
431 * other.  That is, if we allocate a small block, and both were
432 * free, the remainder of the region must be split into blocks.
433 * If a block is freed, and its buddy is also free, then this
434 * triggers coalescing into a block of larger size.
435 *
436 * -- wli
437 */
438
439static inline void __free_one_page(struct page *page,
440		struct zone *zone, unsigned int order,
441		int migratetype)
442{
443	unsigned long page_idx;
444
445	if (unlikely(PageCompound(page)))
446		if (unlikely(destroy_compound_page(page, order)))
447			return;
448
449	VM_BUG_ON(migratetype == -1);
450
451	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
452
453	VM_BUG_ON(page_idx & ((1 << order) - 1));
454	VM_BUG_ON(bad_range(zone, page));
455
456	while (order < MAX_ORDER-1) {
457		unsigned long combined_idx;
458		struct page *buddy;
459
460		buddy = __page_find_buddy(page, page_idx, order);
461		if (!page_is_buddy(page, buddy, order))
462			break;
463
464		/* Our buddy is free, merge with it and move up one order. */
465		list_del(&buddy->lru);
466		zone->free_area[order].nr_free--;
467		rmv_page_order(buddy);
468		combined_idx = __find_combined_index(page_idx, order);
469		page = page + (combined_idx - page_idx);
470		page_idx = combined_idx;
471		order++;
472	}
473	set_page_order(page, order);
474	list_add(&page->lru,
475		&zone->free_area[order].free_list[migratetype]);
476	zone->free_area[order].nr_free++;
477}
478
479#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
480/*
481 * free_page_mlock() -- clean up attempts to free and mlocked() page.
482 * Page should not be on lru, so no need to fix that up.
483 * free_pages_check() will verify...
484 */
485static inline void free_page_mlock(struct page *page)
486{
487	__ClearPageMlocked(page);
488	__dec_zone_page_state(page, NR_MLOCK);
489	__count_vm_event(UNEVICTABLE_MLOCKFREED);
490}
491#else
492static void free_page_mlock(struct page *page) { }
493#endif
494
495static inline int free_pages_check(struct page *page)
496{
497	if (unlikely(page_mapcount(page) |
498		(page->mapping != NULL)  |
499		(atomic_read(&page->_count) != 0) |
500		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501		bad_page(page);
502		return 1;
503	}
504	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506	return 0;
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
520static void free_pages_bulk(struct zone *zone, int count,
521					struct list_head *list, int order)
522{
523	spin_lock(&zone->lock);
524	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525	zone->pages_scanned = 0;
526
527	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
528	while (count--) {
529		struct page *page;
530
531		VM_BUG_ON(list_empty(list));
532		page = list_entry(list->prev, struct page, lru);
533		/* have to delete it as __free_one_page list manipulates */
534		list_del(&page->lru);
535		__free_one_page(page, zone, order, page_private(page));
536	}
537	spin_unlock(&zone->lock);
538}
539
540static void free_one_page(struct zone *zone, struct page *page, int order,
541				int migratetype)
542{
543	spin_lock(&zone->lock);
544	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
545	zone->pages_scanned = 0;
546
547	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
548	__free_one_page(page, zone, order, migratetype);
549	spin_unlock(&zone->lock);
550}
551
552static void __free_pages_ok(struct page *page, unsigned int order)
553{
554	unsigned long flags;
555	int i;
556	int bad = 0;
557	int clearMlocked = PageMlocked(page);
558
559	for (i = 0 ; i < (1 << order) ; ++i)
560		bad += free_pages_check(page + i);
561	if (bad)
562		return;
563
564	if (!PageHighMem(page)) {
565		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
566		debug_check_no_obj_freed(page_address(page),
567					   PAGE_SIZE << order);
568	}
569	arch_free_page(page, order);
570	kernel_map_pages(page, 1 << order, 0);
571
572	local_irq_save(flags);
573	if (unlikely(clearMlocked))
574		free_page_mlock(page);
575	__count_vm_events(PGFREE, 1 << order);
576	free_one_page(page_zone(page), page, order,
577					get_pageblock_migratetype(page));
578	local_irq_restore(flags);
579}
580
581/*
582 * permit the bootmem allocator to evade page validation on high-order frees
583 */
584void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
585{
586	if (order == 0) {
587		__ClearPageReserved(page);
588		set_page_count(page, 0);
589		set_page_refcounted(page);
590		__free_page(page);
591	} else {
592		int loop;
593
594		prefetchw(page);
595		for (loop = 0; loop < BITS_PER_LONG; loop++) {
596			struct page *p = &page[loop];
597
598			if (loop + 1 < BITS_PER_LONG)
599				prefetchw(p + 1);
600			__ClearPageReserved(p);
601			set_page_count(p, 0);
602		}
603
604		set_page_refcounted(page);
605		__free_pages(page, order);
606	}
607}
608
609
610/*
611 * The order of subdivision here is critical for the IO subsystem.
612 * Please do not alter this order without good reasons and regression
613 * testing. Specifically, as large blocks of memory are subdivided,
614 * the order in which smaller blocks are delivered depends on the order
615 * they're subdivided in this function. This is the primary factor
616 * influencing the order in which pages are delivered to the IO
617 * subsystem according to empirical testing, and this is also justified
618 * by considering the behavior of a buddy system containing a single
619 * large block of memory acted on by a series of small allocations.
620 * This behavior is a critical factor in sglist merging's success.
621 *
622 * -- wli
623 */
624static inline void expand(struct zone *zone, struct page *page,
625	int low, int high, struct free_area *area,
626	int migratetype)
627{
628	unsigned long size = 1 << high;
629
630	while (high > low) {
631		area--;
632		high--;
633		size >>= 1;
634		VM_BUG_ON(bad_range(zone, &page[size]));
635		list_add(&page[size].lru, &area->free_list[migratetype]);
636		area->nr_free++;
637		set_page_order(&page[size], high);
638	}
639}
640
641/*
642 * This page is about to be returned from the page allocator
643 */
644static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
645{
646	if (unlikely(page_mapcount(page) |
647		(page->mapping != NULL)  |
648		(atomic_read(&page->_count) != 0)  |
649		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
650		bad_page(page);
651		return 1;
652	}
653
654	set_page_private(page, 0);
655	set_page_refcounted(page);
656
657	arch_alloc_page(page, order);
658	kernel_map_pages(page, 1 << order, 1);
659
660	if (gfp_flags & __GFP_ZERO)
661		prep_zero_page(page, order, gfp_flags);
662
663	if (order && (gfp_flags & __GFP_COMP))
664		prep_compound_page(page, order);
665
666	return 0;
667}
668
669/*
670 * Go through the free lists for the given migratetype and remove
671 * the smallest available page from the freelists
672 */
673static inline
674struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
675						int migratetype)
676{
677	unsigned int current_order;
678	struct free_area * area;
679	struct page *page;
680
681	/* Find a page of the appropriate size in the preferred list */
682	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
683		area = &(zone->free_area[current_order]);
684		if (list_empty(&area->free_list[migratetype]))
685			continue;
686
687		page = list_entry(area->free_list[migratetype].next,
688							struct page, lru);
689		list_del(&page->lru);
690		rmv_page_order(page);
691		area->nr_free--;
692		expand(zone, page, order, current_order, area, migratetype);
693		return page;
694	}
695
696	return NULL;
697}
698
699
700/*
701 * This array describes the order lists are fallen back to when
702 * the free lists for the desirable migrate type are depleted
703 */
704static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
705	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
706	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
707	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
708	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
709};
710
711/*
712 * Move the free pages in a range to the free lists of the requested type.
713 * Note that start_page and end_pages are not aligned on a pageblock
714 * boundary. If alignment is required, use move_freepages_block()
715 */
716static int move_freepages(struct zone *zone,
717			  struct page *start_page, struct page *end_page,
718			  int migratetype)
719{
720	struct page *page;
721	unsigned long order;
722	int pages_moved = 0;
723
724#ifndef CONFIG_HOLES_IN_ZONE
725	/*
726	 * page_zone is not safe to call in this context when
727	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
728	 * anyway as we check zone boundaries in move_freepages_block().
729	 * Remove at a later date when no bug reports exist related to
730	 * grouping pages by mobility
731	 */
732	BUG_ON(page_zone(start_page) != page_zone(end_page));
733#endif
734
735	for (page = start_page; page <= end_page;) {
736		/* Make sure we are not inadvertently changing nodes */
737		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
738
739		if (!pfn_valid_within(page_to_pfn(page))) {
740			page++;
741			continue;
742		}
743
744		if (!PageBuddy(page)) {
745			page++;
746			continue;
747		}
748
749		order = page_order(page);
750		list_del(&page->lru);
751		list_add(&page->lru,
752			&zone->free_area[order].free_list[migratetype]);
753		page += 1 << order;
754		pages_moved += 1 << order;
755	}
756
757	return pages_moved;
758}
759
760static int move_freepages_block(struct zone *zone, struct page *page,
761				int migratetype)
762{
763	unsigned long start_pfn, end_pfn;
764	struct page *start_page, *end_page;
765
766	start_pfn = page_to_pfn(page);
767	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
768	start_page = pfn_to_page(start_pfn);
769	end_page = start_page + pageblock_nr_pages - 1;
770	end_pfn = start_pfn + pageblock_nr_pages - 1;
771
772	/* Do not cross zone boundaries */
773	if (start_pfn < zone->zone_start_pfn)
774		start_page = page;
775	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
776		return 0;
777
778	return move_freepages(zone, start_page, end_page, migratetype);
779}
780
781/* Remove an element from the buddy allocator from the fallback list */
782static inline struct page *
783__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
784{
785	struct free_area * area;
786	int current_order;
787	struct page *page;
788	int migratetype, i;
789
790	/* Find the largest possible block of pages in the other list */
791	for (current_order = MAX_ORDER-1; current_order >= order;
792						--current_order) {
793		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
794			migratetype = fallbacks[start_migratetype][i];
795
796			/* MIGRATE_RESERVE handled later if necessary */
797			if (migratetype == MIGRATE_RESERVE)
798				continue;
799
800			area = &(zone->free_area[current_order]);
801			if (list_empty(&area->free_list[migratetype]))
802				continue;
803
804			page = list_entry(area->free_list[migratetype].next,
805					struct page, lru);
806			area->nr_free--;
807
808			/*
809			 * If breaking a large block of pages, move all free
810			 * pages to the preferred allocation list. If falling
811			 * back for a reclaimable kernel allocation, be more
812			 * agressive about taking ownership of free pages
813			 */
814			if (unlikely(current_order >= (pageblock_order >> 1)) ||
815					start_migratetype == MIGRATE_RECLAIMABLE) {
816				unsigned long pages;
817				pages = move_freepages_block(zone, page,
818								start_migratetype);
819
820				/* Claim the whole block if over half of it is free */
821				if (pages >= (1 << (pageblock_order-1)))
822					set_pageblock_migratetype(page,
823								start_migratetype);
824
825				migratetype = start_migratetype;
826			}
827
828			/* Remove the page from the freelists */
829			list_del(&page->lru);
830			rmv_page_order(page);
831
832			if (current_order == pageblock_order)
833				set_pageblock_migratetype(page,
834							start_migratetype);
835
836			expand(zone, page, order, current_order, area, migratetype);
837			return page;
838		}
839	}
840
841	return NULL;
842}
843
844/*
845 * Do the hard work of removing an element from the buddy allocator.
846 * Call me with the zone->lock already held.
847 */
848static struct page *__rmqueue(struct zone *zone, unsigned int order,
849						int migratetype)
850{
851	struct page *page;
852
853retry_reserve:
854	page = __rmqueue_smallest(zone, order, migratetype);
855
856	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
857		page = __rmqueue_fallback(zone, order, migratetype);
858
859		/*
860		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
861		 * is used because __rmqueue_smallest is an inline function
862		 * and we want just one call site
863		 */
864		if (!page) {
865			migratetype = MIGRATE_RESERVE;
866			goto retry_reserve;
867		}
868	}
869
870	return page;
871}
872
873/*
874 * Obtain a specified number of elements from the buddy allocator, all under
875 * a single hold of the lock, for efficiency.  Add them to the supplied list.
876 * Returns the number of new pages which were placed at *list.
877 */
878static int rmqueue_bulk(struct zone *zone, unsigned int order,
879			unsigned long count, struct list_head *list,
880			int migratetype)
881{
882	int i;
883
884	spin_lock(&zone->lock);
885	for (i = 0; i < count; ++i) {
886		struct page *page = __rmqueue(zone, order, migratetype);
887		if (unlikely(page == NULL))
888			break;
889
890		/*
891		 * Split buddy pages returned by expand() are received here
892		 * in physical page order. The page is added to the callers and
893		 * list and the list head then moves forward. From the callers
894		 * perspective, the linked list is ordered by page number in
895		 * some conditions. This is useful for IO devices that can
896		 * merge IO requests if the physical pages are ordered
897		 * properly.
898		 */
899		list_add(&page->lru, list);
900		set_page_private(page, migratetype);
901		list = &page->lru;
902	}
903	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
904	spin_unlock(&zone->lock);
905	return i;
906}
907
908#ifdef CONFIG_NUMA
909/*
910 * Called from the vmstat counter updater to drain pagesets of this
911 * currently executing processor on remote nodes after they have
912 * expired.
913 *
914 * Note that this function must be called with the thread pinned to
915 * a single processor.
916 */
917void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
918{
919	unsigned long flags;
920	int to_drain;
921
922	local_irq_save(flags);
923	if (pcp->count >= pcp->batch)
924		to_drain = pcp->batch;
925	else
926		to_drain = pcp->count;
927	free_pages_bulk(zone, to_drain, &pcp->list, 0);
928	pcp->count -= to_drain;
929	local_irq_restore(flags);
930}
931#endif
932
933/*
934 * Drain pages of the indicated processor.
935 *
936 * The processor must either be the current processor and the
937 * thread pinned to the current processor or a processor that
938 * is not online.
939 */
940static void drain_pages(unsigned int cpu)
941{
942	unsigned long flags;
943	struct zone *zone;
944
945	for_each_populated_zone(zone) {
946		struct per_cpu_pageset *pset;
947		struct per_cpu_pages *pcp;
948
949		pset = zone_pcp(zone, cpu);
950
951		pcp = &pset->pcp;
952		local_irq_save(flags);
953		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
954		pcp->count = 0;
955		local_irq_restore(flags);
956	}
957}
958
959/*
960 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
961 */
962void drain_local_pages(void *arg)
963{
964	drain_pages(smp_processor_id());
965}
966
967/*
968 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
969 */
970void drain_all_pages(void)
971{
972	on_each_cpu(drain_local_pages, NULL, 1);
973}
974
975#ifdef CONFIG_HIBERNATION
976
977void mark_free_pages(struct zone *zone)
978{
979	unsigned long pfn, max_zone_pfn;
980	unsigned long flags;
981	int order, t;
982	struct list_head *curr;
983
984	if (!zone->spanned_pages)
985		return;
986
987	spin_lock_irqsave(&zone->lock, flags);
988
989	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
990	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
991		if (pfn_valid(pfn)) {
992			struct page *page = pfn_to_page(pfn);
993
994			if (!swsusp_page_is_forbidden(page))
995				swsusp_unset_page_free(page);
996		}
997
998	for_each_migratetype_order(order, t) {
999		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1000			unsigned long i;
1001
1002			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1003			for (i = 0; i < (1UL << order); i++)
1004				swsusp_set_page_free(pfn_to_page(pfn + i));
1005		}
1006	}
1007	spin_unlock_irqrestore(&zone->lock, flags);
1008}
1009#endif /* CONFIG_PM */
1010
1011/*
1012 * Free a 0-order page
1013 */
1014static void free_hot_cold_page(struct page *page, int cold)
1015{
1016	struct zone *zone = page_zone(page);
1017	struct per_cpu_pages *pcp;
1018	unsigned long flags;
1019	int clearMlocked = PageMlocked(page);
1020
1021	if (PageAnon(page))
1022		page->mapping = NULL;
1023	if (free_pages_check(page))
1024		return;
1025
1026	if (!PageHighMem(page)) {
1027		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1028		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1029	}
1030	arch_free_page(page, 0);
1031	kernel_map_pages(page, 1, 0);
1032
1033	pcp = &zone_pcp(zone, get_cpu())->pcp;
1034	set_page_private(page, get_pageblock_migratetype(page));
1035	local_irq_save(flags);
1036	if (unlikely(clearMlocked))
1037		free_page_mlock(page);
1038	__count_vm_event(PGFREE);
1039
1040	if (cold)
1041		list_add_tail(&page->lru, &pcp->list);
1042	else
1043		list_add(&page->lru, &pcp->list);
1044	pcp->count++;
1045	if (pcp->count >= pcp->high) {
1046		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1047		pcp->count -= pcp->batch;
1048	}
1049	local_irq_restore(flags);
1050	put_cpu();
1051}
1052
1053void free_hot_page(struct page *page)
1054{
1055	free_hot_cold_page(page, 0);
1056}
1057
1058void free_cold_page(struct page *page)
1059{
1060	free_hot_cold_page(page, 1);
1061}
1062
1063/*
1064 * split_page takes a non-compound higher-order page, and splits it into
1065 * n (1<<order) sub-pages: page[0..n]
1066 * Each sub-page must be freed individually.
1067 *
1068 * Note: this is probably too low level an operation for use in drivers.
1069 * Please consult with lkml before using this in your driver.
1070 */
1071void split_page(struct page *page, unsigned int order)
1072{
1073	int i;
1074
1075	VM_BUG_ON(PageCompound(page));
1076	VM_BUG_ON(!page_count(page));
1077	for (i = 1; i < (1 << order); i++)
1078		set_page_refcounted(page + i);
1079}
1080
1081/*
1082 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1083 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1084 * or two.
1085 */
1086static inline
1087struct page *buffered_rmqueue(struct zone *preferred_zone,
1088			struct zone *zone, int order, gfp_t gfp_flags,
1089			int migratetype)
1090{
1091	unsigned long flags;
1092	struct page *page;
1093	int cold = !!(gfp_flags & __GFP_COLD);
1094	int cpu;
1095
1096again:
1097	cpu  = get_cpu();
1098	if (likely(order == 0)) {
1099		struct per_cpu_pages *pcp;
1100
1101		pcp = &zone_pcp(zone, cpu)->pcp;
1102		local_irq_save(flags);
1103		if (!pcp->count) {
1104			pcp->count = rmqueue_bulk(zone, 0,
1105					pcp->batch, &pcp->list, migratetype);
1106			if (unlikely(!pcp->count))
1107				goto failed;
1108		}
1109
1110		/* Find a page of the appropriate migrate type */
1111		if (cold) {
1112			list_for_each_entry_reverse(page, &pcp->list, lru)
1113				if (page_private(page) == migratetype)
1114					break;
1115		} else {
1116			list_for_each_entry(page, &pcp->list, lru)
1117				if (page_private(page) == migratetype)
1118					break;
1119		}
1120
1121		/* Allocate more to the pcp list if necessary */
1122		if (unlikely(&page->lru == &pcp->list)) {
1123			pcp->count += rmqueue_bulk(zone, 0,
1124					pcp->batch, &pcp->list, migratetype);
1125			page = list_entry(pcp->list.next, struct page, lru);
1126		}
1127
1128		list_del(&page->lru);
1129		pcp->count--;
1130	} else {
1131		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1132			/*
1133			 * __GFP_NOFAIL is not to be used in new code.
1134			 *
1135			 * All __GFP_NOFAIL callers should be fixed so that they
1136			 * properly detect and handle allocation failures.
1137			 *
1138			 * We most definitely don't want callers attempting to
1139			 * allocate greater than single-page units with
1140			 * __GFP_NOFAIL.
1141			 */
1142			WARN_ON_ONCE(order > 0);
1143		}
1144		spin_lock_irqsave(&zone->lock, flags);
1145		page = __rmqueue(zone, order, migratetype);
1146		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1147		spin_unlock(&zone->lock);
1148		if (!page)
1149			goto failed;
1150	}
1151
1152	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1153	zone_statistics(preferred_zone, zone);
1154	local_irq_restore(flags);
1155	put_cpu();
1156
1157	VM_BUG_ON(bad_range(zone, page));
1158	if (prep_new_page(page, order, gfp_flags))
1159		goto again;
1160	return page;
1161
1162failed:
1163	local_irq_restore(flags);
1164	put_cpu();
1165	return NULL;
1166}
1167
1168/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1169#define ALLOC_WMARK_MIN		WMARK_MIN
1170#define ALLOC_WMARK_LOW		WMARK_LOW
1171#define ALLOC_WMARK_HIGH	WMARK_HIGH
1172#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1173
1174/* Mask to get the watermark bits */
1175#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1176
1177#define ALLOC_HARDER		0x10 /* try to alloc harder */
1178#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1179#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1180
1181#ifdef CONFIG_FAIL_PAGE_ALLOC
1182
1183static struct fail_page_alloc_attr {
1184	struct fault_attr attr;
1185
1186	u32 ignore_gfp_highmem;
1187	u32 ignore_gfp_wait;
1188	u32 min_order;
1189
1190#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1191
1192	struct dentry *ignore_gfp_highmem_file;
1193	struct dentry *ignore_gfp_wait_file;
1194	struct dentry *min_order_file;
1195
1196#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1197
1198} fail_page_alloc = {
1199	.attr = FAULT_ATTR_INITIALIZER,
1200	.ignore_gfp_wait = 1,
1201	.ignore_gfp_highmem = 1,
1202	.min_order = 1,
1203};
1204
1205static int __init setup_fail_page_alloc(char *str)
1206{
1207	return setup_fault_attr(&fail_page_alloc.attr, str);
1208}
1209__setup("fail_page_alloc=", setup_fail_page_alloc);
1210
1211static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1212{
1213	if (order < fail_page_alloc.min_order)
1214		return 0;
1215	if (gfp_mask & __GFP_NOFAIL)
1216		return 0;
1217	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1218		return 0;
1219	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1220		return 0;
1221
1222	return should_fail(&fail_page_alloc.attr, 1 << order);
1223}
1224
1225#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1226
1227static int __init fail_page_alloc_debugfs(void)
1228{
1229	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1230	struct dentry *dir;
1231	int err;
1232
1233	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1234				       "fail_page_alloc");
1235	if (err)
1236		return err;
1237	dir = fail_page_alloc.attr.dentries.dir;
1238
1239	fail_page_alloc.ignore_gfp_wait_file =
1240		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1241				      &fail_page_alloc.ignore_gfp_wait);
1242
1243	fail_page_alloc.ignore_gfp_highmem_file =
1244		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1245				      &fail_page_alloc.ignore_gfp_highmem);
1246	fail_page_alloc.min_order_file =
1247		debugfs_create_u32("min-order", mode, dir,
1248				   &fail_page_alloc.min_order);
1249
1250	if (!fail_page_alloc.ignore_gfp_wait_file ||
1251            !fail_page_alloc.ignore_gfp_highmem_file ||
1252            !fail_page_alloc.min_order_file) {
1253		err = -ENOMEM;
1254		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1255		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1256		debugfs_remove(fail_page_alloc.min_order_file);
1257		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1258	}
1259
1260	return err;
1261}
1262
1263late_initcall(fail_page_alloc_debugfs);
1264
1265#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1266
1267#else /* CONFIG_FAIL_PAGE_ALLOC */
1268
1269static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1270{
1271	return 0;
1272}
1273
1274#endif /* CONFIG_FAIL_PAGE_ALLOC */
1275
1276/*
1277 * Return 1 if free pages are above 'mark'. This takes into account the order
1278 * of the allocation.
1279 */
1280int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1281		      int classzone_idx, int alloc_flags)
1282{
1283	/* free_pages my go negative - that's OK */
1284	long min = mark;
1285	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1286	int o;
1287
1288	if (alloc_flags & ALLOC_HIGH)
1289		min -= min / 2;
1290	if (alloc_flags & ALLOC_HARDER)
1291		min -= min / 4;
1292
1293	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1294		return 0;
1295	for (o = 0; o < order; o++) {
1296		/* At the next order, this order's pages become unavailable */
1297		free_pages -= z->free_area[o].nr_free << o;
1298
1299		/* Require fewer higher order pages to be free */
1300		min >>= 1;
1301
1302		if (free_pages <= min)
1303			return 0;
1304	}
1305	return 1;
1306}
1307
1308#ifdef CONFIG_NUMA
1309/*
1310 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1311 * skip over zones that are not allowed by the cpuset, or that have
1312 * been recently (in last second) found to be nearly full.  See further
1313 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1314 * that have to skip over a lot of full or unallowed zones.
1315 *
1316 * If the zonelist cache is present in the passed in zonelist, then
1317 * returns a pointer to the allowed node mask (either the current
1318 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1319 *
1320 * If the zonelist cache is not available for this zonelist, does
1321 * nothing and returns NULL.
1322 *
1323 * If the fullzones BITMAP in the zonelist cache is stale (more than
1324 * a second since last zap'd) then we zap it out (clear its bits.)
1325 *
1326 * We hold off even calling zlc_setup, until after we've checked the
1327 * first zone in the zonelist, on the theory that most allocations will
1328 * be satisfied from that first zone, so best to examine that zone as
1329 * quickly as we can.
1330 */
1331static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1332{
1333	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1334	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1335
1336	zlc = zonelist->zlcache_ptr;
1337	if (!zlc)
1338		return NULL;
1339
1340	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1341		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1342		zlc->last_full_zap = jiffies;
1343	}
1344
1345	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1346					&cpuset_current_mems_allowed :
1347					&node_states[N_HIGH_MEMORY];
1348	return allowednodes;
1349}
1350
1351/*
1352 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1353 * if it is worth looking at further for free memory:
1354 *  1) Check that the zone isn't thought to be full (doesn't have its
1355 *     bit set in the zonelist_cache fullzones BITMAP).
1356 *  2) Check that the zones node (obtained from the zonelist_cache
1357 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1358 * Return true (non-zero) if zone is worth looking at further, or
1359 * else return false (zero) if it is not.
1360 *
1361 * This check -ignores- the distinction between various watermarks,
1362 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1363 * found to be full for any variation of these watermarks, it will
1364 * be considered full for up to one second by all requests, unless
1365 * we are so low on memory on all allowed nodes that we are forced
1366 * into the second scan of the zonelist.
1367 *
1368 * In the second scan we ignore this zonelist cache and exactly
1369 * apply the watermarks to all zones, even it is slower to do so.
1370 * We are low on memory in the second scan, and should leave no stone
1371 * unturned looking for a free page.
1372 */
1373static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1374						nodemask_t *allowednodes)
1375{
1376	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1377	int i;				/* index of *z in zonelist zones */
1378	int n;				/* node that zone *z is on */
1379
1380	zlc = zonelist->zlcache_ptr;
1381	if (!zlc)
1382		return 1;
1383
1384	i = z - zonelist->_zonerefs;
1385	n = zlc->z_to_n[i];
1386
1387	/* This zone is worth trying if it is allowed but not full */
1388	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1389}
1390
1391/*
1392 * Given 'z' scanning a zonelist, set the corresponding bit in
1393 * zlc->fullzones, so that subsequent attempts to allocate a page
1394 * from that zone don't waste time re-examining it.
1395 */
1396static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1397{
1398	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1399	int i;				/* index of *z in zonelist zones */
1400
1401	zlc = zonelist->zlcache_ptr;
1402	if (!zlc)
1403		return;
1404
1405	i = z - zonelist->_zonerefs;
1406
1407	set_bit(i, zlc->fullzones);
1408}
1409
1410#else	/* CONFIG_NUMA */
1411
1412static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1413{
1414	return NULL;
1415}
1416
1417static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1418				nodemask_t *allowednodes)
1419{
1420	return 1;
1421}
1422
1423static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1424{
1425}
1426#endif	/* CONFIG_NUMA */
1427
1428/*
1429 * get_page_from_freelist goes through the zonelist trying to allocate
1430 * a page.
1431 */
1432static struct page *
1433get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1434		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1435		struct zone *preferred_zone, int migratetype)
1436{
1437	struct zoneref *z;
1438	struct page *page = NULL;
1439	int classzone_idx;
1440	struct zone *zone;
1441	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1442	int zlc_active = 0;		/* set if using zonelist_cache */
1443	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1444
1445	classzone_idx = zone_idx(preferred_zone);
1446zonelist_scan:
1447	/*
1448	 * Scan zonelist, looking for a zone with enough free.
1449	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1450	 */
1451	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1452						high_zoneidx, nodemask) {
1453		if (NUMA_BUILD && zlc_active &&
1454			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1455				continue;
1456		if ((alloc_flags & ALLOC_CPUSET) &&
1457			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1458				goto try_next_zone;
1459
1460		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1461		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1462			unsigned long mark;
1463			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1464			if (!zone_watermark_ok(zone, order, mark,
1465				    classzone_idx, alloc_flags)) {
1466				if (!zone_reclaim_mode ||
1467				    !zone_reclaim(zone, gfp_mask, order))
1468					goto this_zone_full;
1469			}
1470		}
1471
1472		page = buffered_rmqueue(preferred_zone, zone, order,
1473						gfp_mask, migratetype);
1474		if (page)
1475			break;
1476this_zone_full:
1477		if (NUMA_BUILD)
1478			zlc_mark_zone_full(zonelist, z);
1479try_next_zone:
1480		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1481			/*
1482			 * we do zlc_setup after the first zone is tried but only
1483			 * if there are multiple nodes make it worthwhile
1484			 */
1485			allowednodes = zlc_setup(zonelist, alloc_flags);
1486			zlc_active = 1;
1487			did_zlc_setup = 1;
1488		}
1489	}
1490
1491	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1492		/* Disable zlc cache for second zonelist scan */
1493		zlc_active = 0;
1494		goto zonelist_scan;
1495	}
1496	return page;
1497}
1498
1499static inline int
1500should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1501				unsigned long pages_reclaimed)
1502{
1503	/* Do not loop if specifically requested */
1504	if (gfp_mask & __GFP_NORETRY)
1505		return 0;
1506
1507	/*
1508	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1509	 * means __GFP_NOFAIL, but that may not be true in other
1510	 * implementations.
1511	 */
1512	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1513		return 1;
1514
1515	/*
1516	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1517	 * specified, then we retry until we no longer reclaim any pages
1518	 * (above), or we've reclaimed an order of pages at least as
1519	 * large as the allocation's order. In both cases, if the
1520	 * allocation still fails, we stop retrying.
1521	 */
1522	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1523		return 1;
1524
1525	/*
1526	 * Don't let big-order allocations loop unless the caller
1527	 * explicitly requests that.
1528	 */
1529	if (gfp_mask & __GFP_NOFAIL)
1530		return 1;
1531
1532	return 0;
1533}
1534
1535static inline struct page *
1536__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1537	struct zonelist *zonelist, enum zone_type high_zoneidx,
1538	nodemask_t *nodemask, struct zone *preferred_zone,
1539	int migratetype)
1540{
1541	struct page *page;
1542
1543	/* Acquire the OOM killer lock for the zones in zonelist */
1544	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1545		schedule_timeout_uninterruptible(1);
1546		return NULL;
1547	}
1548
1549	/*
1550	 * Go through the zonelist yet one more time, keep very high watermark
1551	 * here, this is only to catch a parallel oom killing, we must fail if
1552	 * we're still under heavy pressure.
1553	 */
1554	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1555		order, zonelist, high_zoneidx,
1556		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1557		preferred_zone, migratetype);
1558	if (page)
1559		goto out;
1560
1561	/* The OOM killer will not help higher order allocs */
1562	if (order > PAGE_ALLOC_COSTLY_ORDER)
1563		goto out;
1564
1565	/* Exhausted what can be done so it's blamo time */
1566	out_of_memory(zonelist, gfp_mask, order);
1567
1568out:
1569	clear_zonelist_oom(zonelist, gfp_mask);
1570	return page;
1571}
1572
1573/* The really slow allocator path where we enter direct reclaim */
1574static inline struct page *
1575__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1576	struct zonelist *zonelist, enum zone_type high_zoneidx,
1577	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1578	int migratetype, unsigned long *did_some_progress)
1579{
1580	struct page *page = NULL;
1581	struct reclaim_state reclaim_state;
1582	struct task_struct *p = current;
1583
1584	cond_resched();
1585
1586	/* We now go into synchronous reclaim */
1587	cpuset_memory_pressure_bump();
1588
1589	/*
1590	 * The task's cpuset might have expanded its set of allowable nodes
1591	 */
1592	p->flags |= PF_MEMALLOC;
1593	lockdep_set_current_reclaim_state(gfp_mask);
1594	reclaim_state.reclaimed_slab = 0;
1595	p->reclaim_state = &reclaim_state;
1596
1597	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1598
1599	p->reclaim_state = NULL;
1600	lockdep_clear_current_reclaim_state();
1601	p->flags &= ~PF_MEMALLOC;
1602
1603	cond_resched();
1604
1605	if (order != 0)
1606		drain_all_pages();
1607
1608	if (likely(*did_some_progress))
1609		page = get_page_from_freelist(gfp_mask, nodemask, order,
1610					zonelist, high_zoneidx,
1611					alloc_flags, preferred_zone,
1612					migratetype);
1613	return page;
1614}
1615
1616/*
1617 * This is called in the allocator slow-path if the allocation request is of
1618 * sufficient urgency to ignore watermarks and take other desperate measures
1619 */
1620static inline struct page *
1621__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1622	struct zonelist *zonelist, enum zone_type high_zoneidx,
1623	nodemask_t *nodemask, struct zone *preferred_zone,
1624	int migratetype)
1625{
1626	struct page *page;
1627
1628	do {
1629		page = get_page_from_freelist(gfp_mask, nodemask, order,
1630			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1631			preferred_zone, migratetype);
1632
1633		if (!page && gfp_mask & __GFP_NOFAIL)
1634			congestion_wait(WRITE, HZ/50);
1635	} while (!page && (gfp_mask & __GFP_NOFAIL));
1636
1637	return page;
1638}
1639
1640static inline
1641void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1642						enum zone_type high_zoneidx)
1643{
1644	struct zoneref *z;
1645	struct zone *zone;
1646
1647	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1648		wakeup_kswapd(zone, order);
1649}
1650
1651static inline int
1652gfp_to_alloc_flags(gfp_t gfp_mask)
1653{
1654	struct task_struct *p = current;
1655	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1656	const gfp_t wait = gfp_mask & __GFP_WAIT;
1657
1658	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1659	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1660
1661	/*
1662	 * The caller may dip into page reserves a bit more if the caller
1663	 * cannot run direct reclaim, or if the caller has realtime scheduling
1664	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1665	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1666	 */
1667	alloc_flags |= (gfp_mask & __GFP_HIGH);
1668
1669	if (!wait) {
1670		alloc_flags |= ALLOC_HARDER;
1671		/*
1672		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1673		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1674		 */
1675		alloc_flags &= ~ALLOC_CPUSET;
1676	} else if (unlikely(rt_task(p)))
1677		alloc_flags |= ALLOC_HARDER;
1678
1679	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1680		if (!in_interrupt() &&
1681		    ((p->flags & PF_MEMALLOC) ||
1682		     unlikely(test_thread_flag(TIF_MEMDIE))))
1683			alloc_flags |= ALLOC_NO_WATERMARKS;
1684	}
1685
1686	return alloc_flags;
1687}
1688
1689static inline struct page *
1690__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1691	struct zonelist *zonelist, enum zone_type high_zoneidx,
1692	nodemask_t *nodemask, struct zone *preferred_zone,
1693	int migratetype)
1694{
1695	const gfp_t wait = gfp_mask & __GFP_WAIT;
1696	struct page *page = NULL;
1697	int alloc_flags;
1698	unsigned long pages_reclaimed = 0;
1699	unsigned long did_some_progress;
1700	struct task_struct *p = current;
1701
1702	/*
1703	 * In the slowpath, we sanity check order to avoid ever trying to
1704	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1705	 * be using allocators in order of preference for an area that is
1706	 * too large.
1707	 */
1708	if (WARN_ON_ONCE(order >= MAX_ORDER))
1709		return NULL;
1710
1711	/*
1712	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1713	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1714	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1715	 * using a larger set of nodes after it has established that the
1716	 * allowed per node queues are empty and that nodes are
1717	 * over allocated.
1718	 */
1719	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1720		goto nopage;
1721
1722	wake_all_kswapd(order, zonelist, high_zoneidx);
1723
1724	/*
1725	 * OK, we're below the kswapd watermark and have kicked background
1726	 * reclaim. Now things get more complex, so set up alloc_flags according
1727	 * to how we want to proceed.
1728	 */
1729	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1730
1731restart:
1732	/* This is the last chance, in general, before the goto nopage. */
1733	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1734			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1735			preferred_zone, migratetype);
1736	if (page)
1737		goto got_pg;
1738
1739rebalance:
1740	/* Allocate without watermarks if the context allows */
1741	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1742		page = __alloc_pages_high_priority(gfp_mask, order,
1743				zonelist, high_zoneidx, nodemask,
1744				preferred_zone, migratetype);
1745		if (page)
1746			goto got_pg;
1747	}
1748
1749	/* Atomic allocations - we can't balance anything */
1750	if (!wait)
1751		goto nopage;
1752
1753	/* Avoid recursion of direct reclaim */
1754	if (p->flags & PF_MEMALLOC)
1755		goto nopage;
1756
1757	/* Try direct reclaim and then allocating */
1758	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1759					zonelist, high_zoneidx,
1760					nodemask,
1761					alloc_flags, preferred_zone,
1762					migratetype, &did_some_progress);
1763	if (page)
1764		goto got_pg;
1765
1766	/*
1767	 * If we failed to make any progress reclaiming, then we are
1768	 * running out of options and have to consider going OOM
1769	 */
1770	if (!did_some_progress) {
1771		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1772			page = __alloc_pages_may_oom(gfp_mask, order,
1773					zonelist, high_zoneidx,
1774					nodemask, preferred_zone,
1775					migratetype);
1776			if (page)
1777				goto got_pg;
1778
1779			/*
1780			 * The OOM killer does not trigger for high-order allocations
1781			 * but if no progress is being made, there are no other
1782			 * options and retrying is unlikely to help
1783			 */
1784			if (order > PAGE_ALLOC_COSTLY_ORDER)
1785				goto nopage;
1786
1787			goto restart;
1788		}
1789	}
1790
1791	/* Check if we should retry the allocation */
1792	pages_reclaimed += did_some_progress;
1793	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1794		/* Wait for some write requests to complete then retry */
1795		congestion_wait(WRITE, HZ/50);
1796		goto rebalance;
1797	}
1798
1799nopage:
1800	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1801		printk(KERN_WARNING "%s: page allocation failure."
1802			" order:%d, mode:0x%x\n",
1803			p->comm, order, gfp_mask);
1804		dump_stack();
1805		show_mem();
1806	}
1807got_pg:
1808	return page;
1809
1810}
1811
1812/*
1813 * This is the 'heart' of the zoned buddy allocator.
1814 */
1815struct page *
1816__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1817			struct zonelist *zonelist, nodemask_t *nodemask)
1818{
1819	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1820	struct zone *preferred_zone;
1821	struct page *page;
1822	int migratetype = allocflags_to_migratetype(gfp_mask);
1823
1824	lockdep_trace_alloc(gfp_mask);
1825
1826	might_sleep_if(gfp_mask & __GFP_WAIT);
1827
1828	if (should_fail_alloc_page(gfp_mask, order))
1829		return NULL;
1830
1831	/*
1832	 * Check the zones suitable for the gfp_mask contain at least one
1833	 * valid zone. It's possible to have an empty zonelist as a result
1834	 * of GFP_THISNODE and a memoryless node
1835	 */
1836	if (unlikely(!zonelist->_zonerefs->zone))
1837		return NULL;
1838
1839	/* The preferred zone is used for statistics later */
1840	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1841	if (!preferred_zone)
1842		return NULL;
1843
1844	/* First allocation attempt */
1845	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1846			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1847			preferred_zone, migratetype);
1848	if (unlikely(!page))
1849		page = __alloc_pages_slowpath(gfp_mask, order,
1850				zonelist, high_zoneidx, nodemask,
1851				preferred_zone, migratetype);
1852
1853	return page;
1854}
1855EXPORT_SYMBOL(__alloc_pages_nodemask);
1856
1857/*
1858 * Common helper functions.
1859 */
1860unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1861{
1862	struct page * page;
1863	page = alloc_pages(gfp_mask, order);
1864	if (!page)
1865		return 0;
1866	return (unsigned long) page_address(page);
1867}
1868
1869EXPORT_SYMBOL(__get_free_pages);
1870
1871unsigned long get_zeroed_page(gfp_t gfp_mask)
1872{
1873	struct page * page;
1874
1875	/*
1876	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1877	 * a highmem page
1878	 */
1879	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1880
1881	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1882	if (page)
1883		return (unsigned long) page_address(page);
1884	return 0;
1885}
1886
1887EXPORT_SYMBOL(get_zeroed_page);
1888
1889void __pagevec_free(struct pagevec *pvec)
1890{
1891	int i = pagevec_count(pvec);
1892
1893	while (--i >= 0)
1894		free_hot_cold_page(pvec->pages[i], pvec->cold);
1895}
1896
1897void __free_pages(struct page *page, unsigned int order)
1898{
1899	if (put_page_testzero(page)) {
1900		if (order == 0)
1901			free_hot_page(page);
1902		else
1903			__free_pages_ok(page, order);
1904	}
1905}
1906
1907EXPORT_SYMBOL(__free_pages);
1908
1909void free_pages(unsigned long addr, unsigned int order)
1910{
1911	if (addr != 0) {
1912		VM_BUG_ON(!virt_addr_valid((void *)addr));
1913		__free_pages(virt_to_page((void *)addr), order);
1914	}
1915}
1916
1917EXPORT_SYMBOL(free_pages);
1918
1919/**
1920 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1921 * @size: the number of bytes to allocate
1922 * @gfp_mask: GFP flags for the allocation
1923 *
1924 * This function is similar to alloc_pages(), except that it allocates the
1925 * minimum number of pages to satisfy the request.  alloc_pages() can only
1926 * allocate memory in power-of-two pages.
1927 *
1928 * This function is also limited by MAX_ORDER.
1929 *
1930 * Memory allocated by this function must be released by free_pages_exact().
1931 */
1932void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1933{
1934	unsigned int order = get_order(size);
1935	unsigned long addr;
1936
1937	addr = __get_free_pages(gfp_mask, order);
1938	if (addr) {
1939		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1940		unsigned long used = addr + PAGE_ALIGN(size);
1941
1942		split_page(virt_to_page(addr), order);
1943		while (used < alloc_end) {
1944			free_page(used);
1945			used += PAGE_SIZE;
1946		}
1947	}
1948
1949	return (void *)addr;
1950}
1951EXPORT_SYMBOL(alloc_pages_exact);
1952
1953/**
1954 * free_pages_exact - release memory allocated via alloc_pages_exact()
1955 * @virt: the value returned by alloc_pages_exact.
1956 * @size: size of allocation, same value as passed to alloc_pages_exact().
1957 *
1958 * Release the memory allocated by a previous call to alloc_pages_exact.
1959 */
1960void free_pages_exact(void *virt, size_t size)
1961{
1962	unsigned long addr = (unsigned long)virt;
1963	unsigned long end = addr + PAGE_ALIGN(size);
1964
1965	while (addr < end) {
1966		free_page(addr);
1967		addr += PAGE_SIZE;
1968	}
1969}
1970EXPORT_SYMBOL(free_pages_exact);
1971
1972static unsigned int nr_free_zone_pages(int offset)
1973{
1974	struct zoneref *z;
1975	struct zone *zone;
1976
1977	/* Just pick one node, since fallback list is circular */
1978	unsigned int sum = 0;
1979
1980	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1981
1982	for_each_zone_zonelist(zone, z, zonelist, offset) {
1983		unsigned long size = zone->present_pages;
1984		unsigned long high = high_wmark_pages(zone);
1985		if (size > high)
1986			sum += size - high;
1987	}
1988
1989	return sum;
1990}
1991
1992/*
1993 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1994 */
1995unsigned int nr_free_buffer_pages(void)
1996{
1997	return nr_free_zone_pages(gfp_zone(GFP_USER));
1998}
1999EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2000
2001/*
2002 * Amount of free RAM allocatable within all zones
2003 */
2004unsigned int nr_free_pagecache_pages(void)
2005{
2006	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2007}
2008
2009static inline void show_node(struct zone *zone)
2010{
2011	if (NUMA_BUILD)
2012		printk("Node %d ", zone_to_nid(zone));
2013}
2014
2015void si_meminfo(struct sysinfo *val)
2016{
2017	val->totalram = totalram_pages;
2018	val->sharedram = 0;
2019	val->freeram = global_page_state(NR_FREE_PAGES);
2020	val->bufferram = nr_blockdev_pages();
2021	val->totalhigh = totalhigh_pages;
2022	val->freehigh = nr_free_highpages();
2023	val->mem_unit = PAGE_SIZE;
2024}
2025
2026EXPORT_SYMBOL(si_meminfo);
2027
2028#ifdef CONFIG_NUMA
2029void si_meminfo_node(struct sysinfo *val, int nid)
2030{
2031	pg_data_t *pgdat = NODE_DATA(nid);
2032
2033	val->totalram = pgdat->node_present_pages;
2034	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2035#ifdef CONFIG_HIGHMEM
2036	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2037	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2038			NR_FREE_PAGES);
2039#else
2040	val->totalhigh = 0;
2041	val->freehigh = 0;
2042#endif
2043	val->mem_unit = PAGE_SIZE;
2044}
2045#endif
2046
2047#define K(x) ((x) << (PAGE_SHIFT-10))
2048
2049/*
2050 * Show free area list (used inside shift_scroll-lock stuff)
2051 * We also calculate the percentage fragmentation. We do this by counting the
2052 * memory on each free list with the exception of the first item on the list.
2053 */
2054void show_free_areas(void)
2055{
2056	int cpu;
2057	struct zone *zone;
2058
2059	for_each_populated_zone(zone) {
2060		show_node(zone);
2061		printk("%s per-cpu:\n", zone->name);
2062
2063		for_each_online_cpu(cpu) {
2064			struct per_cpu_pageset *pageset;
2065
2066			pageset = zone_pcp(zone, cpu);
2067
2068			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2069			       cpu, pageset->pcp.high,
2070			       pageset->pcp.batch, pageset->pcp.count);
2071		}
2072	}
2073
2074	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2075		" inactive_file:%lu"
2076//TODO:  check/adjust line lengths
2077#ifdef CONFIG_UNEVICTABLE_LRU
2078		" unevictable:%lu"
2079#endif
2080		" dirty:%lu writeback:%lu unstable:%lu\n"
2081		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2082		global_page_state(NR_ACTIVE_ANON),
2083		global_page_state(NR_ACTIVE_FILE),
2084		global_page_state(NR_INACTIVE_ANON),
2085		global_page_state(NR_INACTIVE_FILE),
2086#ifdef CONFIG_UNEVICTABLE_LRU
2087		global_page_state(NR_UNEVICTABLE),
2088#endif
2089		global_page_state(NR_FILE_DIRTY),
2090		global_page_state(NR_WRITEBACK),
2091		global_page_state(NR_UNSTABLE_NFS),
2092		global_page_state(NR_FREE_PAGES),
2093		global_page_state(NR_SLAB_RECLAIMABLE) +
2094			global_page_state(NR_SLAB_UNRECLAIMABLE),
2095		global_page_state(NR_FILE_MAPPED),
2096		global_page_state(NR_PAGETABLE),
2097		global_page_state(NR_BOUNCE));
2098
2099	for_each_populated_zone(zone) {
2100		int i;
2101
2102		show_node(zone);
2103		printk("%s"
2104			" free:%lukB"
2105			" min:%lukB"
2106			" low:%lukB"
2107			" high:%lukB"
2108			" active_anon:%lukB"
2109			" inactive_anon:%lukB"
2110			" active_file:%lukB"
2111			" inactive_file:%lukB"
2112#ifdef CONFIG_UNEVICTABLE_LRU
2113			" unevictable:%lukB"
2114#endif
2115			" present:%lukB"
2116			" pages_scanned:%lu"
2117			" all_unreclaimable? %s"
2118			"\n",
2119			zone->name,
2120			K(zone_page_state(zone, NR_FREE_PAGES)),
2121			K(min_wmark_pages(zone)),
2122			K(low_wmark_pages(zone)),
2123			K(high_wmark_pages(zone)),
2124			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2125			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2126			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2127			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2128#ifdef CONFIG_UNEVICTABLE_LRU
2129			K(zone_page_state(zone, NR_UNEVICTABLE)),
2130#endif
2131			K(zone->present_pages),
2132			zone->pages_scanned,
2133			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2134			);
2135		printk("lowmem_reserve[]:");
2136		for (i = 0; i < MAX_NR_ZONES; i++)
2137			printk(" %lu", zone->lowmem_reserve[i]);
2138		printk("\n");
2139	}
2140
2141	for_each_populated_zone(zone) {
2142 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2143
2144		show_node(zone);
2145		printk("%s: ", zone->name);
2146
2147		spin_lock_irqsave(&zone->lock, flags);
2148		for (order = 0; order < MAX_ORDER; order++) {
2149			nr[order] = zone->free_area[order].nr_free;
2150			total += nr[order] << order;
2151		}
2152		spin_unlock_irqrestore(&zone->lock, flags);
2153		for (order = 0; order < MAX_ORDER; order++)
2154			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2155		printk("= %lukB\n", K(total));
2156	}
2157
2158	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2159
2160	show_swap_cache_info();
2161}
2162
2163static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2164{
2165	zoneref->zone = zone;
2166	zoneref->zone_idx = zone_idx(zone);
2167}
2168
2169/*
2170 * Builds allocation fallback zone lists.
2171 *
2172 * Add all populated zones of a node to the zonelist.
2173 */
2174static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2175				int nr_zones, enum zone_type zone_type)
2176{
2177	struct zone *zone;
2178
2179	BUG_ON(zone_type >= MAX_NR_ZONES);
2180	zone_type++;
2181
2182	do {
2183		zone_type--;
2184		zone = pgdat->node_zones + zone_type;
2185		if (populated_zone(zone)) {
2186			zoneref_set_zone(zone,
2187				&zonelist->_zonerefs[nr_zones++]);
2188			check_highest_zone(zone_type);
2189		}
2190
2191	} while (zone_type);
2192	return nr_zones;
2193}
2194
2195
2196/*
2197 *  zonelist_order:
2198 *  0 = automatic detection of better ordering.
2199 *  1 = order by ([node] distance, -zonetype)
2200 *  2 = order by (-zonetype, [node] distance)
2201 *
2202 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2203 *  the same zonelist. So only NUMA can configure this param.
2204 */
2205#define ZONELIST_ORDER_DEFAULT  0
2206#define ZONELIST_ORDER_NODE     1
2207#define ZONELIST_ORDER_ZONE     2
2208
2209/* zonelist order in the kernel.
2210 * set_zonelist_order() will set this to NODE or ZONE.
2211 */
2212static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2213static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2214
2215
2216#ifdef CONFIG_NUMA
2217/* The value user specified ....changed by config */
2218static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2219/* string for sysctl */
2220#define NUMA_ZONELIST_ORDER_LEN	16
2221char numa_zonelist_order[16] = "default";
2222
2223/*
2224 * interface for configure zonelist ordering.
2225 * command line option "numa_zonelist_order"
2226 *	= "[dD]efault	- default, automatic configuration.
2227 *	= "[nN]ode 	- order by node locality, then by zone within node
2228 *	= "[zZ]one      - order by zone, then by locality within zone
2229 */
2230
2231static int __parse_numa_zonelist_order(char *s)
2232{
2233	if (*s == 'd' || *s == 'D') {
2234		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2235	} else if (*s == 'n' || *s == 'N') {
2236		user_zonelist_order = ZONELIST_ORDER_NODE;
2237	} else if (*s == 'z' || *s == 'Z') {
2238		user_zonelist_order = ZONELIST_ORDER_ZONE;
2239	} else {
2240		printk(KERN_WARNING
2241			"Ignoring invalid numa_zonelist_order value:  "
2242			"%s\n", s);
2243		return -EINVAL;
2244	}
2245	return 0;
2246}
2247
2248static __init int setup_numa_zonelist_order(char *s)
2249{
2250	if (s)
2251		return __parse_numa_zonelist_order(s);
2252	return 0;
2253}
2254early_param("numa_zonelist_order", setup_numa_zonelist_order);
2255
2256/*
2257 * sysctl handler for numa_zonelist_order
2258 */
2259int numa_zonelist_order_handler(ctl_table *table, int write,
2260		struct file *file, void __user *buffer, size_t *length,
2261		loff_t *ppos)
2262{
2263	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2264	int ret;
2265
2266	if (write)
2267		strncpy(saved_string, (char*)table->data,
2268			NUMA_ZONELIST_ORDER_LEN);
2269	ret = proc_dostring(table, write, file, buffer, length, ppos);
2270	if (ret)
2271		return ret;
2272	if (write) {
2273		int oldval = user_zonelist_order;
2274		if (__parse_numa_zonelist_order((char*)table->data)) {
2275			/*
2276			 * bogus value.  restore saved string
2277			 */
2278			strncpy((char*)table->data, saved_string,
2279				NUMA_ZONELIST_ORDER_LEN);
2280			user_zonelist_order = oldval;
2281		} else if (oldval != user_zonelist_order)
2282			build_all_zonelists();
2283	}
2284	return 0;
2285}
2286
2287
2288#define MAX_NODE_LOAD (nr_online_nodes)
2289static int node_load[MAX_NUMNODES];
2290
2291/**
2292 * find_next_best_node - find the next node that should appear in a given node's fallback list
2293 * @node: node whose fallback list we're appending
2294 * @used_node_mask: nodemask_t of already used nodes
2295 *
2296 * We use a number of factors to determine which is the next node that should
2297 * appear on a given node's fallback list.  The node should not have appeared
2298 * already in @node's fallback list, and it should be the next closest node
2299 * according to the distance array (which contains arbitrary distance values
2300 * from each node to each node in the system), and should also prefer nodes
2301 * with no CPUs, since presumably they'll have very little allocation pressure
2302 * on them otherwise.
2303 * It returns -1 if no node is found.
2304 */
2305static int find_next_best_node(int node, nodemask_t *used_node_mask)
2306{
2307	int n, val;
2308	int min_val = INT_MAX;
2309	int best_node = -1;
2310	const struct cpumask *tmp = cpumask_of_node(0);
2311
2312	/* Use the local node if we haven't already */
2313	if (!node_isset(node, *used_node_mask)) {
2314		node_set(node, *used_node_mask);
2315		return node;
2316	}
2317
2318	for_each_node_state(n, N_HIGH_MEMORY) {
2319
2320		/* Don't want a node to appear more than once */
2321		if (node_isset(n, *used_node_mask))
2322			continue;
2323
2324		/* Use the distance array to find the distance */
2325		val = node_distance(node, n);
2326
2327		/* Penalize nodes under us ("prefer the next node") */
2328		val += (n < node);
2329
2330		/* Give preference to headless and unused nodes */
2331		tmp = cpumask_of_node(n);
2332		if (!cpumask_empty(tmp))
2333			val += PENALTY_FOR_NODE_WITH_CPUS;
2334
2335		/* Slight preference for less loaded node */
2336		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2337		val += node_load[n];
2338
2339		if (val < min_val) {
2340			min_val = val;
2341			best_node = n;
2342		}
2343	}
2344
2345	if (best_node >= 0)
2346		node_set(best_node, *used_node_mask);
2347
2348	return best_node;
2349}
2350
2351
2352/*
2353 * Build zonelists ordered by node and zones within node.
2354 * This results in maximum locality--normal zone overflows into local
2355 * DMA zone, if any--but risks exhausting DMA zone.
2356 */
2357static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2358{
2359	int j;
2360	struct zonelist *zonelist;
2361
2362	zonelist = &pgdat->node_zonelists[0];
2363	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2364		;
2365	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2366							MAX_NR_ZONES - 1);
2367	zonelist->_zonerefs[j].zone = NULL;
2368	zonelist->_zonerefs[j].zone_idx = 0;
2369}
2370
2371/*
2372 * Build gfp_thisnode zonelists
2373 */
2374static void build_thisnode_zonelists(pg_data_t *pgdat)
2375{
2376	int j;
2377	struct zonelist *zonelist;
2378
2379	zonelist = &pgdat->node_zonelists[1];
2380	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2381	zonelist->_zonerefs[j].zone = NULL;
2382	zonelist->_zonerefs[j].zone_idx = 0;
2383}
2384
2385/*
2386 * Build zonelists ordered by zone and nodes within zones.
2387 * This results in conserving DMA zone[s] until all Normal memory is
2388 * exhausted, but results in overflowing to remote node while memory
2389 * may still exist in local DMA zone.
2390 */
2391static int node_order[MAX_NUMNODES];
2392
2393static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2394{
2395	int pos, j, node;
2396	int zone_type;		/* needs to be signed */
2397	struct zone *z;
2398	struct zonelist *zonelist;
2399
2400	zonelist = &pgdat->node_zonelists[0];
2401	pos = 0;
2402	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2403		for (j = 0; j < nr_nodes; j++) {
2404			node = node_order[j];
2405			z = &NODE_DATA(node)->node_zones[zone_type];
2406			if (populated_zone(z)) {
2407				zoneref_set_zone(z,
2408					&zonelist->_zonerefs[pos++]);
2409				check_highest_zone(zone_type);
2410			}
2411		}
2412	}
2413	zonelist->_zonerefs[pos].zone = NULL;
2414	zonelist->_zonerefs[pos].zone_idx = 0;
2415}
2416
2417static int default_zonelist_order(void)
2418{
2419	int nid, zone_type;
2420	unsigned long low_kmem_size,total_size;
2421	struct zone *z;
2422	int average_size;
2423	/*
2424         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2425	 * If they are really small and used heavily, the system can fall
2426	 * into OOM very easily.
2427	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2428	 */
2429	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2430	low_kmem_size = 0;
2431	total_size = 0;
2432	for_each_online_node(nid) {
2433		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2434			z = &NODE_DATA(nid)->node_zones[zone_type];
2435			if (populated_zone(z)) {
2436				if (zone_type < ZONE_NORMAL)
2437					low_kmem_size += z->present_pages;
2438				total_size += z->present_pages;
2439			}
2440		}
2441	}
2442	if (!low_kmem_size ||  /* there are no DMA area. */
2443	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2444		return ZONELIST_ORDER_NODE;
2445	/*
2446	 * look into each node's config.
2447  	 * If there is a node whose DMA/DMA32 memory is very big area on
2448 	 * local memory, NODE_ORDER may be suitable.
2449         */
2450	average_size = total_size /
2451				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2452	for_each_online_node(nid) {
2453		low_kmem_size = 0;
2454		total_size = 0;
2455		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2456			z = &NODE_DATA(nid)->node_zones[zone_type];
2457			if (populated_zone(z)) {
2458				if (zone_type < ZONE_NORMAL)
2459					low_kmem_size += z->present_pages;
2460				total_size += z->present_pages;
2461			}
2462		}
2463		if (low_kmem_size &&
2464		    total_size > average_size && /* ignore small node */
2465		    low_kmem_size > total_size * 70/100)
2466			return ZONELIST_ORDER_NODE;
2467	}
2468	return ZONELIST_ORDER_ZONE;
2469}
2470
2471static void set_zonelist_order(void)
2472{
2473	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2474		current_zonelist_order = default_zonelist_order();
2475	else
2476		current_zonelist_order = user_zonelist_order;
2477}
2478
2479static void build_zonelists(pg_data_t *pgdat)
2480{
2481	int j, node, load;
2482	enum zone_type i;
2483	nodemask_t used_mask;
2484	int local_node, prev_node;
2485	struct zonelist *zonelist;
2486	int order = current_zonelist_order;
2487
2488	/* initialize zonelists */
2489	for (i = 0; i < MAX_ZONELISTS; i++) {
2490		zonelist = pgdat->node_zonelists + i;
2491		zonelist->_zonerefs[0].zone = NULL;
2492		zonelist->_zonerefs[0].zone_idx = 0;
2493	}
2494
2495	/* NUMA-aware ordering of nodes */
2496	local_node = pgdat->node_id;
2497	load = nr_online_nodes;
2498	prev_node = local_node;
2499	nodes_clear(used_mask);
2500
2501	memset(node_load, 0, sizeof(node_load));
2502	memset(node_order, 0, sizeof(node_order));
2503	j = 0;
2504
2505	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2506		int distance = node_distance(local_node, node);
2507
2508		/*
2509		 * If another node is sufficiently far away then it is better
2510		 * to reclaim pages in a zone before going off node.
2511		 */
2512		if (distance > RECLAIM_DISTANCE)
2513			zone_reclaim_mode = 1;
2514
2515		/*
2516		 * We don't want to pressure a particular node.
2517		 * So adding penalty to the first node in same
2518		 * distance group to make it round-robin.
2519		 */
2520		if (distance != node_distance(local_node, prev_node))
2521			node_load[node] = load;
2522
2523		prev_node = node;
2524		load--;
2525		if (order == ZONELIST_ORDER_NODE)
2526			build_zonelists_in_node_order(pgdat, node);
2527		else
2528			node_order[j++] = node;	/* remember order */
2529	}
2530
2531	if (order == ZONELIST_ORDER_ZONE) {
2532		/* calculate node order -- i.e., DMA last! */
2533		build_zonelists_in_zone_order(pgdat, j);
2534	}
2535
2536	build_thisnode_zonelists(pgdat);
2537}
2538
2539/* Construct the zonelist performance cache - see further mmzone.h */
2540static void build_zonelist_cache(pg_data_t *pgdat)
2541{
2542	struct zonelist *zonelist;
2543	struct zonelist_cache *zlc;
2544	struct zoneref *z;
2545
2546	zonelist = &pgdat->node_zonelists[0];
2547	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2548	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2549	for (z = zonelist->_zonerefs; z->zone; z++)
2550		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2551}
2552
2553
2554#else	/* CONFIG_NUMA */
2555
2556static void set_zonelist_order(void)
2557{
2558	current_zonelist_order = ZONELIST_ORDER_ZONE;
2559}
2560
2561static void build_zonelists(pg_data_t *pgdat)
2562{
2563	int node, local_node;
2564	enum zone_type j;
2565	struct zonelist *zonelist;
2566
2567	local_node = pgdat->node_id;
2568
2569	zonelist = &pgdat->node_zonelists[0];
2570	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2571
2572	/*
2573	 * Now we build the zonelist so that it contains the zones
2574	 * of all the other nodes.
2575	 * We don't want to pressure a particular node, so when
2576	 * building the zones for node N, we make sure that the
2577	 * zones coming right after the local ones are those from
2578	 * node N+1 (modulo N)
2579	 */
2580	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2581		if (!node_online(node))
2582			continue;
2583		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2584							MAX_NR_ZONES - 1);
2585	}
2586	for (node = 0; node < local_node; node++) {
2587		if (!node_online(node))
2588			continue;
2589		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2590							MAX_NR_ZONES - 1);
2591	}
2592
2593	zonelist->_zonerefs[j].zone = NULL;
2594	zonelist->_zonerefs[j].zone_idx = 0;
2595}
2596
2597/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2598static void build_zonelist_cache(pg_data_t *pgdat)
2599{
2600	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2601}
2602
2603#endif	/* CONFIG_NUMA */
2604
2605/* return values int ....just for stop_machine() */
2606static int __build_all_zonelists(void *dummy)
2607{
2608	int nid;
2609
2610	for_each_online_node(nid) {
2611		pg_data_t *pgdat = NODE_DATA(nid);
2612
2613		build_zonelists(pgdat);
2614		build_zonelist_cache(pgdat);
2615	}
2616	return 0;
2617}
2618
2619void build_all_zonelists(void)
2620{
2621	set_zonelist_order();
2622
2623	if (system_state == SYSTEM_BOOTING) {
2624		__build_all_zonelists(NULL);
2625		mminit_verify_zonelist();
2626		cpuset_init_current_mems_allowed();
2627	} else {
2628		/* we have to stop all cpus to guarantee there is no user
2629		   of zonelist */
2630		stop_machine(__build_all_zonelists, NULL, NULL);
2631		/* cpuset refresh routine should be here */
2632	}
2633	vm_total_pages = nr_free_pagecache_pages();
2634	/*
2635	 * Disable grouping by mobility if the number of pages in the
2636	 * system is too low to allow the mechanism to work. It would be
2637	 * more accurate, but expensive to check per-zone. This check is
2638	 * made on memory-hotadd so a system can start with mobility
2639	 * disabled and enable it later
2640	 */
2641	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2642		page_group_by_mobility_disabled = 1;
2643	else
2644		page_group_by_mobility_disabled = 0;
2645
2646	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2647		"Total pages: %ld\n",
2648			nr_online_nodes,
2649			zonelist_order_name[current_zonelist_order],
2650			page_group_by_mobility_disabled ? "off" : "on",
2651			vm_total_pages);
2652#ifdef CONFIG_NUMA
2653	printk("Policy zone: %s\n", zone_names[policy_zone]);
2654#endif
2655}
2656
2657/*
2658 * Helper functions to size the waitqueue hash table.
2659 * Essentially these want to choose hash table sizes sufficiently
2660 * large so that collisions trying to wait on pages are rare.
2661 * But in fact, the number of active page waitqueues on typical
2662 * systems is ridiculously low, less than 200. So this is even
2663 * conservative, even though it seems large.
2664 *
2665 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2666 * waitqueues, i.e. the size of the waitq table given the number of pages.
2667 */
2668#define PAGES_PER_WAITQUEUE	256
2669
2670#ifndef CONFIG_MEMORY_HOTPLUG
2671static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2672{
2673	unsigned long size = 1;
2674
2675	pages /= PAGES_PER_WAITQUEUE;
2676
2677	while (size < pages)
2678		size <<= 1;
2679
2680	/*
2681	 * Once we have dozens or even hundreds of threads sleeping
2682	 * on IO we've got bigger problems than wait queue collision.
2683	 * Limit the size of the wait table to a reasonable size.
2684	 */
2685	size = min(size, 4096UL);
2686
2687	return max(size, 4UL);
2688}
2689#else
2690/*
2691 * A zone's size might be changed by hot-add, so it is not possible to determine
2692 * a suitable size for its wait_table.  So we use the maximum size now.
2693 *
2694 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2695 *
2696 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2697 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2698 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2699 *
2700 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2701 * or more by the traditional way. (See above).  It equals:
2702 *
2703 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2704 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2705 *    powerpc (64K page size)             : =  (32G +16M)byte.
2706 */
2707static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2708{
2709	return 4096UL;
2710}
2711#endif
2712
2713/*
2714 * This is an integer logarithm so that shifts can be used later
2715 * to extract the more random high bits from the multiplicative
2716 * hash function before the remainder is taken.
2717 */
2718static inline unsigned long wait_table_bits(unsigned long size)
2719{
2720	return ffz(~size);
2721}
2722
2723#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2724
2725/*
2726 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2727 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2728 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2729 * higher will lead to a bigger reserve which will get freed as contiguous
2730 * blocks as reclaim kicks in
2731 */
2732static void setup_zone_migrate_reserve(struct zone *zone)
2733{
2734	unsigned long start_pfn, pfn, end_pfn;
2735	struct page *page;
2736	unsigned long reserve, block_migratetype;
2737
2738	/* Get the start pfn, end pfn and the number of blocks to reserve */
2739	start_pfn = zone->zone_start_pfn;
2740	end_pfn = start_pfn + zone->spanned_pages;
2741	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2742							pageblock_order;
2743
2744	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2745		if (!pfn_valid(pfn))
2746			continue;
2747		page = pfn_to_page(pfn);
2748
2749		/* Watch out for overlapping nodes */
2750		if (page_to_nid(page) != zone_to_nid(zone))
2751			continue;
2752
2753		/* Blocks with reserved pages will never free, skip them. */
2754		if (PageReserved(page))
2755			continue;
2756
2757		block_migratetype = get_pageblock_migratetype(page);
2758
2759		/* If this block is reserved, account for it */
2760		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2761			reserve--;
2762			continue;
2763		}
2764
2765		/* Suitable for reserving if this block is movable */
2766		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2767			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2768			move_freepages_block(zone, page, MIGRATE_RESERVE);
2769			reserve--;
2770			continue;
2771		}
2772
2773		/*
2774		 * If the reserve is met and this is a previous reserved block,
2775		 * take it back
2776		 */
2777		if (block_migratetype == MIGRATE_RESERVE) {
2778			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2779			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2780		}
2781	}
2782}
2783
2784/*
2785 * Initially all pages are reserved - free ones are freed
2786 * up by free_all_bootmem() once the early boot process is
2787 * done. Non-atomic initialization, single-pass.
2788 */
2789void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2790		unsigned long start_pfn, enum memmap_context context)
2791{
2792	struct page *page;
2793	unsigned long end_pfn = start_pfn + size;
2794	unsigned long pfn;
2795	struct zone *z;
2796
2797	if (highest_memmap_pfn < end_pfn - 1)
2798		highest_memmap_pfn = end_pfn - 1;
2799
2800	z = &NODE_DATA(nid)->node_zones[zone];
2801	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2802		/*
2803		 * There can be holes in boot-time mem_map[]s
2804		 * handed to this function.  They do not
2805		 * exist on hotplugged memory.
2806		 */
2807		if (context == MEMMAP_EARLY) {
2808			if (!early_pfn_valid(pfn))
2809				continue;
2810			if (!early_pfn_in_nid(pfn, nid))
2811				continue;
2812		}
2813		page = pfn_to_page(pfn);
2814		set_page_links(page, zone, nid, pfn);
2815		mminit_verify_page_links(page, zone, nid, pfn);
2816		init_page_count(page);
2817		reset_page_mapcount(page);
2818		SetPageReserved(page);
2819		/*
2820		 * Mark the block movable so that blocks are reserved for
2821		 * movable at startup. This will force kernel allocations
2822		 * to reserve their blocks rather than leaking throughout
2823		 * the address space during boot when many long-lived
2824		 * kernel allocations are made. Later some blocks near
2825		 * the start are marked MIGRATE_RESERVE by
2826		 * setup_zone_migrate_reserve()
2827		 *
2828		 * bitmap is created for zone's valid pfn range. but memmap
2829		 * can be created for invalid pages (for alignment)
2830		 * check here not to call set_pageblock_migratetype() against
2831		 * pfn out of zone.
2832		 */
2833		if ((z->zone_start_pfn <= pfn)
2834		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2835		    && !(pfn & (pageblock_nr_pages - 1)))
2836			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2837
2838		INIT_LIST_HEAD(&page->lru);
2839#ifdef WANT_PAGE_VIRTUAL
2840		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2841		if (!is_highmem_idx(zone))
2842			set_page_address(page, __va(pfn << PAGE_SHIFT));
2843#endif
2844	}
2845}
2846
2847static void __meminit zone_init_free_lists(struct zone *zone)
2848{
2849	int order, t;
2850	for_each_migratetype_order(order, t) {
2851		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2852		zone->free_area[order].nr_free = 0;
2853	}
2854}
2855
2856#ifndef __HAVE_ARCH_MEMMAP_INIT
2857#define memmap_init(size, nid, zone, start_pfn) \
2858	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2859#endif
2860
2861static int zone_batchsize(struct zone *zone)
2862{
2863#ifdef CONFIG_MMU
2864	int batch;
2865
2866	/*
2867	 * The per-cpu-pages pools are set to around 1000th of the
2868	 * size of the zone.  But no more than 1/2 of a meg.
2869	 *
2870	 * OK, so we don't know how big the cache is.  So guess.
2871	 */
2872	batch = zone->present_pages / 1024;
2873	if (batch * PAGE_SIZE > 512 * 1024)
2874		batch = (512 * 1024) / PAGE_SIZE;
2875	batch /= 4;		/* We effectively *= 4 below */
2876	if (batch < 1)
2877		batch = 1;
2878
2879	/*
2880	 * Clamp the batch to a 2^n - 1 value. Having a power
2881	 * of 2 value was found to be more likely to have
2882	 * suboptimal cache aliasing properties in some cases.
2883	 *
2884	 * For example if 2 tasks are alternately allocating
2885	 * batches of pages, one task can end up with a lot
2886	 * of pages of one half of the possible page colors
2887	 * and the other with pages of the other colors.
2888	 */
2889	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2890
2891	return batch;
2892
2893#else
2894	/* The deferral and batching of frees should be suppressed under NOMMU
2895	 * conditions.
2896	 *
2897	 * The problem is that NOMMU needs to be able to allocate large chunks
2898	 * of contiguous memory as there's no hardware page translation to
2899	 * assemble apparent contiguous memory from discontiguous pages.
2900	 *
2901	 * Queueing large contiguous runs of pages for batching, however,
2902	 * causes the pages to actually be freed in smaller chunks.  As there
2903	 * can be a significant delay between the individual batches being
2904	 * recycled, this leads to the once large chunks of space being
2905	 * fragmented and becoming unavailable for high-order allocations.
2906	 */
2907	return 0;
2908#endif
2909}
2910
2911static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2912{
2913	struct per_cpu_pages *pcp;
2914
2915	memset(p, 0, sizeof(*p));
2916
2917	pcp = &p->pcp;
2918	pcp->count = 0;
2919	pcp->high = 6 * batch;
2920	pcp->batch = max(1UL, 1 * batch);
2921	INIT_LIST_HEAD(&pcp->list);
2922}
2923
2924/*
2925 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2926 * to the value high for the pageset p.
2927 */
2928
2929static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2930				unsigned long high)
2931{
2932	struct per_cpu_pages *pcp;
2933
2934	pcp = &p->pcp;
2935	pcp->high = high;
2936	pcp->batch = max(1UL, high/4);
2937	if ((high/4) > (PAGE_SHIFT * 8))
2938		pcp->batch = PAGE_SHIFT * 8;
2939}
2940
2941
2942#ifdef CONFIG_NUMA
2943/*
2944 * Boot pageset table. One per cpu which is going to be used for all
2945 * zones and all nodes. The parameters will be set in such a way
2946 * that an item put on a list will immediately be handed over to
2947 * the buddy list. This is safe since pageset manipulation is done
2948 * with interrupts disabled.
2949 *
2950 * Some NUMA counter updates may also be caught by the boot pagesets.
2951 *
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2955 *
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2959 */
2960static struct per_cpu_pageset boot_pageset[NR_CPUS];
2961
2962/*
2963 * Dynamically allocate memory for the
2964 * per cpu pageset array in struct zone.
2965 */
2966static int __cpuinit process_zones(int cpu)
2967{
2968	struct zone *zone, *dzone;
2969	int node = cpu_to_node(cpu);
2970
2971	node_set_state(node, N_CPU);	/* this node has a cpu */
2972
2973	for_each_populated_zone(zone) {
2974		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2975					 GFP_KERNEL, node);
2976		if (!zone_pcp(zone, cpu))
2977			goto bad;
2978
2979		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2980
2981		if (percpu_pagelist_fraction)
2982			setup_pagelist_highmark(zone_pcp(zone, cpu),
2983			 	(zone->present_pages / percpu_pagelist_fraction));
2984	}
2985
2986	return 0;
2987bad:
2988	for_each_zone(dzone) {
2989		if (!populated_zone(dzone))
2990			continue;
2991		if (dzone == zone)
2992			break;
2993		kfree(zone_pcp(dzone, cpu));
2994		zone_pcp(dzone, cpu) = NULL;
2995	}
2996	return -ENOMEM;
2997}
2998
2999static inline void free_zone_pagesets(int cpu)
3000{
3001	struct zone *zone;
3002
3003	for_each_zone(zone) {
3004		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3005
3006		/* Free per_cpu_pageset if it is slab allocated */
3007		if (pset != &boot_pageset[cpu])
3008			kfree(pset);
3009		zone_pcp(zone, cpu) = NULL;
3010	}
3011}
3012
3013static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3014		unsigned long action,
3015		void *hcpu)
3016{
3017	int cpu = (long)hcpu;
3018	int ret = NOTIFY_OK;
3019
3020	switch (action) {
3021	case CPU_UP_PREPARE:
3022	case CPU_UP_PREPARE_FROZEN:
3023		if (process_zones(cpu))
3024			ret = NOTIFY_BAD;
3025		break;
3026	case CPU_UP_CANCELED:
3027	case CPU_UP_CANCELED_FROZEN:
3028	case CPU_DEAD:
3029	case CPU_DEAD_FROZEN:
3030		free_zone_pagesets(cpu);
3031		break;
3032	default:
3033		break;
3034	}
3035	return ret;
3036}
3037
3038static struct notifier_block __cpuinitdata pageset_notifier =
3039	{ &pageset_cpuup_callback, NULL, 0 };
3040
3041void __init setup_per_cpu_pageset(void)
3042{
3043	int err;
3044
3045	/* Initialize per_cpu_pageset for cpu 0.
3046	 * A cpuup callback will do this for every cpu
3047	 * as it comes online
3048	 */
3049	err = process_zones(smp_processor_id());
3050	BUG_ON(err);
3051	register_cpu_notifier(&pageset_notifier);
3052}
3053
3054#endif
3055
3056static noinline __init_refok
3057int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3058{
3059	int i;
3060	struct pglist_data *pgdat = zone->zone_pgdat;
3061	size_t alloc_size;
3062
3063	/*
3064	 * The per-page waitqueue mechanism uses hashed waitqueues
3065	 * per zone.
3066	 */
3067	zone->wait_table_hash_nr_entries =
3068		 wait_table_hash_nr_entries(zone_size_pages);
3069	zone->wait_table_bits =
3070		wait_table_bits(zone->wait_table_hash_nr_entries);
3071	alloc_size = zone->wait_table_hash_nr_entries
3072					* sizeof(wait_queue_head_t);
3073
3074	if (!slab_is_available()) {
3075		zone->wait_table = (wait_queue_head_t *)
3076			alloc_bootmem_node(pgdat, alloc_size);
3077	} else {
3078		/*
3079		 * This case means that a zone whose size was 0 gets new memory
3080		 * via memory hot-add.
3081		 * But it may be the case that a new node was hot-added.  In
3082		 * this case vmalloc() will not be able to use this new node's
3083		 * memory - this wait_table must be initialized to use this new
3084		 * node itself as well.
3085		 * To use this new node's memory, further consideration will be
3086		 * necessary.
3087		 */
3088		zone->wait_table = vmalloc(alloc_size);
3089	}
3090	if (!zone->wait_table)
3091		return -ENOMEM;
3092
3093	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3094		init_waitqueue_head(zone->wait_table + i);
3095
3096	return 0;
3097}
3098
3099static __meminit void zone_pcp_init(struct zone *zone)
3100{
3101	int cpu;
3102	unsigned long batch = zone_batchsize(zone);
3103
3104	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3105#ifdef CONFIG_NUMA
3106		/* Early boot. Slab allocator not functional yet */
3107		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3108		setup_pageset(&boot_pageset[cpu],0);
3109#else
3110		setup_pageset(zone_pcp(zone,cpu), batch);
3111#endif
3112	}
3113	if (zone->present_pages)
3114		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3115			zone->name, zone->present_pages, batch);
3116}
3117
3118__meminit int init_currently_empty_zone(struct zone *zone,
3119					unsigned long zone_start_pfn,
3120					unsigned long size,
3121					enum memmap_context context)
3122{
3123	struct pglist_data *pgdat = zone->zone_pgdat;
3124	int ret;
3125	ret = zone_wait_table_init(zone, size);
3126	if (ret)
3127		return ret;
3128	pgdat->nr_zones = zone_idx(zone) + 1;
3129
3130	zone->zone_start_pfn = zone_start_pfn;
3131
3132	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3133			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3134			pgdat->node_id,
3135			(unsigned long)zone_idx(zone),
3136			zone_start_pfn, (zone_start_pfn + size));
3137
3138	zone_init_free_lists(zone);
3139
3140	return 0;
3141}
3142
3143#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3144/*
3145 * Basic iterator support. Return the first range of PFNs for a node
3146 * Note: nid == MAX_NUMNODES returns first region regardless of node
3147 */
3148static int __meminit first_active_region_index_in_nid(int nid)
3149{
3150	int i;
3151
3152	for (i = 0; i < nr_nodemap_entries; i++)
3153		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3154			return i;
3155
3156	return -1;
3157}
3158
3159/*
3160 * Basic iterator support. Return the next active range of PFNs for a node
3161 * Note: nid == MAX_NUMNODES returns next region regardless of node
3162 */
3163static int __meminit next_active_region_index_in_nid(int index, int nid)
3164{
3165	for (index = index + 1; index < nr_nodemap_entries; index++)
3166		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3167			return index;
3168
3169	return -1;
3170}
3171
3172#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3173/*
3174 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3175 * Architectures may implement their own version but if add_active_range()
3176 * was used and there are no special requirements, this is a convenient
3177 * alternative
3178 */
3179int __meminit __early_pfn_to_nid(unsigned long pfn)
3180{
3181	int i;
3182
3183	for (i = 0; i < nr_nodemap_entries; i++) {
3184		unsigned long start_pfn = early_node_map[i].start_pfn;
3185		unsigned long end_pfn = early_node_map[i].end_pfn;
3186
3187		if (start_pfn <= pfn && pfn < end_pfn)
3188			return early_node_map[i].nid;
3189	}
3190	/* This is a memory hole */
3191	return -1;
3192}
3193#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3194
3195int __meminit early_pfn_to_nid(unsigned long pfn)
3196{
3197	int nid;
3198
3199	nid = __early_pfn_to_nid(pfn);
3200	if (nid >= 0)
3201		return nid;
3202	/* just returns 0 */
3203	return 0;
3204}
3205
3206#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3207bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3208{
3209	int nid;
3210
3211	nid = __early_pfn_to_nid(pfn);
3212	if (nid >= 0 && nid != node)
3213		return false;
3214	return true;
3215}
3216#endif
3217
3218/* Basic iterator support to walk early_node_map[] */
3219#define for_each_active_range_index_in_nid(i, nid) \
3220	for (i = first_active_region_index_in_nid(nid); i != -1; \
3221				i = next_active_region_index_in_nid(i, nid))
3222
3223/**
3224 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3225 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3226 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3227 *
3228 * If an architecture guarantees that all ranges registered with
3229 * add_active_ranges() contain no holes and may be freed, this
3230 * this function may be used instead of calling free_bootmem() manually.
3231 */
3232void __init free_bootmem_with_active_regions(int nid,
3233						unsigned long max_low_pfn)
3234{
3235	int i;
3236
3237	for_each_active_range_index_in_nid(i, nid) {
3238		unsigned long size_pages = 0;
3239		unsigned long end_pfn = early_node_map[i].end_pfn;
3240
3241		if (early_node_map[i].start_pfn >= max_low_pfn)
3242			continue;
3243
3244		if (end_pfn > max_low_pfn)
3245			end_pfn = max_low_pfn;
3246
3247		size_pages = end_pfn - early_node_map[i].start_pfn;
3248		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3249				PFN_PHYS(early_node_map[i].start_pfn),
3250				size_pages << PAGE_SHIFT);
3251	}
3252}
3253
3254void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3255{
3256	int i;
3257	int ret;
3258
3259	for_each_active_range_index_in_nid(i, nid) {
3260		ret = work_fn(early_node_map[i].start_pfn,
3261			      early_node_map[i].end_pfn, data);
3262		if (ret)
3263			break;
3264	}
3265}
3266/**
3267 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3268 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3269 *
3270 * If an architecture guarantees that all ranges registered with
3271 * add_active_ranges() contain no holes and may be freed, this
3272 * function may be used instead of calling memory_present() manually.
3273 */
3274void __init sparse_memory_present_with_active_regions(int nid)
3275{
3276	int i;
3277
3278	for_each_active_range_index_in_nid(i, nid)
3279		memory_present(early_node_map[i].nid,
3280				early_node_map[i].start_pfn,
3281				early_node_map[i].end_pfn);
3282}
3283
3284/**
3285 * get_pfn_range_for_nid - Return the start and end page frames for a node
3286 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3287 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3288 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3289 *
3290 * It returns the start and end page frame of a node based on information
3291 * provided by an arch calling add_active_range(). If called for a node
3292 * with no available memory, a warning is printed and the start and end
3293 * PFNs will be 0.
3294 */
3295void __meminit get_pfn_range_for_nid(unsigned int nid,
3296			unsigned long *start_pfn, unsigned long *end_pfn)
3297{
3298	int i;
3299	*start_pfn = -1UL;
3300	*end_pfn = 0;
3301
3302	for_each_active_range_index_in_nid(i, nid) {
3303		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3304		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3305	}
3306
3307	if (*start_pfn == -1UL)
3308		*start_pfn = 0;
3309}
3310
3311/*
3312 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3313 * assumption is made that zones within a node are ordered in monotonic
3314 * increasing memory addresses so that the "highest" populated zone is used
3315 */
3316static void __init find_usable_zone_for_movable(void)
3317{
3318	int zone_index;
3319	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3320		if (zone_index == ZONE_MOVABLE)
3321			continue;
3322
3323		if (arch_zone_highest_possible_pfn[zone_index] >
3324				arch_zone_lowest_possible_pfn[zone_index])
3325			break;
3326	}
3327
3328	VM_BUG_ON(zone_index == -1);
3329	movable_zone = zone_index;
3330}
3331
3332/*
3333 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3334 * because it is sized independant of architecture. Unlike the other zones,
3335 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3336 * in each node depending on the size of each node and how evenly kernelcore
3337 * is distributed. This helper function adjusts the zone ranges
3338 * provided by the architecture for a given node by using the end of the
3339 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3340 * zones within a node are in order of monotonic increases memory addresses
3341 */
3342static void __meminit adjust_zone_range_for_zone_movable(int nid,
3343					unsigned long zone_type,
3344					unsigned long node_start_pfn,
3345					unsigned long node_end_pfn,
3346					unsigned long *zone_start_pfn,
3347					unsigned long *zone_end_pfn)
3348{
3349	/* Only adjust if ZONE_MOVABLE is on this node */
3350	if (zone_movable_pfn[nid]) {
3351		/* Size ZONE_MOVABLE */
3352		if (zone_type == ZONE_MOVABLE) {
3353			*zone_start_pfn = zone_movable_pfn[nid];
3354			*zone_end_pfn = min(node_end_pfn,
3355				arch_zone_highest_possible_pfn[movable_zone]);
3356
3357		/* Adjust for ZONE_MOVABLE starting within this range */
3358		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3359				*zone_end_pfn > zone_movable_pfn[nid]) {
3360			*zone_end_pfn = zone_movable_pfn[nid];
3361
3362		/* Check if this whole range is within ZONE_MOVABLE */
3363		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3364			*zone_start_pfn = *zone_end_pfn;
3365	}
3366}
3367
3368/*
3369 * Return the number of pages a zone spans in a node, including holes
3370 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3371 */
3372static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3373					unsigned long zone_type,
3374					unsigned long *ignored)
3375{
3376	unsigned long node_start_pfn, node_end_pfn;
3377	unsigned long zone_start_pfn, zone_end_pfn;
3378
3379	/* Get the start and end of the node and zone */
3380	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3381	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3382	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3383	adjust_zone_range_for_zone_movable(nid, zone_type,
3384				node_start_pfn, node_end_pfn,
3385				&zone_start_pfn, &zone_end_pfn);
3386
3387	/* Check that this node has pages within the zone's required range */
3388	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3389		return 0;
3390
3391	/* Move the zone boundaries inside the node if necessary */
3392	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3393	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3394
3395	/* Return the spanned pages */
3396	return zone_end_pfn - zone_start_pfn;
3397}
3398
3399/*
3400 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3401 * then all holes in the requested range will be accounted for.
3402 */
3403static unsigned long __meminit __absent_pages_in_range(int nid,
3404				unsigned long range_start_pfn,
3405				unsigned long range_end_pfn)
3406{
3407	int i = 0;
3408	unsigned long prev_end_pfn = 0, hole_pages = 0;
3409	unsigned long start_pfn;
3410
3411	/* Find the end_pfn of the first active range of pfns in the node */
3412	i = first_active_region_index_in_nid(nid);
3413	if (i == -1)
3414		return 0;
3415
3416	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3417
3418	/* Account for ranges before physical memory on this node */
3419	if (early_node_map[i].start_pfn > range_start_pfn)
3420		hole_pages = prev_end_pfn - range_start_pfn;
3421
3422	/* Find all holes for the zone within the node */
3423	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3424
3425		/* No need to continue if prev_end_pfn is outside the zone */
3426		if (prev_end_pfn >= range_end_pfn)
3427			break;
3428
3429		/* Make sure the end of the zone is not within the hole */
3430		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3431		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3432
3433		/* Update the hole size cound and move on */
3434		if (start_pfn > range_start_pfn) {
3435			BUG_ON(prev_end_pfn > start_pfn);
3436			hole_pages += start_pfn - prev_end_pfn;
3437		}
3438		prev_end_pfn = early_node_map[i].end_pfn;
3439	}
3440
3441	/* Account for ranges past physical memory on this node */
3442	if (range_end_pfn > prev_end_pfn)
3443		hole_pages += range_end_pfn -
3444				max(range_start_pfn, prev_end_pfn);
3445
3446	return hole_pages;
3447}
3448
3449/**
3450 * absent_pages_in_range - Return number of page frames in holes within a range
3451 * @start_pfn: The start PFN to start searching for holes
3452 * @end_pfn: The end PFN to stop searching for holes
3453 *
3454 * It returns the number of pages frames in memory holes within a range.
3455 */
3456unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3457							unsigned long end_pfn)
3458{
3459	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3460}
3461
3462/* Return the number of page frames in holes in a zone on a node */
3463static unsigned long __meminit zone_absent_pages_in_node(int nid,
3464					unsigned long zone_type,
3465					unsigned long *ignored)
3466{
3467	unsigned long node_start_pfn, node_end_pfn;
3468	unsigned long zone_start_pfn, zone_end_pfn;
3469
3470	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3471	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3472							node_start_pfn);
3473	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3474							node_end_pfn);
3475
3476	adjust_zone_range_for_zone_movable(nid, zone_type,
3477			node_start_pfn, node_end_pfn,
3478			&zone_start_pfn, &zone_end_pfn);
3479	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3480}
3481
3482#else
3483static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3484					unsigned long zone_type,
3485					unsigned long *zones_size)
3486{
3487	return zones_size[zone_type];
3488}
3489
3490static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3491						unsigned long zone_type,
3492						unsigned long *zholes_size)
3493{
3494	if (!zholes_size)
3495		return 0;
3496
3497	return zholes_size[zone_type];
3498}
3499
3500#endif
3501
3502static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3503		unsigned long *zones_size, unsigned long *zholes_size)
3504{
3505	unsigned long realtotalpages, totalpages = 0;
3506	enum zone_type i;
3507
3508	for (i = 0; i < MAX_NR_ZONES; i++)
3509		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3510								zones_size);
3511	pgdat->node_spanned_pages = totalpages;
3512
3513	realtotalpages = totalpages;
3514	for (i = 0; i < MAX_NR_ZONES; i++)
3515		realtotalpages -=
3516			zone_absent_pages_in_node(pgdat->node_id, i,
3517								zholes_size);
3518	pgdat->node_present_pages = realtotalpages;
3519	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3520							realtotalpages);
3521}
3522
3523#ifndef CONFIG_SPARSEMEM
3524/*
3525 * Calculate the size of the zone->blockflags rounded to an unsigned long
3526 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3527 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3528 * round what is now in bits to nearest long in bits, then return it in
3529 * bytes.
3530 */
3531static unsigned long __init usemap_size(unsigned long zonesize)
3532{
3533	unsigned long usemapsize;
3534
3535	usemapsize = roundup(zonesize, pageblock_nr_pages);
3536	usemapsize = usemapsize >> pageblock_order;
3537	usemapsize *= NR_PAGEBLOCK_BITS;
3538	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3539
3540	return usemapsize / 8;
3541}
3542
3543static void __init setup_usemap(struct pglist_data *pgdat,
3544				struct zone *zone, unsigned long zonesize)
3545{
3546	unsigned long usemapsize = usemap_size(zonesize);
3547	zone->pageblock_flags = NULL;
3548	if (usemapsize)
3549		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3550}
3551#else
3552static void inline setup_usemap(struct pglist_data *pgdat,
3553				struct zone *zone, unsigned long zonesize) {}
3554#endif /* CONFIG_SPARSEMEM */
3555
3556#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3557
3558/* Return a sensible default order for the pageblock size. */
3559static inline int pageblock_default_order(void)
3560{
3561	if (HPAGE_SHIFT > PAGE_SHIFT)
3562		return HUGETLB_PAGE_ORDER;
3563
3564	return MAX_ORDER-1;
3565}
3566
3567/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3568static inline void __init set_pageblock_order(unsigned int order)
3569{
3570	/* Check that pageblock_nr_pages has not already been setup */
3571	if (pageblock_order)
3572		return;
3573
3574	/*
3575	 * Assume the largest contiguous order of interest is a huge page.
3576	 * This value may be variable depending on boot parameters on IA64
3577	 */
3578	pageblock_order = order;
3579}
3580#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3581
3582/*
3583 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3584 * and pageblock_default_order() are unused as pageblock_order is set
3585 * at compile-time. See include/linux/pageblock-flags.h for the values of
3586 * pageblock_order based on the kernel config
3587 */
3588static inline int pageblock_default_order(unsigned int order)
3589{
3590	return MAX_ORDER-1;
3591}
3592#define set_pageblock_order(x)	do {} while (0)
3593
3594#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3595
3596/*
3597 * Set up the zone data structures:
3598 *   - mark all pages reserved
3599 *   - mark all memory queues empty
3600 *   - clear the memory bitmaps
3601 */
3602static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3603		unsigned long *zones_size, unsigned long *zholes_size)
3604{
3605	enum zone_type j;
3606	int nid = pgdat->node_id;
3607	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3608	int ret;
3609
3610	pgdat_resize_init(pgdat);
3611	pgdat->nr_zones = 0;
3612	init_waitqueue_head(&pgdat->kswapd_wait);
3613	pgdat->kswapd_max_order = 0;
3614	pgdat_page_cgroup_init(pgdat);
3615
3616	for (j = 0; j < MAX_NR_ZONES; j++) {
3617		struct zone *zone = pgdat->node_zones + j;
3618		unsigned long size, realsize, memmap_pages;
3619		enum lru_list l;
3620
3621		size = zone_spanned_pages_in_node(nid, j, zones_size);
3622		realsize = size - zone_absent_pages_in_node(nid, j,
3623								zholes_size);
3624
3625		/*
3626		 * Adjust realsize so that it accounts for how much memory
3627		 * is used by this zone for memmap. This affects the watermark
3628		 * and per-cpu initialisations
3629		 */
3630		memmap_pages =
3631			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3632		if (realsize >= memmap_pages) {
3633			realsize -= memmap_pages;
3634			if (memmap_pages)
3635				printk(KERN_DEBUG
3636				       "  %s zone: %lu pages used for memmap\n",
3637				       zone_names[j], memmap_pages);
3638		} else
3639			printk(KERN_WARNING
3640				"  %s zone: %lu pages exceeds realsize %lu\n",
3641				zone_names[j], memmap_pages, realsize);
3642
3643		/* Account for reserved pages */
3644		if (j == 0 && realsize > dma_reserve) {
3645			realsize -= dma_reserve;
3646			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3647					zone_names[0], dma_reserve);
3648		}
3649
3650		if (!is_highmem_idx(j))
3651			nr_kernel_pages += realsize;
3652		nr_all_pages += realsize;
3653
3654		zone->spanned_pages = size;
3655		zone->present_pages = realsize;
3656#ifdef CONFIG_NUMA
3657		zone->node = nid;
3658		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3659						/ 100;
3660		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3661#endif
3662		zone->name = zone_names[j];
3663		spin_lock_init(&zone->lock);
3664		spin_lock_init(&zone->lru_lock);
3665		zone_seqlock_init(zone);
3666		zone->zone_pgdat = pgdat;
3667
3668		zone->prev_priority = DEF_PRIORITY;
3669
3670		zone_pcp_init(zone);
3671		for_each_lru(l) {
3672			INIT_LIST_HEAD(&zone->lru[l].list);
3673			zone->lru[l].nr_saved_scan = 0;
3674		}
3675		zone->reclaim_stat.recent_rotated[0] = 0;
3676		zone->reclaim_stat.recent_rotated[1] = 0;
3677		zone->reclaim_stat.recent_scanned[0] = 0;
3678		zone->reclaim_stat.recent_scanned[1] = 0;
3679		zap_zone_vm_stats(zone);
3680		zone->flags = 0;
3681		if (!size)
3682			continue;
3683
3684		set_pageblock_order(pageblock_default_order());
3685		setup_usemap(pgdat, zone, size);
3686		ret = init_currently_empty_zone(zone, zone_start_pfn,
3687						size, MEMMAP_EARLY);
3688		BUG_ON(ret);
3689		memmap_init(size, nid, j, zone_start_pfn);
3690		zone_start_pfn += size;
3691	}
3692}
3693
3694static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3695{
3696	/* Skip empty nodes */
3697	if (!pgdat->node_spanned_pages)
3698		return;
3699
3700#ifdef CONFIG_FLAT_NODE_MEM_MAP
3701	/* ia64 gets its own node_mem_map, before this, without bootmem */
3702	if (!pgdat->node_mem_map) {
3703		unsigned long size, start, end;
3704		struct page *map;
3705
3706		/*
3707		 * The zone's endpoints aren't required to be MAX_ORDER
3708		 * aligned but the node_mem_map endpoints must be in order
3709		 * for the buddy allocator to function correctly.
3710		 */
3711		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3712		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3713		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3714		size =  (end - start) * sizeof(struct page);
3715		map = alloc_remap(pgdat->node_id, size);
3716		if (!map)
3717			map = alloc_bootmem_node(pgdat, size);
3718		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3719	}
3720#ifndef CONFIG_NEED_MULTIPLE_NODES
3721	/*
3722	 * With no DISCONTIG, the global mem_map is just set as node 0's
3723	 */
3724	if (pgdat == NODE_DATA(0)) {
3725		mem_map = NODE_DATA(0)->node_mem_map;
3726#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3727		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3728			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3729#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3730	}
3731#endif
3732#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3733}
3734
3735void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3736		unsigned long node_start_pfn, unsigned long *zholes_size)
3737{
3738	pg_data_t *pgdat = NODE_DATA(nid);
3739
3740	pgdat->node_id = nid;
3741	pgdat->node_start_pfn = node_start_pfn;
3742	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3743
3744	alloc_node_mem_map(pgdat);
3745#ifdef CONFIG_FLAT_NODE_MEM_MAP
3746	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3747		nid, (unsigned long)pgdat,
3748		(unsigned long)pgdat->node_mem_map);
3749#endif
3750
3751	free_area_init_core(pgdat, zones_size, zholes_size);
3752}
3753
3754#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3755
3756#if MAX_NUMNODES > 1
3757/*
3758 * Figure out the number of possible node ids.
3759 */
3760static void __init setup_nr_node_ids(void)
3761{
3762	unsigned int node;
3763	unsigned int highest = 0;
3764
3765	for_each_node_mask(node, node_possible_map)
3766		highest = node;
3767	nr_node_ids = highest + 1;
3768}
3769#else
3770static inline void setup_nr_node_ids(void)
3771{
3772}
3773#endif
3774
3775/**
3776 * add_active_range - Register a range of PFNs backed by physical memory
3777 * @nid: The node ID the range resides on
3778 * @start_pfn: The start PFN of the available physical memory
3779 * @end_pfn: The end PFN of the available physical memory
3780 *
3781 * These ranges are stored in an early_node_map[] and later used by
3782 * free_area_init_nodes() to calculate zone sizes and holes. If the
3783 * range spans a memory hole, it is up to the architecture to ensure
3784 * the memory is not freed by the bootmem allocator. If possible
3785 * the range being registered will be merged with existing ranges.
3786 */
3787void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3788						unsigned long end_pfn)
3789{
3790	int i;
3791
3792	mminit_dprintk(MMINIT_TRACE, "memory_register",
3793			"Entering add_active_range(%d, %#lx, %#lx) "
3794			"%d entries of %d used\n",
3795			nid, start_pfn, end_pfn,
3796			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3797
3798	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3799
3800	/* Merge with existing active regions if possible */
3801	for (i = 0; i < nr_nodemap_entries; i++) {
3802		if (early_node_map[i].nid != nid)
3803			continue;
3804
3805		/* Skip if an existing region covers this new one */
3806		if (start_pfn >= early_node_map[i].start_pfn &&
3807				end_pfn <= early_node_map[i].end_pfn)
3808			return;
3809
3810		/* Merge forward if suitable */
3811		if (start_pfn <= early_node_map[i].end_pfn &&
3812				end_pfn > early_node_map[i].end_pfn) {
3813			early_node_map[i].end_pfn = end_pfn;
3814			return;
3815		}
3816
3817		/* Merge backward if suitable */
3818		if (start_pfn < early_node_map[i].end_pfn &&
3819				end_pfn >= early_node_map[i].start_pfn) {
3820			early_node_map[i].start_pfn = start_pfn;
3821			return;
3822		}
3823	}
3824
3825	/* Check that early_node_map is large enough */
3826	if (i >= MAX_ACTIVE_REGIONS) {
3827		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3828							MAX_ACTIVE_REGIONS);
3829		return;
3830	}
3831
3832	early_node_map[i].nid = nid;
3833	early_node_map[i].start_pfn = start_pfn;
3834	early_node_map[i].end_pfn = end_pfn;
3835	nr_nodemap_entries = i + 1;
3836}
3837
3838/**
3839 * remove_active_range - Shrink an existing registered range of PFNs
3840 * @nid: The node id the range is on that should be shrunk
3841 * @start_pfn: The new PFN of the range
3842 * @end_pfn: The new PFN of the range
3843 *
3844 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3845 * The map is kept near the end physical page range that has already been
3846 * registered. This function allows an arch to shrink an existing registered
3847 * range.
3848 */
3849void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3850				unsigned long end_pfn)
3851{
3852	int i, j;
3853	int removed = 0;
3854
3855	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3856			  nid, start_pfn, end_pfn);
3857
3858	/* Find the old active region end and shrink */
3859	for_each_active_range_index_in_nid(i, nid) {
3860		if (early_node_map[i].start_pfn >= start_pfn &&
3861		    early_node_map[i].end_pfn <= end_pfn) {
3862			/* clear it */
3863			early_node_map[i].start_pfn = 0;
3864			early_node_map[i].end_pfn = 0;
3865			removed = 1;
3866			continue;
3867		}
3868		if (early_node_map[i].start_pfn < start_pfn &&
3869		    early_node_map[i].end_pfn > start_pfn) {
3870			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3871			early_node_map[i].end_pfn = start_pfn;
3872			if (temp_end_pfn > end_pfn)
3873				add_active_range(nid, end_pfn, temp_end_pfn);
3874			continue;
3875		}
3876		if (early_node_map[i].start_pfn >= start_pfn &&
3877		    early_node_map[i].end_pfn > end_pfn &&
3878		    early_node_map[i].start_pfn < end_pfn) {
3879			early_node_map[i].start_pfn = end_pfn;
3880			continue;
3881		}
3882	}
3883
3884	if (!removed)
3885		return;
3886
3887	/* remove the blank ones */
3888	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3889		if (early_node_map[i].nid != nid)
3890			continue;
3891		if (early_node_map[i].end_pfn)
3892			continue;
3893		/* we found it, get rid of it */
3894		for (j = i; j < nr_nodemap_entries - 1; j++)
3895			memcpy(&early_node_map[j], &early_node_map[j+1],
3896				sizeof(early_node_map[j]));
3897		j = nr_nodemap_entries - 1;
3898		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3899		nr_nodemap_entries--;
3900	}
3901}
3902
3903/**
3904 * remove_all_active_ranges - Remove all currently registered regions
3905 *
3906 * During discovery, it may be found that a table like SRAT is invalid
3907 * and an alternative discovery method must be used. This function removes
3908 * all currently registered regions.
3909 */
3910void __init remove_all_active_ranges(void)
3911{
3912	memset(early_node_map, 0, sizeof(early_node_map));
3913	nr_nodemap_entries = 0;
3914}
3915
3916/* Compare two active node_active_regions */
3917static int __init cmp_node_active_region(const void *a, const void *b)
3918{
3919	struct node_active_region *arange = (struct node_active_region *)a;
3920	struct node_active_region *brange = (struct node_active_region *)b;
3921
3922	/* Done this way to avoid overflows */
3923	if (arange->start_pfn > brange->start_pfn)
3924		return 1;
3925	if (arange->start_pfn < brange->start_pfn)
3926		return -1;
3927
3928	return 0;
3929}
3930
3931/* sort the node_map by start_pfn */
3932static void __init sort_node_map(void)
3933{
3934	sort(early_node_map, (size_t)nr_nodemap_entries,
3935			sizeof(struct node_active_region),
3936			cmp_node_active_region, NULL);
3937}
3938
3939/* Find the lowest pfn for a node */
3940static unsigned long __init find_min_pfn_for_node(int nid)
3941{
3942	int i;
3943	unsigned long min_pfn = ULONG_MAX;
3944
3945	/* Assuming a sorted map, the first range found has the starting pfn */
3946	for_each_active_range_index_in_nid(i, nid)
3947		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3948
3949	if (min_pfn == ULONG_MAX) {
3950		printk(KERN_WARNING
3951			"Could not find start_pfn for node %d\n", nid);
3952		return 0;
3953	}
3954
3955	return min_pfn;
3956}
3957
3958/**
3959 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3960 *
3961 * It returns the minimum PFN based on information provided via
3962 * add_active_range().
3963 */
3964unsigned long __init find_min_pfn_with_active_regions(void)
3965{
3966	return find_min_pfn_for_node(MAX_NUMNODES);
3967}
3968
3969/*
3970 * early_calculate_totalpages()
3971 * Sum pages in active regions for movable zone.
3972 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3973 */
3974static unsigned long __init early_calculate_totalpages(void)
3975{
3976	int i;
3977	unsigned long totalpages = 0;
3978
3979	for (i = 0; i < nr_nodemap_entries; i++) {
3980		unsigned long pages = early_node_map[i].end_pfn -
3981						early_node_map[i].start_pfn;
3982		totalpages += pages;
3983		if (pages)
3984			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3985	}
3986  	return totalpages;
3987}
3988
3989/*
3990 * Find the PFN the Movable zone begins in each node. Kernel memory
3991 * is spread evenly between nodes as long as the nodes have enough
3992 * memory. When they don't, some nodes will have more kernelcore than
3993 * others
3994 */
3995static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3996{
3997	int i, nid;
3998	unsigned long usable_startpfn;
3999	unsigned long kernelcore_node, kernelcore_remaining;
4000	unsigned long totalpages = early_calculate_totalpages();
4001	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4002
4003	/*
4004	 * If movablecore was specified, calculate what size of
4005	 * kernelcore that corresponds so that memory usable for
4006	 * any allocation type is evenly spread. If both kernelcore
4007	 * and movablecore are specified, then the value of kernelcore
4008	 * will be used for required_kernelcore if it's greater than
4009	 * what movablecore would have allowed.
4010	 */
4011	if (required_movablecore) {
4012		unsigned long corepages;
4013
4014		/*
4015		 * Round-up so that ZONE_MOVABLE is at least as large as what
4016		 * was requested by the user
4017		 */
4018		required_movablecore =
4019			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4020		corepages = totalpages - required_movablecore;
4021
4022		required_kernelcore = max(required_kernelcore, corepages);
4023	}
4024
4025	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4026	if (!required_kernelcore)
4027		return;
4028
4029	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4030	find_usable_zone_for_movable();
4031	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4032
4033restart:
4034	/* Spread kernelcore memory as evenly as possible throughout nodes */
4035	kernelcore_node = required_kernelcore / usable_nodes;
4036	for_each_node_state(nid, N_HIGH_MEMORY) {
4037		/*
4038		 * Recalculate kernelcore_node if the division per node
4039		 * now exceeds what is necessary to satisfy the requested
4040		 * amount of memory for the kernel
4041		 */
4042		if (required_kernelcore < kernelcore_node)
4043			kernelcore_node = required_kernelcore / usable_nodes;
4044
4045		/*
4046		 * As the map is walked, we track how much memory is usable
4047		 * by the kernel using kernelcore_remaining. When it is
4048		 * 0, the rest of the node is usable by ZONE_MOVABLE
4049		 */
4050		kernelcore_remaining = kernelcore_node;
4051
4052		/* Go through each range of PFNs within this node */
4053		for_each_active_range_index_in_nid(i, nid) {
4054			unsigned long start_pfn, end_pfn;
4055			unsigned long size_pages;
4056
4057			start_pfn = max(early_node_map[i].start_pfn,
4058						zone_movable_pfn[nid]);
4059			end_pfn = early_node_map[i].end_pfn;
4060			if (start_pfn >= end_pfn)
4061				continue;
4062
4063			/* Account for what is only usable for kernelcore */
4064			if (start_pfn < usable_startpfn) {
4065				unsigned long kernel_pages;
4066				kernel_pages = min(end_pfn, usable_startpfn)
4067								- start_pfn;
4068
4069				kernelcore_remaining -= min(kernel_pages,
4070							kernelcore_remaining);
4071				required_kernelcore -= min(kernel_pages,
4072							required_kernelcore);
4073
4074				/* Continue if range is now fully accounted */
4075				if (end_pfn <= usable_startpfn) {
4076
4077					/*
4078					 * Push zone_movable_pfn to the end so
4079					 * that if we have to rebalance
4080					 * kernelcore across nodes, we will
4081					 * not double account here
4082					 */
4083					zone_movable_pfn[nid] = end_pfn;
4084					continue;
4085				}
4086				start_pfn = usable_startpfn;
4087			}
4088
4089			/*
4090			 * The usable PFN range for ZONE_MOVABLE is from
4091			 * start_pfn->end_pfn. Calculate size_pages as the
4092			 * number of pages used as kernelcore
4093			 */
4094			size_pages = end_pfn - start_pfn;
4095			if (size_pages > kernelcore_remaining)
4096				size_pages = kernelcore_remaining;
4097			zone_movable_pfn[nid] = start_pfn + size_pages;
4098
4099			/*
4100			 * Some kernelcore has been met, update counts and
4101			 * break if the kernelcore for this node has been
4102			 * satisified
4103			 */
4104			required_kernelcore -= min(required_kernelcore,
4105								size_pages);
4106			kernelcore_remaining -= size_pages;
4107			if (!kernelcore_remaining)
4108				break;
4109		}
4110	}
4111
4112	/*
4113	 * If there is still required_kernelcore, we do another pass with one
4114	 * less node in the count. This will push zone_movable_pfn[nid] further
4115	 * along on the nodes that still have memory until kernelcore is
4116	 * satisified
4117	 */
4118	usable_nodes--;
4119	if (usable_nodes && required_kernelcore > usable_nodes)
4120		goto restart;
4121
4122	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4123	for (nid = 0; nid < MAX_NUMNODES; nid++)
4124		zone_movable_pfn[nid] =
4125			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4126}
4127
4128/* Any regular memory on that node ? */
4129static void check_for_regular_memory(pg_data_t *pgdat)
4130{
4131#ifdef CONFIG_HIGHMEM
4132	enum zone_type zone_type;
4133
4134	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4135		struct zone *zone = &pgdat->node_zones[zone_type];
4136		if (zone->present_pages)
4137			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4138	}
4139#endif
4140}
4141
4142/**
4143 * free_area_init_nodes - Initialise all pg_data_t and zone data
4144 * @max_zone_pfn: an array of max PFNs for each zone
4145 *
4146 * This will call free_area_init_node() for each active node in the system.
4147 * Using the page ranges provided by add_active_range(), the size of each
4148 * zone in each node and their holes is calculated. If the maximum PFN
4149 * between two adjacent zones match, it is assumed that the zone is empty.
4150 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4151 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4152 * starts where the previous one ended. For example, ZONE_DMA32 starts
4153 * at arch_max_dma_pfn.
4154 */
4155void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4156{
4157	unsigned long nid;
4158	int i;
4159
4160	/* Sort early_node_map as initialisation assumes it is sorted */
4161	sort_node_map();
4162
4163	/* Record where the zone boundaries are */
4164	memset(arch_zone_lowest_possible_pfn, 0,
4165				sizeof(arch_zone_lowest_possible_pfn));
4166	memset(arch_zone_highest_possible_pfn, 0,
4167				sizeof(arch_zone_highest_possible_pfn));
4168	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4169	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4170	for (i = 1; i < MAX_NR_ZONES; i++) {
4171		if (i == ZONE_MOVABLE)
4172			continue;
4173		arch_zone_lowest_possible_pfn[i] =
4174			arch_zone_highest_possible_pfn[i-1];
4175		arch_zone_highest_possible_pfn[i] =
4176			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4177	}
4178	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4179	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4180
4181	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4182	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4183	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4184
4185	/* Print out the zone ranges */
4186	printk("Zone PFN ranges:\n");
4187	for (i = 0; i < MAX_NR_ZONES; i++) {
4188		if (i == ZONE_MOVABLE)
4189			continue;
4190		printk("  %-8s %0#10lx -> %0#10lx\n",
4191				zone_names[i],
4192				arch_zone_lowest_possible_pfn[i],
4193				arch_zone_highest_possible_pfn[i]);
4194	}
4195
4196	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4197	printk("Movable zone start PFN for each node\n");
4198	for (i = 0; i < MAX_NUMNODES; i++) {
4199		if (zone_movable_pfn[i])
4200			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4201	}
4202
4203	/* Print out the early_node_map[] */
4204	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4205	for (i = 0; i < nr_nodemap_entries; i++)
4206		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4207						early_node_map[i].start_pfn,
4208						early_node_map[i].end_pfn);
4209
4210	/* Initialise every node */
4211	mminit_verify_pageflags_layout();
4212	setup_nr_node_ids();
4213	for_each_online_node(nid) {
4214		pg_data_t *pgdat = NODE_DATA(nid);
4215		free_area_init_node(nid, NULL,
4216				find_min_pfn_for_node(nid), NULL);
4217
4218		/* Any memory on that node */
4219		if (pgdat->node_present_pages)
4220			node_set_state(nid, N_HIGH_MEMORY);
4221		check_for_regular_memory(pgdat);
4222	}
4223}
4224
4225static int __init cmdline_parse_core(char *p, unsigned long *core)
4226{
4227	unsigned long long coremem;
4228	if (!p)
4229		return -EINVAL;
4230
4231	coremem = memparse(p, &p);
4232	*core = coremem >> PAGE_SHIFT;
4233
4234	/* Paranoid check that UL is enough for the coremem value */
4235	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4236
4237	return 0;
4238}
4239
4240/*
4241 * kernelcore=size sets the amount of memory for use for allocations that
4242 * cannot be reclaimed or migrated.
4243 */
4244static int __init cmdline_parse_kernelcore(char *p)
4245{
4246	return cmdline_parse_core(p, &required_kernelcore);
4247}
4248
4249/*
4250 * movablecore=size sets the amount of memory for use for allocations that
4251 * can be reclaimed or migrated.
4252 */
4253static int __init cmdline_parse_movablecore(char *p)
4254{
4255	return cmdline_parse_core(p, &required_movablecore);
4256}
4257
4258early_param("kernelcore", cmdline_parse_kernelcore);
4259early_param("movablecore", cmdline_parse_movablecore);
4260
4261#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4262
4263/**
4264 * set_dma_reserve - set the specified number of pages reserved in the first zone
4265 * @new_dma_reserve: The number of pages to mark reserved
4266 *
4267 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4268 * In the DMA zone, a significant percentage may be consumed by kernel image
4269 * and other unfreeable allocations which can skew the watermarks badly. This
4270 * function may optionally be used to account for unfreeable pages in the
4271 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4272 * smaller per-cpu batchsize.
4273 */
4274void __init set_dma_reserve(unsigned long new_dma_reserve)
4275{
4276	dma_reserve = new_dma_reserve;
4277}
4278
4279#ifndef CONFIG_NEED_MULTIPLE_NODES
4280struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4281EXPORT_SYMBOL(contig_page_data);
4282#endif
4283
4284void __init free_area_init(unsigned long *zones_size)
4285{
4286	free_area_init_node(0, zones_size,
4287			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4288}
4289
4290static int page_alloc_cpu_notify(struct notifier_block *self,
4291				 unsigned long action, void *hcpu)
4292{
4293	int cpu = (unsigned long)hcpu;
4294
4295	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4296		drain_pages(cpu);
4297
4298		/*
4299		 * Spill the event counters of the dead processor
4300		 * into the current processors event counters.
4301		 * This artificially elevates the count of the current
4302		 * processor.
4303		 */
4304		vm_events_fold_cpu(cpu);
4305
4306		/*
4307		 * Zero the differential counters of the dead processor
4308		 * so that the vm statistics are consistent.
4309		 *
4310		 * This is only okay since the processor is dead and cannot
4311		 * race with what we are doing.
4312		 */
4313		refresh_cpu_vm_stats(cpu);
4314	}
4315	return NOTIFY_OK;
4316}
4317
4318void __init page_alloc_init(void)
4319{
4320	hotcpu_notifier(page_alloc_cpu_notify, 0);
4321}
4322
4323/*
4324 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4325 *	or min_free_kbytes changes.
4326 */
4327static void calculate_totalreserve_pages(void)
4328{
4329	struct pglist_data *pgdat;
4330	unsigned long reserve_pages = 0;
4331	enum zone_type i, j;
4332
4333	for_each_online_pgdat(pgdat) {
4334		for (i = 0; i < MAX_NR_ZONES; i++) {
4335			struct zone *zone = pgdat->node_zones + i;
4336			unsigned long max = 0;
4337
4338			/* Find valid and maximum lowmem_reserve in the zone */
4339			for (j = i; j < MAX_NR_ZONES; j++) {
4340				if (zone->lowmem_reserve[j] > max)
4341					max = zone->lowmem_reserve[j];
4342			}
4343
4344			/* we treat the high watermark as reserved pages. */
4345			max += high_wmark_pages(zone);
4346
4347			if (max > zone->present_pages)
4348				max = zone->present_pages;
4349			reserve_pages += max;
4350		}
4351	}
4352	totalreserve_pages = reserve_pages;
4353}
4354
4355/*
4356 * setup_per_zone_lowmem_reserve - called whenever
4357 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4358 *	has a correct pages reserved value, so an adequate number of
4359 *	pages are left in the zone after a successful __alloc_pages().
4360 */
4361static void setup_per_zone_lowmem_reserve(void)
4362{
4363	struct pglist_data *pgdat;
4364	enum zone_type j, idx;
4365
4366	for_each_online_pgdat(pgdat) {
4367		for (j = 0; j < MAX_NR_ZONES; j++) {
4368			struct zone *zone = pgdat->node_zones + j;
4369			unsigned long present_pages = zone->present_pages;
4370
4371			zone->lowmem_reserve[j] = 0;
4372
4373			idx = j;
4374			while (idx) {
4375				struct zone *lower_zone;
4376
4377				idx--;
4378
4379				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4380					sysctl_lowmem_reserve_ratio[idx] = 1;
4381
4382				lower_zone = pgdat->node_zones + idx;
4383				lower_zone->lowmem_reserve[j] = present_pages /
4384					sysctl_lowmem_reserve_ratio[idx];
4385				present_pages += lower_zone->present_pages;
4386			}
4387		}
4388	}
4389
4390	/* update totalreserve_pages */
4391	calculate_totalreserve_pages();
4392}
4393
4394/**
4395 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4396 *
4397 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4398 * with respect to min_free_kbytes.
4399 */
4400void setup_per_zone_pages_min(void)
4401{
4402	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4403	unsigned long lowmem_pages = 0;
4404	struct zone *zone;
4405	unsigned long flags;
4406
4407	/* Calculate total number of !ZONE_HIGHMEM pages */
4408	for_each_zone(zone) {
4409		if (!is_highmem(zone))
4410			lowmem_pages += zone->present_pages;
4411	}
4412
4413	for_each_zone(zone) {
4414		u64 tmp;
4415
4416		spin_lock_irqsave(&zone->lock, flags);
4417		tmp = (u64)pages_min * zone->present_pages;
4418		do_div(tmp, lowmem_pages);
4419		if (is_highmem(zone)) {
4420			/*
4421			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4422			 * need highmem pages, so cap pages_min to a small
4423			 * value here.
4424			 *
4425			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4426			 * deltas controls asynch page reclaim, and so should
4427			 * not be capped for highmem.
4428			 */
4429			int min_pages;
4430
4431			min_pages = zone->present_pages / 1024;
4432			if (min_pages < SWAP_CLUSTER_MAX)
4433				min_pages = SWAP_CLUSTER_MAX;
4434			if (min_pages > 128)
4435				min_pages = 128;
4436			zone->watermark[WMARK_MIN] = min_pages;
4437		} else {
4438			/*
4439			 * If it's a lowmem zone, reserve a number of pages
4440			 * proportionate to the zone's size.
4441			 */
4442			zone->watermark[WMARK_MIN] = tmp;
4443		}
4444
4445		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4446		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4447		setup_zone_migrate_reserve(zone);
4448		spin_unlock_irqrestore(&zone->lock, flags);
4449	}
4450
4451	/* update totalreserve_pages */
4452	calculate_totalreserve_pages();
4453}
4454
4455/**
4456 * The inactive anon list should be small enough that the VM never has to
4457 * do too much work, but large enough that each inactive page has a chance
4458 * to be referenced again before it is swapped out.
4459 *
4460 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4461 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4462 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4463 * the anonymous pages are kept on the inactive list.
4464 *
4465 * total     target    max
4466 * memory    ratio     inactive anon
4467 * -------------------------------------
4468 *   10MB       1         5MB
4469 *  100MB       1        50MB
4470 *    1GB       3       250MB
4471 *   10GB      10       0.9GB
4472 *  100GB      31         3GB
4473 *    1TB     101        10GB
4474 *   10TB     320        32GB
4475 */
4476static void __init setup_per_zone_inactive_ratio(void)
4477{
4478	struct zone *zone;
4479
4480	for_each_zone(zone) {
4481		unsigned int gb, ratio;
4482
4483		/* Zone size in gigabytes */
4484		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4485		if (gb)
4486			ratio = int_sqrt(10 * gb);
4487		else
4488			ratio = 1;
4489
4490		zone->inactive_ratio = ratio;
4491	}
4492}
4493
4494/*
4495 * Initialise min_free_kbytes.
4496 *
4497 * For small machines we want it small (128k min).  For large machines
4498 * we want it large (64MB max).  But it is not linear, because network
4499 * bandwidth does not increase linearly with machine size.  We use
4500 *
4501 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4502 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4503 *
4504 * which yields
4505 *
4506 * 16MB:	512k
4507 * 32MB:	724k
4508 * 64MB:	1024k
4509 * 128MB:	1448k
4510 * 256MB:	2048k
4511 * 512MB:	2896k
4512 * 1024MB:	4096k
4513 * 2048MB:	5792k
4514 * 4096MB:	8192k
4515 * 8192MB:	11584k
4516 * 16384MB:	16384k
4517 */
4518static int __init init_per_zone_pages_min(void)
4519{
4520	unsigned long lowmem_kbytes;
4521
4522	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4523
4524	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4525	if (min_free_kbytes < 128)
4526		min_free_kbytes = 128;
4527	if (min_free_kbytes > 65536)
4528		min_free_kbytes = 65536;
4529	setup_per_zone_pages_min();
4530	setup_per_zone_lowmem_reserve();
4531	setup_per_zone_inactive_ratio();
4532	return 0;
4533}
4534module_init(init_per_zone_pages_min)
4535
4536/*
4537 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4538 *	that we can call two helper functions whenever min_free_kbytes
4539 *	changes.
4540 */
4541int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4542	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4543{
4544	proc_dointvec(table, write, file, buffer, length, ppos);
4545	if (write)
4546		setup_per_zone_pages_min();
4547	return 0;
4548}
4549
4550#ifdef CONFIG_NUMA
4551int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4552	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4553{
4554	struct zone *zone;
4555	int rc;
4556
4557	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4558	if (rc)
4559		return rc;
4560
4561	for_each_zone(zone)
4562		zone->min_unmapped_pages = (zone->present_pages *
4563				sysctl_min_unmapped_ratio) / 100;
4564	return 0;
4565}
4566
4567int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4568	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4569{
4570	struct zone *zone;
4571	int rc;
4572
4573	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4574	if (rc)
4575		return rc;
4576
4577	for_each_zone(zone)
4578		zone->min_slab_pages = (zone->present_pages *
4579				sysctl_min_slab_ratio) / 100;
4580	return 0;
4581}
4582#endif
4583
4584/*
4585 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4586 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4587 *	whenever sysctl_lowmem_reserve_ratio changes.
4588 *
4589 * The reserve ratio obviously has absolutely no relation with the
4590 * minimum watermarks. The lowmem reserve ratio can only make sense
4591 * if in function of the boot time zone sizes.
4592 */
4593int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4594	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4595{
4596	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4597	setup_per_zone_lowmem_reserve();
4598	return 0;
4599}
4600
4601/*
4602 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4603 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4604 * can have before it gets flushed back to buddy allocator.
4605 */
4606
4607int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4608	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4609{
4610	struct zone *zone;
4611	unsigned int cpu;
4612	int ret;
4613
4614	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4615	if (!write || (ret == -EINVAL))
4616		return ret;
4617	for_each_zone(zone) {
4618		for_each_online_cpu(cpu) {
4619			unsigned long  high;
4620			high = zone->present_pages / percpu_pagelist_fraction;
4621			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4622		}
4623	}
4624	return 0;
4625}
4626
4627int hashdist = HASHDIST_DEFAULT;
4628
4629#ifdef CONFIG_NUMA
4630static int __init set_hashdist(char *str)
4631{
4632	if (!str)
4633		return 0;
4634	hashdist = simple_strtoul(str, &str, 0);
4635	return 1;
4636}
4637__setup("hashdist=", set_hashdist);
4638#endif
4639
4640/*
4641 * allocate a large system hash table from bootmem
4642 * - it is assumed that the hash table must contain an exact power-of-2
4643 *   quantity of entries
4644 * - limit is the number of hash buckets, not the total allocation size
4645 */
4646void *__init alloc_large_system_hash(const char *tablename,
4647				     unsigned long bucketsize,
4648				     unsigned long numentries,
4649				     int scale,
4650				     int flags,
4651				     unsigned int *_hash_shift,
4652				     unsigned int *_hash_mask,
4653				     unsigned long limit)
4654{
4655	unsigned long long max = limit;
4656	unsigned long log2qty, size;
4657	void *table = NULL;
4658
4659	/* allow the kernel cmdline to have a say */
4660	if (!numentries) {
4661		/* round applicable memory size up to nearest megabyte */
4662		numentries = nr_kernel_pages;
4663		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4664		numentries >>= 20 - PAGE_SHIFT;
4665		numentries <<= 20 - PAGE_SHIFT;
4666
4667		/* limit to 1 bucket per 2^scale bytes of low memory */
4668		if (scale > PAGE_SHIFT)
4669			numentries >>= (scale - PAGE_SHIFT);
4670		else
4671			numentries <<= (PAGE_SHIFT - scale);
4672
4673		/* Make sure we've got at least a 0-order allocation.. */
4674		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4675			numentries = PAGE_SIZE / bucketsize;
4676	}
4677	numentries = roundup_pow_of_two(numentries);
4678
4679	/* limit allocation size to 1/16 total memory by default */
4680	if (max == 0) {
4681		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4682		do_div(max, bucketsize);
4683	}
4684
4685	if (numentries > max)
4686		numentries = max;
4687
4688	log2qty = ilog2(numentries);
4689
4690	do {
4691		size = bucketsize << log2qty;
4692		if (flags & HASH_EARLY)
4693			table = alloc_bootmem_nopanic(size);
4694		else if (hashdist)
4695			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4696		else {
4697			/*
4698			 * If bucketsize is not a power-of-two, we may free
4699			 * some pages at the end of hash table which
4700			 * alloc_pages_exact() automatically does
4701			 */
4702			if (get_order(size) < MAX_ORDER)
4703				table = alloc_pages_exact(size, GFP_ATOMIC);
4704		}
4705	} while (!table && size > PAGE_SIZE && --log2qty);
4706
4707	if (!table)
4708		panic("Failed to allocate %s hash table\n", tablename);
4709
4710	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4711	       tablename,
4712	       (1U << log2qty),
4713	       ilog2(size) - PAGE_SHIFT,
4714	       size);
4715
4716	if (_hash_shift)
4717		*_hash_shift = log2qty;
4718	if (_hash_mask)
4719		*_hash_mask = (1 << log2qty) - 1;
4720
4721	/*
4722	 * If hashdist is set, the table allocation is done with __vmalloc()
4723	 * which invokes the kmemleak_alloc() callback. This function may also
4724	 * be called before the slab and kmemleak are initialised when
4725	 * kmemleak simply buffers the request to be executed later
4726	 * (GFP_ATOMIC flag ignored in this case).
4727	 */
4728	if (!hashdist)
4729		kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4730
4731	return table;
4732}
4733
4734/* Return a pointer to the bitmap storing bits affecting a block of pages */
4735static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4736							unsigned long pfn)
4737{
4738#ifdef CONFIG_SPARSEMEM
4739	return __pfn_to_section(pfn)->pageblock_flags;
4740#else
4741	return zone->pageblock_flags;
4742#endif /* CONFIG_SPARSEMEM */
4743}
4744
4745static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4746{
4747#ifdef CONFIG_SPARSEMEM
4748	pfn &= (PAGES_PER_SECTION-1);
4749	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4750#else
4751	pfn = pfn - zone->zone_start_pfn;
4752	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4753#endif /* CONFIG_SPARSEMEM */
4754}
4755
4756/**
4757 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4758 * @page: The page within the block of interest
4759 * @start_bitidx: The first bit of interest to retrieve
4760 * @end_bitidx: The last bit of interest
4761 * returns pageblock_bits flags
4762 */
4763unsigned long get_pageblock_flags_group(struct page *page,
4764					int start_bitidx, int end_bitidx)
4765{
4766	struct zone *zone;
4767	unsigned long *bitmap;
4768	unsigned long pfn, bitidx;
4769	unsigned long flags = 0;
4770	unsigned long value = 1;
4771
4772	zone = page_zone(page);
4773	pfn = page_to_pfn(page);
4774	bitmap = get_pageblock_bitmap(zone, pfn);
4775	bitidx = pfn_to_bitidx(zone, pfn);
4776
4777	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4778		if (test_bit(bitidx + start_bitidx, bitmap))
4779			flags |= value;
4780
4781	return flags;
4782}
4783
4784/**
4785 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4786 * @page: The page within the block of interest
4787 * @start_bitidx: The first bit of interest
4788 * @end_bitidx: The last bit of interest
4789 * @flags: The flags to set
4790 */
4791void set_pageblock_flags_group(struct page *page, unsigned long flags,
4792					int start_bitidx, int end_bitidx)
4793{
4794	struct zone *zone;
4795	unsigned long *bitmap;
4796	unsigned long pfn, bitidx;
4797	unsigned long value = 1;
4798
4799	zone = page_zone(page);
4800	pfn = page_to_pfn(page);
4801	bitmap = get_pageblock_bitmap(zone, pfn);
4802	bitidx = pfn_to_bitidx(zone, pfn);
4803	VM_BUG_ON(pfn < zone->zone_start_pfn);
4804	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4805
4806	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4807		if (flags & value)
4808			__set_bit(bitidx + start_bitidx, bitmap);
4809		else
4810			__clear_bit(bitidx + start_bitidx, bitmap);
4811}
4812
4813/*
4814 * This is designed as sub function...plz see page_isolation.c also.
4815 * set/clear page block's type to be ISOLATE.
4816 * page allocater never alloc memory from ISOLATE block.
4817 */
4818
4819int set_migratetype_isolate(struct page *page)
4820{
4821	struct zone *zone;
4822	unsigned long flags;
4823	int ret = -EBUSY;
4824
4825	zone = page_zone(page);
4826	spin_lock_irqsave(&zone->lock, flags);
4827	/*
4828	 * In future, more migrate types will be able to be isolation target.
4829	 */
4830	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4831		goto out;
4832	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4833	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4834	ret = 0;
4835out:
4836	spin_unlock_irqrestore(&zone->lock, flags);
4837	if (!ret)
4838		drain_all_pages();
4839	return ret;
4840}
4841
4842void unset_migratetype_isolate(struct page *page)
4843{
4844	struct zone *zone;
4845	unsigned long flags;
4846	zone = page_zone(page);
4847	spin_lock_irqsave(&zone->lock, flags);
4848	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4849		goto out;
4850	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4851	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4852out:
4853	spin_unlock_irqrestore(&zone->lock, flags);
4854}
4855
4856#ifdef CONFIG_MEMORY_HOTREMOVE
4857/*
4858 * All pages in the range must be isolated before calling this.
4859 */
4860void
4861__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4862{
4863	struct page *page;
4864	struct zone *zone;
4865	int order, i;
4866	unsigned long pfn;
4867	unsigned long flags;
4868	/* find the first valid pfn */
4869	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4870		if (pfn_valid(pfn))
4871			break;
4872	if (pfn == end_pfn)
4873		return;
4874	zone = page_zone(pfn_to_page(pfn));
4875	spin_lock_irqsave(&zone->lock, flags);
4876	pfn = start_pfn;
4877	while (pfn < end_pfn) {
4878		if (!pfn_valid(pfn)) {
4879			pfn++;
4880			continue;
4881		}
4882		page = pfn_to_page(pfn);
4883		BUG_ON(page_count(page));
4884		BUG_ON(!PageBuddy(page));
4885		order = page_order(page);
4886#ifdef CONFIG_DEBUG_VM
4887		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4888		       pfn, 1 << order, end_pfn);
4889#endif
4890		list_del(&page->lru);
4891		rmv_page_order(page);
4892		zone->free_area[order].nr_free--;
4893		__mod_zone_page_state(zone, NR_FREE_PAGES,
4894				      - (1UL << order));
4895		for (i = 0; i < (1 << order); i++)
4896			SetPageReserved((page+i));
4897		pfn += (1 << order);
4898	}
4899	spin_unlock_irqrestore(&zone->lock, flags);
4900}
4901#endif
4902