page_alloc.c revision f034b5d4efdfe0fb9e2a1ce1d95fa7914f24de49
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50EXPORT_SYMBOL(node_online_map);
51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52EXPORT_SYMBOL(node_possible_map);
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
55unsigned long totalreserve_pages __read_mostly;
56long nr_swap_pages;
57int percpu_pagelist_fraction;
58
59static void __free_pages_ok(struct page *page, unsigned int order);
60
61/*
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 *	1G machine -> (16M dma, 784M normal, 224M high)
65 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 *
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
71 */
72int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73
74EXPORT_SYMBOL(totalram_pages);
75
76/*
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
79 */
80struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81EXPORT_SYMBOL(zone_table);
82
83static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84int min_free_kbytes = 1024;
85
86unsigned long __meminitdata nr_kernel_pages;
87unsigned long __meminitdata nr_all_pages;
88
89#ifdef CONFIG_DEBUG_VM
90static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91{
92	int ret = 0;
93	unsigned seq;
94	unsigned long pfn = page_to_pfn(page);
95
96	do {
97		seq = zone_span_seqbegin(zone);
98		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99			ret = 1;
100		else if (pfn < zone->zone_start_pfn)
101			ret = 1;
102	} while (zone_span_seqretry(zone, seq));
103
104	return ret;
105}
106
107static int page_is_consistent(struct zone *zone, struct page *page)
108{
109#ifdef CONFIG_HOLES_IN_ZONE
110	if (!pfn_valid(page_to_pfn(page)))
111		return 0;
112#endif
113	if (zone != page_zone(page))
114		return 0;
115
116	return 1;
117}
118/*
119 * Temporary debugging check for pages not lying within a given zone.
120 */
121static int bad_range(struct zone *zone, struct page *page)
122{
123	if (page_outside_zone_boundaries(zone, page))
124		return 1;
125	if (!page_is_consistent(zone, page))
126		return 1;
127
128	return 0;
129}
130
131#else
132static inline int bad_range(struct zone *zone, struct page *page)
133{
134	return 0;
135}
136#endif
137
138static void bad_page(struct page *page)
139{
140	printk(KERN_EMERG "Bad page state in process '%s'\n"
141		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143		KERN_EMERG "Backtrace:\n",
144		current->comm, page, (int)(2*sizeof(unsigned long)),
145		(unsigned long)page->flags, page->mapping,
146		page_mapcount(page), page_count(page));
147	dump_stack();
148	page->flags &= ~(1 << PG_lru	|
149			1 << PG_private |
150			1 << PG_locked	|
151			1 << PG_active	|
152			1 << PG_dirty	|
153			1 << PG_reclaim |
154			1 << PG_slab    |
155			1 << PG_swapcache |
156			1 << PG_writeback |
157			1 << PG_buddy );
158	set_page_count(page, 0);
159	reset_page_mapcount(page);
160	page->mapping = NULL;
161	add_taint(TAINT_BAD_PAGE);
162}
163
164/*
165 * Higher-order pages are called "compound pages".  They are structured thusly:
166 *
167 * The first PAGE_SIZE page is called the "head page".
168 *
169 * The remaining PAGE_SIZE pages are called "tail pages".
170 *
171 * All pages have PG_compound set.  All pages have their ->private pointing at
172 * the head page (even the head page has this).
173 *
174 * The first tail page's ->lru.next holds the address of the compound page's
175 * put_page() function.  Its ->lru.prev holds the order of allocation.
176 * This usage means that zero-order pages may not be compound.
177 */
178
179static void free_compound_page(struct page *page)
180{
181	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
182}
183
184static void prep_compound_page(struct page *page, unsigned long order)
185{
186	int i;
187	int nr_pages = 1 << order;
188
189	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
190	page[1].lru.prev = (void *)order;
191	for (i = 0; i < nr_pages; i++) {
192		struct page *p = page + i;
193
194		__SetPageCompound(p);
195		set_page_private(p, (unsigned long)page);
196	}
197}
198
199static void destroy_compound_page(struct page *page, unsigned long order)
200{
201	int i;
202	int nr_pages = 1 << order;
203
204	if (unlikely((unsigned long)page[1].lru.prev != order))
205		bad_page(page);
206
207	for (i = 0; i < nr_pages; i++) {
208		struct page *p = page + i;
209
210		if (unlikely(!PageCompound(p) |
211				(page_private(p) != (unsigned long)page)))
212			bad_page(page);
213		__ClearPageCompound(p);
214	}
215}
216
217static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
218{
219	int i;
220
221	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
222	/*
223	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224	 * and __GFP_HIGHMEM from hard or soft interrupt context.
225	 */
226	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
227	for (i = 0; i < (1 << order); i++)
228		clear_highpage(page + i);
229}
230
231/*
232 * function for dealing with page's order in buddy system.
233 * zone->lock is already acquired when we use these.
234 * So, we don't need atomic page->flags operations here.
235 */
236static inline unsigned long page_order(struct page *page)
237{
238	return page_private(page);
239}
240
241static inline void set_page_order(struct page *page, int order)
242{
243	set_page_private(page, order);
244	__SetPageBuddy(page);
245}
246
247static inline void rmv_page_order(struct page *page)
248{
249	__ClearPageBuddy(page);
250	set_page_private(page, 0);
251}
252
253/*
254 * Locate the struct page for both the matching buddy in our
255 * pair (buddy1) and the combined O(n+1) page they form (page).
256 *
257 * 1) Any buddy B1 will have an order O twin B2 which satisfies
258 * the following equation:
259 *     B2 = B1 ^ (1 << O)
260 * For example, if the starting buddy (buddy2) is #8 its order
261 * 1 buddy is #10:
262 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263 *
264 * 2) Any buddy B will have an order O+1 parent P which
265 * satisfies the following equation:
266 *     P = B & ~(1 << O)
267 *
268 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
269 */
270static inline struct page *
271__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
272{
273	unsigned long buddy_idx = page_idx ^ (1 << order);
274
275	return page + (buddy_idx - page_idx);
276}
277
278static inline unsigned long
279__find_combined_index(unsigned long page_idx, unsigned int order)
280{
281	return (page_idx & ~(1 << order));
282}
283
284/*
285 * This function checks whether a page is free && is the buddy
286 * we can do coalesce a page and its buddy if
287 * (a) the buddy is not in a hole &&
288 * (b) the buddy is in the buddy system &&
289 * (c) a page and its buddy have the same order &&
290 * (d) a page and its buddy are in the same zone.
291 *
292 * For recording whether a page is in the buddy system, we use PG_buddy.
293 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
294 *
295 * For recording page's order, we use page_private(page).
296 */
297static inline int page_is_buddy(struct page *page, struct page *buddy,
298								int order)
299{
300#ifdef CONFIG_HOLES_IN_ZONE
301	if (!pfn_valid(page_to_pfn(buddy)))
302		return 0;
303#endif
304
305	if (page_zone_id(page) != page_zone_id(buddy))
306		return 0;
307
308	if (PageBuddy(buddy) && page_order(buddy) == order) {
309		BUG_ON(page_count(buddy) != 0);
310		return 1;
311	}
312	return 0;
313}
314
315/*
316 * Freeing function for a buddy system allocator.
317 *
318 * The concept of a buddy system is to maintain direct-mapped table
319 * (containing bit values) for memory blocks of various "orders".
320 * The bottom level table contains the map for the smallest allocatable
321 * units of memory (here, pages), and each level above it describes
322 * pairs of units from the levels below, hence, "buddies".
323 * At a high level, all that happens here is marking the table entry
324 * at the bottom level available, and propagating the changes upward
325 * as necessary, plus some accounting needed to play nicely with other
326 * parts of the VM system.
327 * At each level, we keep a list of pages, which are heads of continuous
328 * free pages of length of (1 << order) and marked with PG_buddy. Page's
329 * order is recorded in page_private(page) field.
330 * So when we are allocating or freeing one, we can derive the state of the
331 * other.  That is, if we allocate a small block, and both were
332 * free, the remainder of the region must be split into blocks.
333 * If a block is freed, and its buddy is also free, then this
334 * triggers coalescing into a block of larger size.
335 *
336 * -- wli
337 */
338
339static inline void __free_one_page(struct page *page,
340		struct zone *zone, unsigned int order)
341{
342	unsigned long page_idx;
343	int order_size = 1 << order;
344
345	if (unlikely(PageCompound(page)))
346		destroy_compound_page(page, order);
347
348	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
349
350	BUG_ON(page_idx & (order_size - 1));
351	BUG_ON(bad_range(zone, page));
352
353	zone->free_pages += order_size;
354	while (order < MAX_ORDER-1) {
355		unsigned long combined_idx;
356		struct free_area *area;
357		struct page *buddy;
358
359		buddy = __page_find_buddy(page, page_idx, order);
360		if (!page_is_buddy(page, buddy, order))
361			break;		/* Move the buddy up one level. */
362
363		list_del(&buddy->lru);
364		area = zone->free_area + order;
365		area->nr_free--;
366		rmv_page_order(buddy);
367		combined_idx = __find_combined_index(page_idx, order);
368		page = page + (combined_idx - page_idx);
369		page_idx = combined_idx;
370		order++;
371	}
372	set_page_order(page, order);
373	list_add(&page->lru, &zone->free_area[order].free_list);
374	zone->free_area[order].nr_free++;
375}
376
377static inline int free_pages_check(struct page *page)
378{
379	if (unlikely(page_mapcount(page) |
380		(page->mapping != NULL)  |
381		(page_count(page) != 0)  |
382		(page->flags & (
383			1 << PG_lru	|
384			1 << PG_private |
385			1 << PG_locked	|
386			1 << PG_active	|
387			1 << PG_reclaim	|
388			1 << PG_slab	|
389			1 << PG_swapcache |
390			1 << PG_writeback |
391			1 << PG_reserved |
392			1 << PG_buddy ))))
393		bad_page(page);
394	if (PageDirty(page))
395		__ClearPageDirty(page);
396	/*
397	 * For now, we report if PG_reserved was found set, but do not
398	 * clear it, and do not free the page.  But we shall soon need
399	 * to do more, for when the ZERO_PAGE count wraps negative.
400	 */
401	return PageReserved(page);
402}
403
404/*
405 * Frees a list of pages.
406 * Assumes all pages on list are in same zone, and of same order.
407 * count is the number of pages to free.
408 *
409 * If the zone was previously in an "all pages pinned" state then look to
410 * see if this freeing clears that state.
411 *
412 * And clear the zone's pages_scanned counter, to hold off the "all pages are
413 * pinned" detection logic.
414 */
415static void free_pages_bulk(struct zone *zone, int count,
416					struct list_head *list, int order)
417{
418	spin_lock(&zone->lock);
419	zone->all_unreclaimable = 0;
420	zone->pages_scanned = 0;
421	while (count--) {
422		struct page *page;
423
424		BUG_ON(list_empty(list));
425		page = list_entry(list->prev, struct page, lru);
426		/* have to delete it as __free_one_page list manipulates */
427		list_del(&page->lru);
428		__free_one_page(page, zone, order);
429	}
430	spin_unlock(&zone->lock);
431}
432
433static void free_one_page(struct zone *zone, struct page *page, int order)
434{
435	LIST_HEAD(list);
436	list_add(&page->lru, &list);
437	free_pages_bulk(zone, 1, &list, order);
438}
439
440static void __free_pages_ok(struct page *page, unsigned int order)
441{
442	unsigned long flags;
443	int i;
444	int reserved = 0;
445
446	arch_free_page(page, order);
447	if (!PageHighMem(page))
448		debug_check_no_locks_freed(page_address(page),
449					   PAGE_SIZE<<order);
450
451	for (i = 0 ; i < (1 << order) ; ++i)
452		reserved += free_pages_check(page + i);
453	if (reserved)
454		return;
455
456	kernel_map_pages(page, 1 << order, 0);
457	local_irq_save(flags);
458	__count_vm_events(PGFREE, 1 << order);
459	free_one_page(page_zone(page), page, order);
460	local_irq_restore(flags);
461}
462
463/*
464 * permit the bootmem allocator to evade page validation on high-order frees
465 */
466void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
467{
468	if (order == 0) {
469		__ClearPageReserved(page);
470		set_page_count(page, 0);
471		set_page_refcounted(page);
472		__free_page(page);
473	} else {
474		int loop;
475
476		prefetchw(page);
477		for (loop = 0; loop < BITS_PER_LONG; loop++) {
478			struct page *p = &page[loop];
479
480			if (loop + 1 < BITS_PER_LONG)
481				prefetchw(p + 1);
482			__ClearPageReserved(p);
483			set_page_count(p, 0);
484		}
485
486		set_page_refcounted(page);
487		__free_pages(page, order);
488	}
489}
490
491
492/*
493 * The order of subdivision here is critical for the IO subsystem.
494 * Please do not alter this order without good reasons and regression
495 * testing. Specifically, as large blocks of memory are subdivided,
496 * the order in which smaller blocks are delivered depends on the order
497 * they're subdivided in this function. This is the primary factor
498 * influencing the order in which pages are delivered to the IO
499 * subsystem according to empirical testing, and this is also justified
500 * by considering the behavior of a buddy system containing a single
501 * large block of memory acted on by a series of small allocations.
502 * This behavior is a critical factor in sglist merging's success.
503 *
504 * -- wli
505 */
506static inline void expand(struct zone *zone, struct page *page,
507 	int low, int high, struct free_area *area)
508{
509	unsigned long size = 1 << high;
510
511	while (high > low) {
512		area--;
513		high--;
514		size >>= 1;
515		BUG_ON(bad_range(zone, &page[size]));
516		list_add(&page[size].lru, &area->free_list);
517		area->nr_free++;
518		set_page_order(&page[size], high);
519	}
520}
521
522/*
523 * This page is about to be returned from the page allocator
524 */
525static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
526{
527	if (unlikely(page_mapcount(page) |
528		(page->mapping != NULL)  |
529		(page_count(page) != 0)  |
530		(page->flags & (
531			1 << PG_lru	|
532			1 << PG_private	|
533			1 << PG_locked	|
534			1 << PG_active	|
535			1 << PG_dirty	|
536			1 << PG_reclaim	|
537			1 << PG_slab    |
538			1 << PG_swapcache |
539			1 << PG_writeback |
540			1 << PG_reserved |
541			1 << PG_buddy ))))
542		bad_page(page);
543
544	/*
545	 * For now, we report if PG_reserved was found set, but do not
546	 * clear it, and do not allocate the page: as a safety net.
547	 */
548	if (PageReserved(page))
549		return 1;
550
551	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
552			1 << PG_referenced | 1 << PG_arch_1 |
553			1 << PG_checked | 1 << PG_mappedtodisk);
554	set_page_private(page, 0);
555	set_page_refcounted(page);
556	kernel_map_pages(page, 1 << order, 1);
557
558	if (gfp_flags & __GFP_ZERO)
559		prep_zero_page(page, order, gfp_flags);
560
561	if (order && (gfp_flags & __GFP_COMP))
562		prep_compound_page(page, order);
563
564	return 0;
565}
566
567/*
568 * Do the hard work of removing an element from the buddy allocator.
569 * Call me with the zone->lock already held.
570 */
571static struct page *__rmqueue(struct zone *zone, unsigned int order)
572{
573	struct free_area * area;
574	unsigned int current_order;
575	struct page *page;
576
577	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
578		area = zone->free_area + current_order;
579		if (list_empty(&area->free_list))
580			continue;
581
582		page = list_entry(area->free_list.next, struct page, lru);
583		list_del(&page->lru);
584		rmv_page_order(page);
585		area->nr_free--;
586		zone->free_pages -= 1UL << order;
587		expand(zone, page, order, current_order, area);
588		return page;
589	}
590
591	return NULL;
592}
593
594/*
595 * Obtain a specified number of elements from the buddy allocator, all under
596 * a single hold of the lock, for efficiency.  Add them to the supplied list.
597 * Returns the number of new pages which were placed at *list.
598 */
599static int rmqueue_bulk(struct zone *zone, unsigned int order,
600			unsigned long count, struct list_head *list)
601{
602	int i;
603
604	spin_lock(&zone->lock);
605	for (i = 0; i < count; ++i) {
606		struct page *page = __rmqueue(zone, order);
607		if (unlikely(page == NULL))
608			break;
609		list_add_tail(&page->lru, list);
610	}
611	spin_unlock(&zone->lock);
612	return i;
613}
614
615#ifdef CONFIG_NUMA
616/*
617 * Called from the slab reaper to drain pagesets on a particular node that
618 * belong to the currently executing processor.
619 * Note that this function must be called with the thread pinned to
620 * a single processor.
621 */
622void drain_node_pages(int nodeid)
623{
624	int i, z;
625	unsigned long flags;
626
627	for (z = 0; z < MAX_NR_ZONES; z++) {
628		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
629		struct per_cpu_pageset *pset;
630
631		pset = zone_pcp(zone, smp_processor_id());
632		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
633			struct per_cpu_pages *pcp;
634
635			pcp = &pset->pcp[i];
636			if (pcp->count) {
637				local_irq_save(flags);
638				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
639				pcp->count = 0;
640				local_irq_restore(flags);
641			}
642		}
643	}
644}
645#endif
646
647#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
648static void __drain_pages(unsigned int cpu)
649{
650	unsigned long flags;
651	struct zone *zone;
652	int i;
653
654	for_each_zone(zone) {
655		struct per_cpu_pageset *pset;
656
657		pset = zone_pcp(zone, cpu);
658		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
659			struct per_cpu_pages *pcp;
660
661			pcp = &pset->pcp[i];
662			local_irq_save(flags);
663			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
664			pcp->count = 0;
665			local_irq_restore(flags);
666		}
667	}
668}
669#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
670
671#ifdef CONFIG_PM
672
673void mark_free_pages(struct zone *zone)
674{
675	unsigned long zone_pfn, flags;
676	int order;
677	struct list_head *curr;
678
679	if (!zone->spanned_pages)
680		return;
681
682	spin_lock_irqsave(&zone->lock, flags);
683	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
684		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
685
686	for (order = MAX_ORDER - 1; order >= 0; --order)
687		list_for_each(curr, &zone->free_area[order].free_list) {
688			unsigned long start_pfn, i;
689
690			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
691
692			for (i=0; i < (1<<order); i++)
693				SetPageNosaveFree(pfn_to_page(start_pfn+i));
694	}
695	spin_unlock_irqrestore(&zone->lock, flags);
696}
697
698/*
699 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
700 */
701void drain_local_pages(void)
702{
703	unsigned long flags;
704
705	local_irq_save(flags);
706	__drain_pages(smp_processor_id());
707	local_irq_restore(flags);
708}
709#endif /* CONFIG_PM */
710
711/*
712 * Free a 0-order page
713 */
714static void fastcall free_hot_cold_page(struct page *page, int cold)
715{
716	struct zone *zone = page_zone(page);
717	struct per_cpu_pages *pcp;
718	unsigned long flags;
719
720	arch_free_page(page, 0);
721
722	if (PageAnon(page))
723		page->mapping = NULL;
724	if (free_pages_check(page))
725		return;
726
727	kernel_map_pages(page, 1, 0);
728
729	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
730	local_irq_save(flags);
731	__count_vm_event(PGFREE);
732	list_add(&page->lru, &pcp->list);
733	pcp->count++;
734	if (pcp->count >= pcp->high) {
735		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
736		pcp->count -= pcp->batch;
737	}
738	local_irq_restore(flags);
739	put_cpu();
740}
741
742void fastcall free_hot_page(struct page *page)
743{
744	free_hot_cold_page(page, 0);
745}
746
747void fastcall free_cold_page(struct page *page)
748{
749	free_hot_cold_page(page, 1);
750}
751
752/*
753 * split_page takes a non-compound higher-order page, and splits it into
754 * n (1<<order) sub-pages: page[0..n]
755 * Each sub-page must be freed individually.
756 *
757 * Note: this is probably too low level an operation for use in drivers.
758 * Please consult with lkml before using this in your driver.
759 */
760void split_page(struct page *page, unsigned int order)
761{
762	int i;
763
764	BUG_ON(PageCompound(page));
765	BUG_ON(!page_count(page));
766	for (i = 1; i < (1 << order); i++)
767		set_page_refcounted(page + i);
768}
769
770/*
771 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
772 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
773 * or two.
774 */
775static struct page *buffered_rmqueue(struct zonelist *zonelist,
776			struct zone *zone, int order, gfp_t gfp_flags)
777{
778	unsigned long flags;
779	struct page *page;
780	int cold = !!(gfp_flags & __GFP_COLD);
781	int cpu;
782
783again:
784	cpu  = get_cpu();
785	if (likely(order == 0)) {
786		struct per_cpu_pages *pcp;
787
788		pcp = &zone_pcp(zone, cpu)->pcp[cold];
789		local_irq_save(flags);
790		if (!pcp->count) {
791			pcp->count += rmqueue_bulk(zone, 0,
792						pcp->batch, &pcp->list);
793			if (unlikely(!pcp->count))
794				goto failed;
795		}
796		page = list_entry(pcp->list.next, struct page, lru);
797		list_del(&page->lru);
798		pcp->count--;
799	} else {
800		spin_lock_irqsave(&zone->lock, flags);
801		page = __rmqueue(zone, order);
802		spin_unlock(&zone->lock);
803		if (!page)
804			goto failed;
805	}
806
807	__count_zone_vm_events(PGALLOC, zone, 1 << order);
808	zone_statistics(zonelist, zone);
809	local_irq_restore(flags);
810	put_cpu();
811
812	BUG_ON(bad_range(zone, page));
813	if (prep_new_page(page, order, gfp_flags))
814		goto again;
815	return page;
816
817failed:
818	local_irq_restore(flags);
819	put_cpu();
820	return NULL;
821}
822
823#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
824#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
825#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
826#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
827#define ALLOC_HARDER		0x10 /* try to alloc harder */
828#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
829#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
830
831/*
832 * Return 1 if free pages are above 'mark'. This takes into account the order
833 * of the allocation.
834 */
835int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
836		      int classzone_idx, int alloc_flags)
837{
838	/* free_pages my go negative - that's OK */
839	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
840	int o;
841
842	if (alloc_flags & ALLOC_HIGH)
843		min -= min / 2;
844	if (alloc_flags & ALLOC_HARDER)
845		min -= min / 4;
846
847	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
848		return 0;
849	for (o = 0; o < order; o++) {
850		/* At the next order, this order's pages become unavailable */
851		free_pages -= z->free_area[o].nr_free << o;
852
853		/* Require fewer higher order pages to be free */
854		min >>= 1;
855
856		if (free_pages <= min)
857			return 0;
858	}
859	return 1;
860}
861
862/*
863 * get_page_from_freeliest goes through the zonelist trying to allocate
864 * a page.
865 */
866static struct page *
867get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
868		struct zonelist *zonelist, int alloc_flags)
869{
870	struct zone **z = zonelist->zones;
871	struct page *page = NULL;
872	int classzone_idx = zone_idx(*z);
873
874	/*
875	 * Go through the zonelist once, looking for a zone with enough free.
876	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
877	 */
878	do {
879		if ((alloc_flags & ALLOC_CPUSET) &&
880				!cpuset_zone_allowed(*z, gfp_mask))
881			continue;
882
883		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
884			unsigned long mark;
885			if (alloc_flags & ALLOC_WMARK_MIN)
886				mark = (*z)->pages_min;
887			else if (alloc_flags & ALLOC_WMARK_LOW)
888				mark = (*z)->pages_low;
889			else
890				mark = (*z)->pages_high;
891			if (!zone_watermark_ok(*z, order, mark,
892				    classzone_idx, alloc_flags))
893				if (!zone_reclaim_mode ||
894				    !zone_reclaim(*z, gfp_mask, order))
895					continue;
896		}
897
898		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
899		if (page) {
900			break;
901		}
902	} while (*(++z) != NULL);
903	return page;
904}
905
906/*
907 * This is the 'heart' of the zoned buddy allocator.
908 */
909struct page * fastcall
910__alloc_pages(gfp_t gfp_mask, unsigned int order,
911		struct zonelist *zonelist)
912{
913	const gfp_t wait = gfp_mask & __GFP_WAIT;
914	struct zone **z;
915	struct page *page;
916	struct reclaim_state reclaim_state;
917	struct task_struct *p = current;
918	int do_retry;
919	int alloc_flags;
920	int did_some_progress;
921
922	might_sleep_if(wait);
923
924restart:
925	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
926
927	if (unlikely(*z == NULL)) {
928		/* Should this ever happen?? */
929		return NULL;
930	}
931
932	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
933				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
934	if (page)
935		goto got_pg;
936
937	do {
938		wakeup_kswapd(*z, order);
939	} while (*(++z));
940
941	/*
942	 * OK, we're below the kswapd watermark and have kicked background
943	 * reclaim. Now things get more complex, so set up alloc_flags according
944	 * to how we want to proceed.
945	 *
946	 * The caller may dip into page reserves a bit more if the caller
947	 * cannot run direct reclaim, or if the caller has realtime scheduling
948	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
949	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
950	 */
951	alloc_flags = ALLOC_WMARK_MIN;
952	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
953		alloc_flags |= ALLOC_HARDER;
954	if (gfp_mask & __GFP_HIGH)
955		alloc_flags |= ALLOC_HIGH;
956	if (wait)
957		alloc_flags |= ALLOC_CPUSET;
958
959	/*
960	 * Go through the zonelist again. Let __GFP_HIGH and allocations
961	 * coming from realtime tasks go deeper into reserves.
962	 *
963	 * This is the last chance, in general, before the goto nopage.
964	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
965	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
966	 */
967	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
968	if (page)
969		goto got_pg;
970
971	/* This allocation should allow future memory freeing. */
972
973	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
974			&& !in_interrupt()) {
975		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
976nofail_alloc:
977			/* go through the zonelist yet again, ignoring mins */
978			page = get_page_from_freelist(gfp_mask, order,
979				zonelist, ALLOC_NO_WATERMARKS);
980			if (page)
981				goto got_pg;
982			if (gfp_mask & __GFP_NOFAIL) {
983				blk_congestion_wait(WRITE, HZ/50);
984				goto nofail_alloc;
985			}
986		}
987		goto nopage;
988	}
989
990	/* Atomic allocations - we can't balance anything */
991	if (!wait)
992		goto nopage;
993
994rebalance:
995	cond_resched();
996
997	/* We now go into synchronous reclaim */
998	cpuset_memory_pressure_bump();
999	p->flags |= PF_MEMALLOC;
1000	reclaim_state.reclaimed_slab = 0;
1001	p->reclaim_state = &reclaim_state;
1002
1003	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1004
1005	p->reclaim_state = NULL;
1006	p->flags &= ~PF_MEMALLOC;
1007
1008	cond_resched();
1009
1010	if (likely(did_some_progress)) {
1011		page = get_page_from_freelist(gfp_mask, order,
1012						zonelist, alloc_flags);
1013		if (page)
1014			goto got_pg;
1015	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1016		/*
1017		 * Go through the zonelist yet one more time, keep
1018		 * very high watermark here, this is only to catch
1019		 * a parallel oom killing, we must fail if we're still
1020		 * under heavy pressure.
1021		 */
1022		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1023				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1024		if (page)
1025			goto got_pg;
1026
1027		out_of_memory(zonelist, gfp_mask, order);
1028		goto restart;
1029	}
1030
1031	/*
1032	 * Don't let big-order allocations loop unless the caller explicitly
1033	 * requests that.  Wait for some write requests to complete then retry.
1034	 *
1035	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1036	 * <= 3, but that may not be true in other implementations.
1037	 */
1038	do_retry = 0;
1039	if (!(gfp_mask & __GFP_NORETRY)) {
1040		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1041			do_retry = 1;
1042		if (gfp_mask & __GFP_NOFAIL)
1043			do_retry = 1;
1044	}
1045	if (do_retry) {
1046		blk_congestion_wait(WRITE, HZ/50);
1047		goto rebalance;
1048	}
1049
1050nopage:
1051	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1052		printk(KERN_WARNING "%s: page allocation failure."
1053			" order:%d, mode:0x%x\n",
1054			p->comm, order, gfp_mask);
1055		dump_stack();
1056		show_mem();
1057	}
1058got_pg:
1059	return page;
1060}
1061
1062EXPORT_SYMBOL(__alloc_pages);
1063
1064/*
1065 * Common helper functions.
1066 */
1067fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1068{
1069	struct page * page;
1070	page = alloc_pages(gfp_mask, order);
1071	if (!page)
1072		return 0;
1073	return (unsigned long) page_address(page);
1074}
1075
1076EXPORT_SYMBOL(__get_free_pages);
1077
1078fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1079{
1080	struct page * page;
1081
1082	/*
1083	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1084	 * a highmem page
1085	 */
1086	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1087
1088	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1089	if (page)
1090		return (unsigned long) page_address(page);
1091	return 0;
1092}
1093
1094EXPORT_SYMBOL(get_zeroed_page);
1095
1096void __pagevec_free(struct pagevec *pvec)
1097{
1098	int i = pagevec_count(pvec);
1099
1100	while (--i >= 0)
1101		free_hot_cold_page(pvec->pages[i], pvec->cold);
1102}
1103
1104fastcall void __free_pages(struct page *page, unsigned int order)
1105{
1106	if (put_page_testzero(page)) {
1107		if (order == 0)
1108			free_hot_page(page);
1109		else
1110			__free_pages_ok(page, order);
1111	}
1112}
1113
1114EXPORT_SYMBOL(__free_pages);
1115
1116fastcall void free_pages(unsigned long addr, unsigned int order)
1117{
1118	if (addr != 0) {
1119		BUG_ON(!virt_addr_valid((void *)addr));
1120		__free_pages(virt_to_page((void *)addr), order);
1121	}
1122}
1123
1124EXPORT_SYMBOL(free_pages);
1125
1126/*
1127 * Total amount of free (allocatable) RAM:
1128 */
1129unsigned int nr_free_pages(void)
1130{
1131	unsigned int sum = 0;
1132	struct zone *zone;
1133
1134	for_each_zone(zone)
1135		sum += zone->free_pages;
1136
1137	return sum;
1138}
1139
1140EXPORT_SYMBOL(nr_free_pages);
1141
1142#ifdef CONFIG_NUMA
1143unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1144{
1145	unsigned int i, sum = 0;
1146
1147	for (i = 0; i < MAX_NR_ZONES; i++)
1148		sum += pgdat->node_zones[i].free_pages;
1149
1150	return sum;
1151}
1152#endif
1153
1154static unsigned int nr_free_zone_pages(int offset)
1155{
1156	/* Just pick one node, since fallback list is circular */
1157	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1158	unsigned int sum = 0;
1159
1160	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1161	struct zone **zonep = zonelist->zones;
1162	struct zone *zone;
1163
1164	for (zone = *zonep++; zone; zone = *zonep++) {
1165		unsigned long size = zone->present_pages;
1166		unsigned long high = zone->pages_high;
1167		if (size > high)
1168			sum += size - high;
1169	}
1170
1171	return sum;
1172}
1173
1174/*
1175 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1176 */
1177unsigned int nr_free_buffer_pages(void)
1178{
1179	return nr_free_zone_pages(gfp_zone(GFP_USER));
1180}
1181
1182/*
1183 * Amount of free RAM allocatable within all zones
1184 */
1185unsigned int nr_free_pagecache_pages(void)
1186{
1187	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1188}
1189
1190#ifdef CONFIG_HIGHMEM
1191unsigned int nr_free_highpages (void)
1192{
1193	pg_data_t *pgdat;
1194	unsigned int pages = 0;
1195
1196	for_each_online_pgdat(pgdat)
1197		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1198
1199	return pages;
1200}
1201#endif
1202
1203#ifdef CONFIG_NUMA
1204static void show_node(struct zone *zone)
1205{
1206	printk("Node %d ", zone->zone_pgdat->node_id);
1207}
1208#else
1209#define show_node(zone)	do { } while (0)
1210#endif
1211
1212void si_meminfo(struct sysinfo *val)
1213{
1214	val->totalram = totalram_pages;
1215	val->sharedram = 0;
1216	val->freeram = nr_free_pages();
1217	val->bufferram = nr_blockdev_pages();
1218#ifdef CONFIG_HIGHMEM
1219	val->totalhigh = totalhigh_pages;
1220	val->freehigh = nr_free_highpages();
1221#else
1222	val->totalhigh = 0;
1223	val->freehigh = 0;
1224#endif
1225	val->mem_unit = PAGE_SIZE;
1226}
1227
1228EXPORT_SYMBOL(si_meminfo);
1229
1230#ifdef CONFIG_NUMA
1231void si_meminfo_node(struct sysinfo *val, int nid)
1232{
1233	pg_data_t *pgdat = NODE_DATA(nid);
1234
1235	val->totalram = pgdat->node_present_pages;
1236	val->freeram = nr_free_pages_pgdat(pgdat);
1237	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1238	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1239	val->mem_unit = PAGE_SIZE;
1240}
1241#endif
1242
1243#define K(x) ((x) << (PAGE_SHIFT-10))
1244
1245/*
1246 * Show free area list (used inside shift_scroll-lock stuff)
1247 * We also calculate the percentage fragmentation. We do this by counting the
1248 * memory on each free list with the exception of the first item on the list.
1249 */
1250void show_free_areas(void)
1251{
1252	int cpu, temperature;
1253	unsigned long active;
1254	unsigned long inactive;
1255	unsigned long free;
1256	struct zone *zone;
1257
1258	for_each_zone(zone) {
1259		show_node(zone);
1260		printk("%s per-cpu:", zone->name);
1261
1262		if (!populated_zone(zone)) {
1263			printk(" empty\n");
1264			continue;
1265		} else
1266			printk("\n");
1267
1268		for_each_online_cpu(cpu) {
1269			struct per_cpu_pageset *pageset;
1270
1271			pageset = zone_pcp(zone, cpu);
1272
1273			for (temperature = 0; temperature < 2; temperature++)
1274				printk("cpu %d %s: high %d, batch %d used:%d\n",
1275					cpu,
1276					temperature ? "cold" : "hot",
1277					pageset->pcp[temperature].high,
1278					pageset->pcp[temperature].batch,
1279					pageset->pcp[temperature].count);
1280		}
1281	}
1282
1283	get_zone_counts(&active, &inactive, &free);
1284
1285	printk("Free pages: %11ukB (%ukB HighMem)\n",
1286		K(nr_free_pages()),
1287		K(nr_free_highpages()));
1288
1289	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1290		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1291		active,
1292		inactive,
1293		global_page_state(NR_FILE_DIRTY),
1294		global_page_state(NR_WRITEBACK),
1295		global_page_state(NR_UNSTABLE_NFS),
1296		nr_free_pages(),
1297		global_page_state(NR_SLAB),
1298		global_page_state(NR_FILE_MAPPED),
1299		global_page_state(NR_PAGETABLE));
1300
1301	for_each_zone(zone) {
1302		int i;
1303
1304		show_node(zone);
1305		printk("%s"
1306			" free:%lukB"
1307			" min:%lukB"
1308			" low:%lukB"
1309			" high:%lukB"
1310			" active:%lukB"
1311			" inactive:%lukB"
1312			" present:%lukB"
1313			" pages_scanned:%lu"
1314			" all_unreclaimable? %s"
1315			"\n",
1316			zone->name,
1317			K(zone->free_pages),
1318			K(zone->pages_min),
1319			K(zone->pages_low),
1320			K(zone->pages_high),
1321			K(zone->nr_active),
1322			K(zone->nr_inactive),
1323			K(zone->present_pages),
1324			zone->pages_scanned,
1325			(zone->all_unreclaimable ? "yes" : "no")
1326			);
1327		printk("lowmem_reserve[]:");
1328		for (i = 0; i < MAX_NR_ZONES; i++)
1329			printk(" %lu", zone->lowmem_reserve[i]);
1330		printk("\n");
1331	}
1332
1333	for_each_zone(zone) {
1334 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1335
1336		show_node(zone);
1337		printk("%s: ", zone->name);
1338		if (!populated_zone(zone)) {
1339			printk("empty\n");
1340			continue;
1341		}
1342
1343		spin_lock_irqsave(&zone->lock, flags);
1344		for (order = 0; order < MAX_ORDER; order++) {
1345			nr[order] = zone->free_area[order].nr_free;
1346			total += nr[order] << order;
1347		}
1348		spin_unlock_irqrestore(&zone->lock, flags);
1349		for (order = 0; order < MAX_ORDER; order++)
1350			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1351		printk("= %lukB\n", K(total));
1352	}
1353
1354	show_swap_cache_info();
1355}
1356
1357/*
1358 * Builds allocation fallback zone lists.
1359 *
1360 * Add all populated zones of a node to the zonelist.
1361 */
1362static int __meminit build_zonelists_node(pg_data_t *pgdat,
1363			struct zonelist *zonelist, int nr_zones, int zone_type)
1364{
1365	struct zone *zone;
1366
1367	BUG_ON(zone_type > ZONE_HIGHMEM);
1368
1369	do {
1370		zone = pgdat->node_zones + zone_type;
1371		if (populated_zone(zone)) {
1372#ifndef CONFIG_HIGHMEM
1373			BUG_ON(zone_type > ZONE_NORMAL);
1374#endif
1375			zonelist->zones[nr_zones++] = zone;
1376			check_highest_zone(zone_type);
1377		}
1378		zone_type--;
1379
1380	} while (zone_type >= 0);
1381	return nr_zones;
1382}
1383
1384static inline int highest_zone(int zone_bits)
1385{
1386	int res = ZONE_NORMAL;
1387	if (zone_bits & (__force int)__GFP_HIGHMEM)
1388		res = ZONE_HIGHMEM;
1389	if (zone_bits & (__force int)__GFP_DMA32)
1390		res = ZONE_DMA32;
1391	if (zone_bits & (__force int)__GFP_DMA)
1392		res = ZONE_DMA;
1393	return res;
1394}
1395
1396#ifdef CONFIG_NUMA
1397#define MAX_NODE_LOAD (num_online_nodes())
1398static int __meminitdata node_load[MAX_NUMNODES];
1399/**
1400 * find_next_best_node - find the next node that should appear in a given node's fallback list
1401 * @node: node whose fallback list we're appending
1402 * @used_node_mask: nodemask_t of already used nodes
1403 *
1404 * We use a number of factors to determine which is the next node that should
1405 * appear on a given node's fallback list.  The node should not have appeared
1406 * already in @node's fallback list, and it should be the next closest node
1407 * according to the distance array (which contains arbitrary distance values
1408 * from each node to each node in the system), and should also prefer nodes
1409 * with no CPUs, since presumably they'll have very little allocation pressure
1410 * on them otherwise.
1411 * It returns -1 if no node is found.
1412 */
1413static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1414{
1415	int n, val;
1416	int min_val = INT_MAX;
1417	int best_node = -1;
1418
1419	/* Use the local node if we haven't already */
1420	if (!node_isset(node, *used_node_mask)) {
1421		node_set(node, *used_node_mask);
1422		return node;
1423	}
1424
1425	for_each_online_node(n) {
1426		cpumask_t tmp;
1427
1428		/* Don't want a node to appear more than once */
1429		if (node_isset(n, *used_node_mask))
1430			continue;
1431
1432		/* Use the distance array to find the distance */
1433		val = node_distance(node, n);
1434
1435		/* Penalize nodes under us ("prefer the next node") */
1436		val += (n < node);
1437
1438		/* Give preference to headless and unused nodes */
1439		tmp = node_to_cpumask(n);
1440		if (!cpus_empty(tmp))
1441			val += PENALTY_FOR_NODE_WITH_CPUS;
1442
1443		/* Slight preference for less loaded node */
1444		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1445		val += node_load[n];
1446
1447		if (val < min_val) {
1448			min_val = val;
1449			best_node = n;
1450		}
1451	}
1452
1453	if (best_node >= 0)
1454		node_set(best_node, *used_node_mask);
1455
1456	return best_node;
1457}
1458
1459static void __meminit build_zonelists(pg_data_t *pgdat)
1460{
1461	int i, j, k, node, local_node;
1462	int prev_node, load;
1463	struct zonelist *zonelist;
1464	nodemask_t used_mask;
1465
1466	/* initialize zonelists */
1467	for (i = 0; i < GFP_ZONETYPES; i++) {
1468		zonelist = pgdat->node_zonelists + i;
1469		zonelist->zones[0] = NULL;
1470	}
1471
1472	/* NUMA-aware ordering of nodes */
1473	local_node = pgdat->node_id;
1474	load = num_online_nodes();
1475	prev_node = local_node;
1476	nodes_clear(used_mask);
1477	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1478		int distance = node_distance(local_node, node);
1479
1480		/*
1481		 * If another node is sufficiently far away then it is better
1482		 * to reclaim pages in a zone before going off node.
1483		 */
1484		if (distance > RECLAIM_DISTANCE)
1485			zone_reclaim_mode = 1;
1486
1487		/*
1488		 * We don't want to pressure a particular node.
1489		 * So adding penalty to the first node in same
1490		 * distance group to make it round-robin.
1491		 */
1492
1493		if (distance != node_distance(local_node, prev_node))
1494			node_load[node] += load;
1495		prev_node = node;
1496		load--;
1497		for (i = 0; i < GFP_ZONETYPES; i++) {
1498			zonelist = pgdat->node_zonelists + i;
1499			for (j = 0; zonelist->zones[j] != NULL; j++);
1500
1501			k = highest_zone(i);
1502
1503	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1504			zonelist->zones[j] = NULL;
1505		}
1506	}
1507}
1508
1509#else	/* CONFIG_NUMA */
1510
1511static void __meminit build_zonelists(pg_data_t *pgdat)
1512{
1513	int i, j, k, node, local_node;
1514
1515	local_node = pgdat->node_id;
1516	for (i = 0; i < GFP_ZONETYPES; i++) {
1517		struct zonelist *zonelist;
1518
1519		zonelist = pgdat->node_zonelists + i;
1520
1521		j = 0;
1522		k = highest_zone(i);
1523 		j = build_zonelists_node(pgdat, zonelist, j, k);
1524 		/*
1525 		 * Now we build the zonelist so that it contains the zones
1526 		 * of all the other nodes.
1527 		 * We don't want to pressure a particular node, so when
1528 		 * building the zones for node N, we make sure that the
1529 		 * zones coming right after the local ones are those from
1530 		 * node N+1 (modulo N)
1531 		 */
1532		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1533			if (!node_online(node))
1534				continue;
1535			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1536		}
1537		for (node = 0; node < local_node; node++) {
1538			if (!node_online(node))
1539				continue;
1540			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1541		}
1542
1543		zonelist->zones[j] = NULL;
1544	}
1545}
1546
1547#endif	/* CONFIG_NUMA */
1548
1549/* return values int ....just for stop_machine_run() */
1550static int __meminit __build_all_zonelists(void *dummy)
1551{
1552	int nid;
1553	for_each_online_node(nid)
1554		build_zonelists(NODE_DATA(nid));
1555	return 0;
1556}
1557
1558void __meminit build_all_zonelists(void)
1559{
1560	if (system_state == SYSTEM_BOOTING) {
1561		__build_all_zonelists(0);
1562		cpuset_init_current_mems_allowed();
1563	} else {
1564		/* we have to stop all cpus to guaranntee there is no user
1565		   of zonelist */
1566		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1567		/* cpuset refresh routine should be here */
1568	}
1569	vm_total_pages = nr_free_pagecache_pages();
1570	printk("Built %i zonelists.  Total pages: %ld\n",
1571			num_online_nodes(), vm_total_pages);
1572}
1573
1574/*
1575 * Helper functions to size the waitqueue hash table.
1576 * Essentially these want to choose hash table sizes sufficiently
1577 * large so that collisions trying to wait on pages are rare.
1578 * But in fact, the number of active page waitqueues on typical
1579 * systems is ridiculously low, less than 200. So this is even
1580 * conservative, even though it seems large.
1581 *
1582 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1583 * waitqueues, i.e. the size of the waitq table given the number of pages.
1584 */
1585#define PAGES_PER_WAITQUEUE	256
1586
1587#ifndef CONFIG_MEMORY_HOTPLUG
1588static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1589{
1590	unsigned long size = 1;
1591
1592	pages /= PAGES_PER_WAITQUEUE;
1593
1594	while (size < pages)
1595		size <<= 1;
1596
1597	/*
1598	 * Once we have dozens or even hundreds of threads sleeping
1599	 * on IO we've got bigger problems than wait queue collision.
1600	 * Limit the size of the wait table to a reasonable size.
1601	 */
1602	size = min(size, 4096UL);
1603
1604	return max(size, 4UL);
1605}
1606#else
1607/*
1608 * A zone's size might be changed by hot-add, so it is not possible to determine
1609 * a suitable size for its wait_table.  So we use the maximum size now.
1610 *
1611 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1612 *
1613 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1614 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1615 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1616 *
1617 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1618 * or more by the traditional way. (See above).  It equals:
1619 *
1620 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1621 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1622 *    powerpc (64K page size)             : =  (32G +16M)byte.
1623 */
1624static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1625{
1626	return 4096UL;
1627}
1628#endif
1629
1630/*
1631 * This is an integer logarithm so that shifts can be used later
1632 * to extract the more random high bits from the multiplicative
1633 * hash function before the remainder is taken.
1634 */
1635static inline unsigned long wait_table_bits(unsigned long size)
1636{
1637	return ffz(~size);
1638}
1639
1640#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1641
1642static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1643		unsigned long *zones_size, unsigned long *zholes_size)
1644{
1645	unsigned long realtotalpages, totalpages = 0;
1646	int i;
1647
1648	for (i = 0; i < MAX_NR_ZONES; i++)
1649		totalpages += zones_size[i];
1650	pgdat->node_spanned_pages = totalpages;
1651
1652	realtotalpages = totalpages;
1653	if (zholes_size)
1654		for (i = 0; i < MAX_NR_ZONES; i++)
1655			realtotalpages -= zholes_size[i];
1656	pgdat->node_present_pages = realtotalpages;
1657	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1658}
1659
1660
1661/*
1662 * Initially all pages are reserved - free ones are freed
1663 * up by free_all_bootmem() once the early boot process is
1664 * done. Non-atomic initialization, single-pass.
1665 */
1666void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1667		unsigned long start_pfn)
1668{
1669	struct page *page;
1670	unsigned long end_pfn = start_pfn + size;
1671	unsigned long pfn;
1672
1673	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1674		if (!early_pfn_valid(pfn))
1675			continue;
1676		page = pfn_to_page(pfn);
1677		set_page_links(page, zone, nid, pfn);
1678		init_page_count(page);
1679		reset_page_mapcount(page);
1680		SetPageReserved(page);
1681		INIT_LIST_HEAD(&page->lru);
1682#ifdef WANT_PAGE_VIRTUAL
1683		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1684		if (!is_highmem_idx(zone))
1685			set_page_address(page, __va(pfn << PAGE_SHIFT));
1686#endif
1687	}
1688}
1689
1690void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1691				unsigned long size)
1692{
1693	int order;
1694	for (order = 0; order < MAX_ORDER ; order++) {
1695		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1696		zone->free_area[order].nr_free = 0;
1697	}
1698}
1699
1700#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1701void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1702		unsigned long size)
1703{
1704	unsigned long snum = pfn_to_section_nr(pfn);
1705	unsigned long end = pfn_to_section_nr(pfn + size);
1706
1707	if (FLAGS_HAS_NODE)
1708		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1709	else
1710		for (; snum <= end; snum++)
1711			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1712}
1713
1714#ifndef __HAVE_ARCH_MEMMAP_INIT
1715#define memmap_init(size, nid, zone, start_pfn) \
1716	memmap_init_zone((size), (nid), (zone), (start_pfn))
1717#endif
1718
1719static int __cpuinit zone_batchsize(struct zone *zone)
1720{
1721	int batch;
1722
1723	/*
1724	 * The per-cpu-pages pools are set to around 1000th of the
1725	 * size of the zone.  But no more than 1/2 of a meg.
1726	 *
1727	 * OK, so we don't know how big the cache is.  So guess.
1728	 */
1729	batch = zone->present_pages / 1024;
1730	if (batch * PAGE_SIZE > 512 * 1024)
1731		batch = (512 * 1024) / PAGE_SIZE;
1732	batch /= 4;		/* We effectively *= 4 below */
1733	if (batch < 1)
1734		batch = 1;
1735
1736	/*
1737	 * Clamp the batch to a 2^n - 1 value. Having a power
1738	 * of 2 value was found to be more likely to have
1739	 * suboptimal cache aliasing properties in some cases.
1740	 *
1741	 * For example if 2 tasks are alternately allocating
1742	 * batches of pages, one task can end up with a lot
1743	 * of pages of one half of the possible page colors
1744	 * and the other with pages of the other colors.
1745	 */
1746	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1747
1748	return batch;
1749}
1750
1751inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1752{
1753	struct per_cpu_pages *pcp;
1754
1755	memset(p, 0, sizeof(*p));
1756
1757	pcp = &p->pcp[0];		/* hot */
1758	pcp->count = 0;
1759	pcp->high = 6 * batch;
1760	pcp->batch = max(1UL, 1 * batch);
1761	INIT_LIST_HEAD(&pcp->list);
1762
1763	pcp = &p->pcp[1];		/* cold*/
1764	pcp->count = 0;
1765	pcp->high = 2 * batch;
1766	pcp->batch = max(1UL, batch/2);
1767	INIT_LIST_HEAD(&pcp->list);
1768}
1769
1770/*
1771 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1772 * to the value high for the pageset p.
1773 */
1774
1775static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1776				unsigned long high)
1777{
1778	struct per_cpu_pages *pcp;
1779
1780	pcp = &p->pcp[0]; /* hot list */
1781	pcp->high = high;
1782	pcp->batch = max(1UL, high/4);
1783	if ((high/4) > (PAGE_SHIFT * 8))
1784		pcp->batch = PAGE_SHIFT * 8;
1785}
1786
1787
1788#ifdef CONFIG_NUMA
1789/*
1790 * Boot pageset table. One per cpu which is going to be used for all
1791 * zones and all nodes. The parameters will be set in such a way
1792 * that an item put on a list will immediately be handed over to
1793 * the buddy list. This is safe since pageset manipulation is done
1794 * with interrupts disabled.
1795 *
1796 * Some NUMA counter updates may also be caught by the boot pagesets.
1797 *
1798 * The boot_pagesets must be kept even after bootup is complete for
1799 * unused processors and/or zones. They do play a role for bootstrapping
1800 * hotplugged processors.
1801 *
1802 * zoneinfo_show() and maybe other functions do
1803 * not check if the processor is online before following the pageset pointer.
1804 * Other parts of the kernel may not check if the zone is available.
1805 */
1806static struct per_cpu_pageset boot_pageset[NR_CPUS];
1807
1808/*
1809 * Dynamically allocate memory for the
1810 * per cpu pageset array in struct zone.
1811 */
1812static int __cpuinit process_zones(int cpu)
1813{
1814	struct zone *zone, *dzone;
1815
1816	for_each_zone(zone) {
1817
1818		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1819					 GFP_KERNEL, cpu_to_node(cpu));
1820		if (!zone_pcp(zone, cpu))
1821			goto bad;
1822
1823		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1824
1825		if (percpu_pagelist_fraction)
1826			setup_pagelist_highmark(zone_pcp(zone, cpu),
1827			 	(zone->present_pages / percpu_pagelist_fraction));
1828	}
1829
1830	return 0;
1831bad:
1832	for_each_zone(dzone) {
1833		if (dzone == zone)
1834			break;
1835		kfree(zone_pcp(dzone, cpu));
1836		zone_pcp(dzone, cpu) = NULL;
1837	}
1838	return -ENOMEM;
1839}
1840
1841static inline void free_zone_pagesets(int cpu)
1842{
1843	struct zone *zone;
1844
1845	for_each_zone(zone) {
1846		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1847
1848		zone_pcp(zone, cpu) = NULL;
1849		kfree(pset);
1850	}
1851}
1852
1853static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1854		unsigned long action,
1855		void *hcpu)
1856{
1857	int cpu = (long)hcpu;
1858	int ret = NOTIFY_OK;
1859
1860	switch (action) {
1861		case CPU_UP_PREPARE:
1862			if (process_zones(cpu))
1863				ret = NOTIFY_BAD;
1864			break;
1865		case CPU_UP_CANCELED:
1866		case CPU_DEAD:
1867			free_zone_pagesets(cpu);
1868			break;
1869		default:
1870			break;
1871	}
1872	return ret;
1873}
1874
1875static struct notifier_block __cpuinitdata pageset_notifier =
1876	{ &pageset_cpuup_callback, NULL, 0 };
1877
1878void __init setup_per_cpu_pageset(void)
1879{
1880	int err;
1881
1882	/* Initialize per_cpu_pageset for cpu 0.
1883	 * A cpuup callback will do this for every cpu
1884	 * as it comes online
1885	 */
1886	err = process_zones(smp_processor_id());
1887	BUG_ON(err);
1888	register_cpu_notifier(&pageset_notifier);
1889}
1890
1891#endif
1892
1893static __meminit
1894int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1895{
1896	int i;
1897	struct pglist_data *pgdat = zone->zone_pgdat;
1898	size_t alloc_size;
1899
1900	/*
1901	 * The per-page waitqueue mechanism uses hashed waitqueues
1902	 * per zone.
1903	 */
1904	zone->wait_table_hash_nr_entries =
1905		 wait_table_hash_nr_entries(zone_size_pages);
1906	zone->wait_table_bits =
1907		wait_table_bits(zone->wait_table_hash_nr_entries);
1908	alloc_size = zone->wait_table_hash_nr_entries
1909					* sizeof(wait_queue_head_t);
1910
1911 	if (system_state == SYSTEM_BOOTING) {
1912		zone->wait_table = (wait_queue_head_t *)
1913			alloc_bootmem_node(pgdat, alloc_size);
1914	} else {
1915		/*
1916		 * This case means that a zone whose size was 0 gets new memory
1917		 * via memory hot-add.
1918		 * But it may be the case that a new node was hot-added.  In
1919		 * this case vmalloc() will not be able to use this new node's
1920		 * memory - this wait_table must be initialized to use this new
1921		 * node itself as well.
1922		 * To use this new node's memory, further consideration will be
1923		 * necessary.
1924		 */
1925		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1926	}
1927	if (!zone->wait_table)
1928		return -ENOMEM;
1929
1930	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1931		init_waitqueue_head(zone->wait_table + i);
1932
1933	return 0;
1934}
1935
1936static __meminit void zone_pcp_init(struct zone *zone)
1937{
1938	int cpu;
1939	unsigned long batch = zone_batchsize(zone);
1940
1941	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1942#ifdef CONFIG_NUMA
1943		/* Early boot. Slab allocator not functional yet */
1944		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1945		setup_pageset(&boot_pageset[cpu],0);
1946#else
1947		setup_pageset(zone_pcp(zone,cpu), batch);
1948#endif
1949	}
1950	if (zone->present_pages)
1951		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1952			zone->name, zone->present_pages, batch);
1953}
1954
1955__meminit int init_currently_empty_zone(struct zone *zone,
1956					unsigned long zone_start_pfn,
1957					unsigned long size)
1958{
1959	struct pglist_data *pgdat = zone->zone_pgdat;
1960	int ret;
1961	ret = zone_wait_table_init(zone, size);
1962	if (ret)
1963		return ret;
1964	pgdat->nr_zones = zone_idx(zone) + 1;
1965
1966	zone->zone_start_pfn = zone_start_pfn;
1967
1968	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1969
1970	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1971
1972	return 0;
1973}
1974
1975/*
1976 * Set up the zone data structures:
1977 *   - mark all pages reserved
1978 *   - mark all memory queues empty
1979 *   - clear the memory bitmaps
1980 */
1981static void __meminit free_area_init_core(struct pglist_data *pgdat,
1982		unsigned long *zones_size, unsigned long *zholes_size)
1983{
1984	unsigned long j;
1985	int nid = pgdat->node_id;
1986	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1987	int ret;
1988
1989	pgdat_resize_init(pgdat);
1990	pgdat->nr_zones = 0;
1991	init_waitqueue_head(&pgdat->kswapd_wait);
1992	pgdat->kswapd_max_order = 0;
1993
1994	for (j = 0; j < MAX_NR_ZONES; j++) {
1995		struct zone *zone = pgdat->node_zones + j;
1996		unsigned long size, realsize;
1997
1998		realsize = size = zones_size[j];
1999		if (zholes_size)
2000			realsize -= zholes_size[j];
2001
2002		if (j < ZONE_HIGHMEM)
2003			nr_kernel_pages += realsize;
2004		nr_all_pages += realsize;
2005
2006		zone->spanned_pages = size;
2007		zone->present_pages = realsize;
2008#ifdef CONFIG_NUMA
2009		zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2010						/ 100;
2011#endif
2012		zone->name = zone_names[j];
2013		spin_lock_init(&zone->lock);
2014		spin_lock_init(&zone->lru_lock);
2015		zone_seqlock_init(zone);
2016		zone->zone_pgdat = pgdat;
2017		zone->free_pages = 0;
2018
2019		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2020
2021		zone_pcp_init(zone);
2022		INIT_LIST_HEAD(&zone->active_list);
2023		INIT_LIST_HEAD(&zone->inactive_list);
2024		zone->nr_scan_active = 0;
2025		zone->nr_scan_inactive = 0;
2026		zone->nr_active = 0;
2027		zone->nr_inactive = 0;
2028		zap_zone_vm_stats(zone);
2029		atomic_set(&zone->reclaim_in_progress, 0);
2030		if (!size)
2031			continue;
2032
2033		zonetable_add(zone, nid, j, zone_start_pfn, size);
2034		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2035		BUG_ON(ret);
2036		zone_start_pfn += size;
2037	}
2038}
2039
2040static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2041{
2042	/* Skip empty nodes */
2043	if (!pgdat->node_spanned_pages)
2044		return;
2045
2046#ifdef CONFIG_FLAT_NODE_MEM_MAP
2047	/* ia64 gets its own node_mem_map, before this, without bootmem */
2048	if (!pgdat->node_mem_map) {
2049		unsigned long size, start, end;
2050		struct page *map;
2051
2052		/*
2053		 * The zone's endpoints aren't required to be MAX_ORDER
2054		 * aligned but the node_mem_map endpoints must be in order
2055		 * for the buddy allocator to function correctly.
2056		 */
2057		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2058		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2059		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2060		size =  (end - start) * sizeof(struct page);
2061		map = alloc_remap(pgdat->node_id, size);
2062		if (!map)
2063			map = alloc_bootmem_node(pgdat, size);
2064		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2065	}
2066#ifdef CONFIG_FLATMEM
2067	/*
2068	 * With no DISCONTIG, the global mem_map is just set as node 0's
2069	 */
2070	if (pgdat == NODE_DATA(0))
2071		mem_map = NODE_DATA(0)->node_mem_map;
2072#endif
2073#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2074}
2075
2076void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2077		unsigned long *zones_size, unsigned long node_start_pfn,
2078		unsigned long *zholes_size)
2079{
2080	pgdat->node_id = nid;
2081	pgdat->node_start_pfn = node_start_pfn;
2082	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2083
2084	alloc_node_mem_map(pgdat);
2085
2086	free_area_init_core(pgdat, zones_size, zholes_size);
2087}
2088
2089#ifndef CONFIG_NEED_MULTIPLE_NODES
2090static bootmem_data_t contig_bootmem_data;
2091struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2092
2093EXPORT_SYMBOL(contig_page_data);
2094#endif
2095
2096void __init free_area_init(unsigned long *zones_size)
2097{
2098	free_area_init_node(0, NODE_DATA(0), zones_size,
2099			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2100}
2101
2102#ifdef CONFIG_HOTPLUG_CPU
2103static int page_alloc_cpu_notify(struct notifier_block *self,
2104				 unsigned long action, void *hcpu)
2105{
2106	int cpu = (unsigned long)hcpu;
2107
2108	if (action == CPU_DEAD) {
2109		local_irq_disable();
2110		__drain_pages(cpu);
2111		vm_events_fold_cpu(cpu);
2112		local_irq_enable();
2113		refresh_cpu_vm_stats(cpu);
2114	}
2115	return NOTIFY_OK;
2116}
2117#endif /* CONFIG_HOTPLUG_CPU */
2118
2119void __init page_alloc_init(void)
2120{
2121	hotcpu_notifier(page_alloc_cpu_notify, 0);
2122}
2123
2124/*
2125 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2126 *	or min_free_kbytes changes.
2127 */
2128static void calculate_totalreserve_pages(void)
2129{
2130	struct pglist_data *pgdat;
2131	unsigned long reserve_pages = 0;
2132	int i, j;
2133
2134	for_each_online_pgdat(pgdat) {
2135		for (i = 0; i < MAX_NR_ZONES; i++) {
2136			struct zone *zone = pgdat->node_zones + i;
2137			unsigned long max = 0;
2138
2139			/* Find valid and maximum lowmem_reserve in the zone */
2140			for (j = i; j < MAX_NR_ZONES; j++) {
2141				if (zone->lowmem_reserve[j] > max)
2142					max = zone->lowmem_reserve[j];
2143			}
2144
2145			/* we treat pages_high as reserved pages. */
2146			max += zone->pages_high;
2147
2148			if (max > zone->present_pages)
2149				max = zone->present_pages;
2150			reserve_pages += max;
2151		}
2152	}
2153	totalreserve_pages = reserve_pages;
2154}
2155
2156/*
2157 * setup_per_zone_lowmem_reserve - called whenever
2158 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2159 *	has a correct pages reserved value, so an adequate number of
2160 *	pages are left in the zone after a successful __alloc_pages().
2161 */
2162static void setup_per_zone_lowmem_reserve(void)
2163{
2164	struct pglist_data *pgdat;
2165	int j, idx;
2166
2167	for_each_online_pgdat(pgdat) {
2168		for (j = 0; j < MAX_NR_ZONES; j++) {
2169			struct zone *zone = pgdat->node_zones + j;
2170			unsigned long present_pages = zone->present_pages;
2171
2172			zone->lowmem_reserve[j] = 0;
2173
2174			for (idx = j-1; idx >= 0; idx--) {
2175				struct zone *lower_zone;
2176
2177				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2178					sysctl_lowmem_reserve_ratio[idx] = 1;
2179
2180				lower_zone = pgdat->node_zones + idx;
2181				lower_zone->lowmem_reserve[j] = present_pages /
2182					sysctl_lowmem_reserve_ratio[idx];
2183				present_pages += lower_zone->present_pages;
2184			}
2185		}
2186	}
2187
2188	/* update totalreserve_pages */
2189	calculate_totalreserve_pages();
2190}
2191
2192/*
2193 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2194 *	that the pages_{min,low,high} values for each zone are set correctly
2195 *	with respect to min_free_kbytes.
2196 */
2197void setup_per_zone_pages_min(void)
2198{
2199	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2200	unsigned long lowmem_pages = 0;
2201	struct zone *zone;
2202	unsigned long flags;
2203
2204	/* Calculate total number of !ZONE_HIGHMEM pages */
2205	for_each_zone(zone) {
2206		if (!is_highmem(zone))
2207			lowmem_pages += zone->present_pages;
2208	}
2209
2210	for_each_zone(zone) {
2211		u64 tmp;
2212
2213		spin_lock_irqsave(&zone->lru_lock, flags);
2214		tmp = (u64)pages_min * zone->present_pages;
2215		do_div(tmp, lowmem_pages);
2216		if (is_highmem(zone)) {
2217			/*
2218			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2219			 * need highmem pages, so cap pages_min to a small
2220			 * value here.
2221			 *
2222			 * The (pages_high-pages_low) and (pages_low-pages_min)
2223			 * deltas controls asynch page reclaim, and so should
2224			 * not be capped for highmem.
2225			 */
2226			int min_pages;
2227
2228			min_pages = zone->present_pages / 1024;
2229			if (min_pages < SWAP_CLUSTER_MAX)
2230				min_pages = SWAP_CLUSTER_MAX;
2231			if (min_pages > 128)
2232				min_pages = 128;
2233			zone->pages_min = min_pages;
2234		} else {
2235			/*
2236			 * If it's a lowmem zone, reserve a number of pages
2237			 * proportionate to the zone's size.
2238			 */
2239			zone->pages_min = tmp;
2240		}
2241
2242		zone->pages_low   = zone->pages_min + (tmp >> 2);
2243		zone->pages_high  = zone->pages_min + (tmp >> 1);
2244		spin_unlock_irqrestore(&zone->lru_lock, flags);
2245	}
2246
2247	/* update totalreserve_pages */
2248	calculate_totalreserve_pages();
2249}
2250
2251/*
2252 * Initialise min_free_kbytes.
2253 *
2254 * For small machines we want it small (128k min).  For large machines
2255 * we want it large (64MB max).  But it is not linear, because network
2256 * bandwidth does not increase linearly with machine size.  We use
2257 *
2258 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2259 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2260 *
2261 * which yields
2262 *
2263 * 16MB:	512k
2264 * 32MB:	724k
2265 * 64MB:	1024k
2266 * 128MB:	1448k
2267 * 256MB:	2048k
2268 * 512MB:	2896k
2269 * 1024MB:	4096k
2270 * 2048MB:	5792k
2271 * 4096MB:	8192k
2272 * 8192MB:	11584k
2273 * 16384MB:	16384k
2274 */
2275static int __init init_per_zone_pages_min(void)
2276{
2277	unsigned long lowmem_kbytes;
2278
2279	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2280
2281	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2282	if (min_free_kbytes < 128)
2283		min_free_kbytes = 128;
2284	if (min_free_kbytes > 65536)
2285		min_free_kbytes = 65536;
2286	setup_per_zone_pages_min();
2287	setup_per_zone_lowmem_reserve();
2288	return 0;
2289}
2290module_init(init_per_zone_pages_min)
2291
2292/*
2293 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2294 *	that we can call two helper functions whenever min_free_kbytes
2295 *	changes.
2296 */
2297int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2298	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2299{
2300	proc_dointvec(table, write, file, buffer, length, ppos);
2301	setup_per_zone_pages_min();
2302	return 0;
2303}
2304
2305#ifdef CONFIG_NUMA
2306int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2307	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2308{
2309	struct zone *zone;
2310	int rc;
2311
2312	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2313	if (rc)
2314		return rc;
2315
2316	for_each_zone(zone)
2317		zone->min_unmapped_ratio = (zone->present_pages *
2318				sysctl_min_unmapped_ratio) / 100;
2319	return 0;
2320}
2321#endif
2322
2323/*
2324 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2325 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2326 *	whenever sysctl_lowmem_reserve_ratio changes.
2327 *
2328 * The reserve ratio obviously has absolutely no relation with the
2329 * pages_min watermarks. The lowmem reserve ratio can only make sense
2330 * if in function of the boot time zone sizes.
2331 */
2332int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2333	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2334{
2335	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2336	setup_per_zone_lowmem_reserve();
2337	return 0;
2338}
2339
2340/*
2341 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2342 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2343 * can have before it gets flushed back to buddy allocator.
2344 */
2345
2346int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2347	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2348{
2349	struct zone *zone;
2350	unsigned int cpu;
2351	int ret;
2352
2353	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2354	if (!write || (ret == -EINVAL))
2355		return ret;
2356	for_each_zone(zone) {
2357		for_each_online_cpu(cpu) {
2358			unsigned long  high;
2359			high = zone->present_pages / percpu_pagelist_fraction;
2360			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2361		}
2362	}
2363	return 0;
2364}
2365
2366int hashdist = HASHDIST_DEFAULT;
2367
2368#ifdef CONFIG_NUMA
2369static int __init set_hashdist(char *str)
2370{
2371	if (!str)
2372		return 0;
2373	hashdist = simple_strtoul(str, &str, 0);
2374	return 1;
2375}
2376__setup("hashdist=", set_hashdist);
2377#endif
2378
2379/*
2380 * allocate a large system hash table from bootmem
2381 * - it is assumed that the hash table must contain an exact power-of-2
2382 *   quantity of entries
2383 * - limit is the number of hash buckets, not the total allocation size
2384 */
2385void *__init alloc_large_system_hash(const char *tablename,
2386				     unsigned long bucketsize,
2387				     unsigned long numentries,
2388				     int scale,
2389				     int flags,
2390				     unsigned int *_hash_shift,
2391				     unsigned int *_hash_mask,
2392				     unsigned long limit)
2393{
2394	unsigned long long max = limit;
2395	unsigned long log2qty, size;
2396	void *table = NULL;
2397
2398	/* allow the kernel cmdline to have a say */
2399	if (!numentries) {
2400		/* round applicable memory size up to nearest megabyte */
2401		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2402		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2403		numentries >>= 20 - PAGE_SHIFT;
2404		numentries <<= 20 - PAGE_SHIFT;
2405
2406		/* limit to 1 bucket per 2^scale bytes of low memory */
2407		if (scale > PAGE_SHIFT)
2408			numentries >>= (scale - PAGE_SHIFT);
2409		else
2410			numentries <<= (PAGE_SHIFT - scale);
2411	}
2412	numentries = roundup_pow_of_two(numentries);
2413
2414	/* limit allocation size to 1/16 total memory by default */
2415	if (max == 0) {
2416		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2417		do_div(max, bucketsize);
2418	}
2419
2420	if (numentries > max)
2421		numentries = max;
2422
2423	log2qty = long_log2(numentries);
2424
2425	do {
2426		size = bucketsize << log2qty;
2427		if (flags & HASH_EARLY)
2428			table = alloc_bootmem(size);
2429		else if (hashdist)
2430			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2431		else {
2432			unsigned long order;
2433			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2434				;
2435			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2436		}
2437	} while (!table && size > PAGE_SIZE && --log2qty);
2438
2439	if (!table)
2440		panic("Failed to allocate %s hash table\n", tablename);
2441
2442	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2443	       tablename,
2444	       (1U << log2qty),
2445	       long_log2(size) - PAGE_SHIFT,
2446	       size);
2447
2448	if (_hash_shift)
2449		*_hash_shift = log2qty;
2450	if (_hash_mask)
2451		*_hash_mask = (1 << log2qty) - 1;
2452
2453	return table;
2454}
2455
2456#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2457struct page *pfn_to_page(unsigned long pfn)
2458{
2459	return __pfn_to_page(pfn);
2460}
2461unsigned long page_to_pfn(struct page *page)
2462{
2463	return __page_to_pfn(page);
2464}
2465EXPORT_SYMBOL(pfn_to_page);
2466EXPORT_SYMBOL(page_to_pfn);
2467#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2468