percpu.c revision f58dc01ba2ca9fe3ab2ba4ca43d9c8a735cf62d8
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009		SUSE Linux Products GmbH
5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.  ie. in
17 * vmalloc area
18 *
19 *  c0                           c1                         c2
20 *  -------------------          -------------------        ------------
21 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22 *  -------------------  ......  -------------------  ....  ------------
23 *
24 * Allocation is done in offset-size areas of single unit space.  Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes.  The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk.  This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map.  A positive value in the map represents a free
41 * region and negative allocated.  Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 *   regular address to percpu pointer and back if they need to be
53 *   different from the default
54 *
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 *   setup the first chunk containing the kernel static percpu area
57 */
58
59#include <linux/bitmap.h>
60#include <linux/bootmem.h>
61#include <linux/list.h>
62#include <linux/log2.h>
63#include <linux/mm.h>
64#include <linux/module.h>
65#include <linux/mutex.h>
66#include <linux/percpu.h>
67#include <linux/pfn.h>
68#include <linux/slab.h>
69#include <linux/spinlock.h>
70#include <linux/vmalloc.h>
71#include <linux/workqueue.h>
72
73#include <asm/cacheflush.h>
74#include <asm/sections.h>
75#include <asm/tlbflush.h>
76
77#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79
80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81#ifndef __addr_to_pcpu_ptr
82#define __addr_to_pcpu_ptr(addr)					\
83	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
84		 + (unsigned long)__per_cpu_start)
85#endif
86#ifndef __pcpu_ptr_to_addr
87#define __pcpu_ptr_to_addr(ptr)						\
88	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
89		 - (unsigned long)__per_cpu_start)
90#endif
91
92struct pcpu_chunk {
93	struct list_head	list;		/* linked to pcpu_slot lists */
94	int			free_size;	/* free bytes in the chunk */
95	int			contig_hint;	/* max contiguous size hint */
96	struct vm_struct	*vm;		/* mapped vmalloc region */
97	int			map_used;	/* # of map entries used */
98	int			map_alloc;	/* # of map entries allocated */
99	int			*map;		/* allocation map */
100	bool			immutable;	/* no [de]population allowed */
101	unsigned long		populated[];	/* populated bitmap */
102};
103
104static int pcpu_unit_pages __read_mostly;
105static int pcpu_unit_size __read_mostly;
106static int pcpu_nr_units __read_mostly;
107static int pcpu_chunk_size __read_mostly;
108static int pcpu_nr_slots __read_mostly;
109static size_t pcpu_chunk_struct_size __read_mostly;
110
111/* cpus with the lowest and highest unit numbers */
112static unsigned int pcpu_first_unit_cpu __read_mostly;
113static unsigned int pcpu_last_unit_cpu __read_mostly;
114
115/* the address of the first chunk which starts with the kernel static area */
116void *pcpu_base_addr __read_mostly;
117EXPORT_SYMBOL_GPL(pcpu_base_addr);
118
119/* cpu -> unit map */
120const int *pcpu_unit_map __read_mostly;
121
122/*
123 * The first chunk which always exists.  Note that unlike other
124 * chunks, this one can be allocated and mapped in several different
125 * ways and thus often doesn't live in the vmalloc area.
126 */
127static struct pcpu_chunk *pcpu_first_chunk;
128
129/*
130 * Optional reserved chunk.  This chunk reserves part of the first
131 * chunk and serves it for reserved allocations.  The amount of
132 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
133 * area doesn't exist, the following variables contain NULL and 0
134 * respectively.
135 */
136static struct pcpu_chunk *pcpu_reserved_chunk;
137static int pcpu_reserved_chunk_limit;
138
139/*
140 * Synchronization rules.
141 *
142 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
143 * protects allocation/reclaim paths, chunks, populated bitmap and
144 * vmalloc mapping.  The latter is a spinlock and protects the index
145 * data structures - chunk slots, chunks and area maps in chunks.
146 *
147 * During allocation, pcpu_alloc_mutex is kept locked all the time and
148 * pcpu_lock is grabbed and released as necessary.  All actual memory
149 * allocations are done using GFP_KERNEL with pcpu_lock released.
150 *
151 * Free path accesses and alters only the index data structures, so it
152 * can be safely called from atomic context.  When memory needs to be
153 * returned to the system, free path schedules reclaim_work which
154 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
155 * reclaimed, release both locks and frees the chunks.  Note that it's
156 * necessary to grab both locks to remove a chunk from circulation as
157 * allocation path might be referencing the chunk with only
158 * pcpu_alloc_mutex locked.
159 */
160static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
161static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
162
163static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
164
165/* reclaim work to release fully free chunks, scheduled from free path */
166static void pcpu_reclaim(struct work_struct *work);
167static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
168
169static int __pcpu_size_to_slot(int size)
170{
171	int highbit = fls(size);	/* size is in bytes */
172	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
173}
174
175static int pcpu_size_to_slot(int size)
176{
177	if (size == pcpu_unit_size)
178		return pcpu_nr_slots - 1;
179	return __pcpu_size_to_slot(size);
180}
181
182static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
183{
184	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
185		return 0;
186
187	return pcpu_size_to_slot(chunk->free_size);
188}
189
190static int pcpu_page_idx(unsigned int cpu, int page_idx)
191{
192	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
193}
194
195static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
196				     unsigned int cpu, int page_idx)
197{
198	return (unsigned long)chunk->vm->addr +
199		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
200}
201
202static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
203				    unsigned int cpu, int page_idx)
204{
205	/* must not be used on pre-mapped chunk */
206	WARN_ON(chunk->immutable);
207
208	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
209}
210
211/* set the pointer to a chunk in a page struct */
212static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
213{
214	page->index = (unsigned long)pcpu;
215}
216
217/* obtain pointer to a chunk from a page struct */
218static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
219{
220	return (struct pcpu_chunk *)page->index;
221}
222
223static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
224{
225	*rs = find_next_zero_bit(chunk->populated, end, *rs);
226	*re = find_next_bit(chunk->populated, end, *rs + 1);
227}
228
229static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
230{
231	*rs = find_next_bit(chunk->populated, end, *rs);
232	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
233}
234
235/*
236 * (Un)populated page region iterators.  Iterate over (un)populated
237 * page regions betwen @start and @end in @chunk.  @rs and @re should
238 * be integer variables and will be set to start and end page index of
239 * the current region.
240 */
241#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
242	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
243	     (rs) < (re);						    \
244	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
245
246#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
247	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
248	     (rs) < (re);						    \
249	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
250
251/**
252 * pcpu_mem_alloc - allocate memory
253 * @size: bytes to allocate
254 *
255 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
256 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
257 * memory is always zeroed.
258 *
259 * CONTEXT:
260 * Does GFP_KERNEL allocation.
261 *
262 * RETURNS:
263 * Pointer to the allocated area on success, NULL on failure.
264 */
265static void *pcpu_mem_alloc(size_t size)
266{
267	if (size <= PAGE_SIZE)
268		return kzalloc(size, GFP_KERNEL);
269	else {
270		void *ptr = vmalloc(size);
271		if (ptr)
272			memset(ptr, 0, size);
273		return ptr;
274	}
275}
276
277/**
278 * pcpu_mem_free - free memory
279 * @ptr: memory to free
280 * @size: size of the area
281 *
282 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
283 */
284static void pcpu_mem_free(void *ptr, size_t size)
285{
286	if (size <= PAGE_SIZE)
287		kfree(ptr);
288	else
289		vfree(ptr);
290}
291
292/**
293 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
294 * @chunk: chunk of interest
295 * @oslot: the previous slot it was on
296 *
297 * This function is called after an allocation or free changed @chunk.
298 * New slot according to the changed state is determined and @chunk is
299 * moved to the slot.  Note that the reserved chunk is never put on
300 * chunk slots.
301 *
302 * CONTEXT:
303 * pcpu_lock.
304 */
305static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
306{
307	int nslot = pcpu_chunk_slot(chunk);
308
309	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
310		if (oslot < nslot)
311			list_move(&chunk->list, &pcpu_slot[nslot]);
312		else
313			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
314	}
315}
316
317/**
318 * pcpu_chunk_addr_search - determine chunk containing specified address
319 * @addr: address for which the chunk needs to be determined.
320 *
321 * RETURNS:
322 * The address of the found chunk.
323 */
324static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
325{
326	void *first_start = pcpu_first_chunk->vm->addr;
327
328	/* is it in the first chunk? */
329	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
330		/* is it in the reserved area? */
331		if (addr < first_start + pcpu_reserved_chunk_limit)
332			return pcpu_reserved_chunk;
333		return pcpu_first_chunk;
334	}
335
336	/*
337	 * The address is relative to unit0 which might be unused and
338	 * thus unmapped.  Offset the address to the unit space of the
339	 * current processor before looking it up in the vmalloc
340	 * space.  Note that any possible cpu id can be used here, so
341	 * there's no need to worry about preemption or cpu hotplug.
342	 */
343	addr += pcpu_unit_map[smp_processor_id()] * pcpu_unit_size;
344	return pcpu_get_page_chunk(vmalloc_to_page(addr));
345}
346
347/**
348 * pcpu_extend_area_map - extend area map for allocation
349 * @chunk: target chunk
350 *
351 * Extend area map of @chunk so that it can accomodate an allocation.
352 * A single allocation can split an area into three areas, so this
353 * function makes sure that @chunk->map has at least two extra slots.
354 *
355 * CONTEXT:
356 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
357 * if area map is extended.
358 *
359 * RETURNS:
360 * 0 if noop, 1 if successfully extended, -errno on failure.
361 */
362static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
363{
364	int new_alloc;
365	int *new;
366	size_t size;
367
368	/* has enough? */
369	if (chunk->map_alloc >= chunk->map_used + 2)
370		return 0;
371
372	spin_unlock_irq(&pcpu_lock);
373
374	new_alloc = PCPU_DFL_MAP_ALLOC;
375	while (new_alloc < chunk->map_used + 2)
376		new_alloc *= 2;
377
378	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
379	if (!new) {
380		spin_lock_irq(&pcpu_lock);
381		return -ENOMEM;
382	}
383
384	/*
385	 * Acquire pcpu_lock and switch to new area map.  Only free
386	 * could have happened inbetween, so map_used couldn't have
387	 * grown.
388	 */
389	spin_lock_irq(&pcpu_lock);
390	BUG_ON(new_alloc < chunk->map_used + 2);
391
392	size = chunk->map_alloc * sizeof(chunk->map[0]);
393	memcpy(new, chunk->map, size);
394
395	/*
396	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
397	 * one of the first chunks and still using static map.
398	 */
399	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
400		pcpu_mem_free(chunk->map, size);
401
402	chunk->map_alloc = new_alloc;
403	chunk->map = new;
404	return 0;
405}
406
407/**
408 * pcpu_split_block - split a map block
409 * @chunk: chunk of interest
410 * @i: index of map block to split
411 * @head: head size in bytes (can be 0)
412 * @tail: tail size in bytes (can be 0)
413 *
414 * Split the @i'th map block into two or three blocks.  If @head is
415 * non-zero, @head bytes block is inserted before block @i moving it
416 * to @i+1 and reducing its size by @head bytes.
417 *
418 * If @tail is non-zero, the target block, which can be @i or @i+1
419 * depending on @head, is reduced by @tail bytes and @tail byte block
420 * is inserted after the target block.
421 *
422 * @chunk->map must have enough free slots to accomodate the split.
423 *
424 * CONTEXT:
425 * pcpu_lock.
426 */
427static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
428			     int head, int tail)
429{
430	int nr_extra = !!head + !!tail;
431
432	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
433
434	/* insert new subblocks */
435	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
436		sizeof(chunk->map[0]) * (chunk->map_used - i));
437	chunk->map_used += nr_extra;
438
439	if (head) {
440		chunk->map[i + 1] = chunk->map[i] - head;
441		chunk->map[i++] = head;
442	}
443	if (tail) {
444		chunk->map[i++] -= tail;
445		chunk->map[i] = tail;
446	}
447}
448
449/**
450 * pcpu_alloc_area - allocate area from a pcpu_chunk
451 * @chunk: chunk of interest
452 * @size: wanted size in bytes
453 * @align: wanted align
454 *
455 * Try to allocate @size bytes area aligned at @align from @chunk.
456 * Note that this function only allocates the offset.  It doesn't
457 * populate or map the area.
458 *
459 * @chunk->map must have at least two free slots.
460 *
461 * CONTEXT:
462 * pcpu_lock.
463 *
464 * RETURNS:
465 * Allocated offset in @chunk on success, -1 if no matching area is
466 * found.
467 */
468static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
469{
470	int oslot = pcpu_chunk_slot(chunk);
471	int max_contig = 0;
472	int i, off;
473
474	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
475		bool is_last = i + 1 == chunk->map_used;
476		int head, tail;
477
478		/* extra for alignment requirement */
479		head = ALIGN(off, align) - off;
480		BUG_ON(i == 0 && head != 0);
481
482		if (chunk->map[i] < 0)
483			continue;
484		if (chunk->map[i] < head + size) {
485			max_contig = max(chunk->map[i], max_contig);
486			continue;
487		}
488
489		/*
490		 * If head is small or the previous block is free,
491		 * merge'em.  Note that 'small' is defined as smaller
492		 * than sizeof(int), which is very small but isn't too
493		 * uncommon for percpu allocations.
494		 */
495		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
496			if (chunk->map[i - 1] > 0)
497				chunk->map[i - 1] += head;
498			else {
499				chunk->map[i - 1] -= head;
500				chunk->free_size -= head;
501			}
502			chunk->map[i] -= head;
503			off += head;
504			head = 0;
505		}
506
507		/* if tail is small, just keep it around */
508		tail = chunk->map[i] - head - size;
509		if (tail < sizeof(int))
510			tail = 0;
511
512		/* split if warranted */
513		if (head || tail) {
514			pcpu_split_block(chunk, i, head, tail);
515			if (head) {
516				i++;
517				off += head;
518				max_contig = max(chunk->map[i - 1], max_contig);
519			}
520			if (tail)
521				max_contig = max(chunk->map[i + 1], max_contig);
522		}
523
524		/* update hint and mark allocated */
525		if (is_last)
526			chunk->contig_hint = max_contig; /* fully scanned */
527		else
528			chunk->contig_hint = max(chunk->contig_hint,
529						 max_contig);
530
531		chunk->free_size -= chunk->map[i];
532		chunk->map[i] = -chunk->map[i];
533
534		pcpu_chunk_relocate(chunk, oslot);
535		return off;
536	}
537
538	chunk->contig_hint = max_contig;	/* fully scanned */
539	pcpu_chunk_relocate(chunk, oslot);
540
541	/* tell the upper layer that this chunk has no matching area */
542	return -1;
543}
544
545/**
546 * pcpu_free_area - free area to a pcpu_chunk
547 * @chunk: chunk of interest
548 * @freeme: offset of area to free
549 *
550 * Free area starting from @freeme to @chunk.  Note that this function
551 * only modifies the allocation map.  It doesn't depopulate or unmap
552 * the area.
553 *
554 * CONTEXT:
555 * pcpu_lock.
556 */
557static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
558{
559	int oslot = pcpu_chunk_slot(chunk);
560	int i, off;
561
562	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
563		if (off == freeme)
564			break;
565	BUG_ON(off != freeme);
566	BUG_ON(chunk->map[i] > 0);
567
568	chunk->map[i] = -chunk->map[i];
569	chunk->free_size += chunk->map[i];
570
571	/* merge with previous? */
572	if (i > 0 && chunk->map[i - 1] >= 0) {
573		chunk->map[i - 1] += chunk->map[i];
574		chunk->map_used--;
575		memmove(&chunk->map[i], &chunk->map[i + 1],
576			(chunk->map_used - i) * sizeof(chunk->map[0]));
577		i--;
578	}
579	/* merge with next? */
580	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
581		chunk->map[i] += chunk->map[i + 1];
582		chunk->map_used--;
583		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
584			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
585	}
586
587	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
588	pcpu_chunk_relocate(chunk, oslot);
589}
590
591/**
592 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
593 * @chunk: chunk of interest
594 * @bitmapp: output parameter for bitmap
595 * @may_alloc: may allocate the array
596 *
597 * Returns pointer to array of pointers to struct page and bitmap,
598 * both of which can be indexed with pcpu_page_idx().  The returned
599 * array is cleared to zero and *@bitmapp is copied from
600 * @chunk->populated.  Note that there is only one array and bitmap
601 * and access exclusion is the caller's responsibility.
602 *
603 * CONTEXT:
604 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
605 * Otherwise, don't care.
606 *
607 * RETURNS:
608 * Pointer to temp pages array on success, NULL on failure.
609 */
610static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
611					       unsigned long **bitmapp,
612					       bool may_alloc)
613{
614	static struct page **pages;
615	static unsigned long *bitmap;
616	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
617	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
618			     sizeof(unsigned long);
619
620	if (!pages || !bitmap) {
621		if (may_alloc && !pages)
622			pages = pcpu_mem_alloc(pages_size);
623		if (may_alloc && !bitmap)
624			bitmap = pcpu_mem_alloc(bitmap_size);
625		if (!pages || !bitmap)
626			return NULL;
627	}
628
629	memset(pages, 0, pages_size);
630	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
631
632	*bitmapp = bitmap;
633	return pages;
634}
635
636/**
637 * pcpu_free_pages - free pages which were allocated for @chunk
638 * @chunk: chunk pages were allocated for
639 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
640 * @populated: populated bitmap
641 * @page_start: page index of the first page to be freed
642 * @page_end: page index of the last page to be freed + 1
643 *
644 * Free pages [@page_start and @page_end) in @pages for all units.
645 * The pages were allocated for @chunk.
646 */
647static void pcpu_free_pages(struct pcpu_chunk *chunk,
648			    struct page **pages, unsigned long *populated,
649			    int page_start, int page_end)
650{
651	unsigned int cpu;
652	int i;
653
654	for_each_possible_cpu(cpu) {
655		for (i = page_start; i < page_end; i++) {
656			struct page *page = pages[pcpu_page_idx(cpu, i)];
657
658			if (page)
659				__free_page(page);
660		}
661	}
662}
663
664/**
665 * pcpu_alloc_pages - allocates pages for @chunk
666 * @chunk: target chunk
667 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
668 * @populated: populated bitmap
669 * @page_start: page index of the first page to be allocated
670 * @page_end: page index of the last page to be allocated + 1
671 *
672 * Allocate pages [@page_start,@page_end) into @pages for all units.
673 * The allocation is for @chunk.  Percpu core doesn't care about the
674 * content of @pages and will pass it verbatim to pcpu_map_pages().
675 */
676static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
677			    struct page **pages, unsigned long *populated,
678			    int page_start, int page_end)
679{
680	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
681	unsigned int cpu;
682	int i;
683
684	for_each_possible_cpu(cpu) {
685		for (i = page_start; i < page_end; i++) {
686			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
687
688			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
689			if (!*pagep) {
690				pcpu_free_pages(chunk, pages, populated,
691						page_start, page_end);
692				return -ENOMEM;
693			}
694		}
695	}
696	return 0;
697}
698
699/**
700 * pcpu_pre_unmap_flush - flush cache prior to unmapping
701 * @chunk: chunk the regions to be flushed belongs to
702 * @page_start: page index of the first page to be flushed
703 * @page_end: page index of the last page to be flushed + 1
704 *
705 * Pages in [@page_start,@page_end) of @chunk are about to be
706 * unmapped.  Flush cache.  As each flushing trial can be very
707 * expensive, issue flush on the whole region at once rather than
708 * doing it for each cpu.  This could be an overkill but is more
709 * scalable.
710 */
711static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
712				 int page_start, int page_end)
713{
714	flush_cache_vunmap(
715		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
716		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
717}
718
719static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
720{
721	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
722}
723
724/**
725 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
726 * @chunk: chunk of interest
727 * @pages: pages array which can be used to pass information to free
728 * @populated: populated bitmap
729 * @page_start: page index of the first page to unmap
730 * @page_end: page index of the last page to unmap + 1
731 *
732 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
733 * Corresponding elements in @pages were cleared by the caller and can
734 * be used to carry information to pcpu_free_pages() which will be
735 * called after all unmaps are finished.  The caller should call
736 * proper pre/post flush functions.
737 */
738static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
739			     struct page **pages, unsigned long *populated,
740			     int page_start, int page_end)
741{
742	unsigned int cpu;
743	int i;
744
745	for_each_possible_cpu(cpu) {
746		for (i = page_start; i < page_end; i++) {
747			struct page *page;
748
749			page = pcpu_chunk_page(chunk, cpu, i);
750			WARN_ON(!page);
751			pages[pcpu_page_idx(cpu, i)] = page;
752		}
753		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
754				   page_end - page_start);
755	}
756
757	for (i = page_start; i < page_end; i++)
758		__clear_bit(i, populated);
759}
760
761/**
762 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
763 * @chunk: pcpu_chunk the regions to be flushed belong to
764 * @page_start: page index of the first page to be flushed
765 * @page_end: page index of the last page to be flushed + 1
766 *
767 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
768 * TLB for the regions.  This can be skipped if the area is to be
769 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
770 *
771 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
772 * for the whole region.
773 */
774static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
775				      int page_start, int page_end)
776{
777	flush_tlb_kernel_range(
778		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
779		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
780}
781
782static int __pcpu_map_pages(unsigned long addr, struct page **pages,
783			    int nr_pages)
784{
785	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
786					PAGE_KERNEL, pages);
787}
788
789/**
790 * pcpu_map_pages - map pages into a pcpu_chunk
791 * @chunk: chunk of interest
792 * @pages: pages array containing pages to be mapped
793 * @populated: populated bitmap
794 * @page_start: page index of the first page to map
795 * @page_end: page index of the last page to map + 1
796 *
797 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
798 * caller is responsible for calling pcpu_post_map_flush() after all
799 * mappings are complete.
800 *
801 * This function is responsible for setting corresponding bits in
802 * @chunk->populated bitmap and whatever is necessary for reverse
803 * lookup (addr -> chunk).
804 */
805static int pcpu_map_pages(struct pcpu_chunk *chunk,
806			  struct page **pages, unsigned long *populated,
807			  int page_start, int page_end)
808{
809	unsigned int cpu, tcpu;
810	int i, err;
811
812	for_each_possible_cpu(cpu) {
813		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
814				       &pages[pcpu_page_idx(cpu, page_start)],
815				       page_end - page_start);
816		if (err < 0)
817			goto err;
818	}
819
820	/* mapping successful, link chunk and mark populated */
821	for (i = page_start; i < page_end; i++) {
822		for_each_possible_cpu(cpu)
823			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
824					    chunk);
825		__set_bit(i, populated);
826	}
827
828	return 0;
829
830err:
831	for_each_possible_cpu(tcpu) {
832		if (tcpu == cpu)
833			break;
834		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
835				   page_end - page_start);
836	}
837	return err;
838}
839
840/**
841 * pcpu_post_map_flush - flush cache after mapping
842 * @chunk: pcpu_chunk the regions to be flushed belong to
843 * @page_start: page index of the first page to be flushed
844 * @page_end: page index of the last page to be flushed + 1
845 *
846 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
847 * cache.
848 *
849 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
850 * for the whole region.
851 */
852static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
853				int page_start, int page_end)
854{
855	flush_cache_vmap(
856		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
857		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
858}
859
860/**
861 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
862 * @chunk: chunk to depopulate
863 * @off: offset to the area to depopulate
864 * @size: size of the area to depopulate in bytes
865 * @flush: whether to flush cache and tlb or not
866 *
867 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
868 * from @chunk.  If @flush is true, vcache is flushed before unmapping
869 * and tlb after.
870 *
871 * CONTEXT:
872 * pcpu_alloc_mutex.
873 */
874static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
875{
876	int page_start = PFN_DOWN(off);
877	int page_end = PFN_UP(off + size);
878	struct page **pages;
879	unsigned long *populated;
880	int rs, re;
881
882	/* quick path, check whether it's empty already */
883	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
884		if (rs == page_start && re == page_end)
885			return;
886		break;
887	}
888
889	/* immutable chunks can't be depopulated */
890	WARN_ON(chunk->immutable);
891
892	/*
893	 * If control reaches here, there must have been at least one
894	 * successful population attempt so the temp pages array must
895	 * be available now.
896	 */
897	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
898	BUG_ON(!pages);
899
900	/* unmap and free */
901	pcpu_pre_unmap_flush(chunk, page_start, page_end);
902
903	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
904		pcpu_unmap_pages(chunk, pages, populated, rs, re);
905
906	/* no need to flush tlb, vmalloc will handle it lazily */
907
908	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
909		pcpu_free_pages(chunk, pages, populated, rs, re);
910
911	/* commit new bitmap */
912	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
913}
914
915/**
916 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
917 * @chunk: chunk of interest
918 * @off: offset to the area to populate
919 * @size: size of the area to populate in bytes
920 *
921 * For each cpu, populate and map pages [@page_start,@page_end) into
922 * @chunk.  The area is cleared on return.
923 *
924 * CONTEXT:
925 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
926 */
927static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
928{
929	int page_start = PFN_DOWN(off);
930	int page_end = PFN_UP(off + size);
931	int free_end = page_start, unmap_end = page_start;
932	struct page **pages;
933	unsigned long *populated;
934	unsigned int cpu;
935	int rs, re, rc;
936
937	/* quick path, check whether all pages are already there */
938	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
939		if (rs == page_start && re == page_end)
940			goto clear;
941		break;
942	}
943
944	/* need to allocate and map pages, this chunk can't be immutable */
945	WARN_ON(chunk->immutable);
946
947	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
948	if (!pages)
949		return -ENOMEM;
950
951	/* alloc and map */
952	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
953		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
954		if (rc)
955			goto err_free;
956		free_end = re;
957	}
958
959	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
960		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
961		if (rc)
962			goto err_unmap;
963		unmap_end = re;
964	}
965	pcpu_post_map_flush(chunk, page_start, page_end);
966
967	/* commit new bitmap */
968	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
969clear:
970	for_each_possible_cpu(cpu)
971		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
972	return 0;
973
974err_unmap:
975	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
976	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
977		pcpu_unmap_pages(chunk, pages, populated, rs, re);
978	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
979err_free:
980	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
981		pcpu_free_pages(chunk, pages, populated, rs, re);
982	return rc;
983}
984
985static void free_pcpu_chunk(struct pcpu_chunk *chunk)
986{
987	if (!chunk)
988		return;
989	if (chunk->vm)
990		free_vm_area(chunk->vm);
991	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
992	kfree(chunk);
993}
994
995static struct pcpu_chunk *alloc_pcpu_chunk(void)
996{
997	struct pcpu_chunk *chunk;
998
999	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1000	if (!chunk)
1001		return NULL;
1002
1003	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1004	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1005	chunk->map[chunk->map_used++] = pcpu_unit_size;
1006
1007	chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
1008	if (!chunk->vm) {
1009		free_pcpu_chunk(chunk);
1010		return NULL;
1011	}
1012
1013	INIT_LIST_HEAD(&chunk->list);
1014	chunk->free_size = pcpu_unit_size;
1015	chunk->contig_hint = pcpu_unit_size;
1016
1017	return chunk;
1018}
1019
1020/**
1021 * pcpu_alloc - the percpu allocator
1022 * @size: size of area to allocate in bytes
1023 * @align: alignment of area (max PAGE_SIZE)
1024 * @reserved: allocate from the reserved chunk if available
1025 *
1026 * Allocate percpu area of @size bytes aligned at @align.
1027 *
1028 * CONTEXT:
1029 * Does GFP_KERNEL allocation.
1030 *
1031 * RETURNS:
1032 * Percpu pointer to the allocated area on success, NULL on failure.
1033 */
1034static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1035{
1036	struct pcpu_chunk *chunk;
1037	int slot, off;
1038
1039	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1040		WARN(true, "illegal size (%zu) or align (%zu) for "
1041		     "percpu allocation\n", size, align);
1042		return NULL;
1043	}
1044
1045	mutex_lock(&pcpu_alloc_mutex);
1046	spin_lock_irq(&pcpu_lock);
1047
1048	/* serve reserved allocations from the reserved chunk if available */
1049	if (reserved && pcpu_reserved_chunk) {
1050		chunk = pcpu_reserved_chunk;
1051		if (size > chunk->contig_hint ||
1052		    pcpu_extend_area_map(chunk) < 0)
1053			goto fail_unlock;
1054		off = pcpu_alloc_area(chunk, size, align);
1055		if (off >= 0)
1056			goto area_found;
1057		goto fail_unlock;
1058	}
1059
1060restart:
1061	/* search through normal chunks */
1062	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1063		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1064			if (size > chunk->contig_hint)
1065				continue;
1066
1067			switch (pcpu_extend_area_map(chunk)) {
1068			case 0:
1069				break;
1070			case 1:
1071				goto restart;	/* pcpu_lock dropped, restart */
1072			default:
1073				goto fail_unlock;
1074			}
1075
1076			off = pcpu_alloc_area(chunk, size, align);
1077			if (off >= 0)
1078				goto area_found;
1079		}
1080	}
1081
1082	/* hmmm... no space left, create a new chunk */
1083	spin_unlock_irq(&pcpu_lock);
1084
1085	chunk = alloc_pcpu_chunk();
1086	if (!chunk)
1087		goto fail_unlock_mutex;
1088
1089	spin_lock_irq(&pcpu_lock);
1090	pcpu_chunk_relocate(chunk, -1);
1091	goto restart;
1092
1093area_found:
1094	spin_unlock_irq(&pcpu_lock);
1095
1096	/* populate, map and clear the area */
1097	if (pcpu_populate_chunk(chunk, off, size)) {
1098		spin_lock_irq(&pcpu_lock);
1099		pcpu_free_area(chunk, off);
1100		goto fail_unlock;
1101	}
1102
1103	mutex_unlock(&pcpu_alloc_mutex);
1104
1105	/* return address relative to unit0 */
1106	return __addr_to_pcpu_ptr(chunk->vm->addr + off);
1107
1108fail_unlock:
1109	spin_unlock_irq(&pcpu_lock);
1110fail_unlock_mutex:
1111	mutex_unlock(&pcpu_alloc_mutex);
1112	return NULL;
1113}
1114
1115/**
1116 * __alloc_percpu - allocate dynamic percpu area
1117 * @size: size of area to allocate in bytes
1118 * @align: alignment of area (max PAGE_SIZE)
1119 *
1120 * Allocate percpu area of @size bytes aligned at @align.  Might
1121 * sleep.  Might trigger writeouts.
1122 *
1123 * CONTEXT:
1124 * Does GFP_KERNEL allocation.
1125 *
1126 * RETURNS:
1127 * Percpu pointer to the allocated area on success, NULL on failure.
1128 */
1129void *__alloc_percpu(size_t size, size_t align)
1130{
1131	return pcpu_alloc(size, align, false);
1132}
1133EXPORT_SYMBOL_GPL(__alloc_percpu);
1134
1135/**
1136 * __alloc_reserved_percpu - allocate reserved percpu area
1137 * @size: size of area to allocate in bytes
1138 * @align: alignment of area (max PAGE_SIZE)
1139 *
1140 * Allocate percpu area of @size bytes aligned at @align from reserved
1141 * percpu area if arch has set it up; otherwise, allocation is served
1142 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1143 *
1144 * CONTEXT:
1145 * Does GFP_KERNEL allocation.
1146 *
1147 * RETURNS:
1148 * Percpu pointer to the allocated area on success, NULL on failure.
1149 */
1150void *__alloc_reserved_percpu(size_t size, size_t align)
1151{
1152	return pcpu_alloc(size, align, true);
1153}
1154
1155/**
1156 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1157 * @work: unused
1158 *
1159 * Reclaim all fully free chunks except for the first one.
1160 *
1161 * CONTEXT:
1162 * workqueue context.
1163 */
1164static void pcpu_reclaim(struct work_struct *work)
1165{
1166	LIST_HEAD(todo);
1167	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1168	struct pcpu_chunk *chunk, *next;
1169
1170	mutex_lock(&pcpu_alloc_mutex);
1171	spin_lock_irq(&pcpu_lock);
1172
1173	list_for_each_entry_safe(chunk, next, head, list) {
1174		WARN_ON(chunk->immutable);
1175
1176		/* spare the first one */
1177		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1178			continue;
1179
1180		list_move(&chunk->list, &todo);
1181	}
1182
1183	spin_unlock_irq(&pcpu_lock);
1184
1185	list_for_each_entry_safe(chunk, next, &todo, list) {
1186		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1187		free_pcpu_chunk(chunk);
1188	}
1189
1190	mutex_unlock(&pcpu_alloc_mutex);
1191}
1192
1193/**
1194 * free_percpu - free percpu area
1195 * @ptr: pointer to area to free
1196 *
1197 * Free percpu area @ptr.
1198 *
1199 * CONTEXT:
1200 * Can be called from atomic context.
1201 */
1202void free_percpu(void *ptr)
1203{
1204	void *addr = __pcpu_ptr_to_addr(ptr);
1205	struct pcpu_chunk *chunk;
1206	unsigned long flags;
1207	int off;
1208
1209	if (!ptr)
1210		return;
1211
1212	spin_lock_irqsave(&pcpu_lock, flags);
1213
1214	chunk = pcpu_chunk_addr_search(addr);
1215	off = addr - chunk->vm->addr;
1216
1217	pcpu_free_area(chunk, off);
1218
1219	/* if there are more than one fully free chunks, wake up grim reaper */
1220	if (chunk->free_size == pcpu_unit_size) {
1221		struct pcpu_chunk *pos;
1222
1223		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1224			if (pos != chunk) {
1225				schedule_work(&pcpu_reclaim_work);
1226				break;
1227			}
1228	}
1229
1230	spin_unlock_irqrestore(&pcpu_lock, flags);
1231}
1232EXPORT_SYMBOL_GPL(free_percpu);
1233
1234/**
1235 * pcpu_setup_first_chunk - initialize the first percpu chunk
1236 * @static_size: the size of static percpu area in bytes
1237 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
1238 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1239 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
1240 * @base_addr: mapped address
1241 * @unit_map: cpu -> unit map, NULL for sequential mapping
1242 *
1243 * Initialize the first percpu chunk which contains the kernel static
1244 * perpcu area.  This function is to be called from arch percpu area
1245 * setup path.
1246 *
1247 * @reserved_size, if non-zero, specifies the amount of bytes to
1248 * reserve after the static area in the first chunk.  This reserves
1249 * the first chunk such that it's available only through reserved
1250 * percpu allocation.  This is primarily used to serve module percpu
1251 * static areas on architectures where the addressing model has
1252 * limited offset range for symbol relocations to guarantee module
1253 * percpu symbols fall inside the relocatable range.
1254 *
1255 * @dyn_size, if non-negative, determines the number of bytes
1256 * available for dynamic allocation in the first chunk.  Specifying
1257 * non-negative value makes percpu leave alone the area beyond
1258 * @static_size + @reserved_size + @dyn_size.
1259 *
1260 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
1261 * equal to or larger than @static_size + @reserved_size + if
1262 * non-negative, @dyn_size.
1263 *
1264 * The caller should have mapped the first chunk at @base_addr and
1265 * copied static data to each unit.
1266 *
1267 * If the first chunk ends up with both reserved and dynamic areas, it
1268 * is served by two chunks - one to serve the core static and reserved
1269 * areas and the other for the dynamic area.  They share the same vm
1270 * and page map but uses different area allocation map to stay away
1271 * from each other.  The latter chunk is circulated in the chunk slots
1272 * and available for dynamic allocation like any other chunks.
1273 *
1274 * RETURNS:
1275 * The determined pcpu_unit_size which can be used to initialize
1276 * percpu access.
1277 */
1278size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
1279				     ssize_t dyn_size, size_t unit_size,
1280				     void *base_addr, const int *unit_map)
1281{
1282	static struct vm_struct first_vm;
1283	static int smap[2], dmap[2];
1284	size_t size_sum = static_size + reserved_size +
1285			  (dyn_size >= 0 ? dyn_size : 0);
1286	struct pcpu_chunk *schunk, *dchunk = NULL;
1287	unsigned int cpu, tcpu;
1288	int i;
1289
1290	/* sanity checks */
1291	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1292		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1293	BUG_ON(!static_size);
1294	BUG_ON(!base_addr);
1295	BUG_ON(unit_size < size_sum);
1296	BUG_ON(unit_size & ~PAGE_MASK);
1297	BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1298
1299	/* determine number of units and verify and initialize pcpu_unit_map */
1300	if (unit_map) {
1301		int first_unit = INT_MAX, last_unit = INT_MIN;
1302
1303		for_each_possible_cpu(cpu) {
1304			int unit = unit_map[cpu];
1305
1306			BUG_ON(unit < 0);
1307			for_each_possible_cpu(tcpu) {
1308				if (tcpu == cpu)
1309					break;
1310				/* the mapping should be one-to-one */
1311				BUG_ON(unit_map[tcpu] == unit);
1312			}
1313
1314			if (unit < first_unit) {
1315				pcpu_first_unit_cpu = cpu;
1316				first_unit = unit;
1317			}
1318			if (unit > last_unit) {
1319				pcpu_last_unit_cpu = cpu;
1320				last_unit = unit;
1321			}
1322		}
1323		pcpu_nr_units = last_unit + 1;
1324		pcpu_unit_map = unit_map;
1325	} else {
1326		int *identity_map;
1327
1328		/* #units == #cpus, identity mapped */
1329		identity_map = alloc_bootmem(nr_cpu_ids *
1330					     sizeof(identity_map[0]));
1331
1332		for_each_possible_cpu(cpu)
1333			identity_map[cpu] = cpu;
1334
1335		pcpu_first_unit_cpu = 0;
1336		pcpu_last_unit_cpu = pcpu_nr_units - 1;
1337		pcpu_nr_units = nr_cpu_ids;
1338		pcpu_unit_map = identity_map;
1339	}
1340
1341	/* determine basic parameters */
1342	pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1343	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1344	pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
1345	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1346		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1347
1348	if (dyn_size < 0)
1349		dyn_size = pcpu_unit_size - static_size - reserved_size;
1350
1351	first_vm.flags = VM_ALLOC;
1352	first_vm.size = pcpu_chunk_size;
1353	first_vm.addr = base_addr;
1354
1355	/*
1356	 * Allocate chunk slots.  The additional last slot is for
1357	 * empty chunks.
1358	 */
1359	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1360	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1361	for (i = 0; i < pcpu_nr_slots; i++)
1362		INIT_LIST_HEAD(&pcpu_slot[i]);
1363
1364	/*
1365	 * Initialize static chunk.  If reserved_size is zero, the
1366	 * static chunk covers static area + dynamic allocation area
1367	 * in the first chunk.  If reserved_size is not zero, it
1368	 * covers static area + reserved area (mostly used for module
1369	 * static percpu allocation).
1370	 */
1371	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1372	INIT_LIST_HEAD(&schunk->list);
1373	schunk->vm = &first_vm;
1374	schunk->map = smap;
1375	schunk->map_alloc = ARRAY_SIZE(smap);
1376	schunk->immutable = true;
1377	bitmap_fill(schunk->populated, pcpu_unit_pages);
1378
1379	if (reserved_size) {
1380		schunk->free_size = reserved_size;
1381		pcpu_reserved_chunk = schunk;
1382		pcpu_reserved_chunk_limit = static_size + reserved_size;
1383	} else {
1384		schunk->free_size = dyn_size;
1385		dyn_size = 0;			/* dynamic area covered */
1386	}
1387	schunk->contig_hint = schunk->free_size;
1388
1389	schunk->map[schunk->map_used++] = -static_size;
1390	if (schunk->free_size)
1391		schunk->map[schunk->map_used++] = schunk->free_size;
1392
1393	/* init dynamic chunk if necessary */
1394	if (dyn_size) {
1395		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1396		INIT_LIST_HEAD(&dchunk->list);
1397		dchunk->vm = &first_vm;
1398		dchunk->map = dmap;
1399		dchunk->map_alloc = ARRAY_SIZE(dmap);
1400		dchunk->immutable = true;
1401		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1402
1403		dchunk->contig_hint = dchunk->free_size = dyn_size;
1404		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1405		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1406	}
1407
1408	/* link the first chunk in */
1409	pcpu_first_chunk = dchunk ?: schunk;
1410	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1411
1412	/* we're done */
1413	pcpu_base_addr = schunk->vm->addr;
1414	return pcpu_unit_size;
1415}
1416
1417const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1418	[PCPU_FC_AUTO]	= "auto",
1419	[PCPU_FC_EMBED]	= "embed",
1420	[PCPU_FC_PAGE]	= "page",
1421	[PCPU_FC_LPAGE]	= "lpage",
1422};
1423
1424enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1425
1426static int __init percpu_alloc_setup(char *str)
1427{
1428	if (0)
1429		/* nada */;
1430#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1431	else if (!strcmp(str, "embed"))
1432		pcpu_chosen_fc = PCPU_FC_EMBED;
1433#endif
1434#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1435	else if (!strcmp(str, "page"))
1436		pcpu_chosen_fc = PCPU_FC_PAGE;
1437#endif
1438#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1439	else if (!strcmp(str, "lpage"))
1440		pcpu_chosen_fc = PCPU_FC_LPAGE;
1441#endif
1442	else
1443		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1444
1445	return 0;
1446}
1447early_param("percpu_alloc", percpu_alloc_setup);
1448
1449static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1450					size_t reserved_size,
1451					ssize_t *dyn_sizep)
1452{
1453	size_t size_sum;
1454
1455	size_sum = PFN_ALIGN(static_size + reserved_size +
1456			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1457	if (*dyn_sizep != 0)
1458		*dyn_sizep = size_sum - static_size - reserved_size;
1459
1460	return size_sum;
1461}
1462
1463#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1464	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1465/**
1466 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1467 * @static_size: the size of static percpu area in bytes
1468 * @reserved_size: the size of reserved percpu area in bytes
1469 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1470 *
1471 * This is a helper to ease setting up embedded first percpu chunk and
1472 * can be called where pcpu_setup_first_chunk() is expected.
1473 *
1474 * If this function is used to setup the first chunk, it is allocated
1475 * as a contiguous area using bootmem allocator and used as-is without
1476 * being mapped into vmalloc area.  This enables the first chunk to
1477 * piggy back on the linear physical mapping which often uses larger
1478 * page size.
1479 *
1480 * When @dyn_size is positive, dynamic area might be larger than
1481 * specified to fill page alignment.  When @dyn_size is auto,
1482 * @dyn_size is just big enough to fill page alignment after static
1483 * and reserved areas.
1484 *
1485 * If the needed size is smaller than the minimum or specified unit
1486 * size, the leftover is returned to the bootmem allocator.
1487 *
1488 * RETURNS:
1489 * The determined pcpu_unit_size which can be used to initialize
1490 * percpu access on success, -errno on failure.
1491 */
1492ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1493				      ssize_t dyn_size)
1494{
1495	size_t size_sum, unit_size, chunk_size;
1496	void *base;
1497	unsigned int cpu;
1498
1499	/* determine parameters and allocate */
1500	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1501
1502	unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1503	chunk_size = unit_size * nr_cpu_ids;
1504
1505	base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1506				       __pa(MAX_DMA_ADDRESS));
1507	if (!base) {
1508		pr_warning("PERCPU: failed to allocate %zu bytes for "
1509			   "embedding\n", chunk_size);
1510		return -ENOMEM;
1511	}
1512
1513	/* return the leftover and copy */
1514	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1515		void *ptr = base + cpu * unit_size;
1516
1517		if (cpu_possible(cpu)) {
1518			free_bootmem(__pa(ptr + size_sum),
1519				     unit_size - size_sum);
1520			memcpy(ptr, __per_cpu_load, static_size);
1521		} else
1522			free_bootmem(__pa(ptr), unit_size);
1523	}
1524
1525	/* we're ready, commit */
1526	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1527		PFN_DOWN(size_sum), base, static_size, reserved_size, dyn_size,
1528		unit_size);
1529
1530	return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1531				      unit_size, base, NULL);
1532}
1533#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1534	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1535
1536#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1537/**
1538 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1539 * @static_size: the size of static percpu area in bytes
1540 * @reserved_size: the size of reserved percpu area in bytes
1541 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1542 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1543 * @populate_pte_fn: function to populate pte
1544 *
1545 * This is a helper to ease setting up page-remapped first percpu
1546 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1547 *
1548 * This is the basic allocator.  Static percpu area is allocated
1549 * page-by-page into vmalloc area.
1550 *
1551 * RETURNS:
1552 * The determined pcpu_unit_size which can be used to initialize
1553 * percpu access on success, -errno on failure.
1554 */
1555ssize_t __init pcpu_page_first_chunk(size_t static_size, size_t reserved_size,
1556				     pcpu_fc_alloc_fn_t alloc_fn,
1557				     pcpu_fc_free_fn_t free_fn,
1558				     pcpu_fc_populate_pte_fn_t populate_pte_fn)
1559{
1560	static struct vm_struct vm;
1561	char psize_str[16];
1562	int unit_pages;
1563	size_t pages_size;
1564	struct page **pages;
1565	unsigned int cpu;
1566	int i, j;
1567	ssize_t ret;
1568
1569	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1570
1571	unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
1572				  PCPU_MIN_UNIT_SIZE));
1573
1574	/* unaligned allocations can't be freed, round up to page size */
1575	pages_size = PFN_ALIGN(unit_pages * nr_cpu_ids * sizeof(pages[0]));
1576	pages = alloc_bootmem(pages_size);
1577
1578	/* allocate pages */
1579	j = 0;
1580	for_each_possible_cpu(cpu)
1581		for (i = 0; i < unit_pages; i++) {
1582			void *ptr;
1583
1584			ptr = alloc_fn(cpu, PAGE_SIZE);
1585			if (!ptr) {
1586				pr_warning("PERCPU: failed to allocate %s page "
1587					   "for cpu%u\n", psize_str, cpu);
1588				goto enomem;
1589			}
1590			pages[j++] = virt_to_page(ptr);
1591		}
1592
1593	/* allocate vm area, map the pages and copy static data */
1594	vm.flags = VM_ALLOC;
1595	vm.size = nr_cpu_ids * unit_pages << PAGE_SHIFT;
1596	vm_area_register_early(&vm, PAGE_SIZE);
1597
1598	for_each_possible_cpu(cpu) {
1599		unsigned long unit_addr = (unsigned long)vm.addr +
1600			(cpu * unit_pages << PAGE_SHIFT);
1601
1602		for (i = 0; i < unit_pages; i++)
1603			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1604
1605		/* pte already populated, the following shouldn't fail */
1606		ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
1607				       unit_pages);
1608		if (ret < 0)
1609			panic("failed to map percpu area, err=%zd\n", ret);
1610
1611		/*
1612		 * FIXME: Archs with virtual cache should flush local
1613		 * cache for the linear mapping here - something
1614		 * equivalent to flush_cache_vmap() on the local cpu.
1615		 * flush_cache_vmap() can't be used as most supporting
1616		 * data structures are not set up yet.
1617		 */
1618
1619		/* copy static data */
1620		memcpy((void *)unit_addr, __per_cpu_load, static_size);
1621	}
1622
1623	/* we're ready, commit */
1624	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu\n",
1625		unit_pages, psize_str, vm.addr, static_size, reserved_size);
1626
1627	ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
1628				     unit_pages << PAGE_SHIFT, vm.addr, NULL);
1629	goto out_free_ar;
1630
1631enomem:
1632	while (--j >= 0)
1633		free_fn(page_address(pages[j]), PAGE_SIZE);
1634	ret = -ENOMEM;
1635out_free_ar:
1636	free_bootmem(__pa(pages), pages_size);
1637	return ret;
1638}
1639#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1640
1641#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1642/**
1643 * pcpu_lpage_build_unit_map - build unit_map for large page remapping
1644 * @static_size: the size of static percpu area in bytes
1645 * @reserved_size: the size of reserved percpu area in bytes
1646 * @dyn_sizep: in/out parameter for dynamic size, -1 for auto
1647 * @unit_sizep: out parameter for unit size
1648 * @unit_map: unit_map to be filled
1649 * @cpu_distance_fn: callback to determine distance between cpus
1650 *
1651 * This function builds cpu -> unit map and determine other parameters
1652 * considering needed percpu size, large page size and distances
1653 * between CPUs in NUMA.
1654 *
1655 * CPUs which are of LOCAL_DISTANCE both ways are grouped together and
1656 * may share units in the same large page.  The returned configuration
1657 * is guaranteed to have CPUs on different nodes on different large
1658 * pages and >=75% usage of allocated virtual address space.
1659 *
1660 * RETURNS:
1661 * On success, fills in @unit_map, sets *@dyn_sizep, *@unit_sizep and
1662 * returns the number of units to be allocated.  -errno on failure.
1663 */
1664int __init pcpu_lpage_build_unit_map(size_t static_size, size_t reserved_size,
1665				     ssize_t *dyn_sizep, size_t *unit_sizep,
1666				     size_t lpage_size, int *unit_map,
1667				     pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1668{
1669	static int group_map[NR_CPUS] __initdata;
1670	static int group_cnt[NR_CPUS] __initdata;
1671	int group_cnt_max = 0;
1672	size_t size_sum, min_unit_size, alloc_size;
1673	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1674	int last_allocs;
1675	unsigned int cpu, tcpu;
1676	int group, unit;
1677
1678	/*
1679	 * Determine min_unit_size, alloc_size and max_upa such that
1680	 * alloc_size is multiple of lpage_size and is the smallest
1681	 * which can accomodate 4k aligned segments which are equal to
1682	 * or larger than min_unit_size.
1683	 */
1684	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, dyn_sizep);
1685	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1686
1687	alloc_size = roundup(min_unit_size, lpage_size);
1688	upa = alloc_size / min_unit_size;
1689	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1690		upa--;
1691	max_upa = upa;
1692
1693	/* group cpus according to their proximity */
1694	for_each_possible_cpu(cpu) {
1695		group = 0;
1696	next_group:
1697		for_each_possible_cpu(tcpu) {
1698			if (cpu == tcpu)
1699				break;
1700			if (group_map[tcpu] == group &&
1701			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1702			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1703				group++;
1704				goto next_group;
1705			}
1706		}
1707		group_map[cpu] = group;
1708		group_cnt[group]++;
1709		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1710	}
1711
1712	/*
1713	 * Expand unit size until address space usage goes over 75%
1714	 * and then as much as possible without using more address
1715	 * space.
1716	 */
1717	last_allocs = INT_MAX;
1718	for (upa = max_upa; upa; upa--) {
1719		int allocs = 0, wasted = 0;
1720
1721		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1722			continue;
1723
1724		for (group = 0; group_cnt[group]; group++) {
1725			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1726			allocs += this_allocs;
1727			wasted += this_allocs * upa - group_cnt[group];
1728		}
1729
1730		/*
1731		 * Don't accept if wastage is over 25%.  The
1732		 * greater-than comparison ensures upa==1 always
1733		 * passes the following check.
1734		 */
1735		if (wasted > num_possible_cpus() / 3)
1736			continue;
1737
1738		/* and then don't consume more memory */
1739		if (allocs > last_allocs)
1740			break;
1741		last_allocs = allocs;
1742		best_upa = upa;
1743	}
1744	*unit_sizep = alloc_size / best_upa;
1745
1746	/* assign units to cpus accordingly */
1747	unit = 0;
1748	for (group = 0; group_cnt[group]; group++) {
1749		for_each_possible_cpu(cpu)
1750			if (group_map[cpu] == group)
1751				unit_map[cpu] = unit++;
1752		unit = roundup(unit, best_upa);
1753	}
1754
1755	return unit;	/* unit contains aligned number of units */
1756}
1757
1758struct pcpul_ent {
1759	void		*ptr;
1760	void		*map_addr;
1761};
1762
1763static size_t pcpul_size;
1764static size_t pcpul_lpage_size;
1765static int pcpul_nr_lpages;
1766static struct pcpul_ent *pcpul_map;
1767
1768static bool __init pcpul_unit_to_cpu(int unit, const int *unit_map,
1769				     unsigned int *cpup)
1770{
1771	unsigned int cpu;
1772
1773	for_each_possible_cpu(cpu)
1774		if (unit_map[cpu] == unit) {
1775			if (cpup)
1776				*cpup = cpu;
1777			return true;
1778		}
1779
1780	return false;
1781}
1782
1783static void __init pcpul_lpage_dump_cfg(const char *lvl, size_t static_size,
1784					size_t reserved_size, size_t dyn_size,
1785					size_t unit_size, size_t lpage_size,
1786					const int *unit_map, int nr_units)
1787{
1788	int width = 1, v = nr_units;
1789	char empty_str[] = "--------";
1790	int upl, lpl;	/* units per lpage, lpage per line */
1791	unsigned int cpu;
1792	int lpage, unit;
1793
1794	while (v /= 10)
1795		width++;
1796	empty_str[min_t(int, width, sizeof(empty_str) - 1)] = '\0';
1797
1798	upl = max_t(int, lpage_size / unit_size, 1);
1799	lpl = rounddown_pow_of_two(max_t(int, 60 / (upl * (width + 1) + 2), 1));
1800
1801	printk("%spcpu-lpage: sta/res/dyn=%zu/%zu/%zu unit=%zu lpage=%zu", lvl,
1802	       static_size, reserved_size, dyn_size, unit_size, lpage_size);
1803
1804	for (lpage = 0, unit = 0; unit < nr_units; unit++) {
1805		if (!(unit % upl)) {
1806			if (!(lpage++ % lpl)) {
1807				printk("\n");
1808				printk("%spcpu-lpage: ", lvl);
1809			} else
1810				printk("| ");
1811		}
1812		if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
1813			printk("%0*d ", width, cpu);
1814		else
1815			printk("%s ", empty_str);
1816	}
1817	printk("\n");
1818}
1819
1820/**
1821 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
1822 * @static_size: the size of static percpu area in bytes
1823 * @reserved_size: the size of reserved percpu area in bytes
1824 * @dyn_size: free size for dynamic allocation in bytes
1825 * @unit_size: unit size in bytes
1826 * @lpage_size: the size of a large page
1827 * @unit_map: cpu -> unit mapping
1828 * @nr_units: the number of units
1829 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
1830 * @free_fn: function to free percpu memory, @size <= lpage_size
1831 * @map_fn: function to map percpu lpage, always called with lpage_size
1832 *
1833 * This allocator uses large page to build and map the first chunk.
1834 * Unlike other helpers, the caller should always specify @dyn_size
1835 * and @unit_size.  These parameters along with @unit_map and
1836 * @nr_units can be determined using pcpu_lpage_build_unit_map().
1837 * This two stage initialization is to allow arch code to evaluate the
1838 * parameters before committing to it.
1839 *
1840 * Large pages are allocated as directed by @unit_map and other
1841 * parameters and mapped to vmalloc space.  Unused holes are returned
1842 * to the page allocator.  Note that these holes end up being actively
1843 * mapped twice - once to the physical mapping and to the vmalloc area
1844 * for the first percpu chunk.  Depending on architecture, this might
1845 * cause problem when changing page attributes of the returned area.
1846 * These double mapped areas can be detected using
1847 * pcpu_lpage_remapped().
1848 *
1849 * RETURNS:
1850 * The determined pcpu_unit_size which can be used to initialize
1851 * percpu access on success, -errno on failure.
1852 */
1853ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
1854				      size_t dyn_size, size_t unit_size,
1855				      size_t lpage_size, const int *unit_map,
1856				      int nr_units,
1857				      pcpu_fc_alloc_fn_t alloc_fn,
1858				      pcpu_fc_free_fn_t free_fn,
1859				      pcpu_fc_map_fn_t map_fn)
1860{
1861	static struct vm_struct vm;
1862	size_t chunk_size = unit_size * nr_units;
1863	size_t map_size;
1864	unsigned int cpu;
1865	ssize_t ret;
1866	int i, j, unit;
1867
1868	pcpul_lpage_dump_cfg(KERN_DEBUG, static_size, reserved_size, dyn_size,
1869			     unit_size, lpage_size, unit_map, nr_units);
1870
1871	BUG_ON(chunk_size % lpage_size);
1872
1873	pcpul_size = static_size + reserved_size + dyn_size;
1874	pcpul_lpage_size = lpage_size;
1875	pcpul_nr_lpages = chunk_size / lpage_size;
1876
1877	/* allocate pointer array and alloc large pages */
1878	map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
1879	pcpul_map = alloc_bootmem(map_size);
1880
1881	/* allocate all pages */
1882	for (i = 0; i < pcpul_nr_lpages; i++) {
1883		size_t offset = i * lpage_size;
1884		int first_unit = offset / unit_size;
1885		int last_unit = (offset + lpage_size - 1) / unit_size;
1886		void *ptr;
1887
1888		/* find out which cpu is mapped to this unit */
1889		for (unit = first_unit; unit <= last_unit; unit++)
1890			if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
1891				goto found;
1892		continue;
1893	found:
1894		ptr = alloc_fn(cpu, lpage_size);
1895		if (!ptr) {
1896			pr_warning("PERCPU: failed to allocate large page "
1897				   "for cpu%u\n", cpu);
1898			goto enomem;
1899		}
1900
1901		pcpul_map[i].ptr = ptr;
1902	}
1903
1904	/* return unused holes */
1905	for (unit = 0; unit < nr_units; unit++) {
1906		size_t start = unit * unit_size;
1907		size_t end = start + unit_size;
1908		size_t off, next;
1909
1910		/* don't free used part of occupied unit */
1911		if (pcpul_unit_to_cpu(unit, unit_map, NULL))
1912			start += pcpul_size;
1913
1914		/* unit can span more than one page, punch the holes */
1915		for (off = start; off < end; off = next) {
1916			void *ptr = pcpul_map[off / lpage_size].ptr;
1917			next = min(roundup(off + 1, lpage_size), end);
1918			if (ptr)
1919				free_fn(ptr + off % lpage_size, next - off);
1920		}
1921	}
1922
1923	/* allocate address, map and copy */
1924	vm.flags = VM_ALLOC;
1925	vm.size = chunk_size;
1926	vm_area_register_early(&vm, unit_size);
1927
1928	for (i = 0; i < pcpul_nr_lpages; i++) {
1929		if (!pcpul_map[i].ptr)
1930			continue;
1931		pcpul_map[i].map_addr = vm.addr + i * lpage_size;
1932		map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
1933	}
1934
1935	for_each_possible_cpu(cpu)
1936		memcpy(vm.addr + unit_map[cpu] * unit_size, __per_cpu_load,
1937		       static_size);
1938
1939	/* we're ready, commit */
1940	pr_info("PERCPU: large pages @%p s%zu r%zu d%zu u%zu\n",
1941		vm.addr, static_size, reserved_size, dyn_size, unit_size);
1942
1943	ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1944				     unit_size, vm.addr, unit_map);
1945
1946	/*
1947	 * Sort pcpul_map array for pcpu_lpage_remapped().  Unmapped
1948	 * lpages are pushed to the end and trimmed.
1949	 */
1950	for (i = 0; i < pcpul_nr_lpages - 1; i++)
1951		for (j = i + 1; j < pcpul_nr_lpages; j++) {
1952			struct pcpul_ent tmp;
1953
1954			if (!pcpul_map[j].ptr)
1955				continue;
1956			if (pcpul_map[i].ptr &&
1957			    pcpul_map[i].ptr < pcpul_map[j].ptr)
1958				continue;
1959
1960			tmp = pcpul_map[i];
1961			pcpul_map[i] = pcpul_map[j];
1962			pcpul_map[j] = tmp;
1963		}
1964
1965	while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
1966		pcpul_nr_lpages--;
1967
1968	return ret;
1969
1970enomem:
1971	for (i = 0; i < pcpul_nr_lpages; i++)
1972		if (pcpul_map[i].ptr)
1973			free_fn(pcpul_map[i].ptr, lpage_size);
1974	free_bootmem(__pa(pcpul_map), map_size);
1975	return -ENOMEM;
1976}
1977
1978/**
1979 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
1980 * @kaddr: the kernel address in question
1981 *
1982 * Determine whether @kaddr falls in the pcpul recycled area.  This is
1983 * used by pageattr to detect VM aliases and break up the pcpu large
1984 * page mapping such that the same physical page is not mapped under
1985 * different attributes.
1986 *
1987 * The recycled area is always at the tail of a partially used large
1988 * page.
1989 *
1990 * RETURNS:
1991 * Address of corresponding remapped pcpu address if match is found;
1992 * otherwise, NULL.
1993 */
1994void *pcpu_lpage_remapped(void *kaddr)
1995{
1996	unsigned long lpage_mask = pcpul_lpage_size - 1;
1997	void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
1998	unsigned long offset = (unsigned long)kaddr & lpage_mask;
1999	int left = 0, right = pcpul_nr_lpages - 1;
2000	int pos;
2001
2002	/* pcpul in use at all? */
2003	if (!pcpul_map)
2004		return NULL;
2005
2006	/* okay, perform binary search */
2007	while (left <= right) {
2008		pos = (left + right) / 2;
2009
2010		if (pcpul_map[pos].ptr < lpage_addr)
2011			left = pos + 1;
2012		else if (pcpul_map[pos].ptr > lpage_addr)
2013			right = pos - 1;
2014		else
2015			return pcpul_map[pos].map_addr + offset;
2016	}
2017
2018	return NULL;
2019}
2020#endif /* CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK */
2021
2022/*
2023 * Generic percpu area setup.
2024 *
2025 * The embedding helper is used because its behavior closely resembles
2026 * the original non-dynamic generic percpu area setup.  This is
2027 * important because many archs have addressing restrictions and might
2028 * fail if the percpu area is located far away from the previous
2029 * location.  As an added bonus, in non-NUMA cases, embedding is
2030 * generally a good idea TLB-wise because percpu area can piggy back
2031 * on the physical linear memory mapping which uses large page
2032 * mappings on applicable archs.
2033 */
2034#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2035unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2036EXPORT_SYMBOL(__per_cpu_offset);
2037
2038void __init setup_per_cpu_areas(void)
2039{
2040	size_t static_size = __per_cpu_end - __per_cpu_start;
2041	ssize_t unit_size;
2042	unsigned long delta;
2043	unsigned int cpu;
2044
2045	/*
2046	 * Always reserve area for module percpu variables.  That's
2047	 * what the legacy allocator did.
2048	 */
2049	unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
2050					   PERCPU_DYNAMIC_RESERVE);
2051	if (unit_size < 0)
2052		panic("Failed to initialized percpu areas.");
2053
2054	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2055	for_each_possible_cpu(cpu)
2056		__per_cpu_offset[cpu] = delta + cpu * unit_size;
2057}
2058#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2059