percpu.c revision e933a73f48e3b2d40cfa56d81e2646f194b5a66a
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009		SUSE Linux Products GmbH
5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.  ie. in
17 * vmalloc area
18 *
19 *  c0                           c1                         c2
20 *  -------------------          -------------------        ------------
21 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22 *  -------------------  ......  -------------------  ....  ------------
23 *
24 * Allocation is done in offset-size areas of single unit space.  Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes.  The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk.  This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map.  A positive value in the map represents a free
41 * region and negative allocated.  Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 *   regular address to percpu pointer and back if they need to be
53 *   different from the default
54 *
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 *   setup the first chunk containing the kernel static percpu area
57 */
58
59#include <linux/bitmap.h>
60#include <linux/bootmem.h>
61#include <linux/err.h>
62#include <linux/list.h>
63#include <linux/log2.h>
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/mutex.h>
67#include <linux/percpu.h>
68#include <linux/pfn.h>
69#include <linux/slab.h>
70#include <linux/spinlock.h>
71#include <linux/vmalloc.h>
72#include <linux/workqueue.h>
73
74#include <asm/cacheflush.h>
75#include <asm/sections.h>
76#include <asm/tlbflush.h>
77
78#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
79#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
80
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr)					\
84	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
85		 + (unsigned long)__per_cpu_start)
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr)						\
89	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
90		 - (unsigned long)__per_cpu_start)
91#endif
92
93struct pcpu_chunk {
94	struct list_head	list;		/* linked to pcpu_slot lists */
95	int			free_size;	/* free bytes in the chunk */
96	int			contig_hint;	/* max contiguous size hint */
97	void			*base_addr;	/* base address of this chunk */
98	int			map_used;	/* # of map entries used */
99	int			map_alloc;	/* # of map entries allocated */
100	int			*map;		/* allocation map */
101	struct vm_struct	**vms;		/* mapped vmalloc regions */
102	bool			immutable;	/* no [de]population allowed */
103	unsigned long		populated[];	/* populated bitmap */
104};
105
106static int pcpu_unit_pages __read_mostly;
107static int pcpu_unit_size __read_mostly;
108static int pcpu_nr_units __read_mostly;
109static int pcpu_atom_size __read_mostly;
110static int pcpu_nr_slots __read_mostly;
111static size_t pcpu_chunk_struct_size __read_mostly;
112
113/* cpus with the lowest and highest unit numbers */
114static unsigned int pcpu_first_unit_cpu __read_mostly;
115static unsigned int pcpu_last_unit_cpu __read_mostly;
116
117/* the address of the first chunk which starts with the kernel static area */
118void *pcpu_base_addr __read_mostly;
119EXPORT_SYMBOL_GPL(pcpu_base_addr);
120
121static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
122const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123
124/* group information, used for vm allocation */
125static int pcpu_nr_groups __read_mostly;
126static const unsigned long *pcpu_group_offsets __read_mostly;
127static const size_t *pcpu_group_sizes __read_mostly;
128
129/*
130 * The first chunk which always exists.  Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
133 */
134static struct pcpu_chunk *pcpu_first_chunk;
135
136/*
137 * Optional reserved chunk.  This chunk reserves part of the first
138 * chunk and serves it for reserved allocations.  The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
140 * area doesn't exist, the following variables contain NULL and 0
141 * respectively.
142 */
143static struct pcpu_chunk *pcpu_reserved_chunk;
144static int pcpu_reserved_chunk_limit;
145
146/*
147 * Synchronization rules.
148 *
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping.  The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
153 *
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary.  All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released.
157 *
158 * Free path accesses and alters only the index data structures, so it
159 * can be safely called from atomic context.  When memory needs to be
160 * returned to the system, free path schedules reclaim_work which
161 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
162 * reclaimed, release both locks and frees the chunks.  Note that it's
163 * necessary to grab both locks to remove a chunk from circulation as
164 * allocation path might be referencing the chunk with only
165 * pcpu_alloc_mutex locked.
166 */
167static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
168static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
169
170static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
171
172/* reclaim work to release fully free chunks, scheduled from free path */
173static void pcpu_reclaim(struct work_struct *work);
174static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
175
176static int __pcpu_size_to_slot(int size)
177{
178	int highbit = fls(size);	/* size is in bytes */
179	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
180}
181
182static int pcpu_size_to_slot(int size)
183{
184	if (size == pcpu_unit_size)
185		return pcpu_nr_slots - 1;
186	return __pcpu_size_to_slot(size);
187}
188
189static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
190{
191	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
192		return 0;
193
194	return pcpu_size_to_slot(chunk->free_size);
195}
196
197static int pcpu_page_idx(unsigned int cpu, int page_idx)
198{
199	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
200}
201
202static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
203				     unsigned int cpu, int page_idx)
204{
205	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
206		(page_idx << PAGE_SHIFT);
207}
208
209static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
210				    unsigned int cpu, int page_idx)
211{
212	/* must not be used on pre-mapped chunk */
213	WARN_ON(chunk->immutable);
214
215	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
216}
217
218/* set the pointer to a chunk in a page struct */
219static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
220{
221	page->index = (unsigned long)pcpu;
222}
223
224/* obtain pointer to a chunk from a page struct */
225static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
226{
227	return (struct pcpu_chunk *)page->index;
228}
229
230static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
231{
232	*rs = find_next_zero_bit(chunk->populated, end, *rs);
233	*re = find_next_bit(chunk->populated, end, *rs + 1);
234}
235
236static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
237{
238	*rs = find_next_bit(chunk->populated, end, *rs);
239	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
240}
241
242/*
243 * (Un)populated page region iterators.  Iterate over (un)populated
244 * page regions betwen @start and @end in @chunk.  @rs and @re should
245 * be integer variables and will be set to start and end page index of
246 * the current region.
247 */
248#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
249	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
250	     (rs) < (re);						    \
251	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
252
253#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
254	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
255	     (rs) < (re);						    \
256	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
257
258/**
259 * pcpu_mem_alloc - allocate memory
260 * @size: bytes to allocate
261 *
262 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
263 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
264 * memory is always zeroed.
265 *
266 * CONTEXT:
267 * Does GFP_KERNEL allocation.
268 *
269 * RETURNS:
270 * Pointer to the allocated area on success, NULL on failure.
271 */
272static void *pcpu_mem_alloc(size_t size)
273{
274	if (size <= PAGE_SIZE)
275		return kzalloc(size, GFP_KERNEL);
276	else {
277		void *ptr = vmalloc(size);
278		if (ptr)
279			memset(ptr, 0, size);
280		return ptr;
281	}
282}
283
284/**
285 * pcpu_mem_free - free memory
286 * @ptr: memory to free
287 * @size: size of the area
288 *
289 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
290 */
291static void pcpu_mem_free(void *ptr, size_t size)
292{
293	if (size <= PAGE_SIZE)
294		kfree(ptr);
295	else
296		vfree(ptr);
297}
298
299/**
300 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
301 * @chunk: chunk of interest
302 * @oslot: the previous slot it was on
303 *
304 * This function is called after an allocation or free changed @chunk.
305 * New slot according to the changed state is determined and @chunk is
306 * moved to the slot.  Note that the reserved chunk is never put on
307 * chunk slots.
308 *
309 * CONTEXT:
310 * pcpu_lock.
311 */
312static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
313{
314	int nslot = pcpu_chunk_slot(chunk);
315
316	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
317		if (oslot < nslot)
318			list_move(&chunk->list, &pcpu_slot[nslot]);
319		else
320			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
321	}
322}
323
324/**
325 * pcpu_chunk_addr_search - determine chunk containing specified address
326 * @addr: address for which the chunk needs to be determined.
327 *
328 * RETURNS:
329 * The address of the found chunk.
330 */
331static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
332{
333	void *first_start = pcpu_first_chunk->base_addr;
334
335	/* is it in the first chunk? */
336	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
337		/* is it in the reserved area? */
338		if (addr < first_start + pcpu_reserved_chunk_limit)
339			return pcpu_reserved_chunk;
340		return pcpu_first_chunk;
341	}
342
343	/*
344	 * The address is relative to unit0 which might be unused and
345	 * thus unmapped.  Offset the address to the unit space of the
346	 * current processor before looking it up in the vmalloc
347	 * space.  Note that any possible cpu id can be used here, so
348	 * there's no need to worry about preemption or cpu hotplug.
349	 */
350	addr += pcpu_unit_offsets[smp_processor_id()];
351	return pcpu_get_page_chunk(vmalloc_to_page(addr));
352}
353
354/**
355 * pcpu_extend_area_map - extend area map for allocation
356 * @chunk: target chunk
357 *
358 * Extend area map of @chunk so that it can accomodate an allocation.
359 * A single allocation can split an area into three areas, so this
360 * function makes sure that @chunk->map has at least two extra slots.
361 *
362 * CONTEXT:
363 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
364 * if area map is extended.
365 *
366 * RETURNS:
367 * 0 if noop, 1 if successfully extended, -errno on failure.
368 */
369static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
370{
371	int new_alloc;
372	int *new;
373	size_t size;
374
375	/* has enough? */
376	if (chunk->map_alloc >= chunk->map_used + 2)
377		return 0;
378
379	spin_unlock_irq(&pcpu_lock);
380
381	new_alloc = PCPU_DFL_MAP_ALLOC;
382	while (new_alloc < chunk->map_used + 2)
383		new_alloc *= 2;
384
385	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
386	if (!new) {
387		spin_lock_irq(&pcpu_lock);
388		return -ENOMEM;
389	}
390
391	/*
392	 * Acquire pcpu_lock and switch to new area map.  Only free
393	 * could have happened inbetween, so map_used couldn't have
394	 * grown.
395	 */
396	spin_lock_irq(&pcpu_lock);
397	BUG_ON(new_alloc < chunk->map_used + 2);
398
399	size = chunk->map_alloc * sizeof(chunk->map[0]);
400	memcpy(new, chunk->map, size);
401
402	/*
403	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
404	 * one of the first chunks and still using static map.
405	 */
406	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
407		pcpu_mem_free(chunk->map, size);
408
409	chunk->map_alloc = new_alloc;
410	chunk->map = new;
411	return 0;
412}
413
414/**
415 * pcpu_split_block - split a map block
416 * @chunk: chunk of interest
417 * @i: index of map block to split
418 * @head: head size in bytes (can be 0)
419 * @tail: tail size in bytes (can be 0)
420 *
421 * Split the @i'th map block into two or three blocks.  If @head is
422 * non-zero, @head bytes block is inserted before block @i moving it
423 * to @i+1 and reducing its size by @head bytes.
424 *
425 * If @tail is non-zero, the target block, which can be @i or @i+1
426 * depending on @head, is reduced by @tail bytes and @tail byte block
427 * is inserted after the target block.
428 *
429 * @chunk->map must have enough free slots to accomodate the split.
430 *
431 * CONTEXT:
432 * pcpu_lock.
433 */
434static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
435			     int head, int tail)
436{
437	int nr_extra = !!head + !!tail;
438
439	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
440
441	/* insert new subblocks */
442	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
443		sizeof(chunk->map[0]) * (chunk->map_used - i));
444	chunk->map_used += nr_extra;
445
446	if (head) {
447		chunk->map[i + 1] = chunk->map[i] - head;
448		chunk->map[i++] = head;
449	}
450	if (tail) {
451		chunk->map[i++] -= tail;
452		chunk->map[i] = tail;
453	}
454}
455
456/**
457 * pcpu_alloc_area - allocate area from a pcpu_chunk
458 * @chunk: chunk of interest
459 * @size: wanted size in bytes
460 * @align: wanted align
461 *
462 * Try to allocate @size bytes area aligned at @align from @chunk.
463 * Note that this function only allocates the offset.  It doesn't
464 * populate or map the area.
465 *
466 * @chunk->map must have at least two free slots.
467 *
468 * CONTEXT:
469 * pcpu_lock.
470 *
471 * RETURNS:
472 * Allocated offset in @chunk on success, -1 if no matching area is
473 * found.
474 */
475static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
476{
477	int oslot = pcpu_chunk_slot(chunk);
478	int max_contig = 0;
479	int i, off;
480
481	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
482		bool is_last = i + 1 == chunk->map_used;
483		int head, tail;
484
485		/* extra for alignment requirement */
486		head = ALIGN(off, align) - off;
487		BUG_ON(i == 0 && head != 0);
488
489		if (chunk->map[i] < 0)
490			continue;
491		if (chunk->map[i] < head + size) {
492			max_contig = max(chunk->map[i], max_contig);
493			continue;
494		}
495
496		/*
497		 * If head is small or the previous block is free,
498		 * merge'em.  Note that 'small' is defined as smaller
499		 * than sizeof(int), which is very small but isn't too
500		 * uncommon for percpu allocations.
501		 */
502		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
503			if (chunk->map[i - 1] > 0)
504				chunk->map[i - 1] += head;
505			else {
506				chunk->map[i - 1] -= head;
507				chunk->free_size -= head;
508			}
509			chunk->map[i] -= head;
510			off += head;
511			head = 0;
512		}
513
514		/* if tail is small, just keep it around */
515		tail = chunk->map[i] - head - size;
516		if (tail < sizeof(int))
517			tail = 0;
518
519		/* split if warranted */
520		if (head || tail) {
521			pcpu_split_block(chunk, i, head, tail);
522			if (head) {
523				i++;
524				off += head;
525				max_contig = max(chunk->map[i - 1], max_contig);
526			}
527			if (tail)
528				max_contig = max(chunk->map[i + 1], max_contig);
529		}
530
531		/* update hint and mark allocated */
532		if (is_last)
533			chunk->contig_hint = max_contig; /* fully scanned */
534		else
535			chunk->contig_hint = max(chunk->contig_hint,
536						 max_contig);
537
538		chunk->free_size -= chunk->map[i];
539		chunk->map[i] = -chunk->map[i];
540
541		pcpu_chunk_relocate(chunk, oslot);
542		return off;
543	}
544
545	chunk->contig_hint = max_contig;	/* fully scanned */
546	pcpu_chunk_relocate(chunk, oslot);
547
548	/* tell the upper layer that this chunk has no matching area */
549	return -1;
550}
551
552/**
553 * pcpu_free_area - free area to a pcpu_chunk
554 * @chunk: chunk of interest
555 * @freeme: offset of area to free
556 *
557 * Free area starting from @freeme to @chunk.  Note that this function
558 * only modifies the allocation map.  It doesn't depopulate or unmap
559 * the area.
560 *
561 * CONTEXT:
562 * pcpu_lock.
563 */
564static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
565{
566	int oslot = pcpu_chunk_slot(chunk);
567	int i, off;
568
569	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
570		if (off == freeme)
571			break;
572	BUG_ON(off != freeme);
573	BUG_ON(chunk->map[i] > 0);
574
575	chunk->map[i] = -chunk->map[i];
576	chunk->free_size += chunk->map[i];
577
578	/* merge with previous? */
579	if (i > 0 && chunk->map[i - 1] >= 0) {
580		chunk->map[i - 1] += chunk->map[i];
581		chunk->map_used--;
582		memmove(&chunk->map[i], &chunk->map[i + 1],
583			(chunk->map_used - i) * sizeof(chunk->map[0]));
584		i--;
585	}
586	/* merge with next? */
587	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
588		chunk->map[i] += chunk->map[i + 1];
589		chunk->map_used--;
590		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
591			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
592	}
593
594	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
595	pcpu_chunk_relocate(chunk, oslot);
596}
597
598/**
599 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
600 * @chunk: chunk of interest
601 * @bitmapp: output parameter for bitmap
602 * @may_alloc: may allocate the array
603 *
604 * Returns pointer to array of pointers to struct page and bitmap,
605 * both of which can be indexed with pcpu_page_idx().  The returned
606 * array is cleared to zero and *@bitmapp is copied from
607 * @chunk->populated.  Note that there is only one array and bitmap
608 * and access exclusion is the caller's responsibility.
609 *
610 * CONTEXT:
611 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
612 * Otherwise, don't care.
613 *
614 * RETURNS:
615 * Pointer to temp pages array on success, NULL on failure.
616 */
617static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
618					       unsigned long **bitmapp,
619					       bool may_alloc)
620{
621	static struct page **pages;
622	static unsigned long *bitmap;
623	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
624	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
625			     sizeof(unsigned long);
626
627	if (!pages || !bitmap) {
628		if (may_alloc && !pages)
629			pages = pcpu_mem_alloc(pages_size);
630		if (may_alloc && !bitmap)
631			bitmap = pcpu_mem_alloc(bitmap_size);
632		if (!pages || !bitmap)
633			return NULL;
634	}
635
636	memset(pages, 0, pages_size);
637	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
638
639	*bitmapp = bitmap;
640	return pages;
641}
642
643/**
644 * pcpu_free_pages - free pages which were allocated for @chunk
645 * @chunk: chunk pages were allocated for
646 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
647 * @populated: populated bitmap
648 * @page_start: page index of the first page to be freed
649 * @page_end: page index of the last page to be freed + 1
650 *
651 * Free pages [@page_start and @page_end) in @pages for all units.
652 * The pages were allocated for @chunk.
653 */
654static void pcpu_free_pages(struct pcpu_chunk *chunk,
655			    struct page **pages, unsigned long *populated,
656			    int page_start, int page_end)
657{
658	unsigned int cpu;
659	int i;
660
661	for_each_possible_cpu(cpu) {
662		for (i = page_start; i < page_end; i++) {
663			struct page *page = pages[pcpu_page_idx(cpu, i)];
664
665			if (page)
666				__free_page(page);
667		}
668	}
669}
670
671/**
672 * pcpu_alloc_pages - allocates pages for @chunk
673 * @chunk: target chunk
674 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
675 * @populated: populated bitmap
676 * @page_start: page index of the first page to be allocated
677 * @page_end: page index of the last page to be allocated + 1
678 *
679 * Allocate pages [@page_start,@page_end) into @pages for all units.
680 * The allocation is for @chunk.  Percpu core doesn't care about the
681 * content of @pages and will pass it verbatim to pcpu_map_pages().
682 */
683static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
684			    struct page **pages, unsigned long *populated,
685			    int page_start, int page_end)
686{
687	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
688	unsigned int cpu;
689	int i;
690
691	for_each_possible_cpu(cpu) {
692		for (i = page_start; i < page_end; i++) {
693			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
694
695			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
696			if (!*pagep) {
697				pcpu_free_pages(chunk, pages, populated,
698						page_start, page_end);
699				return -ENOMEM;
700			}
701		}
702	}
703	return 0;
704}
705
706/**
707 * pcpu_pre_unmap_flush - flush cache prior to unmapping
708 * @chunk: chunk the regions to be flushed belongs to
709 * @page_start: page index of the first page to be flushed
710 * @page_end: page index of the last page to be flushed + 1
711 *
712 * Pages in [@page_start,@page_end) of @chunk are about to be
713 * unmapped.  Flush cache.  As each flushing trial can be very
714 * expensive, issue flush on the whole region at once rather than
715 * doing it for each cpu.  This could be an overkill but is more
716 * scalable.
717 */
718static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
719				 int page_start, int page_end)
720{
721	flush_cache_vunmap(
722		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
723		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
724}
725
726static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
727{
728	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
729}
730
731/**
732 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
733 * @chunk: chunk of interest
734 * @pages: pages array which can be used to pass information to free
735 * @populated: populated bitmap
736 * @page_start: page index of the first page to unmap
737 * @page_end: page index of the last page to unmap + 1
738 *
739 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
740 * Corresponding elements in @pages were cleared by the caller and can
741 * be used to carry information to pcpu_free_pages() which will be
742 * called after all unmaps are finished.  The caller should call
743 * proper pre/post flush functions.
744 */
745static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
746			     struct page **pages, unsigned long *populated,
747			     int page_start, int page_end)
748{
749	unsigned int cpu;
750	int i;
751
752	for_each_possible_cpu(cpu) {
753		for (i = page_start; i < page_end; i++) {
754			struct page *page;
755
756			page = pcpu_chunk_page(chunk, cpu, i);
757			WARN_ON(!page);
758			pages[pcpu_page_idx(cpu, i)] = page;
759		}
760		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
761				   page_end - page_start);
762	}
763
764	for (i = page_start; i < page_end; i++)
765		__clear_bit(i, populated);
766}
767
768/**
769 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
770 * @chunk: pcpu_chunk the regions to be flushed belong to
771 * @page_start: page index of the first page to be flushed
772 * @page_end: page index of the last page to be flushed + 1
773 *
774 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
775 * TLB for the regions.  This can be skipped if the area is to be
776 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
777 *
778 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
779 * for the whole region.
780 */
781static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
782				      int page_start, int page_end)
783{
784	flush_tlb_kernel_range(
785		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
786		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
787}
788
789static int __pcpu_map_pages(unsigned long addr, struct page **pages,
790			    int nr_pages)
791{
792	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
793					PAGE_KERNEL, pages);
794}
795
796/**
797 * pcpu_map_pages - map pages into a pcpu_chunk
798 * @chunk: chunk of interest
799 * @pages: pages array containing pages to be mapped
800 * @populated: populated bitmap
801 * @page_start: page index of the first page to map
802 * @page_end: page index of the last page to map + 1
803 *
804 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
805 * caller is responsible for calling pcpu_post_map_flush() after all
806 * mappings are complete.
807 *
808 * This function is responsible for setting corresponding bits in
809 * @chunk->populated bitmap and whatever is necessary for reverse
810 * lookup (addr -> chunk).
811 */
812static int pcpu_map_pages(struct pcpu_chunk *chunk,
813			  struct page **pages, unsigned long *populated,
814			  int page_start, int page_end)
815{
816	unsigned int cpu, tcpu;
817	int i, err;
818
819	for_each_possible_cpu(cpu) {
820		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
821				       &pages[pcpu_page_idx(cpu, page_start)],
822				       page_end - page_start);
823		if (err < 0)
824			goto err;
825	}
826
827	/* mapping successful, link chunk and mark populated */
828	for (i = page_start; i < page_end; i++) {
829		for_each_possible_cpu(cpu)
830			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
831					    chunk);
832		__set_bit(i, populated);
833	}
834
835	return 0;
836
837err:
838	for_each_possible_cpu(tcpu) {
839		if (tcpu == cpu)
840			break;
841		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
842				   page_end - page_start);
843	}
844	return err;
845}
846
847/**
848 * pcpu_post_map_flush - flush cache after mapping
849 * @chunk: pcpu_chunk the regions to be flushed belong to
850 * @page_start: page index of the first page to be flushed
851 * @page_end: page index of the last page to be flushed + 1
852 *
853 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
854 * cache.
855 *
856 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
857 * for the whole region.
858 */
859static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
860				int page_start, int page_end)
861{
862	flush_cache_vmap(
863		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
864		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
865}
866
867/**
868 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
869 * @chunk: chunk to depopulate
870 * @off: offset to the area to depopulate
871 * @size: size of the area to depopulate in bytes
872 * @flush: whether to flush cache and tlb or not
873 *
874 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
875 * from @chunk.  If @flush is true, vcache is flushed before unmapping
876 * and tlb after.
877 *
878 * CONTEXT:
879 * pcpu_alloc_mutex.
880 */
881static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
882{
883	int page_start = PFN_DOWN(off);
884	int page_end = PFN_UP(off + size);
885	struct page **pages;
886	unsigned long *populated;
887	int rs, re;
888
889	/* quick path, check whether it's empty already */
890	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
891		if (rs == page_start && re == page_end)
892			return;
893		break;
894	}
895
896	/* immutable chunks can't be depopulated */
897	WARN_ON(chunk->immutable);
898
899	/*
900	 * If control reaches here, there must have been at least one
901	 * successful population attempt so the temp pages array must
902	 * be available now.
903	 */
904	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
905	BUG_ON(!pages);
906
907	/* unmap and free */
908	pcpu_pre_unmap_flush(chunk, page_start, page_end);
909
910	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
911		pcpu_unmap_pages(chunk, pages, populated, rs, re);
912
913	/* no need to flush tlb, vmalloc will handle it lazily */
914
915	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
916		pcpu_free_pages(chunk, pages, populated, rs, re);
917
918	/* commit new bitmap */
919	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
920}
921
922/**
923 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
924 * @chunk: chunk of interest
925 * @off: offset to the area to populate
926 * @size: size of the area to populate in bytes
927 *
928 * For each cpu, populate and map pages [@page_start,@page_end) into
929 * @chunk.  The area is cleared on return.
930 *
931 * CONTEXT:
932 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
933 */
934static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
935{
936	int page_start = PFN_DOWN(off);
937	int page_end = PFN_UP(off + size);
938	int free_end = page_start, unmap_end = page_start;
939	struct page **pages;
940	unsigned long *populated;
941	unsigned int cpu;
942	int rs, re, rc;
943
944	/* quick path, check whether all pages are already there */
945	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
946		if (rs == page_start && re == page_end)
947			goto clear;
948		break;
949	}
950
951	/* need to allocate and map pages, this chunk can't be immutable */
952	WARN_ON(chunk->immutable);
953
954	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
955	if (!pages)
956		return -ENOMEM;
957
958	/* alloc and map */
959	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
960		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
961		if (rc)
962			goto err_free;
963		free_end = re;
964	}
965
966	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
967		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
968		if (rc)
969			goto err_unmap;
970		unmap_end = re;
971	}
972	pcpu_post_map_flush(chunk, page_start, page_end);
973
974	/* commit new bitmap */
975	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
976clear:
977	for_each_possible_cpu(cpu)
978		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
979	return 0;
980
981err_unmap:
982	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
983	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
984		pcpu_unmap_pages(chunk, pages, populated, rs, re);
985	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
986err_free:
987	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
988		pcpu_free_pages(chunk, pages, populated, rs, re);
989	return rc;
990}
991
992static void free_pcpu_chunk(struct pcpu_chunk *chunk)
993{
994	if (!chunk)
995		return;
996	if (chunk->vms)
997		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
998	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
999	kfree(chunk);
1000}
1001
1002static struct pcpu_chunk *alloc_pcpu_chunk(void)
1003{
1004	struct pcpu_chunk *chunk;
1005
1006	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1007	if (!chunk)
1008		return NULL;
1009
1010	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1011	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1012	chunk->map[chunk->map_used++] = pcpu_unit_size;
1013
1014	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1015				       pcpu_nr_groups, pcpu_atom_size,
1016				       GFP_KERNEL);
1017	if (!chunk->vms) {
1018		free_pcpu_chunk(chunk);
1019		return NULL;
1020	}
1021
1022	INIT_LIST_HEAD(&chunk->list);
1023	chunk->free_size = pcpu_unit_size;
1024	chunk->contig_hint = pcpu_unit_size;
1025	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1026
1027	return chunk;
1028}
1029
1030/**
1031 * pcpu_alloc - the percpu allocator
1032 * @size: size of area to allocate in bytes
1033 * @align: alignment of area (max PAGE_SIZE)
1034 * @reserved: allocate from the reserved chunk if available
1035 *
1036 * Allocate percpu area of @size bytes aligned at @align.
1037 *
1038 * CONTEXT:
1039 * Does GFP_KERNEL allocation.
1040 *
1041 * RETURNS:
1042 * Percpu pointer to the allocated area on success, NULL on failure.
1043 */
1044static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1045{
1046	struct pcpu_chunk *chunk;
1047	int slot, off;
1048
1049	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1050		WARN(true, "illegal size (%zu) or align (%zu) for "
1051		     "percpu allocation\n", size, align);
1052		return NULL;
1053	}
1054
1055	mutex_lock(&pcpu_alloc_mutex);
1056	spin_lock_irq(&pcpu_lock);
1057
1058	/* serve reserved allocations from the reserved chunk if available */
1059	if (reserved && pcpu_reserved_chunk) {
1060		chunk = pcpu_reserved_chunk;
1061		if (size > chunk->contig_hint ||
1062		    pcpu_extend_area_map(chunk) < 0)
1063			goto fail_unlock;
1064		off = pcpu_alloc_area(chunk, size, align);
1065		if (off >= 0)
1066			goto area_found;
1067		goto fail_unlock;
1068	}
1069
1070restart:
1071	/* search through normal chunks */
1072	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1073		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1074			if (size > chunk->contig_hint)
1075				continue;
1076
1077			switch (pcpu_extend_area_map(chunk)) {
1078			case 0:
1079				break;
1080			case 1:
1081				goto restart;	/* pcpu_lock dropped, restart */
1082			default:
1083				goto fail_unlock;
1084			}
1085
1086			off = pcpu_alloc_area(chunk, size, align);
1087			if (off >= 0)
1088				goto area_found;
1089		}
1090	}
1091
1092	/* hmmm... no space left, create a new chunk */
1093	spin_unlock_irq(&pcpu_lock);
1094
1095	chunk = alloc_pcpu_chunk();
1096	if (!chunk)
1097		goto fail_unlock_mutex;
1098
1099	spin_lock_irq(&pcpu_lock);
1100	pcpu_chunk_relocate(chunk, -1);
1101	goto restart;
1102
1103area_found:
1104	spin_unlock_irq(&pcpu_lock);
1105
1106	/* populate, map and clear the area */
1107	if (pcpu_populate_chunk(chunk, off, size)) {
1108		spin_lock_irq(&pcpu_lock);
1109		pcpu_free_area(chunk, off);
1110		goto fail_unlock;
1111	}
1112
1113	mutex_unlock(&pcpu_alloc_mutex);
1114
1115	/* return address relative to base address */
1116	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1117
1118fail_unlock:
1119	spin_unlock_irq(&pcpu_lock);
1120fail_unlock_mutex:
1121	mutex_unlock(&pcpu_alloc_mutex);
1122	return NULL;
1123}
1124
1125/**
1126 * __alloc_percpu - allocate dynamic percpu area
1127 * @size: size of area to allocate in bytes
1128 * @align: alignment of area (max PAGE_SIZE)
1129 *
1130 * Allocate percpu area of @size bytes aligned at @align.  Might
1131 * sleep.  Might trigger writeouts.
1132 *
1133 * CONTEXT:
1134 * Does GFP_KERNEL allocation.
1135 *
1136 * RETURNS:
1137 * Percpu pointer to the allocated area on success, NULL on failure.
1138 */
1139void *__alloc_percpu(size_t size, size_t align)
1140{
1141	return pcpu_alloc(size, align, false);
1142}
1143EXPORT_SYMBOL_GPL(__alloc_percpu);
1144
1145/**
1146 * __alloc_reserved_percpu - allocate reserved percpu area
1147 * @size: size of area to allocate in bytes
1148 * @align: alignment of area (max PAGE_SIZE)
1149 *
1150 * Allocate percpu area of @size bytes aligned at @align from reserved
1151 * percpu area if arch has set it up; otherwise, allocation is served
1152 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1153 *
1154 * CONTEXT:
1155 * Does GFP_KERNEL allocation.
1156 *
1157 * RETURNS:
1158 * Percpu pointer to the allocated area on success, NULL on failure.
1159 */
1160void *__alloc_reserved_percpu(size_t size, size_t align)
1161{
1162	return pcpu_alloc(size, align, true);
1163}
1164
1165/**
1166 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1167 * @work: unused
1168 *
1169 * Reclaim all fully free chunks except for the first one.
1170 *
1171 * CONTEXT:
1172 * workqueue context.
1173 */
1174static void pcpu_reclaim(struct work_struct *work)
1175{
1176	LIST_HEAD(todo);
1177	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1178	struct pcpu_chunk *chunk, *next;
1179
1180	mutex_lock(&pcpu_alloc_mutex);
1181	spin_lock_irq(&pcpu_lock);
1182
1183	list_for_each_entry_safe(chunk, next, head, list) {
1184		WARN_ON(chunk->immutable);
1185
1186		/* spare the first one */
1187		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1188			continue;
1189
1190		list_move(&chunk->list, &todo);
1191	}
1192
1193	spin_unlock_irq(&pcpu_lock);
1194
1195	list_for_each_entry_safe(chunk, next, &todo, list) {
1196		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1197		free_pcpu_chunk(chunk);
1198	}
1199
1200	mutex_unlock(&pcpu_alloc_mutex);
1201}
1202
1203/**
1204 * free_percpu - free percpu area
1205 * @ptr: pointer to area to free
1206 *
1207 * Free percpu area @ptr.
1208 *
1209 * CONTEXT:
1210 * Can be called from atomic context.
1211 */
1212void free_percpu(void *ptr)
1213{
1214	void *addr = __pcpu_ptr_to_addr(ptr);
1215	struct pcpu_chunk *chunk;
1216	unsigned long flags;
1217	int off;
1218
1219	if (!ptr)
1220		return;
1221
1222	spin_lock_irqsave(&pcpu_lock, flags);
1223
1224	chunk = pcpu_chunk_addr_search(addr);
1225	off = addr - chunk->base_addr;
1226
1227	pcpu_free_area(chunk, off);
1228
1229	/* if there are more than one fully free chunks, wake up grim reaper */
1230	if (chunk->free_size == pcpu_unit_size) {
1231		struct pcpu_chunk *pos;
1232
1233		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1234			if (pos != chunk) {
1235				schedule_work(&pcpu_reclaim_work);
1236				break;
1237			}
1238	}
1239
1240	spin_unlock_irqrestore(&pcpu_lock, flags);
1241}
1242EXPORT_SYMBOL_GPL(free_percpu);
1243
1244static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1245					size_t reserved_size,
1246					ssize_t *dyn_sizep)
1247{
1248	size_t size_sum;
1249
1250	size_sum = PFN_ALIGN(static_size + reserved_size +
1251			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1252	if (*dyn_sizep != 0)
1253		*dyn_sizep = size_sum - static_size - reserved_size;
1254
1255	return size_sum;
1256}
1257
1258/**
1259 * pcpu_alloc_alloc_info - allocate percpu allocation info
1260 * @nr_groups: the number of groups
1261 * @nr_units: the number of units
1262 *
1263 * Allocate ai which is large enough for @nr_groups groups containing
1264 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1265 * cpu_map array which is long enough for @nr_units and filled with
1266 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1267 * pointer of other groups.
1268 *
1269 * RETURNS:
1270 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1271 * failure.
1272 */
1273struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1274						      int nr_units)
1275{
1276	struct pcpu_alloc_info *ai;
1277	size_t base_size, ai_size;
1278	void *ptr;
1279	int unit;
1280
1281	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1282			  __alignof__(ai->groups[0].cpu_map[0]));
1283	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1284
1285	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1286	if (!ptr)
1287		return NULL;
1288	ai = ptr;
1289	ptr += base_size;
1290
1291	ai->groups[0].cpu_map = ptr;
1292
1293	for (unit = 0; unit < nr_units; unit++)
1294		ai->groups[0].cpu_map[unit] = NR_CPUS;
1295
1296	ai->nr_groups = nr_groups;
1297	ai->__ai_size = PFN_ALIGN(ai_size);
1298
1299	return ai;
1300}
1301
1302/**
1303 * pcpu_free_alloc_info - free percpu allocation info
1304 * @ai: pcpu_alloc_info to free
1305 *
1306 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1307 */
1308void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1309{
1310	free_bootmem(__pa(ai), ai->__ai_size);
1311}
1312
1313/**
1314 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1315 * @reserved_size: the size of reserved percpu area in bytes
1316 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1317 * @atom_size: allocation atom size
1318 * @cpu_distance_fn: callback to determine distance between cpus, optional
1319 *
1320 * This function determines grouping of units, their mappings to cpus
1321 * and other parameters considering needed percpu size, allocation
1322 * atom size and distances between CPUs.
1323 *
1324 * Groups are always mutliples of atom size and CPUs which are of
1325 * LOCAL_DISTANCE both ways are grouped together and share space for
1326 * units in the same group.  The returned configuration is guaranteed
1327 * to have CPUs on different nodes on different groups and >=75% usage
1328 * of allocated virtual address space.
1329 *
1330 * RETURNS:
1331 * On success, pointer to the new allocation_info is returned.  On
1332 * failure, ERR_PTR value is returned.
1333 */
1334struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1335				size_t reserved_size, ssize_t dyn_size,
1336				size_t atom_size,
1337				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1338{
1339	static int group_map[NR_CPUS] __initdata;
1340	static int group_cnt[NR_CPUS] __initdata;
1341	const size_t static_size = __per_cpu_end - __per_cpu_start;
1342	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1343	size_t size_sum, min_unit_size, alloc_size;
1344	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1345	int last_allocs, group, unit;
1346	unsigned int cpu, tcpu;
1347	struct pcpu_alloc_info *ai;
1348	unsigned int *cpu_map;
1349
1350	/*
1351	 * Determine min_unit_size, alloc_size and max_upa such that
1352	 * alloc_size is multiple of atom_size and is the smallest
1353	 * which can accomodate 4k aligned segments which are equal to
1354	 * or larger than min_unit_size.
1355	 */
1356	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1357	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1358
1359	alloc_size = roundup(min_unit_size, atom_size);
1360	upa = alloc_size / min_unit_size;
1361	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1362		upa--;
1363	max_upa = upa;
1364
1365	/* group cpus according to their proximity */
1366	for_each_possible_cpu(cpu) {
1367		group = 0;
1368	next_group:
1369		for_each_possible_cpu(tcpu) {
1370			if (cpu == tcpu)
1371				break;
1372			if (group_map[tcpu] == group && cpu_distance_fn &&
1373			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1374			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1375				group++;
1376				nr_groups = max(nr_groups, group + 1);
1377				goto next_group;
1378			}
1379		}
1380		group_map[cpu] = group;
1381		group_cnt[group]++;
1382		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1383	}
1384
1385	/*
1386	 * Expand unit size until address space usage goes over 75%
1387	 * and then as much as possible without using more address
1388	 * space.
1389	 */
1390	last_allocs = INT_MAX;
1391	for (upa = max_upa; upa; upa--) {
1392		int allocs = 0, wasted = 0;
1393
1394		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1395			continue;
1396
1397		for (group = 0; group < nr_groups; group++) {
1398			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1399			allocs += this_allocs;
1400			wasted += this_allocs * upa - group_cnt[group];
1401		}
1402
1403		/*
1404		 * Don't accept if wastage is over 25%.  The
1405		 * greater-than comparison ensures upa==1 always
1406		 * passes the following check.
1407		 */
1408		if (wasted > num_possible_cpus() / 3)
1409			continue;
1410
1411		/* and then don't consume more memory */
1412		if (allocs > last_allocs)
1413			break;
1414		last_allocs = allocs;
1415		best_upa = upa;
1416	}
1417	upa = best_upa;
1418
1419	/* allocate and fill alloc_info */
1420	for (group = 0; group < nr_groups; group++)
1421		nr_units += roundup(group_cnt[group], upa);
1422
1423	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1424	if (!ai)
1425		return ERR_PTR(-ENOMEM);
1426	cpu_map = ai->groups[0].cpu_map;
1427
1428	for (group = 0; group < nr_groups; group++) {
1429		ai->groups[group].cpu_map = cpu_map;
1430		cpu_map += roundup(group_cnt[group], upa);
1431	}
1432
1433	ai->static_size = static_size;
1434	ai->reserved_size = reserved_size;
1435	ai->dyn_size = dyn_size;
1436	ai->unit_size = alloc_size / upa;
1437	ai->atom_size = atom_size;
1438	ai->alloc_size = alloc_size;
1439
1440	for (group = 0, unit = 0; group_cnt[group]; group++) {
1441		struct pcpu_group_info *gi = &ai->groups[group];
1442
1443		/*
1444		 * Initialize base_offset as if all groups are located
1445		 * back-to-back.  The caller should update this to
1446		 * reflect actual allocation.
1447		 */
1448		gi->base_offset = unit * ai->unit_size;
1449
1450		for_each_possible_cpu(cpu)
1451			if (group_map[cpu] == group)
1452				gi->cpu_map[gi->nr_units++] = cpu;
1453		gi->nr_units = roundup(gi->nr_units, upa);
1454		unit += gi->nr_units;
1455	}
1456	BUG_ON(unit != nr_units);
1457
1458	return ai;
1459}
1460
1461/**
1462 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1463 * @lvl: loglevel
1464 * @ai: allocation info to dump
1465 *
1466 * Print out information about @ai using loglevel @lvl.
1467 */
1468static void pcpu_dump_alloc_info(const char *lvl,
1469				 const struct pcpu_alloc_info *ai)
1470{
1471	int group_width = 1, cpu_width = 1, width;
1472	char empty_str[] = "--------";
1473	int alloc = 0, alloc_end = 0;
1474	int group, v;
1475	int upa, apl;	/* units per alloc, allocs per line */
1476
1477	v = ai->nr_groups;
1478	while (v /= 10)
1479		group_width++;
1480
1481	v = num_possible_cpus();
1482	while (v /= 10)
1483		cpu_width++;
1484	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1485
1486	upa = ai->alloc_size / ai->unit_size;
1487	width = upa * (cpu_width + 1) + group_width + 3;
1488	apl = rounddown_pow_of_two(max(60 / width, 1));
1489
1490	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1491	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1492	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1493
1494	for (group = 0; group < ai->nr_groups; group++) {
1495		const struct pcpu_group_info *gi = &ai->groups[group];
1496		int unit = 0, unit_end = 0;
1497
1498		BUG_ON(gi->nr_units % upa);
1499		for (alloc_end += gi->nr_units / upa;
1500		     alloc < alloc_end; alloc++) {
1501			if (!(alloc % apl)) {
1502				printk("\n");
1503				printk("%spcpu-alloc: ", lvl);
1504			}
1505			printk("[%0*d] ", group_width, group);
1506
1507			for (unit_end += upa; unit < unit_end; unit++)
1508				if (gi->cpu_map[unit] != NR_CPUS)
1509					printk("%0*d ", cpu_width,
1510					       gi->cpu_map[unit]);
1511				else
1512					printk("%s ", empty_str);
1513		}
1514	}
1515	printk("\n");
1516}
1517
1518/**
1519 * pcpu_setup_first_chunk - initialize the first percpu chunk
1520 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1521 * @base_addr: mapped address
1522 *
1523 * Initialize the first percpu chunk which contains the kernel static
1524 * perpcu area.  This function is to be called from arch percpu area
1525 * setup path.
1526 *
1527 * @ai contains all information necessary to initialize the first
1528 * chunk and prime the dynamic percpu allocator.
1529 *
1530 * @ai->static_size is the size of static percpu area.
1531 *
1532 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1533 * reserve after the static area in the first chunk.  This reserves
1534 * the first chunk such that it's available only through reserved
1535 * percpu allocation.  This is primarily used to serve module percpu
1536 * static areas on architectures where the addressing model has
1537 * limited offset range for symbol relocations to guarantee module
1538 * percpu symbols fall inside the relocatable range.
1539 *
1540 * @ai->dyn_size determines the number of bytes available for dynamic
1541 * allocation in the first chunk.  The area between @ai->static_size +
1542 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1543 *
1544 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1545 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1546 * @ai->dyn_size.
1547 *
1548 * @ai->atom_size is the allocation atom size and used as alignment
1549 * for vm areas.
1550 *
1551 * @ai->alloc_size is the allocation size and always multiple of
1552 * @ai->atom_size.  This is larger than @ai->atom_size if
1553 * @ai->unit_size is larger than @ai->atom_size.
1554 *
1555 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1556 * percpu areas.  Units which should be colocated are put into the
1557 * same group.  Dynamic VM areas will be allocated according to these
1558 * groupings.  If @ai->nr_groups is zero, a single group containing
1559 * all units is assumed.
1560 *
1561 * The caller should have mapped the first chunk at @base_addr and
1562 * copied static data to each unit.
1563 *
1564 * If the first chunk ends up with both reserved and dynamic areas, it
1565 * is served by two chunks - one to serve the core static and reserved
1566 * areas and the other for the dynamic area.  They share the same vm
1567 * and page map but uses different area allocation map to stay away
1568 * from each other.  The latter chunk is circulated in the chunk slots
1569 * and available for dynamic allocation like any other chunks.
1570 *
1571 * RETURNS:
1572 * 0 on success, -errno on failure.
1573 */
1574int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1575				  void *base_addr)
1576{
1577	static int smap[2], dmap[2];
1578	size_t dyn_size = ai->dyn_size;
1579	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1580	struct pcpu_chunk *schunk, *dchunk = NULL;
1581	unsigned long *group_offsets;
1582	size_t *group_sizes;
1583	unsigned long *unit_off;
1584	unsigned int cpu;
1585	int *unit_map;
1586	int group, unit, i;
1587
1588	/* sanity checks */
1589	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1590		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1591	BUG_ON(ai->nr_groups <= 0);
1592	BUG_ON(!ai->static_size);
1593	BUG_ON(!base_addr);
1594	BUG_ON(ai->unit_size < size_sum);
1595	BUG_ON(ai->unit_size & ~PAGE_MASK);
1596	BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1597
1598	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1599
1600	/* process group information and build config tables accordingly */
1601	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1602	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1603	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1604	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1605
1606	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1607		unit_map[cpu] = NR_CPUS;
1608	pcpu_first_unit_cpu = NR_CPUS;
1609
1610	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1611		const struct pcpu_group_info *gi = &ai->groups[group];
1612
1613		group_offsets[group] = gi->base_offset;
1614		group_sizes[group] = gi->nr_units * ai->unit_size;
1615
1616		for (i = 0; i < gi->nr_units; i++) {
1617			cpu = gi->cpu_map[i];
1618			if (cpu == NR_CPUS)
1619				continue;
1620
1621			BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu));
1622			BUG_ON(unit_map[cpu] != NR_CPUS);
1623
1624			unit_map[cpu] = unit + i;
1625			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1626
1627			if (pcpu_first_unit_cpu == NR_CPUS)
1628				pcpu_first_unit_cpu = cpu;
1629		}
1630	}
1631	pcpu_last_unit_cpu = cpu;
1632	pcpu_nr_units = unit;
1633
1634	for_each_possible_cpu(cpu)
1635		BUG_ON(unit_map[cpu] == NR_CPUS);
1636
1637	pcpu_nr_groups = ai->nr_groups;
1638	pcpu_group_offsets = group_offsets;
1639	pcpu_group_sizes = group_sizes;
1640	pcpu_unit_map = unit_map;
1641	pcpu_unit_offsets = unit_off;
1642
1643	/* determine basic parameters */
1644	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1645	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1646	pcpu_atom_size = ai->atom_size;
1647	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1648		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1649
1650	/*
1651	 * Allocate chunk slots.  The additional last slot is for
1652	 * empty chunks.
1653	 */
1654	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1655	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1656	for (i = 0; i < pcpu_nr_slots; i++)
1657		INIT_LIST_HEAD(&pcpu_slot[i]);
1658
1659	/*
1660	 * Initialize static chunk.  If reserved_size is zero, the
1661	 * static chunk covers static area + dynamic allocation area
1662	 * in the first chunk.  If reserved_size is not zero, it
1663	 * covers static area + reserved area (mostly used for module
1664	 * static percpu allocation).
1665	 */
1666	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1667	INIT_LIST_HEAD(&schunk->list);
1668	schunk->base_addr = base_addr;
1669	schunk->map = smap;
1670	schunk->map_alloc = ARRAY_SIZE(smap);
1671	schunk->immutable = true;
1672	bitmap_fill(schunk->populated, pcpu_unit_pages);
1673
1674	if (ai->reserved_size) {
1675		schunk->free_size = ai->reserved_size;
1676		pcpu_reserved_chunk = schunk;
1677		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1678	} else {
1679		schunk->free_size = dyn_size;
1680		dyn_size = 0;			/* dynamic area covered */
1681	}
1682	schunk->contig_hint = schunk->free_size;
1683
1684	schunk->map[schunk->map_used++] = -ai->static_size;
1685	if (schunk->free_size)
1686		schunk->map[schunk->map_used++] = schunk->free_size;
1687
1688	/* init dynamic chunk if necessary */
1689	if (dyn_size) {
1690		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1691		INIT_LIST_HEAD(&dchunk->list);
1692		dchunk->base_addr = base_addr;
1693		dchunk->map = dmap;
1694		dchunk->map_alloc = ARRAY_SIZE(dmap);
1695		dchunk->immutable = true;
1696		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1697
1698		dchunk->contig_hint = dchunk->free_size = dyn_size;
1699		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1700		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1701	}
1702
1703	/* link the first chunk in */
1704	pcpu_first_chunk = dchunk ?: schunk;
1705	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1706
1707	/* we're done */
1708	pcpu_base_addr = base_addr;
1709	return 0;
1710}
1711
1712const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1713	[PCPU_FC_AUTO]	= "auto",
1714	[PCPU_FC_EMBED]	= "embed",
1715	[PCPU_FC_PAGE]	= "page",
1716};
1717
1718enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1719
1720static int __init percpu_alloc_setup(char *str)
1721{
1722	if (0)
1723		/* nada */;
1724#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1725	else if (!strcmp(str, "embed"))
1726		pcpu_chosen_fc = PCPU_FC_EMBED;
1727#endif
1728#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1729	else if (!strcmp(str, "page"))
1730		pcpu_chosen_fc = PCPU_FC_PAGE;
1731#endif
1732	else
1733		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1734
1735	return 0;
1736}
1737early_param("percpu_alloc", percpu_alloc_setup);
1738
1739#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1741/**
1742 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1743 * @reserved_size: the size of reserved percpu area in bytes
1744 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1745 * @atom_size: allocation atom size
1746 * @cpu_distance_fn: callback to determine distance between cpus, optional
1747 * @alloc_fn: function to allocate percpu page
1748 * @free_fn: funtion to free percpu page
1749 *
1750 * This is a helper to ease setting up embedded first percpu chunk and
1751 * can be called where pcpu_setup_first_chunk() is expected.
1752 *
1753 * If this function is used to setup the first chunk, it is allocated
1754 * by calling @alloc_fn and used as-is without being mapped into
1755 * vmalloc area.  Allocations are always whole multiples of @atom_size
1756 * aligned to @atom_size.
1757 *
1758 * This enables the first chunk to piggy back on the linear physical
1759 * mapping which often uses larger page size.  Please note that this
1760 * can result in very sparse cpu->unit mapping on NUMA machines thus
1761 * requiring large vmalloc address space.  Don't use this allocator if
1762 * vmalloc space is not orders of magnitude larger than distances
1763 * between node memory addresses (ie. 32bit NUMA machines).
1764 *
1765 * When @dyn_size is positive, dynamic area might be larger than
1766 * specified to fill page alignment.  When @dyn_size is auto,
1767 * @dyn_size is just big enough to fill page alignment after static
1768 * and reserved areas.
1769 *
1770 * If the needed size is smaller than the minimum or specified unit
1771 * size, the leftover is returned using @free_fn.
1772 *
1773 * RETURNS:
1774 * 0 on success, -errno on failure.
1775 */
1776int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1777				  size_t atom_size,
1778				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1779				  pcpu_fc_alloc_fn_t alloc_fn,
1780				  pcpu_fc_free_fn_t free_fn)
1781{
1782	void *base = (void *)ULONG_MAX;
1783	void **areas = NULL;
1784	struct pcpu_alloc_info *ai;
1785	size_t size_sum, areas_size;
1786	int group, i, rc;
1787
1788	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1789				   cpu_distance_fn);
1790	if (IS_ERR(ai))
1791		return PTR_ERR(ai);
1792
1793	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1794	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1795
1796	areas = alloc_bootmem_nopanic(areas_size);
1797	if (!areas) {
1798		rc = -ENOMEM;
1799		goto out_free;
1800	}
1801
1802	/* allocate, copy and determine base address */
1803	for (group = 0; group < ai->nr_groups; group++) {
1804		struct pcpu_group_info *gi = &ai->groups[group];
1805		unsigned int cpu = NR_CPUS;
1806		void *ptr;
1807
1808		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1809			cpu = gi->cpu_map[i];
1810		BUG_ON(cpu == NR_CPUS);
1811
1812		/* allocate space for the whole group */
1813		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1814		if (!ptr) {
1815			rc = -ENOMEM;
1816			goto out_free_areas;
1817		}
1818		areas[group] = ptr;
1819
1820		base = min(ptr, base);
1821
1822		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1823			if (gi->cpu_map[i] == NR_CPUS) {
1824				/* unused unit, free whole */
1825				free_fn(ptr, ai->unit_size);
1826				continue;
1827			}
1828			/* copy and return the unused part */
1829			memcpy(ptr, __per_cpu_load, ai->static_size);
1830			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1831		}
1832	}
1833
1834	/* base address is now known, determine group base offsets */
1835	for (group = 0; group < ai->nr_groups; group++)
1836		ai->groups[group].base_offset = areas[group] - base;
1837
1838	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1839		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1840		ai->dyn_size, ai->unit_size);
1841
1842	rc = pcpu_setup_first_chunk(ai, base);
1843	goto out_free;
1844
1845out_free_areas:
1846	for (group = 0; group < ai->nr_groups; group++)
1847		free_fn(areas[group],
1848			ai->groups[group].nr_units * ai->unit_size);
1849out_free:
1850	pcpu_free_alloc_info(ai);
1851	if (areas)
1852		free_bootmem(__pa(areas), areas_size);
1853	return rc;
1854}
1855#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1856	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1857
1858#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1859/**
1860 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1861 * @reserved_size: the size of reserved percpu area in bytes
1862 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1863 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1864 * @populate_pte_fn: function to populate pte
1865 *
1866 * This is a helper to ease setting up page-remapped first percpu
1867 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1868 *
1869 * This is the basic allocator.  Static percpu area is allocated
1870 * page-by-page into vmalloc area.
1871 *
1872 * RETURNS:
1873 * 0 on success, -errno on failure.
1874 */
1875int __init pcpu_page_first_chunk(size_t reserved_size,
1876				 pcpu_fc_alloc_fn_t alloc_fn,
1877				 pcpu_fc_free_fn_t free_fn,
1878				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1879{
1880	static struct vm_struct vm;
1881	struct pcpu_alloc_info *ai;
1882	char psize_str[16];
1883	int unit_pages;
1884	size_t pages_size;
1885	struct page **pages;
1886	int unit, i, j, rc;
1887
1888	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1889
1890	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1891	if (IS_ERR(ai))
1892		return PTR_ERR(ai);
1893	BUG_ON(ai->nr_groups != 1);
1894	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1895
1896	unit_pages = ai->unit_size >> PAGE_SHIFT;
1897
1898	/* unaligned allocations can't be freed, round up to page size */
1899	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1900			       sizeof(pages[0]));
1901	pages = alloc_bootmem(pages_size);
1902
1903	/* allocate pages */
1904	j = 0;
1905	for (unit = 0; unit < num_possible_cpus(); unit++)
1906		for (i = 0; i < unit_pages; i++) {
1907			unsigned int cpu = ai->groups[0].cpu_map[unit];
1908			void *ptr;
1909
1910			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1911			if (!ptr) {
1912				pr_warning("PERCPU: failed to allocate %s page "
1913					   "for cpu%u\n", psize_str, cpu);
1914				goto enomem;
1915			}
1916			pages[j++] = virt_to_page(ptr);
1917		}
1918
1919	/* allocate vm area, map the pages and copy static data */
1920	vm.flags = VM_ALLOC;
1921	vm.size = num_possible_cpus() * ai->unit_size;
1922	vm_area_register_early(&vm, PAGE_SIZE);
1923
1924	for (unit = 0; unit < num_possible_cpus(); unit++) {
1925		unsigned long unit_addr =
1926			(unsigned long)vm.addr + unit * ai->unit_size;
1927
1928		for (i = 0; i < unit_pages; i++)
1929			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1930
1931		/* pte already populated, the following shouldn't fail */
1932		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1933				      unit_pages);
1934		if (rc < 0)
1935			panic("failed to map percpu area, err=%d\n", rc);
1936
1937		/*
1938		 * FIXME: Archs with virtual cache should flush local
1939		 * cache for the linear mapping here - something
1940		 * equivalent to flush_cache_vmap() on the local cpu.
1941		 * flush_cache_vmap() can't be used as most supporting
1942		 * data structures are not set up yet.
1943		 */
1944
1945		/* copy static data */
1946		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1947	}
1948
1949	/* we're ready, commit */
1950	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1951		unit_pages, psize_str, vm.addr, ai->static_size,
1952		ai->reserved_size, ai->dyn_size);
1953
1954	rc = pcpu_setup_first_chunk(ai, vm.addr);
1955	goto out_free_ar;
1956
1957enomem:
1958	while (--j >= 0)
1959		free_fn(page_address(pages[j]), PAGE_SIZE);
1960	rc = -ENOMEM;
1961out_free_ar:
1962	free_bootmem(__pa(pages), pages_size);
1963	pcpu_free_alloc_info(ai);
1964	return rc;
1965}
1966#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1967
1968/*
1969 * Generic percpu area setup.
1970 *
1971 * The embedding helper is used because its behavior closely resembles
1972 * the original non-dynamic generic percpu area setup.  This is
1973 * important because many archs have addressing restrictions and might
1974 * fail if the percpu area is located far away from the previous
1975 * location.  As an added bonus, in non-NUMA cases, embedding is
1976 * generally a good idea TLB-wise because percpu area can piggy back
1977 * on the physical linear memory mapping which uses large page
1978 * mappings on applicable archs.
1979 */
1980#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1981unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1982EXPORT_SYMBOL(__per_cpu_offset);
1983
1984static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1985				       size_t align)
1986{
1987	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1988}
1989
1990static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1991{
1992	free_bootmem(__pa(ptr), size);
1993}
1994
1995void __init setup_per_cpu_areas(void)
1996{
1997	unsigned long delta;
1998	unsigned int cpu;
1999	int rc;
2000
2001	/*
2002	 * Always reserve area for module percpu variables.  That's
2003	 * what the legacy allocator did.
2004	 */
2005	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2006				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2007				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2008	if (rc < 0)
2009		panic("Failed to initialized percpu areas.");
2010
2011	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2012	for_each_possible_cpu(cpu)
2013		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2014}
2015#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2016