readahead.c revision 6b10c6c9fbfe754e8482efb8c8b84f8e40c0f2eb
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	akpm@zip.com.au
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/pagevec.h>
18#include <linux/pagemap.h>
19
20void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
21{
22}
23EXPORT_SYMBOL(default_unplug_io_fn);
24
25/*
26 * Convienent macros for min/max read-ahead pages.
27 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
28 * The latter is necessary for systems with large page size(i.e. 64k).
29 */
30#define MAX_RA_PAGES	(VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
31#define MIN_RA_PAGES	DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
32
33struct backing_dev_info default_backing_dev_info = {
34	.ra_pages	= MAX_RA_PAGES,
35	.state		= 0,
36	.capabilities	= BDI_CAP_MAP_COPY,
37	.unplug_io_fn	= default_unplug_io_fn,
38};
39EXPORT_SYMBOL_GPL(default_backing_dev_info);
40
41/*
42 * Initialise a struct file's readahead state.  Assumes that the caller has
43 * memset *ra to zero.
44 */
45void
46file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
47{
48	ra->ra_pages = mapping->backing_dev_info->ra_pages;
49	ra->prev_pos = -1;
50}
51EXPORT_SYMBOL_GPL(file_ra_state_init);
52
53#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
54
55/**
56 * read_cache_pages - populate an address space with some pages & start reads against them
57 * @mapping: the address_space
58 * @pages: The address of a list_head which contains the target pages.  These
59 *   pages have their ->index populated and are otherwise uninitialised.
60 * @filler: callback routine for filling a single page.
61 * @data: private data for the callback routine.
62 *
63 * Hides the details of the LRU cache etc from the filesystems.
64 */
65int read_cache_pages(struct address_space *mapping, struct list_head *pages,
66			int (*filler)(void *, struct page *), void *data)
67{
68	struct page *page;
69	struct pagevec lru_pvec;
70	int ret = 0;
71
72	pagevec_init(&lru_pvec, 0);
73
74	while (!list_empty(pages)) {
75		page = list_to_page(pages);
76		list_del(&page->lru);
77		if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
78			page_cache_release(page);
79			continue;
80		}
81		ret = filler(data, page);
82		if (!pagevec_add(&lru_pvec, page))
83			__pagevec_lru_add(&lru_pvec);
84		if (ret) {
85			put_pages_list(pages);
86			break;
87		}
88		task_io_account_read(PAGE_CACHE_SIZE);
89	}
90	pagevec_lru_add(&lru_pvec);
91	return ret;
92}
93
94EXPORT_SYMBOL(read_cache_pages);
95
96static int read_pages(struct address_space *mapping, struct file *filp,
97		struct list_head *pages, unsigned nr_pages)
98{
99	unsigned page_idx;
100	struct pagevec lru_pvec;
101	int ret;
102
103	if (mapping->a_ops->readpages) {
104		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
105		/* Clean up the remaining pages */
106		put_pages_list(pages);
107		goto out;
108	}
109
110	pagevec_init(&lru_pvec, 0);
111	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
112		struct page *page = list_to_page(pages);
113		list_del(&page->lru);
114		if (!add_to_page_cache(page, mapping,
115					page->index, GFP_KERNEL)) {
116			mapping->a_ops->readpage(filp, page);
117			if (!pagevec_add(&lru_pvec, page))
118				__pagevec_lru_add(&lru_pvec);
119		} else
120			page_cache_release(page);
121	}
122	pagevec_lru_add(&lru_pvec);
123	ret = 0;
124out:
125	return ret;
126}
127
128/*
129 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
130 * the pages first, then submits them all for I/O. This avoids the very bad
131 * behaviour which would occur if page allocations are causing VM writeback.
132 * We really don't want to intermingle reads and writes like that.
133 *
134 * Returns the number of pages requested, or the maximum amount of I/O allowed.
135 *
136 * do_page_cache_readahead() returns -1 if it encountered request queue
137 * congestion.
138 */
139static int
140__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
141			pgoff_t offset, unsigned long nr_to_read,
142			unsigned long lookahead_size)
143{
144	struct inode *inode = mapping->host;
145	struct page *page;
146	unsigned long end_index;	/* The last page we want to read */
147	LIST_HEAD(page_pool);
148	int page_idx;
149	int ret = 0;
150	loff_t isize = i_size_read(inode);
151
152	if (isize == 0)
153		goto out;
154
155	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
156
157	/*
158	 * Preallocate as many pages as we will need.
159	 */
160	read_lock_irq(&mapping->tree_lock);
161	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
162		pgoff_t page_offset = offset + page_idx;
163
164		if (page_offset > end_index)
165			break;
166
167		page = radix_tree_lookup(&mapping->page_tree, page_offset);
168		if (page)
169			continue;
170
171		read_unlock_irq(&mapping->tree_lock);
172		page = page_cache_alloc_cold(mapping);
173		read_lock_irq(&mapping->tree_lock);
174		if (!page)
175			break;
176		page->index = page_offset;
177		list_add(&page->lru, &page_pool);
178		if (page_idx == nr_to_read - lookahead_size)
179			SetPageReadahead(page);
180		ret++;
181	}
182	read_unlock_irq(&mapping->tree_lock);
183
184	/*
185	 * Now start the IO.  We ignore I/O errors - if the page is not
186	 * uptodate then the caller will launch readpage again, and
187	 * will then handle the error.
188	 */
189	if (ret)
190		read_pages(mapping, filp, &page_pool, ret);
191	BUG_ON(!list_empty(&page_pool));
192out:
193	return ret;
194}
195
196/*
197 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
198 * memory at once.
199 */
200int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
201		pgoff_t offset, unsigned long nr_to_read)
202{
203	int ret = 0;
204
205	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
206		return -EINVAL;
207
208	while (nr_to_read) {
209		int err;
210
211		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
212
213		if (this_chunk > nr_to_read)
214			this_chunk = nr_to_read;
215		err = __do_page_cache_readahead(mapping, filp,
216						offset, this_chunk, 0);
217		if (err < 0) {
218			ret = err;
219			break;
220		}
221		ret += err;
222		offset += this_chunk;
223		nr_to_read -= this_chunk;
224	}
225	return ret;
226}
227
228/*
229 * This version skips the IO if the queue is read-congested, and will tell the
230 * block layer to abandon the readahead if request allocation would block.
231 *
232 * force_page_cache_readahead() will ignore queue congestion and will block on
233 * request queues.
234 */
235int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
236			pgoff_t offset, unsigned long nr_to_read)
237{
238	if (bdi_read_congested(mapping->backing_dev_info))
239		return -1;
240
241	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
242}
243
244/*
245 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
246 * sensible upper limit.
247 */
248unsigned long max_sane_readahead(unsigned long nr)
249{
250	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
251		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
252}
253
254/*
255 * Submit IO for the read-ahead request in file_ra_state.
256 */
257static unsigned long ra_submit(struct file_ra_state *ra,
258		       struct address_space *mapping, struct file *filp)
259{
260	int actual;
261
262	actual = __do_page_cache_readahead(mapping, filp,
263					ra->start, ra->size, ra->async_size);
264
265	return actual;
266}
267
268/*
269 * Set the initial window size, round to next power of 2 and square
270 * for small size, x 4 for medium, and x 2 for large
271 * for 128k (32 page) max ra
272 * 1-8 page = 32k initial, > 8 page = 128k initial
273 */
274static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
275{
276	unsigned long newsize = roundup_pow_of_two(size);
277
278	if (newsize <= max / 32)
279		newsize = newsize * 4;
280	else if (newsize <= max / 4)
281		newsize = newsize * 2;
282	else
283		newsize = max;
284
285	return newsize;
286}
287
288/*
289 *  Get the previous window size, ramp it up, and
290 *  return it as the new window size.
291 */
292static unsigned long get_next_ra_size(struct file_ra_state *ra,
293						unsigned long max)
294{
295	unsigned long cur = ra->size;
296	unsigned long newsize;
297
298	if (cur < max / 16)
299		newsize = 4 * cur;
300	else
301		newsize = 2 * cur;
302
303	return min(newsize, max);
304}
305
306/*
307 * On-demand readahead design.
308 *
309 * The fields in struct file_ra_state represent the most-recently-executed
310 * readahead attempt:
311 *
312 *                        |<----- async_size ---------|
313 *     |------------------- size -------------------->|
314 *     |==================#===========================|
315 *     ^start             ^page marked with PG_readahead
316 *
317 * To overlap application thinking time and disk I/O time, we do
318 * `readahead pipelining': Do not wait until the application consumed all
319 * readahead pages and stalled on the missing page at readahead_index;
320 * Instead, submit an asynchronous readahead I/O as soon as there are
321 * only async_size pages left in the readahead window. Normally async_size
322 * will be equal to size, for maximum pipelining.
323 *
324 * In interleaved sequential reads, concurrent streams on the same fd can
325 * be invalidating each other's readahead state. So we flag the new readahead
326 * page at (start+size-async_size) with PG_readahead, and use it as readahead
327 * indicator. The flag won't be set on already cached pages, to avoid the
328 * readahead-for-nothing fuss, saving pointless page cache lookups.
329 *
330 * prev_pos tracks the last visited byte in the _previous_ read request.
331 * It should be maintained by the caller, and will be used for detecting
332 * small random reads. Note that the readahead algorithm checks loosely
333 * for sequential patterns. Hence interleaved reads might be served as
334 * sequential ones.
335 *
336 * There is a special-case: if the first page which the application tries to
337 * read happens to be the first page of the file, it is assumed that a linear
338 * read is about to happen and the window is immediately set to the initial size
339 * based on I/O request size and the max_readahead.
340 *
341 * The code ramps up the readahead size aggressively at first, but slow down as
342 * it approaches max_readhead.
343 */
344
345/*
346 * A minimal readahead algorithm for trivial sequential/random reads.
347 */
348static unsigned long
349ondemand_readahead(struct address_space *mapping,
350		   struct file_ra_state *ra, struct file *filp,
351		   bool hit_readahead_marker, pgoff_t offset,
352		   unsigned long req_size)
353{
354	int	max = ra->ra_pages;	/* max readahead pages */
355	pgoff_t prev_offset;
356	int	sequential;
357
358	/*
359	 * It's the expected callback offset, assume sequential access.
360	 * Ramp up sizes, and push forward the readahead window.
361	 */
362	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
363			offset == (ra->start + ra->size))) {
364		ra->start += ra->size;
365		ra->size = get_next_ra_size(ra, max);
366		ra->async_size = ra->size;
367		goto readit;
368	}
369
370	prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
371	sequential = offset - prev_offset <= 1UL || req_size > max;
372
373	/*
374	 * Standalone, small read.
375	 * Read as is, and do not pollute the readahead state.
376	 */
377	if (!hit_readahead_marker && !sequential) {
378		return __do_page_cache_readahead(mapping, filp,
379						offset, req_size, 0);
380	}
381
382	/*
383	 * Hit a marked page without valid readahead state.
384	 * E.g. interleaved reads.
385	 * Query the pagecache for async_size, which normally equals to
386	 * readahead size. Ramp it up and use it as the new readahead size.
387	 */
388	if (hit_readahead_marker) {
389		pgoff_t start;
390
391		read_lock_irq(&mapping->tree_lock);
392		start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
393		read_unlock_irq(&mapping->tree_lock);
394
395		if (!start || start - offset > max)
396			return 0;
397
398		ra->start = start;
399		ra->size = start - offset;	/* old async_size */
400		ra->size = get_next_ra_size(ra, max);
401		ra->async_size = ra->size;
402		goto readit;
403	}
404
405	/*
406	 * It may be one of
407	 * 	- first read on start of file
408	 * 	- sequential cache miss
409	 * 	- oversize random read
410	 * Start readahead for it.
411	 */
412	ra->start = offset;
413	ra->size = get_init_ra_size(req_size, max);
414	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
415
416readit:
417	return ra_submit(ra, mapping, filp);
418}
419
420/**
421 * page_cache_sync_readahead - generic file readahead
422 * @mapping: address_space which holds the pagecache and I/O vectors
423 * @ra: file_ra_state which holds the readahead state
424 * @filp: passed on to ->readpage() and ->readpages()
425 * @offset: start offset into @mapping, in pagecache page-sized units
426 * @req_size: hint: total size of the read which the caller is performing in
427 *            pagecache pages
428 *
429 * page_cache_sync_readahead() should be called when a cache miss happened:
430 * it will submit the read.  The readahead logic may decide to piggyback more
431 * pages onto the read request if access patterns suggest it will improve
432 * performance.
433 */
434void page_cache_sync_readahead(struct address_space *mapping,
435			       struct file_ra_state *ra, struct file *filp,
436			       pgoff_t offset, unsigned long req_size)
437{
438	/* no read-ahead */
439	if (!ra->ra_pages)
440		return;
441
442	/* do read-ahead */
443	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
444}
445EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
446
447/**
448 * page_cache_async_readahead - file readahead for marked pages
449 * @mapping: address_space which holds the pagecache and I/O vectors
450 * @ra: file_ra_state which holds the readahead state
451 * @filp: passed on to ->readpage() and ->readpages()
452 * @page: the page at @offset which has the PG_readahead flag set
453 * @offset: start offset into @mapping, in pagecache page-sized units
454 * @req_size: hint: total size of the read which the caller is performing in
455 *            pagecache pages
456 *
457 * page_cache_async_ondemand() should be called when a page is used which
458 * has the PG_readahead flag: this is a marker to suggest that the application
459 * has used up enough of the readahead window that we should start pulling in
460 * more pages. */
461void
462page_cache_async_readahead(struct address_space *mapping,
463			   struct file_ra_state *ra, struct file *filp,
464			   struct page *page, pgoff_t offset,
465			   unsigned long req_size)
466{
467	/* no read-ahead */
468	if (!ra->ra_pages)
469		return;
470
471	/*
472	 * Same bit is used for PG_readahead and PG_reclaim.
473	 */
474	if (PageWriteback(page))
475		return;
476
477	ClearPageReadahead(page);
478
479	/*
480	 * Defer asynchronous read-ahead on IO congestion.
481	 */
482	if (bdi_read_congested(mapping->backing_dev_info))
483		return;
484
485	/* do read-ahead */
486	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
487}
488EXPORT_SYMBOL_GPL(page_cache_async_readahead);
489