percpu.c revision 1a0c3298d6c6bfc357c38772e7f32d193c60c77d
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009		SUSE Linux Products GmbH
5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.  ie. in
17 * vmalloc area
18 *
19 *  c0                           c1                         c2
20 *  -------------------          -------------------        ------------
21 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22 *  -------------------  ......  -------------------  ....  ------------
23 *
24 * Allocation is done in offset-size areas of single unit space.  Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes.  The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk.  This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map.  A positive value in the map represents a free
41 * region and negative allocated.  Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 *   regular address to percpu pointer and back if they need to be
53 *   different from the default
54 *
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 *   setup the first chunk containing the kernel static percpu area
57 */
58
59#include <linux/bitmap.h>
60#include <linux/bootmem.h>
61#include <linux/err.h>
62#include <linux/list.h>
63#include <linux/log2.h>
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/mutex.h>
67#include <linux/percpu.h>
68#include <linux/pfn.h>
69#include <linux/slab.h>
70#include <linux/spinlock.h>
71#include <linux/vmalloc.h>
72#include <linux/workqueue.h>
73
74#include <asm/cacheflush.h>
75#include <asm/sections.h>
76#include <asm/tlbflush.h>
77
78#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
79#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
80
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr)					\
84	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
85		 + (unsigned long)__per_cpu_start)
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr)						\
89	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
90		 - (unsigned long)__per_cpu_start)
91#endif
92
93struct pcpu_chunk {
94	struct list_head	list;		/* linked to pcpu_slot lists */
95	int			free_size;	/* free bytes in the chunk */
96	int			contig_hint;	/* max contiguous size hint */
97	void			*base_addr;	/* base address of this chunk */
98	int			map_used;	/* # of map entries used */
99	int			map_alloc;	/* # of map entries allocated */
100	int			*map;		/* allocation map */
101	struct vm_struct	**vms;		/* mapped vmalloc regions */
102	bool			immutable;	/* no [de]population allowed */
103	unsigned long		populated[];	/* populated bitmap */
104};
105
106static int pcpu_unit_pages __read_mostly;
107static int pcpu_unit_size __read_mostly;
108static int pcpu_nr_units __read_mostly;
109static int pcpu_atom_size __read_mostly;
110static int pcpu_nr_slots __read_mostly;
111static size_t pcpu_chunk_struct_size __read_mostly;
112
113/* cpus with the lowest and highest unit numbers */
114static unsigned int pcpu_first_unit_cpu __read_mostly;
115static unsigned int pcpu_last_unit_cpu __read_mostly;
116
117/* the address of the first chunk which starts with the kernel static area */
118void *pcpu_base_addr __read_mostly;
119EXPORT_SYMBOL_GPL(pcpu_base_addr);
120
121static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
122const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123
124/* group information, used for vm allocation */
125static int pcpu_nr_groups __read_mostly;
126static const unsigned long *pcpu_group_offsets __read_mostly;
127static const size_t *pcpu_group_sizes __read_mostly;
128
129/*
130 * The first chunk which always exists.  Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
133 */
134static struct pcpu_chunk *pcpu_first_chunk;
135
136/*
137 * Optional reserved chunk.  This chunk reserves part of the first
138 * chunk and serves it for reserved allocations.  The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
140 * area doesn't exist, the following variables contain NULL and 0
141 * respectively.
142 */
143static struct pcpu_chunk *pcpu_reserved_chunk;
144static int pcpu_reserved_chunk_limit;
145
146/*
147 * Synchronization rules.
148 *
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping.  The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
153 *
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary.  All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released.
157 *
158 * Free path accesses and alters only the index data structures, so it
159 * can be safely called from atomic context.  When memory needs to be
160 * returned to the system, free path schedules reclaim_work which
161 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
162 * reclaimed, release both locks and frees the chunks.  Note that it's
163 * necessary to grab both locks to remove a chunk from circulation as
164 * allocation path might be referencing the chunk with only
165 * pcpu_alloc_mutex locked.
166 */
167static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
168static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
169
170static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
171
172/* reclaim work to release fully free chunks, scheduled from free path */
173static void pcpu_reclaim(struct work_struct *work);
174static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
175
176static int __pcpu_size_to_slot(int size)
177{
178	int highbit = fls(size);	/* size is in bytes */
179	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
180}
181
182static int pcpu_size_to_slot(int size)
183{
184	if (size == pcpu_unit_size)
185		return pcpu_nr_slots - 1;
186	return __pcpu_size_to_slot(size);
187}
188
189static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
190{
191	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
192		return 0;
193
194	return pcpu_size_to_slot(chunk->free_size);
195}
196
197static int pcpu_page_idx(unsigned int cpu, int page_idx)
198{
199	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
200}
201
202static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
203				     unsigned int cpu, int page_idx)
204{
205	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
206		(page_idx << PAGE_SHIFT);
207}
208
209static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
210				    unsigned int cpu, int page_idx)
211{
212	/* must not be used on pre-mapped chunk */
213	WARN_ON(chunk->immutable);
214
215	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
216}
217
218/* set the pointer to a chunk in a page struct */
219static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
220{
221	page->index = (unsigned long)pcpu;
222}
223
224/* obtain pointer to a chunk from a page struct */
225static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
226{
227	return (struct pcpu_chunk *)page->index;
228}
229
230static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
231{
232	*rs = find_next_zero_bit(chunk->populated, end, *rs);
233	*re = find_next_bit(chunk->populated, end, *rs + 1);
234}
235
236static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
237{
238	*rs = find_next_bit(chunk->populated, end, *rs);
239	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
240}
241
242/*
243 * (Un)populated page region iterators.  Iterate over (un)populated
244 * page regions betwen @start and @end in @chunk.  @rs and @re should
245 * be integer variables and will be set to start and end page index of
246 * the current region.
247 */
248#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
249	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
250	     (rs) < (re);						    \
251	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
252
253#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
254	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
255	     (rs) < (re);						    \
256	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
257
258/**
259 * pcpu_mem_alloc - allocate memory
260 * @size: bytes to allocate
261 *
262 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
263 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
264 * memory is always zeroed.
265 *
266 * CONTEXT:
267 * Does GFP_KERNEL allocation.
268 *
269 * RETURNS:
270 * Pointer to the allocated area on success, NULL on failure.
271 */
272static void *pcpu_mem_alloc(size_t size)
273{
274	if (size <= PAGE_SIZE)
275		return kzalloc(size, GFP_KERNEL);
276	else {
277		void *ptr = vmalloc(size);
278		if (ptr)
279			memset(ptr, 0, size);
280		return ptr;
281	}
282}
283
284/**
285 * pcpu_mem_free - free memory
286 * @ptr: memory to free
287 * @size: size of the area
288 *
289 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
290 */
291static void pcpu_mem_free(void *ptr, size_t size)
292{
293	if (size <= PAGE_SIZE)
294		kfree(ptr);
295	else
296		vfree(ptr);
297}
298
299/**
300 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
301 * @chunk: chunk of interest
302 * @oslot: the previous slot it was on
303 *
304 * This function is called after an allocation or free changed @chunk.
305 * New slot according to the changed state is determined and @chunk is
306 * moved to the slot.  Note that the reserved chunk is never put on
307 * chunk slots.
308 *
309 * CONTEXT:
310 * pcpu_lock.
311 */
312static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
313{
314	int nslot = pcpu_chunk_slot(chunk);
315
316	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
317		if (oslot < nslot)
318			list_move(&chunk->list, &pcpu_slot[nslot]);
319		else
320			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
321	}
322}
323
324/**
325 * pcpu_chunk_addr_search - determine chunk containing specified address
326 * @addr: address for which the chunk needs to be determined.
327 *
328 * RETURNS:
329 * The address of the found chunk.
330 */
331static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
332{
333	void *first_start = pcpu_first_chunk->base_addr;
334
335	/* is it in the first chunk? */
336	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
337		/* is it in the reserved area? */
338		if (addr < first_start + pcpu_reserved_chunk_limit)
339			return pcpu_reserved_chunk;
340		return pcpu_first_chunk;
341	}
342
343	/*
344	 * The address is relative to unit0 which might be unused and
345	 * thus unmapped.  Offset the address to the unit space of the
346	 * current processor before looking it up in the vmalloc
347	 * space.  Note that any possible cpu id can be used here, so
348	 * there's no need to worry about preemption or cpu hotplug.
349	 */
350	addr += pcpu_unit_offsets[raw_smp_processor_id()];
351	return pcpu_get_page_chunk(vmalloc_to_page(addr));
352}
353
354/**
355 * pcpu_extend_area_map - extend area map for allocation
356 * @chunk: target chunk
357 *
358 * Extend area map of @chunk so that it can accomodate an allocation.
359 * A single allocation can split an area into three areas, so this
360 * function makes sure that @chunk->map has at least two extra slots.
361 *
362 * CONTEXT:
363 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
364 * if area map is extended.
365 *
366 * RETURNS:
367 * 0 if noop, 1 if successfully extended, -errno on failure.
368 */
369static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
370{
371	int new_alloc;
372	int *new;
373	size_t size;
374
375	/* has enough? */
376	if (chunk->map_alloc >= chunk->map_used + 2)
377		return 0;
378
379	spin_unlock_irq(&pcpu_lock);
380
381	new_alloc = PCPU_DFL_MAP_ALLOC;
382	while (new_alloc < chunk->map_used + 2)
383		new_alloc *= 2;
384
385	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
386	if (!new) {
387		spin_lock_irq(&pcpu_lock);
388		return -ENOMEM;
389	}
390
391	/*
392	 * Acquire pcpu_lock and switch to new area map.  Only free
393	 * could have happened inbetween, so map_used couldn't have
394	 * grown.
395	 */
396	spin_lock_irq(&pcpu_lock);
397	BUG_ON(new_alloc < chunk->map_used + 2);
398
399	size = chunk->map_alloc * sizeof(chunk->map[0]);
400	memcpy(new, chunk->map, size);
401
402	/*
403	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
404	 * one of the first chunks and still using static map.
405	 */
406	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
407		pcpu_mem_free(chunk->map, size);
408
409	chunk->map_alloc = new_alloc;
410	chunk->map = new;
411	return 0;
412}
413
414/**
415 * pcpu_split_block - split a map block
416 * @chunk: chunk of interest
417 * @i: index of map block to split
418 * @head: head size in bytes (can be 0)
419 * @tail: tail size in bytes (can be 0)
420 *
421 * Split the @i'th map block into two or three blocks.  If @head is
422 * non-zero, @head bytes block is inserted before block @i moving it
423 * to @i+1 and reducing its size by @head bytes.
424 *
425 * If @tail is non-zero, the target block, which can be @i or @i+1
426 * depending on @head, is reduced by @tail bytes and @tail byte block
427 * is inserted after the target block.
428 *
429 * @chunk->map must have enough free slots to accomodate the split.
430 *
431 * CONTEXT:
432 * pcpu_lock.
433 */
434static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
435			     int head, int tail)
436{
437	int nr_extra = !!head + !!tail;
438
439	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
440
441	/* insert new subblocks */
442	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
443		sizeof(chunk->map[0]) * (chunk->map_used - i));
444	chunk->map_used += nr_extra;
445
446	if (head) {
447		chunk->map[i + 1] = chunk->map[i] - head;
448		chunk->map[i++] = head;
449	}
450	if (tail) {
451		chunk->map[i++] -= tail;
452		chunk->map[i] = tail;
453	}
454}
455
456/**
457 * pcpu_alloc_area - allocate area from a pcpu_chunk
458 * @chunk: chunk of interest
459 * @size: wanted size in bytes
460 * @align: wanted align
461 *
462 * Try to allocate @size bytes area aligned at @align from @chunk.
463 * Note that this function only allocates the offset.  It doesn't
464 * populate or map the area.
465 *
466 * @chunk->map must have at least two free slots.
467 *
468 * CONTEXT:
469 * pcpu_lock.
470 *
471 * RETURNS:
472 * Allocated offset in @chunk on success, -1 if no matching area is
473 * found.
474 */
475static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
476{
477	int oslot = pcpu_chunk_slot(chunk);
478	int max_contig = 0;
479	int i, off;
480
481	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
482		bool is_last = i + 1 == chunk->map_used;
483		int head, tail;
484
485		/* extra for alignment requirement */
486		head = ALIGN(off, align) - off;
487		BUG_ON(i == 0 && head != 0);
488
489		if (chunk->map[i] < 0)
490			continue;
491		if (chunk->map[i] < head + size) {
492			max_contig = max(chunk->map[i], max_contig);
493			continue;
494		}
495
496		/*
497		 * If head is small or the previous block is free,
498		 * merge'em.  Note that 'small' is defined as smaller
499		 * than sizeof(int), which is very small but isn't too
500		 * uncommon for percpu allocations.
501		 */
502		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
503			if (chunk->map[i - 1] > 0)
504				chunk->map[i - 1] += head;
505			else {
506				chunk->map[i - 1] -= head;
507				chunk->free_size -= head;
508			}
509			chunk->map[i] -= head;
510			off += head;
511			head = 0;
512		}
513
514		/* if tail is small, just keep it around */
515		tail = chunk->map[i] - head - size;
516		if (tail < sizeof(int))
517			tail = 0;
518
519		/* split if warranted */
520		if (head || tail) {
521			pcpu_split_block(chunk, i, head, tail);
522			if (head) {
523				i++;
524				off += head;
525				max_contig = max(chunk->map[i - 1], max_contig);
526			}
527			if (tail)
528				max_contig = max(chunk->map[i + 1], max_contig);
529		}
530
531		/* update hint and mark allocated */
532		if (is_last)
533			chunk->contig_hint = max_contig; /* fully scanned */
534		else
535			chunk->contig_hint = max(chunk->contig_hint,
536						 max_contig);
537
538		chunk->free_size -= chunk->map[i];
539		chunk->map[i] = -chunk->map[i];
540
541		pcpu_chunk_relocate(chunk, oslot);
542		return off;
543	}
544
545	chunk->contig_hint = max_contig;	/* fully scanned */
546	pcpu_chunk_relocate(chunk, oslot);
547
548	/* tell the upper layer that this chunk has no matching area */
549	return -1;
550}
551
552/**
553 * pcpu_free_area - free area to a pcpu_chunk
554 * @chunk: chunk of interest
555 * @freeme: offset of area to free
556 *
557 * Free area starting from @freeme to @chunk.  Note that this function
558 * only modifies the allocation map.  It doesn't depopulate or unmap
559 * the area.
560 *
561 * CONTEXT:
562 * pcpu_lock.
563 */
564static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
565{
566	int oslot = pcpu_chunk_slot(chunk);
567	int i, off;
568
569	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
570		if (off == freeme)
571			break;
572	BUG_ON(off != freeme);
573	BUG_ON(chunk->map[i] > 0);
574
575	chunk->map[i] = -chunk->map[i];
576	chunk->free_size += chunk->map[i];
577
578	/* merge with previous? */
579	if (i > 0 && chunk->map[i - 1] >= 0) {
580		chunk->map[i - 1] += chunk->map[i];
581		chunk->map_used--;
582		memmove(&chunk->map[i], &chunk->map[i + 1],
583			(chunk->map_used - i) * sizeof(chunk->map[0]));
584		i--;
585	}
586	/* merge with next? */
587	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
588		chunk->map[i] += chunk->map[i + 1];
589		chunk->map_used--;
590		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
591			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
592	}
593
594	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
595	pcpu_chunk_relocate(chunk, oslot);
596}
597
598/**
599 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
600 * @chunk: chunk of interest
601 * @bitmapp: output parameter for bitmap
602 * @may_alloc: may allocate the array
603 *
604 * Returns pointer to array of pointers to struct page and bitmap,
605 * both of which can be indexed with pcpu_page_idx().  The returned
606 * array is cleared to zero and *@bitmapp is copied from
607 * @chunk->populated.  Note that there is only one array and bitmap
608 * and access exclusion is the caller's responsibility.
609 *
610 * CONTEXT:
611 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
612 * Otherwise, don't care.
613 *
614 * RETURNS:
615 * Pointer to temp pages array on success, NULL on failure.
616 */
617static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
618					       unsigned long **bitmapp,
619					       bool may_alloc)
620{
621	static struct page **pages;
622	static unsigned long *bitmap;
623	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
624	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
625			     sizeof(unsigned long);
626
627	if (!pages || !bitmap) {
628		if (may_alloc && !pages)
629			pages = pcpu_mem_alloc(pages_size);
630		if (may_alloc && !bitmap)
631			bitmap = pcpu_mem_alloc(bitmap_size);
632		if (!pages || !bitmap)
633			return NULL;
634	}
635
636	memset(pages, 0, pages_size);
637	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
638
639	*bitmapp = bitmap;
640	return pages;
641}
642
643/**
644 * pcpu_free_pages - free pages which were allocated for @chunk
645 * @chunk: chunk pages were allocated for
646 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
647 * @populated: populated bitmap
648 * @page_start: page index of the first page to be freed
649 * @page_end: page index of the last page to be freed + 1
650 *
651 * Free pages [@page_start and @page_end) in @pages for all units.
652 * The pages were allocated for @chunk.
653 */
654static void pcpu_free_pages(struct pcpu_chunk *chunk,
655			    struct page **pages, unsigned long *populated,
656			    int page_start, int page_end)
657{
658	unsigned int cpu;
659	int i;
660
661	for_each_possible_cpu(cpu) {
662		for (i = page_start; i < page_end; i++) {
663			struct page *page = pages[pcpu_page_idx(cpu, i)];
664
665			if (page)
666				__free_page(page);
667		}
668	}
669}
670
671/**
672 * pcpu_alloc_pages - allocates pages for @chunk
673 * @chunk: target chunk
674 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
675 * @populated: populated bitmap
676 * @page_start: page index of the first page to be allocated
677 * @page_end: page index of the last page to be allocated + 1
678 *
679 * Allocate pages [@page_start,@page_end) into @pages for all units.
680 * The allocation is for @chunk.  Percpu core doesn't care about the
681 * content of @pages and will pass it verbatim to pcpu_map_pages().
682 */
683static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
684			    struct page **pages, unsigned long *populated,
685			    int page_start, int page_end)
686{
687	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
688	unsigned int cpu;
689	int i;
690
691	for_each_possible_cpu(cpu) {
692		for (i = page_start; i < page_end; i++) {
693			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
694
695			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
696			if (!*pagep) {
697				pcpu_free_pages(chunk, pages, populated,
698						page_start, page_end);
699				return -ENOMEM;
700			}
701		}
702	}
703	return 0;
704}
705
706/**
707 * pcpu_pre_unmap_flush - flush cache prior to unmapping
708 * @chunk: chunk the regions to be flushed belongs to
709 * @page_start: page index of the first page to be flushed
710 * @page_end: page index of the last page to be flushed + 1
711 *
712 * Pages in [@page_start,@page_end) of @chunk are about to be
713 * unmapped.  Flush cache.  As each flushing trial can be very
714 * expensive, issue flush on the whole region at once rather than
715 * doing it for each cpu.  This could be an overkill but is more
716 * scalable.
717 */
718static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
719				 int page_start, int page_end)
720{
721	flush_cache_vunmap(
722		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
723		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
724}
725
726static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
727{
728	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
729}
730
731/**
732 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
733 * @chunk: chunk of interest
734 * @pages: pages array which can be used to pass information to free
735 * @populated: populated bitmap
736 * @page_start: page index of the first page to unmap
737 * @page_end: page index of the last page to unmap + 1
738 *
739 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
740 * Corresponding elements in @pages were cleared by the caller and can
741 * be used to carry information to pcpu_free_pages() which will be
742 * called after all unmaps are finished.  The caller should call
743 * proper pre/post flush functions.
744 */
745static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
746			     struct page **pages, unsigned long *populated,
747			     int page_start, int page_end)
748{
749	unsigned int cpu;
750	int i;
751
752	for_each_possible_cpu(cpu) {
753		for (i = page_start; i < page_end; i++) {
754			struct page *page;
755
756			page = pcpu_chunk_page(chunk, cpu, i);
757			WARN_ON(!page);
758			pages[pcpu_page_idx(cpu, i)] = page;
759		}
760		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
761				   page_end - page_start);
762	}
763
764	for (i = page_start; i < page_end; i++)
765		__clear_bit(i, populated);
766}
767
768/**
769 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
770 * @chunk: pcpu_chunk the regions to be flushed belong to
771 * @page_start: page index of the first page to be flushed
772 * @page_end: page index of the last page to be flushed + 1
773 *
774 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
775 * TLB for the regions.  This can be skipped if the area is to be
776 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
777 *
778 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
779 * for the whole region.
780 */
781static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
782				      int page_start, int page_end)
783{
784	flush_tlb_kernel_range(
785		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
786		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
787}
788
789static int __pcpu_map_pages(unsigned long addr, struct page **pages,
790			    int nr_pages)
791{
792	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
793					PAGE_KERNEL, pages);
794}
795
796/**
797 * pcpu_map_pages - map pages into a pcpu_chunk
798 * @chunk: chunk of interest
799 * @pages: pages array containing pages to be mapped
800 * @populated: populated bitmap
801 * @page_start: page index of the first page to map
802 * @page_end: page index of the last page to map + 1
803 *
804 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
805 * caller is responsible for calling pcpu_post_map_flush() after all
806 * mappings are complete.
807 *
808 * This function is responsible for setting corresponding bits in
809 * @chunk->populated bitmap and whatever is necessary for reverse
810 * lookup (addr -> chunk).
811 */
812static int pcpu_map_pages(struct pcpu_chunk *chunk,
813			  struct page **pages, unsigned long *populated,
814			  int page_start, int page_end)
815{
816	unsigned int cpu, tcpu;
817	int i, err;
818
819	for_each_possible_cpu(cpu) {
820		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
821				       &pages[pcpu_page_idx(cpu, page_start)],
822				       page_end - page_start);
823		if (err < 0)
824			goto err;
825	}
826
827	/* mapping successful, link chunk and mark populated */
828	for (i = page_start; i < page_end; i++) {
829		for_each_possible_cpu(cpu)
830			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
831					    chunk);
832		__set_bit(i, populated);
833	}
834
835	return 0;
836
837err:
838	for_each_possible_cpu(tcpu) {
839		if (tcpu == cpu)
840			break;
841		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
842				   page_end - page_start);
843	}
844	return err;
845}
846
847/**
848 * pcpu_post_map_flush - flush cache after mapping
849 * @chunk: pcpu_chunk the regions to be flushed belong to
850 * @page_start: page index of the first page to be flushed
851 * @page_end: page index of the last page to be flushed + 1
852 *
853 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
854 * cache.
855 *
856 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
857 * for the whole region.
858 */
859static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
860				int page_start, int page_end)
861{
862	flush_cache_vmap(
863		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
864		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
865}
866
867/**
868 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
869 * @chunk: chunk to depopulate
870 * @off: offset to the area to depopulate
871 * @size: size of the area to depopulate in bytes
872 * @flush: whether to flush cache and tlb or not
873 *
874 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
875 * from @chunk.  If @flush is true, vcache is flushed before unmapping
876 * and tlb after.
877 *
878 * CONTEXT:
879 * pcpu_alloc_mutex.
880 */
881static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
882{
883	int page_start = PFN_DOWN(off);
884	int page_end = PFN_UP(off + size);
885	struct page **pages;
886	unsigned long *populated;
887	int rs, re;
888
889	/* quick path, check whether it's empty already */
890	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
891		if (rs == page_start && re == page_end)
892			return;
893		break;
894	}
895
896	/* immutable chunks can't be depopulated */
897	WARN_ON(chunk->immutable);
898
899	/*
900	 * If control reaches here, there must have been at least one
901	 * successful population attempt so the temp pages array must
902	 * be available now.
903	 */
904	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
905	BUG_ON(!pages);
906
907	/* unmap and free */
908	pcpu_pre_unmap_flush(chunk, page_start, page_end);
909
910	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
911		pcpu_unmap_pages(chunk, pages, populated, rs, re);
912
913	/* no need to flush tlb, vmalloc will handle it lazily */
914
915	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
916		pcpu_free_pages(chunk, pages, populated, rs, re);
917
918	/* commit new bitmap */
919	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
920}
921
922/**
923 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
924 * @chunk: chunk of interest
925 * @off: offset to the area to populate
926 * @size: size of the area to populate in bytes
927 *
928 * For each cpu, populate and map pages [@page_start,@page_end) into
929 * @chunk.  The area is cleared on return.
930 *
931 * CONTEXT:
932 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
933 */
934static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
935{
936	int page_start = PFN_DOWN(off);
937	int page_end = PFN_UP(off + size);
938	int free_end = page_start, unmap_end = page_start;
939	struct page **pages;
940	unsigned long *populated;
941	unsigned int cpu;
942	int rs, re, rc;
943
944	/* quick path, check whether all pages are already there */
945	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
946		if (rs == page_start && re == page_end)
947			goto clear;
948		break;
949	}
950
951	/* need to allocate and map pages, this chunk can't be immutable */
952	WARN_ON(chunk->immutable);
953
954	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
955	if (!pages)
956		return -ENOMEM;
957
958	/* alloc and map */
959	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
960		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
961		if (rc)
962			goto err_free;
963		free_end = re;
964	}
965
966	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
967		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
968		if (rc)
969			goto err_unmap;
970		unmap_end = re;
971	}
972	pcpu_post_map_flush(chunk, page_start, page_end);
973
974	/* commit new bitmap */
975	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
976clear:
977	for_each_possible_cpu(cpu)
978		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
979	return 0;
980
981err_unmap:
982	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
983	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
984		pcpu_unmap_pages(chunk, pages, populated, rs, re);
985	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
986err_free:
987	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
988		pcpu_free_pages(chunk, pages, populated, rs, re);
989	return rc;
990}
991
992static void free_pcpu_chunk(struct pcpu_chunk *chunk)
993{
994	if (!chunk)
995		return;
996	if (chunk->vms)
997		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
998	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
999	kfree(chunk);
1000}
1001
1002static struct pcpu_chunk *alloc_pcpu_chunk(void)
1003{
1004	struct pcpu_chunk *chunk;
1005
1006	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1007	if (!chunk)
1008		return NULL;
1009
1010	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1011	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1012	chunk->map[chunk->map_used++] = pcpu_unit_size;
1013
1014	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1015				       pcpu_nr_groups, pcpu_atom_size,
1016				       GFP_KERNEL);
1017	if (!chunk->vms) {
1018		free_pcpu_chunk(chunk);
1019		return NULL;
1020	}
1021
1022	INIT_LIST_HEAD(&chunk->list);
1023	chunk->free_size = pcpu_unit_size;
1024	chunk->contig_hint = pcpu_unit_size;
1025	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1026
1027	return chunk;
1028}
1029
1030/**
1031 * pcpu_alloc - the percpu allocator
1032 * @size: size of area to allocate in bytes
1033 * @align: alignment of area (max PAGE_SIZE)
1034 * @reserved: allocate from the reserved chunk if available
1035 *
1036 * Allocate percpu area of @size bytes aligned at @align.
1037 *
1038 * CONTEXT:
1039 * Does GFP_KERNEL allocation.
1040 *
1041 * RETURNS:
1042 * Percpu pointer to the allocated area on success, NULL on failure.
1043 */
1044static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1045{
1046	static int warn_limit = 10;
1047	struct pcpu_chunk *chunk;
1048	const char *err;
1049	int slot, off;
1050
1051	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1052		WARN(true, "illegal size (%zu) or align (%zu) for "
1053		     "percpu allocation\n", size, align);
1054		return NULL;
1055	}
1056
1057	mutex_lock(&pcpu_alloc_mutex);
1058	spin_lock_irq(&pcpu_lock);
1059
1060	/* serve reserved allocations from the reserved chunk if available */
1061	if (reserved && pcpu_reserved_chunk) {
1062		chunk = pcpu_reserved_chunk;
1063		if (size > chunk->contig_hint ||
1064		    pcpu_extend_area_map(chunk) < 0) {
1065			err = "failed to extend area map of reserved chunk";
1066			goto fail_unlock;
1067		}
1068		off = pcpu_alloc_area(chunk, size, align);
1069		if (off >= 0)
1070			goto area_found;
1071		err = "alloc from reserved chunk failed";
1072		goto fail_unlock;
1073	}
1074
1075restart:
1076	/* search through normal chunks */
1077	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1078		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1079			if (size > chunk->contig_hint)
1080				continue;
1081
1082			switch (pcpu_extend_area_map(chunk)) {
1083			case 0:
1084				break;
1085			case 1:
1086				goto restart;	/* pcpu_lock dropped, restart */
1087			default:
1088				err = "failed to extend area map";
1089				goto fail_unlock;
1090			}
1091
1092			off = pcpu_alloc_area(chunk, size, align);
1093			if (off >= 0)
1094				goto area_found;
1095		}
1096	}
1097
1098	/* hmmm... no space left, create a new chunk */
1099	spin_unlock_irq(&pcpu_lock);
1100
1101	chunk = alloc_pcpu_chunk();
1102	if (!chunk) {
1103		err = "failed to allocate new chunk";
1104		goto fail_unlock_mutex;
1105	}
1106
1107	spin_lock_irq(&pcpu_lock);
1108	pcpu_chunk_relocate(chunk, -1);
1109	goto restart;
1110
1111area_found:
1112	spin_unlock_irq(&pcpu_lock);
1113
1114	/* populate, map and clear the area */
1115	if (pcpu_populate_chunk(chunk, off, size)) {
1116		spin_lock_irq(&pcpu_lock);
1117		pcpu_free_area(chunk, off);
1118		err = "failed to populate";
1119		goto fail_unlock;
1120	}
1121
1122	mutex_unlock(&pcpu_alloc_mutex);
1123
1124	/* return address relative to base address */
1125	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1126
1127fail_unlock:
1128	spin_unlock_irq(&pcpu_lock);
1129fail_unlock_mutex:
1130	mutex_unlock(&pcpu_alloc_mutex);
1131	if (warn_limit) {
1132		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1133			   "%s\n", size, align, err);
1134		dump_stack();
1135		if (!--warn_limit)
1136			pr_info("PERCPU: limit reached, disable warning\n");
1137	}
1138	return NULL;
1139}
1140
1141/**
1142 * __alloc_percpu - allocate dynamic percpu area
1143 * @size: size of area to allocate in bytes
1144 * @align: alignment of area (max PAGE_SIZE)
1145 *
1146 * Allocate percpu area of @size bytes aligned at @align.  Might
1147 * sleep.  Might trigger writeouts.
1148 *
1149 * CONTEXT:
1150 * Does GFP_KERNEL allocation.
1151 *
1152 * RETURNS:
1153 * Percpu pointer to the allocated area on success, NULL on failure.
1154 */
1155void *__alloc_percpu(size_t size, size_t align)
1156{
1157	return pcpu_alloc(size, align, false);
1158}
1159EXPORT_SYMBOL_GPL(__alloc_percpu);
1160
1161/**
1162 * __alloc_reserved_percpu - allocate reserved percpu area
1163 * @size: size of area to allocate in bytes
1164 * @align: alignment of area (max PAGE_SIZE)
1165 *
1166 * Allocate percpu area of @size bytes aligned at @align from reserved
1167 * percpu area if arch has set it up; otherwise, allocation is served
1168 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1169 *
1170 * CONTEXT:
1171 * Does GFP_KERNEL allocation.
1172 *
1173 * RETURNS:
1174 * Percpu pointer to the allocated area on success, NULL on failure.
1175 */
1176void *__alloc_reserved_percpu(size_t size, size_t align)
1177{
1178	return pcpu_alloc(size, align, true);
1179}
1180
1181/**
1182 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1183 * @work: unused
1184 *
1185 * Reclaim all fully free chunks except for the first one.
1186 *
1187 * CONTEXT:
1188 * workqueue context.
1189 */
1190static void pcpu_reclaim(struct work_struct *work)
1191{
1192	LIST_HEAD(todo);
1193	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1194	struct pcpu_chunk *chunk, *next;
1195
1196	mutex_lock(&pcpu_alloc_mutex);
1197	spin_lock_irq(&pcpu_lock);
1198
1199	list_for_each_entry_safe(chunk, next, head, list) {
1200		WARN_ON(chunk->immutable);
1201
1202		/* spare the first one */
1203		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1204			continue;
1205
1206		list_move(&chunk->list, &todo);
1207	}
1208
1209	spin_unlock_irq(&pcpu_lock);
1210
1211	list_for_each_entry_safe(chunk, next, &todo, list) {
1212		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1213		free_pcpu_chunk(chunk);
1214	}
1215
1216	mutex_unlock(&pcpu_alloc_mutex);
1217}
1218
1219/**
1220 * free_percpu - free percpu area
1221 * @ptr: pointer to area to free
1222 *
1223 * Free percpu area @ptr.
1224 *
1225 * CONTEXT:
1226 * Can be called from atomic context.
1227 */
1228void free_percpu(void *ptr)
1229{
1230	void *addr = __pcpu_ptr_to_addr(ptr);
1231	struct pcpu_chunk *chunk;
1232	unsigned long flags;
1233	int off;
1234
1235	if (!ptr)
1236		return;
1237
1238	spin_lock_irqsave(&pcpu_lock, flags);
1239
1240	chunk = pcpu_chunk_addr_search(addr);
1241	off = addr - chunk->base_addr;
1242
1243	pcpu_free_area(chunk, off);
1244
1245	/* if there are more than one fully free chunks, wake up grim reaper */
1246	if (chunk->free_size == pcpu_unit_size) {
1247		struct pcpu_chunk *pos;
1248
1249		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1250			if (pos != chunk) {
1251				schedule_work(&pcpu_reclaim_work);
1252				break;
1253			}
1254	}
1255
1256	spin_unlock_irqrestore(&pcpu_lock, flags);
1257}
1258EXPORT_SYMBOL_GPL(free_percpu);
1259
1260static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1261					size_t reserved_size,
1262					ssize_t *dyn_sizep)
1263{
1264	size_t size_sum;
1265
1266	size_sum = PFN_ALIGN(static_size + reserved_size +
1267			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1268	if (*dyn_sizep != 0)
1269		*dyn_sizep = size_sum - static_size - reserved_size;
1270
1271	return size_sum;
1272}
1273
1274/**
1275 * pcpu_alloc_alloc_info - allocate percpu allocation info
1276 * @nr_groups: the number of groups
1277 * @nr_units: the number of units
1278 *
1279 * Allocate ai which is large enough for @nr_groups groups containing
1280 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1281 * cpu_map array which is long enough for @nr_units and filled with
1282 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1283 * pointer of other groups.
1284 *
1285 * RETURNS:
1286 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1287 * failure.
1288 */
1289struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1290						      int nr_units)
1291{
1292	struct pcpu_alloc_info *ai;
1293	size_t base_size, ai_size;
1294	void *ptr;
1295	int unit;
1296
1297	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1298			  __alignof__(ai->groups[0].cpu_map[0]));
1299	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1300
1301	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1302	if (!ptr)
1303		return NULL;
1304	ai = ptr;
1305	ptr += base_size;
1306
1307	ai->groups[0].cpu_map = ptr;
1308
1309	for (unit = 0; unit < nr_units; unit++)
1310		ai->groups[0].cpu_map[unit] = NR_CPUS;
1311
1312	ai->nr_groups = nr_groups;
1313	ai->__ai_size = PFN_ALIGN(ai_size);
1314
1315	return ai;
1316}
1317
1318/**
1319 * pcpu_free_alloc_info - free percpu allocation info
1320 * @ai: pcpu_alloc_info to free
1321 *
1322 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1323 */
1324void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1325{
1326	free_bootmem(__pa(ai), ai->__ai_size);
1327}
1328
1329/**
1330 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1331 * @reserved_size: the size of reserved percpu area in bytes
1332 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1333 * @atom_size: allocation atom size
1334 * @cpu_distance_fn: callback to determine distance between cpus, optional
1335 *
1336 * This function determines grouping of units, their mappings to cpus
1337 * and other parameters considering needed percpu size, allocation
1338 * atom size and distances between CPUs.
1339 *
1340 * Groups are always mutliples of atom size and CPUs which are of
1341 * LOCAL_DISTANCE both ways are grouped together and share space for
1342 * units in the same group.  The returned configuration is guaranteed
1343 * to have CPUs on different nodes on different groups and >=75% usage
1344 * of allocated virtual address space.
1345 *
1346 * RETURNS:
1347 * On success, pointer to the new allocation_info is returned.  On
1348 * failure, ERR_PTR value is returned.
1349 */
1350struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1351				size_t reserved_size, ssize_t dyn_size,
1352				size_t atom_size,
1353				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1354{
1355	static int group_map[NR_CPUS] __initdata;
1356	static int group_cnt[NR_CPUS] __initdata;
1357	const size_t static_size = __per_cpu_end - __per_cpu_start;
1358	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1359	size_t size_sum, min_unit_size, alloc_size;
1360	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1361	int last_allocs, group, unit;
1362	unsigned int cpu, tcpu;
1363	struct pcpu_alloc_info *ai;
1364	unsigned int *cpu_map;
1365
1366	/* this function may be called multiple times */
1367	memset(group_map, 0, sizeof(group_map));
1368	memset(group_cnt, 0, sizeof(group_map));
1369
1370	/*
1371	 * Determine min_unit_size, alloc_size and max_upa such that
1372	 * alloc_size is multiple of atom_size and is the smallest
1373	 * which can accomodate 4k aligned segments which are equal to
1374	 * or larger than min_unit_size.
1375	 */
1376	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1377	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1378
1379	alloc_size = roundup(min_unit_size, atom_size);
1380	upa = alloc_size / min_unit_size;
1381	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1382		upa--;
1383	max_upa = upa;
1384
1385	/* group cpus according to their proximity */
1386	for_each_possible_cpu(cpu) {
1387		group = 0;
1388	next_group:
1389		for_each_possible_cpu(tcpu) {
1390			if (cpu == tcpu)
1391				break;
1392			if (group_map[tcpu] == group && cpu_distance_fn &&
1393			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1394			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1395				group++;
1396				nr_groups = max(nr_groups, group + 1);
1397				goto next_group;
1398			}
1399		}
1400		group_map[cpu] = group;
1401		group_cnt[group]++;
1402		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1403	}
1404
1405	/*
1406	 * Expand unit size until address space usage goes over 75%
1407	 * and then as much as possible without using more address
1408	 * space.
1409	 */
1410	last_allocs = INT_MAX;
1411	for (upa = max_upa; upa; upa--) {
1412		int allocs = 0, wasted = 0;
1413
1414		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1415			continue;
1416
1417		for (group = 0; group < nr_groups; group++) {
1418			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1419			allocs += this_allocs;
1420			wasted += this_allocs * upa - group_cnt[group];
1421		}
1422
1423		/*
1424		 * Don't accept if wastage is over 25%.  The
1425		 * greater-than comparison ensures upa==1 always
1426		 * passes the following check.
1427		 */
1428		if (wasted > num_possible_cpus() / 3)
1429			continue;
1430
1431		/* and then don't consume more memory */
1432		if (allocs > last_allocs)
1433			break;
1434		last_allocs = allocs;
1435		best_upa = upa;
1436	}
1437	upa = best_upa;
1438
1439	/* allocate and fill alloc_info */
1440	for (group = 0; group < nr_groups; group++)
1441		nr_units += roundup(group_cnt[group], upa);
1442
1443	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1444	if (!ai)
1445		return ERR_PTR(-ENOMEM);
1446	cpu_map = ai->groups[0].cpu_map;
1447
1448	for (group = 0; group < nr_groups; group++) {
1449		ai->groups[group].cpu_map = cpu_map;
1450		cpu_map += roundup(group_cnt[group], upa);
1451	}
1452
1453	ai->static_size = static_size;
1454	ai->reserved_size = reserved_size;
1455	ai->dyn_size = dyn_size;
1456	ai->unit_size = alloc_size / upa;
1457	ai->atom_size = atom_size;
1458	ai->alloc_size = alloc_size;
1459
1460	for (group = 0, unit = 0; group_cnt[group]; group++) {
1461		struct pcpu_group_info *gi = &ai->groups[group];
1462
1463		/*
1464		 * Initialize base_offset as if all groups are located
1465		 * back-to-back.  The caller should update this to
1466		 * reflect actual allocation.
1467		 */
1468		gi->base_offset = unit * ai->unit_size;
1469
1470		for_each_possible_cpu(cpu)
1471			if (group_map[cpu] == group)
1472				gi->cpu_map[gi->nr_units++] = cpu;
1473		gi->nr_units = roundup(gi->nr_units, upa);
1474		unit += gi->nr_units;
1475	}
1476	BUG_ON(unit != nr_units);
1477
1478	return ai;
1479}
1480
1481/**
1482 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1483 * @lvl: loglevel
1484 * @ai: allocation info to dump
1485 *
1486 * Print out information about @ai using loglevel @lvl.
1487 */
1488static void pcpu_dump_alloc_info(const char *lvl,
1489				 const struct pcpu_alloc_info *ai)
1490{
1491	int group_width = 1, cpu_width = 1, width;
1492	char empty_str[] = "--------";
1493	int alloc = 0, alloc_end = 0;
1494	int group, v;
1495	int upa, apl;	/* units per alloc, allocs per line */
1496
1497	v = ai->nr_groups;
1498	while (v /= 10)
1499		group_width++;
1500
1501	v = num_possible_cpus();
1502	while (v /= 10)
1503		cpu_width++;
1504	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1505
1506	upa = ai->alloc_size / ai->unit_size;
1507	width = upa * (cpu_width + 1) + group_width + 3;
1508	apl = rounddown_pow_of_two(max(60 / width, 1));
1509
1510	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1511	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1512	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1513
1514	for (group = 0; group < ai->nr_groups; group++) {
1515		const struct pcpu_group_info *gi = &ai->groups[group];
1516		int unit = 0, unit_end = 0;
1517
1518		BUG_ON(gi->nr_units % upa);
1519		for (alloc_end += gi->nr_units / upa;
1520		     alloc < alloc_end; alloc++) {
1521			if (!(alloc % apl)) {
1522				printk("\n");
1523				printk("%spcpu-alloc: ", lvl);
1524			}
1525			printk("[%0*d] ", group_width, group);
1526
1527			for (unit_end += upa; unit < unit_end; unit++)
1528				if (gi->cpu_map[unit] != NR_CPUS)
1529					printk("%0*d ", cpu_width,
1530					       gi->cpu_map[unit]);
1531				else
1532					printk("%s ", empty_str);
1533		}
1534	}
1535	printk("\n");
1536}
1537
1538/**
1539 * pcpu_setup_first_chunk - initialize the first percpu chunk
1540 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1541 * @base_addr: mapped address
1542 *
1543 * Initialize the first percpu chunk which contains the kernel static
1544 * perpcu area.  This function is to be called from arch percpu area
1545 * setup path.
1546 *
1547 * @ai contains all information necessary to initialize the first
1548 * chunk and prime the dynamic percpu allocator.
1549 *
1550 * @ai->static_size is the size of static percpu area.
1551 *
1552 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1553 * reserve after the static area in the first chunk.  This reserves
1554 * the first chunk such that it's available only through reserved
1555 * percpu allocation.  This is primarily used to serve module percpu
1556 * static areas on architectures where the addressing model has
1557 * limited offset range for symbol relocations to guarantee module
1558 * percpu symbols fall inside the relocatable range.
1559 *
1560 * @ai->dyn_size determines the number of bytes available for dynamic
1561 * allocation in the first chunk.  The area between @ai->static_size +
1562 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1563 *
1564 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1565 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1566 * @ai->dyn_size.
1567 *
1568 * @ai->atom_size is the allocation atom size and used as alignment
1569 * for vm areas.
1570 *
1571 * @ai->alloc_size is the allocation size and always multiple of
1572 * @ai->atom_size.  This is larger than @ai->atom_size if
1573 * @ai->unit_size is larger than @ai->atom_size.
1574 *
1575 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1576 * percpu areas.  Units which should be colocated are put into the
1577 * same group.  Dynamic VM areas will be allocated according to these
1578 * groupings.  If @ai->nr_groups is zero, a single group containing
1579 * all units is assumed.
1580 *
1581 * The caller should have mapped the first chunk at @base_addr and
1582 * copied static data to each unit.
1583 *
1584 * If the first chunk ends up with both reserved and dynamic areas, it
1585 * is served by two chunks - one to serve the core static and reserved
1586 * areas and the other for the dynamic area.  They share the same vm
1587 * and page map but uses different area allocation map to stay away
1588 * from each other.  The latter chunk is circulated in the chunk slots
1589 * and available for dynamic allocation like any other chunks.
1590 *
1591 * RETURNS:
1592 * 0 on success, -errno on failure.
1593 */
1594int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1595				  void *base_addr)
1596{
1597	static char cpus_buf[4096] __initdata;
1598	static int smap[2], dmap[2];
1599	size_t dyn_size = ai->dyn_size;
1600	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1601	struct pcpu_chunk *schunk, *dchunk = NULL;
1602	unsigned long *group_offsets;
1603	size_t *group_sizes;
1604	unsigned long *unit_off;
1605	unsigned int cpu;
1606	int *unit_map;
1607	int group, unit, i;
1608
1609	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1610
1611#define PCPU_SETUP_BUG_ON(cond)	do {					\
1612	if (unlikely(cond)) {						\
1613		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1614		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1615		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1616		BUG();							\
1617	}								\
1618} while (0)
1619
1620	/* sanity checks */
1621	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1622		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1623	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1624	PCPU_SETUP_BUG_ON(!ai->static_size);
1625	PCPU_SETUP_BUG_ON(!base_addr);
1626	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1627	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1628	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1629
1630	/* process group information and build config tables accordingly */
1631	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1632	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1633	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1634	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1635
1636	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1637		unit_map[cpu] = UINT_MAX;
1638	pcpu_first_unit_cpu = NR_CPUS;
1639
1640	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1641		const struct pcpu_group_info *gi = &ai->groups[group];
1642
1643		group_offsets[group] = gi->base_offset;
1644		group_sizes[group] = gi->nr_units * ai->unit_size;
1645
1646		for (i = 0; i < gi->nr_units; i++) {
1647			cpu = gi->cpu_map[i];
1648			if (cpu == NR_CPUS)
1649				continue;
1650
1651			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1652			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1653			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1654
1655			unit_map[cpu] = unit + i;
1656			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1657
1658			if (pcpu_first_unit_cpu == NR_CPUS)
1659				pcpu_first_unit_cpu = cpu;
1660		}
1661	}
1662	pcpu_last_unit_cpu = cpu;
1663	pcpu_nr_units = unit;
1664
1665	for_each_possible_cpu(cpu)
1666		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1667
1668	/* we're done parsing the input, undefine BUG macro and dump config */
1669#undef PCPU_SETUP_BUG_ON
1670	pcpu_dump_alloc_info(KERN_INFO, ai);
1671
1672	pcpu_nr_groups = ai->nr_groups;
1673	pcpu_group_offsets = group_offsets;
1674	pcpu_group_sizes = group_sizes;
1675	pcpu_unit_map = unit_map;
1676	pcpu_unit_offsets = unit_off;
1677
1678	/* determine basic parameters */
1679	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1680	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1681	pcpu_atom_size = ai->atom_size;
1682	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1683		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1684
1685	/*
1686	 * Allocate chunk slots.  The additional last slot is for
1687	 * empty chunks.
1688	 */
1689	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1690	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1691	for (i = 0; i < pcpu_nr_slots; i++)
1692		INIT_LIST_HEAD(&pcpu_slot[i]);
1693
1694	/*
1695	 * Initialize static chunk.  If reserved_size is zero, the
1696	 * static chunk covers static area + dynamic allocation area
1697	 * in the first chunk.  If reserved_size is not zero, it
1698	 * covers static area + reserved area (mostly used for module
1699	 * static percpu allocation).
1700	 */
1701	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1702	INIT_LIST_HEAD(&schunk->list);
1703	schunk->base_addr = base_addr;
1704	schunk->map = smap;
1705	schunk->map_alloc = ARRAY_SIZE(smap);
1706	schunk->immutable = true;
1707	bitmap_fill(schunk->populated, pcpu_unit_pages);
1708
1709	if (ai->reserved_size) {
1710		schunk->free_size = ai->reserved_size;
1711		pcpu_reserved_chunk = schunk;
1712		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1713	} else {
1714		schunk->free_size = dyn_size;
1715		dyn_size = 0;			/* dynamic area covered */
1716	}
1717	schunk->contig_hint = schunk->free_size;
1718
1719	schunk->map[schunk->map_used++] = -ai->static_size;
1720	if (schunk->free_size)
1721		schunk->map[schunk->map_used++] = schunk->free_size;
1722
1723	/* init dynamic chunk if necessary */
1724	if (dyn_size) {
1725		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1726		INIT_LIST_HEAD(&dchunk->list);
1727		dchunk->base_addr = base_addr;
1728		dchunk->map = dmap;
1729		dchunk->map_alloc = ARRAY_SIZE(dmap);
1730		dchunk->immutable = true;
1731		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1732
1733		dchunk->contig_hint = dchunk->free_size = dyn_size;
1734		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1735		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1736	}
1737
1738	/* link the first chunk in */
1739	pcpu_first_chunk = dchunk ?: schunk;
1740	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1741
1742	/* we're done */
1743	pcpu_base_addr = base_addr;
1744	return 0;
1745}
1746
1747const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1748	[PCPU_FC_AUTO]	= "auto",
1749	[PCPU_FC_EMBED]	= "embed",
1750	[PCPU_FC_PAGE]	= "page",
1751};
1752
1753enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1754
1755static int __init percpu_alloc_setup(char *str)
1756{
1757	if (0)
1758		/* nada */;
1759#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1760	else if (!strcmp(str, "embed"))
1761		pcpu_chosen_fc = PCPU_FC_EMBED;
1762#endif
1763#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1764	else if (!strcmp(str, "page"))
1765		pcpu_chosen_fc = PCPU_FC_PAGE;
1766#endif
1767	else
1768		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1769
1770	return 0;
1771}
1772early_param("percpu_alloc", percpu_alloc_setup);
1773
1774#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1775	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1776/**
1777 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1778 * @reserved_size: the size of reserved percpu area in bytes
1779 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1780 * @atom_size: allocation atom size
1781 * @cpu_distance_fn: callback to determine distance between cpus, optional
1782 * @alloc_fn: function to allocate percpu page
1783 * @free_fn: funtion to free percpu page
1784 *
1785 * This is a helper to ease setting up embedded first percpu chunk and
1786 * can be called where pcpu_setup_first_chunk() is expected.
1787 *
1788 * If this function is used to setup the first chunk, it is allocated
1789 * by calling @alloc_fn and used as-is without being mapped into
1790 * vmalloc area.  Allocations are always whole multiples of @atom_size
1791 * aligned to @atom_size.
1792 *
1793 * This enables the first chunk to piggy back on the linear physical
1794 * mapping which often uses larger page size.  Please note that this
1795 * can result in very sparse cpu->unit mapping on NUMA machines thus
1796 * requiring large vmalloc address space.  Don't use this allocator if
1797 * vmalloc space is not orders of magnitude larger than distances
1798 * between node memory addresses (ie. 32bit NUMA machines).
1799 *
1800 * When @dyn_size is positive, dynamic area might be larger than
1801 * specified to fill page alignment.  When @dyn_size is auto,
1802 * @dyn_size is just big enough to fill page alignment after static
1803 * and reserved areas.
1804 *
1805 * If the needed size is smaller than the minimum or specified unit
1806 * size, the leftover is returned using @free_fn.
1807 *
1808 * RETURNS:
1809 * 0 on success, -errno on failure.
1810 */
1811int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1812				  size_t atom_size,
1813				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1814				  pcpu_fc_alloc_fn_t alloc_fn,
1815				  pcpu_fc_free_fn_t free_fn)
1816{
1817	void *base = (void *)ULONG_MAX;
1818	void **areas = NULL;
1819	struct pcpu_alloc_info *ai;
1820	size_t size_sum, areas_size, max_distance;
1821	int group, i, rc;
1822
1823	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1824				   cpu_distance_fn);
1825	if (IS_ERR(ai))
1826		return PTR_ERR(ai);
1827
1828	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1829	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1830
1831	areas = alloc_bootmem_nopanic(areas_size);
1832	if (!areas) {
1833		rc = -ENOMEM;
1834		goto out_free;
1835	}
1836
1837	/* allocate, copy and determine base address */
1838	for (group = 0; group < ai->nr_groups; group++) {
1839		struct pcpu_group_info *gi = &ai->groups[group];
1840		unsigned int cpu = NR_CPUS;
1841		void *ptr;
1842
1843		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1844			cpu = gi->cpu_map[i];
1845		BUG_ON(cpu == NR_CPUS);
1846
1847		/* allocate space for the whole group */
1848		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1849		if (!ptr) {
1850			rc = -ENOMEM;
1851			goto out_free_areas;
1852		}
1853		areas[group] = ptr;
1854
1855		base = min(ptr, base);
1856
1857		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1858			if (gi->cpu_map[i] == NR_CPUS) {
1859				/* unused unit, free whole */
1860				free_fn(ptr, ai->unit_size);
1861				continue;
1862			}
1863			/* copy and return the unused part */
1864			memcpy(ptr, __per_cpu_load, ai->static_size);
1865			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1866		}
1867	}
1868
1869	/* base address is now known, determine group base offsets */
1870	max_distance = 0;
1871	for (group = 0; group < ai->nr_groups; group++) {
1872		ai->groups[group].base_offset = areas[group] - base;
1873		max_distance = max_t(size_t, max_distance,
1874				     ai->groups[group].base_offset);
1875	}
1876	max_distance += ai->unit_size;
1877
1878	/* warn if maximum distance is further than 75% of vmalloc space */
1879	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1880		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1881			   "space 0x%lx\n",
1882			   max_distance, VMALLOC_END - VMALLOC_START);
1883#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1884		/* and fail if we have fallback */
1885		rc = -EINVAL;
1886		goto out_free;
1887#endif
1888	}
1889
1890	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1891		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1892		ai->dyn_size, ai->unit_size);
1893
1894	rc = pcpu_setup_first_chunk(ai, base);
1895	goto out_free;
1896
1897out_free_areas:
1898	for (group = 0; group < ai->nr_groups; group++)
1899		free_fn(areas[group],
1900			ai->groups[group].nr_units * ai->unit_size);
1901out_free:
1902	pcpu_free_alloc_info(ai);
1903	if (areas)
1904		free_bootmem(__pa(areas), areas_size);
1905	return rc;
1906}
1907#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1908	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1909
1910#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1911/**
1912 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1913 * @reserved_size: the size of reserved percpu area in bytes
1914 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1915 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1916 * @populate_pte_fn: function to populate pte
1917 *
1918 * This is a helper to ease setting up page-remapped first percpu
1919 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1920 *
1921 * This is the basic allocator.  Static percpu area is allocated
1922 * page-by-page into vmalloc area.
1923 *
1924 * RETURNS:
1925 * 0 on success, -errno on failure.
1926 */
1927int __init pcpu_page_first_chunk(size_t reserved_size,
1928				 pcpu_fc_alloc_fn_t alloc_fn,
1929				 pcpu_fc_free_fn_t free_fn,
1930				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1931{
1932	static struct vm_struct vm;
1933	struct pcpu_alloc_info *ai;
1934	char psize_str[16];
1935	int unit_pages;
1936	size_t pages_size;
1937	struct page **pages;
1938	int unit, i, j, rc;
1939
1940	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1941
1942	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1943	if (IS_ERR(ai))
1944		return PTR_ERR(ai);
1945	BUG_ON(ai->nr_groups != 1);
1946	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1947
1948	unit_pages = ai->unit_size >> PAGE_SHIFT;
1949
1950	/* unaligned allocations can't be freed, round up to page size */
1951	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1952			       sizeof(pages[0]));
1953	pages = alloc_bootmem(pages_size);
1954
1955	/* allocate pages */
1956	j = 0;
1957	for (unit = 0; unit < num_possible_cpus(); unit++)
1958		for (i = 0; i < unit_pages; i++) {
1959			unsigned int cpu = ai->groups[0].cpu_map[unit];
1960			void *ptr;
1961
1962			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1963			if (!ptr) {
1964				pr_warning("PERCPU: failed to allocate %s page "
1965					   "for cpu%u\n", psize_str, cpu);
1966				goto enomem;
1967			}
1968			pages[j++] = virt_to_page(ptr);
1969		}
1970
1971	/* allocate vm area, map the pages and copy static data */
1972	vm.flags = VM_ALLOC;
1973	vm.size = num_possible_cpus() * ai->unit_size;
1974	vm_area_register_early(&vm, PAGE_SIZE);
1975
1976	for (unit = 0; unit < num_possible_cpus(); unit++) {
1977		unsigned long unit_addr =
1978			(unsigned long)vm.addr + unit * ai->unit_size;
1979
1980		for (i = 0; i < unit_pages; i++)
1981			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1982
1983		/* pte already populated, the following shouldn't fail */
1984		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1985				      unit_pages);
1986		if (rc < 0)
1987			panic("failed to map percpu area, err=%d\n", rc);
1988
1989		/*
1990		 * FIXME: Archs with virtual cache should flush local
1991		 * cache for the linear mapping here - something
1992		 * equivalent to flush_cache_vmap() on the local cpu.
1993		 * flush_cache_vmap() can't be used as most supporting
1994		 * data structures are not set up yet.
1995		 */
1996
1997		/* copy static data */
1998		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1999	}
2000
2001	/* we're ready, commit */
2002	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2003		unit_pages, psize_str, vm.addr, ai->static_size,
2004		ai->reserved_size, ai->dyn_size);
2005
2006	rc = pcpu_setup_first_chunk(ai, vm.addr);
2007	goto out_free_ar;
2008
2009enomem:
2010	while (--j >= 0)
2011		free_fn(page_address(pages[j]), PAGE_SIZE);
2012	rc = -ENOMEM;
2013out_free_ar:
2014	free_bootmem(__pa(pages), pages_size);
2015	pcpu_free_alloc_info(ai);
2016	return rc;
2017}
2018#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2019
2020/*
2021 * Generic percpu area setup.
2022 *
2023 * The embedding helper is used because its behavior closely resembles
2024 * the original non-dynamic generic percpu area setup.  This is
2025 * important because many archs have addressing restrictions and might
2026 * fail if the percpu area is located far away from the previous
2027 * location.  As an added bonus, in non-NUMA cases, embedding is
2028 * generally a good idea TLB-wise because percpu area can piggy back
2029 * on the physical linear memory mapping which uses large page
2030 * mappings on applicable archs.
2031 */
2032#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2033unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2034EXPORT_SYMBOL(__per_cpu_offset);
2035
2036static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2037				       size_t align)
2038{
2039	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2040}
2041
2042static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2043{
2044	free_bootmem(__pa(ptr), size);
2045}
2046
2047void __init setup_per_cpu_areas(void)
2048{
2049	unsigned long delta;
2050	unsigned int cpu;
2051	int rc;
2052
2053	/*
2054	 * Always reserve area for module percpu variables.  That's
2055	 * what the legacy allocator did.
2056	 */
2057	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2058				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2059				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2060	if (rc < 0)
2061		panic("Failed to initialized percpu areas.");
2062
2063	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2064	for_each_possible_cpu(cpu)
2065		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2066}
2067#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2068