percpu.c revision 88999a898b565960690f18e4a13a1e8a9fa4dfef
1/*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009		SUSE Linux Products GmbH
5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 *  c0                           c1                         c2
19 *  -------------------          -------------------        ------------
20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21 *  -------------------  ......  -------------------  ....  ------------
22 *
23 * Allocation is done in offset-size areas of single unit space.  Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes.  The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be eqaul to or larger than the maximum contiguous
35 * area in the chunk.  This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map.  A positive value in the map represents a free
40 * region and negative allocated.  Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 *   regular address to percpu pointer and back if they need to be
50 *   different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 *   setup the first chunk containing the kernel static percpu area
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
58#include <linux/err.h>
59#include <linux/list.h>
60#include <linux/log2.h>
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
66#include <linux/slab.h>
67#include <linux/spinlock.h>
68#include <linux/vmalloc.h>
69#include <linux/workqueue.h>
70
71#include <asm/cacheflush.h>
72#include <asm/sections.h>
73#include <asm/tlbflush.h>
74#include <asm/io.h>
75
76#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
77#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
78
79/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80#ifndef __addr_to_pcpu_ptr
81#define __addr_to_pcpu_ptr(addr)					\
82	(void __percpu *)((unsigned long)(addr) -			\
83			  (unsigned long)pcpu_base_addr	+		\
84			  (unsigned long)__per_cpu_start)
85#endif
86#ifndef __pcpu_ptr_to_addr
87#define __pcpu_ptr_to_addr(ptr)						\
88	(void __force *)((unsigned long)(ptr) +				\
89			 (unsigned long)pcpu_base_addr -		\
90			 (unsigned long)__per_cpu_start)
91#endif
92
93struct pcpu_chunk {
94	struct list_head	list;		/* linked to pcpu_slot lists */
95	int			free_size;	/* free bytes in the chunk */
96	int			contig_hint;	/* max contiguous size hint */
97	void			*base_addr;	/* base address of this chunk */
98	int			map_used;	/* # of map entries used */
99	int			map_alloc;	/* # of map entries allocated */
100	int			*map;		/* allocation map */
101	void			*data;		/* chunk data */
102	bool			immutable;	/* no [de]population allowed */
103	unsigned long		populated[];	/* populated bitmap */
104};
105
106static int pcpu_unit_pages __read_mostly;
107static int pcpu_unit_size __read_mostly;
108static int pcpu_nr_units __read_mostly;
109static int pcpu_atom_size __read_mostly;
110static int pcpu_nr_slots __read_mostly;
111static size_t pcpu_chunk_struct_size __read_mostly;
112
113/* cpus with the lowest and highest unit numbers */
114static unsigned int pcpu_first_unit_cpu __read_mostly;
115static unsigned int pcpu_last_unit_cpu __read_mostly;
116
117/* the address of the first chunk which starts with the kernel static area */
118void *pcpu_base_addr __read_mostly;
119EXPORT_SYMBOL_GPL(pcpu_base_addr);
120
121static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
122const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123
124/* group information, used for vm allocation */
125static int pcpu_nr_groups __read_mostly;
126static const unsigned long *pcpu_group_offsets __read_mostly;
127static const size_t *pcpu_group_sizes __read_mostly;
128
129/*
130 * The first chunk which always exists.  Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
133 */
134static struct pcpu_chunk *pcpu_first_chunk;
135
136/*
137 * Optional reserved chunk.  This chunk reserves part of the first
138 * chunk and serves it for reserved allocations.  The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
140 * area doesn't exist, the following variables contain NULL and 0
141 * respectively.
142 */
143static struct pcpu_chunk *pcpu_reserved_chunk;
144static int pcpu_reserved_chunk_limit;
145
146/*
147 * Synchronization rules.
148 *
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping.  The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
153 *
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary.  All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
157 * general, percpu memory can't be allocated with irq off but
158 * irqsave/restore are still used in alloc path so that it can be used
159 * from early init path - sched_init() specifically.
160 *
161 * Free path accesses and alters only the index data structures, so it
162 * can be safely called from atomic context.  When memory needs to be
163 * returned to the system, free path schedules reclaim_work which
164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165 * reclaimed, release both locks and frees the chunks.  Note that it's
166 * necessary to grab both locks to remove a chunk from circulation as
167 * allocation path might be referencing the chunk with only
168 * pcpu_alloc_mutex locked.
169 */
170static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
171static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
172
173static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
174
175/* reclaim work to release fully free chunks, scheduled from free path */
176static void pcpu_reclaim(struct work_struct *work);
177static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
178
179static bool pcpu_addr_in_first_chunk(void *addr)
180{
181	void *first_start = pcpu_first_chunk->base_addr;
182
183	return addr >= first_start && addr < first_start + pcpu_unit_size;
184}
185
186static bool pcpu_addr_in_reserved_chunk(void *addr)
187{
188	void *first_start = pcpu_first_chunk->base_addr;
189
190	return addr >= first_start &&
191		addr < first_start + pcpu_reserved_chunk_limit;
192}
193
194static int __pcpu_size_to_slot(int size)
195{
196	int highbit = fls(size);	/* size is in bytes */
197	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
198}
199
200static int pcpu_size_to_slot(int size)
201{
202	if (size == pcpu_unit_size)
203		return pcpu_nr_slots - 1;
204	return __pcpu_size_to_slot(size);
205}
206
207static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
208{
209	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
210		return 0;
211
212	return pcpu_size_to_slot(chunk->free_size);
213}
214
215/* set the pointer to a chunk in a page struct */
216static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
217{
218	page->index = (unsigned long)pcpu;
219}
220
221/* obtain pointer to a chunk from a page struct */
222static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
223{
224	return (struct pcpu_chunk *)page->index;
225}
226
227static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
228{
229	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
230}
231
232static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk,
233						unsigned int cpu, int page_idx)
234{
235	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
236		(page_idx << PAGE_SHIFT);
237}
238
239static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
240				    unsigned int cpu, int page_idx)
241{
242	/* must not be used on pre-mapped chunk */
243	WARN_ON(chunk->immutable);
244
245	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
246}
247
248static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
249					   int *rs, int *re, int end)
250{
251	*rs = find_next_zero_bit(chunk->populated, end, *rs);
252	*re = find_next_bit(chunk->populated, end, *rs + 1);
253}
254
255static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
256					 int *rs, int *re, int end)
257{
258	*rs = find_next_bit(chunk->populated, end, *rs);
259	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
260}
261
262/*
263 * (Un)populated page region iterators.  Iterate over (un)populated
264 * page regions betwen @start and @end in @chunk.  @rs and @re should
265 * be integer variables and will be set to start and end page index of
266 * the current region.
267 */
268#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
269	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
270	     (rs) < (re);						    \
271	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
272
273#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
274	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
275	     (rs) < (re);						    \
276	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
277
278/**
279 * pcpu_mem_alloc - allocate memory
280 * @size: bytes to allocate
281 *
282 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
283 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
284 * memory is always zeroed.
285 *
286 * CONTEXT:
287 * Does GFP_KERNEL allocation.
288 *
289 * RETURNS:
290 * Pointer to the allocated area on success, NULL on failure.
291 */
292static void *pcpu_mem_alloc(size_t size)
293{
294	if (size <= PAGE_SIZE)
295		return kzalloc(size, GFP_KERNEL);
296	else {
297		void *ptr = vmalloc(size);
298		if (ptr)
299			memset(ptr, 0, size);
300		return ptr;
301	}
302}
303
304/**
305 * pcpu_mem_free - free memory
306 * @ptr: memory to free
307 * @size: size of the area
308 *
309 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
310 */
311static void pcpu_mem_free(void *ptr, size_t size)
312{
313	if (size <= PAGE_SIZE)
314		kfree(ptr);
315	else
316		vfree(ptr);
317}
318
319/**
320 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
321 * @chunk: chunk of interest
322 * @oslot: the previous slot it was on
323 *
324 * This function is called after an allocation or free changed @chunk.
325 * New slot according to the changed state is determined and @chunk is
326 * moved to the slot.  Note that the reserved chunk is never put on
327 * chunk slots.
328 *
329 * CONTEXT:
330 * pcpu_lock.
331 */
332static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
333{
334	int nslot = pcpu_chunk_slot(chunk);
335
336	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
337		if (oslot < nslot)
338			list_move(&chunk->list, &pcpu_slot[nslot]);
339		else
340			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
341	}
342}
343
344/**
345 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
346 * @chunk: chunk of interest
347 *
348 * Determine whether area map of @chunk needs to be extended to
349 * accomodate a new allocation.
350 *
351 * CONTEXT:
352 * pcpu_lock.
353 *
354 * RETURNS:
355 * New target map allocation length if extension is necessary, 0
356 * otherwise.
357 */
358static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
359{
360	int new_alloc;
361
362	if (chunk->map_alloc >= chunk->map_used + 2)
363		return 0;
364
365	new_alloc = PCPU_DFL_MAP_ALLOC;
366	while (new_alloc < chunk->map_used + 2)
367		new_alloc *= 2;
368
369	return new_alloc;
370}
371
372/**
373 * pcpu_extend_area_map - extend area map of a chunk
374 * @chunk: chunk of interest
375 * @new_alloc: new target allocation length of the area map
376 *
377 * Extend area map of @chunk to have @new_alloc entries.
378 *
379 * CONTEXT:
380 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
381 *
382 * RETURNS:
383 * 0 on success, -errno on failure.
384 */
385static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
386{
387	int *old = NULL, *new = NULL;
388	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
389	unsigned long flags;
390
391	new = pcpu_mem_alloc(new_size);
392	if (!new)
393		return -ENOMEM;
394
395	/* acquire pcpu_lock and switch to new area map */
396	spin_lock_irqsave(&pcpu_lock, flags);
397
398	if (new_alloc <= chunk->map_alloc)
399		goto out_unlock;
400
401	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
402	memcpy(new, chunk->map, old_size);
403
404	/*
405	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
406	 * one of the first chunks and still using static map.
407	 */
408	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
409		old = chunk->map;
410
411	chunk->map_alloc = new_alloc;
412	chunk->map = new;
413	new = NULL;
414
415out_unlock:
416	spin_unlock_irqrestore(&pcpu_lock, flags);
417
418	/*
419	 * pcpu_mem_free() might end up calling vfree() which uses
420	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
421	 */
422	pcpu_mem_free(old, old_size);
423	pcpu_mem_free(new, new_size);
424
425	return 0;
426}
427
428/**
429 * pcpu_split_block - split a map block
430 * @chunk: chunk of interest
431 * @i: index of map block to split
432 * @head: head size in bytes (can be 0)
433 * @tail: tail size in bytes (can be 0)
434 *
435 * Split the @i'th map block into two or three blocks.  If @head is
436 * non-zero, @head bytes block is inserted before block @i moving it
437 * to @i+1 and reducing its size by @head bytes.
438 *
439 * If @tail is non-zero, the target block, which can be @i or @i+1
440 * depending on @head, is reduced by @tail bytes and @tail byte block
441 * is inserted after the target block.
442 *
443 * @chunk->map must have enough free slots to accomodate the split.
444 *
445 * CONTEXT:
446 * pcpu_lock.
447 */
448static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
449			     int head, int tail)
450{
451	int nr_extra = !!head + !!tail;
452
453	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
454
455	/* insert new subblocks */
456	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
457		sizeof(chunk->map[0]) * (chunk->map_used - i));
458	chunk->map_used += nr_extra;
459
460	if (head) {
461		chunk->map[i + 1] = chunk->map[i] - head;
462		chunk->map[i++] = head;
463	}
464	if (tail) {
465		chunk->map[i++] -= tail;
466		chunk->map[i] = tail;
467	}
468}
469
470/**
471 * pcpu_alloc_area - allocate area from a pcpu_chunk
472 * @chunk: chunk of interest
473 * @size: wanted size in bytes
474 * @align: wanted align
475 *
476 * Try to allocate @size bytes area aligned at @align from @chunk.
477 * Note that this function only allocates the offset.  It doesn't
478 * populate or map the area.
479 *
480 * @chunk->map must have at least two free slots.
481 *
482 * CONTEXT:
483 * pcpu_lock.
484 *
485 * RETURNS:
486 * Allocated offset in @chunk on success, -1 if no matching area is
487 * found.
488 */
489static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
490{
491	int oslot = pcpu_chunk_slot(chunk);
492	int max_contig = 0;
493	int i, off;
494
495	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
496		bool is_last = i + 1 == chunk->map_used;
497		int head, tail;
498
499		/* extra for alignment requirement */
500		head = ALIGN(off, align) - off;
501		BUG_ON(i == 0 && head != 0);
502
503		if (chunk->map[i] < 0)
504			continue;
505		if (chunk->map[i] < head + size) {
506			max_contig = max(chunk->map[i], max_contig);
507			continue;
508		}
509
510		/*
511		 * If head is small or the previous block is free,
512		 * merge'em.  Note that 'small' is defined as smaller
513		 * than sizeof(int), which is very small but isn't too
514		 * uncommon for percpu allocations.
515		 */
516		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
517			if (chunk->map[i - 1] > 0)
518				chunk->map[i - 1] += head;
519			else {
520				chunk->map[i - 1] -= head;
521				chunk->free_size -= head;
522			}
523			chunk->map[i] -= head;
524			off += head;
525			head = 0;
526		}
527
528		/* if tail is small, just keep it around */
529		tail = chunk->map[i] - head - size;
530		if (tail < sizeof(int))
531			tail = 0;
532
533		/* split if warranted */
534		if (head || tail) {
535			pcpu_split_block(chunk, i, head, tail);
536			if (head) {
537				i++;
538				off += head;
539				max_contig = max(chunk->map[i - 1], max_contig);
540			}
541			if (tail)
542				max_contig = max(chunk->map[i + 1], max_contig);
543		}
544
545		/* update hint and mark allocated */
546		if (is_last)
547			chunk->contig_hint = max_contig; /* fully scanned */
548		else
549			chunk->contig_hint = max(chunk->contig_hint,
550						 max_contig);
551
552		chunk->free_size -= chunk->map[i];
553		chunk->map[i] = -chunk->map[i];
554
555		pcpu_chunk_relocate(chunk, oslot);
556		return off;
557	}
558
559	chunk->contig_hint = max_contig;	/* fully scanned */
560	pcpu_chunk_relocate(chunk, oslot);
561
562	/* tell the upper layer that this chunk has no matching area */
563	return -1;
564}
565
566/**
567 * pcpu_free_area - free area to a pcpu_chunk
568 * @chunk: chunk of interest
569 * @freeme: offset of area to free
570 *
571 * Free area starting from @freeme to @chunk.  Note that this function
572 * only modifies the allocation map.  It doesn't depopulate or unmap
573 * the area.
574 *
575 * CONTEXT:
576 * pcpu_lock.
577 */
578static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
579{
580	int oslot = pcpu_chunk_slot(chunk);
581	int i, off;
582
583	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
584		if (off == freeme)
585			break;
586	BUG_ON(off != freeme);
587	BUG_ON(chunk->map[i] > 0);
588
589	chunk->map[i] = -chunk->map[i];
590	chunk->free_size += chunk->map[i];
591
592	/* merge with previous? */
593	if (i > 0 && chunk->map[i - 1] >= 0) {
594		chunk->map[i - 1] += chunk->map[i];
595		chunk->map_used--;
596		memmove(&chunk->map[i], &chunk->map[i + 1],
597			(chunk->map_used - i) * sizeof(chunk->map[0]));
598		i--;
599	}
600	/* merge with next? */
601	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
602		chunk->map[i] += chunk->map[i + 1];
603		chunk->map_used--;
604		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
605			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
606	}
607
608	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
609	pcpu_chunk_relocate(chunk, oslot);
610}
611
612static struct pcpu_chunk *pcpu_alloc_chunk(void)
613{
614	struct pcpu_chunk *chunk;
615
616	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
617	if (!chunk)
618		return NULL;
619
620	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
621	if (!chunk->map) {
622		kfree(chunk);
623		return NULL;
624	}
625
626	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
627	chunk->map[chunk->map_used++] = pcpu_unit_size;
628
629	INIT_LIST_HEAD(&chunk->list);
630	chunk->free_size = pcpu_unit_size;
631	chunk->contig_hint = pcpu_unit_size;
632
633	return chunk;
634}
635
636static void pcpu_free_chunk(struct pcpu_chunk *chunk)
637{
638	if (!chunk)
639		return;
640	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
641	kfree(chunk);
642}
643
644/**
645 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
646 * @chunk: chunk of interest
647 * @bitmapp: output parameter for bitmap
648 * @may_alloc: may allocate the array
649 *
650 * Returns pointer to array of pointers to struct page and bitmap,
651 * both of which can be indexed with pcpu_page_idx().  The returned
652 * array is cleared to zero and *@bitmapp is copied from
653 * @chunk->populated.  Note that there is only one array and bitmap
654 * and access exclusion is the caller's responsibility.
655 *
656 * CONTEXT:
657 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
658 * Otherwise, don't care.
659 *
660 * RETURNS:
661 * Pointer to temp pages array on success, NULL on failure.
662 */
663static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
664					       unsigned long **bitmapp,
665					       bool may_alloc)
666{
667	static struct page **pages;
668	static unsigned long *bitmap;
669	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
670	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
671			     sizeof(unsigned long);
672
673	if (!pages || !bitmap) {
674		if (may_alloc && !pages)
675			pages = pcpu_mem_alloc(pages_size);
676		if (may_alloc && !bitmap)
677			bitmap = pcpu_mem_alloc(bitmap_size);
678		if (!pages || !bitmap)
679			return NULL;
680	}
681
682	memset(pages, 0, pages_size);
683	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
684
685	*bitmapp = bitmap;
686	return pages;
687}
688
689/**
690 * pcpu_free_pages - free pages which were allocated for @chunk
691 * @chunk: chunk pages were allocated for
692 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
693 * @populated: populated bitmap
694 * @page_start: page index of the first page to be freed
695 * @page_end: page index of the last page to be freed + 1
696 *
697 * Free pages [@page_start and @page_end) in @pages for all units.
698 * The pages were allocated for @chunk.
699 */
700static void pcpu_free_pages(struct pcpu_chunk *chunk,
701			    struct page **pages, unsigned long *populated,
702			    int page_start, int page_end)
703{
704	unsigned int cpu;
705	int i;
706
707	for_each_possible_cpu(cpu) {
708		for (i = page_start; i < page_end; i++) {
709			struct page *page = pages[pcpu_page_idx(cpu, i)];
710
711			if (page)
712				__free_page(page);
713		}
714	}
715}
716
717/**
718 * pcpu_alloc_pages - allocates pages for @chunk
719 * @chunk: target chunk
720 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
721 * @populated: populated bitmap
722 * @page_start: page index of the first page to be allocated
723 * @page_end: page index of the last page to be allocated + 1
724 *
725 * Allocate pages [@page_start,@page_end) into @pages for all units.
726 * The allocation is for @chunk.  Percpu core doesn't care about the
727 * content of @pages and will pass it verbatim to pcpu_map_pages().
728 */
729static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
730			    struct page **pages, unsigned long *populated,
731			    int page_start, int page_end)
732{
733	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
734	unsigned int cpu;
735	int i;
736
737	for_each_possible_cpu(cpu) {
738		for (i = page_start; i < page_end; i++) {
739			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
740
741			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
742			if (!*pagep) {
743				pcpu_free_pages(chunk, pages, populated,
744						page_start, page_end);
745				return -ENOMEM;
746			}
747		}
748	}
749	return 0;
750}
751
752/**
753 * pcpu_pre_unmap_flush - flush cache prior to unmapping
754 * @chunk: chunk the regions to be flushed belongs to
755 * @page_start: page index of the first page to be flushed
756 * @page_end: page index of the last page to be flushed + 1
757 *
758 * Pages in [@page_start,@page_end) of @chunk are about to be
759 * unmapped.  Flush cache.  As each flushing trial can be very
760 * expensive, issue flush on the whole region at once rather than
761 * doing it for each cpu.  This could be an overkill but is more
762 * scalable.
763 */
764static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
765				 int page_start, int page_end)
766{
767	flush_cache_vunmap(
768		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
769		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
770}
771
772static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
773{
774	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
775}
776
777/**
778 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
779 * @chunk: chunk of interest
780 * @pages: pages array which can be used to pass information to free
781 * @populated: populated bitmap
782 * @page_start: page index of the first page to unmap
783 * @page_end: page index of the last page to unmap + 1
784 *
785 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
786 * Corresponding elements in @pages were cleared by the caller and can
787 * be used to carry information to pcpu_free_pages() which will be
788 * called after all unmaps are finished.  The caller should call
789 * proper pre/post flush functions.
790 */
791static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
792			     struct page **pages, unsigned long *populated,
793			     int page_start, int page_end)
794{
795	unsigned int cpu;
796	int i;
797
798	for_each_possible_cpu(cpu) {
799		for (i = page_start; i < page_end; i++) {
800			struct page *page;
801
802			page = pcpu_chunk_page(chunk, cpu, i);
803			WARN_ON(!page);
804			pages[pcpu_page_idx(cpu, i)] = page;
805		}
806		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
807				   page_end - page_start);
808	}
809
810	for (i = page_start; i < page_end; i++)
811		__clear_bit(i, populated);
812}
813
814/**
815 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
816 * @chunk: pcpu_chunk the regions to be flushed belong to
817 * @page_start: page index of the first page to be flushed
818 * @page_end: page index of the last page to be flushed + 1
819 *
820 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
821 * TLB for the regions.  This can be skipped if the area is to be
822 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
823 *
824 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
825 * for the whole region.
826 */
827static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
828				      int page_start, int page_end)
829{
830	flush_tlb_kernel_range(
831		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
832		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
833}
834
835static int __pcpu_map_pages(unsigned long addr, struct page **pages,
836			    int nr_pages)
837{
838	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
839					PAGE_KERNEL, pages);
840}
841
842/**
843 * pcpu_map_pages - map pages into a pcpu_chunk
844 * @chunk: chunk of interest
845 * @pages: pages array containing pages to be mapped
846 * @populated: populated bitmap
847 * @page_start: page index of the first page to map
848 * @page_end: page index of the last page to map + 1
849 *
850 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
851 * caller is responsible for calling pcpu_post_map_flush() after all
852 * mappings are complete.
853 *
854 * This function is responsible for setting corresponding bits in
855 * @chunk->populated bitmap and whatever is necessary for reverse
856 * lookup (addr -> chunk).
857 */
858static int pcpu_map_pages(struct pcpu_chunk *chunk,
859			  struct page **pages, unsigned long *populated,
860			  int page_start, int page_end)
861{
862	unsigned int cpu, tcpu;
863	int i, err;
864
865	for_each_possible_cpu(cpu) {
866		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
867				       &pages[pcpu_page_idx(cpu, page_start)],
868				       page_end - page_start);
869		if (err < 0)
870			goto err;
871	}
872
873	/* mapping successful, link chunk and mark populated */
874	for (i = page_start; i < page_end; i++) {
875		for_each_possible_cpu(cpu)
876			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
877					    chunk);
878		__set_bit(i, populated);
879	}
880
881	return 0;
882
883err:
884	for_each_possible_cpu(tcpu) {
885		if (tcpu == cpu)
886			break;
887		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
888				   page_end - page_start);
889	}
890	return err;
891}
892
893/**
894 * pcpu_post_map_flush - flush cache after mapping
895 * @chunk: pcpu_chunk the regions to be flushed belong to
896 * @page_start: page index of the first page to be flushed
897 * @page_end: page index of the last page to be flushed + 1
898 *
899 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
900 * cache.
901 *
902 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
903 * for the whole region.
904 */
905static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
906				int page_start, int page_end)
907{
908	flush_cache_vmap(
909		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
910		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
911}
912
913/**
914 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
915 * @chunk: chunk to depopulate
916 * @off: offset to the area to depopulate
917 * @size: size of the area to depopulate in bytes
918 * @flush: whether to flush cache and tlb or not
919 *
920 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
921 * from @chunk.  If @flush is true, vcache is flushed before unmapping
922 * and tlb after.
923 *
924 * CONTEXT:
925 * pcpu_alloc_mutex.
926 */
927static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
928{
929	int page_start = PFN_DOWN(off);
930	int page_end = PFN_UP(off + size);
931	struct page **pages;
932	unsigned long *populated;
933	int rs, re;
934
935	/* quick path, check whether it's empty already */
936	rs = page_start;
937	pcpu_next_unpop(chunk, &rs, &re, page_end);
938	if (rs == page_start && re == page_end)
939		return;
940
941	/* immutable chunks can't be depopulated */
942	WARN_ON(chunk->immutable);
943
944	/*
945	 * If control reaches here, there must have been at least one
946	 * successful population attempt so the temp pages array must
947	 * be available now.
948	 */
949	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
950	BUG_ON(!pages);
951
952	/* unmap and free */
953	pcpu_pre_unmap_flush(chunk, page_start, page_end);
954
955	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
956		pcpu_unmap_pages(chunk, pages, populated, rs, re);
957
958	/* no need to flush tlb, vmalloc will handle it lazily */
959
960	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
961		pcpu_free_pages(chunk, pages, populated, rs, re);
962
963	/* commit new bitmap */
964	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
965}
966
967/**
968 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
969 * @chunk: chunk of interest
970 * @off: offset to the area to populate
971 * @size: size of the area to populate in bytes
972 *
973 * For each cpu, populate and map pages [@page_start,@page_end) into
974 * @chunk.  The area is cleared on return.
975 *
976 * CONTEXT:
977 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
978 */
979static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
980{
981	int page_start = PFN_DOWN(off);
982	int page_end = PFN_UP(off + size);
983	int free_end = page_start, unmap_end = page_start;
984	struct page **pages;
985	unsigned long *populated;
986	unsigned int cpu;
987	int rs, re, rc;
988
989	/* quick path, check whether all pages are already there */
990	rs = page_start;
991	pcpu_next_pop(chunk, &rs, &re, page_end);
992	if (rs == page_start && re == page_end)
993		goto clear;
994
995	/* need to allocate and map pages, this chunk can't be immutable */
996	WARN_ON(chunk->immutable);
997
998	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
999	if (!pages)
1000		return -ENOMEM;
1001
1002	/* alloc and map */
1003	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1004		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
1005		if (rc)
1006			goto err_free;
1007		free_end = re;
1008	}
1009
1010	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1011		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
1012		if (rc)
1013			goto err_unmap;
1014		unmap_end = re;
1015	}
1016	pcpu_post_map_flush(chunk, page_start, page_end);
1017
1018	/* commit new bitmap */
1019	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1020clear:
1021	for_each_possible_cpu(cpu)
1022		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1023	return 0;
1024
1025err_unmap:
1026	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1027	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1028		pcpu_unmap_pages(chunk, pages, populated, rs, re);
1029	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1030err_free:
1031	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1032		pcpu_free_pages(chunk, pages, populated, rs, re);
1033	return rc;
1034}
1035
1036static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
1037{
1038	if (chunk && chunk->data)
1039		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
1040	pcpu_free_chunk(chunk);
1041}
1042
1043static struct pcpu_chunk *pcpu_create_chunk(void)
1044{
1045	struct pcpu_chunk *chunk;
1046	struct vm_struct **vms;
1047
1048	chunk = pcpu_alloc_chunk();
1049	if (!chunk)
1050		return NULL;
1051
1052	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1053				pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
1054	if (!vms) {
1055		pcpu_free_chunk(chunk);
1056		return NULL;
1057	}
1058
1059	chunk->data = vms;
1060	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
1061	return chunk;
1062}
1063
1064/**
1065 * pcpu_chunk_addr_search - determine chunk containing specified address
1066 * @addr: address for which the chunk needs to be determined.
1067 *
1068 * RETURNS:
1069 * The address of the found chunk.
1070 */
1071static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1072{
1073	/* is it in the first chunk? */
1074	if (pcpu_addr_in_first_chunk(addr)) {
1075		/* is it in the reserved area? */
1076		if (pcpu_addr_in_reserved_chunk(addr))
1077			return pcpu_reserved_chunk;
1078		return pcpu_first_chunk;
1079	}
1080
1081	/*
1082	 * The address is relative to unit0 which might be unused and
1083	 * thus unmapped.  Offset the address to the unit space of the
1084	 * current processor before looking it up in the vmalloc
1085	 * space.  Note that any possible cpu id can be used here, so
1086	 * there's no need to worry about preemption or cpu hotplug.
1087	 */
1088	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1089	return pcpu_get_page_chunk(vmalloc_to_page(addr));
1090}
1091
1092/**
1093 * pcpu_alloc - the percpu allocator
1094 * @size: size of area to allocate in bytes
1095 * @align: alignment of area (max PAGE_SIZE)
1096 * @reserved: allocate from the reserved chunk if available
1097 *
1098 * Allocate percpu area of @size bytes aligned at @align.
1099 *
1100 * CONTEXT:
1101 * Does GFP_KERNEL allocation.
1102 *
1103 * RETURNS:
1104 * Percpu pointer to the allocated area on success, NULL on failure.
1105 */
1106static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
1107{
1108	static int warn_limit = 10;
1109	struct pcpu_chunk *chunk;
1110	const char *err;
1111	int slot, off, new_alloc;
1112	unsigned long flags;
1113
1114	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1115		WARN(true, "illegal size (%zu) or align (%zu) for "
1116		     "percpu allocation\n", size, align);
1117		return NULL;
1118	}
1119
1120	mutex_lock(&pcpu_alloc_mutex);
1121	spin_lock_irqsave(&pcpu_lock, flags);
1122
1123	/* serve reserved allocations from the reserved chunk if available */
1124	if (reserved && pcpu_reserved_chunk) {
1125		chunk = pcpu_reserved_chunk;
1126
1127		if (size > chunk->contig_hint) {
1128			err = "alloc from reserved chunk failed";
1129			goto fail_unlock;
1130		}
1131
1132		while ((new_alloc = pcpu_need_to_extend(chunk))) {
1133			spin_unlock_irqrestore(&pcpu_lock, flags);
1134			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1135				err = "failed to extend area map of reserved chunk";
1136				goto fail_unlock_mutex;
1137			}
1138			spin_lock_irqsave(&pcpu_lock, flags);
1139		}
1140
1141		off = pcpu_alloc_area(chunk, size, align);
1142		if (off >= 0)
1143			goto area_found;
1144
1145		err = "alloc from reserved chunk failed";
1146		goto fail_unlock;
1147	}
1148
1149restart:
1150	/* search through normal chunks */
1151	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1152		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1153			if (size > chunk->contig_hint)
1154				continue;
1155
1156			new_alloc = pcpu_need_to_extend(chunk);
1157			if (new_alloc) {
1158				spin_unlock_irqrestore(&pcpu_lock, flags);
1159				if (pcpu_extend_area_map(chunk,
1160							 new_alloc) < 0) {
1161					err = "failed to extend area map";
1162					goto fail_unlock_mutex;
1163				}
1164				spin_lock_irqsave(&pcpu_lock, flags);
1165				/*
1166				 * pcpu_lock has been dropped, need to
1167				 * restart cpu_slot list walking.
1168				 */
1169				goto restart;
1170			}
1171
1172			off = pcpu_alloc_area(chunk, size, align);
1173			if (off >= 0)
1174				goto area_found;
1175		}
1176	}
1177
1178	/* hmmm... no space left, create a new chunk */
1179	spin_unlock_irqrestore(&pcpu_lock, flags);
1180
1181	chunk = pcpu_create_chunk();
1182	if (!chunk) {
1183		err = "failed to allocate new chunk";
1184		goto fail_unlock_mutex;
1185	}
1186
1187	spin_lock_irqsave(&pcpu_lock, flags);
1188	pcpu_chunk_relocate(chunk, -1);
1189	goto restart;
1190
1191area_found:
1192	spin_unlock_irqrestore(&pcpu_lock, flags);
1193
1194	/* populate, map and clear the area */
1195	if (pcpu_populate_chunk(chunk, off, size)) {
1196		spin_lock_irqsave(&pcpu_lock, flags);
1197		pcpu_free_area(chunk, off);
1198		err = "failed to populate";
1199		goto fail_unlock;
1200	}
1201
1202	mutex_unlock(&pcpu_alloc_mutex);
1203
1204	/* return address relative to base address */
1205	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1206
1207fail_unlock:
1208	spin_unlock_irqrestore(&pcpu_lock, flags);
1209fail_unlock_mutex:
1210	mutex_unlock(&pcpu_alloc_mutex);
1211	if (warn_limit) {
1212		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1213			   "%s\n", size, align, err);
1214		dump_stack();
1215		if (!--warn_limit)
1216			pr_info("PERCPU: limit reached, disable warning\n");
1217	}
1218	return NULL;
1219}
1220
1221/**
1222 * __alloc_percpu - allocate dynamic percpu area
1223 * @size: size of area to allocate in bytes
1224 * @align: alignment of area (max PAGE_SIZE)
1225 *
1226 * Allocate percpu area of @size bytes aligned at @align.  Might
1227 * sleep.  Might trigger writeouts.
1228 *
1229 * CONTEXT:
1230 * Does GFP_KERNEL allocation.
1231 *
1232 * RETURNS:
1233 * Percpu pointer to the allocated area on success, NULL on failure.
1234 */
1235void __percpu *__alloc_percpu(size_t size, size_t align)
1236{
1237	return pcpu_alloc(size, align, false);
1238}
1239EXPORT_SYMBOL_GPL(__alloc_percpu);
1240
1241/**
1242 * __alloc_reserved_percpu - allocate reserved percpu area
1243 * @size: size of area to allocate in bytes
1244 * @align: alignment of area (max PAGE_SIZE)
1245 *
1246 * Allocate percpu area of @size bytes aligned at @align from reserved
1247 * percpu area if arch has set it up; otherwise, allocation is served
1248 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1249 *
1250 * CONTEXT:
1251 * Does GFP_KERNEL allocation.
1252 *
1253 * RETURNS:
1254 * Percpu pointer to the allocated area on success, NULL on failure.
1255 */
1256void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1257{
1258	return pcpu_alloc(size, align, true);
1259}
1260
1261/**
1262 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1263 * @work: unused
1264 *
1265 * Reclaim all fully free chunks except for the first one.
1266 *
1267 * CONTEXT:
1268 * workqueue context.
1269 */
1270static void pcpu_reclaim(struct work_struct *work)
1271{
1272	LIST_HEAD(todo);
1273	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1274	struct pcpu_chunk *chunk, *next;
1275
1276	mutex_lock(&pcpu_alloc_mutex);
1277	spin_lock_irq(&pcpu_lock);
1278
1279	list_for_each_entry_safe(chunk, next, head, list) {
1280		WARN_ON(chunk->immutable);
1281
1282		/* spare the first one */
1283		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1284			continue;
1285
1286		list_move(&chunk->list, &todo);
1287	}
1288
1289	spin_unlock_irq(&pcpu_lock);
1290
1291	list_for_each_entry_safe(chunk, next, &todo, list) {
1292		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1293		pcpu_destroy_chunk(chunk);
1294	}
1295
1296	mutex_unlock(&pcpu_alloc_mutex);
1297}
1298
1299/**
1300 * free_percpu - free percpu area
1301 * @ptr: pointer to area to free
1302 *
1303 * Free percpu area @ptr.
1304 *
1305 * CONTEXT:
1306 * Can be called from atomic context.
1307 */
1308void free_percpu(void __percpu *ptr)
1309{
1310	void *addr;
1311	struct pcpu_chunk *chunk;
1312	unsigned long flags;
1313	int off;
1314
1315	if (!ptr)
1316		return;
1317
1318	addr = __pcpu_ptr_to_addr(ptr);
1319
1320	spin_lock_irqsave(&pcpu_lock, flags);
1321
1322	chunk = pcpu_chunk_addr_search(addr);
1323	off = addr - chunk->base_addr;
1324
1325	pcpu_free_area(chunk, off);
1326
1327	/* if there are more than one fully free chunks, wake up grim reaper */
1328	if (chunk->free_size == pcpu_unit_size) {
1329		struct pcpu_chunk *pos;
1330
1331		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1332			if (pos != chunk) {
1333				schedule_work(&pcpu_reclaim_work);
1334				break;
1335			}
1336	}
1337
1338	spin_unlock_irqrestore(&pcpu_lock, flags);
1339}
1340EXPORT_SYMBOL_GPL(free_percpu);
1341
1342/**
1343 * is_kernel_percpu_address - test whether address is from static percpu area
1344 * @addr: address to test
1345 *
1346 * Test whether @addr belongs to in-kernel static percpu area.  Module
1347 * static percpu areas are not considered.  For those, use
1348 * is_module_percpu_address().
1349 *
1350 * RETURNS:
1351 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1352 */
1353bool is_kernel_percpu_address(unsigned long addr)
1354{
1355	const size_t static_size = __per_cpu_end - __per_cpu_start;
1356	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1357	unsigned int cpu;
1358
1359	for_each_possible_cpu(cpu) {
1360		void *start = per_cpu_ptr(base, cpu);
1361
1362		if ((void *)addr >= start && (void *)addr < start + static_size)
1363			return true;
1364        }
1365	return false;
1366}
1367
1368/**
1369 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1370 * @addr: the address to be converted to physical address
1371 *
1372 * Given @addr which is dereferenceable address obtained via one of
1373 * percpu access macros, this function translates it into its physical
1374 * address.  The caller is responsible for ensuring @addr stays valid
1375 * until this function finishes.
1376 *
1377 * RETURNS:
1378 * The physical address for @addr.
1379 */
1380phys_addr_t per_cpu_ptr_to_phys(void *addr)
1381{
1382	if (pcpu_addr_in_first_chunk(addr)) {
1383		if ((unsigned long)addr < VMALLOC_START ||
1384		    (unsigned long)addr >= VMALLOC_END)
1385			return __pa(addr);
1386		else
1387			return page_to_phys(vmalloc_to_page(addr));
1388	} else
1389		return page_to_phys(vmalloc_to_page(addr));
1390}
1391
1392static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1393					size_t reserved_size,
1394					ssize_t *dyn_sizep)
1395{
1396	size_t size_sum;
1397
1398	size_sum = PFN_ALIGN(static_size + reserved_size +
1399			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1400	if (*dyn_sizep != 0)
1401		*dyn_sizep = size_sum - static_size - reserved_size;
1402
1403	return size_sum;
1404}
1405
1406/**
1407 * pcpu_alloc_alloc_info - allocate percpu allocation info
1408 * @nr_groups: the number of groups
1409 * @nr_units: the number of units
1410 *
1411 * Allocate ai which is large enough for @nr_groups groups containing
1412 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1413 * cpu_map array which is long enough for @nr_units and filled with
1414 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1415 * pointer of other groups.
1416 *
1417 * RETURNS:
1418 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1419 * failure.
1420 */
1421struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1422						      int nr_units)
1423{
1424	struct pcpu_alloc_info *ai;
1425	size_t base_size, ai_size;
1426	void *ptr;
1427	int unit;
1428
1429	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1430			  __alignof__(ai->groups[0].cpu_map[0]));
1431	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1432
1433	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1434	if (!ptr)
1435		return NULL;
1436	ai = ptr;
1437	ptr += base_size;
1438
1439	ai->groups[0].cpu_map = ptr;
1440
1441	for (unit = 0; unit < nr_units; unit++)
1442		ai->groups[0].cpu_map[unit] = NR_CPUS;
1443
1444	ai->nr_groups = nr_groups;
1445	ai->__ai_size = PFN_ALIGN(ai_size);
1446
1447	return ai;
1448}
1449
1450/**
1451 * pcpu_free_alloc_info - free percpu allocation info
1452 * @ai: pcpu_alloc_info to free
1453 *
1454 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1455 */
1456void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1457{
1458	free_bootmem(__pa(ai), ai->__ai_size);
1459}
1460
1461/**
1462 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1463 * @reserved_size: the size of reserved percpu area in bytes
1464 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1465 * @atom_size: allocation atom size
1466 * @cpu_distance_fn: callback to determine distance between cpus, optional
1467 *
1468 * This function determines grouping of units, their mappings to cpus
1469 * and other parameters considering needed percpu size, allocation
1470 * atom size and distances between CPUs.
1471 *
1472 * Groups are always mutliples of atom size and CPUs which are of
1473 * LOCAL_DISTANCE both ways are grouped together and share space for
1474 * units in the same group.  The returned configuration is guaranteed
1475 * to have CPUs on different nodes on different groups and >=75% usage
1476 * of allocated virtual address space.
1477 *
1478 * RETURNS:
1479 * On success, pointer to the new allocation_info is returned.  On
1480 * failure, ERR_PTR value is returned.
1481 */
1482struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1483				size_t reserved_size, ssize_t dyn_size,
1484				size_t atom_size,
1485				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1486{
1487	static int group_map[NR_CPUS] __initdata;
1488	static int group_cnt[NR_CPUS] __initdata;
1489	const size_t static_size = __per_cpu_end - __per_cpu_start;
1490	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1491	size_t size_sum, min_unit_size, alloc_size;
1492	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1493	int last_allocs, group, unit;
1494	unsigned int cpu, tcpu;
1495	struct pcpu_alloc_info *ai;
1496	unsigned int *cpu_map;
1497
1498	/* this function may be called multiple times */
1499	memset(group_map, 0, sizeof(group_map));
1500	memset(group_cnt, 0, sizeof(group_map));
1501
1502	/*
1503	 * Determine min_unit_size, alloc_size and max_upa such that
1504	 * alloc_size is multiple of atom_size and is the smallest
1505	 * which can accomodate 4k aligned segments which are equal to
1506	 * or larger than min_unit_size.
1507	 */
1508	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1509	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1510
1511	alloc_size = roundup(min_unit_size, atom_size);
1512	upa = alloc_size / min_unit_size;
1513	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1514		upa--;
1515	max_upa = upa;
1516
1517	/* group cpus according to their proximity */
1518	for_each_possible_cpu(cpu) {
1519		group = 0;
1520	next_group:
1521		for_each_possible_cpu(tcpu) {
1522			if (cpu == tcpu)
1523				break;
1524			if (group_map[tcpu] == group && cpu_distance_fn &&
1525			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1526			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1527				group++;
1528				nr_groups = max(nr_groups, group + 1);
1529				goto next_group;
1530			}
1531		}
1532		group_map[cpu] = group;
1533		group_cnt[group]++;
1534		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1535	}
1536
1537	/*
1538	 * Expand unit size until address space usage goes over 75%
1539	 * and then as much as possible without using more address
1540	 * space.
1541	 */
1542	last_allocs = INT_MAX;
1543	for (upa = max_upa; upa; upa--) {
1544		int allocs = 0, wasted = 0;
1545
1546		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1547			continue;
1548
1549		for (group = 0; group < nr_groups; group++) {
1550			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1551			allocs += this_allocs;
1552			wasted += this_allocs * upa - group_cnt[group];
1553		}
1554
1555		/*
1556		 * Don't accept if wastage is over 25%.  The
1557		 * greater-than comparison ensures upa==1 always
1558		 * passes the following check.
1559		 */
1560		if (wasted > num_possible_cpus() / 3)
1561			continue;
1562
1563		/* and then don't consume more memory */
1564		if (allocs > last_allocs)
1565			break;
1566		last_allocs = allocs;
1567		best_upa = upa;
1568	}
1569	upa = best_upa;
1570
1571	/* allocate and fill alloc_info */
1572	for (group = 0; group < nr_groups; group++)
1573		nr_units += roundup(group_cnt[group], upa);
1574
1575	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1576	if (!ai)
1577		return ERR_PTR(-ENOMEM);
1578	cpu_map = ai->groups[0].cpu_map;
1579
1580	for (group = 0; group < nr_groups; group++) {
1581		ai->groups[group].cpu_map = cpu_map;
1582		cpu_map += roundup(group_cnt[group], upa);
1583	}
1584
1585	ai->static_size = static_size;
1586	ai->reserved_size = reserved_size;
1587	ai->dyn_size = dyn_size;
1588	ai->unit_size = alloc_size / upa;
1589	ai->atom_size = atom_size;
1590	ai->alloc_size = alloc_size;
1591
1592	for (group = 0, unit = 0; group_cnt[group]; group++) {
1593		struct pcpu_group_info *gi = &ai->groups[group];
1594
1595		/*
1596		 * Initialize base_offset as if all groups are located
1597		 * back-to-back.  The caller should update this to
1598		 * reflect actual allocation.
1599		 */
1600		gi->base_offset = unit * ai->unit_size;
1601
1602		for_each_possible_cpu(cpu)
1603			if (group_map[cpu] == group)
1604				gi->cpu_map[gi->nr_units++] = cpu;
1605		gi->nr_units = roundup(gi->nr_units, upa);
1606		unit += gi->nr_units;
1607	}
1608	BUG_ON(unit != nr_units);
1609
1610	return ai;
1611}
1612
1613/**
1614 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1615 * @lvl: loglevel
1616 * @ai: allocation info to dump
1617 *
1618 * Print out information about @ai using loglevel @lvl.
1619 */
1620static void pcpu_dump_alloc_info(const char *lvl,
1621				 const struct pcpu_alloc_info *ai)
1622{
1623	int group_width = 1, cpu_width = 1, width;
1624	char empty_str[] = "--------";
1625	int alloc = 0, alloc_end = 0;
1626	int group, v;
1627	int upa, apl;	/* units per alloc, allocs per line */
1628
1629	v = ai->nr_groups;
1630	while (v /= 10)
1631		group_width++;
1632
1633	v = num_possible_cpus();
1634	while (v /= 10)
1635		cpu_width++;
1636	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1637
1638	upa = ai->alloc_size / ai->unit_size;
1639	width = upa * (cpu_width + 1) + group_width + 3;
1640	apl = rounddown_pow_of_two(max(60 / width, 1));
1641
1642	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1643	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1644	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1645
1646	for (group = 0; group < ai->nr_groups; group++) {
1647		const struct pcpu_group_info *gi = &ai->groups[group];
1648		int unit = 0, unit_end = 0;
1649
1650		BUG_ON(gi->nr_units % upa);
1651		for (alloc_end += gi->nr_units / upa;
1652		     alloc < alloc_end; alloc++) {
1653			if (!(alloc % apl)) {
1654				printk("\n");
1655				printk("%spcpu-alloc: ", lvl);
1656			}
1657			printk("[%0*d] ", group_width, group);
1658
1659			for (unit_end += upa; unit < unit_end; unit++)
1660				if (gi->cpu_map[unit] != NR_CPUS)
1661					printk("%0*d ", cpu_width,
1662					       gi->cpu_map[unit]);
1663				else
1664					printk("%s ", empty_str);
1665		}
1666	}
1667	printk("\n");
1668}
1669
1670/**
1671 * pcpu_setup_first_chunk - initialize the first percpu chunk
1672 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1673 * @base_addr: mapped address
1674 *
1675 * Initialize the first percpu chunk which contains the kernel static
1676 * perpcu area.  This function is to be called from arch percpu area
1677 * setup path.
1678 *
1679 * @ai contains all information necessary to initialize the first
1680 * chunk and prime the dynamic percpu allocator.
1681 *
1682 * @ai->static_size is the size of static percpu area.
1683 *
1684 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1685 * reserve after the static area in the first chunk.  This reserves
1686 * the first chunk such that it's available only through reserved
1687 * percpu allocation.  This is primarily used to serve module percpu
1688 * static areas on architectures where the addressing model has
1689 * limited offset range for symbol relocations to guarantee module
1690 * percpu symbols fall inside the relocatable range.
1691 *
1692 * @ai->dyn_size determines the number of bytes available for dynamic
1693 * allocation in the first chunk.  The area between @ai->static_size +
1694 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1695 *
1696 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1697 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1698 * @ai->dyn_size.
1699 *
1700 * @ai->atom_size is the allocation atom size and used as alignment
1701 * for vm areas.
1702 *
1703 * @ai->alloc_size is the allocation size and always multiple of
1704 * @ai->atom_size.  This is larger than @ai->atom_size if
1705 * @ai->unit_size is larger than @ai->atom_size.
1706 *
1707 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1708 * percpu areas.  Units which should be colocated are put into the
1709 * same group.  Dynamic VM areas will be allocated according to these
1710 * groupings.  If @ai->nr_groups is zero, a single group containing
1711 * all units is assumed.
1712 *
1713 * The caller should have mapped the first chunk at @base_addr and
1714 * copied static data to each unit.
1715 *
1716 * If the first chunk ends up with both reserved and dynamic areas, it
1717 * is served by two chunks - one to serve the core static and reserved
1718 * areas and the other for the dynamic area.  They share the same vm
1719 * and page map but uses different area allocation map to stay away
1720 * from each other.  The latter chunk is circulated in the chunk slots
1721 * and available for dynamic allocation like any other chunks.
1722 *
1723 * RETURNS:
1724 * 0 on success, -errno on failure.
1725 */
1726int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1727				  void *base_addr)
1728{
1729	static char cpus_buf[4096] __initdata;
1730	static int smap[2], dmap[2];
1731	size_t dyn_size = ai->dyn_size;
1732	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1733	struct pcpu_chunk *schunk, *dchunk = NULL;
1734	unsigned long *group_offsets;
1735	size_t *group_sizes;
1736	unsigned long *unit_off;
1737	unsigned int cpu;
1738	int *unit_map;
1739	int group, unit, i;
1740
1741	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1742
1743#define PCPU_SETUP_BUG_ON(cond)	do {					\
1744	if (unlikely(cond)) {						\
1745		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1746		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1747		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1748		BUG();							\
1749	}								\
1750} while (0)
1751
1752	/* sanity checks */
1753	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1754		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1755	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1756	PCPU_SETUP_BUG_ON(!ai->static_size);
1757	PCPU_SETUP_BUG_ON(!base_addr);
1758	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1759	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1760	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1761
1762	/* process group information and build config tables accordingly */
1763	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1764	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1765	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1766	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1767
1768	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1769		unit_map[cpu] = UINT_MAX;
1770	pcpu_first_unit_cpu = NR_CPUS;
1771
1772	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1773		const struct pcpu_group_info *gi = &ai->groups[group];
1774
1775		group_offsets[group] = gi->base_offset;
1776		group_sizes[group] = gi->nr_units * ai->unit_size;
1777
1778		for (i = 0; i < gi->nr_units; i++) {
1779			cpu = gi->cpu_map[i];
1780			if (cpu == NR_CPUS)
1781				continue;
1782
1783			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1784			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1785			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1786
1787			unit_map[cpu] = unit + i;
1788			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1789
1790			if (pcpu_first_unit_cpu == NR_CPUS)
1791				pcpu_first_unit_cpu = cpu;
1792		}
1793	}
1794	pcpu_last_unit_cpu = cpu;
1795	pcpu_nr_units = unit;
1796
1797	for_each_possible_cpu(cpu)
1798		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1799
1800	/* we're done parsing the input, undefine BUG macro and dump config */
1801#undef PCPU_SETUP_BUG_ON
1802	pcpu_dump_alloc_info(KERN_INFO, ai);
1803
1804	pcpu_nr_groups = ai->nr_groups;
1805	pcpu_group_offsets = group_offsets;
1806	pcpu_group_sizes = group_sizes;
1807	pcpu_unit_map = unit_map;
1808	pcpu_unit_offsets = unit_off;
1809
1810	/* determine basic parameters */
1811	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1812	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1813	pcpu_atom_size = ai->atom_size;
1814	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1815		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1816
1817	/*
1818	 * Allocate chunk slots.  The additional last slot is for
1819	 * empty chunks.
1820	 */
1821	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1822	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1823	for (i = 0; i < pcpu_nr_slots; i++)
1824		INIT_LIST_HEAD(&pcpu_slot[i]);
1825
1826	/*
1827	 * Initialize static chunk.  If reserved_size is zero, the
1828	 * static chunk covers static area + dynamic allocation area
1829	 * in the first chunk.  If reserved_size is not zero, it
1830	 * covers static area + reserved area (mostly used for module
1831	 * static percpu allocation).
1832	 */
1833	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1834	INIT_LIST_HEAD(&schunk->list);
1835	schunk->base_addr = base_addr;
1836	schunk->map = smap;
1837	schunk->map_alloc = ARRAY_SIZE(smap);
1838	schunk->immutable = true;
1839	bitmap_fill(schunk->populated, pcpu_unit_pages);
1840
1841	if (ai->reserved_size) {
1842		schunk->free_size = ai->reserved_size;
1843		pcpu_reserved_chunk = schunk;
1844		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1845	} else {
1846		schunk->free_size = dyn_size;
1847		dyn_size = 0;			/* dynamic area covered */
1848	}
1849	schunk->contig_hint = schunk->free_size;
1850
1851	schunk->map[schunk->map_used++] = -ai->static_size;
1852	if (schunk->free_size)
1853		schunk->map[schunk->map_used++] = schunk->free_size;
1854
1855	/* init dynamic chunk if necessary */
1856	if (dyn_size) {
1857		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1858		INIT_LIST_HEAD(&dchunk->list);
1859		dchunk->base_addr = base_addr;
1860		dchunk->map = dmap;
1861		dchunk->map_alloc = ARRAY_SIZE(dmap);
1862		dchunk->immutable = true;
1863		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1864
1865		dchunk->contig_hint = dchunk->free_size = dyn_size;
1866		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1867		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1868	}
1869
1870	/* link the first chunk in */
1871	pcpu_first_chunk = dchunk ?: schunk;
1872	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1873
1874	/* we're done */
1875	pcpu_base_addr = base_addr;
1876	return 0;
1877}
1878
1879const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1880	[PCPU_FC_AUTO]	= "auto",
1881	[PCPU_FC_EMBED]	= "embed",
1882	[PCPU_FC_PAGE]	= "page",
1883};
1884
1885enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1886
1887static int __init percpu_alloc_setup(char *str)
1888{
1889	if (0)
1890		/* nada */;
1891#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1892	else if (!strcmp(str, "embed"))
1893		pcpu_chosen_fc = PCPU_FC_EMBED;
1894#endif
1895#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1896	else if (!strcmp(str, "page"))
1897		pcpu_chosen_fc = PCPU_FC_PAGE;
1898#endif
1899	else
1900		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1901
1902	return 0;
1903}
1904early_param("percpu_alloc", percpu_alloc_setup);
1905
1906#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1907	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1908/**
1909 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1910 * @reserved_size: the size of reserved percpu area in bytes
1911 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1912 * @atom_size: allocation atom size
1913 * @cpu_distance_fn: callback to determine distance between cpus, optional
1914 * @alloc_fn: function to allocate percpu page
1915 * @free_fn: funtion to free percpu page
1916 *
1917 * This is a helper to ease setting up embedded first percpu chunk and
1918 * can be called where pcpu_setup_first_chunk() is expected.
1919 *
1920 * If this function is used to setup the first chunk, it is allocated
1921 * by calling @alloc_fn and used as-is without being mapped into
1922 * vmalloc area.  Allocations are always whole multiples of @atom_size
1923 * aligned to @atom_size.
1924 *
1925 * This enables the first chunk to piggy back on the linear physical
1926 * mapping which often uses larger page size.  Please note that this
1927 * can result in very sparse cpu->unit mapping on NUMA machines thus
1928 * requiring large vmalloc address space.  Don't use this allocator if
1929 * vmalloc space is not orders of magnitude larger than distances
1930 * between node memory addresses (ie. 32bit NUMA machines).
1931 *
1932 * When @dyn_size is positive, dynamic area might be larger than
1933 * specified to fill page alignment.  When @dyn_size is auto,
1934 * @dyn_size is just big enough to fill page alignment after static
1935 * and reserved areas.
1936 *
1937 * If the needed size is smaller than the minimum or specified unit
1938 * size, the leftover is returned using @free_fn.
1939 *
1940 * RETURNS:
1941 * 0 on success, -errno on failure.
1942 */
1943int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1944				  size_t atom_size,
1945				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1946				  pcpu_fc_alloc_fn_t alloc_fn,
1947				  pcpu_fc_free_fn_t free_fn)
1948{
1949	void *base = (void *)ULONG_MAX;
1950	void **areas = NULL;
1951	struct pcpu_alloc_info *ai;
1952	size_t size_sum, areas_size, max_distance;
1953	int group, i, rc;
1954
1955	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1956				   cpu_distance_fn);
1957	if (IS_ERR(ai))
1958		return PTR_ERR(ai);
1959
1960	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1961	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1962
1963	areas = alloc_bootmem_nopanic(areas_size);
1964	if (!areas) {
1965		rc = -ENOMEM;
1966		goto out_free;
1967	}
1968
1969	/* allocate, copy and determine base address */
1970	for (group = 0; group < ai->nr_groups; group++) {
1971		struct pcpu_group_info *gi = &ai->groups[group];
1972		unsigned int cpu = NR_CPUS;
1973		void *ptr;
1974
1975		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1976			cpu = gi->cpu_map[i];
1977		BUG_ON(cpu == NR_CPUS);
1978
1979		/* allocate space for the whole group */
1980		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1981		if (!ptr) {
1982			rc = -ENOMEM;
1983			goto out_free_areas;
1984		}
1985		areas[group] = ptr;
1986
1987		base = min(ptr, base);
1988
1989		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1990			if (gi->cpu_map[i] == NR_CPUS) {
1991				/* unused unit, free whole */
1992				free_fn(ptr, ai->unit_size);
1993				continue;
1994			}
1995			/* copy and return the unused part */
1996			memcpy(ptr, __per_cpu_load, ai->static_size);
1997			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1998		}
1999	}
2000
2001	/* base address is now known, determine group base offsets */
2002	max_distance = 0;
2003	for (group = 0; group < ai->nr_groups; group++) {
2004		ai->groups[group].base_offset = areas[group] - base;
2005		max_distance = max_t(size_t, max_distance,
2006				     ai->groups[group].base_offset);
2007	}
2008	max_distance += ai->unit_size;
2009
2010	/* warn if maximum distance is further than 75% of vmalloc space */
2011	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
2012		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2013			   "space 0x%lx\n",
2014			   max_distance, VMALLOC_END - VMALLOC_START);
2015#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2016		/* and fail if we have fallback */
2017		rc = -EINVAL;
2018		goto out_free;
2019#endif
2020	}
2021
2022	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2023		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2024		ai->dyn_size, ai->unit_size);
2025
2026	rc = pcpu_setup_first_chunk(ai, base);
2027	goto out_free;
2028
2029out_free_areas:
2030	for (group = 0; group < ai->nr_groups; group++)
2031		free_fn(areas[group],
2032			ai->groups[group].nr_units * ai->unit_size);
2033out_free:
2034	pcpu_free_alloc_info(ai);
2035	if (areas)
2036		free_bootmem(__pa(areas), areas_size);
2037	return rc;
2038}
2039#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
2040	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
2041
2042#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2043/**
2044 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2045 * @reserved_size: the size of reserved percpu area in bytes
2046 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2047 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
2048 * @populate_pte_fn: function to populate pte
2049 *
2050 * This is a helper to ease setting up page-remapped first percpu
2051 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2052 *
2053 * This is the basic allocator.  Static percpu area is allocated
2054 * page-by-page into vmalloc area.
2055 *
2056 * RETURNS:
2057 * 0 on success, -errno on failure.
2058 */
2059int __init pcpu_page_first_chunk(size_t reserved_size,
2060				 pcpu_fc_alloc_fn_t alloc_fn,
2061				 pcpu_fc_free_fn_t free_fn,
2062				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2063{
2064	static struct vm_struct vm;
2065	struct pcpu_alloc_info *ai;
2066	char psize_str[16];
2067	int unit_pages;
2068	size_t pages_size;
2069	struct page **pages;
2070	int unit, i, j, rc;
2071
2072	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2073
2074	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2075	if (IS_ERR(ai))
2076		return PTR_ERR(ai);
2077	BUG_ON(ai->nr_groups != 1);
2078	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2079
2080	unit_pages = ai->unit_size >> PAGE_SHIFT;
2081
2082	/* unaligned allocations can't be freed, round up to page size */
2083	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2084			       sizeof(pages[0]));
2085	pages = alloc_bootmem(pages_size);
2086
2087	/* allocate pages */
2088	j = 0;
2089	for (unit = 0; unit < num_possible_cpus(); unit++)
2090		for (i = 0; i < unit_pages; i++) {
2091			unsigned int cpu = ai->groups[0].cpu_map[unit];
2092			void *ptr;
2093
2094			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2095			if (!ptr) {
2096				pr_warning("PERCPU: failed to allocate %s page "
2097					   "for cpu%u\n", psize_str, cpu);
2098				goto enomem;
2099			}
2100			pages[j++] = virt_to_page(ptr);
2101		}
2102
2103	/* allocate vm area, map the pages and copy static data */
2104	vm.flags = VM_ALLOC;
2105	vm.size = num_possible_cpus() * ai->unit_size;
2106	vm_area_register_early(&vm, PAGE_SIZE);
2107
2108	for (unit = 0; unit < num_possible_cpus(); unit++) {
2109		unsigned long unit_addr =
2110			(unsigned long)vm.addr + unit * ai->unit_size;
2111
2112		for (i = 0; i < unit_pages; i++)
2113			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2114
2115		/* pte already populated, the following shouldn't fail */
2116		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2117				      unit_pages);
2118		if (rc < 0)
2119			panic("failed to map percpu area, err=%d\n", rc);
2120
2121		/*
2122		 * FIXME: Archs with virtual cache should flush local
2123		 * cache for the linear mapping here - something
2124		 * equivalent to flush_cache_vmap() on the local cpu.
2125		 * flush_cache_vmap() can't be used as most supporting
2126		 * data structures are not set up yet.
2127		 */
2128
2129		/* copy static data */
2130		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2131	}
2132
2133	/* we're ready, commit */
2134	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2135		unit_pages, psize_str, vm.addr, ai->static_size,
2136		ai->reserved_size, ai->dyn_size);
2137
2138	rc = pcpu_setup_first_chunk(ai, vm.addr);
2139	goto out_free_ar;
2140
2141enomem:
2142	while (--j >= 0)
2143		free_fn(page_address(pages[j]), PAGE_SIZE);
2144	rc = -ENOMEM;
2145out_free_ar:
2146	free_bootmem(__pa(pages), pages_size);
2147	pcpu_free_alloc_info(ai);
2148	return rc;
2149}
2150#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2151
2152/*
2153 * Generic percpu area setup.
2154 *
2155 * The embedding helper is used because its behavior closely resembles
2156 * the original non-dynamic generic percpu area setup.  This is
2157 * important because many archs have addressing restrictions and might
2158 * fail if the percpu area is located far away from the previous
2159 * location.  As an added bonus, in non-NUMA cases, embedding is
2160 * generally a good idea TLB-wise because percpu area can piggy back
2161 * on the physical linear memory mapping which uses large page
2162 * mappings on applicable archs.
2163 */
2164#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2165unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2166EXPORT_SYMBOL(__per_cpu_offset);
2167
2168static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2169				       size_t align)
2170{
2171	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2172}
2173
2174static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2175{
2176	free_bootmem(__pa(ptr), size);
2177}
2178
2179void __init setup_per_cpu_areas(void)
2180{
2181	unsigned long delta;
2182	unsigned int cpu;
2183	int rc;
2184
2185	/*
2186	 * Always reserve area for module percpu variables.  That's
2187	 * what the legacy allocator did.
2188	 */
2189	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2190				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2191				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2192	if (rc < 0)
2193		panic("Failed to initialized percpu areas.");
2194
2195	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2196	for_each_possible_cpu(cpu)
2197		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2198}
2199#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2200