page_alloc.c revision dac1d27bc8d5ca636d3014ecfdf94407031d1970
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/memcontrol.h>
48
49#include <asm/tlbflush.h>
50#include <asm/div64.h>
51#include "internal.h"
52
53/*
54 * Array of node states.
55 */
56nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
57	[N_POSSIBLE] = NODE_MASK_ALL,
58	[N_ONLINE] = { { [0] = 1UL } },
59#ifndef CONFIG_NUMA
60	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
61#ifdef CONFIG_HIGHMEM
62	[N_HIGH_MEMORY] = { { [0] = 1UL } },
63#endif
64	[N_CPU] = { { [0] = 1UL } },
65#endif	/* NUMA */
66};
67EXPORT_SYMBOL(node_states);
68
69unsigned long totalram_pages __read_mostly;
70unsigned long totalreserve_pages __read_mostly;
71long nr_swap_pages;
72int percpu_pagelist_fraction;
73
74#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75int pageblock_order __read_mostly;
76#endif
77
78static void __free_pages_ok(struct page *page, unsigned int order);
79
80/*
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 *	1G machine -> (16M dma, 784M normal, 224M high)
84 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
87 *
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
90 */
91int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
92#ifdef CONFIG_ZONE_DMA
93	 256,
94#endif
95#ifdef CONFIG_ZONE_DMA32
96	 256,
97#endif
98#ifdef CONFIG_HIGHMEM
99	 32,
100#endif
101	 32,
102};
103
104EXPORT_SYMBOL(totalram_pages);
105
106static char * const zone_names[MAX_NR_ZONES] = {
107#ifdef CONFIG_ZONE_DMA
108	 "DMA",
109#endif
110#ifdef CONFIG_ZONE_DMA32
111	 "DMA32",
112#endif
113	 "Normal",
114#ifdef CONFIG_HIGHMEM
115	 "HighMem",
116#endif
117	 "Movable",
118};
119
120int min_free_kbytes = 1024;
121
122unsigned long __meminitdata nr_kernel_pages;
123unsigned long __meminitdata nr_all_pages;
124static unsigned long __meminitdata dma_reserve;
125
126#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
127  /*
128   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129   * ranges of memory (RAM) that may be registered with add_active_range().
130   * Ranges passed to add_active_range() will be merged if possible
131   * so the number of times add_active_range() can be called is
132   * related to the number of nodes and the number of holes
133   */
134  #ifdef CONFIG_MAX_ACTIVE_REGIONS
135    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137  #else
138    #if MAX_NUMNODES >= 32
139      /* If there can be many nodes, allow up to 50 holes per node */
140      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141    #else
142      /* By default, allow up to 256 distinct regions */
143      #define MAX_ACTIVE_REGIONS 256
144    #endif
145  #endif
146
147  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148  static int __meminitdata nr_nodemap_entries;
149  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
151#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
154#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155  unsigned long __initdata required_kernelcore;
156  static unsigned long __initdata required_movablecore;
157  unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160  int movable_zone;
161  EXPORT_SYMBOL(movable_zone);
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166EXPORT_SYMBOL(nr_node_ids);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173	set_pageblock_flags_group(page, (unsigned long)migratetype,
174					PB_migrate, PB_migrate_end);
175}
176
177#ifdef CONFIG_DEBUG_VM
178static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
179{
180	int ret = 0;
181	unsigned seq;
182	unsigned long pfn = page_to_pfn(page);
183
184	do {
185		seq = zone_span_seqbegin(zone);
186		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187			ret = 1;
188		else if (pfn < zone->zone_start_pfn)
189			ret = 1;
190	} while (zone_span_seqretry(zone, seq));
191
192	return ret;
193}
194
195static int page_is_consistent(struct zone *zone, struct page *page)
196{
197	if (!pfn_valid_within(page_to_pfn(page)))
198		return 0;
199	if (zone != page_zone(page))
200		return 0;
201
202	return 1;
203}
204/*
205 * Temporary debugging check for pages not lying within a given zone.
206 */
207static int bad_range(struct zone *zone, struct page *page)
208{
209	if (page_outside_zone_boundaries(zone, page))
210		return 1;
211	if (!page_is_consistent(zone, page))
212		return 1;
213
214	return 0;
215}
216#else
217static inline int bad_range(struct zone *zone, struct page *page)
218{
219	return 0;
220}
221#endif
222
223static void bad_page(struct page *page)
224{
225	void *pc = page_get_page_cgroup(page);
226
227	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
228		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
229		current->comm, page, (int)(2*sizeof(unsigned long)),
230		(unsigned long)page->flags, page->mapping,
231		page_mapcount(page), page_count(page));
232	if (pc) {
233		printk(KERN_EMERG "cgroup:%p\n", pc);
234		page_reset_bad_cgroup(page);
235	}
236	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
237		KERN_EMERG "Backtrace:\n");
238	dump_stack();
239	page->flags &= ~(1 << PG_lru	|
240			1 << PG_private |
241			1 << PG_locked	|
242			1 << PG_active	|
243			1 << PG_dirty	|
244			1 << PG_reclaim |
245			1 << PG_slab    |
246			1 << PG_swapcache |
247			1 << PG_writeback |
248			1 << PG_buddy );
249	set_page_count(page, 0);
250	reset_page_mapcount(page);
251	page->mapping = NULL;
252	add_taint(TAINT_BAD_PAGE);
253}
254
255/*
256 * Higher-order pages are called "compound pages".  They are structured thusly:
257 *
258 * The first PAGE_SIZE page is called the "head page".
259 *
260 * The remaining PAGE_SIZE pages are called "tail pages".
261 *
262 * All pages have PG_compound set.  All pages have their ->private pointing at
263 * the head page (even the head page has this).
264 *
265 * The first tail page's ->lru.next holds the address of the compound page's
266 * put_page() function.  Its ->lru.prev holds the order of allocation.
267 * This usage means that zero-order pages may not be compound.
268 */
269
270static void free_compound_page(struct page *page)
271{
272	__free_pages_ok(page, compound_order(page));
273}
274
275static void prep_compound_page(struct page *page, unsigned long order)
276{
277	int i;
278	int nr_pages = 1 << order;
279
280	set_compound_page_dtor(page, free_compound_page);
281	set_compound_order(page, order);
282	__SetPageHead(page);
283	for (i = 1; i < nr_pages; i++) {
284		struct page *p = page + i;
285
286		__SetPageTail(p);
287		p->first_page = page;
288	}
289}
290
291static void destroy_compound_page(struct page *page, unsigned long order)
292{
293	int i;
294	int nr_pages = 1 << order;
295
296	if (unlikely(compound_order(page) != order))
297		bad_page(page);
298
299	if (unlikely(!PageHead(page)))
300			bad_page(page);
301	__ClearPageHead(page);
302	for (i = 1; i < nr_pages; i++) {
303		struct page *p = page + i;
304
305		if (unlikely(!PageTail(p) |
306				(p->first_page != page)))
307			bad_page(page);
308		__ClearPageTail(p);
309	}
310}
311
312static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
313{
314	int i;
315
316	/*
317	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318	 * and __GFP_HIGHMEM from hard or soft interrupt context.
319	 */
320	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
321	for (i = 0; i < (1 << order); i++)
322		clear_highpage(page + i);
323}
324
325static inline void set_page_order(struct page *page, int order)
326{
327	set_page_private(page, order);
328	__SetPageBuddy(page);
329}
330
331static inline void rmv_page_order(struct page *page)
332{
333	__ClearPageBuddy(page);
334	set_page_private(page, 0);
335}
336
337/*
338 * Locate the struct page for both the matching buddy in our
339 * pair (buddy1) and the combined O(n+1) page they form (page).
340 *
341 * 1) Any buddy B1 will have an order O twin B2 which satisfies
342 * the following equation:
343 *     B2 = B1 ^ (1 << O)
344 * For example, if the starting buddy (buddy2) is #8 its order
345 * 1 buddy is #10:
346 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
347 *
348 * 2) Any buddy B will have an order O+1 parent P which
349 * satisfies the following equation:
350 *     P = B & ~(1 << O)
351 *
352 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
353 */
354static inline struct page *
355__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
356{
357	unsigned long buddy_idx = page_idx ^ (1 << order);
358
359	return page + (buddy_idx - page_idx);
360}
361
362static inline unsigned long
363__find_combined_index(unsigned long page_idx, unsigned int order)
364{
365	return (page_idx & ~(1 << order));
366}
367
368/*
369 * This function checks whether a page is free && is the buddy
370 * we can do coalesce a page and its buddy if
371 * (a) the buddy is not in a hole &&
372 * (b) the buddy is in the buddy system &&
373 * (c) a page and its buddy have the same order &&
374 * (d) a page and its buddy are in the same zone.
375 *
376 * For recording whether a page is in the buddy system, we use PG_buddy.
377 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
378 *
379 * For recording page's order, we use page_private(page).
380 */
381static inline int page_is_buddy(struct page *page, struct page *buddy,
382								int order)
383{
384	if (!pfn_valid_within(page_to_pfn(buddy)))
385		return 0;
386
387	if (page_zone_id(page) != page_zone_id(buddy))
388		return 0;
389
390	if (PageBuddy(buddy) && page_order(buddy) == order) {
391		BUG_ON(page_count(buddy) != 0);
392		return 1;
393	}
394	return 0;
395}
396
397/*
398 * Freeing function for a buddy system allocator.
399 *
400 * The concept of a buddy system is to maintain direct-mapped table
401 * (containing bit values) for memory blocks of various "orders".
402 * The bottom level table contains the map for the smallest allocatable
403 * units of memory (here, pages), and each level above it describes
404 * pairs of units from the levels below, hence, "buddies".
405 * At a high level, all that happens here is marking the table entry
406 * at the bottom level available, and propagating the changes upward
407 * as necessary, plus some accounting needed to play nicely with other
408 * parts of the VM system.
409 * At each level, we keep a list of pages, which are heads of continuous
410 * free pages of length of (1 << order) and marked with PG_buddy. Page's
411 * order is recorded in page_private(page) field.
412 * So when we are allocating or freeing one, we can derive the state of the
413 * other.  That is, if we allocate a small block, and both were
414 * free, the remainder of the region must be split into blocks.
415 * If a block is freed, and its buddy is also free, then this
416 * triggers coalescing into a block of larger size.
417 *
418 * -- wli
419 */
420
421static inline void __free_one_page(struct page *page,
422		struct zone *zone, unsigned int order)
423{
424	unsigned long page_idx;
425	int order_size = 1 << order;
426	int migratetype = get_pageblock_migratetype(page);
427
428	if (unlikely(PageCompound(page)))
429		destroy_compound_page(page, order);
430
431	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
432
433	VM_BUG_ON(page_idx & (order_size - 1));
434	VM_BUG_ON(bad_range(zone, page));
435
436	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
437	while (order < MAX_ORDER-1) {
438		unsigned long combined_idx;
439		struct page *buddy;
440
441		buddy = __page_find_buddy(page, page_idx, order);
442		if (!page_is_buddy(page, buddy, order))
443			break;		/* Move the buddy up one level. */
444
445		list_del(&buddy->lru);
446		zone->free_area[order].nr_free--;
447		rmv_page_order(buddy);
448		combined_idx = __find_combined_index(page_idx, order);
449		page = page + (combined_idx - page_idx);
450		page_idx = combined_idx;
451		order++;
452	}
453	set_page_order(page, order);
454	list_add(&page->lru,
455		&zone->free_area[order].free_list[migratetype]);
456	zone->free_area[order].nr_free++;
457}
458
459static inline int free_pages_check(struct page *page)
460{
461	if (unlikely(page_mapcount(page) |
462		(page->mapping != NULL)  |
463		(page_get_page_cgroup(page) != NULL) |
464		(page_count(page) != 0)  |
465		(page->flags & (
466			1 << PG_lru	|
467			1 << PG_private |
468			1 << PG_locked	|
469			1 << PG_active	|
470			1 << PG_slab	|
471			1 << PG_swapcache |
472			1 << PG_writeback |
473			1 << PG_reserved |
474			1 << PG_buddy ))))
475		bad_page(page);
476	if (PageDirty(page))
477		__ClearPageDirty(page);
478	/*
479	 * For now, we report if PG_reserved was found set, but do not
480	 * clear it, and do not free the page.  But we shall soon need
481	 * to do more, for when the ZERO_PAGE count wraps negative.
482	 */
483	return PageReserved(page);
484}
485
486/*
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
489 * count is the number of pages to free.
490 *
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
493 *
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
496 */
497static void free_pages_bulk(struct zone *zone, int count,
498					struct list_head *list, int order)
499{
500	spin_lock(&zone->lock);
501	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502	zone->pages_scanned = 0;
503	while (count--) {
504		struct page *page;
505
506		VM_BUG_ON(list_empty(list));
507		page = list_entry(list->prev, struct page, lru);
508		/* have to delete it as __free_one_page list manipulates */
509		list_del(&page->lru);
510		__free_one_page(page, zone, order);
511	}
512	spin_unlock(&zone->lock);
513}
514
515static void free_one_page(struct zone *zone, struct page *page, int order)
516{
517	spin_lock(&zone->lock);
518	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
519	zone->pages_scanned = 0;
520	__free_one_page(page, zone, order);
521	spin_unlock(&zone->lock);
522}
523
524static void __free_pages_ok(struct page *page, unsigned int order)
525{
526	unsigned long flags;
527	int i;
528	int reserved = 0;
529
530	for (i = 0 ; i < (1 << order) ; ++i)
531		reserved += free_pages_check(page + i);
532	if (reserved)
533		return;
534
535	if (!PageHighMem(page))
536		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
537	arch_free_page(page, order);
538	kernel_map_pages(page, 1 << order, 0);
539
540	local_irq_save(flags);
541	__count_vm_events(PGFREE, 1 << order);
542	free_one_page(page_zone(page), page, order);
543	local_irq_restore(flags);
544}
545
546/*
547 * permit the bootmem allocator to evade page validation on high-order frees
548 */
549void __init __free_pages_bootmem(struct page *page, unsigned int order)
550{
551	if (order == 0) {
552		__ClearPageReserved(page);
553		set_page_count(page, 0);
554		set_page_refcounted(page);
555		__free_page(page);
556	} else {
557		int loop;
558
559		prefetchw(page);
560		for (loop = 0; loop < BITS_PER_LONG; loop++) {
561			struct page *p = &page[loop];
562
563			if (loop + 1 < BITS_PER_LONG)
564				prefetchw(p + 1);
565			__ClearPageReserved(p);
566			set_page_count(p, 0);
567		}
568
569		set_page_refcounted(page);
570		__free_pages(page, order);
571	}
572}
573
574
575/*
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
586 *
587 * -- wli
588 */
589static inline void expand(struct zone *zone, struct page *page,
590	int low, int high, struct free_area *area,
591	int migratetype)
592{
593	unsigned long size = 1 << high;
594
595	while (high > low) {
596		area--;
597		high--;
598		size >>= 1;
599		VM_BUG_ON(bad_range(zone, &page[size]));
600		list_add(&page[size].lru, &area->free_list[migratetype]);
601		area->nr_free++;
602		set_page_order(&page[size], high);
603	}
604}
605
606/*
607 * This page is about to be returned from the page allocator
608 */
609static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
610{
611	if (unlikely(page_mapcount(page) |
612		(page->mapping != NULL)  |
613		(page_get_page_cgroup(page) != NULL) |
614		(page_count(page) != 0)  |
615		(page->flags & (
616			1 << PG_lru	|
617			1 << PG_private	|
618			1 << PG_locked	|
619			1 << PG_active	|
620			1 << PG_dirty	|
621			1 << PG_slab    |
622			1 << PG_swapcache |
623			1 << PG_writeback |
624			1 << PG_reserved |
625			1 << PG_buddy ))))
626		bad_page(page);
627
628	/*
629	 * For now, we report if PG_reserved was found set, but do not
630	 * clear it, and do not allocate the page: as a safety net.
631	 */
632	if (PageReserved(page))
633		return 1;
634
635	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
636			1 << PG_referenced | 1 << PG_arch_1 |
637			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
638	set_page_private(page, 0);
639	set_page_refcounted(page);
640
641	arch_alloc_page(page, order);
642	kernel_map_pages(page, 1 << order, 1);
643
644	if (gfp_flags & __GFP_ZERO)
645		prep_zero_page(page, order, gfp_flags);
646
647	if (order && (gfp_flags & __GFP_COMP))
648		prep_compound_page(page, order);
649
650	return 0;
651}
652
653/*
654 * Go through the free lists for the given migratetype and remove
655 * the smallest available page from the freelists
656 */
657static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
658						int migratetype)
659{
660	unsigned int current_order;
661	struct free_area * area;
662	struct page *page;
663
664	/* Find a page of the appropriate size in the preferred list */
665	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
666		area = &(zone->free_area[current_order]);
667		if (list_empty(&area->free_list[migratetype]))
668			continue;
669
670		page = list_entry(area->free_list[migratetype].next,
671							struct page, lru);
672		list_del(&page->lru);
673		rmv_page_order(page);
674		area->nr_free--;
675		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
676		expand(zone, page, order, current_order, area, migratetype);
677		return page;
678	}
679
680	return NULL;
681}
682
683
684/*
685 * This array describes the order lists are fallen back to when
686 * the free lists for the desirable migrate type are depleted
687 */
688static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
689	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
690	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
691	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
692	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
693};
694
695/*
696 * Move the free pages in a range to the free lists of the requested type.
697 * Note that start_page and end_pages are not aligned on a pageblock
698 * boundary. If alignment is required, use move_freepages_block()
699 */
700int move_freepages(struct zone *zone,
701			struct page *start_page, struct page *end_page,
702			int migratetype)
703{
704	struct page *page;
705	unsigned long order;
706	int pages_moved = 0;
707
708#ifndef CONFIG_HOLES_IN_ZONE
709	/*
710	 * page_zone is not safe to call in this context when
711	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712	 * anyway as we check zone boundaries in move_freepages_block().
713	 * Remove at a later date when no bug reports exist related to
714	 * grouping pages by mobility
715	 */
716	BUG_ON(page_zone(start_page) != page_zone(end_page));
717#endif
718
719	for (page = start_page; page <= end_page;) {
720		if (!pfn_valid_within(page_to_pfn(page))) {
721			page++;
722			continue;
723		}
724
725		if (!PageBuddy(page)) {
726			page++;
727			continue;
728		}
729
730		order = page_order(page);
731		list_del(&page->lru);
732		list_add(&page->lru,
733			&zone->free_area[order].free_list[migratetype]);
734		page += 1 << order;
735		pages_moved += 1 << order;
736	}
737
738	return pages_moved;
739}
740
741int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
742{
743	unsigned long start_pfn, end_pfn;
744	struct page *start_page, *end_page;
745
746	start_pfn = page_to_pfn(page);
747	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
748	start_page = pfn_to_page(start_pfn);
749	end_page = start_page + pageblock_nr_pages - 1;
750	end_pfn = start_pfn + pageblock_nr_pages - 1;
751
752	/* Do not cross zone boundaries */
753	if (start_pfn < zone->zone_start_pfn)
754		start_page = page;
755	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
756		return 0;
757
758	return move_freepages(zone, start_page, end_page, migratetype);
759}
760
761/* Remove an element from the buddy allocator from the fallback list */
762static struct page *__rmqueue_fallback(struct zone *zone, int order,
763						int start_migratetype)
764{
765	struct free_area * area;
766	int current_order;
767	struct page *page;
768	int migratetype, i;
769
770	/* Find the largest possible block of pages in the other list */
771	for (current_order = MAX_ORDER-1; current_order >= order;
772						--current_order) {
773		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
774			migratetype = fallbacks[start_migratetype][i];
775
776			/* MIGRATE_RESERVE handled later if necessary */
777			if (migratetype == MIGRATE_RESERVE)
778				continue;
779
780			area = &(zone->free_area[current_order]);
781			if (list_empty(&area->free_list[migratetype]))
782				continue;
783
784			page = list_entry(area->free_list[migratetype].next,
785					struct page, lru);
786			area->nr_free--;
787
788			/*
789			 * If breaking a large block of pages, move all free
790			 * pages to the preferred allocation list. If falling
791			 * back for a reclaimable kernel allocation, be more
792			 * agressive about taking ownership of free pages
793			 */
794			if (unlikely(current_order >= (pageblock_order >> 1)) ||
795					start_migratetype == MIGRATE_RECLAIMABLE) {
796				unsigned long pages;
797				pages = move_freepages_block(zone, page,
798								start_migratetype);
799
800				/* Claim the whole block if over half of it is free */
801				if (pages >= (1 << (pageblock_order-1)))
802					set_pageblock_migratetype(page,
803								start_migratetype);
804
805				migratetype = start_migratetype;
806			}
807
808			/* Remove the page from the freelists */
809			list_del(&page->lru);
810			rmv_page_order(page);
811			__mod_zone_page_state(zone, NR_FREE_PAGES,
812							-(1UL << order));
813
814			if (current_order == pageblock_order)
815				set_pageblock_migratetype(page,
816							start_migratetype);
817
818			expand(zone, page, order, current_order, area, migratetype);
819			return page;
820		}
821	}
822
823	/* Use MIGRATE_RESERVE rather than fail an allocation */
824	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
825}
826
827/*
828 * Do the hard work of removing an element from the buddy allocator.
829 * Call me with the zone->lock already held.
830 */
831static struct page *__rmqueue(struct zone *zone, unsigned int order,
832						int migratetype)
833{
834	struct page *page;
835
836	page = __rmqueue_smallest(zone, order, migratetype);
837
838	if (unlikely(!page))
839		page = __rmqueue_fallback(zone, order, migratetype);
840
841	return page;
842}
843
844/*
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency.  Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
848 */
849static int rmqueue_bulk(struct zone *zone, unsigned int order,
850			unsigned long count, struct list_head *list,
851			int migratetype)
852{
853	int i;
854
855	spin_lock(&zone->lock);
856	for (i = 0; i < count; ++i) {
857		struct page *page = __rmqueue(zone, order, migratetype);
858		if (unlikely(page == NULL))
859			break;
860
861		/*
862		 * Split buddy pages returned by expand() are received here
863		 * in physical page order. The page is added to the callers and
864		 * list and the list head then moves forward. From the callers
865		 * perspective, the linked list is ordered by page number in
866		 * some conditions. This is useful for IO devices that can
867		 * merge IO requests if the physical pages are ordered
868		 * properly.
869		 */
870		list_add(&page->lru, list);
871		set_page_private(page, migratetype);
872		list = &page->lru;
873	}
874	spin_unlock(&zone->lock);
875	return i;
876}
877
878#ifdef CONFIG_NUMA
879/*
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
882 * expired.
883 *
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
886 */
887void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
888{
889	unsigned long flags;
890	int to_drain;
891
892	local_irq_save(flags);
893	if (pcp->count >= pcp->batch)
894		to_drain = pcp->batch;
895	else
896		to_drain = pcp->count;
897	free_pages_bulk(zone, to_drain, &pcp->list, 0);
898	pcp->count -= to_drain;
899	local_irq_restore(flags);
900}
901#endif
902
903/*
904 * Drain pages of the indicated processor.
905 *
906 * The processor must either be the current processor and the
907 * thread pinned to the current processor or a processor that
908 * is not online.
909 */
910static void drain_pages(unsigned int cpu)
911{
912	unsigned long flags;
913	struct zone *zone;
914
915	for_each_zone(zone) {
916		struct per_cpu_pageset *pset;
917		struct per_cpu_pages *pcp;
918
919		if (!populated_zone(zone))
920			continue;
921
922		pset = zone_pcp(zone, cpu);
923
924		pcp = &pset->pcp;
925		local_irq_save(flags);
926		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
927		pcp->count = 0;
928		local_irq_restore(flags);
929	}
930}
931
932/*
933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
934 */
935void drain_local_pages(void *arg)
936{
937	drain_pages(smp_processor_id());
938}
939
940/*
941 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
942 */
943void drain_all_pages(void)
944{
945	on_each_cpu(drain_local_pages, NULL, 0, 1);
946}
947
948#ifdef CONFIG_HIBERNATION
949
950void mark_free_pages(struct zone *zone)
951{
952	unsigned long pfn, max_zone_pfn;
953	unsigned long flags;
954	int order, t;
955	struct list_head *curr;
956
957	if (!zone->spanned_pages)
958		return;
959
960	spin_lock_irqsave(&zone->lock, flags);
961
962	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
963	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
964		if (pfn_valid(pfn)) {
965			struct page *page = pfn_to_page(pfn);
966
967			if (!swsusp_page_is_forbidden(page))
968				swsusp_unset_page_free(page);
969		}
970
971	for_each_migratetype_order(order, t) {
972		list_for_each(curr, &zone->free_area[order].free_list[t]) {
973			unsigned long i;
974
975			pfn = page_to_pfn(list_entry(curr, struct page, lru));
976			for (i = 0; i < (1UL << order); i++)
977				swsusp_set_page_free(pfn_to_page(pfn + i));
978		}
979	}
980	spin_unlock_irqrestore(&zone->lock, flags);
981}
982#endif /* CONFIG_PM */
983
984/*
985 * Free a 0-order page
986 */
987static void free_hot_cold_page(struct page *page, int cold)
988{
989	struct zone *zone = page_zone(page);
990	struct per_cpu_pages *pcp;
991	unsigned long flags;
992
993	if (PageAnon(page))
994		page->mapping = NULL;
995	if (free_pages_check(page))
996		return;
997
998	if (!PageHighMem(page))
999		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1000	arch_free_page(page, 0);
1001	kernel_map_pages(page, 1, 0);
1002
1003	pcp = &zone_pcp(zone, get_cpu())->pcp;
1004	local_irq_save(flags);
1005	__count_vm_event(PGFREE);
1006	if (cold)
1007		list_add_tail(&page->lru, &pcp->list);
1008	else
1009		list_add(&page->lru, &pcp->list);
1010	set_page_private(page, get_pageblock_migratetype(page));
1011	pcp->count++;
1012	if (pcp->count >= pcp->high) {
1013		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014		pcp->count -= pcp->batch;
1015	}
1016	local_irq_restore(flags);
1017	put_cpu();
1018}
1019
1020void free_hot_page(struct page *page)
1021{
1022	free_hot_cold_page(page, 0);
1023}
1024
1025void free_cold_page(struct page *page)
1026{
1027	free_hot_cold_page(page, 1);
1028}
1029
1030/*
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1034 *
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1037 */
1038void split_page(struct page *page, unsigned int order)
1039{
1040	int i;
1041
1042	VM_BUG_ON(PageCompound(page));
1043	VM_BUG_ON(!page_count(page));
1044	for (i = 1; i < (1 << order); i++)
1045		set_page_refcounted(page + i);
1046}
1047
1048/*
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1050 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1051 * or two.
1052 */
1053static struct page *buffered_rmqueue(struct zonelist *zonelist,
1054			struct zone *zone, int order, gfp_t gfp_flags)
1055{
1056	unsigned long flags;
1057	struct page *page;
1058	int cold = !!(gfp_flags & __GFP_COLD);
1059	int cpu;
1060	int migratetype = allocflags_to_migratetype(gfp_flags);
1061
1062again:
1063	cpu  = get_cpu();
1064	if (likely(order == 0)) {
1065		struct per_cpu_pages *pcp;
1066
1067		pcp = &zone_pcp(zone, cpu)->pcp;
1068		local_irq_save(flags);
1069		if (!pcp->count) {
1070			pcp->count = rmqueue_bulk(zone, 0,
1071					pcp->batch, &pcp->list, migratetype);
1072			if (unlikely(!pcp->count))
1073				goto failed;
1074		}
1075
1076		/* Find a page of the appropriate migrate type */
1077		if (cold) {
1078			list_for_each_entry_reverse(page, &pcp->list, lru)
1079				if (page_private(page) == migratetype)
1080					break;
1081		} else {
1082			list_for_each_entry(page, &pcp->list, lru)
1083				if (page_private(page) == migratetype)
1084					break;
1085		}
1086
1087		/* Allocate more to the pcp list if necessary */
1088		if (unlikely(&page->lru == &pcp->list)) {
1089			pcp->count += rmqueue_bulk(zone, 0,
1090					pcp->batch, &pcp->list, migratetype);
1091			page = list_entry(pcp->list.next, struct page, lru);
1092		}
1093
1094		list_del(&page->lru);
1095		pcp->count--;
1096	} else {
1097		spin_lock_irqsave(&zone->lock, flags);
1098		page = __rmqueue(zone, order, migratetype);
1099		spin_unlock(&zone->lock);
1100		if (!page)
1101			goto failed;
1102	}
1103
1104	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1105	zone_statistics(zonelist, zone);
1106	local_irq_restore(flags);
1107	put_cpu();
1108
1109	VM_BUG_ON(bad_range(zone, page));
1110	if (prep_new_page(page, order, gfp_flags))
1111		goto again;
1112	return page;
1113
1114failed:
1115	local_irq_restore(flags);
1116	put_cpu();
1117	return NULL;
1118}
1119
1120#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1121#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1122#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1123#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1124#define ALLOC_HARDER		0x10 /* try to alloc harder */
1125#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1126#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1127
1128#ifdef CONFIG_FAIL_PAGE_ALLOC
1129
1130static struct fail_page_alloc_attr {
1131	struct fault_attr attr;
1132
1133	u32 ignore_gfp_highmem;
1134	u32 ignore_gfp_wait;
1135	u32 min_order;
1136
1137#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1138
1139	struct dentry *ignore_gfp_highmem_file;
1140	struct dentry *ignore_gfp_wait_file;
1141	struct dentry *min_order_file;
1142
1143#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1144
1145} fail_page_alloc = {
1146	.attr = FAULT_ATTR_INITIALIZER,
1147	.ignore_gfp_wait = 1,
1148	.ignore_gfp_highmem = 1,
1149	.min_order = 1,
1150};
1151
1152static int __init setup_fail_page_alloc(char *str)
1153{
1154	return setup_fault_attr(&fail_page_alloc.attr, str);
1155}
1156__setup("fail_page_alloc=", setup_fail_page_alloc);
1157
1158static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1159{
1160	if (order < fail_page_alloc.min_order)
1161		return 0;
1162	if (gfp_mask & __GFP_NOFAIL)
1163		return 0;
1164	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165		return 0;
1166	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167		return 0;
1168
1169	return should_fail(&fail_page_alloc.attr, 1 << order);
1170}
1171
1172#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1173
1174static int __init fail_page_alloc_debugfs(void)
1175{
1176	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177	struct dentry *dir;
1178	int err;
1179
1180	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181				       "fail_page_alloc");
1182	if (err)
1183		return err;
1184	dir = fail_page_alloc.attr.dentries.dir;
1185
1186	fail_page_alloc.ignore_gfp_wait_file =
1187		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188				      &fail_page_alloc.ignore_gfp_wait);
1189
1190	fail_page_alloc.ignore_gfp_highmem_file =
1191		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192				      &fail_page_alloc.ignore_gfp_highmem);
1193	fail_page_alloc.min_order_file =
1194		debugfs_create_u32("min-order", mode, dir,
1195				   &fail_page_alloc.min_order);
1196
1197	if (!fail_page_alloc.ignore_gfp_wait_file ||
1198            !fail_page_alloc.ignore_gfp_highmem_file ||
1199            !fail_page_alloc.min_order_file) {
1200		err = -ENOMEM;
1201		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1203		debugfs_remove(fail_page_alloc.min_order_file);
1204		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1205	}
1206
1207	return err;
1208}
1209
1210late_initcall(fail_page_alloc_debugfs);
1211
1212#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1213
1214#else /* CONFIG_FAIL_PAGE_ALLOC */
1215
1216static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217{
1218	return 0;
1219}
1220
1221#endif /* CONFIG_FAIL_PAGE_ALLOC */
1222
1223/*
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1226 */
1227int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1228		      int classzone_idx, int alloc_flags)
1229{
1230	/* free_pages my go negative - that's OK */
1231	long min = mark;
1232	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1233	int o;
1234
1235	if (alloc_flags & ALLOC_HIGH)
1236		min -= min / 2;
1237	if (alloc_flags & ALLOC_HARDER)
1238		min -= min / 4;
1239
1240	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241		return 0;
1242	for (o = 0; o < order; o++) {
1243		/* At the next order, this order's pages become unavailable */
1244		free_pages -= z->free_area[o].nr_free << o;
1245
1246		/* Require fewer higher order pages to be free */
1247		min >>= 1;
1248
1249		if (free_pages <= min)
1250			return 0;
1251	}
1252	return 1;
1253}
1254
1255#ifdef CONFIG_NUMA
1256/*
1257 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full.  See further
1260 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1261 * that have to skip over a lot of full or unallowed zones.
1262 *
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1266 *
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1269 *
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1272 *
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1277 */
1278static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1279{
1280	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1281	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1282
1283	zlc = zonelist->zlcache_ptr;
1284	if (!zlc)
1285		return NULL;
1286
1287       if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1288		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289		zlc->last_full_zap = jiffies;
1290	}
1291
1292	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293					&cpuset_current_mems_allowed :
1294					&node_states[N_HIGH_MEMORY];
1295	return allowednodes;
1296}
1297
1298/*
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 *  1) Check that the zone isn't thought to be full (doesn't have its
1302 *     bit set in the zonelist_cache fullzones BITMAP).
1303 *  2) Check that the zones node (obtained from the zonelist_cache
1304 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1307 *
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1314 *
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1319 */
1320static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1321						nodemask_t *allowednodes)
1322{
1323	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1324	int i;				/* index of *z in zonelist zones */
1325	int n;				/* node that zone *z is on */
1326
1327	zlc = zonelist->zlcache_ptr;
1328	if (!zlc)
1329		return 1;
1330
1331	i = z - zonelist->zones;
1332	n = zlc->z_to_n[i];
1333
1334	/* This zone is worth trying if it is allowed but not full */
1335	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1336}
1337
1338/*
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1342 */
1343static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1344{
1345	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1346	int i;				/* index of *z in zonelist zones */
1347
1348	zlc = zonelist->zlcache_ptr;
1349	if (!zlc)
1350		return;
1351
1352	i = z - zonelist->zones;
1353
1354	set_bit(i, zlc->fullzones);
1355}
1356
1357#else	/* CONFIG_NUMA */
1358
1359static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1360{
1361	return NULL;
1362}
1363
1364static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1365				nodemask_t *allowednodes)
1366{
1367	return 1;
1368}
1369
1370static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1371{
1372}
1373#endif	/* CONFIG_NUMA */
1374
1375/*
1376 * get_page_from_freelist goes through the zonelist trying to allocate
1377 * a page.
1378 */
1379static struct page *
1380get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1381		struct zonelist *zonelist, int alloc_flags)
1382{
1383	struct zone **z;
1384	struct page *page = NULL;
1385	int classzone_idx = zone_idx(zonelist->zones[0]);
1386	struct zone *zone;
1387	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388	int zlc_active = 0;		/* set if using zonelist_cache */
1389	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1390	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1391
1392zonelist_scan:
1393	/*
1394	 * Scan zonelist, looking for a zone with enough free.
1395	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1396	 */
1397	z = zonelist->zones;
1398
1399	do {
1400		/*
1401		 * In NUMA, this could be a policy zonelist which contains
1402		 * zones that may not be allowed by the current gfp_mask.
1403		 * Check the zone is allowed by the current flags
1404		 */
1405		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1406			if (highest_zoneidx == -1)
1407				highest_zoneidx = gfp_zone(gfp_mask);
1408			if (zone_idx(*z) > highest_zoneidx)
1409				continue;
1410		}
1411
1412		if (NUMA_BUILD && zlc_active &&
1413			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1414				continue;
1415		zone = *z;
1416		if ((alloc_flags & ALLOC_CPUSET) &&
1417			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1418				goto try_next_zone;
1419
1420		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1421			unsigned long mark;
1422			if (alloc_flags & ALLOC_WMARK_MIN)
1423				mark = zone->pages_min;
1424			else if (alloc_flags & ALLOC_WMARK_LOW)
1425				mark = zone->pages_low;
1426			else
1427				mark = zone->pages_high;
1428			if (!zone_watermark_ok(zone, order, mark,
1429				    classzone_idx, alloc_flags)) {
1430				if (!zone_reclaim_mode ||
1431				    !zone_reclaim(zone, gfp_mask, order))
1432					goto this_zone_full;
1433			}
1434		}
1435
1436		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1437		if (page)
1438			break;
1439this_zone_full:
1440		if (NUMA_BUILD)
1441			zlc_mark_zone_full(zonelist, z);
1442try_next_zone:
1443		if (NUMA_BUILD && !did_zlc_setup) {
1444			/* we do zlc_setup after the first zone is tried */
1445			allowednodes = zlc_setup(zonelist, alloc_flags);
1446			zlc_active = 1;
1447			did_zlc_setup = 1;
1448		}
1449	} while (*(++z) != NULL);
1450
1451	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1452		/* Disable zlc cache for second zonelist scan */
1453		zlc_active = 0;
1454		goto zonelist_scan;
1455	}
1456	return page;
1457}
1458
1459/*
1460 * This is the 'heart' of the zoned buddy allocator.
1461 */
1462struct page *
1463__alloc_pages(gfp_t gfp_mask, unsigned int order,
1464		struct zonelist *zonelist)
1465{
1466	const gfp_t wait = gfp_mask & __GFP_WAIT;
1467	struct zone **z;
1468	struct page *page;
1469	struct reclaim_state reclaim_state;
1470	struct task_struct *p = current;
1471	int do_retry;
1472	int alloc_flags;
1473	int did_some_progress;
1474
1475	might_sleep_if(wait);
1476
1477	if (should_fail_alloc_page(gfp_mask, order))
1478		return NULL;
1479
1480restart:
1481	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1482
1483	if (unlikely(*z == NULL)) {
1484		/*
1485		 * Happens if we have an empty zonelist as a result of
1486		 * GFP_THISNODE being used on a memoryless node
1487		 */
1488		return NULL;
1489	}
1490
1491	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1492				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1493	if (page)
1494		goto got_pg;
1495
1496	/*
1497	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1498	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1499	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1500	 * using a larger set of nodes after it has established that the
1501	 * allowed per node queues are empty and that nodes are
1502	 * over allocated.
1503	 */
1504	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1505		goto nopage;
1506
1507	for (z = zonelist->zones; *z; z++)
1508		wakeup_kswapd(*z, order);
1509
1510	/*
1511	 * OK, we're below the kswapd watermark and have kicked background
1512	 * reclaim. Now things get more complex, so set up alloc_flags according
1513	 * to how we want to proceed.
1514	 *
1515	 * The caller may dip into page reserves a bit more if the caller
1516	 * cannot run direct reclaim, or if the caller has realtime scheduling
1517	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1518	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1519	 */
1520	alloc_flags = ALLOC_WMARK_MIN;
1521	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1522		alloc_flags |= ALLOC_HARDER;
1523	if (gfp_mask & __GFP_HIGH)
1524		alloc_flags |= ALLOC_HIGH;
1525	if (wait)
1526		alloc_flags |= ALLOC_CPUSET;
1527
1528	/*
1529	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1530	 * coming from realtime tasks go deeper into reserves.
1531	 *
1532	 * This is the last chance, in general, before the goto nopage.
1533	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1534	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1535	 */
1536	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1537	if (page)
1538		goto got_pg;
1539
1540	/* This allocation should allow future memory freeing. */
1541
1542rebalance:
1543	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1544			&& !in_interrupt()) {
1545		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1546nofail_alloc:
1547			/* go through the zonelist yet again, ignoring mins */
1548			page = get_page_from_freelist(gfp_mask, order,
1549				zonelist, ALLOC_NO_WATERMARKS);
1550			if (page)
1551				goto got_pg;
1552			if (gfp_mask & __GFP_NOFAIL) {
1553				congestion_wait(WRITE, HZ/50);
1554				goto nofail_alloc;
1555			}
1556		}
1557		goto nopage;
1558	}
1559
1560	/* Atomic allocations - we can't balance anything */
1561	if (!wait)
1562		goto nopage;
1563
1564	cond_resched();
1565
1566	/* We now go into synchronous reclaim */
1567	cpuset_memory_pressure_bump();
1568	p->flags |= PF_MEMALLOC;
1569	reclaim_state.reclaimed_slab = 0;
1570	p->reclaim_state = &reclaim_state;
1571
1572	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1573
1574	p->reclaim_state = NULL;
1575	p->flags &= ~PF_MEMALLOC;
1576
1577	cond_resched();
1578
1579	if (order != 0)
1580		drain_all_pages();
1581
1582	if (likely(did_some_progress)) {
1583		page = get_page_from_freelist(gfp_mask, order,
1584						zonelist, alloc_flags);
1585		if (page)
1586			goto got_pg;
1587	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1588		if (!try_set_zone_oom(zonelist)) {
1589			schedule_timeout_uninterruptible(1);
1590			goto restart;
1591		}
1592
1593		/*
1594		 * Go through the zonelist yet one more time, keep
1595		 * very high watermark here, this is only to catch
1596		 * a parallel oom killing, we must fail if we're still
1597		 * under heavy pressure.
1598		 */
1599		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1600				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1601		if (page) {
1602			clear_zonelist_oom(zonelist);
1603			goto got_pg;
1604		}
1605
1606		/* The OOM killer will not help higher order allocs so fail */
1607		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1608			clear_zonelist_oom(zonelist);
1609			goto nopage;
1610		}
1611
1612		out_of_memory(zonelist, gfp_mask, order);
1613		clear_zonelist_oom(zonelist);
1614		goto restart;
1615	}
1616
1617	/*
1618	 * Don't let big-order allocations loop unless the caller explicitly
1619	 * requests that.  Wait for some write requests to complete then retry.
1620	 *
1621	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1622	 * <= 3, but that may not be true in other implementations.
1623	 */
1624	do_retry = 0;
1625	if (!(gfp_mask & __GFP_NORETRY)) {
1626		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1627						(gfp_mask & __GFP_REPEAT))
1628			do_retry = 1;
1629		if (gfp_mask & __GFP_NOFAIL)
1630			do_retry = 1;
1631	}
1632	if (do_retry) {
1633		congestion_wait(WRITE, HZ/50);
1634		goto rebalance;
1635	}
1636
1637nopage:
1638	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1639		printk(KERN_WARNING "%s: page allocation failure."
1640			" order:%d, mode:0x%x\n",
1641			p->comm, order, gfp_mask);
1642		dump_stack();
1643		show_mem();
1644	}
1645got_pg:
1646	return page;
1647}
1648
1649EXPORT_SYMBOL(__alloc_pages);
1650
1651/*
1652 * Common helper functions.
1653 */
1654unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1655{
1656	struct page * page;
1657	page = alloc_pages(gfp_mask, order);
1658	if (!page)
1659		return 0;
1660	return (unsigned long) page_address(page);
1661}
1662
1663EXPORT_SYMBOL(__get_free_pages);
1664
1665unsigned long get_zeroed_page(gfp_t gfp_mask)
1666{
1667	struct page * page;
1668
1669	/*
1670	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1671	 * a highmem page
1672	 */
1673	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1674
1675	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1676	if (page)
1677		return (unsigned long) page_address(page);
1678	return 0;
1679}
1680
1681EXPORT_SYMBOL(get_zeroed_page);
1682
1683void __pagevec_free(struct pagevec *pvec)
1684{
1685	int i = pagevec_count(pvec);
1686
1687	while (--i >= 0)
1688		free_hot_cold_page(pvec->pages[i], pvec->cold);
1689}
1690
1691void __free_pages(struct page *page, unsigned int order)
1692{
1693	if (put_page_testzero(page)) {
1694		if (order == 0)
1695			free_hot_page(page);
1696		else
1697			__free_pages_ok(page, order);
1698	}
1699}
1700
1701EXPORT_SYMBOL(__free_pages);
1702
1703void free_pages(unsigned long addr, unsigned int order)
1704{
1705	if (addr != 0) {
1706		VM_BUG_ON(!virt_addr_valid((void *)addr));
1707		__free_pages(virt_to_page((void *)addr), order);
1708	}
1709}
1710
1711EXPORT_SYMBOL(free_pages);
1712
1713static unsigned int nr_free_zone_pages(int offset)
1714{
1715	/* Just pick one node, since fallback list is circular */
1716	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1717	unsigned int sum = 0;
1718
1719	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1720	struct zone **zonep = zonelist->zones;
1721	struct zone *zone;
1722
1723	for (zone = *zonep++; zone; zone = *zonep++) {
1724		unsigned long size = zone->present_pages;
1725		unsigned long high = zone->pages_high;
1726		if (size > high)
1727			sum += size - high;
1728	}
1729
1730	return sum;
1731}
1732
1733/*
1734 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1735 */
1736unsigned int nr_free_buffer_pages(void)
1737{
1738	return nr_free_zone_pages(gfp_zone(GFP_USER));
1739}
1740EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1741
1742/*
1743 * Amount of free RAM allocatable within all zones
1744 */
1745unsigned int nr_free_pagecache_pages(void)
1746{
1747	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1748}
1749
1750static inline void show_node(struct zone *zone)
1751{
1752	if (NUMA_BUILD)
1753		printk("Node %d ", zone_to_nid(zone));
1754}
1755
1756void si_meminfo(struct sysinfo *val)
1757{
1758	val->totalram = totalram_pages;
1759	val->sharedram = 0;
1760	val->freeram = global_page_state(NR_FREE_PAGES);
1761	val->bufferram = nr_blockdev_pages();
1762	val->totalhigh = totalhigh_pages;
1763	val->freehigh = nr_free_highpages();
1764	val->mem_unit = PAGE_SIZE;
1765}
1766
1767EXPORT_SYMBOL(si_meminfo);
1768
1769#ifdef CONFIG_NUMA
1770void si_meminfo_node(struct sysinfo *val, int nid)
1771{
1772	pg_data_t *pgdat = NODE_DATA(nid);
1773
1774	val->totalram = pgdat->node_present_pages;
1775	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1776#ifdef CONFIG_HIGHMEM
1777	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1778	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1779			NR_FREE_PAGES);
1780#else
1781	val->totalhigh = 0;
1782	val->freehigh = 0;
1783#endif
1784	val->mem_unit = PAGE_SIZE;
1785}
1786#endif
1787
1788#define K(x) ((x) << (PAGE_SHIFT-10))
1789
1790/*
1791 * Show free area list (used inside shift_scroll-lock stuff)
1792 * We also calculate the percentage fragmentation. We do this by counting the
1793 * memory on each free list with the exception of the first item on the list.
1794 */
1795void show_free_areas(void)
1796{
1797	int cpu;
1798	struct zone *zone;
1799
1800	for_each_zone(zone) {
1801		if (!populated_zone(zone))
1802			continue;
1803
1804		show_node(zone);
1805		printk("%s per-cpu:\n", zone->name);
1806
1807		for_each_online_cpu(cpu) {
1808			struct per_cpu_pageset *pageset;
1809
1810			pageset = zone_pcp(zone, cpu);
1811
1812			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1813			       cpu, pageset->pcp.high,
1814			       pageset->pcp.batch, pageset->pcp.count);
1815		}
1816	}
1817
1818	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1819		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1820		global_page_state(NR_ACTIVE),
1821		global_page_state(NR_INACTIVE),
1822		global_page_state(NR_FILE_DIRTY),
1823		global_page_state(NR_WRITEBACK),
1824		global_page_state(NR_UNSTABLE_NFS),
1825		global_page_state(NR_FREE_PAGES),
1826		global_page_state(NR_SLAB_RECLAIMABLE) +
1827			global_page_state(NR_SLAB_UNRECLAIMABLE),
1828		global_page_state(NR_FILE_MAPPED),
1829		global_page_state(NR_PAGETABLE),
1830		global_page_state(NR_BOUNCE));
1831
1832	for_each_zone(zone) {
1833		int i;
1834
1835		if (!populated_zone(zone))
1836			continue;
1837
1838		show_node(zone);
1839		printk("%s"
1840			" free:%lukB"
1841			" min:%lukB"
1842			" low:%lukB"
1843			" high:%lukB"
1844			" active:%lukB"
1845			" inactive:%lukB"
1846			" present:%lukB"
1847			" pages_scanned:%lu"
1848			" all_unreclaimable? %s"
1849			"\n",
1850			zone->name,
1851			K(zone_page_state(zone, NR_FREE_PAGES)),
1852			K(zone->pages_min),
1853			K(zone->pages_low),
1854			K(zone->pages_high),
1855			K(zone_page_state(zone, NR_ACTIVE)),
1856			K(zone_page_state(zone, NR_INACTIVE)),
1857			K(zone->present_pages),
1858			zone->pages_scanned,
1859			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1860			);
1861		printk("lowmem_reserve[]:");
1862		for (i = 0; i < MAX_NR_ZONES; i++)
1863			printk(" %lu", zone->lowmem_reserve[i]);
1864		printk("\n");
1865	}
1866
1867	for_each_zone(zone) {
1868 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1869
1870		if (!populated_zone(zone))
1871			continue;
1872
1873		show_node(zone);
1874		printk("%s: ", zone->name);
1875
1876		spin_lock_irqsave(&zone->lock, flags);
1877		for (order = 0; order < MAX_ORDER; order++) {
1878			nr[order] = zone->free_area[order].nr_free;
1879			total += nr[order] << order;
1880		}
1881		spin_unlock_irqrestore(&zone->lock, flags);
1882		for (order = 0; order < MAX_ORDER; order++)
1883			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1884		printk("= %lukB\n", K(total));
1885	}
1886
1887	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1888
1889	show_swap_cache_info();
1890}
1891
1892/*
1893 * Builds allocation fallback zone lists.
1894 *
1895 * Add all populated zones of a node to the zonelist.
1896 */
1897static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1898				int nr_zones, enum zone_type zone_type)
1899{
1900	struct zone *zone;
1901
1902	BUG_ON(zone_type >= MAX_NR_ZONES);
1903	zone_type++;
1904
1905	do {
1906		zone_type--;
1907		zone = pgdat->node_zones + zone_type;
1908		if (populated_zone(zone)) {
1909			zonelist->zones[nr_zones++] = zone;
1910			check_highest_zone(zone_type);
1911		}
1912
1913	} while (zone_type);
1914	return nr_zones;
1915}
1916
1917
1918/*
1919 *  zonelist_order:
1920 *  0 = automatic detection of better ordering.
1921 *  1 = order by ([node] distance, -zonetype)
1922 *  2 = order by (-zonetype, [node] distance)
1923 *
1924 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1925 *  the same zonelist. So only NUMA can configure this param.
1926 */
1927#define ZONELIST_ORDER_DEFAULT  0
1928#define ZONELIST_ORDER_NODE     1
1929#define ZONELIST_ORDER_ZONE     2
1930
1931/* zonelist order in the kernel.
1932 * set_zonelist_order() will set this to NODE or ZONE.
1933 */
1934static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1935static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1936
1937
1938#ifdef CONFIG_NUMA
1939/* The value user specified ....changed by config */
1940static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1941/* string for sysctl */
1942#define NUMA_ZONELIST_ORDER_LEN	16
1943char numa_zonelist_order[16] = "default";
1944
1945/*
1946 * interface for configure zonelist ordering.
1947 * command line option "numa_zonelist_order"
1948 *	= "[dD]efault	- default, automatic configuration.
1949 *	= "[nN]ode 	- order by node locality, then by zone within node
1950 *	= "[zZ]one      - order by zone, then by locality within zone
1951 */
1952
1953static int __parse_numa_zonelist_order(char *s)
1954{
1955	if (*s == 'd' || *s == 'D') {
1956		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1957	} else if (*s == 'n' || *s == 'N') {
1958		user_zonelist_order = ZONELIST_ORDER_NODE;
1959	} else if (*s == 'z' || *s == 'Z') {
1960		user_zonelist_order = ZONELIST_ORDER_ZONE;
1961	} else {
1962		printk(KERN_WARNING
1963			"Ignoring invalid numa_zonelist_order value:  "
1964			"%s\n", s);
1965		return -EINVAL;
1966	}
1967	return 0;
1968}
1969
1970static __init int setup_numa_zonelist_order(char *s)
1971{
1972	if (s)
1973		return __parse_numa_zonelist_order(s);
1974	return 0;
1975}
1976early_param("numa_zonelist_order", setup_numa_zonelist_order);
1977
1978/*
1979 * sysctl handler for numa_zonelist_order
1980 */
1981int numa_zonelist_order_handler(ctl_table *table, int write,
1982		struct file *file, void __user *buffer, size_t *length,
1983		loff_t *ppos)
1984{
1985	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1986	int ret;
1987
1988	if (write)
1989		strncpy(saved_string, (char*)table->data,
1990			NUMA_ZONELIST_ORDER_LEN);
1991	ret = proc_dostring(table, write, file, buffer, length, ppos);
1992	if (ret)
1993		return ret;
1994	if (write) {
1995		int oldval = user_zonelist_order;
1996		if (__parse_numa_zonelist_order((char*)table->data)) {
1997			/*
1998			 * bogus value.  restore saved string
1999			 */
2000			strncpy((char*)table->data, saved_string,
2001				NUMA_ZONELIST_ORDER_LEN);
2002			user_zonelist_order = oldval;
2003		} else if (oldval != user_zonelist_order)
2004			build_all_zonelists();
2005	}
2006	return 0;
2007}
2008
2009
2010#define MAX_NODE_LOAD (num_online_nodes())
2011static int node_load[MAX_NUMNODES];
2012
2013/**
2014 * find_next_best_node - find the next node that should appear in a given node's fallback list
2015 * @node: node whose fallback list we're appending
2016 * @used_node_mask: nodemask_t of already used nodes
2017 *
2018 * We use a number of factors to determine which is the next node that should
2019 * appear on a given node's fallback list.  The node should not have appeared
2020 * already in @node's fallback list, and it should be the next closest node
2021 * according to the distance array (which contains arbitrary distance values
2022 * from each node to each node in the system), and should also prefer nodes
2023 * with no CPUs, since presumably they'll have very little allocation pressure
2024 * on them otherwise.
2025 * It returns -1 if no node is found.
2026 */
2027static int find_next_best_node(int node, nodemask_t *used_node_mask)
2028{
2029	int n, val;
2030	int min_val = INT_MAX;
2031	int best_node = -1;
2032	node_to_cpumask_ptr(tmp, 0);
2033
2034	/* Use the local node if we haven't already */
2035	if (!node_isset(node, *used_node_mask)) {
2036		node_set(node, *used_node_mask);
2037		return node;
2038	}
2039
2040	for_each_node_state(n, N_HIGH_MEMORY) {
2041
2042		/* Don't want a node to appear more than once */
2043		if (node_isset(n, *used_node_mask))
2044			continue;
2045
2046		/* Use the distance array to find the distance */
2047		val = node_distance(node, n);
2048
2049		/* Penalize nodes under us ("prefer the next node") */
2050		val += (n < node);
2051
2052		/* Give preference to headless and unused nodes */
2053		node_to_cpumask_ptr_next(tmp, n);
2054		if (!cpus_empty(*tmp))
2055			val += PENALTY_FOR_NODE_WITH_CPUS;
2056
2057		/* Slight preference for less loaded node */
2058		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2059		val += node_load[n];
2060
2061		if (val < min_val) {
2062			min_val = val;
2063			best_node = n;
2064		}
2065	}
2066
2067	if (best_node >= 0)
2068		node_set(best_node, *used_node_mask);
2069
2070	return best_node;
2071}
2072
2073
2074/*
2075 * Build zonelists ordered by node and zones within node.
2076 * This results in maximum locality--normal zone overflows into local
2077 * DMA zone, if any--but risks exhausting DMA zone.
2078 */
2079static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2080{
2081	enum zone_type i;
2082	int j;
2083	struct zonelist *zonelist;
2084
2085	for (i = 0; i < MAX_NR_ZONES; i++) {
2086		zonelist = pgdat->node_zonelists + i;
2087		for (j = 0; zonelist->zones[j] != NULL; j++)
2088			;
2089 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2090		zonelist->zones[j] = NULL;
2091	}
2092}
2093
2094/*
2095 * Build gfp_thisnode zonelists
2096 */
2097static void build_thisnode_zonelists(pg_data_t *pgdat)
2098{
2099	enum zone_type i;
2100	int j;
2101	struct zonelist *zonelist;
2102
2103	for (i = 0; i < MAX_NR_ZONES; i++) {
2104		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2105		j = build_zonelists_node(pgdat, zonelist, 0, i);
2106		zonelist->zones[j] = NULL;
2107	}
2108}
2109
2110/*
2111 * Build zonelists ordered by zone and nodes within zones.
2112 * This results in conserving DMA zone[s] until all Normal memory is
2113 * exhausted, but results in overflowing to remote node while memory
2114 * may still exist in local DMA zone.
2115 */
2116static int node_order[MAX_NUMNODES];
2117
2118static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2119{
2120	enum zone_type i;
2121	int pos, j, node;
2122	int zone_type;		/* needs to be signed */
2123	struct zone *z;
2124	struct zonelist *zonelist;
2125
2126	for (i = 0; i < MAX_NR_ZONES; i++) {
2127		zonelist = pgdat->node_zonelists + i;
2128		pos = 0;
2129		for (zone_type = i; zone_type >= 0; zone_type--) {
2130			for (j = 0; j < nr_nodes; j++) {
2131				node = node_order[j];
2132				z = &NODE_DATA(node)->node_zones[zone_type];
2133				if (populated_zone(z)) {
2134					zonelist->zones[pos++] = z;
2135					check_highest_zone(zone_type);
2136				}
2137			}
2138		}
2139		zonelist->zones[pos] = NULL;
2140	}
2141}
2142
2143static int default_zonelist_order(void)
2144{
2145	int nid, zone_type;
2146	unsigned long low_kmem_size,total_size;
2147	struct zone *z;
2148	int average_size;
2149	/*
2150         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2151	 * If they are really small and used heavily, the system can fall
2152	 * into OOM very easily.
2153	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2154	 */
2155	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2156	low_kmem_size = 0;
2157	total_size = 0;
2158	for_each_online_node(nid) {
2159		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2160			z = &NODE_DATA(nid)->node_zones[zone_type];
2161			if (populated_zone(z)) {
2162				if (zone_type < ZONE_NORMAL)
2163					low_kmem_size += z->present_pages;
2164				total_size += z->present_pages;
2165			}
2166		}
2167	}
2168	if (!low_kmem_size ||  /* there are no DMA area. */
2169	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2170		return ZONELIST_ORDER_NODE;
2171	/*
2172	 * look into each node's config.
2173  	 * If there is a node whose DMA/DMA32 memory is very big area on
2174 	 * local memory, NODE_ORDER may be suitable.
2175         */
2176	average_size = total_size /
2177				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2178	for_each_online_node(nid) {
2179		low_kmem_size = 0;
2180		total_size = 0;
2181		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2182			z = &NODE_DATA(nid)->node_zones[zone_type];
2183			if (populated_zone(z)) {
2184				if (zone_type < ZONE_NORMAL)
2185					low_kmem_size += z->present_pages;
2186				total_size += z->present_pages;
2187			}
2188		}
2189		if (low_kmem_size &&
2190		    total_size > average_size && /* ignore small node */
2191		    low_kmem_size > total_size * 70/100)
2192			return ZONELIST_ORDER_NODE;
2193	}
2194	return ZONELIST_ORDER_ZONE;
2195}
2196
2197static void set_zonelist_order(void)
2198{
2199	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2200		current_zonelist_order = default_zonelist_order();
2201	else
2202		current_zonelist_order = user_zonelist_order;
2203}
2204
2205static void build_zonelists(pg_data_t *pgdat)
2206{
2207	int j, node, load;
2208	enum zone_type i;
2209	nodemask_t used_mask;
2210	int local_node, prev_node;
2211	struct zonelist *zonelist;
2212	int order = current_zonelist_order;
2213
2214	/* initialize zonelists */
2215	for (i = 0; i < MAX_ZONELISTS; i++) {
2216		zonelist = pgdat->node_zonelists + i;
2217		zonelist->zones[0] = NULL;
2218	}
2219
2220	/* NUMA-aware ordering of nodes */
2221	local_node = pgdat->node_id;
2222	load = num_online_nodes();
2223	prev_node = local_node;
2224	nodes_clear(used_mask);
2225
2226	memset(node_load, 0, sizeof(node_load));
2227	memset(node_order, 0, sizeof(node_order));
2228	j = 0;
2229
2230	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2231		int distance = node_distance(local_node, node);
2232
2233		/*
2234		 * If another node is sufficiently far away then it is better
2235		 * to reclaim pages in a zone before going off node.
2236		 */
2237		if (distance > RECLAIM_DISTANCE)
2238			zone_reclaim_mode = 1;
2239
2240		/*
2241		 * We don't want to pressure a particular node.
2242		 * So adding penalty to the first node in same
2243		 * distance group to make it round-robin.
2244		 */
2245		if (distance != node_distance(local_node, prev_node))
2246			node_load[node] = load;
2247
2248		prev_node = node;
2249		load--;
2250		if (order == ZONELIST_ORDER_NODE)
2251			build_zonelists_in_node_order(pgdat, node);
2252		else
2253			node_order[j++] = node;	/* remember order */
2254	}
2255
2256	if (order == ZONELIST_ORDER_ZONE) {
2257		/* calculate node order -- i.e., DMA last! */
2258		build_zonelists_in_zone_order(pgdat, j);
2259	}
2260
2261	build_thisnode_zonelists(pgdat);
2262}
2263
2264/* Construct the zonelist performance cache - see further mmzone.h */
2265static void build_zonelist_cache(pg_data_t *pgdat)
2266{
2267	int i;
2268
2269	for (i = 0; i < MAX_NR_ZONES; i++) {
2270		struct zonelist *zonelist;
2271		struct zonelist_cache *zlc;
2272		struct zone **z;
2273
2274		zonelist = pgdat->node_zonelists + i;
2275		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2276		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2277		for (z = zonelist->zones; *z; z++)
2278			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2279	}
2280}
2281
2282
2283#else	/* CONFIG_NUMA */
2284
2285static void set_zonelist_order(void)
2286{
2287	current_zonelist_order = ZONELIST_ORDER_ZONE;
2288}
2289
2290static void build_zonelists(pg_data_t *pgdat)
2291{
2292	int node, local_node;
2293	enum zone_type i,j;
2294
2295	local_node = pgdat->node_id;
2296	for (i = 0; i < MAX_NR_ZONES; i++) {
2297		struct zonelist *zonelist;
2298
2299		zonelist = pgdat->node_zonelists + i;
2300
2301 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2302 		/*
2303 		 * Now we build the zonelist so that it contains the zones
2304 		 * of all the other nodes.
2305 		 * We don't want to pressure a particular node, so when
2306 		 * building the zones for node N, we make sure that the
2307 		 * zones coming right after the local ones are those from
2308 		 * node N+1 (modulo N)
2309 		 */
2310		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2311			if (!node_online(node))
2312				continue;
2313			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2314		}
2315		for (node = 0; node < local_node; node++) {
2316			if (!node_online(node))
2317				continue;
2318			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2319		}
2320
2321		zonelist->zones[j] = NULL;
2322	}
2323}
2324
2325/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2326static void build_zonelist_cache(pg_data_t *pgdat)
2327{
2328	int i;
2329
2330	for (i = 0; i < MAX_NR_ZONES; i++)
2331		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2332}
2333
2334#endif	/* CONFIG_NUMA */
2335
2336/* return values int ....just for stop_machine_run() */
2337static int __build_all_zonelists(void *dummy)
2338{
2339	int nid;
2340
2341	for_each_online_node(nid) {
2342		pg_data_t *pgdat = NODE_DATA(nid);
2343
2344		build_zonelists(pgdat);
2345		build_zonelist_cache(pgdat);
2346	}
2347	return 0;
2348}
2349
2350void build_all_zonelists(void)
2351{
2352	set_zonelist_order();
2353
2354	if (system_state == SYSTEM_BOOTING) {
2355		__build_all_zonelists(NULL);
2356		cpuset_init_current_mems_allowed();
2357	} else {
2358		/* we have to stop all cpus to guarantee there is no user
2359		   of zonelist */
2360		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2361		/* cpuset refresh routine should be here */
2362	}
2363	vm_total_pages = nr_free_pagecache_pages();
2364	/*
2365	 * Disable grouping by mobility if the number of pages in the
2366	 * system is too low to allow the mechanism to work. It would be
2367	 * more accurate, but expensive to check per-zone. This check is
2368	 * made on memory-hotadd so a system can start with mobility
2369	 * disabled and enable it later
2370	 */
2371	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2372		page_group_by_mobility_disabled = 1;
2373	else
2374		page_group_by_mobility_disabled = 0;
2375
2376	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2377		"Total pages: %ld\n",
2378			num_online_nodes(),
2379			zonelist_order_name[current_zonelist_order],
2380			page_group_by_mobility_disabled ? "off" : "on",
2381			vm_total_pages);
2382#ifdef CONFIG_NUMA
2383	printk("Policy zone: %s\n", zone_names[policy_zone]);
2384#endif
2385}
2386
2387/*
2388 * Helper functions to size the waitqueue hash table.
2389 * Essentially these want to choose hash table sizes sufficiently
2390 * large so that collisions trying to wait on pages are rare.
2391 * But in fact, the number of active page waitqueues on typical
2392 * systems is ridiculously low, less than 200. So this is even
2393 * conservative, even though it seems large.
2394 *
2395 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2396 * waitqueues, i.e. the size of the waitq table given the number of pages.
2397 */
2398#define PAGES_PER_WAITQUEUE	256
2399
2400#ifndef CONFIG_MEMORY_HOTPLUG
2401static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2402{
2403	unsigned long size = 1;
2404
2405	pages /= PAGES_PER_WAITQUEUE;
2406
2407	while (size < pages)
2408		size <<= 1;
2409
2410	/*
2411	 * Once we have dozens or even hundreds of threads sleeping
2412	 * on IO we've got bigger problems than wait queue collision.
2413	 * Limit the size of the wait table to a reasonable size.
2414	 */
2415	size = min(size, 4096UL);
2416
2417	return max(size, 4UL);
2418}
2419#else
2420/*
2421 * A zone's size might be changed by hot-add, so it is not possible to determine
2422 * a suitable size for its wait_table.  So we use the maximum size now.
2423 *
2424 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2425 *
2426 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2427 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2428 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2429 *
2430 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2431 * or more by the traditional way. (See above).  It equals:
2432 *
2433 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2434 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2435 *    powerpc (64K page size)             : =  (32G +16M)byte.
2436 */
2437static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2438{
2439	return 4096UL;
2440}
2441#endif
2442
2443/*
2444 * This is an integer logarithm so that shifts can be used later
2445 * to extract the more random high bits from the multiplicative
2446 * hash function before the remainder is taken.
2447 */
2448static inline unsigned long wait_table_bits(unsigned long size)
2449{
2450	return ffz(~size);
2451}
2452
2453#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2454
2455/*
2456 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2457 * of blocks reserved is based on zone->pages_min. The memory within the
2458 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2459 * higher will lead to a bigger reserve which will get freed as contiguous
2460 * blocks as reclaim kicks in
2461 */
2462static void setup_zone_migrate_reserve(struct zone *zone)
2463{
2464	unsigned long start_pfn, pfn, end_pfn;
2465	struct page *page;
2466	unsigned long reserve, block_migratetype;
2467
2468	/* Get the start pfn, end pfn and the number of blocks to reserve */
2469	start_pfn = zone->zone_start_pfn;
2470	end_pfn = start_pfn + zone->spanned_pages;
2471	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2472							pageblock_order;
2473
2474	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2475		if (!pfn_valid(pfn))
2476			continue;
2477		page = pfn_to_page(pfn);
2478
2479		/* Blocks with reserved pages will never free, skip them. */
2480		if (PageReserved(page))
2481			continue;
2482
2483		block_migratetype = get_pageblock_migratetype(page);
2484
2485		/* If this block is reserved, account for it */
2486		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2487			reserve--;
2488			continue;
2489		}
2490
2491		/* Suitable for reserving if this block is movable */
2492		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2493			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2494			move_freepages_block(zone, page, MIGRATE_RESERVE);
2495			reserve--;
2496			continue;
2497		}
2498
2499		/*
2500		 * If the reserve is met and this is a previous reserved block,
2501		 * take it back
2502		 */
2503		if (block_migratetype == MIGRATE_RESERVE) {
2504			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2505			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2506		}
2507	}
2508}
2509
2510/*
2511 * Initially all pages are reserved - free ones are freed
2512 * up by free_all_bootmem() once the early boot process is
2513 * done. Non-atomic initialization, single-pass.
2514 */
2515void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2516		unsigned long start_pfn, enum memmap_context context)
2517{
2518	struct page *page;
2519	unsigned long end_pfn = start_pfn + size;
2520	unsigned long pfn;
2521
2522	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2523		/*
2524		 * There can be holes in boot-time mem_map[]s
2525		 * handed to this function.  They do not
2526		 * exist on hotplugged memory.
2527		 */
2528		if (context == MEMMAP_EARLY) {
2529			if (!early_pfn_valid(pfn))
2530				continue;
2531			if (!early_pfn_in_nid(pfn, nid))
2532				continue;
2533		}
2534		page = pfn_to_page(pfn);
2535		set_page_links(page, zone, nid, pfn);
2536		init_page_count(page);
2537		reset_page_mapcount(page);
2538		SetPageReserved(page);
2539
2540		/*
2541		 * Mark the block movable so that blocks are reserved for
2542		 * movable at startup. This will force kernel allocations
2543		 * to reserve their blocks rather than leaking throughout
2544		 * the address space during boot when many long-lived
2545		 * kernel allocations are made. Later some blocks near
2546		 * the start are marked MIGRATE_RESERVE by
2547		 * setup_zone_migrate_reserve()
2548		 */
2549		if ((pfn & (pageblock_nr_pages-1)))
2550			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2551
2552		INIT_LIST_HEAD(&page->lru);
2553#ifdef WANT_PAGE_VIRTUAL
2554		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2555		if (!is_highmem_idx(zone))
2556			set_page_address(page, __va(pfn << PAGE_SHIFT));
2557#endif
2558	}
2559}
2560
2561static void __meminit zone_init_free_lists(struct zone *zone)
2562{
2563	int order, t;
2564	for_each_migratetype_order(order, t) {
2565		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2566		zone->free_area[order].nr_free = 0;
2567	}
2568}
2569
2570#ifndef __HAVE_ARCH_MEMMAP_INIT
2571#define memmap_init(size, nid, zone, start_pfn) \
2572	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2573#endif
2574
2575static int zone_batchsize(struct zone *zone)
2576{
2577	int batch;
2578
2579	/*
2580	 * The per-cpu-pages pools are set to around 1000th of the
2581	 * size of the zone.  But no more than 1/2 of a meg.
2582	 *
2583	 * OK, so we don't know how big the cache is.  So guess.
2584	 */
2585	batch = zone->present_pages / 1024;
2586	if (batch * PAGE_SIZE > 512 * 1024)
2587		batch = (512 * 1024) / PAGE_SIZE;
2588	batch /= 4;		/* We effectively *= 4 below */
2589	if (batch < 1)
2590		batch = 1;
2591
2592	/*
2593	 * Clamp the batch to a 2^n - 1 value. Having a power
2594	 * of 2 value was found to be more likely to have
2595	 * suboptimal cache aliasing properties in some cases.
2596	 *
2597	 * For example if 2 tasks are alternately allocating
2598	 * batches of pages, one task can end up with a lot
2599	 * of pages of one half of the possible page colors
2600	 * and the other with pages of the other colors.
2601	 */
2602	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2603
2604	return batch;
2605}
2606
2607inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2608{
2609	struct per_cpu_pages *pcp;
2610
2611	memset(p, 0, sizeof(*p));
2612
2613	pcp = &p->pcp;
2614	pcp->count = 0;
2615	pcp->high = 6 * batch;
2616	pcp->batch = max(1UL, 1 * batch);
2617	INIT_LIST_HEAD(&pcp->list);
2618}
2619
2620/*
2621 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2622 * to the value high for the pageset p.
2623 */
2624
2625static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2626				unsigned long high)
2627{
2628	struct per_cpu_pages *pcp;
2629
2630	pcp = &p->pcp;
2631	pcp->high = high;
2632	pcp->batch = max(1UL, high/4);
2633	if ((high/4) > (PAGE_SHIFT * 8))
2634		pcp->batch = PAGE_SHIFT * 8;
2635}
2636
2637
2638#ifdef CONFIG_NUMA
2639/*
2640 * Boot pageset table. One per cpu which is going to be used for all
2641 * zones and all nodes. The parameters will be set in such a way
2642 * that an item put on a list will immediately be handed over to
2643 * the buddy list. This is safe since pageset manipulation is done
2644 * with interrupts disabled.
2645 *
2646 * Some NUMA counter updates may also be caught by the boot pagesets.
2647 *
2648 * The boot_pagesets must be kept even after bootup is complete for
2649 * unused processors and/or zones. They do play a role for bootstrapping
2650 * hotplugged processors.
2651 *
2652 * zoneinfo_show() and maybe other functions do
2653 * not check if the processor is online before following the pageset pointer.
2654 * Other parts of the kernel may not check if the zone is available.
2655 */
2656static struct per_cpu_pageset boot_pageset[NR_CPUS];
2657
2658/*
2659 * Dynamically allocate memory for the
2660 * per cpu pageset array in struct zone.
2661 */
2662static int __cpuinit process_zones(int cpu)
2663{
2664	struct zone *zone, *dzone;
2665	int node = cpu_to_node(cpu);
2666
2667	node_set_state(node, N_CPU);	/* this node has a cpu */
2668
2669	for_each_zone(zone) {
2670
2671		if (!populated_zone(zone))
2672			continue;
2673
2674		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2675					 GFP_KERNEL, node);
2676		if (!zone_pcp(zone, cpu))
2677			goto bad;
2678
2679		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2680
2681		if (percpu_pagelist_fraction)
2682			setup_pagelist_highmark(zone_pcp(zone, cpu),
2683			 	(zone->present_pages / percpu_pagelist_fraction));
2684	}
2685
2686	return 0;
2687bad:
2688	for_each_zone(dzone) {
2689		if (!populated_zone(dzone))
2690			continue;
2691		if (dzone == zone)
2692			break;
2693		kfree(zone_pcp(dzone, cpu));
2694		zone_pcp(dzone, cpu) = NULL;
2695	}
2696	return -ENOMEM;
2697}
2698
2699static inline void free_zone_pagesets(int cpu)
2700{
2701	struct zone *zone;
2702
2703	for_each_zone(zone) {
2704		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2705
2706		/* Free per_cpu_pageset if it is slab allocated */
2707		if (pset != &boot_pageset[cpu])
2708			kfree(pset);
2709		zone_pcp(zone, cpu) = NULL;
2710	}
2711}
2712
2713static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2714		unsigned long action,
2715		void *hcpu)
2716{
2717	int cpu = (long)hcpu;
2718	int ret = NOTIFY_OK;
2719
2720	switch (action) {
2721	case CPU_UP_PREPARE:
2722	case CPU_UP_PREPARE_FROZEN:
2723		if (process_zones(cpu))
2724			ret = NOTIFY_BAD;
2725		break;
2726	case CPU_UP_CANCELED:
2727	case CPU_UP_CANCELED_FROZEN:
2728	case CPU_DEAD:
2729	case CPU_DEAD_FROZEN:
2730		free_zone_pagesets(cpu);
2731		break;
2732	default:
2733		break;
2734	}
2735	return ret;
2736}
2737
2738static struct notifier_block __cpuinitdata pageset_notifier =
2739	{ &pageset_cpuup_callback, NULL, 0 };
2740
2741void __init setup_per_cpu_pageset(void)
2742{
2743	int err;
2744
2745	/* Initialize per_cpu_pageset for cpu 0.
2746	 * A cpuup callback will do this for every cpu
2747	 * as it comes online
2748	 */
2749	err = process_zones(smp_processor_id());
2750	BUG_ON(err);
2751	register_cpu_notifier(&pageset_notifier);
2752}
2753
2754#endif
2755
2756static noinline __init_refok
2757int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2758{
2759	int i;
2760	struct pglist_data *pgdat = zone->zone_pgdat;
2761	size_t alloc_size;
2762
2763	/*
2764	 * The per-page waitqueue mechanism uses hashed waitqueues
2765	 * per zone.
2766	 */
2767	zone->wait_table_hash_nr_entries =
2768		 wait_table_hash_nr_entries(zone_size_pages);
2769	zone->wait_table_bits =
2770		wait_table_bits(zone->wait_table_hash_nr_entries);
2771	alloc_size = zone->wait_table_hash_nr_entries
2772					* sizeof(wait_queue_head_t);
2773
2774 	if (system_state == SYSTEM_BOOTING) {
2775		zone->wait_table = (wait_queue_head_t *)
2776			alloc_bootmem_node(pgdat, alloc_size);
2777	} else {
2778		/*
2779		 * This case means that a zone whose size was 0 gets new memory
2780		 * via memory hot-add.
2781		 * But it may be the case that a new node was hot-added.  In
2782		 * this case vmalloc() will not be able to use this new node's
2783		 * memory - this wait_table must be initialized to use this new
2784		 * node itself as well.
2785		 * To use this new node's memory, further consideration will be
2786		 * necessary.
2787		 */
2788		zone->wait_table = vmalloc(alloc_size);
2789	}
2790	if (!zone->wait_table)
2791		return -ENOMEM;
2792
2793	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2794		init_waitqueue_head(zone->wait_table + i);
2795
2796	return 0;
2797}
2798
2799static __meminit void zone_pcp_init(struct zone *zone)
2800{
2801	int cpu;
2802	unsigned long batch = zone_batchsize(zone);
2803
2804	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2805#ifdef CONFIG_NUMA
2806		/* Early boot. Slab allocator not functional yet */
2807		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2808		setup_pageset(&boot_pageset[cpu],0);
2809#else
2810		setup_pageset(zone_pcp(zone,cpu), batch);
2811#endif
2812	}
2813	if (zone->present_pages)
2814		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2815			zone->name, zone->present_pages, batch);
2816}
2817
2818__meminit int init_currently_empty_zone(struct zone *zone,
2819					unsigned long zone_start_pfn,
2820					unsigned long size,
2821					enum memmap_context context)
2822{
2823	struct pglist_data *pgdat = zone->zone_pgdat;
2824	int ret;
2825	ret = zone_wait_table_init(zone, size);
2826	if (ret)
2827		return ret;
2828	pgdat->nr_zones = zone_idx(zone) + 1;
2829
2830	zone->zone_start_pfn = zone_start_pfn;
2831
2832	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2833
2834	zone_init_free_lists(zone);
2835
2836	return 0;
2837}
2838
2839#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2840/*
2841 * Basic iterator support. Return the first range of PFNs for a node
2842 * Note: nid == MAX_NUMNODES returns first region regardless of node
2843 */
2844static int __meminit first_active_region_index_in_nid(int nid)
2845{
2846	int i;
2847
2848	for (i = 0; i < nr_nodemap_entries; i++)
2849		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2850			return i;
2851
2852	return -1;
2853}
2854
2855/*
2856 * Basic iterator support. Return the next active range of PFNs for a node
2857 * Note: nid == MAX_NUMNODES returns next region regardless of node
2858 */
2859static int __meminit next_active_region_index_in_nid(int index, int nid)
2860{
2861	for (index = index + 1; index < nr_nodemap_entries; index++)
2862		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2863			return index;
2864
2865	return -1;
2866}
2867
2868#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2869/*
2870 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2871 * Architectures may implement their own version but if add_active_range()
2872 * was used and there are no special requirements, this is a convenient
2873 * alternative
2874 */
2875int __meminit early_pfn_to_nid(unsigned long pfn)
2876{
2877	int i;
2878
2879	for (i = 0; i < nr_nodemap_entries; i++) {
2880		unsigned long start_pfn = early_node_map[i].start_pfn;
2881		unsigned long end_pfn = early_node_map[i].end_pfn;
2882
2883		if (start_pfn <= pfn && pfn < end_pfn)
2884			return early_node_map[i].nid;
2885	}
2886
2887	return 0;
2888}
2889#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2890
2891/* Basic iterator support to walk early_node_map[] */
2892#define for_each_active_range_index_in_nid(i, nid) \
2893	for (i = first_active_region_index_in_nid(nid); i != -1; \
2894				i = next_active_region_index_in_nid(i, nid))
2895
2896/**
2897 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2898 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2899 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2900 *
2901 * If an architecture guarantees that all ranges registered with
2902 * add_active_ranges() contain no holes and may be freed, this
2903 * this function may be used instead of calling free_bootmem() manually.
2904 */
2905void __init free_bootmem_with_active_regions(int nid,
2906						unsigned long max_low_pfn)
2907{
2908	int i;
2909
2910	for_each_active_range_index_in_nid(i, nid) {
2911		unsigned long size_pages = 0;
2912		unsigned long end_pfn = early_node_map[i].end_pfn;
2913
2914		if (early_node_map[i].start_pfn >= max_low_pfn)
2915			continue;
2916
2917		if (end_pfn > max_low_pfn)
2918			end_pfn = max_low_pfn;
2919
2920		size_pages = end_pfn - early_node_map[i].start_pfn;
2921		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2922				PFN_PHYS(early_node_map[i].start_pfn),
2923				size_pages << PAGE_SHIFT);
2924	}
2925}
2926
2927/**
2928 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2929 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2930 *
2931 * If an architecture guarantees that all ranges registered with
2932 * add_active_ranges() contain no holes and may be freed, this
2933 * function may be used instead of calling memory_present() manually.
2934 */
2935void __init sparse_memory_present_with_active_regions(int nid)
2936{
2937	int i;
2938
2939	for_each_active_range_index_in_nid(i, nid)
2940		memory_present(early_node_map[i].nid,
2941				early_node_map[i].start_pfn,
2942				early_node_map[i].end_pfn);
2943}
2944
2945/**
2946 * push_node_boundaries - Push node boundaries to at least the requested boundary
2947 * @nid: The nid of the node to push the boundary for
2948 * @start_pfn: The start pfn of the node
2949 * @end_pfn: The end pfn of the node
2950 *
2951 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2952 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2953 * be hotplugged even though no physical memory exists. This function allows
2954 * an arch to push out the node boundaries so mem_map is allocated that can
2955 * be used later.
2956 */
2957#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2958void __init push_node_boundaries(unsigned int nid,
2959		unsigned long start_pfn, unsigned long end_pfn)
2960{
2961	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2962			nid, start_pfn, end_pfn);
2963
2964	/* Initialise the boundary for this node if necessary */
2965	if (node_boundary_end_pfn[nid] == 0)
2966		node_boundary_start_pfn[nid] = -1UL;
2967
2968	/* Update the boundaries */
2969	if (node_boundary_start_pfn[nid] > start_pfn)
2970		node_boundary_start_pfn[nid] = start_pfn;
2971	if (node_boundary_end_pfn[nid] < end_pfn)
2972		node_boundary_end_pfn[nid] = end_pfn;
2973}
2974
2975/* If necessary, push the node boundary out for reserve hotadd */
2976static void __meminit account_node_boundary(unsigned int nid,
2977		unsigned long *start_pfn, unsigned long *end_pfn)
2978{
2979	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2980			nid, *start_pfn, *end_pfn);
2981
2982	/* Return if boundary information has not been provided */
2983	if (node_boundary_end_pfn[nid] == 0)
2984		return;
2985
2986	/* Check the boundaries and update if necessary */
2987	if (node_boundary_start_pfn[nid] < *start_pfn)
2988		*start_pfn = node_boundary_start_pfn[nid];
2989	if (node_boundary_end_pfn[nid] > *end_pfn)
2990		*end_pfn = node_boundary_end_pfn[nid];
2991}
2992#else
2993void __init push_node_boundaries(unsigned int nid,
2994		unsigned long start_pfn, unsigned long end_pfn) {}
2995
2996static void __meminit account_node_boundary(unsigned int nid,
2997		unsigned long *start_pfn, unsigned long *end_pfn) {}
2998#endif
2999
3000
3001/**
3002 * get_pfn_range_for_nid - Return the start and end page frames for a node
3003 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3004 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3005 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3006 *
3007 * It returns the start and end page frame of a node based on information
3008 * provided by an arch calling add_active_range(). If called for a node
3009 * with no available memory, a warning is printed and the start and end
3010 * PFNs will be 0.
3011 */
3012void __meminit get_pfn_range_for_nid(unsigned int nid,
3013			unsigned long *start_pfn, unsigned long *end_pfn)
3014{
3015	int i;
3016	*start_pfn = -1UL;
3017	*end_pfn = 0;
3018
3019	for_each_active_range_index_in_nid(i, nid) {
3020		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3021		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3022	}
3023
3024	if (*start_pfn == -1UL)
3025		*start_pfn = 0;
3026
3027	/* Push the node boundaries out if requested */
3028	account_node_boundary(nid, start_pfn, end_pfn);
3029}
3030
3031/*
3032 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3033 * assumption is made that zones within a node are ordered in monotonic
3034 * increasing memory addresses so that the "highest" populated zone is used
3035 */
3036void __init find_usable_zone_for_movable(void)
3037{
3038	int zone_index;
3039	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3040		if (zone_index == ZONE_MOVABLE)
3041			continue;
3042
3043		if (arch_zone_highest_possible_pfn[zone_index] >
3044				arch_zone_lowest_possible_pfn[zone_index])
3045			break;
3046	}
3047
3048	VM_BUG_ON(zone_index == -1);
3049	movable_zone = zone_index;
3050}
3051
3052/*
3053 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3054 * because it is sized independant of architecture. Unlike the other zones,
3055 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3056 * in each node depending on the size of each node and how evenly kernelcore
3057 * is distributed. This helper function adjusts the zone ranges
3058 * provided by the architecture for a given node by using the end of the
3059 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3060 * zones within a node are in order of monotonic increases memory addresses
3061 */
3062void __meminit adjust_zone_range_for_zone_movable(int nid,
3063					unsigned long zone_type,
3064					unsigned long node_start_pfn,
3065					unsigned long node_end_pfn,
3066					unsigned long *zone_start_pfn,
3067					unsigned long *zone_end_pfn)
3068{
3069	/* Only adjust if ZONE_MOVABLE is on this node */
3070	if (zone_movable_pfn[nid]) {
3071		/* Size ZONE_MOVABLE */
3072		if (zone_type == ZONE_MOVABLE) {
3073			*zone_start_pfn = zone_movable_pfn[nid];
3074			*zone_end_pfn = min(node_end_pfn,
3075				arch_zone_highest_possible_pfn[movable_zone]);
3076
3077		/* Adjust for ZONE_MOVABLE starting within this range */
3078		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3079				*zone_end_pfn > zone_movable_pfn[nid]) {
3080			*zone_end_pfn = zone_movable_pfn[nid];
3081
3082		/* Check if this whole range is within ZONE_MOVABLE */
3083		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3084			*zone_start_pfn = *zone_end_pfn;
3085	}
3086}
3087
3088/*
3089 * Return the number of pages a zone spans in a node, including holes
3090 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3091 */
3092static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3093					unsigned long zone_type,
3094					unsigned long *ignored)
3095{
3096	unsigned long node_start_pfn, node_end_pfn;
3097	unsigned long zone_start_pfn, zone_end_pfn;
3098
3099	/* Get the start and end of the node and zone */
3100	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3101	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3102	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3103	adjust_zone_range_for_zone_movable(nid, zone_type,
3104				node_start_pfn, node_end_pfn,
3105				&zone_start_pfn, &zone_end_pfn);
3106
3107	/* Check that this node has pages within the zone's required range */
3108	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3109		return 0;
3110
3111	/* Move the zone boundaries inside the node if necessary */
3112	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3113	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3114
3115	/* Return the spanned pages */
3116	return zone_end_pfn - zone_start_pfn;
3117}
3118
3119/*
3120 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3121 * then all holes in the requested range will be accounted for.
3122 */
3123unsigned long __meminit __absent_pages_in_range(int nid,
3124				unsigned long range_start_pfn,
3125				unsigned long range_end_pfn)
3126{
3127	int i = 0;
3128	unsigned long prev_end_pfn = 0, hole_pages = 0;
3129	unsigned long start_pfn;
3130
3131	/* Find the end_pfn of the first active range of pfns in the node */
3132	i = first_active_region_index_in_nid(nid);
3133	if (i == -1)
3134		return 0;
3135
3136	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3137
3138	/* Account for ranges before physical memory on this node */
3139	if (early_node_map[i].start_pfn > range_start_pfn)
3140		hole_pages = prev_end_pfn - range_start_pfn;
3141
3142	/* Find all holes for the zone within the node */
3143	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3144
3145		/* No need to continue if prev_end_pfn is outside the zone */
3146		if (prev_end_pfn >= range_end_pfn)
3147			break;
3148
3149		/* Make sure the end of the zone is not within the hole */
3150		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3151		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3152
3153		/* Update the hole size cound and move on */
3154		if (start_pfn > range_start_pfn) {
3155			BUG_ON(prev_end_pfn > start_pfn);
3156			hole_pages += start_pfn - prev_end_pfn;
3157		}
3158		prev_end_pfn = early_node_map[i].end_pfn;
3159	}
3160
3161	/* Account for ranges past physical memory on this node */
3162	if (range_end_pfn > prev_end_pfn)
3163		hole_pages += range_end_pfn -
3164				max(range_start_pfn, prev_end_pfn);
3165
3166	return hole_pages;
3167}
3168
3169/**
3170 * absent_pages_in_range - Return number of page frames in holes within a range
3171 * @start_pfn: The start PFN to start searching for holes
3172 * @end_pfn: The end PFN to stop searching for holes
3173 *
3174 * It returns the number of pages frames in memory holes within a range.
3175 */
3176unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3177							unsigned long end_pfn)
3178{
3179	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3180}
3181
3182/* Return the number of page frames in holes in a zone on a node */
3183static unsigned long __meminit zone_absent_pages_in_node(int nid,
3184					unsigned long zone_type,
3185					unsigned long *ignored)
3186{
3187	unsigned long node_start_pfn, node_end_pfn;
3188	unsigned long zone_start_pfn, zone_end_pfn;
3189
3190	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3191	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3192							node_start_pfn);
3193	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3194							node_end_pfn);
3195
3196	adjust_zone_range_for_zone_movable(nid, zone_type,
3197			node_start_pfn, node_end_pfn,
3198			&zone_start_pfn, &zone_end_pfn);
3199	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3200}
3201
3202#else
3203static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3204					unsigned long zone_type,
3205					unsigned long *zones_size)
3206{
3207	return zones_size[zone_type];
3208}
3209
3210static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3211						unsigned long zone_type,
3212						unsigned long *zholes_size)
3213{
3214	if (!zholes_size)
3215		return 0;
3216
3217	return zholes_size[zone_type];
3218}
3219
3220#endif
3221
3222static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3223		unsigned long *zones_size, unsigned long *zholes_size)
3224{
3225	unsigned long realtotalpages, totalpages = 0;
3226	enum zone_type i;
3227
3228	for (i = 0; i < MAX_NR_ZONES; i++)
3229		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3230								zones_size);
3231	pgdat->node_spanned_pages = totalpages;
3232
3233	realtotalpages = totalpages;
3234	for (i = 0; i < MAX_NR_ZONES; i++)
3235		realtotalpages -=
3236			zone_absent_pages_in_node(pgdat->node_id, i,
3237								zholes_size);
3238	pgdat->node_present_pages = realtotalpages;
3239	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3240							realtotalpages);
3241}
3242
3243#ifndef CONFIG_SPARSEMEM
3244/*
3245 * Calculate the size of the zone->blockflags rounded to an unsigned long
3246 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3247 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3248 * round what is now in bits to nearest long in bits, then return it in
3249 * bytes.
3250 */
3251static unsigned long __init usemap_size(unsigned long zonesize)
3252{
3253	unsigned long usemapsize;
3254
3255	usemapsize = roundup(zonesize, pageblock_nr_pages);
3256	usemapsize = usemapsize >> pageblock_order;
3257	usemapsize *= NR_PAGEBLOCK_BITS;
3258	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3259
3260	return usemapsize / 8;
3261}
3262
3263static void __init setup_usemap(struct pglist_data *pgdat,
3264				struct zone *zone, unsigned long zonesize)
3265{
3266	unsigned long usemapsize = usemap_size(zonesize);
3267	zone->pageblock_flags = NULL;
3268	if (usemapsize) {
3269		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3270		memset(zone->pageblock_flags, 0, usemapsize);
3271	}
3272}
3273#else
3274static void inline setup_usemap(struct pglist_data *pgdat,
3275				struct zone *zone, unsigned long zonesize) {}
3276#endif /* CONFIG_SPARSEMEM */
3277
3278#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3279
3280/* Return a sensible default order for the pageblock size. */
3281static inline int pageblock_default_order(void)
3282{
3283	if (HPAGE_SHIFT > PAGE_SHIFT)
3284		return HUGETLB_PAGE_ORDER;
3285
3286	return MAX_ORDER-1;
3287}
3288
3289/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3290static inline void __init set_pageblock_order(unsigned int order)
3291{
3292	/* Check that pageblock_nr_pages has not already been setup */
3293	if (pageblock_order)
3294		return;
3295
3296	/*
3297	 * Assume the largest contiguous order of interest is a huge page.
3298	 * This value may be variable depending on boot parameters on IA64
3299	 */
3300	pageblock_order = order;
3301}
3302#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3303
3304/*
3305 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3306 * and pageblock_default_order() are unused as pageblock_order is set
3307 * at compile-time. See include/linux/pageblock-flags.h for the values of
3308 * pageblock_order based on the kernel config
3309 */
3310static inline int pageblock_default_order(unsigned int order)
3311{
3312	return MAX_ORDER-1;
3313}
3314#define set_pageblock_order(x)	do {} while (0)
3315
3316#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3317
3318/*
3319 * Set up the zone data structures:
3320 *   - mark all pages reserved
3321 *   - mark all memory queues empty
3322 *   - clear the memory bitmaps
3323 */
3324static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3325		unsigned long *zones_size, unsigned long *zholes_size)
3326{
3327	enum zone_type j;
3328	int nid = pgdat->node_id;
3329	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3330	int ret;
3331
3332	pgdat_resize_init(pgdat);
3333	pgdat->nr_zones = 0;
3334	init_waitqueue_head(&pgdat->kswapd_wait);
3335	pgdat->kswapd_max_order = 0;
3336
3337	for (j = 0; j < MAX_NR_ZONES; j++) {
3338		struct zone *zone = pgdat->node_zones + j;
3339		unsigned long size, realsize, memmap_pages;
3340
3341		size = zone_spanned_pages_in_node(nid, j, zones_size);
3342		realsize = size - zone_absent_pages_in_node(nid, j,
3343								zholes_size);
3344
3345		/*
3346		 * Adjust realsize so that it accounts for how much memory
3347		 * is used by this zone for memmap. This affects the watermark
3348		 * and per-cpu initialisations
3349		 */
3350		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3351		if (realsize >= memmap_pages) {
3352			realsize -= memmap_pages;
3353			printk(KERN_DEBUG
3354				"  %s zone: %lu pages used for memmap\n",
3355				zone_names[j], memmap_pages);
3356		} else
3357			printk(KERN_WARNING
3358				"  %s zone: %lu pages exceeds realsize %lu\n",
3359				zone_names[j], memmap_pages, realsize);
3360
3361		/* Account for reserved pages */
3362		if (j == 0 && realsize > dma_reserve) {
3363			realsize -= dma_reserve;
3364			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3365					zone_names[0], dma_reserve);
3366		}
3367
3368		if (!is_highmem_idx(j))
3369			nr_kernel_pages += realsize;
3370		nr_all_pages += realsize;
3371
3372		zone->spanned_pages = size;
3373		zone->present_pages = realsize;
3374#ifdef CONFIG_NUMA
3375		zone->node = nid;
3376		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3377						/ 100;
3378		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3379#endif
3380		zone->name = zone_names[j];
3381		spin_lock_init(&zone->lock);
3382		spin_lock_init(&zone->lru_lock);
3383		zone_seqlock_init(zone);
3384		zone->zone_pgdat = pgdat;
3385
3386		zone->prev_priority = DEF_PRIORITY;
3387
3388		zone_pcp_init(zone);
3389		INIT_LIST_HEAD(&zone->active_list);
3390		INIT_LIST_HEAD(&zone->inactive_list);
3391		zone->nr_scan_active = 0;
3392		zone->nr_scan_inactive = 0;
3393		zap_zone_vm_stats(zone);
3394		zone->flags = 0;
3395		if (!size)
3396			continue;
3397
3398		set_pageblock_order(pageblock_default_order());
3399		setup_usemap(pgdat, zone, size);
3400		ret = init_currently_empty_zone(zone, zone_start_pfn,
3401						size, MEMMAP_EARLY);
3402		BUG_ON(ret);
3403		zone_start_pfn += size;
3404	}
3405}
3406
3407static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3408{
3409	/* Skip empty nodes */
3410	if (!pgdat->node_spanned_pages)
3411		return;
3412
3413#ifdef CONFIG_FLAT_NODE_MEM_MAP
3414	/* ia64 gets its own node_mem_map, before this, without bootmem */
3415	if (!pgdat->node_mem_map) {
3416		unsigned long size, start, end;
3417		struct page *map;
3418
3419		/*
3420		 * The zone's endpoints aren't required to be MAX_ORDER
3421		 * aligned but the node_mem_map endpoints must be in order
3422		 * for the buddy allocator to function correctly.
3423		 */
3424		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3425		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3426		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3427		size =  (end - start) * sizeof(struct page);
3428		map = alloc_remap(pgdat->node_id, size);
3429		if (!map)
3430			map = alloc_bootmem_node(pgdat, size);
3431		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3432	}
3433#ifndef CONFIG_NEED_MULTIPLE_NODES
3434	/*
3435	 * With no DISCONTIG, the global mem_map is just set as node 0's
3436	 */
3437	if (pgdat == NODE_DATA(0)) {
3438		mem_map = NODE_DATA(0)->node_mem_map;
3439#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3440		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3441			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3442#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3443	}
3444#endif
3445#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3446}
3447
3448void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3449		unsigned long *zones_size, unsigned long node_start_pfn,
3450		unsigned long *zholes_size)
3451{
3452	pgdat->node_id = nid;
3453	pgdat->node_start_pfn = node_start_pfn;
3454	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3455
3456	alloc_node_mem_map(pgdat);
3457
3458	free_area_init_core(pgdat, zones_size, zholes_size);
3459}
3460
3461#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3462
3463#if MAX_NUMNODES > 1
3464/*
3465 * Figure out the number of possible node ids.
3466 */
3467static void __init setup_nr_node_ids(void)
3468{
3469	unsigned int node;
3470	unsigned int highest = 0;
3471
3472	for_each_node_mask(node, node_possible_map)
3473		highest = node;
3474	nr_node_ids = highest + 1;
3475}
3476#else
3477static inline void setup_nr_node_ids(void)
3478{
3479}
3480#endif
3481
3482/**
3483 * add_active_range - Register a range of PFNs backed by physical memory
3484 * @nid: The node ID the range resides on
3485 * @start_pfn: The start PFN of the available physical memory
3486 * @end_pfn: The end PFN of the available physical memory
3487 *
3488 * These ranges are stored in an early_node_map[] and later used by
3489 * free_area_init_nodes() to calculate zone sizes and holes. If the
3490 * range spans a memory hole, it is up to the architecture to ensure
3491 * the memory is not freed by the bootmem allocator. If possible
3492 * the range being registered will be merged with existing ranges.
3493 */
3494void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3495						unsigned long end_pfn)
3496{
3497	int i;
3498
3499	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3500			  "%d entries of %d used\n",
3501			  nid, start_pfn, end_pfn,
3502			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3503
3504	/* Merge with existing active regions if possible */
3505	for (i = 0; i < nr_nodemap_entries; i++) {
3506		if (early_node_map[i].nid != nid)
3507			continue;
3508
3509		/* Skip if an existing region covers this new one */
3510		if (start_pfn >= early_node_map[i].start_pfn &&
3511				end_pfn <= early_node_map[i].end_pfn)
3512			return;
3513
3514		/* Merge forward if suitable */
3515		if (start_pfn <= early_node_map[i].end_pfn &&
3516				end_pfn > early_node_map[i].end_pfn) {
3517			early_node_map[i].end_pfn = end_pfn;
3518			return;
3519		}
3520
3521		/* Merge backward if suitable */
3522		if (start_pfn < early_node_map[i].end_pfn &&
3523				end_pfn >= early_node_map[i].start_pfn) {
3524			early_node_map[i].start_pfn = start_pfn;
3525			return;
3526		}
3527	}
3528
3529	/* Check that early_node_map is large enough */
3530	if (i >= MAX_ACTIVE_REGIONS) {
3531		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3532							MAX_ACTIVE_REGIONS);
3533		return;
3534	}
3535
3536	early_node_map[i].nid = nid;
3537	early_node_map[i].start_pfn = start_pfn;
3538	early_node_map[i].end_pfn = end_pfn;
3539	nr_nodemap_entries = i + 1;
3540}
3541
3542/**
3543 * shrink_active_range - Shrink an existing registered range of PFNs
3544 * @nid: The node id the range is on that should be shrunk
3545 * @old_end_pfn: The old end PFN of the range
3546 * @new_end_pfn: The new PFN of the range
3547 *
3548 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3549 * The map is kept at the end physical page range that has already been
3550 * registered with add_active_range(). This function allows an arch to shrink
3551 * an existing registered range.
3552 */
3553void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3554						unsigned long new_end_pfn)
3555{
3556	int i;
3557
3558	/* Find the old active region end and shrink */
3559	for_each_active_range_index_in_nid(i, nid)
3560		if (early_node_map[i].end_pfn == old_end_pfn) {
3561			early_node_map[i].end_pfn = new_end_pfn;
3562			break;
3563		}
3564}
3565
3566/**
3567 * remove_all_active_ranges - Remove all currently registered regions
3568 *
3569 * During discovery, it may be found that a table like SRAT is invalid
3570 * and an alternative discovery method must be used. This function removes
3571 * all currently registered regions.
3572 */
3573void __init remove_all_active_ranges(void)
3574{
3575	memset(early_node_map, 0, sizeof(early_node_map));
3576	nr_nodemap_entries = 0;
3577#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3578	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3579	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3580#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3581}
3582
3583/* Compare two active node_active_regions */
3584static int __init cmp_node_active_region(const void *a, const void *b)
3585{
3586	struct node_active_region *arange = (struct node_active_region *)a;
3587	struct node_active_region *brange = (struct node_active_region *)b;
3588
3589	/* Done this way to avoid overflows */
3590	if (arange->start_pfn > brange->start_pfn)
3591		return 1;
3592	if (arange->start_pfn < brange->start_pfn)
3593		return -1;
3594
3595	return 0;
3596}
3597
3598/* sort the node_map by start_pfn */
3599static void __init sort_node_map(void)
3600{
3601	sort(early_node_map, (size_t)nr_nodemap_entries,
3602			sizeof(struct node_active_region),
3603			cmp_node_active_region, NULL);
3604}
3605
3606/* Find the lowest pfn for a node */
3607unsigned long __init find_min_pfn_for_node(unsigned long nid)
3608{
3609	int i;
3610	unsigned long min_pfn = ULONG_MAX;
3611
3612	/* Assuming a sorted map, the first range found has the starting pfn */
3613	for_each_active_range_index_in_nid(i, nid)
3614		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3615
3616	if (min_pfn == ULONG_MAX) {
3617		printk(KERN_WARNING
3618			"Could not find start_pfn for node %lu\n", nid);
3619		return 0;
3620	}
3621
3622	return min_pfn;
3623}
3624
3625/**
3626 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3627 *
3628 * It returns the minimum PFN based on information provided via
3629 * add_active_range().
3630 */
3631unsigned long __init find_min_pfn_with_active_regions(void)
3632{
3633	return find_min_pfn_for_node(MAX_NUMNODES);
3634}
3635
3636/**
3637 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3638 *
3639 * It returns the maximum PFN based on information provided via
3640 * add_active_range().
3641 */
3642unsigned long __init find_max_pfn_with_active_regions(void)
3643{
3644	int i;
3645	unsigned long max_pfn = 0;
3646
3647	for (i = 0; i < nr_nodemap_entries; i++)
3648		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3649
3650	return max_pfn;
3651}
3652
3653/*
3654 * early_calculate_totalpages()
3655 * Sum pages in active regions for movable zone.
3656 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3657 */
3658static unsigned long __init early_calculate_totalpages(void)
3659{
3660	int i;
3661	unsigned long totalpages = 0;
3662
3663	for (i = 0; i < nr_nodemap_entries; i++) {
3664		unsigned long pages = early_node_map[i].end_pfn -
3665						early_node_map[i].start_pfn;
3666		totalpages += pages;
3667		if (pages)
3668			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3669	}
3670  	return totalpages;
3671}
3672
3673/*
3674 * Find the PFN the Movable zone begins in each node. Kernel memory
3675 * is spread evenly between nodes as long as the nodes have enough
3676 * memory. When they don't, some nodes will have more kernelcore than
3677 * others
3678 */
3679void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3680{
3681	int i, nid;
3682	unsigned long usable_startpfn;
3683	unsigned long kernelcore_node, kernelcore_remaining;
3684	unsigned long totalpages = early_calculate_totalpages();
3685	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3686
3687	/*
3688	 * If movablecore was specified, calculate what size of
3689	 * kernelcore that corresponds so that memory usable for
3690	 * any allocation type is evenly spread. If both kernelcore
3691	 * and movablecore are specified, then the value of kernelcore
3692	 * will be used for required_kernelcore if it's greater than
3693	 * what movablecore would have allowed.
3694	 */
3695	if (required_movablecore) {
3696		unsigned long corepages;
3697
3698		/*
3699		 * Round-up so that ZONE_MOVABLE is at least as large as what
3700		 * was requested by the user
3701		 */
3702		required_movablecore =
3703			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3704		corepages = totalpages - required_movablecore;
3705
3706		required_kernelcore = max(required_kernelcore, corepages);
3707	}
3708
3709	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3710	if (!required_kernelcore)
3711		return;
3712
3713	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3714	find_usable_zone_for_movable();
3715	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3716
3717restart:
3718	/* Spread kernelcore memory as evenly as possible throughout nodes */
3719	kernelcore_node = required_kernelcore / usable_nodes;
3720	for_each_node_state(nid, N_HIGH_MEMORY) {
3721		/*
3722		 * Recalculate kernelcore_node if the division per node
3723		 * now exceeds what is necessary to satisfy the requested
3724		 * amount of memory for the kernel
3725		 */
3726		if (required_kernelcore < kernelcore_node)
3727			kernelcore_node = required_kernelcore / usable_nodes;
3728
3729		/*
3730		 * As the map is walked, we track how much memory is usable
3731		 * by the kernel using kernelcore_remaining. When it is
3732		 * 0, the rest of the node is usable by ZONE_MOVABLE
3733		 */
3734		kernelcore_remaining = kernelcore_node;
3735
3736		/* Go through each range of PFNs within this node */
3737		for_each_active_range_index_in_nid(i, nid) {
3738			unsigned long start_pfn, end_pfn;
3739			unsigned long size_pages;
3740
3741			start_pfn = max(early_node_map[i].start_pfn,
3742						zone_movable_pfn[nid]);
3743			end_pfn = early_node_map[i].end_pfn;
3744			if (start_pfn >= end_pfn)
3745				continue;
3746
3747			/* Account for what is only usable for kernelcore */
3748			if (start_pfn < usable_startpfn) {
3749				unsigned long kernel_pages;
3750				kernel_pages = min(end_pfn, usable_startpfn)
3751								- start_pfn;
3752
3753				kernelcore_remaining -= min(kernel_pages,
3754							kernelcore_remaining);
3755				required_kernelcore -= min(kernel_pages,
3756							required_kernelcore);
3757
3758				/* Continue if range is now fully accounted */
3759				if (end_pfn <= usable_startpfn) {
3760
3761					/*
3762					 * Push zone_movable_pfn to the end so
3763					 * that if we have to rebalance
3764					 * kernelcore across nodes, we will
3765					 * not double account here
3766					 */
3767					zone_movable_pfn[nid] = end_pfn;
3768					continue;
3769				}
3770				start_pfn = usable_startpfn;
3771			}
3772
3773			/*
3774			 * The usable PFN range for ZONE_MOVABLE is from
3775			 * start_pfn->end_pfn. Calculate size_pages as the
3776			 * number of pages used as kernelcore
3777			 */
3778			size_pages = end_pfn - start_pfn;
3779			if (size_pages > kernelcore_remaining)
3780				size_pages = kernelcore_remaining;
3781			zone_movable_pfn[nid] = start_pfn + size_pages;
3782
3783			/*
3784			 * Some kernelcore has been met, update counts and
3785			 * break if the kernelcore for this node has been
3786			 * satisified
3787			 */
3788			required_kernelcore -= min(required_kernelcore,
3789								size_pages);
3790			kernelcore_remaining -= size_pages;
3791			if (!kernelcore_remaining)
3792				break;
3793		}
3794	}
3795
3796	/*
3797	 * If there is still required_kernelcore, we do another pass with one
3798	 * less node in the count. This will push zone_movable_pfn[nid] further
3799	 * along on the nodes that still have memory until kernelcore is
3800	 * satisified
3801	 */
3802	usable_nodes--;
3803	if (usable_nodes && required_kernelcore > usable_nodes)
3804		goto restart;
3805
3806	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3807	for (nid = 0; nid < MAX_NUMNODES; nid++)
3808		zone_movable_pfn[nid] =
3809			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3810}
3811
3812/* Any regular memory on that node ? */
3813static void check_for_regular_memory(pg_data_t *pgdat)
3814{
3815#ifdef CONFIG_HIGHMEM
3816	enum zone_type zone_type;
3817
3818	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3819		struct zone *zone = &pgdat->node_zones[zone_type];
3820		if (zone->present_pages)
3821			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3822	}
3823#endif
3824}
3825
3826/**
3827 * free_area_init_nodes - Initialise all pg_data_t and zone data
3828 * @max_zone_pfn: an array of max PFNs for each zone
3829 *
3830 * This will call free_area_init_node() for each active node in the system.
3831 * Using the page ranges provided by add_active_range(), the size of each
3832 * zone in each node and their holes is calculated. If the maximum PFN
3833 * between two adjacent zones match, it is assumed that the zone is empty.
3834 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3835 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3836 * starts where the previous one ended. For example, ZONE_DMA32 starts
3837 * at arch_max_dma_pfn.
3838 */
3839void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3840{
3841	unsigned long nid;
3842	enum zone_type i;
3843
3844	/* Sort early_node_map as initialisation assumes it is sorted */
3845	sort_node_map();
3846
3847	/* Record where the zone boundaries are */
3848	memset(arch_zone_lowest_possible_pfn, 0,
3849				sizeof(arch_zone_lowest_possible_pfn));
3850	memset(arch_zone_highest_possible_pfn, 0,
3851				sizeof(arch_zone_highest_possible_pfn));
3852	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3853	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3854	for (i = 1; i < MAX_NR_ZONES; i++) {
3855		if (i == ZONE_MOVABLE)
3856			continue;
3857		arch_zone_lowest_possible_pfn[i] =
3858			arch_zone_highest_possible_pfn[i-1];
3859		arch_zone_highest_possible_pfn[i] =
3860			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3861	}
3862	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3863	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3864
3865	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3866	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3867	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3868
3869	/* Print out the zone ranges */
3870	printk("Zone PFN ranges:\n");
3871	for (i = 0; i < MAX_NR_ZONES; i++) {
3872		if (i == ZONE_MOVABLE)
3873			continue;
3874		printk("  %-8s %8lu -> %8lu\n",
3875				zone_names[i],
3876				arch_zone_lowest_possible_pfn[i],
3877				arch_zone_highest_possible_pfn[i]);
3878	}
3879
3880	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3881	printk("Movable zone start PFN for each node\n");
3882	for (i = 0; i < MAX_NUMNODES; i++) {
3883		if (zone_movable_pfn[i])
3884			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3885	}
3886
3887	/* Print out the early_node_map[] */
3888	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3889	for (i = 0; i < nr_nodemap_entries; i++)
3890		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3891						early_node_map[i].start_pfn,
3892						early_node_map[i].end_pfn);
3893
3894	/* Initialise every node */
3895	setup_nr_node_ids();
3896	for_each_online_node(nid) {
3897		pg_data_t *pgdat = NODE_DATA(nid);
3898		free_area_init_node(nid, pgdat, NULL,
3899				find_min_pfn_for_node(nid), NULL);
3900
3901		/* Any memory on that node */
3902		if (pgdat->node_present_pages)
3903			node_set_state(nid, N_HIGH_MEMORY);
3904		check_for_regular_memory(pgdat);
3905	}
3906}
3907
3908static int __init cmdline_parse_core(char *p, unsigned long *core)
3909{
3910	unsigned long long coremem;
3911	if (!p)
3912		return -EINVAL;
3913
3914	coremem = memparse(p, &p);
3915	*core = coremem >> PAGE_SHIFT;
3916
3917	/* Paranoid check that UL is enough for the coremem value */
3918	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3919
3920	return 0;
3921}
3922
3923/*
3924 * kernelcore=size sets the amount of memory for use for allocations that
3925 * cannot be reclaimed or migrated.
3926 */
3927static int __init cmdline_parse_kernelcore(char *p)
3928{
3929	return cmdline_parse_core(p, &required_kernelcore);
3930}
3931
3932/*
3933 * movablecore=size sets the amount of memory for use for allocations that
3934 * can be reclaimed or migrated.
3935 */
3936static int __init cmdline_parse_movablecore(char *p)
3937{
3938	return cmdline_parse_core(p, &required_movablecore);
3939}
3940
3941early_param("kernelcore", cmdline_parse_kernelcore);
3942early_param("movablecore", cmdline_parse_movablecore);
3943
3944#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3945
3946/**
3947 * set_dma_reserve - set the specified number of pages reserved in the first zone
3948 * @new_dma_reserve: The number of pages to mark reserved
3949 *
3950 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3951 * In the DMA zone, a significant percentage may be consumed by kernel image
3952 * and other unfreeable allocations which can skew the watermarks badly. This
3953 * function may optionally be used to account for unfreeable pages in the
3954 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3955 * smaller per-cpu batchsize.
3956 */
3957void __init set_dma_reserve(unsigned long new_dma_reserve)
3958{
3959	dma_reserve = new_dma_reserve;
3960}
3961
3962#ifndef CONFIG_NEED_MULTIPLE_NODES
3963static bootmem_data_t contig_bootmem_data;
3964struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3965
3966EXPORT_SYMBOL(contig_page_data);
3967#endif
3968
3969void __init free_area_init(unsigned long *zones_size)
3970{
3971	free_area_init_node(0, NODE_DATA(0), zones_size,
3972			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3973}
3974
3975static int page_alloc_cpu_notify(struct notifier_block *self,
3976				 unsigned long action, void *hcpu)
3977{
3978	int cpu = (unsigned long)hcpu;
3979
3980	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3981		drain_pages(cpu);
3982
3983		/*
3984		 * Spill the event counters of the dead processor
3985		 * into the current processors event counters.
3986		 * This artificially elevates the count of the current
3987		 * processor.
3988		 */
3989		vm_events_fold_cpu(cpu);
3990
3991		/*
3992		 * Zero the differential counters of the dead processor
3993		 * so that the vm statistics are consistent.
3994		 *
3995		 * This is only okay since the processor is dead and cannot
3996		 * race with what we are doing.
3997		 */
3998		refresh_cpu_vm_stats(cpu);
3999	}
4000	return NOTIFY_OK;
4001}
4002
4003void __init page_alloc_init(void)
4004{
4005	hotcpu_notifier(page_alloc_cpu_notify, 0);
4006}
4007
4008/*
4009 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4010 *	or min_free_kbytes changes.
4011 */
4012static void calculate_totalreserve_pages(void)
4013{
4014	struct pglist_data *pgdat;
4015	unsigned long reserve_pages = 0;
4016	enum zone_type i, j;
4017
4018	for_each_online_pgdat(pgdat) {
4019		for (i = 0; i < MAX_NR_ZONES; i++) {
4020			struct zone *zone = pgdat->node_zones + i;
4021			unsigned long max = 0;
4022
4023			/* Find valid and maximum lowmem_reserve in the zone */
4024			for (j = i; j < MAX_NR_ZONES; j++) {
4025				if (zone->lowmem_reserve[j] > max)
4026					max = zone->lowmem_reserve[j];
4027			}
4028
4029			/* we treat pages_high as reserved pages. */
4030			max += zone->pages_high;
4031
4032			if (max > zone->present_pages)
4033				max = zone->present_pages;
4034			reserve_pages += max;
4035		}
4036	}
4037	totalreserve_pages = reserve_pages;
4038}
4039
4040/*
4041 * setup_per_zone_lowmem_reserve - called whenever
4042 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4043 *	has a correct pages reserved value, so an adequate number of
4044 *	pages are left in the zone after a successful __alloc_pages().
4045 */
4046static void setup_per_zone_lowmem_reserve(void)
4047{
4048	struct pglist_data *pgdat;
4049	enum zone_type j, idx;
4050
4051	for_each_online_pgdat(pgdat) {
4052		for (j = 0; j < MAX_NR_ZONES; j++) {
4053			struct zone *zone = pgdat->node_zones + j;
4054			unsigned long present_pages = zone->present_pages;
4055
4056			zone->lowmem_reserve[j] = 0;
4057
4058			idx = j;
4059			while (idx) {
4060				struct zone *lower_zone;
4061
4062				idx--;
4063
4064				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4065					sysctl_lowmem_reserve_ratio[idx] = 1;
4066
4067				lower_zone = pgdat->node_zones + idx;
4068				lower_zone->lowmem_reserve[j] = present_pages /
4069					sysctl_lowmem_reserve_ratio[idx];
4070				present_pages += lower_zone->present_pages;
4071			}
4072		}
4073	}
4074
4075	/* update totalreserve_pages */
4076	calculate_totalreserve_pages();
4077}
4078
4079/**
4080 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4081 *
4082 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4083 * with respect to min_free_kbytes.
4084 */
4085void setup_per_zone_pages_min(void)
4086{
4087	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4088	unsigned long lowmem_pages = 0;
4089	struct zone *zone;
4090	unsigned long flags;
4091
4092	/* Calculate total number of !ZONE_HIGHMEM pages */
4093	for_each_zone(zone) {
4094		if (!is_highmem(zone))
4095			lowmem_pages += zone->present_pages;
4096	}
4097
4098	for_each_zone(zone) {
4099		u64 tmp;
4100
4101		spin_lock_irqsave(&zone->lru_lock, flags);
4102		tmp = (u64)pages_min * zone->present_pages;
4103		do_div(tmp, lowmem_pages);
4104		if (is_highmem(zone)) {
4105			/*
4106			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4107			 * need highmem pages, so cap pages_min to a small
4108			 * value here.
4109			 *
4110			 * The (pages_high-pages_low) and (pages_low-pages_min)
4111			 * deltas controls asynch page reclaim, and so should
4112			 * not be capped for highmem.
4113			 */
4114			int min_pages;
4115
4116			min_pages = zone->present_pages / 1024;
4117			if (min_pages < SWAP_CLUSTER_MAX)
4118				min_pages = SWAP_CLUSTER_MAX;
4119			if (min_pages > 128)
4120				min_pages = 128;
4121			zone->pages_min = min_pages;
4122		} else {
4123			/*
4124			 * If it's a lowmem zone, reserve a number of pages
4125			 * proportionate to the zone's size.
4126			 */
4127			zone->pages_min = tmp;
4128		}
4129
4130		zone->pages_low   = zone->pages_min + (tmp >> 2);
4131		zone->pages_high  = zone->pages_min + (tmp >> 1);
4132		setup_zone_migrate_reserve(zone);
4133		spin_unlock_irqrestore(&zone->lru_lock, flags);
4134	}
4135
4136	/* update totalreserve_pages */
4137	calculate_totalreserve_pages();
4138}
4139
4140/*
4141 * Initialise min_free_kbytes.
4142 *
4143 * For small machines we want it small (128k min).  For large machines
4144 * we want it large (64MB max).  But it is not linear, because network
4145 * bandwidth does not increase linearly with machine size.  We use
4146 *
4147 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4148 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4149 *
4150 * which yields
4151 *
4152 * 16MB:	512k
4153 * 32MB:	724k
4154 * 64MB:	1024k
4155 * 128MB:	1448k
4156 * 256MB:	2048k
4157 * 512MB:	2896k
4158 * 1024MB:	4096k
4159 * 2048MB:	5792k
4160 * 4096MB:	8192k
4161 * 8192MB:	11584k
4162 * 16384MB:	16384k
4163 */
4164static int __init init_per_zone_pages_min(void)
4165{
4166	unsigned long lowmem_kbytes;
4167
4168	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4169
4170	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4171	if (min_free_kbytes < 128)
4172		min_free_kbytes = 128;
4173	if (min_free_kbytes > 65536)
4174		min_free_kbytes = 65536;
4175	setup_per_zone_pages_min();
4176	setup_per_zone_lowmem_reserve();
4177	return 0;
4178}
4179module_init(init_per_zone_pages_min)
4180
4181/*
4182 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4183 *	that we can call two helper functions whenever min_free_kbytes
4184 *	changes.
4185 */
4186int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4187	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4188{
4189	proc_dointvec(table, write, file, buffer, length, ppos);
4190	if (write)
4191		setup_per_zone_pages_min();
4192	return 0;
4193}
4194
4195#ifdef CONFIG_NUMA
4196int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4197	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4198{
4199	struct zone *zone;
4200	int rc;
4201
4202	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4203	if (rc)
4204		return rc;
4205
4206	for_each_zone(zone)
4207		zone->min_unmapped_pages = (zone->present_pages *
4208				sysctl_min_unmapped_ratio) / 100;
4209	return 0;
4210}
4211
4212int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4213	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4214{
4215	struct zone *zone;
4216	int rc;
4217
4218	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4219	if (rc)
4220		return rc;
4221
4222	for_each_zone(zone)
4223		zone->min_slab_pages = (zone->present_pages *
4224				sysctl_min_slab_ratio) / 100;
4225	return 0;
4226}
4227#endif
4228
4229/*
4230 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4231 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4232 *	whenever sysctl_lowmem_reserve_ratio changes.
4233 *
4234 * The reserve ratio obviously has absolutely no relation with the
4235 * pages_min watermarks. The lowmem reserve ratio can only make sense
4236 * if in function of the boot time zone sizes.
4237 */
4238int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4239	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4240{
4241	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4242	setup_per_zone_lowmem_reserve();
4243	return 0;
4244}
4245
4246/*
4247 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4248 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4249 * can have before it gets flushed back to buddy allocator.
4250 */
4251
4252int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4253	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4254{
4255	struct zone *zone;
4256	unsigned int cpu;
4257	int ret;
4258
4259	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4260	if (!write || (ret == -EINVAL))
4261		return ret;
4262	for_each_zone(zone) {
4263		for_each_online_cpu(cpu) {
4264			unsigned long  high;
4265			high = zone->present_pages / percpu_pagelist_fraction;
4266			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4267		}
4268	}
4269	return 0;
4270}
4271
4272int hashdist = HASHDIST_DEFAULT;
4273
4274#ifdef CONFIG_NUMA
4275static int __init set_hashdist(char *str)
4276{
4277	if (!str)
4278		return 0;
4279	hashdist = simple_strtoul(str, &str, 0);
4280	return 1;
4281}
4282__setup("hashdist=", set_hashdist);
4283#endif
4284
4285/*
4286 * allocate a large system hash table from bootmem
4287 * - it is assumed that the hash table must contain an exact power-of-2
4288 *   quantity of entries
4289 * - limit is the number of hash buckets, not the total allocation size
4290 */
4291void *__init alloc_large_system_hash(const char *tablename,
4292				     unsigned long bucketsize,
4293				     unsigned long numentries,
4294				     int scale,
4295				     int flags,
4296				     unsigned int *_hash_shift,
4297				     unsigned int *_hash_mask,
4298				     unsigned long limit)
4299{
4300	unsigned long long max = limit;
4301	unsigned long log2qty, size;
4302	void *table = NULL;
4303
4304	/* allow the kernel cmdline to have a say */
4305	if (!numentries) {
4306		/* round applicable memory size up to nearest megabyte */
4307		numentries = nr_kernel_pages;
4308		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4309		numentries >>= 20 - PAGE_SHIFT;
4310		numentries <<= 20 - PAGE_SHIFT;
4311
4312		/* limit to 1 bucket per 2^scale bytes of low memory */
4313		if (scale > PAGE_SHIFT)
4314			numentries >>= (scale - PAGE_SHIFT);
4315		else
4316			numentries <<= (PAGE_SHIFT - scale);
4317
4318		/* Make sure we've got at least a 0-order allocation.. */
4319		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4320			numentries = PAGE_SIZE / bucketsize;
4321	}
4322	numentries = roundup_pow_of_two(numentries);
4323
4324	/* limit allocation size to 1/16 total memory by default */
4325	if (max == 0) {
4326		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4327		do_div(max, bucketsize);
4328	}
4329
4330	if (numentries > max)
4331		numentries = max;
4332
4333	log2qty = ilog2(numentries);
4334
4335	do {
4336		size = bucketsize << log2qty;
4337		if (flags & HASH_EARLY)
4338			table = alloc_bootmem(size);
4339		else if (hashdist)
4340			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4341		else {
4342			unsigned long order;
4343			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4344				;
4345			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4346			/*
4347			 * If bucketsize is not a power-of-two, we may free
4348			 * some pages at the end of hash table.
4349			 */
4350			if (table) {
4351				unsigned long alloc_end = (unsigned long)table +
4352						(PAGE_SIZE << order);
4353				unsigned long used = (unsigned long)table +
4354						PAGE_ALIGN(size);
4355				split_page(virt_to_page(table), order);
4356				while (used < alloc_end) {
4357					free_page(used);
4358					used += PAGE_SIZE;
4359				}
4360			}
4361		}
4362	} while (!table && size > PAGE_SIZE && --log2qty);
4363
4364	if (!table)
4365		panic("Failed to allocate %s hash table\n", tablename);
4366
4367	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4368	       tablename,
4369	       (1U << log2qty),
4370	       ilog2(size) - PAGE_SHIFT,
4371	       size);
4372
4373	if (_hash_shift)
4374		*_hash_shift = log2qty;
4375	if (_hash_mask)
4376		*_hash_mask = (1 << log2qty) - 1;
4377
4378	return table;
4379}
4380
4381#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4382struct page *pfn_to_page(unsigned long pfn)
4383{
4384	return __pfn_to_page(pfn);
4385}
4386unsigned long page_to_pfn(struct page *page)
4387{
4388	return __page_to_pfn(page);
4389}
4390EXPORT_SYMBOL(pfn_to_page);
4391EXPORT_SYMBOL(page_to_pfn);
4392#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4393
4394/* Return a pointer to the bitmap storing bits affecting a block of pages */
4395static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4396							unsigned long pfn)
4397{
4398#ifdef CONFIG_SPARSEMEM
4399	return __pfn_to_section(pfn)->pageblock_flags;
4400#else
4401	return zone->pageblock_flags;
4402#endif /* CONFIG_SPARSEMEM */
4403}
4404
4405static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4406{
4407#ifdef CONFIG_SPARSEMEM
4408	pfn &= (PAGES_PER_SECTION-1);
4409	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4410#else
4411	pfn = pfn - zone->zone_start_pfn;
4412	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4413#endif /* CONFIG_SPARSEMEM */
4414}
4415
4416/**
4417 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4418 * @page: The page within the block of interest
4419 * @start_bitidx: The first bit of interest to retrieve
4420 * @end_bitidx: The last bit of interest
4421 * returns pageblock_bits flags
4422 */
4423unsigned long get_pageblock_flags_group(struct page *page,
4424					int start_bitidx, int end_bitidx)
4425{
4426	struct zone *zone;
4427	unsigned long *bitmap;
4428	unsigned long pfn, bitidx;
4429	unsigned long flags = 0;
4430	unsigned long value = 1;
4431
4432	zone = page_zone(page);
4433	pfn = page_to_pfn(page);
4434	bitmap = get_pageblock_bitmap(zone, pfn);
4435	bitidx = pfn_to_bitidx(zone, pfn);
4436
4437	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4438		if (test_bit(bitidx + start_bitidx, bitmap))
4439			flags |= value;
4440
4441	return flags;
4442}
4443
4444/**
4445 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4446 * @page: The page within the block of interest
4447 * @start_bitidx: The first bit of interest
4448 * @end_bitidx: The last bit of interest
4449 * @flags: The flags to set
4450 */
4451void set_pageblock_flags_group(struct page *page, unsigned long flags,
4452					int start_bitidx, int end_bitidx)
4453{
4454	struct zone *zone;
4455	unsigned long *bitmap;
4456	unsigned long pfn, bitidx;
4457	unsigned long value = 1;
4458
4459	zone = page_zone(page);
4460	pfn = page_to_pfn(page);
4461	bitmap = get_pageblock_bitmap(zone, pfn);
4462	bitidx = pfn_to_bitidx(zone, pfn);
4463
4464	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4465		if (flags & value)
4466			__set_bit(bitidx + start_bitidx, bitmap);
4467		else
4468			__clear_bit(bitidx + start_bitidx, bitmap);
4469}
4470
4471/*
4472 * This is designed as sub function...plz see page_isolation.c also.
4473 * set/clear page block's type to be ISOLATE.
4474 * page allocater never alloc memory from ISOLATE block.
4475 */
4476
4477int set_migratetype_isolate(struct page *page)
4478{
4479	struct zone *zone;
4480	unsigned long flags;
4481	int ret = -EBUSY;
4482
4483	zone = page_zone(page);
4484	spin_lock_irqsave(&zone->lock, flags);
4485	/*
4486	 * In future, more migrate types will be able to be isolation target.
4487	 */
4488	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4489		goto out;
4490	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4491	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4492	ret = 0;
4493out:
4494	spin_unlock_irqrestore(&zone->lock, flags);
4495	if (!ret)
4496		drain_all_pages();
4497	return ret;
4498}
4499
4500void unset_migratetype_isolate(struct page *page)
4501{
4502	struct zone *zone;
4503	unsigned long flags;
4504	zone = page_zone(page);
4505	spin_lock_irqsave(&zone->lock, flags);
4506	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4507		goto out;
4508	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4509	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4510out:
4511	spin_unlock_irqrestore(&zone->lock, flags);
4512}
4513
4514#ifdef CONFIG_MEMORY_HOTREMOVE
4515/*
4516 * All pages in the range must be isolated before calling this.
4517 */
4518void
4519__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4520{
4521	struct page *page;
4522	struct zone *zone;
4523	int order, i;
4524	unsigned long pfn;
4525	unsigned long flags;
4526	/* find the first valid pfn */
4527	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4528		if (pfn_valid(pfn))
4529			break;
4530	if (pfn == end_pfn)
4531		return;
4532	zone = page_zone(pfn_to_page(pfn));
4533	spin_lock_irqsave(&zone->lock, flags);
4534	pfn = start_pfn;
4535	while (pfn < end_pfn) {
4536		if (!pfn_valid(pfn)) {
4537			pfn++;
4538			continue;
4539		}
4540		page = pfn_to_page(pfn);
4541		BUG_ON(page_count(page));
4542		BUG_ON(!PageBuddy(page));
4543		order = page_order(page);
4544#ifdef CONFIG_DEBUG_VM
4545		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4546		       pfn, 1 << order, end_pfn);
4547#endif
4548		list_del(&page->lru);
4549		rmv_page_order(page);
4550		zone->free_area[order].nr_free--;
4551		__mod_zone_page_state(zone, NR_FREE_PAGES,
4552				      - (1UL << order));
4553		for (i = 0; i < (1 << order); i++)
4554			SetPageReserved((page+i));
4555		pfn += (1 << order);
4556	}
4557	spin_unlock_irqrestore(&zone->lock, flags);
4558}
4559#endif
4560