percpu.c revision 85ae87c1ad8e18a421e7448a99a42ecda183f29f
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009		SUSE Linux Products GmbH
5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running).  Unit grows as
15 * necessary and all units grow or shrink in unison.  When a chunk is
16 * filled up, another chunk is allocated.  ie. in vmalloc area
17 *
18 *  c0                           c1                         c2
19 *  -------------------          -------------------        ------------
20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21 *  -------------------  ......  -------------------  ....  ------------
22 *
23 * Allocation is done in offset-size areas of single unit space.  Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
26 * percpu base registers pcpu_unit_size apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes.  The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk.  This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map.  A positive value in the map represents a free
38 * region and negative allocated.  Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry.  This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks can be determined from the address using the index field
42 * in the page struct. The index field contains a pointer to the chunk.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 *   regular address to percpu pointer and back if they need to be
50 *   different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 *   setup the first chunk containing the kernel static percpu area
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
58#include <linux/list.h>
59#include <linux/mm.h>
60#include <linux/module.h>
61#include <linux/mutex.h>
62#include <linux/percpu.h>
63#include <linux/pfn.h>
64#include <linux/slab.h>
65#include <linux/spinlock.h>
66#include <linux/vmalloc.h>
67#include <linux/workqueue.h>
68
69#include <asm/cacheflush.h>
70#include <asm/sections.h>
71#include <asm/tlbflush.h>
72
73#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
74#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
75
76/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
77#ifndef __addr_to_pcpu_ptr
78#define __addr_to_pcpu_ptr(addr)					\
79	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
80		 + (unsigned long)__per_cpu_start)
81#endif
82#ifndef __pcpu_ptr_to_addr
83#define __pcpu_ptr_to_addr(ptr)						\
84	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
85		 - (unsigned long)__per_cpu_start)
86#endif
87
88struct pcpu_chunk {
89	struct list_head	list;		/* linked to pcpu_slot lists */
90	int			free_size;	/* free bytes in the chunk */
91	int			contig_hint;	/* max contiguous size hint */
92	struct vm_struct	*vm;		/* mapped vmalloc region */
93	int			map_used;	/* # of map entries used */
94	int			map_alloc;	/* # of map entries allocated */
95	int			*map;		/* allocation map */
96	bool			immutable;	/* no [de]population allowed */
97	struct page		**page;		/* points to page array */
98	struct page		*page_ar[];	/* #cpus * UNIT_PAGES */
99};
100
101static int pcpu_unit_pages __read_mostly;
102static int pcpu_unit_size __read_mostly;
103static int pcpu_chunk_size __read_mostly;
104static int pcpu_nr_slots __read_mostly;
105static size_t pcpu_chunk_struct_size __read_mostly;
106
107/* the address of the first chunk which starts with the kernel static area */
108void *pcpu_base_addr __read_mostly;
109EXPORT_SYMBOL_GPL(pcpu_base_addr);
110
111/*
112 * The first chunk which always exists.  Note that unlike other
113 * chunks, this one can be allocated and mapped in several different
114 * ways and thus often doesn't live in the vmalloc area.
115 */
116static struct pcpu_chunk *pcpu_first_chunk;
117
118/*
119 * Optional reserved chunk.  This chunk reserves part of the first
120 * chunk and serves it for reserved allocations.  The amount of
121 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
122 * area doesn't exist, the following variables contain NULL and 0
123 * respectively.
124 */
125static struct pcpu_chunk *pcpu_reserved_chunk;
126static int pcpu_reserved_chunk_limit;
127
128/*
129 * Synchronization rules.
130 *
131 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
132 * protects allocation/reclaim paths, chunks and chunk->page arrays.
133 * The latter is a spinlock and protects the index data structures -
134 * chunk slots, chunks and area maps in chunks.
135 *
136 * During allocation, pcpu_alloc_mutex is kept locked all the time and
137 * pcpu_lock is grabbed and released as necessary.  All actual memory
138 * allocations are done using GFP_KERNEL with pcpu_lock released.
139 *
140 * Free path accesses and alters only the index data structures, so it
141 * can be safely called from atomic context.  When memory needs to be
142 * returned to the system, free path schedules reclaim_work which
143 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
144 * reclaimed, release both locks and frees the chunks.  Note that it's
145 * necessary to grab both locks to remove a chunk from circulation as
146 * allocation path might be referencing the chunk with only
147 * pcpu_alloc_mutex locked.
148 */
149static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
150static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
151
152static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
153
154/* reclaim work to release fully free chunks, scheduled from free path */
155static void pcpu_reclaim(struct work_struct *work);
156static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
157
158static int __pcpu_size_to_slot(int size)
159{
160	int highbit = fls(size);	/* size is in bytes */
161	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
162}
163
164static int pcpu_size_to_slot(int size)
165{
166	if (size == pcpu_unit_size)
167		return pcpu_nr_slots - 1;
168	return __pcpu_size_to_slot(size);
169}
170
171static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
172{
173	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
174		return 0;
175
176	return pcpu_size_to_slot(chunk->free_size);
177}
178
179static int pcpu_page_idx(unsigned int cpu, int page_idx)
180{
181	return cpu * pcpu_unit_pages + page_idx;
182}
183
184static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
185				      unsigned int cpu, int page_idx)
186{
187	return &chunk->page[pcpu_page_idx(cpu, page_idx)];
188}
189
190static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
191				     unsigned int cpu, int page_idx)
192{
193	return (unsigned long)chunk->vm->addr +
194		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
195}
196
197static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
198				     int page_idx)
199{
200	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
201}
202
203/* set the pointer to a chunk in a page struct */
204static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
205{
206	page->index = (unsigned long)pcpu;
207}
208
209/* obtain pointer to a chunk from a page struct */
210static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
211{
212	return (struct pcpu_chunk *)page->index;
213}
214
215/**
216 * pcpu_mem_alloc - allocate memory
217 * @size: bytes to allocate
218 *
219 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
220 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
221 * memory is always zeroed.
222 *
223 * CONTEXT:
224 * Does GFP_KERNEL allocation.
225 *
226 * RETURNS:
227 * Pointer to the allocated area on success, NULL on failure.
228 */
229static void *pcpu_mem_alloc(size_t size)
230{
231	if (size <= PAGE_SIZE)
232		return kzalloc(size, GFP_KERNEL);
233	else {
234		void *ptr = vmalloc(size);
235		if (ptr)
236			memset(ptr, 0, size);
237		return ptr;
238	}
239}
240
241/**
242 * pcpu_mem_free - free memory
243 * @ptr: memory to free
244 * @size: size of the area
245 *
246 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
247 */
248static void pcpu_mem_free(void *ptr, size_t size)
249{
250	if (size <= PAGE_SIZE)
251		kfree(ptr);
252	else
253		vfree(ptr);
254}
255
256/**
257 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
258 * @chunk: chunk of interest
259 * @oslot: the previous slot it was on
260 *
261 * This function is called after an allocation or free changed @chunk.
262 * New slot according to the changed state is determined and @chunk is
263 * moved to the slot.  Note that the reserved chunk is never put on
264 * chunk slots.
265 *
266 * CONTEXT:
267 * pcpu_lock.
268 */
269static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
270{
271	int nslot = pcpu_chunk_slot(chunk);
272
273	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
274		if (oslot < nslot)
275			list_move(&chunk->list, &pcpu_slot[nslot]);
276		else
277			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
278	}
279}
280
281/**
282 * pcpu_chunk_addr_search - determine chunk containing specified address
283 * @addr: address for which the chunk needs to be determined.
284 *
285 * RETURNS:
286 * The address of the found chunk.
287 */
288static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
289{
290	void *first_start = pcpu_first_chunk->vm->addr;
291
292	/* is it in the first chunk? */
293	if (addr >= first_start && addr < first_start + pcpu_chunk_size) {
294		/* is it in the reserved area? */
295		if (addr < first_start + pcpu_reserved_chunk_limit)
296			return pcpu_reserved_chunk;
297		return pcpu_first_chunk;
298	}
299
300	return pcpu_get_page_chunk(vmalloc_to_page(addr));
301}
302
303/**
304 * pcpu_extend_area_map - extend area map for allocation
305 * @chunk: target chunk
306 *
307 * Extend area map of @chunk so that it can accomodate an allocation.
308 * A single allocation can split an area into three areas, so this
309 * function makes sure that @chunk->map has at least two extra slots.
310 *
311 * CONTEXT:
312 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
313 * if area map is extended.
314 *
315 * RETURNS:
316 * 0 if noop, 1 if successfully extended, -errno on failure.
317 */
318static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
319{
320	int new_alloc;
321	int *new;
322	size_t size;
323
324	/* has enough? */
325	if (chunk->map_alloc >= chunk->map_used + 2)
326		return 0;
327
328	spin_unlock_irq(&pcpu_lock);
329
330	new_alloc = PCPU_DFL_MAP_ALLOC;
331	while (new_alloc < chunk->map_used + 2)
332		new_alloc *= 2;
333
334	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
335	if (!new) {
336		spin_lock_irq(&pcpu_lock);
337		return -ENOMEM;
338	}
339
340	/*
341	 * Acquire pcpu_lock and switch to new area map.  Only free
342	 * could have happened inbetween, so map_used couldn't have
343	 * grown.
344	 */
345	spin_lock_irq(&pcpu_lock);
346	BUG_ON(new_alloc < chunk->map_used + 2);
347
348	size = chunk->map_alloc * sizeof(chunk->map[0]);
349	memcpy(new, chunk->map, size);
350
351	/*
352	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
353	 * one of the first chunks and still using static map.
354	 */
355	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
356		pcpu_mem_free(chunk->map, size);
357
358	chunk->map_alloc = new_alloc;
359	chunk->map = new;
360	return 0;
361}
362
363/**
364 * pcpu_split_block - split a map block
365 * @chunk: chunk of interest
366 * @i: index of map block to split
367 * @head: head size in bytes (can be 0)
368 * @tail: tail size in bytes (can be 0)
369 *
370 * Split the @i'th map block into two or three blocks.  If @head is
371 * non-zero, @head bytes block is inserted before block @i moving it
372 * to @i+1 and reducing its size by @head bytes.
373 *
374 * If @tail is non-zero, the target block, which can be @i or @i+1
375 * depending on @head, is reduced by @tail bytes and @tail byte block
376 * is inserted after the target block.
377 *
378 * @chunk->map must have enough free slots to accomodate the split.
379 *
380 * CONTEXT:
381 * pcpu_lock.
382 */
383static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
384			     int head, int tail)
385{
386	int nr_extra = !!head + !!tail;
387
388	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
389
390	/* insert new subblocks */
391	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
392		sizeof(chunk->map[0]) * (chunk->map_used - i));
393	chunk->map_used += nr_extra;
394
395	if (head) {
396		chunk->map[i + 1] = chunk->map[i] - head;
397		chunk->map[i++] = head;
398	}
399	if (tail) {
400		chunk->map[i++] -= tail;
401		chunk->map[i] = tail;
402	}
403}
404
405/**
406 * pcpu_alloc_area - allocate area from a pcpu_chunk
407 * @chunk: chunk of interest
408 * @size: wanted size in bytes
409 * @align: wanted align
410 *
411 * Try to allocate @size bytes area aligned at @align from @chunk.
412 * Note that this function only allocates the offset.  It doesn't
413 * populate or map the area.
414 *
415 * @chunk->map must have at least two free slots.
416 *
417 * CONTEXT:
418 * pcpu_lock.
419 *
420 * RETURNS:
421 * Allocated offset in @chunk on success, -1 if no matching area is
422 * found.
423 */
424static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
425{
426	int oslot = pcpu_chunk_slot(chunk);
427	int max_contig = 0;
428	int i, off;
429
430	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
431		bool is_last = i + 1 == chunk->map_used;
432		int head, tail;
433
434		/* extra for alignment requirement */
435		head = ALIGN(off, align) - off;
436		BUG_ON(i == 0 && head != 0);
437
438		if (chunk->map[i] < 0)
439			continue;
440		if (chunk->map[i] < head + size) {
441			max_contig = max(chunk->map[i], max_contig);
442			continue;
443		}
444
445		/*
446		 * If head is small or the previous block is free,
447		 * merge'em.  Note that 'small' is defined as smaller
448		 * than sizeof(int), which is very small but isn't too
449		 * uncommon for percpu allocations.
450		 */
451		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
452			if (chunk->map[i - 1] > 0)
453				chunk->map[i - 1] += head;
454			else {
455				chunk->map[i - 1] -= head;
456				chunk->free_size -= head;
457			}
458			chunk->map[i] -= head;
459			off += head;
460			head = 0;
461		}
462
463		/* if tail is small, just keep it around */
464		tail = chunk->map[i] - head - size;
465		if (tail < sizeof(int))
466			tail = 0;
467
468		/* split if warranted */
469		if (head || tail) {
470			pcpu_split_block(chunk, i, head, tail);
471			if (head) {
472				i++;
473				off += head;
474				max_contig = max(chunk->map[i - 1], max_contig);
475			}
476			if (tail)
477				max_contig = max(chunk->map[i + 1], max_contig);
478		}
479
480		/* update hint and mark allocated */
481		if (is_last)
482			chunk->contig_hint = max_contig; /* fully scanned */
483		else
484			chunk->contig_hint = max(chunk->contig_hint,
485						 max_contig);
486
487		chunk->free_size -= chunk->map[i];
488		chunk->map[i] = -chunk->map[i];
489
490		pcpu_chunk_relocate(chunk, oslot);
491		return off;
492	}
493
494	chunk->contig_hint = max_contig;	/* fully scanned */
495	pcpu_chunk_relocate(chunk, oslot);
496
497	/* tell the upper layer that this chunk has no matching area */
498	return -1;
499}
500
501/**
502 * pcpu_free_area - free area to a pcpu_chunk
503 * @chunk: chunk of interest
504 * @freeme: offset of area to free
505 *
506 * Free area starting from @freeme to @chunk.  Note that this function
507 * only modifies the allocation map.  It doesn't depopulate or unmap
508 * the area.
509 *
510 * CONTEXT:
511 * pcpu_lock.
512 */
513static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
514{
515	int oslot = pcpu_chunk_slot(chunk);
516	int i, off;
517
518	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
519		if (off == freeme)
520			break;
521	BUG_ON(off != freeme);
522	BUG_ON(chunk->map[i] > 0);
523
524	chunk->map[i] = -chunk->map[i];
525	chunk->free_size += chunk->map[i];
526
527	/* merge with previous? */
528	if (i > 0 && chunk->map[i - 1] >= 0) {
529		chunk->map[i - 1] += chunk->map[i];
530		chunk->map_used--;
531		memmove(&chunk->map[i], &chunk->map[i + 1],
532			(chunk->map_used - i) * sizeof(chunk->map[0]));
533		i--;
534	}
535	/* merge with next? */
536	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
537		chunk->map[i] += chunk->map[i + 1];
538		chunk->map_used--;
539		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
540			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
541	}
542
543	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
544	pcpu_chunk_relocate(chunk, oslot);
545}
546
547/**
548 * pcpu_unmap - unmap pages out of a pcpu_chunk
549 * @chunk: chunk of interest
550 * @page_start: page index of the first page to unmap
551 * @page_end: page index of the last page to unmap + 1
552 * @flush_tlb: whether to flush tlb or not
553 *
554 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
555 * If @flush is true, vcache is flushed before unmapping and tlb
556 * after.
557 */
558static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
559		       bool flush_tlb)
560{
561	unsigned int last = num_possible_cpus() - 1;
562	unsigned int cpu;
563
564	/* unmap must not be done on immutable chunk */
565	WARN_ON(chunk->immutable);
566
567	/*
568	 * Each flushing trial can be very expensive, issue flush on
569	 * the whole region at once rather than doing it for each cpu.
570	 * This could be an overkill but is more scalable.
571	 */
572	flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
573			   pcpu_chunk_addr(chunk, last, page_end));
574
575	for_each_possible_cpu(cpu)
576		unmap_kernel_range_noflush(
577				pcpu_chunk_addr(chunk, cpu, page_start),
578				(page_end - page_start) << PAGE_SHIFT);
579
580	/* ditto as flush_cache_vunmap() */
581	if (flush_tlb)
582		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
583				       pcpu_chunk_addr(chunk, last, page_end));
584}
585
586/**
587 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
588 * @chunk: chunk to depopulate
589 * @off: offset to the area to depopulate
590 * @size: size of the area to depopulate in bytes
591 * @flush: whether to flush cache and tlb or not
592 *
593 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
594 * from @chunk.  If @flush is true, vcache is flushed before unmapping
595 * and tlb after.
596 *
597 * CONTEXT:
598 * pcpu_alloc_mutex.
599 */
600static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
601				  bool flush)
602{
603	int page_start = PFN_DOWN(off);
604	int page_end = PFN_UP(off + size);
605	int unmap_start = -1;
606	int uninitialized_var(unmap_end);
607	unsigned int cpu;
608	int i;
609
610	for (i = page_start; i < page_end; i++) {
611		for_each_possible_cpu(cpu) {
612			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
613
614			if (!*pagep)
615				continue;
616
617			__free_page(*pagep);
618
619			/*
620			 * If it's partial depopulation, it might get
621			 * populated or depopulated again.  Mark the
622			 * page gone.
623			 */
624			*pagep = NULL;
625
626			unmap_start = unmap_start < 0 ? i : unmap_start;
627			unmap_end = i + 1;
628		}
629	}
630
631	if (unmap_start >= 0)
632		pcpu_unmap(chunk, unmap_start, unmap_end, flush);
633}
634
635/**
636 * pcpu_map - map pages into a pcpu_chunk
637 * @chunk: chunk of interest
638 * @page_start: page index of the first page to map
639 * @page_end: page index of the last page to map + 1
640 *
641 * For each cpu, map pages [@page_start,@page_end) into @chunk.
642 * vcache is flushed afterwards.
643 */
644static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
645{
646	unsigned int last = num_possible_cpus() - 1;
647	unsigned int cpu;
648	int err;
649
650	/* map must not be done on immutable chunk */
651	WARN_ON(chunk->immutable);
652
653	for_each_possible_cpu(cpu) {
654		err = map_kernel_range_noflush(
655				pcpu_chunk_addr(chunk, cpu, page_start),
656				(page_end - page_start) << PAGE_SHIFT,
657				PAGE_KERNEL,
658				pcpu_chunk_pagep(chunk, cpu, page_start));
659		if (err < 0)
660			return err;
661	}
662
663	/* flush at once, please read comments in pcpu_unmap() */
664	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
665			 pcpu_chunk_addr(chunk, last, page_end));
666	return 0;
667}
668
669/**
670 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
671 * @chunk: chunk of interest
672 * @off: offset to the area to populate
673 * @size: size of the area to populate in bytes
674 *
675 * For each cpu, populate and map pages [@page_start,@page_end) into
676 * @chunk.  The area is cleared on return.
677 *
678 * CONTEXT:
679 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
680 */
681static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
682{
683	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
684	int page_start = PFN_DOWN(off);
685	int page_end = PFN_UP(off + size);
686	int map_start = -1;
687	int uninitialized_var(map_end);
688	unsigned int cpu;
689	int i;
690
691	for (i = page_start; i < page_end; i++) {
692		if (pcpu_chunk_page_occupied(chunk, i)) {
693			if (map_start >= 0) {
694				if (pcpu_map(chunk, map_start, map_end))
695					goto err;
696				map_start = -1;
697			}
698			continue;
699		}
700
701		map_start = map_start < 0 ? i : map_start;
702		map_end = i + 1;
703
704		for_each_possible_cpu(cpu) {
705			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
706
707			*pagep = alloc_pages_node(cpu_to_node(cpu),
708						  alloc_mask, 0);
709			if (!*pagep)
710				goto err;
711			pcpu_set_page_chunk(*pagep, chunk);
712		}
713	}
714
715	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
716		goto err;
717
718	for_each_possible_cpu(cpu)
719		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
720		       size);
721
722	return 0;
723err:
724	/* likely under heavy memory pressure, give memory back */
725	pcpu_depopulate_chunk(chunk, off, size, true);
726	return -ENOMEM;
727}
728
729static void free_pcpu_chunk(struct pcpu_chunk *chunk)
730{
731	if (!chunk)
732		return;
733	if (chunk->vm)
734		free_vm_area(chunk->vm);
735	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
736	kfree(chunk);
737}
738
739static struct pcpu_chunk *alloc_pcpu_chunk(void)
740{
741	struct pcpu_chunk *chunk;
742
743	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
744	if (!chunk)
745		return NULL;
746
747	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
748	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
749	chunk->map[chunk->map_used++] = pcpu_unit_size;
750	chunk->page = chunk->page_ar;
751
752	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
753	if (!chunk->vm) {
754		free_pcpu_chunk(chunk);
755		return NULL;
756	}
757
758	INIT_LIST_HEAD(&chunk->list);
759	chunk->free_size = pcpu_unit_size;
760	chunk->contig_hint = pcpu_unit_size;
761
762	return chunk;
763}
764
765/**
766 * pcpu_alloc - the percpu allocator
767 * @size: size of area to allocate in bytes
768 * @align: alignment of area (max PAGE_SIZE)
769 * @reserved: allocate from the reserved chunk if available
770 *
771 * Allocate percpu area of @size bytes aligned at @align.
772 *
773 * CONTEXT:
774 * Does GFP_KERNEL allocation.
775 *
776 * RETURNS:
777 * Percpu pointer to the allocated area on success, NULL on failure.
778 */
779static void *pcpu_alloc(size_t size, size_t align, bool reserved)
780{
781	struct pcpu_chunk *chunk;
782	int slot, off;
783
784	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
785		WARN(true, "illegal size (%zu) or align (%zu) for "
786		     "percpu allocation\n", size, align);
787		return NULL;
788	}
789
790	mutex_lock(&pcpu_alloc_mutex);
791	spin_lock_irq(&pcpu_lock);
792
793	/* serve reserved allocations from the reserved chunk if available */
794	if (reserved && pcpu_reserved_chunk) {
795		chunk = pcpu_reserved_chunk;
796		if (size > chunk->contig_hint ||
797		    pcpu_extend_area_map(chunk) < 0)
798			goto fail_unlock;
799		off = pcpu_alloc_area(chunk, size, align);
800		if (off >= 0)
801			goto area_found;
802		goto fail_unlock;
803	}
804
805restart:
806	/* search through normal chunks */
807	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
808		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
809			if (size > chunk->contig_hint)
810				continue;
811
812			switch (pcpu_extend_area_map(chunk)) {
813			case 0:
814				break;
815			case 1:
816				goto restart;	/* pcpu_lock dropped, restart */
817			default:
818				goto fail_unlock;
819			}
820
821			off = pcpu_alloc_area(chunk, size, align);
822			if (off >= 0)
823				goto area_found;
824		}
825	}
826
827	/* hmmm... no space left, create a new chunk */
828	spin_unlock_irq(&pcpu_lock);
829
830	chunk = alloc_pcpu_chunk();
831	if (!chunk)
832		goto fail_unlock_mutex;
833
834	spin_lock_irq(&pcpu_lock);
835	pcpu_chunk_relocate(chunk, -1);
836	goto restart;
837
838area_found:
839	spin_unlock_irq(&pcpu_lock);
840
841	/* populate, map and clear the area */
842	if (pcpu_populate_chunk(chunk, off, size)) {
843		spin_lock_irq(&pcpu_lock);
844		pcpu_free_area(chunk, off);
845		goto fail_unlock;
846	}
847
848	mutex_unlock(&pcpu_alloc_mutex);
849
850	return __addr_to_pcpu_ptr(chunk->vm->addr + off);
851
852fail_unlock:
853	spin_unlock_irq(&pcpu_lock);
854fail_unlock_mutex:
855	mutex_unlock(&pcpu_alloc_mutex);
856	return NULL;
857}
858
859/**
860 * __alloc_percpu - allocate dynamic percpu area
861 * @size: size of area to allocate in bytes
862 * @align: alignment of area (max PAGE_SIZE)
863 *
864 * Allocate percpu area of @size bytes aligned at @align.  Might
865 * sleep.  Might trigger writeouts.
866 *
867 * CONTEXT:
868 * Does GFP_KERNEL allocation.
869 *
870 * RETURNS:
871 * Percpu pointer to the allocated area on success, NULL on failure.
872 */
873void *__alloc_percpu(size_t size, size_t align)
874{
875	return pcpu_alloc(size, align, false);
876}
877EXPORT_SYMBOL_GPL(__alloc_percpu);
878
879/**
880 * __alloc_reserved_percpu - allocate reserved percpu area
881 * @size: size of area to allocate in bytes
882 * @align: alignment of area (max PAGE_SIZE)
883 *
884 * Allocate percpu area of @size bytes aligned at @align from reserved
885 * percpu area if arch has set it up; otherwise, allocation is served
886 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
887 *
888 * CONTEXT:
889 * Does GFP_KERNEL allocation.
890 *
891 * RETURNS:
892 * Percpu pointer to the allocated area on success, NULL on failure.
893 */
894void *__alloc_reserved_percpu(size_t size, size_t align)
895{
896	return pcpu_alloc(size, align, true);
897}
898
899/**
900 * pcpu_reclaim - reclaim fully free chunks, workqueue function
901 * @work: unused
902 *
903 * Reclaim all fully free chunks except for the first one.
904 *
905 * CONTEXT:
906 * workqueue context.
907 */
908static void pcpu_reclaim(struct work_struct *work)
909{
910	LIST_HEAD(todo);
911	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
912	struct pcpu_chunk *chunk, *next;
913
914	mutex_lock(&pcpu_alloc_mutex);
915	spin_lock_irq(&pcpu_lock);
916
917	list_for_each_entry_safe(chunk, next, head, list) {
918		WARN_ON(chunk->immutable);
919
920		/* spare the first one */
921		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
922			continue;
923
924		list_move(&chunk->list, &todo);
925	}
926
927	spin_unlock_irq(&pcpu_lock);
928	mutex_unlock(&pcpu_alloc_mutex);
929
930	list_for_each_entry_safe(chunk, next, &todo, list) {
931		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
932		free_pcpu_chunk(chunk);
933	}
934}
935
936/**
937 * free_percpu - free percpu area
938 * @ptr: pointer to area to free
939 *
940 * Free percpu area @ptr.
941 *
942 * CONTEXT:
943 * Can be called from atomic context.
944 */
945void free_percpu(void *ptr)
946{
947	void *addr = __pcpu_ptr_to_addr(ptr);
948	struct pcpu_chunk *chunk;
949	unsigned long flags;
950	int off;
951
952	if (!ptr)
953		return;
954
955	spin_lock_irqsave(&pcpu_lock, flags);
956
957	chunk = pcpu_chunk_addr_search(addr);
958	off = addr - chunk->vm->addr;
959
960	pcpu_free_area(chunk, off);
961
962	/* if there are more than one fully free chunks, wake up grim reaper */
963	if (chunk->free_size == pcpu_unit_size) {
964		struct pcpu_chunk *pos;
965
966		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
967			if (pos != chunk) {
968				schedule_work(&pcpu_reclaim_work);
969				break;
970			}
971	}
972
973	spin_unlock_irqrestore(&pcpu_lock, flags);
974}
975EXPORT_SYMBOL_GPL(free_percpu);
976
977/**
978 * pcpu_setup_first_chunk - initialize the first percpu chunk
979 * @get_page_fn: callback to fetch page pointer
980 * @static_size: the size of static percpu area in bytes
981 * @reserved_size: the size of reserved percpu area in bytes
982 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
983 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
984 * @base_addr: mapped address, NULL for auto
985 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
986 *
987 * Initialize the first percpu chunk which contains the kernel static
988 * perpcu area.  This function is to be called from arch percpu area
989 * setup path.  The first two parameters are mandatory.  The rest are
990 * optional.
991 *
992 * @get_page_fn() should return pointer to percpu page given cpu
993 * number and page number.  It should at least return enough pages to
994 * cover the static area.  The returned pages for static area should
995 * have been initialized with valid data.  If @unit_size is specified,
996 * it can also return pages after the static area.  NULL return
997 * indicates end of pages for the cpu.  Note that @get_page_fn() must
998 * return the same number of pages for all cpus.
999 *
1000 * @reserved_size, if non-zero, specifies the amount of bytes to
1001 * reserve after the static area in the first chunk.  This reserves
1002 * the first chunk such that it's available only through reserved
1003 * percpu allocation.  This is primarily used to serve module percpu
1004 * static areas on architectures where the addressing model has
1005 * limited offset range for symbol relocations to guarantee module
1006 * percpu symbols fall inside the relocatable range.
1007 *
1008 * @dyn_size, if non-negative, determines the number of bytes
1009 * available for dynamic allocation in the first chunk.  Specifying
1010 * non-negative value makes percpu leave alone the area beyond
1011 * @static_size + @reserved_size + @dyn_size.
1012 *
1013 * @unit_size, if non-negative, specifies unit size and must be
1014 * aligned to PAGE_SIZE and equal to or larger than @static_size +
1015 * @reserved_size + if non-negative, @dyn_size.
1016 *
1017 * Non-null @base_addr means that the caller already allocated virtual
1018 * region for the first chunk and mapped it.  percpu must not mess
1019 * with the chunk.  Note that @base_addr with 0 @unit_size or non-NULL
1020 * @populate_pte_fn doesn't make any sense.
1021 *
1022 * @populate_pte_fn is used to populate the pagetable.  NULL means the
1023 * caller already populated the pagetable.
1024 *
1025 * If the first chunk ends up with both reserved and dynamic areas, it
1026 * is served by two chunks - one to serve the core static and reserved
1027 * areas and the other for the dynamic area.  They share the same vm
1028 * and page map but uses different area allocation map to stay away
1029 * from each other.  The latter chunk is circulated in the chunk slots
1030 * and available for dynamic allocation like any other chunks.
1031 *
1032 * RETURNS:
1033 * The determined pcpu_unit_size which can be used to initialize
1034 * percpu access.
1035 */
1036size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
1037				     size_t static_size, size_t reserved_size,
1038				     ssize_t dyn_size, ssize_t unit_size,
1039				     void *base_addr,
1040				     pcpu_populate_pte_fn_t populate_pte_fn)
1041{
1042	static struct vm_struct first_vm;
1043	static int smap[2], dmap[2];
1044	size_t size_sum = static_size + reserved_size +
1045			  (dyn_size >= 0 ? dyn_size : 0);
1046	struct pcpu_chunk *schunk, *dchunk = NULL;
1047	unsigned int cpu;
1048	int nr_pages;
1049	int err, i;
1050
1051	/* santiy checks */
1052	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1053		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1054	BUG_ON(!static_size);
1055	if (unit_size >= 0) {
1056		BUG_ON(unit_size < size_sum);
1057		BUG_ON(unit_size & ~PAGE_MASK);
1058		BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1059	} else
1060		BUG_ON(base_addr);
1061	BUG_ON(base_addr && populate_pte_fn);
1062
1063	if (unit_size >= 0)
1064		pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1065	else
1066		pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
1067					PFN_UP(size_sum));
1068
1069	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1070	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
1071	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
1072		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
1073
1074	if (dyn_size < 0)
1075		dyn_size = pcpu_unit_size - static_size - reserved_size;
1076
1077	/*
1078	 * Allocate chunk slots.  The additional last slot is for
1079	 * empty chunks.
1080	 */
1081	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1082	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1083	for (i = 0; i < pcpu_nr_slots; i++)
1084		INIT_LIST_HEAD(&pcpu_slot[i]);
1085
1086	/*
1087	 * Initialize static chunk.  If reserved_size is zero, the
1088	 * static chunk covers static area + dynamic allocation area
1089	 * in the first chunk.  If reserved_size is not zero, it
1090	 * covers static area + reserved area (mostly used for module
1091	 * static percpu allocation).
1092	 */
1093	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1094	INIT_LIST_HEAD(&schunk->list);
1095	schunk->vm = &first_vm;
1096	schunk->map = smap;
1097	schunk->map_alloc = ARRAY_SIZE(smap);
1098	schunk->page = schunk->page_ar;
1099
1100	if (reserved_size) {
1101		schunk->free_size = reserved_size;
1102		pcpu_reserved_chunk = schunk;
1103		pcpu_reserved_chunk_limit = static_size + reserved_size;
1104	} else {
1105		schunk->free_size = dyn_size;
1106		dyn_size = 0;			/* dynamic area covered */
1107	}
1108	schunk->contig_hint = schunk->free_size;
1109
1110	schunk->map[schunk->map_used++] = -static_size;
1111	if (schunk->free_size)
1112		schunk->map[schunk->map_used++] = schunk->free_size;
1113
1114	/* init dynamic chunk if necessary */
1115	if (dyn_size) {
1116		dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1117		INIT_LIST_HEAD(&dchunk->list);
1118		dchunk->vm = &first_vm;
1119		dchunk->map = dmap;
1120		dchunk->map_alloc = ARRAY_SIZE(dmap);
1121		dchunk->page = schunk->page_ar;	/* share page map with schunk */
1122
1123		dchunk->contig_hint = dchunk->free_size = dyn_size;
1124		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1125		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1126	}
1127
1128	/* allocate vm address */
1129	first_vm.flags = VM_ALLOC;
1130	first_vm.size = pcpu_chunk_size;
1131
1132	if (!base_addr)
1133		vm_area_register_early(&first_vm, PAGE_SIZE);
1134	else {
1135		/*
1136		 * Pages already mapped.  No need to remap into
1137		 * vmalloc area.  In this case the first chunks can't
1138		 * be mapped or unmapped by percpu and are marked
1139		 * immutable.
1140		 */
1141		first_vm.addr = base_addr;
1142		schunk->immutable = true;
1143		if (dchunk)
1144			dchunk->immutable = true;
1145	}
1146
1147	/* assign pages */
1148	nr_pages = -1;
1149	for_each_possible_cpu(cpu) {
1150		for (i = 0; i < pcpu_unit_pages; i++) {
1151			struct page *page = get_page_fn(cpu, i);
1152
1153			if (!page)
1154				break;
1155			*pcpu_chunk_pagep(schunk, cpu, i) = page;
1156		}
1157
1158		BUG_ON(i < PFN_UP(static_size));
1159
1160		if (nr_pages < 0)
1161			nr_pages = i;
1162		else
1163			BUG_ON(nr_pages != i);
1164	}
1165
1166	/* map them */
1167	if (populate_pte_fn) {
1168		for_each_possible_cpu(cpu)
1169			for (i = 0; i < nr_pages; i++)
1170				populate_pte_fn(pcpu_chunk_addr(schunk,
1171								cpu, i));
1172
1173		err = pcpu_map(schunk, 0, nr_pages);
1174		if (err)
1175			panic("failed to setup static percpu area, err=%d\n",
1176			      err);
1177	}
1178
1179	/* link the first chunk in */
1180	pcpu_first_chunk = dchunk ?: schunk;
1181	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1182
1183	/* we're done */
1184	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1185	return pcpu_unit_size;
1186}
1187
1188/*
1189 * Embedding first chunk setup helper.
1190 */
1191static void *pcpue_ptr __initdata;
1192static size_t pcpue_size __initdata;
1193static size_t pcpue_unit_size __initdata;
1194
1195static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
1196{
1197	size_t off = (size_t)pageno << PAGE_SHIFT;
1198
1199	if (off >= pcpue_size)
1200		return NULL;
1201
1202	return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
1203}
1204
1205/**
1206 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1207 * @static_size: the size of static percpu area in bytes
1208 * @reserved_size: the size of reserved percpu area in bytes
1209 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1210 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1211 *
1212 * This is a helper to ease setting up embedded first percpu chunk and
1213 * can be called where pcpu_setup_first_chunk() is expected.
1214 *
1215 * If this function is used to setup the first chunk, it is allocated
1216 * as a contiguous area using bootmem allocator and used as-is without
1217 * being mapped into vmalloc area.  This enables the first chunk to
1218 * piggy back on the linear physical mapping which often uses larger
1219 * page size.
1220 *
1221 * When @dyn_size is positive, dynamic area might be larger than
1222 * specified to fill page alignment.  Also, when @dyn_size is auto,
1223 * @dyn_size does not fill the whole first chunk but only what's
1224 * necessary for page alignment after static and reserved areas.
1225 *
1226 * If the needed size is smaller than the minimum or specified unit
1227 * size, the leftover is returned to the bootmem allocator.
1228 *
1229 * RETURNS:
1230 * The determined pcpu_unit_size which can be used to initialize
1231 * percpu access on success, -errno on failure.
1232 */
1233ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1234				      ssize_t dyn_size, ssize_t unit_size)
1235{
1236	unsigned int cpu;
1237
1238	/* determine parameters and allocate */
1239	pcpue_size = PFN_ALIGN(static_size + reserved_size +
1240			       (dyn_size >= 0 ? dyn_size : 0));
1241	if (dyn_size != 0)
1242		dyn_size = pcpue_size - static_size - reserved_size;
1243
1244	if (unit_size >= 0) {
1245		BUG_ON(unit_size < pcpue_size);
1246		pcpue_unit_size = unit_size;
1247	} else
1248		pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
1249
1250	pcpue_ptr = __alloc_bootmem_nopanic(
1251					num_possible_cpus() * pcpue_unit_size,
1252					PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1253	if (!pcpue_ptr)
1254		return -ENOMEM;
1255
1256	/* return the leftover and copy */
1257	for_each_possible_cpu(cpu) {
1258		void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
1259
1260		free_bootmem(__pa(ptr + pcpue_size),
1261			     pcpue_unit_size - pcpue_size);
1262		memcpy(ptr, __per_cpu_load, static_size);
1263	}
1264
1265	/* we're ready, commit */
1266	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
1267		pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
1268
1269	return pcpu_setup_first_chunk(pcpue_get_page, static_size,
1270				      reserved_size, dyn_size,
1271				      pcpue_unit_size, pcpue_ptr, NULL);
1272}
1273