readahead.c revision b95f1b31b75588306e32b2afd32166cad48f670b
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/gfp.h>
13#include <linux/mm.h>
14#include <linux/export.h>
15#include <linux/blkdev.h>
16#include <linux/backing-dev.h>
17#include <linux/task_io_accounting_ops.h>
18#include <linux/pagevec.h>
19#include <linux/pagemap.h>
20
21/*
22 * Initialise a struct file's readahead state.  Assumes that the caller has
23 * memset *ra to zero.
24 */
25void
26file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
27{
28	ra->ra_pages = mapping->backing_dev_info->ra_pages;
29	ra->prev_pos = -1;
30}
31EXPORT_SYMBOL_GPL(file_ra_state_init);
32
33#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
34
35/*
36 * see if a page needs releasing upon read_cache_pages() failure
37 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
38 *   before calling, such as the NFS fs marking pages that are cached locally
39 *   on disk, thus we need to give the fs a chance to clean up in the event of
40 *   an error
41 */
42static void read_cache_pages_invalidate_page(struct address_space *mapping,
43					     struct page *page)
44{
45	if (page_has_private(page)) {
46		if (!trylock_page(page))
47			BUG();
48		page->mapping = mapping;
49		do_invalidatepage(page, 0);
50		page->mapping = NULL;
51		unlock_page(page);
52	}
53	page_cache_release(page);
54}
55
56/*
57 * release a list of pages, invalidating them first if need be
58 */
59static void read_cache_pages_invalidate_pages(struct address_space *mapping,
60					      struct list_head *pages)
61{
62	struct page *victim;
63
64	while (!list_empty(pages)) {
65		victim = list_to_page(pages);
66		list_del(&victim->lru);
67		read_cache_pages_invalidate_page(mapping, victim);
68	}
69}
70
71/**
72 * read_cache_pages - populate an address space with some pages & start reads against them
73 * @mapping: the address_space
74 * @pages: The address of a list_head which contains the target pages.  These
75 *   pages have their ->index populated and are otherwise uninitialised.
76 * @filler: callback routine for filling a single page.
77 * @data: private data for the callback routine.
78 *
79 * Hides the details of the LRU cache etc from the filesystems.
80 */
81int read_cache_pages(struct address_space *mapping, struct list_head *pages,
82			int (*filler)(void *, struct page *), void *data)
83{
84	struct page *page;
85	int ret = 0;
86
87	while (!list_empty(pages)) {
88		page = list_to_page(pages);
89		list_del(&page->lru);
90		if (add_to_page_cache_lru(page, mapping,
91					page->index, GFP_KERNEL)) {
92			read_cache_pages_invalidate_page(mapping, page);
93			continue;
94		}
95		page_cache_release(page);
96
97		ret = filler(data, page);
98		if (unlikely(ret)) {
99			read_cache_pages_invalidate_pages(mapping, pages);
100			break;
101		}
102		task_io_account_read(PAGE_CACHE_SIZE);
103	}
104	return ret;
105}
106
107EXPORT_SYMBOL(read_cache_pages);
108
109static int read_pages(struct address_space *mapping, struct file *filp,
110		struct list_head *pages, unsigned nr_pages)
111{
112	struct blk_plug plug;
113	unsigned page_idx;
114	int ret;
115
116	blk_start_plug(&plug);
117
118	if (mapping->a_ops->readpages) {
119		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
120		/* Clean up the remaining pages */
121		put_pages_list(pages);
122		goto out;
123	}
124
125	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
126		struct page *page = list_to_page(pages);
127		list_del(&page->lru);
128		if (!add_to_page_cache_lru(page, mapping,
129					page->index, GFP_KERNEL)) {
130			mapping->a_ops->readpage(filp, page);
131		}
132		page_cache_release(page);
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
138
139	return ret;
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 */
150static int
151__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152			pgoff_t offset, unsigned long nr_to_read,
153			unsigned long lookahead_size)
154{
155	struct inode *inode = mapping->host;
156	struct page *page;
157	unsigned long end_index;	/* The last page we want to read */
158	LIST_HEAD(page_pool);
159	int page_idx;
160	int ret = 0;
161	loff_t isize = i_size_read(inode);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179		rcu_read_unlock();
180		if (page)
181			continue;
182
183		page = page_cache_alloc_readahead(mapping);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210		pgoff_t offset, unsigned long nr_to_read)
211{
212	int ret = 0;
213
214	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
215		return -EINVAL;
216
217	nr_to_read = max_sane_readahead(nr_to_read);
218	while (nr_to_read) {
219		int err;
220
221		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
222
223		if (this_chunk > nr_to_read)
224			this_chunk = nr_to_read;
225		err = __do_page_cache_readahead(mapping, filp,
226						offset, this_chunk, 0);
227		if (err < 0) {
228			ret = err;
229			break;
230		}
231		ret += err;
232		offset += this_chunk;
233		nr_to_read -= this_chunk;
234	}
235	return ret;
236}
237
238/*
239 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
240 * sensible upper limit.
241 */
242unsigned long max_sane_readahead(unsigned long nr)
243{
244	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
245		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
246}
247
248/*
249 * Submit IO for the read-ahead request in file_ra_state.
250 */
251unsigned long ra_submit(struct file_ra_state *ra,
252		       struct address_space *mapping, struct file *filp)
253{
254	int actual;
255
256	actual = __do_page_cache_readahead(mapping, filp,
257					ra->start, ra->size, ra->async_size);
258
259	return actual;
260}
261
262/*
263 * Set the initial window size, round to next power of 2 and square
264 * for small size, x 4 for medium, and x 2 for large
265 * for 128k (32 page) max ra
266 * 1-8 page = 32k initial, > 8 page = 128k initial
267 */
268static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
269{
270	unsigned long newsize = roundup_pow_of_two(size);
271
272	if (newsize <= max / 32)
273		newsize = newsize * 4;
274	else if (newsize <= max / 4)
275		newsize = newsize * 2;
276	else
277		newsize = max;
278
279	return newsize;
280}
281
282/*
283 *  Get the previous window size, ramp it up, and
284 *  return it as the new window size.
285 */
286static unsigned long get_next_ra_size(struct file_ra_state *ra,
287						unsigned long max)
288{
289	unsigned long cur = ra->size;
290	unsigned long newsize;
291
292	if (cur < max / 16)
293		newsize = 4 * cur;
294	else
295		newsize = 2 * cur;
296
297	return min(newsize, max);
298}
299
300/*
301 * On-demand readahead design.
302 *
303 * The fields in struct file_ra_state represent the most-recently-executed
304 * readahead attempt:
305 *
306 *                        |<----- async_size ---------|
307 *     |------------------- size -------------------->|
308 *     |==================#===========================|
309 *     ^start             ^page marked with PG_readahead
310 *
311 * To overlap application thinking time and disk I/O time, we do
312 * `readahead pipelining': Do not wait until the application consumed all
313 * readahead pages and stalled on the missing page at readahead_index;
314 * Instead, submit an asynchronous readahead I/O as soon as there are
315 * only async_size pages left in the readahead window. Normally async_size
316 * will be equal to size, for maximum pipelining.
317 *
318 * In interleaved sequential reads, concurrent streams on the same fd can
319 * be invalidating each other's readahead state. So we flag the new readahead
320 * page at (start+size-async_size) with PG_readahead, and use it as readahead
321 * indicator. The flag won't be set on already cached pages, to avoid the
322 * readahead-for-nothing fuss, saving pointless page cache lookups.
323 *
324 * prev_pos tracks the last visited byte in the _previous_ read request.
325 * It should be maintained by the caller, and will be used for detecting
326 * small random reads. Note that the readahead algorithm checks loosely
327 * for sequential patterns. Hence interleaved reads might be served as
328 * sequential ones.
329 *
330 * There is a special-case: if the first page which the application tries to
331 * read happens to be the first page of the file, it is assumed that a linear
332 * read is about to happen and the window is immediately set to the initial size
333 * based on I/O request size and the max_readahead.
334 *
335 * The code ramps up the readahead size aggressively at first, but slow down as
336 * it approaches max_readhead.
337 */
338
339/*
340 * Count contiguously cached pages from @offset-1 to @offset-@max,
341 * this count is a conservative estimation of
342 * 	- length of the sequential read sequence, or
343 * 	- thrashing threshold in memory tight systems
344 */
345static pgoff_t count_history_pages(struct address_space *mapping,
346				   struct file_ra_state *ra,
347				   pgoff_t offset, unsigned long max)
348{
349	pgoff_t head;
350
351	rcu_read_lock();
352	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
353	rcu_read_unlock();
354
355	return offset - 1 - head;
356}
357
358/*
359 * page cache context based read-ahead
360 */
361static int try_context_readahead(struct address_space *mapping,
362				 struct file_ra_state *ra,
363				 pgoff_t offset,
364				 unsigned long req_size,
365				 unsigned long max)
366{
367	pgoff_t size;
368
369	size = count_history_pages(mapping, ra, offset, max);
370
371	/*
372	 * no history pages:
373	 * it could be a random read
374	 */
375	if (!size)
376		return 0;
377
378	/*
379	 * starts from beginning of file:
380	 * it is a strong indication of long-run stream (or whole-file-read)
381	 */
382	if (size >= offset)
383		size *= 2;
384
385	ra->start = offset;
386	ra->size = get_init_ra_size(size + req_size, max);
387	ra->async_size = ra->size;
388
389	return 1;
390}
391
392/*
393 * A minimal readahead algorithm for trivial sequential/random reads.
394 */
395static unsigned long
396ondemand_readahead(struct address_space *mapping,
397		   struct file_ra_state *ra, struct file *filp,
398		   bool hit_readahead_marker, pgoff_t offset,
399		   unsigned long req_size)
400{
401	unsigned long max = max_sane_readahead(ra->ra_pages);
402
403	/*
404	 * start of file
405	 */
406	if (!offset)
407		goto initial_readahead;
408
409	/*
410	 * It's the expected callback offset, assume sequential access.
411	 * Ramp up sizes, and push forward the readahead window.
412	 */
413	if ((offset == (ra->start + ra->size - ra->async_size) ||
414	     offset == (ra->start + ra->size))) {
415		ra->start += ra->size;
416		ra->size = get_next_ra_size(ra, max);
417		ra->async_size = ra->size;
418		goto readit;
419	}
420
421	/*
422	 * Hit a marked page without valid readahead state.
423	 * E.g. interleaved reads.
424	 * Query the pagecache for async_size, which normally equals to
425	 * readahead size. Ramp it up and use it as the new readahead size.
426	 */
427	if (hit_readahead_marker) {
428		pgoff_t start;
429
430		rcu_read_lock();
431		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
432		rcu_read_unlock();
433
434		if (!start || start - offset > max)
435			return 0;
436
437		ra->start = start;
438		ra->size = start - offset;	/* old async_size */
439		ra->size += req_size;
440		ra->size = get_next_ra_size(ra, max);
441		ra->async_size = ra->size;
442		goto readit;
443	}
444
445	/*
446	 * oversize read
447	 */
448	if (req_size > max)
449		goto initial_readahead;
450
451	/*
452	 * sequential cache miss
453	 */
454	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
455		goto initial_readahead;
456
457	/*
458	 * Query the page cache and look for the traces(cached history pages)
459	 * that a sequential stream would leave behind.
460	 */
461	if (try_context_readahead(mapping, ra, offset, req_size, max))
462		goto readit;
463
464	/*
465	 * standalone, small random read
466	 * Read as is, and do not pollute the readahead state.
467	 */
468	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
469
470initial_readahead:
471	ra->start = offset;
472	ra->size = get_init_ra_size(req_size, max);
473	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
474
475readit:
476	/*
477	 * Will this read hit the readahead marker made by itself?
478	 * If so, trigger the readahead marker hit now, and merge
479	 * the resulted next readahead window into the current one.
480	 */
481	if (offset == ra->start && ra->size == ra->async_size) {
482		ra->async_size = get_next_ra_size(ra, max);
483		ra->size += ra->async_size;
484	}
485
486	return ra_submit(ra, mapping, filp);
487}
488
489/**
490 * page_cache_sync_readahead - generic file readahead
491 * @mapping: address_space which holds the pagecache and I/O vectors
492 * @ra: file_ra_state which holds the readahead state
493 * @filp: passed on to ->readpage() and ->readpages()
494 * @offset: start offset into @mapping, in pagecache page-sized units
495 * @req_size: hint: total size of the read which the caller is performing in
496 *            pagecache pages
497 *
498 * page_cache_sync_readahead() should be called when a cache miss happened:
499 * it will submit the read.  The readahead logic may decide to piggyback more
500 * pages onto the read request if access patterns suggest it will improve
501 * performance.
502 */
503void page_cache_sync_readahead(struct address_space *mapping,
504			       struct file_ra_state *ra, struct file *filp,
505			       pgoff_t offset, unsigned long req_size)
506{
507	/* no read-ahead */
508	if (!ra->ra_pages)
509		return;
510
511	/* be dumb */
512	if (filp && (filp->f_mode & FMODE_RANDOM)) {
513		force_page_cache_readahead(mapping, filp, offset, req_size);
514		return;
515	}
516
517	/* do read-ahead */
518	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
519}
520EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
521
522/**
523 * page_cache_async_readahead - file readahead for marked pages
524 * @mapping: address_space which holds the pagecache and I/O vectors
525 * @ra: file_ra_state which holds the readahead state
526 * @filp: passed on to ->readpage() and ->readpages()
527 * @page: the page at @offset which has the PG_readahead flag set
528 * @offset: start offset into @mapping, in pagecache page-sized units
529 * @req_size: hint: total size of the read which the caller is performing in
530 *            pagecache pages
531 *
532 * page_cache_async_readahead() should be called when a page is used which
533 * has the PG_readahead flag; this is a marker to suggest that the application
534 * has used up enough of the readahead window that we should start pulling in
535 * more pages.
536 */
537void
538page_cache_async_readahead(struct address_space *mapping,
539			   struct file_ra_state *ra, struct file *filp,
540			   struct page *page, pgoff_t offset,
541			   unsigned long req_size)
542{
543	/* no read-ahead */
544	if (!ra->ra_pages)
545		return;
546
547	/*
548	 * Same bit is used for PG_readahead and PG_reclaim.
549	 */
550	if (PageWriteback(page))
551		return;
552
553	ClearPageReadahead(page);
554
555	/*
556	 * Defer asynchronous read-ahead on IO congestion.
557	 */
558	if (bdi_read_congested(mapping->backing_dev_info))
559		return;
560
561	/* do read-ahead */
562	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
563}
564EXPORT_SYMBOL_GPL(page_cache_async_readahead);
565